WO2015072628A1 - Nanoplasmonic sensor and measurement method using same - Google Patents

Nanoplasmonic sensor and measurement method using same Download PDF

Info

Publication number
WO2015072628A1
WO2015072628A1 PCT/KR2014/002051 KR2014002051W WO2015072628A1 WO 2015072628 A1 WO2015072628 A1 WO 2015072628A1 KR 2014002051 W KR2014002051 W KR 2014002051W WO 2015072628 A1 WO2015072628 A1 WO 2015072628A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal nanostructure
analyte
metal
present
sensor
Prior art date
Application number
PCT/KR2014/002051
Other languages
French (fr)
Korean (ko)
Inventor
위정섭
이태걸
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Publication of WO2015072628A1 publication Critical patent/WO2015072628A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity

Definitions

  • the present invention relates to a nano plasmonic sensor and a measuring method using the same, and more particularly, to a nano plasmonic sensor using a three-dimensional metal nanostructure and a measuring method using the same.
  • Plasmon resonance is a phenomenon caused by the behavior of free electrons in a metal. When light enters between a metal surface and a dielectric, the free electrons on the metal surface vibrate collectively due to resonance with the electromagnetic field of specific energy. It is a phenomenon. In particular, using optical phenomena caused by plasmon resonance in metal nanostructures made of noble metals such as gold (Au) and silver (Ag), devices have been extensively studied like real-time chemical / biological sensors.
  • the metal nanostructures exhibit optical properties such as a strong absorption spectrum that did not exist in the bulk state. Accordingly, the electromagnetic field in the local region increases, which phenomenon is generally referred to as Local Surface Plasmon Resonance (LSPR).
  • LSPR Local Surface Plasmon Resonance
  • One of the technical problems to be achieved by the technical idea of the present invention is to provide a highly sensitive nano plasmonic sensor and a measuring method using the same using a three-dimensional metal nanostructure.
  • the metal nanostructure having a recessed accommodating portion for receiving the analyte; And it may include a measuring unit for measuring the plasmon resonance phenomenon in the metal nanostructure.
  • the metal nanostructure may include a top surface and sidewalls protruding from the top surface to define the receiving portion.
  • the side wall may be arranged to surround the receiving portion at the edge of the upper surface.
  • the metal nanostructures may have a petri-dish shape.
  • the surface of the receiving portion may further include a surface coating film including a functional group for adsorbing the analyte.
  • the metal nanostructure may include at least one of gold (Au), silver (Ag), aluminum (Al), copper (Cu).
  • the substrate may further include a substrate disposed under the metal nanostructure, and the plurality of metal nanostructures may be arranged on the substrate.
  • the measurement unit may detect light at or around the surface of the metal nanostructure.
  • the measurement unit may measure a change in absorption, scattering, or extinction characteristics according to the presence or absence of the analyte.
  • a measuring method using a nano plasmonic sensor may include preparing a metal nanostructure including a recessed accommodating part in which an analyte is accommodated; Positioning the analyte in the receptacle; And measuring a plasmon resonance phenomenon in the metal nanostructure.
  • the receptacle may surround at least a portion and a lower surface of the side of the analyte.
  • At least half of the volume of the analyte may be contained within the receptacle.
  • FIG. 1 is a block diagram showing a nano plasmonic sensor according to an embodiment of the present invention.
  • FIG. 2 is a schematic perspective view illustrating a metal nanostructure according to an embodiment of the present invention.
  • 3A to 3C are diagrams for describing an operating principle of a nano plasmonic sensor including a metal nanostructure according to an embodiment of the present invention.
  • FIG. 4 is a graph illustrating an operation principle of a nano plasmonic sensor including a metal nanostructure according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a measurement method using a nano plasmonic sensor including a metal nanostructure according to an embodiment of the present invention.
  • 6A through 6E are diagrams illustrating main steps of a method of forming metal nanostructures according to an exemplary embodiment of the present invention.
  • 8A and 8B are electron micrographs showing metal nanostructures according to an embodiment of the present invention.
  • FIG. 9 is a graph showing measurement results using the nanoplasmonic sensor of the present invention.
  • 10A to 10C are graphs for explaining simulation results using the nanoplasmonic sensor of the present invention.
  • Embodiments of the present invention may be modified in various other forms, or various embodiments may be combined, and the scope of the present invention is not limited to the embodiments described below.
  • the embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art. Accordingly, the shape and size of elements in the drawings may be exaggerated for clarity, and the elements denoted by the same reference numerals in the drawings are the same elements.
  • FIG. 1 is a block diagram showing a nano plasmonic sensor according to an embodiment of the present invention.
  • the nano plasmonic sensor 100 includes at least one metal nanostructure 10 and a measuring unit 20.
  • the nano plasmonic sensor 100 may be used for the detection, measurement, and analysis of biomolecules such as bioenzymes, cells, and proteins using plasmon resonance.
  • the metal nanostructure 10 accommodates an analyte, and the shape of the electromagnetic field may be changed by plasmon resonance at the surface by the analyte.
  • the analyte may include, for example, metal ions or biomolecules such as DNA, proteins, and the like.
  • the nano plasmonic sensor 100 may include a plurality of metal nanostructures 10 according to an embodiment. The metal nanostructure 10 will be described in more detail with reference to FIG. 2 below.
  • the measuring unit 20 measures a plasmon resonance phenomenon in the metal nanostructure 10 and, for example, a UV-Vis spectrometer for measuring scattering, absorption or extinction characteristics. ) May be included.
  • the measurement unit 20 may measure the change of the analyte such as the presence or absence of the analyte and the chemical reaction accommodated in the metal nanostructure 10 by the change of the resonant frequency.
  • the measurement method using the nano plasmonic sensor 100 will be described in more detail with reference to FIGS. 3A to 5 below.
  • the nano plasmonic sensor 100 may further include a separate monitoring unit such as an optical microscope to observe the change of the analyte in the metal nanostructure 10.
  • a separate monitoring unit such as an optical microscope to observe the change of the analyte in the metal nanostructure 10.
  • FIG. 2 is a schematic perspective view illustrating a metal nanostructure according to an embodiment of the present invention.
  • the metal nanostructure 110 may have a receiving portion R recessed inwardly in which the analyte is accommodated.
  • the metal nanostructure 110 may have an upper surface 110F and a lower surface 110B, and sidewalls 110W defining the receiving portion R may be disposed on the upper surface 110F.
  • the side wall 110W may protrude from an edge of the upper surface 110F, and may be disposed to form a side surface of the metal nanostructure 110 along the circumference of the upper surface 110F.
  • the sidewall 110W may be integrally formed with the remaining portions of the upper surface 110F and the lower surface 110B of the metal nanostructure 110.
  • the inclination between the side wall 110W and the upper surface 110F is not limited to the illustrated one and may vary depending on the embodiment.
  • the metal nanostructure 110 may have a petri-dish shape, and may have a circular or elliptical cross section on a plane.
  • the shape of the metal nanostructure 110 of the present invention is not limited thereto, and may include various structures in which the accommodation part R is formed on one surface thereof.
  • the metal nanostructure 110 may have a length D1 at its long axis in the range of several tens to several hundred nanometers.
  • the length D1 of the metal nanostructure 110 may have a range of 10 nm to 200 nm.
  • the height D2 of the metal nanostructure 110 may range from several to several hundred nanometers, which may be less than the length D1.
  • the side wall 110W may have a predetermined thickness D3, and the receiving portion R may have a predetermined depth D4 greater than the thickness D3.
  • the length D1 of the metal nanostructure 110, the height D2, the thickness D3 of the sidewall 110W, and the depth D4 of the receiving portion R may be determined in consideration of the size of the analyte.
  • the depth D4 of the receiver R may be determined to accommodate at least half of the height or volume of the analyte.
  • the metal nanostructure 110 may include at least one of gold (Au), silver (Ag), copper (Cu), and aluminum (Al), and may be made of an alloy thereof. Depending on the material of the analyte, the metal nanostructure 110 may further include a surface coating film coated on the surface of the receiving portion R and including a functional group for adsorbing the analyte.
  • the metal nanostructure 110 of the present embodiment may have a three-dimensional structure including a receiving portion R for accommodating an analyte, and the analyte is accommodated in the receiving portion R, whereby the metal nanostructure 110 is included. It may be in contact with the top surface 110F and sidewalls 110W of the. As a result, the contact area between the metal nanostructure 110 and the analyte may be increased.
  • 3A to 3C are diagrams for describing an operating principle of a nano plasmonic sensor including a metal nanostructure according to an embodiment of the present invention.
  • FIG. 4 is a graph illustrating an operation principle of a nano plasmonic sensor including a metal nanostructure according to an embodiment of the present invention.
  • the nanoplasmonic sensor of the present invention detects a change in the case where the analyte 120 is positioned in the metal nanostructure 110 after there is no analyte around the metal nanostructure 110. can do.
  • This change affects the plasmon resonance, which can change the resonant frequency.
  • This change in resonant frequency can be shown in (a) and (b) graphs, respectively, in the graph of FIG. Therefore, as shown in FIG. 4, a change in optical characteristics, for example, a spectrum including a peak wavelength in the scattering spectrum, may be detected as a phenomenon in which the direction of the arrow is shifted.
  • the surface plasmon resonance generated by the free electrons in the metal of the metal nanostructure 110 may be analyzed by the metal nanostructure 110 when the analyte 120, such as particles or molecules, is placed around the surface of the metal nanostructure 110.
  • the resonance frequency can be changed in this manner.
  • the nano plasmonic sensor of the present invention when an analyte 120a of the first form exists around the metal nanostructure 110, and changes to the analyte 120 of the second form, This change can be detected.
  • the change may include both chemical and physical changes of the analyte 120a and 120, and may be, for example, a change in the activity of the analyte 120a or 120.
  • the nanoplasmonic sensor of the present invention changes the case where the analyte 120b is positioned around the metal nanostructure 110 after there is no analyte around the metal nanostructure 110. It can be detected.
  • the analyte 120b may be adsorbed on the outer surface as well as the inside of the metal nanostructure 110.
  • the nano plasmonic sensor of the present exemplary embodiment can detect not only the case where the analyte 120b is located in the receiving portion R (see FIG. 2) of the metal nanostructure 110 but also the change when the analyte 120b is located on the outer surface. have.
  • the resonance frequency of the plasmon resonance is changed, and thus, the scattering spectrum may be shifted.
  • FIG. 5 is a flowchart illustrating a measurement method using a nano plasmonic sensor including a metal nanostructure according to an embodiment of the present invention.
  • a step (S210) of preparing a metal nanostructure having a receiving portion may be performed.
  • the metal nanostructure may be the metal nanostructure 110 described above with reference to FIG. 2.
  • the metal nanostructures may be provided in a plurality of arrangement.
  • forming a surface coating film including a functional group for adsorbing the analyte on the surface of the receiver may be added.
  • the step (S220) of measuring the optical properties of the metal nanostructure to obtain a first result may be performed.
  • the optical characteristic may be the same as the scattering spectrum described above with reference to FIG. 4, but the present invention is not limited thereto, and all of the characteristics capable of identifying the plasmon phenomenon may be included.
  • placing the analyte on the metal nanostructure may be performed.
  • the analyte may be located at an accommodating portion in the metal nanostructure or adsorbed onto the surface of the metal nanostructure.
  • the analyte can be delivered to the metal nanostructures, for example, by spin coating, screen printing, spraying, or the like in solution.
  • an operation (S240) of obtaining a second result may be performed by measuring optical characteristics of the metal nanostructure containing the analyte. This is to measure the change of the resonance frequency due to the plasmon phenomenon.
  • comparing the first and second results, or comparing the second result with the previous result (S250) may be performed.
  • comparing the first and second results as described above with reference to FIGS. 3A and 3C, it is possible to recognize a difference depending on the presence or absence of an analyte. Thus, detection of the analyte may be possible.
  • comparing the second result with the previous second result as described above with reference to FIG. 3B, it is possible to detect a change in the analyte.
  • the change of the analyte may be analyzed in real time.
  • 6A through 6E are diagrams illustrating main steps of a method of forming metal nanostructures according to an exemplary embodiment of the present invention.
  • first and second mask layers 130 and 140 may be sequentially formed on the substrate 101.
  • the substrate 101 is a layer on which a metal nanostructure 110 (refer to FIG. 2) is formed, and may correspond to a substrate forming a part of a nano plasmonic sensor.
  • the substrate 101 may be selected from a conventional semiconductor substrate such as a silicon substrate, a conductive substrate, or an insulating substrate.
  • the substrate 101 may be a light transmissive substrate, and may transmit a specific light source.
  • the first and second mask layers 130 and 140 may be made of a thermosetting, thermoplastic and / or photocurable material, and may be a polymer resin layer.
  • the first and second mask layers 130 and 140 may be made of different materials, for example, a photoresist material such as polymethyl methacrylate (PMMA).
  • PMMA polymethyl methacrylate
  • the first and second mask layers 130 and 140 may be sequentially applied onto the substrate 101 by spin coating, screen printing, spraying, or the like.
  • the thicknesses of the first and second mask layers 130 and 140 may vary depending on the size of the metal nanostructure 110 to be formed.
  • the second mask layer 140 may be patterned to form a second mask pattern 140P.
  • the second mask pattern 140P may be formed by forming a separate mask layer and removing a portion of the second mask layer 140 by etching.
  • the second mask layer 140 may be formed using a nanoimprint process.
  • the second mask layer 140 and the first mask layer 130 are simultaneously patterned by the imprint mold, so that a part of the first mask layer 130 may also be removed in this step.
  • the first mask layer 130 may be selectively etched to form the first mask pattern 130P.
  • An etching process may be performed in the region of the first mask layer 130 exposed by the second mask pattern 140P.
  • the etching process may be a dry etching process such as, for example, wet etching or reactive ion etching (RIE), and anisotropic etching may be performed.
  • RIE reactive ion etching
  • the first mask pattern 130P may be formed, and an undercut may be formed by removing the lower first mask layer 130 from the edge region of the second mask pattern 140P.
  • the etching process may be performed under a condition having a large selectivity with respect to the first mask layer 130.
  • an etchant having a relatively high selectivity with respect to the first mask layer 130 may be used.
  • the nanostructure 110 may be formed by forming the metal layer 110M on the substrate 101.
  • the metal nanostructure 110 may be formed on a portion of sidewalls of the exposed substrate 101 and the first mask pattern 130P using the first and second mask patterns 130P and 140P as masks.
  • the metal nanostructure 110 is disposed by placing the substrate 101 and the deposition material source to have a predetermined inclination between the substrate 101 and the source of the deposition material, and rotating the substrate 101 or the source of the deposition material, thereby depositing the deposition material.
  • the substrate 101 may be formed by being moved at a predetermined angle with respect to the substrate 101.
  • the shape of the metal nanostructure 110 to be formed may vary according to the angle of inclination.
  • the path through which the deposition material is moved onto the substrate 101 is formed so that the metal nanostructure 110 is formed. It can be adjusted so that it is not excessively overlapped or spaced at the center of the region.
  • the thickness of the first mask pattern 130P may be adjusted to be deposited on the side of the first mask pattern 130P, and by adjusting the height, the depth of the receiving portion R (see FIG. 2) of the metal nanostructure 110 is increased. Can be adjusted.
  • the metal nanostructure 110 may be formed using, for example, physical vapor deposition (PVD), such as thermal evaporation, electron beam evaporation, or sputtering. have.
  • PVD physical vapor deposition
  • a process of removing the first and second mask patterns 130P and 140P may be performed.
  • the metal nanostructure 110 may be arranged on the substrate 101.
  • the metal nanostructures 110 may be arranged in rows and columns or may be arranged in an orderly manner, and the number of the metal nanostructures 110 may vary depending on embodiments.
  • a result of analyzing a metal nanostructure 110 formed of gold (Au) formed on a silicon (Si) substrate by a scanning electron microscope (SEM) is shown. Is shown with a high magnification.
  • the metal nanostructure 110 has a path in which the deposition material moves onto the substrate 101 substantially in the center of the metal nanostructure 110, as shown in FIG. 6D in the process described above with reference to FIG. 6D. It was formed to be controlled so as not to overlap. Therefore, the metal nanostructure 110 of the shape as shown in FIG. 2 could be formed.
  • the size of the metal nanostructure 110 is about 200 nm or less, and may be selected according to the desired analyte.
  • the plurality of metal nanostructures 110 may be arranged in rows and columns.
  • 8A and 8B are electron micrographs showing metal nanostructures according to an embodiment of the present invention.
  • FIG. 8A in the process described above with reference to FIG. 6D, a path through which the deposition material moves onto the substrate 101 is overlapped by a first length at the center of the metal nanostructure 110 ′ ( 110 ') is shown.
  • FIG. 8B the metal nanostructure 110 ′′ formed by overlapping a path through which the deposition material moves on the substrate 101 by a second length smaller than the first length at the center of the metal nanostructure 110 ′′.
  • Projections are formed in regions where the paths of deposition material are moved onto the substrate 101 overlap, and the projections appear as bright images on electron micrographs.
  • the shape of the metal nanostructures 110 ′ and 110 ′′ may be controlled.
  • the shape of the various metal nanostructures 110 ′, 110 ′′ may be appropriately selected depending on the desired analyte.
  • FIG. 9 is a graph showing measurement results using the nanoplasmonic sensor of the present invention.
  • FIG. 9 graphs represented by three kinds of lines are shown, and (a) corresponds to an absorption spectrum before analyte is adsorbed or received on a metal nanostructure.
  • (b) shows the absorption spectrum when the rhodamine B-isothiocyanate (RhB) molecule is adsorbed to the metal nanostructure.
  • the RhB molecule has a sulfur atom at its end, whereby it can be chemisorbed to metal nanostructures made of gold (Au).
  • Au gold
  • FIG. 9 shows an absorption spectrum when latex beads having a size of about 40 nm are accommodated in the metal nanostructure.
  • the absorption spectrum of the metal nanostructure was shifted by 15 nm longer than the graph when the RhB molecules were adsorbed, and the absorption spectrum of the metal nanostructure was about 35 nm when the latex beads were accommodated. Moved to long wavelength. Through this change in the absorption spectrum, it is possible to detect changes in specific molecules or materials around the metal nanostructures. In addition, it can be seen that the change in the absorption spectrum is different according to the analyte, it will be possible to use the nano plasmonic sensor as desired by using this.
  • 10A to 10C are graphs for explaining simulation results using the nanoplasmonic sensor of the present invention.
  • 10a to 10c illustrate the degree of scattering cross section spectra with increasing contact area between the metal nanostructure and the analyte, and before the analyte is accommodated using three types of metal nanostructures.
  • the graph and the graph after the analyte was accommodated are shown as (a) and (b), respectively.
  • As analyte spherical latex beads having a refractive index of about 1.4 and a diameter of about 100 nm were used.
  • latex beads may be applied to a disk-shaped two-dimensional metal nanostructure having a diameter of about 150 nm without a receiving portion R (see FIG. 2), that is, without a sidewall 110W (see FIG. 2).
  • the shift of the spectrum when accepted is shown, showing a shift of less than 1 nm.
  • latex beads may be formed in the metal nanostructures according to the exemplary embodiment of the present invention, having a size of about 150 nm and having a first height of about 60 nm having a relatively low height of the sidewall 110W.
  • the shift in the spectrum when accepted is shown, showing a shift of about 10 nm.
  • the height of the sidewall 110W when the height of the sidewall 110W has a second height of about 90 nm, the height of the sidewall 110W is greater than the first height of FIG. 10B.
  • the shift in the spectrum when the latex beads were accommodated in the metal nanostructure was shown, showing a shift of about 35 nm.
  • the nano plasmonic sensor using the three-dimensional metal nanostructure according to an embodiment of the present invention has a higher sensitivity than the case of using the two-dimensional metal nanostructure, it is possible to detect and analyze even when the amount of analyte is relatively small. It can be seen. In addition, it can be seen that the sensing sensitivity can be further improved by adjusting the height of the sidewall of the metal nanostructure according to the analyte.
  • Nano plasmonic sensor according to an embodiment of the present invention can be used for the detection, measurement and analysis of biomolecules such as biological enzymes, cells and proteins using plasmon resonance phenomena.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A nanoplasmonic sensor of the present invention comprises a metal nanostructure having a recessed housing part in which a subject being analyzed is housed, and a measurement part for measuring plasmon resonance in the metal nanostructure. In addition, a measurement method using the nanoplasmonic sensor of the present invention comprises the steps of: preparing the metal nanostructure comprising the recessed housing part in which the subject being analyzed is housed; positioning the subject being analyzed in the housing part; and measuring plasmon resonance in the metal nanostructure.

Description

나노 플라즈모닉 센서 및 이를 이용한 측정 방법Nano plasmonic sensor and measuring method using the same
본 발명은 나노 플라즈모닉 센서 및 이를 이용한 측정 방법에 관한 것으로, 더욱 상세하게는 3차원의 금속 나노구조물을 이용한 나노 플라즈모닉 센서 및 이를 이용한 측정 방법에 관한 것이다.The present invention relates to a nano plasmonic sensor and a measuring method using the same, and more particularly, to a nano plasmonic sensor using a three-dimensional metal nanostructure and a measuring method using the same.
플라즈몬 공명(plasmon resonance)은 금속 내의 자유 전자의 거동에 의한 현상으로, 금속 표면과 유전체의 사이에 빛이 입사되면 빛이 가지는 특정 에너지의 전자기장과의 공명으로 인하여 금속 표면의 자유 전자들이 집단적으로 진동하는 현상이다. 특히, 금(Au), 은(Ag) 등의 귀금속(noble metal)으로 이루어진 금속 나노구조물에서의 플라즈몬 공명에 의한 광학 현상을 이용하여, 실시간 화학/생물학 센서와 같이 소자들이 광범위하게 연구되고 있다. Plasmon resonance is a phenomenon caused by the behavior of free electrons in a metal. When light enters between a metal surface and a dielectric, the free electrons on the metal surface vibrate collectively due to resonance with the electromagnetic field of specific energy. It is a phenomenon. In particular, using optical phenomena caused by plasmon resonance in metal nanostructures made of noble metals such as gold (Au) and silver (Ag), devices have been extensively studied like real-time chemical / biological sensors.
금속 나노구조물들에 조사되는 광자 주파수가 금속 나노구조물 내의 자유 전자의 집단 진동에 공명하면, 금속 나노구조물들은 벌크 상태에서는 존재하지 않던 강한 흡광 스펙트럼과 같은 광학적 특성을 나타내게 된다. 이에 따라, 국소 영역에서의 전자기장이 증가하며, 이러한 현상은 일반적으로 국소 표면 플라즈몬 공명(Local Surface Plasmon Resonance, LSPR)으로 지칭된다.If the photon frequency irradiated to the metal nanostructures resonates with the collective vibration of free electrons in the metal nanostructures, the metal nanostructures exhibit optical properties such as a strong absorption spectrum that did not exist in the bulk state. Accordingly, the electromagnetic field in the local region increases, which phenomenon is generally referred to as Local Surface Plasmon Resonance (LSPR).
본 발명의 기술적 사상이 이루고자 하는 기술적 과제 중 하나는, 3차원의 금속 나노구조물을 이용하여, 고감도의 나노 플라즈모닉 센서 및 이를 이용한 측정 방법을 제공하는 것이다.One of the technical problems to be achieved by the technical idea of the present invention is to provide a highly sensitive nano plasmonic sensor and a measuring method using the same using a three-dimensional metal nanostructure.
본 발명의 일 실시예에 따른 나노 플라즈모닉 센서는, 분석 대상물이 수용되는 리세스된 수용부를 가지는 금속 나노구조물; 및 상기 금속 나노구조물에서의 플라즈몬 공명 현상을 측정하는 측정부를 포함할 수 있다.Nanoplasmic sensor according to an embodiment of the present invention, the metal nanostructure having a recessed accommodating portion for receiving the analyte; And it may include a measuring unit for measuring the plasmon resonance phenomenon in the metal nanostructure.
본 발명의 일부 실시예에서, 상기 금속 나노구조물은 상면 및 상기 상면으로부터 돌출되어 상기 수용부를 정의하는 측벽을 포함할 수 있다.In some embodiments of the present invention, the metal nanostructure may include a top surface and sidewalls protruding from the top surface to define the receiving portion.
본 발명의 일부 실시예에서, 상기 측벽은 상기 상면의 가장자리에서 상기 수용부를 둘러싸도록 배치될 수 있다.In some embodiments of the present invention, the side wall may be arranged to surround the receiving portion at the edge of the upper surface.
본 발명의 일부 실시예에서, 상기 금속 나노구조물은 페트리 접시(petri-dish) 형상을 가질 수 있다.In some embodiments of the present invention, the metal nanostructures may have a petri-dish shape.
본 발명의 일부 실시예에서, 상기 수용부의 표면에 코팅되며, 상기 분석 대상물을 흡착하는 기능기를 포함하는 표면 코팅막을 더 포함할 수 있다.In some embodiments of the present invention, the surface of the receiving portion may further include a surface coating film including a functional group for adsorbing the analyte.
본 발명의 일부 실시예에서, 상기 금속 나노구조물은 금(Au), 은(Ag), 알루미늄(Al), 구리(Cu) 중 적어도 하나를 포함할 수 있다.In some embodiments of the present invention, the metal nanostructure may include at least one of gold (Au), silver (Ag), aluminum (Al), copper (Cu).
본 발명의 일부 실시예에서, 상기 금속 나노구조물의 하부에 배치되는 기판을 더 포함하고, 상기 금속 나노구조물은 상기 기판 상에 복수 개가 배열될 수 있다.In some embodiments of the present invention, the substrate may further include a substrate disposed under the metal nanostructure, and the plurality of metal nanostructures may be arranged on the substrate.
본 발명의 일부 실시예에서, 상기 측정부는 상기 금속 나노구조물의 표면 또는 주변에서의 광을 검출할 수 있다.In some embodiments of the present invention, the measurement unit may detect light at or around the surface of the metal nanostructure.
본 발명의 일부 실시예에서, 상기 측정부는 상기 분석 대상물의 유무 또는 변화에 따른 흡수(absorption), 산란(scattering) 또는 흡광(extinction) 특성의 변화를 측정할 수 있다.In some embodiments of the present disclosure, the measurement unit may measure a change in absorption, scattering, or extinction characteristics according to the presence or absence of the analyte.
본 발명의 일 실시예에 따른 나노 플라즈모닉 센서를 이용한 측정 방법은, 분석 대상물이 수용되는 리세스된 수용부를 포함하는 금속 나노구조물을 마련하는 단계; 상기 수용부 내에 상기 분석 대상물을 위치시키는 단계; 및 상기 금속 나노구조물에서의 플라즈몬 공명 현상을 측정하는 단계를 포함할 수 있다.According to one or more exemplary embodiments, a measuring method using a nano plasmonic sensor may include preparing a metal nanostructure including a recessed accommodating part in which an analyte is accommodated; Positioning the analyte in the receptacle; And measuring a plasmon resonance phenomenon in the metal nanostructure.
본 발명의 일부 실시예에서, 상기 수용부는 상기 분석 대상물의 측면의 적어도 일부 및 하면을 둘러쌀 수 있다.In some embodiments of the present invention, the receptacle may surround at least a portion and a lower surface of the side of the analyte.
본 발명의 일부 실시예에서, 상기 수용부 내에 상기 분석 대상물의 부피의 절반 이상이 수용될 수 있다.In some embodiments of the present invention, at least half of the volume of the analyte may be contained within the receptacle.
3차원의 금속 나노구조물을 이용하여 분석 대상물의 수용도를 향상시킴으로써, 고감도의 나노 플라즈모닉 센서 및 이를 이용한 측정 방법이 제공될 수 있다.By improving the acceptability of the analyte using a three-dimensional metal nanostructure, a highly sensitive nano plasmonic sensor and a measuring method using the same can be provided.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시 형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.Various and advantageous advantages and effects of the present invention is not limited to the above description, it will be more readily understood in the course of describing specific embodiments of the present invention.
도 1은 본 발명의 일 실시예에 따른 나노 플라즈모닉 센서를 나타낸 블록도이다.1 is a block diagram showing a nano plasmonic sensor according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 금속 나노구조물을 도시하는 개략적인 사시도이다.2 is a schematic perspective view illustrating a metal nanostructure according to an embodiment of the present invention.
도 3a 내지 도 3c는 본 발명의 일 실시예에 따른 금속 나노구조물을 포함하는 나노 플라즈모닉 센서의 동작 원리를 설명하기 위한 도면들이다.3A to 3C are diagrams for describing an operating principle of a nano plasmonic sensor including a metal nanostructure according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 금속 나노구조물을 포함하는 나노 플라즈모닉 센서의 동작 원리를 설명하기 위한 그래프이다.4 is a graph illustrating an operation principle of a nano plasmonic sensor including a metal nanostructure according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 금속 나노구조물을 포함하는 나노 플라즈모닉 센서를 이용한 측정 방법을 설명하기 위한 흐름도이다.5 is a flowchart illustrating a measurement method using a nano plasmonic sensor including a metal nanostructure according to an embodiment of the present invention.
도 6a 내지 도 6e는 본 발명의 일 실시예에 따른 금속 나노구조물의 형성 방법을 개략적으로 나타내는 주요 단계별 도면들이다.6A through 6E are diagrams illustrating main steps of a method of forming metal nanostructures according to an exemplary embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 금속 나노구조물을 도시하는 전자 현미경 사진들이다.7 is electron micrographs showing metal nanostructures in accordance with one embodiment of the present invention.
도 8a 및 도 8b는 본 발명의 일 실시예에 따른 금속 나노구조물을 도시하는 전자 현미경 사진들이다.8A and 8B are electron micrographs showing metal nanostructures according to an embodiment of the present invention.
도 9는 본 발명의 나노 플라즈모닉 센서를 이용한 측정 결과를 도시하는 그래프이다.9 is a graph showing measurement results using the nanoplasmonic sensor of the present invention.
도 10a 내지 도 10c는 본 발명의 나노 플라즈모닉 센서를 이용한 시뮬레이션 결과를 설명하기 위한 그래프들이다.10A to 10C are graphs for explaining simulation results using the nanoplasmonic sensor of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 형태들을 다음과 같이 설명한다.Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings.
본 발명의 실시 형태는 여러 가지 다른 형태로 변형되거나 여러 가지 실시 형태가 조합될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시 형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있으며, 도면 상의 동일한 부호로 표시되는 요소는 동일한 요소이다.Embodiments of the present invention may be modified in various other forms, or various embodiments may be combined, and the scope of the present invention is not limited to the embodiments described below. In addition, the embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art. Accordingly, the shape and size of elements in the drawings may be exaggerated for clarity, and the elements denoted by the same reference numerals in the drawings are the same elements.
도 1은 본 발명의 일 실시예에 따른 나노 플라즈모닉 센서를 나타낸 블록도이다.1 is a block diagram showing a nano plasmonic sensor according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 나노 플라즈모닉 센서(100)는 적어도 하나의 금속 나노구조물(10) 및 측정부(20)를 포함한다. 나노 플라즈모닉 센서(100)는 플라즈몬 공명 현상을 이용하여 생체 효소, 세포 및 단백질과 같은 생체 분자의 검출, 측정 및 분석에 이용될 수 있다.Referring to FIG. 1, the nano plasmonic sensor 100 according to an embodiment of the present invention includes at least one metal nanostructure 10 and a measuring unit 20. The nano plasmonic sensor 100 may be used for the detection, measurement, and analysis of biomolecules such as bioenzymes, cells, and proteins using plasmon resonance.
금속 나노구조물(10)은 분석 대상물을 수용하며, 상기 분석 대상물에 의해 표면에서의 플라즈몬 공명에 의해 전자기장의 형태가 변화될 수 있다. 상기 분석 대상물은 예를 들어, 금속 이온 또는 DNA, 단백질 등과 같은 생체 분자를 포함할 수 있다. 나노 플라즈모닉 센서(100)는 실시예에 따라 복수 개의 금속 나노구조물(10)을 포함할 수 있다. 금속 나노구조물(10)에 대해서는 하기에 도 2를 참조하여 더욱 상세히 설명한다.The metal nanostructure 10 accommodates an analyte, and the shape of the electromagnetic field may be changed by plasmon resonance at the surface by the analyte. The analyte may include, for example, metal ions or biomolecules such as DNA, proteins, and the like. The nano plasmonic sensor 100 may include a plurality of metal nanostructures 10 according to an embodiment. The metal nanostructure 10 will be described in more detail with reference to FIG. 2 below.
측정부(20)는 금속 나노구조물(10)에서의 플라즈몬 공명 현상을 측정하며, 예를 들어, 산란(scattering), 흡수(absorption) 또는 흡광(extinction) 특성을 측정하는 UV-Vis 스펙트로미터(spectrometer)를 포함할 수 있다. 측정부(20)는 금속 나노구조물(10)에 수용되는 상기 분석 대상물의 유무 및 화학 반응과 같은 상기 분석 대상물의 변화를 공진 주파수(resonant frequency)의 변화로 측정할 수 있다. 나노 플라즈모닉 센서(100)를 이용한 측정 방법에 대해서는 하기에 도 3a 내지 도 5를 참조하여 더욱 상세히 설명한다.The measuring unit 20 measures a plasmon resonance phenomenon in the metal nanostructure 10 and, for example, a UV-Vis spectrometer for measuring scattering, absorption or extinction characteristics. ) May be included. The measurement unit 20 may measure the change of the analyte such as the presence or absence of the analyte and the chemical reaction accommodated in the metal nanostructure 10 by the change of the resonant frequency. The measurement method using the nano plasmonic sensor 100 will be described in more detail with reference to FIGS. 3A to 5 below.
실시예에 따라, 나노 플라즈모닉 센서(100)는 금속 나노구조물(10)에서의 상기 분석 대상물의 변화를 관찰하기 위하여 광학 현미경과 같은 별도의 모니터링부를 더 포함할 수도 있다.According to an embodiment, the nano plasmonic sensor 100 may further include a separate monitoring unit such as an optical microscope to observe the change of the analyte in the metal nanostructure 10.
도 2는 본 발명의 일 실시예에 따른 금속 나노구조물을 도시하는 개략적인 사시도이다.2 is a schematic perspective view illustrating a metal nanostructure according to an embodiment of the present invention.
도 2를 참조하면, 본 발명의 일 실시예에 따른 금속 나노구조물(110)은 분석 대상물이 수용되는 내측으로 리세스(recess)된 수용부(R)를 가질 수 있다. 금속 나노구조물(110)은 상면(110F) 및 하면(110B)을 가지며, 상면(110F)에는 수용부(R)를 정의하는 측벽(110W)이 배치될 수 있다. 측벽(110W)은 상면(110F)의 가장자리로부터 돌출되어, 상면(110F)의 둘레를 따라 금속 나노구조물(110)의 측면을 형성하도록 배치될 수 있다. 측벽(110W)은 금속 나노구조물(110)의 상면(110F) 및 하면(110B)을 이루는 나머지 부분과 일체로 형성될 수 있다. 측벽(110W)과 상면(110F)이 이루는 경사는 도시된 것에 한정되지 않으며 실시예에 따라 변화될 수 있다.Referring to FIG. 2, the metal nanostructure 110 according to the exemplary embodiment of the present invention may have a receiving portion R recessed inwardly in which the analyte is accommodated. The metal nanostructure 110 may have an upper surface 110F and a lower surface 110B, and sidewalls 110W defining the receiving portion R may be disposed on the upper surface 110F. The side wall 110W may protrude from an edge of the upper surface 110F, and may be disposed to form a side surface of the metal nanostructure 110 along the circumference of the upper surface 110F. The sidewall 110W may be integrally formed with the remaining portions of the upper surface 110F and the lower surface 110B of the metal nanostructure 110. The inclination between the side wall 110W and the upper surface 110F is not limited to the illustrated one and may vary depending on the embodiment.
금속 나노구조물(110)은 페트리 접시(petri-dish) 형상을 가질 수 있으며, 평면 상에서 원형 또는 타원형의 단면을 가질 수 있다. 다만, 본 발명의 금속 나노구조물(110)의 형상은 이에 한정되지 않으며, 일면에 수용부(R)가 형성된 다양한 구조를 포함할 수 있다.The metal nanostructure 110 may have a petri-dish shape, and may have a circular or elliptical cross section on a plane. However, the shape of the metal nanostructure 110 of the present invention is not limited thereto, and may include various structures in which the accommodation part R is formed on one surface thereof.
금속 나노구조물(110)은 장축에서의 길이(D1)가 수십 내지 수백 나노미터의 범위를 가질 수 있다. 예를 들어, 금속 나노구조물(110)의 길이(D1)는 10 nm 내지 200 nm의 범위를 가질 수 있다. 금속 나노구조물(110)의 높이(D2)는 수 내지 수백 나노미터의 범위를 가질 수 있으며, 이는 상기 길이(D1)보다 작을 수 있다. 측벽(110W)은 소정 두께(D3)를 가질 수 있으며, 수용부(R)는 상기 두께(D3)보다 큰 소정 깊이(D4)를 가질 수 있다. 금속 나노구조물(110)의 길이(D1), 높이(D2), 측벽(110W)의 두께(D3) 및 수용부(R)의 깊이(D4)는 분석 대상물의 크기를 고려하여 결정될 수 있다. 예를 들어, 수용부(R)의 깊이(D4)는 분석 대상물의 높이 또는 부피의 절반 이상을 수용할 수 있도록 결정될 수 있다.The metal nanostructure 110 may have a length D1 at its long axis in the range of several tens to several hundred nanometers. For example, the length D1 of the metal nanostructure 110 may have a range of 10 nm to 200 nm. The height D2 of the metal nanostructure 110 may range from several to several hundred nanometers, which may be less than the length D1. The side wall 110W may have a predetermined thickness D3, and the receiving portion R may have a predetermined depth D4 greater than the thickness D3. The length D1 of the metal nanostructure 110, the height D2, the thickness D3 of the sidewall 110W, and the depth D4 of the receiving portion R may be determined in consideration of the size of the analyte. For example, the depth D4 of the receiver R may be determined to accommodate at least half of the height or volume of the analyte.
금속 나노구조물(110)은 금(Au), 은(Ag), 구리(Cu), 알루미늄(Al) 중 적어도 하나를 포함할 수 있으며, 이들의 합금으로 이루어질 수도 있다. 분석 대상물의 물질에 따라, 금속 나노구조물(110)은 수용부(R)의 표면에 코팅되며, 분석 대상물을 흡착하는 기능기를 포함하는 표면 코팅막을 더 포함할 수 있다.The metal nanostructure 110 may include at least one of gold (Au), silver (Ag), copper (Cu), and aluminum (Al), and may be made of an alloy thereof. Depending on the material of the analyte, the metal nanostructure 110 may further include a surface coating film coated on the surface of the receiving portion R and including a functional group for adsorbing the analyte.
본 실시예의 금속 나노구조물(110)은 분석 대상물이 수용하기 위한 수용부(R)를 포함하는 3차원 구조를 가질 수 있으며, 분석 대상물이 수용부(R)에 수용됨으로써, 금속 나노구조물(110)의 상면(110F) 및 측벽(110W)과 접촉될 수 있다. 이에 의해 금속 나노구조물(110)과 분석 대상물과의 접촉 면적이 증가될 수 있다.The metal nanostructure 110 of the present embodiment may have a three-dimensional structure including a receiving portion R for accommodating an analyte, and the analyte is accommodated in the receiving portion R, whereby the metal nanostructure 110 is included. It may be in contact with the top surface 110F and sidewalls 110W of the. As a result, the contact area between the metal nanostructure 110 and the analyte may be increased.
도 3a 내지 도 3c는 본 발명의 일 실시예에 따른 금속 나노구조물을 포함하는 나노 플라즈모닉 센서의 동작 원리를 설명하기 위한 도면들이다.3A to 3C are diagrams for describing an operating principle of a nano plasmonic sensor including a metal nanostructure according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 금속 나노구조물을 포함하는 나노 플라즈모닉 센서의 동작 원리를 설명하기 위한 그래프이다.4 is a graph illustrating an operation principle of a nano plasmonic sensor including a metal nanostructure according to an embodiment of the present invention.
도 3a를 참조하면, 본 발명의 나노 플라즈모닉 센서는, 금속 나노구조물(110) 주변에 분석 대상물이 존재하지 않았다가 금속 나노구조물(110) 내에 분석 대상물(120)이 위치하는 경우의 변화를 감지할 수 있다. 이러한 변화는 플라즈몬 공명에 영향을 미치게 되어, 공진 주파수를 변화시킬 수 있다. 이러한 공진 주파수의 변화는, 도 4의 그래프에서 각각 (a) 및 (b) 그래프로 도시될 수 있다. 따라서, 도 4에 도시된 것과 같이, 광학적 특성의 변화, 예를 들어 산란 스펙트럼에서의 피크 파장을 포함하는 스펙트럼이 화살표 방향으로 이동되는 현상으로 감지될 수 있다.Referring to FIG. 3A, the nanoplasmonic sensor of the present invention detects a change in the case where the analyte 120 is positioned in the metal nanostructure 110 after there is no analyte around the metal nanostructure 110. can do. This change affects the plasmon resonance, which can change the resonant frequency. This change in resonant frequency can be shown in (a) and (b) graphs, respectively, in the graph of FIG. Therefore, as shown in FIG. 4, a change in optical characteristics, for example, a spectrum including a peak wavelength in the scattering spectrum, may be detected as a phenomenon in which the direction of the arrow is shifted.
금속 나노구조물(110)의 금속 내의 자유 전자에 의해 발생하는 표면 플라즈몬 공명은, 금속 나노구조물(110)의 표면 주변에 입자나 분자 등의 분석 대상물(120)이 놓여지면 금속 나노구조물(110)과의 반응에 의해 이와 같이 공진 주파수를 변화시킬 수 있다.The surface plasmon resonance generated by the free electrons in the metal of the metal nanostructure 110 may be analyzed by the metal nanostructure 110 when the analyte 120, such as particles or molecules, is placed around the surface of the metal nanostructure 110. The resonance frequency can be changed in this manner.
도 3b를 참조하면, 본 발명의 나노 플라즈모닉 센서는, 금속 나노구조물(110) 주변에 제1 형태의 분석 대상물(120a)이 존재하다가, 제2 형태의 분석 대상물(120)로 변화하는 경우, 이러한 변화를 감지할 수 있다. 상기 변화는, 분석 대상물(120a, 120)의 화학적 변화 및 물리적 변화를 모두 포함할 수 있으며, 예를 들어, 분석 대상물(120a, 120)의 활성도의 변화일 수 있다.Referring to FIG. 3B, in the nano plasmonic sensor of the present invention, when an analyte 120a of the first form exists around the metal nanostructure 110, and changes to the analyte 120 of the second form, This change can be detected. The change may include both chemical and physical changes of the analyte 120a and 120, and may be, for example, a change in the activity of the analyte 120a or 120.
도 3c를 참조하면, 본 발명의 나노 플라즈모닉 센서는, 금속 나노구조물(110) 주변에 분석 대상물이 존재하지 않았다가 금속 나노구조물(110) 주변에 분석 대상물(120b)이 위치하는 경우의 변화를 감지할 수 있다. 이 경우, 분석 대상물(120b)은 금속 나노구조물(110)의 내부뿐 아니라 외측 표면 상에도 흡착될 수 있다. 본 실시예의 나노 플라즈모닉 센서는 금속 나노구조물(110)의 수용부(R)(도 2 참조) 내에 분석 대상물(120b)이 위치하는 경우뿐 아니라 외측 표면 상에 위치하는 경우의 변화도 감지할 수 있다.Referring to FIG. 3C, the nanoplasmonic sensor of the present invention changes the case where the analyte 120b is positioned around the metal nanostructure 110 after there is no analyte around the metal nanostructure 110. It can be detected. In this case, the analyte 120b may be adsorbed on the outer surface as well as the inside of the metal nanostructure 110. The nano plasmonic sensor of the present exemplary embodiment can detect not only the case where the analyte 120b is located in the receiving portion R (see FIG. 2) of the metal nanostructure 110 but also the change when the analyte 120b is located on the outer surface. have.
도 3b 및 도 3c의 경우에도, 도 4를 참조하여 상술한 것과 같이 플라즈몬 공명에서의 공진 주파수가 변화되어, 산란 스펙트럼이 이동되는 현상으로 감지될 수 있다.3B and 3C, as described above with reference to FIG. 4, the resonance frequency of the plasmon resonance is changed, and thus, the scattering spectrum may be shifted.
도 5는 본 발명의 일 실시예에 따른 금속 나노구조물을 포함하는 나노 플라즈모닉 센서를 이용한 측정 방법을 설명하기 위한 흐름도이다.5 is a flowchart illustrating a measurement method using a nano plasmonic sensor including a metal nanostructure according to an embodiment of the present invention.
도 5를 참조하면, 먼저, 수용부를 가지는 금속 나노구조물을 마련하는 단계(S210)가 수행될 수 있다. 상기 금속 나노구조물은 도 2를 참조하여 상술한 금속 나노구조물(110)일 수 있다. 특히, 상기 금속 나노구조물은 복수 개가 배열된 형태로 마련될 수 있다. 분석 대상물의 특성에 따라, 수용부의 표면에 분석 대상물을 흡착하는 기능기를 포함하는 표면 코팅막을 형성하는 단계가 추가될 수 있다.Referring to FIG. 5, first, a step (S210) of preparing a metal nanostructure having a receiving portion may be performed. The metal nanostructure may be the metal nanostructure 110 described above with reference to FIG. 2. In particular, the metal nanostructures may be provided in a plurality of arrangement. Depending on the characteristics of the analyte, forming a surface coating film including a functional group for adsorbing the analyte on the surface of the receiver may be added.
다음으로, 상기 금속 나노구조물에서의 광학적 특성을 측정하여 제1 결과를 얻는 단계(S220)가 수행될 수 있다. 광학적 특성은 도 4를 참조하여 상술한 산란 스펙트럼과 같은 특성일 수 있으나, 본 발명은 이에 한정되지 않으며, 플라즈몬 현상을 확인할 수 있는 특성은 모두 포함될 수 있다.Next, the step (S220) of measuring the optical properties of the metal nanostructure to obtain a first result may be performed. The optical characteristic may be the same as the scattering spectrum described above with reference to FIG. 4, but the present invention is not limited thereto, and all of the characteristics capable of identifying the plasmon phenomenon may be included.
다음으로, 상기 금속 나노구조물에 분석 대상물을 위치시키는 단계(S230)가 수행될 수 있다. 분석 대상물은, 도 3a 내지 도 3c를 참조하여 상술한 것과 같이, 상기 금속 나노구조물 내의 수용부에 위치되거나, 상기 금속 나노구조물의 표면에 흡착될 수 있다. 분석 대상물은 그 성질에 따라 예컨대, 용액 상태로 스핀 코팅, 스크린 프린팅, 분사 등에 의하여 상기 금속 나노구조물에 전달될 수 있다.Next, placing the analyte on the metal nanostructure (S230) may be performed. As described above with reference to FIGS. 3A to 3C, the analyte may be located at an accommodating portion in the metal nanostructure or adsorbed onto the surface of the metal nanostructure. The analyte can be delivered to the metal nanostructures, for example, by spin coating, screen printing, spraying, or the like in solution.
다음으로, 분석 대상물이 수용된 금속 나노구조물에서의 광학적 특성을 측정하여 제2 결과를 얻는 단계(S240)가 수행될 수 있다. 이는 플라즈몬 현상에 의한 공진 주파수의 변화를 측정하기 위함이다.Next, an operation (S240) of obtaining a second result may be performed by measuring optical characteristics of the metal nanostructure containing the analyte. This is to measure the change of the resonance frequency due to the plasmon phenomenon.
다음으로, 상기 제1 및 제2 결과를 비교하거나, 상기 제2 결과를 이전의 결과와 비교하여 분석하는 단계(S250)가 수행될 수 있다. 상기 제1 및 제2 결과를 비교하는 경우, 도 3a 및 도 3c를 참조하여 상술한 것과 같이, 분석 대상물의 유무에 따른 차이를 인식할 수 있게 된다. 따라서, 분석 대상물의 검출이 가능할 수 있다. 상기 제2 결과를 이전의 제2 결과와 비교하는 경우, 도 3b를 참조하여 상술한 것과 같이, 분석 대상물의 변화를 감지할 수 있게 된다. 선택적으로, 본 단계 이후에 계속적으로 소정 시간 단위로 상기 제2 결과를 얻는 단계(S240) 및 분석하는 단계(S250)를 반복 수행함으로써, 분석 대상물의 변화를 실시간으로 분석할 수도 있을 것이다.Next, comparing the first and second results, or comparing the second result with the previous result (S250) may be performed. When comparing the first and second results, as described above with reference to FIGS. 3A and 3C, it is possible to recognize a difference depending on the presence or absence of an analyte. Thus, detection of the analyte may be possible. When comparing the second result with the previous second result, as described above with reference to FIG. 3B, it is possible to detect a change in the analyte. Optionally, after the step (S240) and the step (S250) of continuously obtaining the second result in a predetermined time unit may be continuously performed, the change of the analyte may be analyzed in real time.
도 6a 내지 도 6e는 본 발명의 일 실시예에 따른 금속 나노구조물의 형성 방법을 개략적으로 나타내는 주요 단계별 도면들이다.6A through 6E are diagrams illustrating main steps of a method of forming metal nanostructures according to an exemplary embodiment of the present invention.
도 6a를 참조하면, 기판(101) 상에 제1 및 제2 마스크층(130, 140)을 순차적으로 형성할 수 있다.Referring to FIG. 6A, first and second mask layers 130 and 140 may be sequentially formed on the substrate 101.
기판(101)은 그 상면에 금속 나노구조물(110)(도 2 참조)이 형성되는 층으로서, 나노 플라즈모닉 센서의 일부를 이루는 기판에 해당할 수 있다. 기판(101)은 실리콘 기판과 같은 통상의 반도체 기판, 도전성 기판 또는 절연성 기판 중 선택될 수 있다. 또한, 기판(101)은 투광성 기판일 수 있으며, 특정 광원을 투광시킬 수 있다.The substrate 101 is a layer on which a metal nanostructure 110 (refer to FIG. 2) is formed, and may correspond to a substrate forming a part of a nano plasmonic sensor. The substrate 101 may be selected from a conventional semiconductor substrate such as a silicon substrate, a conductive substrate, or an insulating substrate. In addition, the substrate 101 may be a light transmissive substrate, and may transmit a specific light source.
제1 및 제2 마스크층(130, 140)은 열경화성, 열가소성 및/또는 광경화성 물질로 이루어질 수 있으며, 고분자 수지층일 수 있다. 제1 및 제2 마스크층(130, 140)은 서로 다른 물질로 이루어지며, 예컨대, PMMA(polymethyl methacrylate)와 같은 포토레지스트 물질로 이루어질 수 있다. 제1 및 제2 마스크층(130, 140)은 스핀 코팅, 스크린 프린팅, 분사 등에 의하여 기판(101) 상에 순차적으로 도포될 수 있다. 제1 및 제2 마스크층(130, 140)의 두께는 형성하려고 하는 금속 나노구조물(110)의 크기에 따라 변화될 수 있다.The first and second mask layers 130 and 140 may be made of a thermosetting, thermoplastic and / or photocurable material, and may be a polymer resin layer. The first and second mask layers 130 and 140 may be made of different materials, for example, a photoresist material such as polymethyl methacrylate (PMMA). The first and second mask layers 130 and 140 may be sequentially applied onto the substrate 101 by spin coating, screen printing, spraying, or the like. The thicknesses of the first and second mask layers 130 and 140 may vary depending on the size of the metal nanostructure 110 to be formed.
도 6b를 참조하면, 제2 마스크층(140)을 패터닝하여 제2 마스크 패턴(140P)을 형성할 수 있다.Referring to FIG. 6B, the second mask layer 140 may be patterned to form a second mask pattern 140P.
제2 마스크 패턴(140P)은 별도의 마스크층을 형성하고 제2 마스크층(140)의 일부를 식각하여 제거함으로써 형성될 수 있다. 실시예에 따라, 제2 마스크층(140)은 나노 임프린트 공정을 이용하여 형성될 수도 있다. 이 경우, 임프린트 몰드에 의해 제2 마스크층(140) 및 제1 마스크층(130)이 동시에 패터닝되어, 제1 마스크층(130)의 일부도 본 단계에서 제거될 수 있다.The second mask pattern 140P may be formed by forming a separate mask layer and removing a portion of the second mask layer 140 by etching. In some embodiments, the second mask layer 140 may be formed using a nanoimprint process. In this case, the second mask layer 140 and the first mask layer 130 are simultaneously patterned by the imprint mold, so that a part of the first mask layer 130 may also be removed in this step.
도 6c를 참조하면, 제1 마스크층(130)을 선택적으로 식각하여 제1 마스크 패턴(130P)을 형성할 수 있다.Referring to FIG. 6C, the first mask layer 130 may be selectively etched to form the first mask pattern 130P.
제2 마스크 패턴(140P)에 의해 노출된 제1 마스크층(130)의 영역에서 식각 공정이 수행될 수 있다. 상기 식각 공정은, 예를 들어 습식 식각 또는 반응성 이온 식각(Reactive Ion Etching, RIE)과 같은 건식 식각 공정이 이용될 수 있으며, 이방성 식각이 수행될 수 있다. 이에 의해, 제1 마스크 패턴(130P)이 형성되며, 제2 마스크 패턴(140P)의 가장자리 영역에서 하부의 제1 마스크층(130)이 제거되어 언더컷(undercut)이 형성될 수 있다.An etching process may be performed in the region of the first mask layer 130 exposed by the second mask pattern 140P. The etching process may be a dry etching process such as, for example, wet etching or reactive ion etching (RIE), and anisotropic etching may be performed. As a result, the first mask pattern 130P may be formed, and an undercut may be formed by removing the lower first mask layer 130 from the edge region of the second mask pattern 140P.
본 단계에서, 상기 식각 공정은 제1 마스크층(130)에 대해서 큰 선택비를 가지는 조건으로 수행될 수 있다. 따라서, 예컨대 습식 식각을 이용하는 경우, 제1 마스크층(130)에 대하여 상대적으로 높은 선택비를 가지는 식각제를 이용할 수 있다.In this step, the etching process may be performed under a condition having a large selectivity with respect to the first mask layer 130. Thus, for example, when wet etching is used, an etchant having a relatively high selectivity with respect to the first mask layer 130 may be used.
도 6d를 참조하면, 기판(101) 상에 금속층(110M)을 형성하여, 나노구조물(110)을 형성할 수 있다.Referring to FIG. 6D, the nanostructure 110 may be formed by forming the metal layer 110M on the substrate 101.
금속 나노구조물(110)은 제1 및 제2 마스크 패턴(130P, 140P)을 마스크로 이용하여, 노출된 기판(101) 및 제1 마스크 패턴(130P)의 측벽의 일부 상에 형성될 수 있다. 금속 나노구조물(110)은 기판(101)과 증착 물질의 소스 사이에 소정 경사를 갖도록 기판(101)과 증착 물질 소스를 배치하고, 기판(101) 또는 증착 물질의 소스를 회전시킴으로써, 증착 물질이 기판(101)에 대하여 소정 각도를 가지고 이동하여 증착됨으로써 형성될 수 있다. The metal nanostructure 110 may be formed on a portion of sidewalls of the exposed substrate 101 and the first mask pattern 130P using the first and second mask patterns 130P and 140P as masks. The metal nanostructure 110 is disposed by placing the substrate 101 and the deposition material source to have a predetermined inclination between the substrate 101 and the source of the deposition material, and rotating the substrate 101 or the source of the deposition material, thereby depositing the deposition material. The substrate 101 may be formed by being moved at a predetermined angle with respect to the substrate 101.
이 경우, 상기 경사의 각도에 따라, 형성되는 금속 나노구조물(110)의 형상이 변화될 수 있다. 따라서, 본 실시예의 경우, 평탄한 상면(110F)(도 2 참조)을 가지도록 하기 위하여, 점선으로 표시된, 증착 물질이 기판(101) 상으로 이동되는 경로가, 금속 나노구조물(110)이 형성되는 영역의 중앙에서 과도하게 중복되거나 이격되지 않도록 조절될 수 있다. 또한, 제1 마스크 패턴(130P)의 측면 상으로도 소정 높이로 증착되도록 조절될 수 있으며, 상기 높이를 조절함으로써, 금속 나노구조물(110)의 수용부(R)(도 2 참조)의 깊이가 조절될 수 있다.In this case, the shape of the metal nanostructure 110 to be formed may vary according to the angle of inclination. Thus, in this embodiment, in order to have a flat top surface 110F (see FIG. 2), the path through which the deposition material is moved onto the substrate 101, indicated by the dotted line, is formed so that the metal nanostructure 110 is formed. It can be adjusted so that it is not excessively overlapped or spaced at the center of the region. In addition, the thickness of the first mask pattern 130P may be adjusted to be deposited on the side of the first mask pattern 130P, and by adjusting the height, the depth of the receiving portion R (see FIG. 2) of the metal nanostructure 110 is increased. Can be adjusted.
금속 나노구조물(110)은 예를 들어, 열 증발법(thermal evaporation), 전자빔 증발법(electron beam evaporation), 스퍼터링(sputtering)과 같은 물리기상증착법(Physical Vapor Deposition, PVD)을 이용하여 형성할 수 있다. The metal nanostructure 110 may be formed using, for example, physical vapor deposition (PVD), such as thermal evaporation, electron beam evaporation, or sputtering. have.
도 6e를 참조하면, 제1 및 제2 마스크 패턴(130P, 140P)을 제거하는 공정이 수행될 수 있다.Referring to FIG. 6E, a process of removing the first and second mask patterns 130P and 140P may be performed.
이에 의해, 기판(101) 상에 금속 나노구조물(110)만 배열될 수 있다. 금속 나노구조물(110)은 열과 행을 이루어 배열되거나 질서없이 배열될 수도 있으며, 배열되는 개수는 실시예에 따라 다양할 수 있다.As a result, only the metal nanostructure 110 may be arranged on the substrate 101. The metal nanostructures 110 may be arranged in rows and columns or may be arranged in an orderly manner, and the number of the metal nanostructures 110 may vary depending on embodiments.
도 7은 본 발명의 일 실시예에 따른 금속 나노구조물을 도시하는 전자 현미경 사진들이다.7 is electron micrographs showing metal nanostructures in accordance with one embodiment of the present invention.
도 7을 참조하면, 주사 전자현미경(Scanning Electron Microscopy, SEM)에 의해 실리콘(Si) 기판 상에 형성된 금(Au)으로 이루어진 금속 나노구조물(110)을 분석한 결과가 도시되며, 저배율도의 내부에 고배율도가 함께 도시된다. Referring to FIG. 7, a result of analyzing a metal nanostructure 110 formed of gold (Au) formed on a silicon (Si) substrate by a scanning electron microscope (SEM) is shown. Is shown with a high magnification.
금속 나노구조물(110)은, 도 6d를 참조하여 상술한 공정에서 도 6d에 도시된 것과 같이, 증착 물질이 기판(101) 상으로 이동되는 경로가, 금속 나노구조물(110)의 중앙에서 실질적으로 중복되지 않도록 제어되어 형성되었다. 따라서, 도 2와 같은 형태의 금속 나노구조물(110)이 형성될 수 있었다. The metal nanostructure 110 has a path in which the deposition material moves onto the substrate 101 substantially in the center of the metal nanostructure 110, as shown in FIG. 6D in the process described above with reference to FIG. 6D. It was formed to be controlled so as not to overlap. Therefore, the metal nanostructure 110 of the shape as shown in FIG. 2 could be formed.
금속 나노구조물(110)의 크기는 약 200 nm 이하로, 목적하는 분석 대상물에 따라 선택될 수 있다. 또한, 복수개의 금속 나노구조물(110)이 열과 행을 이루어 배치될 수 있다.The size of the metal nanostructure 110 is about 200 nm or less, and may be selected according to the desired analyte. In addition, the plurality of metal nanostructures 110 may be arranged in rows and columns.
도 8a 및 도 8b는 본 발명의 일 실시예에 따른 금속 나노구조물을 도시하는 전자 현미경 사진들이다.8A and 8B are electron micrographs showing metal nanostructures according to an embodiment of the present invention.
도 8a 및 도 8b를 참조하면, 주사 전자현미경(SEM)에 의해 실리콘(Si) 기판 상에 형성된 금(Au) 금속 나노구조물(110', 110'')을 분석한 결과가 도시된다.8A and 8B, results of analyzing gold (Au) metal nanostructures 110 ′ and 110 ″ formed on a silicon (Si) substrate by a scanning electron microscope (SEM) are shown.
도 8a의 경우, 도 6d를 참조하여 상술한 공정에서, 증착 물질이 기판(101) 상으로 이동되는 경로가, 금속 나노구조물(110')의 중앙에서 제1 길이만큼 중복되어 형성된 금속 나노구조물(110')이 도시된다. 도 8b의 경우, 증착 물질이 기판(101) 상으로 이동되는 경로가, 금속 나노구조물(110'')의 중앙에서 상기 제1 길이보다 작은 제2 길이만큼 중복되어 형성된 금속 나노구조물(110'')이 도시된다. 증착 물질이 기판(101) 상으로 이동되는 경로가 중복되는 영역에서는 돌출부가 형성되게 되며, 상기 돌출부는 전자 현미경 사진들 상에서 밝은 이미지로 나타난다.In the case of FIG. 8A, in the process described above with reference to FIG. 6D, a path through which the deposition material moves onto the substrate 101 is overlapped by a first length at the center of the metal nanostructure 110 ′ ( 110 ') is shown. In FIG. 8B, the metal nanostructure 110 ″ formed by overlapping a path through which the deposition material moves on the substrate 101 by a second length smaller than the first length at the center of the metal nanostructure 110 ″. ) Is shown. Projections are formed in regions where the paths of deposition material are moved onto the substrate 101 overlap, and the projections appear as bright images on electron micrographs.
이와 같이, 형성 방법에 따라, 금속 나노구조물(110', 110'')의 형상이 제어될 수 있다. 다양한 금속 나노구조물(110', 110'')의 형상은 목적하는 분석 대상물에 따라 적절하게 선택될 수 있다.As such, depending on the formation method, the shape of the metal nanostructures 110 ′ and 110 ″ may be controlled. The shape of the various metal nanostructures 110 ′, 110 ″ may be appropriately selected depending on the desired analyte.
도 9는 본 발명의 나노 플라즈모닉 센서를 이용한 측정 결과를 도시하는 그래프이다.9 is a graph showing measurement results using the nanoplasmonic sensor of the present invention.
도 9를 참조하면, 세 가지 종류의 선으로 표시된 그래프들이 도시되며, (a)는 금속 나노구조물에 분석 대상물이 흡착되거나 수용되기 전의 흡광 스펙트럼에 해당한다. (b)는 금속 나노구조물에 rhodamine B-isothiocyanate(RhB) 분자를 흡착시킨 경우의 흡광 스펙트럼을 나타낸다. RhB 분자는 말단부에 황 원자를 가지고 있으며, 이에 의해 금(Au)으로 이루어진 금속 나노구조물에 화학흡착(chemisorptions)될 수 있다. (c)는 금속 나노구조물에 약 40 nm의 크기를 가지는 라텍스 비드(latex bead)들을 수용시킨 경우의 흡광 스펙트럼을 나타낸다.Referring to FIG. 9, graphs represented by three kinds of lines are shown, and (a) corresponds to an absorption spectrum before analyte is adsorbed or received on a metal nanostructure. (b) shows the absorption spectrum when the rhodamine B-isothiocyanate (RhB) molecule is adsorbed to the metal nanostructure. The RhB molecule has a sulfur atom at its end, whereby it can be chemisorbed to metal nanostructures made of gold (Au). (c) shows an absorption spectrum when latex beads having a size of about 40 nm are accommodated in the metal nanostructure.
세 개의 그래프들을 분석해보면, RhB 분자가 흡착된 경우 금속 나노구조물의 흡광 스펙트럼이 (a) 그래프보다 약 15 nm 정도 장파장으로 이동되었으며, 라텍스 비드들이 수용된 경우 금속 나노구조물의 흡광 스펙트럼이 약 35 nm 정도 장파장으로 이동되었다. 이러한 흡광 스펙트럼의 변화를 통해, 금속 나노구조물 주변에서 특정 분자 또는 물질의 변화를 감지할 수 있다. 또한, 분석 대상물에 따라 상이한 흡광 스펙트럼의 변화폭을 가짐을 알 수 있으며, 이를 이용하여 목적하는 바에 따라 나노 플라즈모닉 센서를 이용할 수 있을 것이다.Analyzing the three graphs, the absorption spectrum of the metal nanostructure was shifted by 15 nm longer than the graph when the RhB molecules were adsorbed, and the absorption spectrum of the metal nanostructure was about 35 nm when the latex beads were accommodated. Moved to long wavelength. Through this change in the absorption spectrum, it is possible to detect changes in specific molecules or materials around the metal nanostructures. In addition, it can be seen that the change in the absorption spectrum is different according to the analyte, it will be possible to use the nano plasmonic sensor as desired by using this.
도 10a 내지 도 10c는 본 발명의 나노 플라즈모닉 센서를 이용한 시뮬레이션 결과를 설명하기 위한 그래프들이다.10A to 10C are graphs for explaining simulation results using the nanoplasmonic sensor of the present invention.
도 10a 내지 도 10c는 금속 나노구조물과 분석 대상물과의 접촉 면적의 증가에 따른 산란단면적(scattering cross section) 스펙트럼의 이동 정도를 나타내며, 세 가지 형태의 금속 나노구조물을 이용하여 분석 대상물이 수용되기 전의 그래프 및 분석 대상물이 수용된 후의 그래프를 각각 (a) 및 (b)로 나타내었다. 분석 대상물로는 약 1.4의 굴절률 및 약 100 nm의 지름을 가지는 구형 라텍스 비드를 이용하였다.10a to 10c illustrate the degree of scattering cross section spectra with increasing contact area between the metal nanostructure and the analyte, and before the analyte is accommodated using three types of metal nanostructures. The graph and the graph after the analyte was accommodated are shown as (a) and (b), respectively. As analyte, spherical latex beads having a refractive index of about 1.4 and a diameter of about 100 nm were used.
도 10a를 참조하면, 수용부(R)(도 2 참조)가 없는, 즉 측벽(110W)(도 2 참조)이 없는 약 150 nm의 지름을 가지는 디스크 형상의 2차원 금속 나노구조물에 라텍스 비드가 수용된 경우의 스펙트럼의 이동을 도시하며, 1 nm 미만의 이동을 나타내었다. Referring to FIG. 10A, latex beads may be applied to a disk-shaped two-dimensional metal nanostructure having a diameter of about 150 nm without a receiving portion R (see FIG. 2), that is, without a sidewall 110W (see FIG. 2). The shift of the spectrum when accepted is shown, showing a shift of less than 1 nm.
도 10b를 참조하면, 약 150 nm의 크기를 가지며, 측벽(110W)의 높이가 상대적으로 낮은 약 60 nm의 제1 높이를 가지는 경우의 본 발명의 일 실시예에 따른 금속 나노구조물에 라텍스 비드가 수용된 경우의 스펙트럼의 이동을 도시하며, 약 10 nm의 이동을 나타내었다. Referring to FIG. 10B, latex beads may be formed in the metal nanostructures according to the exemplary embodiment of the present invention, having a size of about 150 nm and having a first height of about 60 nm having a relatively low height of the sidewall 110W. The shift in the spectrum when accepted is shown, showing a shift of about 10 nm.
도 10c를 참조하면, 약 150 nm의 크기를 가지며, 측벽(110W)의 높이가 도 10b의 상기 제1 높이보다 큰, 약 90 nm의 제2 높이를 가지는 경우의 본 발명의 일 실시예에 따른 금속 나노구조물에 라텍스 비드가 수용된 경우의 스펙트럼의 이동을 도시하며, 약 35 nm의 이동을 나타내었다.Referring to FIG. 10C, when the height of the sidewall 110W has a second height of about 90 nm, the height of the sidewall 110W is greater than the first height of FIG. 10B. The shift in the spectrum when the latex beads were accommodated in the metal nanostructure was shown, showing a shift of about 35 nm.
이에 의하면, 본 발명의 실시예에 따른 3차원 금속 나노구조물을 이용한 나노 플라즈모닉 센서는 2차원의 금속 나노구조물을 이용한 경우보다 감도가 높아 분석 대상물의 양이 상대적으로 적은 경우도 검출 및 분석이 가능함을 알 수 있다. 또한, 금속 나노구조물의 측벽의 높이를 분석 대상물에 따라 조절함으로써 센싱 감도가 더욱 향상될 수 있음을 알 수 있다.According to this, the nano plasmonic sensor using the three-dimensional metal nanostructure according to an embodiment of the present invention has a higher sensitivity than the case of using the two-dimensional metal nanostructure, it is possible to detect and analyze even when the amount of analyte is relatively small. It can be seen. In addition, it can be seen that the sensing sensitivity can be further improved by adjusting the height of the sidewall of the metal nanostructure according to the analyte.
본 발명은 상술한 실시형태 및 첨부된 도면에 의해 한정되는 것이 아니며 첨부된 청구범위에 의해 한정하고자 한다. 따라서, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 당 기술분야의 통상의 지식을 가진 자에 의해 다양한 형태의 치환, 변형 및 변경이 가능할 것이며, 이 또한 본 발명의 범위에 속한다고 할 것이다.It is intended that the invention not be limited by the foregoing embodiments and the accompanying drawings, but rather by the claims appended hereto. Accordingly, various forms of substitution, modification, and alteration may be made by those skilled in the art without departing from the technical spirit of the present invention described in the claims, which are also within the scope of the present invention. something to do.
본 발명의 실시예에 따른 나노 플라즈모닉 센서는 플라즈몬 공명 현상을 이용하여 생체 효소, 세포 및 단백질과 같은 생체 분자의 검출, 측정 및 분석에 이용될 수 있다.Nano plasmonic sensor according to an embodiment of the present invention can be used for the detection, measurement and analysis of biomolecules such as biological enzymes, cells and proteins using plasmon resonance phenomena.

Claims (12)

  1. 분석 대상물이 수용되는 리세스된 수용부를 가지는 금속 나노구조물; 및Metal nanostructures having recessed receptacles in which the analyte is received; And
    상기 금속 나노구조물에서의 플라즈몬 공명 현상을 측정하는 측정부를 포함하는 나노 플라즈모닉 센서.Nano plasmonic sensor comprising a measuring unit for measuring the plasmon resonance phenomenon in the metal nanostructure.
  2. 제1 항에 있어서,According to claim 1,
    상기 금속 나노구조물은 상면 및 상기 상면으로부터 돌출되어 상기 수용부를 정의하는 측벽을 포함하는 것을 특징으로 하는 나노 플라즈모닉 센서.The metal nanostructure includes a top surface and a sidewall protruding from the top surface to define the receiving portion.
  3. 제2 항에 있어서,The method of claim 2,
    상기 측벽은 상기 상면의 가장자리에서 상기 수용부를 둘러싸도록 배치되는 것을 특징으로 하는 나노 플라즈모닉 센서.The sidewalls are arranged to surround the receiving portion at the edge of the upper surface nano plasmonic sensor.
  4. 제1 항에 있어서,According to claim 1,
    상기 금속 나노구조물은 페트리 접시(petri-dish) 형상을 가지는 것을 특징으로 하는 나노 플라즈모닉 센서.The metal nanostructure is a nano-plasmonic sensor, characterized in that the petri dish (petri-dish) shape.
  5. 제1 항에 있어서,According to claim 1,
    상기 수용부의 표면에 코팅되며, 상기 분석 대상물을 흡착하는 기능기를 포함하는 표면 코팅막을 더 포함하는 것을 특징으로 하는 나노 플라즈모닉 센서.The nano-plasmonic sensor is coated on the surface of the receiving portion, further comprising a surface coating film containing a functional group for adsorbing the analyte.
  6. 제1 항에 있어서,According to claim 1,
    상기 금속 나노구조물은 금(Au), 은(Ag), 알루미늄(Al), 구리(Cu) 중 적어도 하나를 포함하는 것을 특징으로 하는 나노 플라즈모닉 센서.The metal nanostructures are at least one of gold (Au), silver (Ag), aluminum (Al), copper (Cu) nano plasmonic sensor.
  7. 제1 항에 있어서,According to claim 1,
    상기 금속 나노구조물의 하부에 배치되는 기판을 더 포함하고,Further comprising a substrate disposed under the metal nanostructure,
    상기 금속 나노구조물은 상기 기판 상에 복수 개가 배열되는 것을 특징으로 하는 나노 플라즈모닉 센서.The nano plasmonic sensor is characterized in that the plurality of metal nanostructures are arranged on the substrate.
  8. 제1 항에 있어서,According to claim 1,
    상기 측정부는 상기 금속 나노구조물의 표면 또는 주변에서의 광을 검출하는 것을 특징으로 하는 나노 플라즈모닉 센서.The measuring unit nanoplasmonic sensor, characterized in that for detecting the light on the surface or the periphery of the metal nanostructure.
  9. 제8 항에 있어서,The method of claim 8,
    상기 측정부는 상기 분석 대상물의 유무 또는 변화에 따른 흡수(absorption), 산란(scattering), 또는 흡광(extinction) 특성의 변화를 측정하는 것을 특징으로 하는 나노 플라즈모닉 센서.The measurement unit nanoplasmonic sensor, characterized in that for measuring the change in absorption (absorption), scattering (scattering), or extinction characteristics according to the presence or absence of the analyte.
  10. 분석 대상물이 수용되는 리세스된 수용부를 포함하는 금속 나노구조물을 마련하는 단계;Providing a metal nanostructure comprising a recessed receiving portion in which the analyte is received;
    상기 수용부 내에 상기 분석 대상물을 위치시키는 단계; 및Positioning the analyte in the receptacle; And
    상기 금속 나노구조물에서의 플라즈몬 공명 현상을 측정하는 단계를 포함하는 나노 플라즈모닉 센서를 이용한 측정 방법.Measuring method using a nano plasmonic sensor comprising the step of measuring the plasmon resonance phenomenon in the metal nanostructure.
  11. 제10 항에 있어서,The method of claim 10,
    상기 수용부는 상기 분석 대상물의 측면의 적어도 일부 및 하면을 둘러싸는 것을 특징으로 하는 나노 플라즈모닉 센서를 이용한 측정 방법.The receiving portion measuring method using a nano plasmonic sensor, characterized in that to surround at least a portion and a lower surface of the side of the analyte.
  12. 제11 항에 있어서,The method of claim 11, wherein
    상기 수용부 내에 상기 분석 대상물의 부피의 절반 이상이 수용되는 것을 특징으로 하는 나노 플라즈모닉 센서를 이용한 측정 방법.At least half of the volume of the analyte is accommodated in the receiving portion.
PCT/KR2014/002051 2013-11-18 2014-03-12 Nanoplasmonic sensor and measurement method using same WO2015072628A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130139750A KR101686011B1 (en) 2013-11-18 2013-11-18 Nano plasmonic sensor and analysing method using the same
KR10-2013-0139750 2013-11-18

Publications (1)

Publication Number Publication Date
WO2015072628A1 true WO2015072628A1 (en) 2015-05-21

Family

ID=53057548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002051 WO2015072628A1 (en) 2013-11-18 2014-03-12 Nanoplasmonic sensor and measurement method using same

Country Status (2)

Country Link
KR (1) KR101686011B1 (en)
WO (1) WO2015072628A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110070530A (en) * 2009-12-18 2011-06-24 한국기계연구원 Patterning method for nano-structure
WO2011105679A2 (en) * 2010-02-25 2011-09-01 연세대학교 산학협력단 High-sensitivity surface plasmon resonance sensor, surface plasmon resonance sensor chip, and method for manufacturing a surface plasmon resonance sensor device
KR20120005672A (en) * 2010-07-09 2012-01-17 성균관대학교산학협력단 Biosensor using bragg grating waveguide for surface plasmon and detection method for target material using the same
KR101211532B1 (en) * 2011-08-24 2012-12-12 인하대학교 산학협력단 Large-scale randomly distributed plasmonic nanowells array and manufacturing method thereof
US20130163001A1 (en) * 2010-10-07 2013-06-27 Panasonic Corporation Plasmon sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5671527B2 (en) * 2009-05-25 2015-02-18 インスプリオン エービー Sensor using localized surface plasmon resonance (LSPR)
US9075009B2 (en) * 2010-05-20 2015-07-07 Sungkyunkwan University Foundation For Corporation Collaboration Surface plasmon resonance sensor using metallic graphene, preparing method of the same, and surface plasmon resonance sensor system
EP2546635A1 (en) * 2011-07-14 2013-01-16 The European Union, represented by the European Commission SPR sensor device with nanostructure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110070530A (en) * 2009-12-18 2011-06-24 한국기계연구원 Patterning method for nano-structure
WO2011105679A2 (en) * 2010-02-25 2011-09-01 연세대학교 산학협력단 High-sensitivity surface plasmon resonance sensor, surface plasmon resonance sensor chip, and method for manufacturing a surface plasmon resonance sensor device
KR20120005672A (en) * 2010-07-09 2012-01-17 성균관대학교산학협력단 Biosensor using bragg grating waveguide for surface plasmon and detection method for target material using the same
US20130163001A1 (en) * 2010-10-07 2013-06-27 Panasonic Corporation Plasmon sensor
KR101211532B1 (en) * 2011-08-24 2012-12-12 인하대학교 산학협력단 Large-scale randomly distributed plasmonic nanowells array and manufacturing method thereof

Also Published As

Publication number Publication date
KR101686011B1 (en) 2016-12-13
KR20150056997A (en) 2015-05-28

Similar Documents

Publication Publication Date Title
US8808645B2 (en) Molecular filters
US8320718B2 (en) Optical sensors and methods of making the same
US8568878B2 (en) Directly fabricated nanoparticles for raman scattering
WO2014171597A1 (en) Method for manufacturing nanoparticle array, surface plasmon resonance-based sensor and method for analyzing using same
US9678004B2 (en) Plasmonic interferometer sensor
WO2018186554A1 (en) Angle-sensitive variable optical filter using transmission spectrum modulation by complementary coupling of nanohole arrays and nanodisc arrays, and method for manufacturing same
WO2013005945A2 (en) Method for manufacturing substrate for surface-enhanced raman scattering spectroscopy and substrate manufactured using the method
WO2015012554A1 (en) Method for manufacturing three-dimensional metamaterial of stacked structure using nanotransfer printing, metamaterial structure film manufactured by using same, and optical imaging system comprising same
US20120184047A1 (en) Nanoplasmonic device
US20070252979A1 (en) Binary arrays of nanoparticles for nano-enhanced raman scattering molecular sensors
TWI500921B (en) Optical sensing chip
WO2011002117A1 (en) High sensitivity localized surface plasmon resonance sensor and sensor system using same
WO2011105679A2 (en) High-sensitivity surface plasmon resonance sensor, surface plasmon resonance sensor chip, and method for manufacturing a surface plasmon resonance sensor device
US20120154800A1 (en) Nanostructures and lithographic method for producing highly sensitive substrates for surface-enhanced spectroscopy
WO2012128773A1 (en) Apparatus for use in sensing applications
US20070117243A1 (en) Method of fabricating a biosensor
WO2015072628A1 (en) Nanoplasmonic sensor and measurement method using same
WO2018169119A1 (en) Nanoplasmonic sensor and manufacturing method therefor
WO2016093569A1 (en) Plasmonic paper and manufacturing method therefor
US7829349B2 (en) Base carrier for detecting target substance, element for detecting target substance, method for detecting target substance using the element, and kit for detecting target substance
Wi et al. Raman-active two-tiered Ag nanoparticles with a concentric cavity
WO2012053802A2 (en) Method for forming a nanogap pattern, biosensor having a nanogap pattern, and method for manufacturing the biosensor
CN111693502B (en) Liquid-phase Raman enhancement spectrum substrate combining cavity enhancement and surface enhancement
WO2024071926A1 (en) Deep learning and self-assembled-monolayer-based alzheimer's disease diagnosis method, and sers substrate therefor
WO2014084545A1 (en) Nanoparticle separation using microfluidic chip, and biomaterial analysis method using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14862393

Country of ref document: EP

Kind code of ref document: A1