WO2015070578A1 - 伽马射线探测器和伽马射线的处理方法 - Google Patents

伽马射线探测器和伽马射线的处理方法 Download PDF

Info

Publication number
WO2015070578A1
WO2015070578A1 PCT/CN2014/077174 CN2014077174W WO2015070578A1 WO 2015070578 A1 WO2015070578 A1 WO 2015070578A1 CN 2014077174 W CN2014077174 W CN 2014077174W WO 2015070578 A1 WO2015070578 A1 WO 2015070578A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
gamma ray
photoelectric converter
scintillation
scintillation crystal
Prior art date
Application number
PCT/CN2014/077174
Other languages
English (en)
French (fr)
Inventor
伍军
郭兴维
Original Assignee
北京华脉世纪石油科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京华脉世纪石油科技有限公司 filed Critical 北京华脉世纪石油科技有限公司
Publication of WO2015070578A1 publication Critical patent/WO2015070578A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2006Measuring radiation intensity with scintillation detectors using a combination of a scintillator and photodetector which measures the means radiation intensity

Definitions

  • the present invention relates to the field of detection technology, and in particular to a gamma ray detector and a gamma ray processing method.
  • gamma ray detectors are used to detect the intensity of gamma rays in the formation to distinguish formations and determine formation elements.
  • 1 is a schematic structural view of a gamma ray detector commonly used in the prior art. As shown in FIG. 1, the current gamma ray detector generally comprises a scintillation crystal A and a photomultiplier tube R disposed at the A-end of the scintillation crystal.
  • Composition when gamma rays are incident on the scintillation crystal, scintillation light is generated, photoelectrons are collected by the photomultiplier tube, and the pulse current is generated at the output end after multiplication, and the symbols Y l, ⁇ 2, ⁇ 3 and ⁇ in Fig. 1 4 denotes gamma rays, and Eh denotes formation thickness.
  • the electrical pulse signal is processed and collected by a certain method to obtain information related to the formation and formation elements. Due to the uncertainty of gamma ray energy and the randomness of incident time and direction, the prior art gamma ray detector can only process the formation and formation element information within the range larger than the length of the scintillation crystal.
  • a main object of embodiments of the present invention is to provide a gamma ray detector and a gamma ray processing method to solve the problem of low axial resolution and low energy measurement accuracy in the prior gamma ray detection technology.
  • a gamma ray detector comprising: a scintillation crystal, wherein the number of the scintillation crystals is one or n, n the scintillation crystals The number is 4 to ⁇ , ⁇ scintillation crystals are arranged side by side, and the scintillation crystal and the scintillation crystal are set at +1 end, ⁇ is a natural number of 2 or more, i is taken 1 to ⁇ -1 in sequence; first photoelectric converter, setting At a first end of the scintillation crystal 4, wherein the first end of the scintillation crystal 4 is away from the end of the scintillation crystal ;; the second photoelectric converter is disposed at the first end of the scintillation crystal, wherein the first end of the scintillation crystal To be away from the end of the flashing crystal 4 ⁇ , or a first photoelectric converter disposed at a first
  • the gamma ray detector further includes: a light guide body having a plurality of light guide bodies, wherein the light guide body is disposed at at least one of the first position, the second position, and the third position
  • the first position is the position between every two adjacent scintillation crystals
  • the second position is the first end of the scintillation crystal 4
  • the third position is 1 of the scintillation crystal.
  • the gamma ray detector further comprises: a housing, wherein one or n scintillation crystals, a first photoelectric converter, a second photoelectric converter and a plurality of light guides are disposed in the housing.
  • the gamma ray detector further comprises: a first header disposed in the housing for carrying the first photoelectric converter; a second header disposed in the housing for carrying the second photoelectric converter; a plug disposed at the first end of the housing; a second plug disposed at the second end of the housing; a first shock absorbing member disposed between the first plug and the first stem; and a second The shock absorbing member is disposed between the second plug and the second socket.
  • the gamma ray detector further includes: a shielding body, the number of the shielding body is plural, wherein the shielding body is sleeved on the first surrounding portion, the second surrounding portion, the third surrounding portion and the fourth portion of the housing At least one of the surrounding portions is surrounded by the portion, wherein the first surrounding portion is a housing portion surrounding each of the light guiding bodies, the second surrounding portion is a housing portion surrounding each of the scintillation crystals, and the third surrounding portion is surrounded The housing portion of the first photoelectric converter, the fourth surrounding portion is a housing portion surrounding the second photoelectric converter.
  • the crystal materials of any two of the n scintillation crystals are the same or different.
  • the optical transmittances of any two of the plurality of light guides are the same or different.
  • the first pulse and the second pulse are both electrical pulses
  • the processing circuit comprises: an amplifier connected to both the first photoelectric converter and the second photoelectric converter for buffering and amplifying the first pulse and the second pulse And shaping; an analog to digital converter coupled to the amplifier for acquiring a pulse amplitude or area of the first pulse and the second pulse, and outputting a digital signal corresponding to the pulse amplitude or area; and a processor, and an analog to digital converter Connected, used to calculate a difference value of the digital signal representing the first pulse and the second pulse, and calculate the incident position of the gamma ray and the corrected energy according to the difference value and the attenuation coefficient of the scintillation crystal to the scintillation light.
  • the first pulse and the second pulse are both electrical pulses
  • the processing circuit comprises: an amplifier connected to both the first photoelectric converter and the second photoelectric converter for buffering and amplifying the first pulse and the second pulse And shaping; a first logic operator connected to the amplifier for obtaining a difference signal of the first pulse and the second pulse; a second logic operator connected to the first logic operator for using the difference signal and the flicker
  • the attenuation coefficient of the crystal to the scintillation light is calculated to obtain the incident position of the gamma ray and/or the energy of the corrected gamma ray.
  • a method for processing a gamma ray is provided, which is applied to a target gamma ray detector, and both ends of the target gamma ray detector have a photoelectric converter.
  • the processing method includes: receiving a first pulse and a second pulse, wherein the first pulse is a pulse output by the first photoelectric converter, the second pulse is a pulse output by the second photoelectric converter, and the first photoelectric converter is set at the target a photoelectric converter at a first end of the gamma ray detector, the second photoelectric converter being a photoelectric converter disposed at a second end of the target gamma ray detector; and calculating an incident position of the gamma ray according to the first pulse and the second pulse And/or correct the energy of the gamma ray.
  • the target gamma ray detector further comprises a scintillation crystal, the first pulse and the second pulse being electrical pulses, calculating an incident position of the gamma ray according to the first pulse and the second pulse and/or correcting the energy of the gamma ray
  • the method includes: determining an amplitude value or an area value corresponding to the first pulse and the second pulse; determining a difference value between the amplitude value or the area value of the first pulse and the amplitude value or the area value of the second pulse; and according to the difference value and the scintillation crystal pair
  • the attenuation coefficient of the scintillation light calculates the incident position and/or corrects the energy of the gamma ray.
  • the target gamma ray detector further comprises a scintillation crystal, the first pulse and the second pulse being electrical pulses, calculating an incident position of the gamma ray according to the first pulse and the second pulse and/or correcting the energy of the gamma ray
  • the method includes: determining an amplitude signal or an area signal corresponding to the first pulse and the second pulse; determining a difference signal of the amplitude signal or the area signal of the first pulse and the amplitude signal or the area signal of the second pulse; and according to the difference signal and the scintillation crystal pair
  • the attenuation coefficient of the scintillation light directly outputs the incident position of the gamma ray and/or the energy of the corrected gamma ray.
  • the geometric mean or arithmetic mean or weighted average of the values replaces the amplitude or area values of the first pulse and/or the second pulse as energy measurements of the gamma ray.
  • the processing method further comprises: applying the corrected energy gamma ray to the target device, wherein the target device is measuring the gamma ray counting rate , energy window or energy spectrum device.
  • the embodiment of the present invention adopts a gamma ray detector having the following structure: a scintillation crystal, wherein the number of the scintillation crystals is 1 or n, n of the scintillation crystals are numbered to, and n scintillation crystals are arranged side by side.
  • the scintillation crystal 4 and the scintillation crystal 4 +1 end-to-end are disposed, ⁇ is a natural number of 2 or more, i is taken from 1 to n-1 in sequence;
  • the first photoelectric converter is disposed at the first end of the scintillation crystal 4, wherein The first end of the scintillation crystal 4 is away from the end of the scintillation crystal ⁇ ;
  • the second photoelectric converter is disposed at the first end of the scintillation crystal, wherein the first end of the scintillation crystal is away from the end of the scintillation crystal 4 ⁇ , or a first photoelectric converter disposed at a first end of the scintillation crystal, a second photoelectric converter disposed at a second end of the scintillation crystal, a second end of the scintillation crystal and a first portion of the scintillation crystal One end opposite; and a processing circuit coupled to both the first photoelectric converter and the second photoelectric converter for receiving the
  • the side receives and processes the optical signal, and according to the scintillation crystal, the energy attenuation of the scintillation light passing through different optical paths is different, and the voltage amplitude or area corresponding to the obtained two optical signals is accurately calculated, and the incident position of the gamma ray is accurately calculated and/or Or correcting the energy of the gamma ray, solving the problem of low axial resolution and low accuracy of gamma ray energy measurement in the prior art, thereby achieving the purpose of improving the measurement accuracy of the gamma ray detector.
  • FIG. 1 is a schematic structural view of a gamma ray detector according to the related art
  • FIG. 2 is a cross-sectional view of a gamma ray detector according to an embodiment of the present invention
  • FIG. 3 is a gamma according to a preferred embodiment of the present invention.
  • FIG. 4 is a flow chart of a gamma ray processing method in accordance with an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a gamma ray detector according to an embodiment of the present invention, such as As shown in FIG.
  • the gamma ray detector of the embodiment of the present invention mainly includes one or more scintillation crystals, a first photoelectric converter 21, a second photoelectric converter 22, and a processing circuit (not shown), wherein :
  • the number of the scintillation crystals is ⁇ to ⁇ , ⁇ scintillation crystals are arranged side by side, and the scintillation crystal is set at the opposite end of the 4 +1 of the scintillation crystal, and i is taken from 1 to ⁇ -1, that is, ⁇ scintillation crystals are used.
  • the first photoelectric converter 21 is disposed at a first end of the scintillation crystal, wherein the first end of the scintillation crystal 4 is away from the end of the scintillation crystal ⁇ , that is, the first photoelectric converter 21 is disposed at one end of the crystal assembly , for receiving photons emitted from the optical end window S1 through the crystal assembly, and converting the received photons into electric pulses, in the embodiment of the invention, the first photoelectric converter 21 can be photoelectric
  • the multiplier tube can also be other devices capable of photon reception and photoelectric conversion.
  • the second photoelectric converter 22 is disposed at the first end of the scintillation crystal, wherein the first end of the scintillation crystal is away from the end of the scintillation crystal, that is, the second photoelectric converter 22 is disposed on the other end of the crystal assembly.
  • the photon emitted from the optical end window S2 is transmitted through the crystal assembly, and the received photon is converted into an electrical pulse.
  • the second photoelectric converter 22 can also be It is a photomultiplier tube, and it can also be another device capable of photon reception and photoelectric conversion. Wherein, in the case where the number of scintillation crystals is 1, it is equivalent to retaining only one of the scintillation crystals in FIG.
  • the first photoelectric converter 21 is disposed at the first end of the scintillation crystal 4
  • the second photoelectric converter 22 is disposed at the second end of the scintillation crystal 4, and the first end of the scintillation crystal 4 and the second end of the scintillation crystal 4 are opposite ends.
  • the processing circuit is coupled to both the first photoelectric converter 21 and the second photoelectric converter 22 for receiving the first pulse and the second pulse, and calculating the incident position of the gamma ray according to the first pulse and the second pulse and/or The energy of the gamma ray is corrected, wherein the first pulse is a pulse output from the first photoelectric converter 21, and the second pulse is a pulse output from the second photoelectric converter 22.
  • the gamma ray detector of the above structure since the detector has one or more scintillation crystals, the gamma ray generates scintillation light only when it is incident on the scintillation crystal, and two photoelectric conversions are connected at both ends of the crystal assembly.
  • the beams can be transmitted to both ends through respective transmission paths and reach the two photoelectric converters, due to the energy attenuation of the scintillation crystals for the scintillation light passing through different optical paths. Different, so when the gamma ray is incident on the crystal, the energy path of the excited photon is different when the optical path is transmitted to both ends of the crystal assembly. Therefore, the pulse from the two photoelectric converters is processed by the processing circuit.
  • the signal is processed to obtain the difference in amplitude (or area) of the two pulses, and then the position of the gamma ray is calculated based on the difference in amplitude (or area) and/or the energy of the gamma ray is corrected, such as when the ray is from the crystal A1. (or crystal A3)
  • the pulse amplitude (or area) output from the left and right (or right and left) photoelectric converters differs greatly; when the radiation is incident from the crystal A2, the pulse amplitude of the output of the left and right photoelectric converters (or Area) The difference is small.
  • the gamma ray detector provided by the embodiment of the invention is provided by setting one scintillation crystal, or setting a plurality of scintillation crystals arranged side by side, and the plurality of scintillation crystals are disposed end to end, and the most of the scintillation crystals arranged in parallel
  • the photoelectric converters are respectively disposed at both ends, so that the optical signals are received and processed from both sides of the scintillation crystal, and the gamma rays of different optical paths and energies can be obtained according to the pulse signals corresponding to the two optical signals and the scintillation crystals.
  • the attenuation effect accurately calculating the incident position of the gamma ray and/or correcting the energy of the gamma ray, solves the problem of low axial resolution and low energy resolution of the existing gamma ray detector, that is, solving the existing problem
  • the gamma ray energy measurement has low accuracy, and the effect of improving the measurement accuracy of the gamma ray detector is achieved.
  • the crystal materials of any two of the plurality of scintillation crystals may be the same or different.
  • the plurality of scintillation crystals may all adopt sodium iodide crystal, or may be
  • cesium iodide crystals may also include both sodium iodide crystals and cesium iodide crystals.
  • all scintillators which interact with matter and generate scintillation light by gamma ray are used as the scintillation crystal.
  • Alternatives include bismuth ruthenate (BGO) crystals and lanthanum bromide (LaB3r) crystals.
  • the detectors using this structure can detect this difference due to the difference in the response of the crystals of different materials to the gamma ray detector.
  • the precision effect improves the range of adaptation of the gamma detector.
  • the first pulse outputted by the first photoelectric converter and the second pulse output by the second photoelectric converter are both electrical pulses
  • the processing circuit mainly has two structural compositions
  • the first method: the processing circuit mainly The invention comprises an amplifier, an analog to digital converter and a processor, wherein: the amplifier is connected to both the first photoelectric converter and the second photoelectric converter for buffering, amplifying and shaping the first pulse and the second pulse; analog to digital conversion
  • the device is connected to the amplifier for collecting the voltage amplitude (or area) of the first pulse and the second pulse, and outputting a digital signal corresponding to the pulse voltage amplitude (or area);
  • the processor is coupled to the analog to digital converter for calculating the position and energy corresponding to the digital signal to obtain the incident position of the gamma ray and the corrected energy.
  • the difference value of the digital signal representing the first pulse and the second pulse is mainly calculated, and then the incident position of the gamma ray and the corrected energy are calculated according to the difference value and the attenuation coefficient of the scintillation crystal to the scintillation light, wherein The difference value is the difference or ratio or logarithmic value.
  • the processing circuit mainly includes an amplifier, a first logic operator and a second logic operator, wherein: the amplifier is connected to both the first photoelectric converter and the second photoelectric converter, and is configured to convert the first pulse and the second pulse Buffer amplification and shaping.
  • the first logic operator is coupled to the amplifier for obtaining a difference signal of the first pulse and the second pulse, wherein the first logic operator is a circuit adder or a subtractor or a multiplier or a logarithm or a differential amplifier or The comparator-based logic operator, the difference signal is a difference signal or a ratio signal or a logarithmic signal.
  • the second logic operator is connected to the first logic operator for calculating the incident position of the gamma ray and/or the energy of the corrected gamma ray according to the difference signal and the attenuation coefficient of the scintillation crystal to the scintillation light, wherein The second logical operator may be a logical operator based on a multiplier or a comparator or a logarithm.
  • the gamma ray detector provided by the embodiment of the present invention further includes a light guide body formed of an optical material.
  • the light guide body may be singly disposed in every two adjacent flicker. Between the crystals, that is, a light guide body is disposed between each two adjacent scintillation crystals, and can be singly disposed at the first end of the scintillation crystal crucible, and can be singly disposed at the first end of the scintillation crystal, or The light guide body is disposed at any two or more of the above three positions, and the schematic diagram in FIG. 2 shows that the light guide body is disposed singly between each two adjacent scintillation crystals, corresponding to the figure.
  • the number of light guides is two, and the two light guides are denoted as B1, B2 in FIG.
  • B1, B2 in FIG. 2
  • the total number of light guide bodies in the gamma ray detector is not limited to be smaller than the total number of the scintillation crystals. The amount, when necessary according to actual needs, needs to be provided at the first end of the scintillation crystal 4 and/or the first end of the scintillation crystal ⁇ , and corresponding to FIG.
  • the optical materials of the plurality of light guides disposed between each two scintillation crystals may be the same or different. In the embodiment of the present invention, the plurality of light guides may all adopt the same optical transmittance. As the material, optical materials having different optical transmittances may be used, and optical materials having the same optical transmittance and optical materials having different optical transmittances may be included.
  • the gamma ray detector of the embodiment of the present invention further includes a housing, and the one or n scintillation crystals, the first photoelectric converter 21, the second photoelectric converter 22, and the plurality of light guides are fixedly disposed at Inside the housing.
  • FIG. 3 is a cross-sectional view of a gamma ray detector in accordance with a preferred embodiment of the present invention, as shown in FIG. 3, the gamma ray detector of the preferred embodiment is compared to the gamma ray detector shown in FIG.
  • the gamma ray detector of the preferred embodiment further includes a shield, wherein the number of the shields may be the same as the number of the light guides, and the number of the shields is the same as the number of the light guides.
  • a shielding body is correspondingly disposed on the casing portion surrounding each of the light guiding bodies.
  • FIG. 3 schematically shows a case where the number of corresponding light guides is two, and the number of the shields is four, wherein the shield body is sleeved on the light guide body A, and the shield body C 2 is sleeved on the light guide body.
  • the shield 3 is sleeved on the first photoelectric converter 21, and the shield 4 is sleeved on the second photoelectric converter 22.
  • reference numeral 10 denotes a crystal assembly including a scintillator and a light guide.
  • the size of the shielding body ⁇ may be larger than the size of the light guiding body.
  • the middle portion of the shielding body ⁇ is disposed on the light guiding body, and the two ends of the shielding body ⁇ are correspondingly arranged in the blinking Crystal 4 and scintillation crystal.
  • the shielding body can also be sleeved at other parts of the housing, assuming that the housing portion of the housing surrounding each of the light guiding bodies is a first surrounding portion, and the housing portion surrounding the scintillation crystal on the housing is a second surrounding portion, the housing portion of the housing surrounding the first photoelectric converter is a third surrounding portion, and the housing portion of the housing surrounding the second photoelectric converter is a fourth surrounding portion, and the shielding body can be sleeved At least one of the first surrounding portion, the second surrounding portion, the third surrounding portion, and the fourth surrounding portion of the housing surrounds the portion.
  • a certain amount of stray gamma rays are incident on the scintillation crystal at a certain angle (such as ⁇ 3 and ⁇ 4 in Fig. 1).
  • a shielding body is arranged on the body, the scintillation crystal or the photoelectric converter to shield the obliquely incident gamma rays, and the gamma rays emitted from the horizontal direction of the formation are retained as much as possible, so that the formation resolution during logging is higher, and the detection is further improved. Accuracy and accuracy of the measurement. Therefore, the position of the shield can be adjusted according to actual needs.
  • the gamma ray detector further includes a first header 31, a second header 32, two plugs disposed at both ends of the housing (the first plug 41 and the second plug 42), and the plug And two damper members (the first damper member 51 and the second damper member 52) between the photoelectric converter, wherein the first header 31 is disposed in the housing for carrying the first photoelectric converter 21, The second header 32 is disposed in the housing for carrying the second photoelectric converter 22, the first damping component 51 is disposed between the first plug 41 and the first header 31, and the second damping component 52 is disposed at Between the second plug 42 and the second header 32.
  • the shock absorbing member may be a compression spring, and may be other devices capable of damaging.
  • FIG. 4 is a flowchart of a method for processing gamma ray according to an embodiment of the present invention. As shown in FIG. 4, the processing method of the gamma ray of this embodiment mainly includes the following steps S502 and S504:
  • S502 Receive a first pulse and a second pulse, where the first pulse is an electrical pulse output by the first photoelectric converter, and the second pulse is an electrical pulse output by the second photoelectric converter, and the first photoelectric converter is set at the target a photoelectric converter at a first end of the gamma ray detector, the second photoelectric converter being a photoelectric converter disposed at a second end of the target gamma ray detector;
  • S504 Calculate an incident position of the gamma ray according to the first pulse and the second pulse and/or correct the energy of the gamma ray
  • the optical signals are respectively received and processed from both sides of the target gamma ray detector, and
  • the electric pulse signal corresponding to the two optical signals accurately calculates the incident position of the gamma ray and/or corrects the energy of the gamma ray, thereby solving the problem that the axial resolution and the energy measurement accuracy of the existing gamma ray detector are low.
  • the effect of improving the measurement accuracy of the gamma ray detector is achieved.
  • the axial resolution and energy measurement accuracy of the gamma ray detector can also be improved by the method of the present invention.
  • the scintillation crystal Since the scintillation crystal has different energy attenuations for gamma photons that travel through different optical paths and different energies, when the gamma ray is incident on the target gamma ray detector, the excited photons pass through the scintillation crystal in the target gamma ray detector. When the optical path traveled to both end faces is different, the energy attenuation is different. Therefore, by determining the difference in amplitude (or area) of the two pulses, the incident position of the gamma ray and/or the corrected gamma are calculated based on the difference. The energy of the ray achieves the accuracy of calculation of the incident position and the calibration accuracy of the gamma ray energy.
  • the first pulse and the second pulse are both electrical pulses, and the embodiment of the present invention mainly provides the following three types of calculating the incident position of the gamma ray according to the first pulse and the second pulse and/or correcting the gamma
  • the way of the energy of the ray comprises the following steps: Step 11: Measuring the attenuation coefficient of the gamma photon of the scintillation crystal for different energies and different optical paths by using an experimental method; Step 12: determining the first electric pulse and the second electric The voltage amplitude (or area) of the pulse corresponds to the digital value of the signal; preferably, the digital value can be determined by analog-to-digital conversion; Step 13: Determine the difference value of the two digital signals, the difference value can be the difference, the ratio, a logarithmic difference and a logarithmic ratio; preferably, the difference value of the corresponding digital signal can be determined by a processor calculation manner; Step 14: calculating the gamma ray incident
  • Step 21 Using an experimental method to measure the attenuation coefficient of the gamma photon of the scintillation crystal for different energies and different optical paths;
  • Step 22 determining a difference signal of the analog signal corresponding to the voltage amplitude signal (or the area signal) of the first electrical pulse, and the difference signal may be a difference signal, a ratio signal, a logarithmic signal, or preferably, The difference signal is obtained by an adder or a subtractor or a multiplier or a logarithm or a differential amplifier;
  • Step 23 Simulating the gamma ray incident position and the corrected energy according to the difference signal and the attenuation coefficient and the corresponding hardware circuit output Signal, the location and energy information is transmitted or recorded by
  • the above two methods obtain the attenuation coefficient of the scintillation crystal to the scintillation light, and then obtain the gamma ray incident position and the corrected energy information according to the attenuation coefficient and the obtained two signal amplitude (or area) differences.
  • the energy measurement value of the gamma ray may be obtained by the hardware circuit and/or the software calculation method according to the attenuation coefficient.
  • Step 31 Determine the first pulse and the second pulse Corresponding amplitude value or area value
  • Step 32 Obtain the geometric mean or arithmetic mean or weighted average of the amplitude values (or area values) of the two pulse signals
  • Step 33 Directly use two pulse signal amplitude values (or areas)
  • the geometric mean or arithmetic mean or weighted average of the values) is used instead of the amplitude value or area value of the first pulse and/or the second pulse as the energy measurement of the gamma ray. Since the crystal is not completely transparent, some photons are absorbed when the photons propagate in the crystal, and the total energy is attenuated.
  • the attenuation coefficient can be expressed by ⁇ , the gamma ray energy of ⁇ and the excited photons, and the light passing by the photons. According to the process, crystals of different materials or crystals of different materials or processes of different materials have different absorption characteristics, which need to be obtained through actual tests, and the energy of the scintillation light is proportional to the measured amplitude (or area) of the electric pulse.
  • the optical path of dl and d2 is respectively passed to both ends of the crystal, and the difference (or ratio) of the amplitude (or area) of the two pulses is different from the energy attenuation of the two pulses (or
  • the ratio is a monotonic function relationship, whereby the optical path difference (or optical path ratio) through which the photons travel to both ends of the crystal can be obtained, and the specific values of dl and d2 can be determined according to the length of the crystal, which is equivalent to determining the gamma.
  • the position at which the ray is incident on the crystal is equivalent to determining the gamma.
  • the energy of the gamma ray is then calculated from the amplitude (or area) of the two pulses and the optical path and attenuation coefficient of each of the pulses, thereby correcting the measured value of the gamma ray energy.
  • the arithmetic mean or geometric mean or weighted average of the two pulse voltage amplitudes (or areas) can be directly used as the energy measurement of the current gamma ray to correct the gamma ray energy.
  • the above processing method is based on the phenomenon that the total energy attenuation is different when the scintillation light passes through different optical paths in the crystal, and the target gamma ray detector having the photoelectric converter at both ends is used to obtain two existing amplitudes (or areas).
  • the gamma ray detector provided by the present invention can accurately position the gamma ray incident position, so that the detector greatly improves the axial direction. Resolution. Moreover, the present invention corrects the energy attenuation due to the absorption of the scintillation light by the crystal itself, thereby improving the accuracy of the gamma ray energy measurement. In the field of non-geological exploration technology, the present invention can also be utilized to achieve an effect of improving the axial resolution of the gamma ray detector and improving the accuracy of the energy measurement.
  • the gamma ray processing method of the embodiment of the invention further includes: applying the corrected energy gamma ray to the target device, wherein the target
  • the device is a device for measuring the count rate, energy window or energy spectrum of the gamma ray, that is, the energy of the gamma ray is corrected and can be used in all devices for measuring the gamma ray count rate, energy window or energy spectrum.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

一种伽马射线探测器和伽马射线的处理方法,该伽马射线探测器包括:编号为A1至An的n个闪烁晶体,其中,n个闪烁晶体并列设置,并且闪烁晶体Ai与闪烁晶体Ai+1端对端设置;第一光电转换器(21),设置在闪烁晶体A1的第一端;第二光电转换器(22),设置在闪烁晶体An的第一端;以及处理电路,与第一光电转换器(21)和第二光电转换器(22)均相连接,用于接收第一脉冲和第二脉冲,并根据第一脉冲和第二脉冲计算伽马射线的入射位置和/或校正伽马射线的能量。该伽马射线探测器解决了现有伽马射线探测技术中轴向分辨率较低和伽马射线能量测量准确度低的问题,进而达到了提高伽马射线探测器测量精度的目的。

Description

伽马射线探测器和伽马射线的处理方法 技术领域 本发明涉及探测技术领域, 具体而言, 涉及一种伽马射线探测器和伽马射线的处 理方法。 背景技术 在地质勘探领域, 不同的地层, 放射性元素的含量和种类不同, 利用伽马射线探 测器探测地层中伽马射线的强度可以区分地层以及确定地层元素。 图 1是现有技术中 常用的伽马射线探测器的结构示意图, 如图 1所示, 目前的伽马射线探测器一般由一 块闪烁晶体 A和设置在该闪烁晶体 A—端的光电倍增管 R组成, 当有伽马射线射入 闪烁晶体时会有闪烁光产生, 由光电倍增管收集光电子, 成倍放大后在输出端产生脉 冲电流, 图 1中标号 Y l、 Υ 2、 Υ 3和 Υ 4均表示伽马射线, Eh表示地层厚度。 通过 一定的方法对电脉冲信号进行处理和采集, 得到与地层及地层元素相关的信息。 由于 伽马射线能量的不确定性, 及入射时间和方向的随机性, 现有技术中的伽马射线探测 器只能在大于闪烁晶体长度的范围内进行地层及地层元素信息的处理, 无法分辨伽马 射线是从晶体的哪个位置射入的, 存在地层分辨率较低的弊端, 另外, 由于晶体本身 对射线激发的闪烁光的吸收, 导致能量测量的准确度下降。 针对原有伽马射线探测技术中轴向分辨率以及能量测量准确度低的问题, 目前尚 未提出有效的解决方案。 发明内容 本发明实施例的主要目的在于提供一种伽马射线探测器和伽马射线的处理方法, 以解决现有伽马射线探测技术中轴向分辨率以及能量测量准确度低的问题。 为了实现上述目的,根据本发明实施例的一个方面,提供了一种伽马射线探测器, 包括: 闪烁晶体, 其中, 所述闪烁晶体的数量为 1个或 n个, n个所述闪烁晶体的编 号为 4至 Λ, η个闪烁晶体并列设置, 并且闪烁晶体 与闪烁晶体 +1端对端设置, η 为 2以上的自然数, i依次取 1至 η-1 ; 第一光电转换器, 设置在闪烁晶体 4的第一端, 其中, 闪烁晶体 4的第一端为远离闪烁晶体 Λ的一端; 第二光电转换器, 设置在闪烁 晶体 的第一端, 其中, 闪烁晶体^的第一端为远离闪烁晶体 4^的一端, 或者, 所 述第一光电转换器设置在所述闪烁晶体的第一端, 所述第二光电转换器设置在所述闪 烁晶体的第二端, 所述闪烁晶体的第二端与所述闪烁晶体的第一端相对; 以及处理电 路, 与第一光电转换器和第二光电转换器均相连接, 用于接收第一脉冲和第二脉冲, 并根据第一脉冲和第二脉冲计算伽马射线的入射位置和 /或校正伽马射线的能量, 其 中,第一脉冲为第一光电转换器输出的脉冲,第二脉冲为第二光电转换器输出的脉冲。 优选地, 伽马射线探测器还包括: 导光体, 导光体的个数为多个, 其中, 导光体 设置在第一位置、 第二位置和第三位置中的至少之一位置处, 第一位置为每两个相邻 的闪烁晶体之间的位置, 第二位置为闪烁晶体 4的第一端, 第三位置为闪烁晶体 的 1而。 优选地, 伽马射线探测器还包括: 壳体, 其中, 1个或 n个闪烁晶体、 第一光电 转换器、 第二光电转换器和多个导光体均设置在壳体内。 优选地, 伽马射线探测器还包括: 第一管座, 设置在壳体内, 用于承载第一光电 转换器; 第二管座, 设置在壳体内, 用于承载第二光电转换器; 第一堵头, 设置在壳 体的第一端; 第二堵头, 设置在壳体的第二端; 第一减震部件, 设置在第一堵头与第 一管座之间; 以及第二减震部件, 设置在第二堵头与第二管座之间。 优选地, 伽马射线探测器还包括: 屏蔽体, 屏蔽体的个数为多个, 其中, 屏蔽体 套设在壳体的第一环绕部分、 第二环绕部分、 第三环绕部分和第四环绕部分中的至少 之一环绕部分处, 其中, 第一环绕部分为环绕每个导光体的壳体部分, 第二环绕部分 为环绕每个闪烁晶体的壳体部分, 第三环绕部分为环绕第一光电转换器的壳体部分, 第四环绕部分为环绕第二光电转换器的壳体部分。 优选地, n个闪烁晶体中任意两个闪烁晶体的晶体材料相同或不同。 优选地, 多个导光体中任意两个导光体的光学透过率相同或不同。 优选地, 第一脉冲和第二脉冲均为电脉冲, 处理电路包括: 放大器, 与第一光电 转换器和第二光电转换器均相连接,用于将第一脉冲和第二脉冲进行缓冲放大和整形; 模数转换器, 与放大器相连接, 用于采集第一脉冲和第二脉冲的脉冲幅度或面积, 并 输出与脉冲幅度或面积对应的数字信号; 以及处理器, 与模数转换器相连接, 用于计 算表示第一脉冲和第二脉冲的数字信号的差异值, 并根据差异值和闪烁晶体对闪烁光 的衰减系数计算伽马射线的入射位置和校正后的能量。 优选地, 第一脉冲和第二脉冲均为电脉冲, 处理电路包括: 放大器, 与第一光电 转换器和第二光电转换器均相连接,用于将第一脉冲和第二脉冲进行缓冲放大和整形; 第一逻辑运算器, 与放大器相连接, 用于获得第一脉冲和第二脉冲的差异信号; 第二 逻辑运算器, 与第一逻辑运算器相连接, 用于根据差异信号和闪烁晶体对闪烁光的衰 减系数计算得到伽马射线的入射位置和 /或校正后的伽马射线的能量。 为了实现上述目的, 根据本发明实施例的另一方面, 提供了一种伽马射线的处理 方法, 应用于目标伽马射线探测器, 目标伽马射线探测器的两端均具有光电转换器, 处理方法包括: 接收第一脉冲和第二脉冲, 其中, 第一脉冲为第一光电转换器输出的 脉冲, 第二脉冲为第二光电转换器输出的脉冲, 第一光电转换器为设置在目标伽马射 线探测器第一端的光电转换器, 第二光电转换器为设置在目标伽马射线探测器第二端 的光电转换器; 以及根据第一脉冲和第二脉冲计算伽马射线的入射位置和 /或校正伽马 射线的能量。 优选地, 目标伽马射线探测器还包括闪烁晶体,第一脉冲和第二脉冲均为电脉冲, 根据第一脉冲和第二脉冲计算伽马射线的入射位置和 /或校正伽马射线的能量包括: 确 定第一脉冲和第二脉冲对应的幅度值或面积值; 确定第一脉冲的幅度值或面积值和第 二脉冲的幅度值或面积值的差异值; 以及根据差异值和闪烁晶体对闪烁光的衰减系数 计算入射位置和 /或校正伽马射线的能量。 优选地, 目标伽马射线探测器还包括闪烁晶体,第一脉冲和第二脉冲均为电脉冲, 根据第一脉冲和第二脉冲计算伽马射线的入射位置和 /或校正伽马射线的能量包括: 确 定第一脉冲和第二脉冲对应的幅度信号或面积信号; 确定第一脉冲的幅度信号或面积 信号和第二脉冲的幅度信号或面积信号的差异信号; 以及根据差异信号和闪烁晶体对 闪烁光的衰减系数直接输出伽马射线的入射位置和 /或校正后的伽马射线的能量。 优选地, 第一脉冲和第二脉冲均为电脉冲, 根据第一脉冲和第二脉冲校正伽马射 线的能量包括: 确定第一脉冲和第二脉冲对应的幅度值或面积值; 确定第一脉冲的幅 度值或面积值和第二脉冲的幅度值或面积值的几何平均值或算术平均值或加权平均 值; 以及以第一脉冲的幅度值或面积值和第二脉冲的幅度值或面积值的几何平均值或 算数平均值或加权平均值,代替第一脉冲和 /或第二脉冲的幅度值或面积值作为伽马射 线的能量测量值。 优选地,在根据第一脉冲和第二脉冲校正伽马射线的能量之后,处理方法还包括: 将校正能量后的伽马射线应用于目标装置,其中, 目标装置为测量伽马射线的计数率、 能窗或能谱的装置。 本发明实施例采用具有以下结构的伽马射线探测器: 闪烁晶体, 其中, 所述闪烁 晶体的数量为 1个或 n个, n个所述闪烁晶体的编号为 至 , η个闪烁晶体并列设 置, 并且闪烁晶体 4与闪烁晶体 4+1端对端设置, η为 2以上的自然数, i依次取 1至 n-1 ; 第一光电转换器, 设置在闪烁晶体 4的第一端, 其中, 闪烁晶体 4的第一端为远 离闪烁晶体 ^的一端; 第二光电转换器, 设置在闪烁晶体 的第一端, 其中, 闪烁晶 体 的第一端为远离闪烁晶体 4^的一端, 或者, 所述第一光电转换器设置在所述闪 烁晶体的第一端, 所述第二光电转换器设置在所述闪烁晶体的第二端, 所述闪烁晶体 的第二端与所述闪烁晶体的第一端相对; 以及处理电路, 与第一光电转换器和第二光 电转换器均相连接, 用于接收第一脉冲和第二脉冲, 并根据第一脉冲和第二脉冲计算 伽马射线的入射位置和 /或校正伽马射线的能量, 其中, 第一脉冲为第一光电转换器输 出的脉冲, 第二脉冲为第二光电转换器输出的脉冲。 通过设置 1个或多个并列设置的 闪烁晶体, 并且这多个闪烁晶体端对端设置, 以及在并列设置的闪烁晶体的最两端分 别设置光电转换器, 实现了能够分别从闪烁晶体的两侧对光信号进行接收和处理, 进 而依据闪烁晶体对走过不同光程的闪烁光能量衰减不同, 以及得到的两个光信号对应 的电压幅度或面积, 准确计算伽马射线的入射位置和 /或校正伽马射线的能量, 解决了 现有技术中轴向分辨率较低和伽马射线能量测量准确度低的问题, 进而达到了提高伽 马射线探测器测量精度的目的。 附图说明 构成本申请的一部分的附图用来提供对本发明的进一步理解, 本发明的示意性实 施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1是根据相关技术的伽马射线探测器的结构示意图; 图 2是根据本发明实施例的伽马射线探测器的剖面图; 图 3是根据本发明优选实施例的伽马射线探测器的剖面图; 以及 图 4是根据本发明实施例的伽马射线的处理方法流程图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 本发明实施例提供了一种伽马射线探测器, 以下对本发明实施例所提供的伽马射 线探测器进行具体介绍: 图 2是根据本发明实施例的伽马射线探测器的剖面图, 如图 2所示, 本发明实施 例的伽马射线探测器主要包括 1个或多个闪烁晶体、 第一光电转换器 21、 第二光电转 换器 22和处理电路 (图中未示出), 其中: 多个闪烁晶体的编号为 Λ至 Λ, η个闪烁晶体并列设置, 并且闪烁晶体 与闪烁 晶体 4+1端对端设置, i依次取 1至 η-1, 即, η个闪烁晶体以端对端的方式串联形成条 状晶体总成, 晶体总成的两端面处为光学端窗 S1和 S2, n为 2以上的自然数, 图 2 中示意性示出了由 3个闪烁晶体 (即 n=3 ) 所形成的伽马射线探测器的剖面图。 第一光电转换器 21 设置在闪烁晶体 ^的第一端, 其中, 闪烁晶体 4的第一端为 远离闪烁晶体 ^的一端, 即, 第一光电转换器 21 设置在晶体总成的一个端面处, 用 于从光学端窗 S1处接收伽马射线穿过晶体总成传出的光子,并将接收到的光子转换成 电脉冲, 在本发明实施例中, 第一光电转换器 21可以为光电倍增管, 也可以是其它能 够进行光子接收并进行光电转换的器件。 第二光电转换器 22设置在闪烁晶体 的第一端, 其中, 闪烁晶体 的第一端为 远离闪烁晶体 Λ— ,的一端, 即, 第二光电转换器 22设置在晶体总成的另一端面处, 用 于从光学端窗 S2处接收伽马射线穿过晶体总成传出的光子,并将接收到的光子转换成 电脉冲, 在本发明实施例中, 第二光电转换器 22同样可以为光电倍增管, 也可以是其 它能够进行光子接收并进行光电转换的器件。 其中,对于闪烁晶体数量为 1的情况,则相当于只保留图 2中的某一个闪烁晶体, 假设只保留闪烁晶体 4, 则第一光电转换器 21 设置在闪烁晶体 4的第一端, 第二光 电转换器 22设置在闪烁晶体 4的第二端, 闪烁晶体 4的第一端与闪烁晶体 4的第二 端为相对的两端。 处理电路与第一光电转换器 21和第二光电转换器 22均相连接, 用于接收第一脉 冲和第二脉冲, 并根据第一脉冲和第二脉冲计算伽马射线的入射位置和 /或校正伽马射 线的能量, 其中, 第一脉冲为第一光电转换器 21输出的脉冲, 第二脉冲为第二光电转 换器 22输出的脉冲。 通过上述结构的伽马射线探测器, 由于探测器具有 1个或多个闪烁晶体, 伽马射 线只有射入闪烁晶体时才会产生闪烁光,通过在晶体总成的两端连接两个光电转换器, 当有伽马射线射入闪烁晶体并产生闪光时, 光束可以分别通过各自的传输路径向两端 传输, 并到达两个光电转换器, 由于闪烁晶体对走过不同光程的闪烁光的能量衰减不 同, 所以当伽马射线射入晶体, 所激发出的光子向晶体总成两端面传输走过的光程不 同时, 能量衰减就不同, 因此, 通过处理电路对来自两个光电转换器的脉冲信号进行 处理, 可以获得两个脉冲的幅度 (或面积) 差异, 进而基于该幅度 (或面积) 差异计 算出伽马射线的入射位置和 /或校正伽马射线的能量, 比如当射线从晶体 A1 (或晶体 A3 )入射时, 左右(或右左)两边的光电转换器输出的脉冲幅度(或面积)相差较大; 当射线从晶体 A2入射时, 左右两边的光电转换器输出的脉冲幅度 (或面积) 相差较 小。 本发明实施例所提供的伽马射线探测器, 通过设置 1个闪烁晶体, 或设置多个并 列设置的闪烁晶体, 并且这多个闪烁晶体端对端设置, 以及在并列设置的闪烁晶体的 最两端分别设置光电转换器,实现了分别从闪烁晶体的两侧对光信号进行接收和处理, 进而能够根据与两个光信号对应的脉冲信号及闪烁晶体对不同光程和能量的伽马射线 的衰减效应, 准确计算伽马射线的入射位置和 /或校正伽马射线的能量, 解决了现有伽 马射线探测器轴向分辨率和能量分辨率较低的问题, 即, 解决了现有技术中伽马射线 能量测量准确度低的问题, 进而达到了提高伽马射线探测器测量精度的效果。 在本发明实施例中, 多个闪烁晶体中任意两个闪烁晶体的晶体材料可以相同, 也 可以不相同, 在本发明实施例中, 多个闪烁晶体可以均采用碘化钠晶体, 也可以均采 用碘化铯晶体, 还可以既包括碘化钠晶体, 又包括碘化铯晶体, 优选地, 所有以伽马 射线入射与物质相互作用并产生闪烁光为机理的闪烁体都可以作为上述闪烁晶体的替 代, 比如锗酸铋 (BGO) 晶体和溴化镧 (LaB3r) 晶体等。 通过在一个伽马射线探测器中使用不同材料的晶体, 由于不同材料的晶体对射线 的响应有差别, 使用这种结构的探测器可以检测出这种差别, 达到了提高伽马射线探 测器探测精度的效果, 提高了伽马探测器的适应范围。 在一个优选实施例方式中, 第一光电转换器输出的第一脉冲和第二光电转换器输 出的第二脉冲均为电脉冲, 处理电路主要有两种结构组成方式, 方式一: 处理电路主 要包括放大器、 模数转换器和处理器, 其中: 放大器与第一光电转换器和第二光电转换器均相连接, 用于将第一脉冲和第二脉 冲进行缓冲、 放大和整形; 模数转换器与放大器相连接,用于采集第一脉冲和第二脉冲的电压幅度(或面积), 并输出与脉冲电压幅度 (或面积) 对应的数字信号; 处理器与模数转换器相连接, 用于计算与数字信号对应的位置和能量, 得到伽马 射线的入射位置和校正后的能量。 优选地, 主要是计算表示第一脉冲和第二脉冲的数 字信号的差异值, 然后, 根据差异值和闪烁晶体对闪烁光的衰减系数计算伽马射线的 入射位置和校正后的能量, 其中, 差异值为差值或比值或对数值。 方式二: 处理电路主要包括放大器、 第一逻辑运算器和第二逻辑运算器, 其中: 放大器与第一光电转换器和第二光电转换器均相连接, 用于将第一脉冲和第二脉 冲进行缓冲放大和整形。 第一逻辑运算器与放大器相连接, 用于获得第一脉冲和第二脉冲的差异信号, 其 中, 第一逻辑运算器为以电路加法器或减法器或乘法器或对数器或差分放大器或比较 器为主的逻辑运算器, 差异信号为差值信号或比值信号或对数信号。 第二逻辑运算器与第一逻辑运算器相连接, 用于根据差异信号和闪烁晶体对闪烁 光的衰减系数计算得到伽马射线的入射位置和 /或校正后的伽马射线的能量, 其中, 第 二逻辑运算器可以是以乘法器或比较器或对数器为主的逻辑运算器。 优选地,本发明实施例所提供的伽马射线探测器还包括由光学材料形成的导光体, 对于闪烁晶体为多个的情况, 导光体可以单一地设置在每两个相邻的闪烁晶体之间, 即, 每两个相邻闪烁晶体之间均设置有一个导光体, 可以单一地设置在闪烁晶体 Λ的 第一端, 可以单一地设置在闪烁晶体 的第一端, 还可以在上述三个位置中任意两个 或两个以上的位置上均设置导光体, 图 2中示意图示出了单一地设置在每两个相邻的 闪烁晶体之间设置导光体, 对应图 2中示意性示出的由 3个闪烁晶体形成的晶体总成 而言, 导光体的数量为 2, 这两个导光体在图 2中表示为 Bl、 B2。 需要说明的是, 图 2中只是具有导光体的伽马射线探测器的一种示意图, 本发明 实施例中, 并不限定伽马射线探测器中导光体的总数量小于闪烁晶体的总数量, 当根 据实际需要, 需要在闪烁晶体 4的第一端和 /或闪烁晶体 Λ的第一端均设置导光体, 对应图 2而言, 即是在闪烁晶体 ^的左端设置导光体,和 /或在闪烁晶体 4的右端设置 导光体。 其中, 设置在每两个闪烁晶体之间的多个导光体的光学材料可以相同, 也可以不 相同, 在本发明实施例中, 多个导光体可以均采用光学透过率相同的光学材料, 也可 以均采用光学透过率不相同的光学材料, 还可以既包括光学透过率相同的光学材料, 又包括光学透过率不相同的光学材料。 对于某个具体的导光体而言, 既可以选择对闪 光完全透明的光学材料, 即对光完全没有衰减, 利用闪烁晶体对光子的衰减来实现本 探测器所述功能; 也可以选择对闪光有一定衰减作用的材料, 从而人为的增加衰减, 使幅度 (或面积) 差异更加明显。 如前所述, 射线只有射入闪烁晶体时才会产生闪光, 而射入该导光体就不会产生 闪光, 电路的采集精度有一定限制, 对于在晶体 A1右端与晶体 A2左端产生的两个闪 光, 为了区分这个闪光是属于 A1的还是 A2的, 增加导光体进行隔离就可以很好的进 行分辨。所以, 通过利用导光体将每两个闪烁晶体隔开, 更有利于探测器的分层处理。 另外, 使用对光有衰减的光导材料的导光体还可以更好的对两个光电转换装置输出的 电脉冲幅度 (或面积) 进行分辨。 优选地,本发明实施例的伽马射线探测器还包括壳体,上述 1个或 n个闪烁晶体、 第一光电转换器 21、 第二光电转换器 22和多个导光体均固定设置在壳体内。 通过利用壳体对上述各个器件进行固定, 实现了保持各个器件的相对位置保持不 变, 以避免测量过程中因为探测器件相对位置的改变影响伽马射线的探测精度, 达到 了提高探测器准确性的效果。 图 3是根据本发明优选实施例的伽马射线探测器的剖面图, 如图 3所示, 该优选 实施例的伽马射线探测器与图 2中示出的伽马射线探测器相比, 二者区别在于, 该优 选实施例的伽马射线探测器还包括屏蔽体, 其中, 屏蔽体的数量与导光体的数量相同 也可以不同, 对于屏蔽体的数量与导光体的数量相同的情况, 在环绕每个导光体的壳 体部分上均对应套设一个屏蔽体。 图 3中示意性示出了对应导光体数量为 2的情况, 屏蔽体的数量为 4,其中,屏蔽体 ς套设在导光体 A上,屏蔽体 C2套设在导光体 上, 屏蔽体 3套设在第一光电转换器 21上, 屏蔽体 4套设在第二光电转换器 22上, 图 3 中, 标号 10表示包括闪烁体和导光体的晶体总成。 在本发明实施例中, 屏蔽体 ς的 尺寸可以大于导光体 的尺寸, 对于这种情况, 屏蔽体 ς的中间部分设置在导光体 上, 屏蔽体 ς的两端部分分别对应设置在闪烁晶体 4与闪烁晶体 .—上。 优选地, 屏蔽体还可以套设在壳体的其它部分处, 假设壳体上环绕每个导光体的 壳体部分为第一环绕部分, 壳体上环绕每个闪烁晶体的壳体部分为第二环绕部分, 壳 体上环绕第一光电转换器的壳体部分为第三环绕部分, 壳体上环绕第二光电转换器的 壳体部分为第四环绕部分, 则屏蔽体可以套设在壳体的第一环绕部分、第二环绕部分、 第三环绕部分和第四环绕部分中的至少之一环绕部分处。 由于实际测量过程中, 除了沿地层水平方向射入闪烁晶体的伽马射线外, 还有一 定量的杂散伽马射线以一定角度射入闪烁晶体 (如图 1 中的 Υ 3和 γ 4), 通过在导光 体、 闪烁晶体或光电转换器上对应地套设屏蔽体, 能够屏蔽倾斜入射的伽马射线, 尽 量保留地层水平方向射来的伽马射线, 使测井时地层分辨率更高, 进一步提高探测器 测量的准确性和精度。 因此, 屏蔽体的位置可以根据实际需要进行调整。 优选地, 伽马射线探测器还包括第一管座 31、第二管座 32、设置在壳体两端的两 个堵头 (第一堵头 41和第二堵头 42) 和设置在堵头和光电转换器之间的两个减震部 件 (第一减震部件 51和第二减震部件 52), 其中, 第一管座 31设置在壳体内, 用于 承载第一光电转换器 21, 第二管座 32设置在壳体内, 用于承载第二光电转换器 22, 第一减震部件 51设置在第一堵头 41和第一管座 31之间, 第二减震部件 52设置在第 二堵头 42和第二管座 32之间。 在本发明实施例中, 减震部件可以是压缩弹簧, 还可 以是其它能够起到减震作用的器件。 由于闪烁晶体是易碎部件, 并且伽马射线探测器内各部件间的光学耦合也需要一 定的预紧力, 通过设置减震部件, 实现了对伽马射线探测器内的部件进行减震和保证 各部件间的光学耦合, 通过设置堵头, 实现了将所有部件集成到壳体内, 使其成为一 个整体。 本发明实施例还提供了一种伽马射线的处理方法, 该处理方法既可以应用于本发 明实施例上述内容所提供的任意一种伽马射线探测器, 还可以应用于任意一种两端均 具有光电转换器的目标伽马射线探测器, 以下对本发明实施例所提供的伽马射线的处 理方法进行具体介绍: 图 4是根据本发明实施例的伽马射线的处理方法的流程图, 如图 4所示, 该实施 例的伽马射线的处理方法主要包括如下步骤 S502和 S504:
S502: 接收第一脉冲和第二脉冲, 其中, 第一脉冲为第一光电转换器输出的电脉 冲, 第二脉冲为第二光电转换器输出的电脉冲, 第一光电转换器为设置在目标伽马射 线探测器第一端的光电转换器, 第二光电转换器为设置在目标伽马射线探测器第二端 的光电转换器;
S504:根据第一脉冲和第二脉冲计算伽马射线的入射位置和 /或校正伽马射线的能
本发明实施例的伽马射线的处理方法, 通过对来自两个光电转换器的脉冲信号进 行处理, 实现了分别从目标伽马射线探测器的两侧对光信号进行接收和处理, 进而能 够根据与两个光信号对应的电脉冲信号准确计算伽马射线的入射位置和 /或校正伽马 射线的能量, 解决了现有伽马射线探测器轴向分辨率及能量测量准确度低的问题, 进 而达到了提高伽马射线探测器的测量精度的效果。 在非地质勘探领域, 也可以通过本 发明所述方法提高伽马射线探测器的轴向分辨率以及能量测量精度。 由于闪烁晶体对走过不同光程和不同能量的伽马光子的能量衰减不同, 所以当伽 马射线射入目标伽马射线探测器, 所激发出的光子通过目标伽马射线探测器中闪烁晶 体向两端面传输走过的光程不同时, 能量衰减就不同, 因此, 通过确定两个脉冲的幅 度 (或面积)差异, 进而基于该差异计算出伽马射线的入射位置和 /或校正伽马射线的 能量, 实现了保证入射位置的计算精确度和伽马射线能量的校准精确度。 在一个优选实施方式中, 第一脉冲和第二脉冲均为电脉冲, 本发明实施例主要提 供了以下三种根据第一脉冲和第二脉冲计算伽马射线的入射位置和 /或校正伽马射线 的能量的方式: 方式一, 具体包括如下步骤: 步骤 11 : 利用实验方法测量闪烁晶体对不同能量和不同光程的伽马光子的衰减系 数; 步骤 12:确定第一电脉冲与第二电脉冲的电压幅度(或面积)对应信号的数字值; 优选地, 可以通过模数转换方式确定其数字值; 步骤 13 : 确定两个数字信号的差异值, 该差异值可以为差值、 比值、 对数差值和 对数比值; 优选地, 可以通过处理器计算的方式确定其对应的数字信号的差异值; 步骤 14: 根据上述差异值以及闪烁晶体的衰减系数计算所述伽马射线入射的位 置; 步骤 15: 根据得到的入射位置和闪烁晶体对闪烁光的衰减系数以及两个脉冲的原 始信号幅度(或面积)对所测量闪烁光的能量进行校正,得到校正后的幅度(或面积), 以此代表入射伽马射线的能量测量值。 以上步骤最终获得伽马射线的入射位置及校正后能量的数字量, 还可以通过硬件 电路、 利用如下方式二获得上述信息的模拟量, 从而直接输出入射位置及校正后能量 的模拟量信息, 方式二具体步骤如下: 步骤 21 : 利用实验方法测量闪烁晶体对不同能量和不同光程的伽马光子的衰减系 数; 步骤 22: 确定第一电脉冲与第二电脉冲的电压幅度信号 (或面积信号)对应的模 拟信号的差异信号, 该差异信号可以为差值信号、 比值信号、 对数值信号, 优选地, 可以通过加法器或减法器或乘法器或对数器或差分放大器获得所述差异信号; 步骤 23 : 根据上述差异信号及衰减系数及相应的硬件电路输出代表伽马射线入射 位置及校正后能量的模拟信号, 通过其它设备传输或记录该位置及能量信息。 以上两种方法通过实验获得闪烁晶体对闪烁光的衰减系数, 继而根据该衰减系数 及获得的两个信号幅度(或面积)差异获得伽马射线的入射位置及校正后的能量信息。 同时, 还可以不根据衰减系数, 通过硬件电路和 /或软件计算的方法, 采用如下方式三 得到伽马射线的能量测量值, 方式三具体步骤如下: 步骤 31 : 确定第一脉冲和第二脉冲对应的幅度值或面积值; 步骤 32: 获得两路脉冲信号幅度值(或面积值) 的几何平均值或算数平均值或加 权平均值; 步骤 33 : 直接以两路脉冲信号幅度值(或面积值) 的几何平均值或算数平均值或 加权平均值,代替第一脉冲和 /或第二脉冲的幅度值或面积值作为所述伽马射线的能量 测量值。 由于晶体不是完全透明的, 所以当光子在晶体中传播时会有部分光子被吸收, 总 能量被衰减, 其衰减系数可以用 λ表示, λ与激发光子的伽马射线能量以及光子走过 的光程有关, 不同材料的晶体或相同材料的不同尺寸或工艺的晶体吸收特性不同, 需 要通过实际测试获得, 而闪烁光的能量与测量出的电脉冲幅度(或面积)成正比关系。 当有能量为 E1的闪烁光产生时分别向晶体两端走过 dl、 d2的光程, 两个脉冲的 幅度 (或面积) 差值 (或比值) 与两个脉冲的能量衰减差值 (或比值) 成单调函数关 系, 由此可以得到光子向晶体两端走过的光程差(或光程比), 再根据晶体的长度即可 以确定 dl、 d2的具体值, 相当于确定了伽马射线入射晶体的位置。继而根据两个脉冲 的幅度 (或面积) 和各自所走过的光程以及衰减系数计算出伽马射线的能量, 从而对 伽马射线能量的测量值进行校正。 或者可以直接把两个脉冲电压幅度 (或面积) 的算 数平均值或几何平均值或加权平均值作为当前伽马射线的能量测量值, 对伽马射线能 量做校正。 以上所述处理方法是根据闪烁光在晶体中走过不同光程时总能量衰减不同的现 象, 利用两端均具有光电转换器的目标伽马射线探测器, 得到两个存在幅度(或面积) 差异的电信号; 继而根据这两个电信号计算出入射伽马射线的位置以及对能量的衰减 进行校正。 因此, 凡是利用这种差异而无论用什么样的数学方法 (比如差值、 比值、 对数值等) 均应包含在本发明的保护范围之内。 从以上的描述中, 可以看出, 由于传统的伽马射线探测器不能分辨出伽马射线入 射位置, 所以测量过程中, 轴向分辨率必然受闪烁晶体长度的限制, 分辨的地层只能 接近或大于闪烁晶体的长度。 相对此种传统的伽马射线探测器而言, 本发明所提供的 伽马射线探测器, 可以把伽马射线入射的位置进行精确地轴向位置划分, 因此这种探 测器大大提高了轴向分辨率。 并且, 本发明校正了由于晶体本身对闪烁光的吸收导致 的能量衰减, 从而提高了伽马射线能量测量的准确度。 在非地质勘探的探测技术领域 中, 也可以利用本发明来达到提高伽马射线探测器轴向分辨率以及提高能量测量的准 确度的效果。 优选地, 在根据第一脉冲和第二脉冲校正伽马射线的能量之后, 本发明实施例的 伽马射线的处理方法还包括: 将校正能量后的伽马射线应用于目标装置, 其中, 目标 装置为测量伽马射线的计数率、 能窗或能谱的装置, 即, 伽马射线的能量经过校正后, 可以用于所有测量伽马射线计数率、 能窗或能谱的装置中。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种伽马射线探测器, 包括:
闪烁晶体, 其中, 所述闪烁晶体的数量为 1个或 n个, n个所述闪烁晶体 的编号为 4至 Λ , η个所述闪烁晶体并列设置,并且闪烁晶体 4.与闪烁晶体 +1 端对端设置, η为 2以上的自然数, i依次取 1至 η-1 ; 第一光电转换器, 设置在闪烁晶体 4的第一端, 其中, 所述闪烁晶体 4的 第一端为远离闪烁晶体 Λ的一端; 第二光电转换器, 设置在闪烁晶体 Λ的第一端, 其中, 所述闪烁晶体 的 第一端为远离闪烁晶体 一端, 或者, 所述第一光电转换器设置在所述闪 烁晶体的第一端, 所述第二光电转换器设置在所述闪烁晶体的第二端, 所述闪 烁晶体的第二端与所述闪烁晶体的第一端相对; 以及
处理电路, 与所述第一光电转换器和所述第二光电转换器均相连接, 用于 接收第一脉冲和第二脉冲, 并根据所述第一脉冲和所述第二脉冲计算伽马射线 的入射位置和 /或校正所述伽马射线的能量, 其中, 所述第一脉冲为所述第一光 电转换器输出的脉冲, 所述第二脉冲为所述第二光电转换器输出的脉冲。
2. 根据权利要求 1所述的伽马射线探测器, 其中, 所述伽马射线探测器还包括: 导光体, 所述导光体的个数为多个, 其中, 所述导光体设置在第一位置、 第二位置和第三位置中的至少之一位置处, 所述第一位置为每两个相邻的所述 闪烁晶体之间的位置, 所述第二位置为所述闪烁晶体 4的第一端, 所述第三位 置为所述闪烁晶体 Λ的第一端。
3. 根据权利要求 2所述的伽马射线探测器, 其中, 所述伽马射线探测器还包括: 壳体,
其中, 1个或 η个所述闪烁晶体、 所述第一光电转换器、 所述第二光电转 换器和多个所述导光体均设置在所述壳体内。
4. 根据权利要求 3所述的伽马射线探测器, 其中, 所述伽马射线探测器还包括: 第一管座, 设置在所述壳体内, 用于承载所述第一光电转换器; 第二管座, 设置在所述壳体内, 用于承载所述第二光电转换器; 第一堵头, 设置在所述壳体的第一端;
第二堵头, 设置在所述壳体的第二端; 第一减震部件, 设置在所述第一堵头与所述第一管座之间; 以及 第二减震部件, 设置在所述第二堵头与所述第二管座之间。
5. 根据权利要求 3或 4所述的伽马射线探测器, 其中, 所述伽马射线探测器还包 括:
屏蔽体, 所述屏蔽体的个数为多个, 其中, 所述屏蔽体套设在所述壳体的 第一环绕部分、 第二环绕部分、 第三环绕部分和第四环绕部分中的至少之一环 绕部分处, 其中, 所述第一环绕部分为环绕每个所述导光体的壳体部分, 所述 第二环绕部分为环绕每个所述闪烁晶体的壳体部分, 所述第三环绕部分为环绕 所述第一光电转换器的壳体部分, 所述第四环绕部分为环绕所述第二光电转换 器的壳体部分。
6. 根据权利要求 1或 2所述的伽马射线探测器, 其中, n个所述闪烁晶体中任意 两个所述闪烁晶体的晶体材料相同或不同。
7. 根据权利要求 2所述的伽马射线探测器, 其中, 多个所述导光体中任意两个所 述导光体的光学透过率相同或不同。
8. 根据权利要求 1所述的伽马射线探测器, 其中, 所述第一脉冲和所述第二脉冲 均为电脉冲, 所述处理电路包括:
放大器, 与所述第一光电转换器和所述第二光电转换器均相连接, 用于将 所述第一脉冲和所述第二脉冲进行缓冲放大和整形;
模数转换器, 与所述放大器相连接, 用于采集所述第一脉冲和所述第二脉 冲的脉冲幅度或面积, 并输出与所述脉冲幅度或所述面积对应的数字信号; 以 及
处理器, 与所述模数转换器相连接, 用于计算表示所述第一脉冲和所述第 二脉冲的所述数字信号的差异值, 并根据所述差异值和所述闪烁晶体对闪烁光 的衰减系数计算所述伽马射线的入射位置和校正后的能量。
9. 根据权利要求 1所述的伽马射线探测器, 其中, 所述第一脉冲和所述第二脉冲 均为电脉冲, 所述处理电路包括: 放大器, 与所述第一光电转换器和所述第二光电转换器均相连接, 用于将 所述第一脉冲和所述第二脉冲进行缓冲放大和整形;
第一逻辑运算器, 与所述放大器相连接, 用于获得所述第一脉冲和所述第 二脉冲的差异信号;
第二逻辑运算器, 与所述第一逻辑运算器相连接, 用于根据所述差异信号 和所述闪烁晶体对闪烁光的衰减系数计算得到所述伽马射线的入射位置和 /或 校正后的所述伽马射线的能量。
10. 一种伽马射线的处理方法, 应用于目标伽马射线探测器, 所述目标伽马射线探 测器的两端均具有光电转换器, 所述处理方法包括: 接收第一脉冲和第二脉冲, 其中, 所述第一脉冲为第一光电转换器输出的 脉冲, 所述第二脉冲为第二光电转换器输出的脉冲, 所述第一光电转换器为设 置在所述目标伽马射线探测器第一端的光电转换器, 所述第二光电转换器为设 置在所述目标伽马射线探测器第二端的光电转换器; 以及
根据所述第一脉冲和所述第二脉冲计算所述伽马射线的入射位置和 /或校 正所述伽马射线的能量。
11. 根据权利要求 10所述的处理方法,其中,所述目标伽马射线探测器还包括闪烁 晶体, 所述第一脉冲和所述第二脉冲均为电脉冲, 根据所述第一脉冲和所述第 二脉冲计算所述伽马射线的入射位置和 /或校正所述伽马射线的能量包括: 确定所述第一脉冲和所述第二脉冲对应的幅度值或面积值; 确定所述第一脉冲的幅度值或面积值和所述第二脉冲的幅度值或面积值的 差异值; 以及
根据所述差异值和所述闪烁晶体对闪烁光的衰减系数计算所述入射位置和 /或校正所述伽马射线的能量。
12. 根据权利要求 10所述的处理方法,其中,所述目标伽马射线探测器还包括闪烁 晶体, 所述第一脉冲和所述第二脉冲均为电脉冲, 根据所述第一脉冲和所述第 二脉冲计算所述伽马射线的入射位置和 /或校正所述伽马射线的能量包括: 确定所述第一脉冲和所述第二脉冲对应的幅度信号或面积信号; 确定所述第一脉冲的幅度信号或面积信号和所述第二脉冲的幅度信号或面 积信号的差异信号; 以及 根据所述差异信号和所述闪烁晶体对闪烁光的衰减系数直接输出所述伽马 射线的入射位置和 /或校正后的所述伽马射线的能量。
13. 根据权利要求 10所述的处理方法,其中,所述第一脉冲和所述第二脉冲均为电 脉冲, 根据所述第一脉冲和所述第二脉冲校正所述伽马射线的能量包括: 确定所述第一脉冲和所述第二脉冲对应的幅度值或面积值; 确定所述第一脉冲的幅度值或面积值和所述第二脉冲的幅度值或面积值的 几何平均值或算术平均值或加权平均值; 以及 以所述第一脉冲的幅度值或面积值和所述第二脉冲的幅度值或面积值的几 何平均值或算数平均值或加权平均值,代替所述第一脉冲和 /或所述第二脉冲的 幅度值或面积值作为所述伽马射线的能量测量值。
14. 根据权利要求 10所述的处理方法,其中,在根据所述第一脉冲和所述第二脉冲 校正所述伽马射线的能量之后, 所述处理方法还包括: 将校正能量后的所述伽马射线应用于目标装置, 其中, 所述目标装置为测 量所述伽马射线的计数率、 能窗或能谱的装置。
PCT/CN2014/077174 2013-11-14 2014-05-09 伽马射线探测器和伽马射线的处理方法 WO2015070578A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310567701.9 2013-11-14
CN201310567701.9A CN103558626B (zh) 2013-11-14 2013-11-14 伽马射线探测器和伽马射线的处理方法

Publications (1)

Publication Number Publication Date
WO2015070578A1 true WO2015070578A1 (zh) 2015-05-21

Family

ID=50012928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077174 WO2015070578A1 (zh) 2013-11-14 2014-05-09 伽马射线探测器和伽马射线的处理方法

Country Status (2)

Country Link
CN (1) CN103558626B (zh)
WO (1) WO2015070578A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111119845A (zh) * 2019-12-31 2020-05-08 北京环鼎科技有限责任公司 一种63伽马能谱三探头测井仪及其测井方法
CN113835114A (zh) * 2021-08-25 2021-12-24 吉林大学 一种紧凑式高能伽玛射线反符合叠层探测器

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103558626B (zh) * 2013-11-14 2017-01-04 北京华脉世纪石油科技有限公司 伽马射线探测器和伽马射线的处理方法
CN106461798B (zh) * 2014-05-03 2020-02-07 托尔特克集团有限责任公司 用于井下操作的伽马检测器保护
CN107300712B (zh) * 2016-04-14 2021-08-17 中国辐射防护研究院 一种可同时测量β、γ能谱的层叠型闪烁体探测器的测量方法
CN111329500B (zh) * 2018-12-19 2022-09-09 清华大学 一种伽马辐射成像装置及成像方法
CN112415620A (zh) * 2020-11-03 2021-02-26 中国海洋石油集团有限公司 伽马射线探测装置及系统
CN113126138B (zh) * 2021-04-23 2022-11-11 重庆大学 一种多层耦合结构高分辨闪烁屏制造方法及其闪烁屏
CN115166844A (zh) * 2022-07-06 2022-10-11 核工业航测遥感中心 复合式γ能谱测井系统及γ能谱测井方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399869A (en) * 1992-10-09 1995-03-21 Japan Atomic Energy Research Institute Phoswich detectors having optical filter for controlling pulse height and rise time of output from scintillator
WO2008081179A2 (en) * 2006-12-29 2008-07-10 Bae Systems Plc Detection of ionising radiation
CN202453508U (zh) * 2012-02-02 2012-09-26 中国石油化工股份有限公司 伽马射线探测装置
CN101937090B (zh) * 2010-08-12 2012-11-07 上海新漫传感技术研究发展有限公司 一种高灵敏宽量程X-γ周围剂量当量率仪探头
CN101737032B (zh) * 2010-01-04 2013-01-02 大庆石油管理局 伴随α粒子碳氧比能谱测井系统中的γ射线探测器
CN102455431B (zh) * 2010-11-25 2013-08-28 上海新漫传感技术研究发展有限公司 一种低探测下限通道式放射性探测器
CN103558626A (zh) * 2013-11-14 2014-02-05 北京华脉世纪石油科技有限公司 伽马射线探测器和伽马射线的处理方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8158947B2 (en) * 2008-07-03 2012-04-17 Saint-Gobain Ceramics & Plastics, Inc. Active voltage divider for detector
TWI400470B (zh) * 2009-10-30 2013-07-01 Iner Aec Executive Yuan 決定晶體穿透效應與偵檢效率以及偵檢效率校正之方法
JP6145248B2 (ja) * 2011-12-28 2017-06-07 学校法人早稲田大学 放射線検出器
CN203688808U (zh) * 2013-11-14 2014-07-02 北京华脉世纪石油科技有限公司 伽马射线探测器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399869A (en) * 1992-10-09 1995-03-21 Japan Atomic Energy Research Institute Phoswich detectors having optical filter for controlling pulse height and rise time of output from scintillator
WO2008081179A2 (en) * 2006-12-29 2008-07-10 Bae Systems Plc Detection of ionising radiation
CN101737032B (zh) * 2010-01-04 2013-01-02 大庆石油管理局 伴随α粒子碳氧比能谱测井系统中的γ射线探测器
CN101937090B (zh) * 2010-08-12 2012-11-07 上海新漫传感技术研究发展有限公司 一种高灵敏宽量程X-γ周围剂量当量率仪探头
CN102455431B (zh) * 2010-11-25 2013-08-28 上海新漫传感技术研究发展有限公司 一种低探测下限通道式放射性探测器
CN202453508U (zh) * 2012-02-02 2012-09-26 中国石油化工股份有限公司 伽马射线探测装置
CN103558626A (zh) * 2013-11-14 2014-02-05 北京华脉世纪石油科技有限公司 伽马射线探测器和伽马射线的处理方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111119845A (zh) * 2019-12-31 2020-05-08 北京环鼎科技有限责任公司 一种63伽马能谱三探头测井仪及其测井方法
CN111119845B (zh) * 2019-12-31 2023-10-27 北京环鼎科技有限责任公司 一种63伽马能谱三探头测井仪及其测井方法
CN113835114A (zh) * 2021-08-25 2021-12-24 吉林大学 一种紧凑式高能伽玛射线反符合叠层探测器
CN113835114B (zh) * 2021-08-25 2024-04-26 吉林大学 一种紧凑式高能伽玛射线反符合叠层探测器

Also Published As

Publication number Publication date
CN103558626A (zh) 2014-02-05
CN103558626B (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2015070578A1 (zh) 伽马射线探测器和伽马射线的处理方法
US9945965B2 (en) Universal readout for silicon photomultiplier based detectors
US11506803B2 (en) Method and device for processing nuclear energy spectrum
US10634801B2 (en) Detector in an imaging system
US20090179154A1 (en) Nuclear medicine diagnosis equipment
CN106547017A (zh) 一种复合型闪烁体γ谱仪
EP3187901B1 (en) Dose rate measurement device
JP6108394B2 (ja) 放射線エネルギー分布の検出方法及びその検出装置
NO20131499A1 (no) Apparat og fremgangsmåte for deteksjon av stråling omfattende nøytroner og gammastråler
EP3211455B1 (en) Dosage rate measurement device
JP2020526777A (ja) シンチレーション検出器のゲイン補正装置及び方法
KR20190022862A (ko) 픽셀화된 감마 검출기
Korpar et al. Study of TOF PET using Cherenkov light
Nakamura et al. A scintillator-based detector with sub-100-μm spatial resolution comprising a fibre-optic taper with wavelength-shifting fibre readout for time-of-flight neutron imaging
JP3824211B2 (ja) 放射線モニタ装置
CN207020320U (zh) 一种闪烁探测器的增益校正装置
RU2473927C2 (ru) Способ измерения энергетических спектров импульсного гамма-излучения
CN203688808U (zh) 伽马射线探测器
JP5450356B2 (ja) 放射線検出方法
JP2001194460A (ja) 放射線モニタ
Unno et al. Evaluation of absolute measurement using a 4π plastic scintillator for the 4πβ− γ coincidence counting method
Kong et al. Towards design and optimization of scintillation-detector systems: A monte-carlo simulation framework
RU2751458C1 (ru) Способ измерения интенсивности радиационного излучения неизвестного состава
Tronchin et al. Tuning of the BGO anti-Compton shield in the GALILEO array
Wang et al. Self-calibration method for LaBr3 coupled with SiPM detector based on internal radiation of 138La

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14861215

Country of ref document: EP

Kind code of ref document: A1