WO2015063973A1 - 半導体レーザ光源 - Google Patents

半導体レーザ光源 Download PDF

Info

Publication number
WO2015063973A1
WO2015063973A1 PCT/JP2014/003398 JP2014003398W WO2015063973A1 WO 2015063973 A1 WO2015063973 A1 WO 2015063973A1 JP 2014003398 W JP2014003398 W JP 2014003398W WO 2015063973 A1 WO2015063973 A1 WO 2015063973A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
semiconductor
region
heat sink
light source
Prior art date
Application number
PCT/JP2014/003398
Other languages
English (en)
French (fr)
Inventor
裕之 渡部
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015544761A priority Critical patent/JP6156510B2/ja
Priority to US15/028,488 priority patent/US9667029B2/en
Priority to EP14859126.6A priority patent/EP3065236B1/en
Priority to CA2928970A priority patent/CA2928970C/en
Priority to CN201480058124.3A priority patent/CN105659448B/zh
Publication of WO2015063973A1 publication Critical patent/WO2015063973A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02461Structure or details of the laser chip to manipulate the heat flow, e.g. passive layers in the chip with a low heat conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures

Definitions

  • the present invention relates to a semiconductor laser light source.
  • Semiconductor light emitting devices such as semiconductor lasers and light emitting diodes have come to be used as light sources for lighting devices and display devices in place of lamps with short lifetimes.
  • a laser light source that has a small light emitting area, can easily combine outputs, and has a large reproduction color gamut due to its monochromaticity is promising.
  • speckle noise a phenomenon peculiar to a laser that looks like a speckled pattern.
  • the interval between the waveguides arranged in the center is larger than the interval between the waveguides arranged at the end of the plurality of waveguides.
  • the semiconductor laser array is configured to have different stress distributions in the arrangement direction of the laser light emitting end faces, thereby providing a wide range of wavelengths oscillated from the semiconductor laser light source. Thus, speckle noise is reduced (for example, see Patent Document 2).
  • the conventional semiconductor laser light source has a problem that productivity is lowered because the interval between the waveguides is changed or the stress applied to the chip of the laser array is controlled in the production process.
  • An object of the present invention is to solve the above-described problems, and is to obtain a semiconductor laser light source capable of reducing speckle noise while suppressing a decrease in productivity.
  • a semiconductor laser light source includes a plurality of semiconductor lasers, a semiconductor laser array in which stripes of a plurality of semiconductor lasers are arranged at equal intervals in the width direction of the stripe, and a semiconductor laser array on which the semiconductor laser array is mounted.
  • the second region of the second surface facing the first region of the surface is in contact with the heat radiation portion other than the central semiconductor laser in the stripe width direction.
  • a heat sink is provided which is smaller in terms of the area per semiconductor laser than the area of the fourth region of the second surface of the first surface facing the third region.
  • Another semiconductor laser light source includes a plurality of semiconductor lasers, a semiconductor laser array in which stripes of a plurality of semiconductor lasers are arranged at equal intervals in the width direction of the stripes, and a semiconductor laser array A third surface to be mounted and a fourth surface facing the third surface and in contact with the cooling portion, and a heat radiation portion of the semiconductor laser on the center side in the width direction of the stripe among the plurality of semiconductor lasers
  • a heat sink having a higher thermal conductivity than the material of the first part corresponding to the fifth region in contact with the material of the second part corresponding to the sixth region with which the heat radiating part other than the semiconductor laser on the center side contacts. It is provided with.
  • a semiconductor laser light source capable of reducing speckle noise while suppressing a decrease in productivity can be obtained.
  • FIG. 1 is a structural diagram of a semiconductor laser light source 100 according to Embodiment 1 of the present invention.
  • the semiconductor laser array 2 has a plurality of semiconductor lasers, and stripes (not shown) of the plurality of semiconductor lasers are arranged at equal intervals in the width direction of the stripes.
  • a laser beam emitting end face 1 is provided.
  • the heat sink 3a has a first surface on which the semiconductor laser array 2 is mounted, and a second surface facing the first surface.
  • the semiconductor laser array 2 is configured such that the heat generated by each semiconductor laser is radiated by the heat radiation portion of each semiconductor laser being in contact with the first surface of the heat sink 3a.
  • the cooling unit 4 that cools the heat sink 3a is joined to the second surface of the heat sink 3a.
  • stripes for emitting current when supplying current to the semiconductor laser array 2 and stripe electrodes for supplying current to the stripes are not shown, the horizontal direction in FIG. 1 is the length direction of the stripes and the longitudinal direction in FIG. Is the width direction of the stripe.
  • Each semiconductor laser constituting the semiconductor laser array 2 emits a laser beam from the emission end face 1 when a current is supplied, and at the same time, the temperature of each semiconductor laser rises. If the temperature of each of the semiconductor lasers constituting the semiconductor laser array 2 is excessively increased, the light emission efficiency is decreased and the output of the semiconductor laser light source 100 is decreased. Therefore, heat is radiated by the heat sink 3a.
  • the heat sink 3a is made of a material having good thermal conductivity such as copper.
  • the cooling unit 4 is configured using a Peltier element, a chiller, and the like.
  • the semiconductor laser on the center side in the width direction of the stripe shown in FIG. 1 is referred to as a semiconductor laser group 2a1, and the semiconductor laser group 2a1
  • the semiconductor lasers on both end sides other than are referred to as a semiconductor laser group 2a2.
  • the center side of the heat sink 3a is referred to as a first portion 3a1, and both end sides are referred to as a second portion 3a2.
  • the heat radiating portion of the semiconductor laser group 2a1 is in contact with the first portion 3a1 on the center side, and the heat radiating portion of the semiconductor laser group 2a2 is in contact with the second portion 3a2 on both ends. ing. Furthermore, the first part 3a1 and the second part 3a2 of the heat sink 3a are in contact with the cooling unit 4 on the surface.
  • a region included in the first surface on the surface of the first portion 3a1 is referred to as a first region
  • a region included in the first surface on the surface of the second portion 3a2 is a third region. It shall be called the area of.
  • a region included in the second surface on the surface of the first portion 3a1 is referred to as a second region, and a region included in the second surface on the surface of the second portion 3a2 is referred to as a fourth region.
  • the heat generated in the semiconductor laser group 2a1 is dissipated when the first region of the first portion 3a1 of the heat sink 3a comes into contact with the surface, and the second region of the first portion 3a1 and the cooling unit 4 are exposed to the surface. It is cooled by contacting with.
  • the heat generated in the semiconductor laser group 2a2 is dissipated when the third region of the second portion 3a2 of the sink 3a comes into contact with the surface, and the fourth region of the second portion 3a2 and the cooling unit 4 are exposed to the surface. It is cooled by contacting with.
  • the area of the second region is smaller than the area of the fourth region in terms of the area per semiconductor laser.
  • conversion means dividing the area by the number of corresponding semiconductor lasers.
  • the area of the second region facing the first region where the heat radiating portion of the semiconductor laser group 2a1 is in contact is the fourth region where the area of the second region facing the heat radiating portion of the semiconductor laser group 2a2 is opposite. It is configured to be smaller than the area of the semiconductor laser when converted into the area per semiconductor laser.
  • the heat generated in the semiconductor laser array 2 is conducted from the heat radiating portion in the vertical direction with respect to the joint surface between the semiconductor laser array 2 and the heat sink 3a, but is also conducted in the horizontal direction in the heat sink 3a.
  • the shape of the heat sink 3a is sufficiently large with respect to the heat spreading direction, heat is efficiently radiated through the cooling unit 4.
  • the central area in the width direction of the stripe of the plurality of semiconductor lasers has a smaller contact area with the cooling unit 4 than the end side, so in the process of heat spreading and conducting to the heat sink 3a, A part of the heat is dissipated into the air without passing through the cooling unit 4 from the surface where the heat sink 3 a does not contact the cooling unit 4 before reaching the cooling unit 4.
  • the thermal conductivity of air is very small compared to the thermal conductivity of the heat sink 3a and the cooling unit 4, the heat radiation effect is limited. That is, the heat dissipation efficiency becomes non-uniform in the width direction of the stripe among the plurality of semiconductor lasers. As a result, the wavelength width of the semiconductor laser light source 100 is widened, and speckle noise can be reduced.
  • the emission intensity per semiconductor laser of the semiconductor laser group 2a1 with a somewhat lower heat dissipation efficiency is lower than the emission intensity per semiconductor laser of the semiconductor laser group 2a2 with high heat dissipation efficiency.
  • the number of semiconductor lasers constituting the semiconductor laser group 2a1 is larger than the number of semiconductor lasers constituting the semiconductor laser group 2a2.
  • FIG. 2 shows a semiconductor laser light source 200 that is a modification of the configuration of the semiconductor laser light source 100 according to the first embodiment of the present invention.
  • the semiconductor laser on the center side in the width direction of the stripe shown in FIG. 2 is called a semiconductor laser group 2b1
  • the semiconductor lasers on both ends other than the semiconductor laser group 2b1 are called a semiconductor laser group 2b2.
  • the central portion of the heat sink 3b is the first portion 3b1 (in order to distinguish it from the example of the first embodiment shown in FIG. 1, the reference numeral in the modification shown in FIG. 2 is different from that in FIG. 1).
  • Both ends are referred to as second portions 3b2 (in order to distinguish them from the example of the first embodiment shown in FIG. 1, the reference numerals in the modification shown in FIG. 2 are different from those in FIG. 1).
  • the shape of the heat sink 3b is such that the area per semiconductor laser of the fourth region included in the second surface on the surface of the second portion 3b2 is the center in the width direction of the stripe. You may make it the shape which becomes large gradually from the side to both ends.
  • the heat radiation efficiency becomes non-uniform in the width direction of the stripe among the plurality of semiconductor lasers.
  • the wavelength width of the semiconductor laser light source 100 is widened and the speckle noise can be reduced.
  • FIG. FIG. 3 is a structural diagram of a semiconductor laser light source 300 according to the second embodiment of the present invention.
  • the present embodiment is different from the first embodiment in the structure of the heat sink 3c, and is otherwise the same as the first embodiment.
  • the center side of the heat sink 3c is referred to as a first portion 3c1 (the reference numeral is different from that of the second embodiment in order to distinguish it from the first embodiment), and both end sides are referred to as the second portion 3c2 (
  • symbol is different from other than that.
  • the heat sink 3c of the present embodiment has a third surface on which the semiconductor laser array 2 is mounted, and a fourth surface facing the third surface.
  • the heat radiating portion of the semiconductor laser group 2a1 is in contact with the first portion 3c1 on the center side
  • the heat radiating portion of the semiconductor laser group 2a2 is in contact with the second portion 3c2 on both ends.
  • a region included in the third surface on the surface of the first portion 3c1 is referred to as a fifth region
  • a region included in the third surface on the surface of the second portion 3c2 is defined as the sixth region. It shall be called the area of.
  • the first portion 3c1 and the second portion 3c2 of the heat sink 3c are in contact with the cooling unit 4 at the fourth surface.
  • the heat generated in the semiconductor laser group 2a1 is dissipated when the fifth region of the first portion 3c1 of the heat sink 3c comes into contact with the surface, and the first portion 3c1 and the cooling unit 4 come into contact with the surface.
  • the heat generated in the semiconductor laser group 2a2 is dissipated when the sixth region of the second portion 3c2 of the heat sink 3c comes into contact with the surface, and the second portion 3c2 and the cooling unit 4 come into contact with the surface.
  • the heat sink 3c is made of different materials for the first portion 3c1 and the second portion 3c2.
  • the material of the first portion 3c1 has a lower thermal conductivity than the material of the second portion 3c2.
  • the material of the second part corresponding to the sixth region with which the heat radiating part of the semiconductor laser group 2a2 is in contact with is higher than the material of the first part corresponding to the fifth region with which the heat radiating part of the semiconductor laser group 2a1 is in contact. It is configured such that the thermal conductivity is higher.
  • the semiconductor laser light source 300 since the heat sink 3c is made of different materials on the center side and the end side in the width direction of the stripe among a plurality of semiconductor lasers, the semiconductor laser light source 300 includes a plurality of semiconductor lasers. Among them, the heat radiation efficiency becomes non-uniform in the width direction of the stripe. As a result, the wavelength width of the semiconductor laser light source 300 is widened, and speckle noise can be reduced.
  • the present embodiment it is possible to obtain a semiconductor laser light source capable of reducing speckle noise while suppressing a decrease in productivity.
  • processing is easy, it is possible to easily cope with manufacturing variations of the semiconductor laser array 2 in order to obtain stable performance.
  • the number of semiconductor lasers constituting the semiconductor laser group 2a1 is larger than the number of semiconductor lasers constituting the semiconductor laser group 2a2.
  • FIG. 3 shows a semiconductor laser light source 400 that is a first modification of the configuration of the semiconductor laser light source 300 according to the second embodiment of the present invention.
  • the center side of the heat sink 3d is referred to as a first portion 3d1 (in order to distinguish it from other examples, the reference numerals are different from those of other examples), and both end sides are referred to as second portions 3d2 (other portions).
  • the reference numerals are different from those of the other examples.).
  • the heat sink 3d has a second portion 3d2 corresponding to the first portion 3d1.
  • the width direction of the stripe includes a portion that gradually increases from the center to both ends.
  • the heat radiation efficiency becomes non-uniform in the width direction of the stripe among the plurality of semiconductor lasers.
  • the wavelength width of the semiconductor laser light source 400 is widened, and speckle noise can be reduced.
  • the speckle noise can be further reduced by increasing the number of semiconductor lasers constituting the semiconductor laser group 2a1 more than the number of semiconductor lasers constituting the semiconductor laser group 2a2. is there.
  • FIG. 5 shows a semiconductor laser light source 500 that is a second modification of the configuration of the semiconductor laser light source 300 according to the second embodiment of the present invention.
  • the center side of the heat sink 3e is referred to as a first portion 3e1 (in order to distinguish it from other examples, the reference numerals are different from those of other examples), and both end sides are referred to as second portions 3e2 (other In order to distinguish from the examples, the reference numerals are different from those of the other examples.).
  • the heat radiating portion of the semiconductor laser group 2a1 is in contact with the first portion 3e1 on the center side
  • the heat radiating portion of the semiconductor laser group 2a2 is in contact with the second portion 3e2 on both ends.
  • the first portion 3e1 and the second portion 3e2 of the heat sink 3e are in contact with the cooling unit 4 on the surface.
  • the first portion 3e1 of the heat sink 3e is hollow. That is, the material of the first portion 3e1 is air. Therefore, the heat radiation efficiency becomes non-uniform in the width direction of the stripe among the plurality of semiconductor lasers. As a result, the wavelength width of the semiconductor laser light source 500 is widened and speckle noise can be reduced. Also in this modification, the speckle noise can be further reduced by increasing the number of semiconductor lasers constituting the semiconductor laser group 2a1 more than the number of semiconductor lasers constituting the semiconductor laser group 2a2. is there.
  • 2 semiconductor laser array 2a1 semiconductor laser array group, 2b1 semiconductor laser array group, 3a heat sink, 3a1 first part, 3a2 second part, 3b heat sink, 3b1 first part, 3b2 second part, 3c heat sink, 3c1 first part, 3c2 second part, 3d heat sink, 3d1 first part, 3d2 second part, 3e heat sink, 3e1 first part, 3e2 second part, 100 semiconductor laser light source, 200 semiconductor laser light source, 300 semiconductor laser light source, 400 semiconductor laser light source, 500 semiconductor laser light source.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 従来の半導体レーザ光源は、生産工程において、発光体の導波路の間隔を変えたり、レーザアレイのチップに印加する応力を制御するため、生産性が低下するという問題がある。複数本の半導体レーザのストライプが前記ストライプの幅方向に等間隔で配列された半導体レーザアレイ2が搭載されるヒートシンク3aの形状が、複数本の半導体レーザのうちストライプの幅方向における中央側の領域とそれ以外の領域とで放熱効率が異なるように構成する。具体的には、ヒートシンクの第2の面のうちの第2の領域の面積が複数本の半導体レーザのうちでストライプの幅方向において中央側の半導体レーザ以外の放熱部が接する第2の面のうちの第4の領域の面積よりも半導体レーザ1本当たりの面積に換算すると小さい構成となっている。

Description

半導体レーザ光源
 この発明は、半導体レーザ光源に関するものである。
 照明装置や表示装置の光源として、寿命の短いランプに代わり半導体レーザや、発光ダイオード等の半導体発光素子が使われるようになってきている。特に大出力の光源では、発光面積が小さく、容易に出力が合成可能で、またその単色性から再現色域が大きく取れるレーザ光源が有望視されている。しかしレーザを光源としたとき、スペックルノイズと呼ばれるぎらぎらとした斑点模様のように見えるレーザ特有の現象が現れる。
 そこで、従来の半導体レーザ光源は、半導体レーザアレイを構成する複数の導波路のうち中央に配列された導波路同士の間隔が複数の導波路のうち端部に配列された導波路同士の間隔よりも狭くするようにしていた(例えば、特許文献1参照)。また、別の従来の半導体レーザ光源では、半導体レーザアレイにおいて、レーザ光の出射端面部の並び方向で異なる応力分布となるように構成することで、半導体レーザ光源から発振される波長に幅を持たせてスペックルノイズを低減させていた(例えば、特許文献2参照)。
特開2008-4743号公報 特開2009-111230号公報
 しかしながら、従来の半導体レーザ光源は、生産工程において、導波路の間隔を変えたり、レーザアレイのチップに印加される応力を制御するため、生産性が低下するという問題がある。
 この発明の目的は、上記のような課題を解決するためになされたもので、生産性の低下を抑制しつつ、スペックルノイズを低減できる半導体レーザ光源を得るものである。
 この発明に係る半導体レーザ光源は、複数本の半導体レーザを有し、複数本の半導体レーザのストライプがストライプの幅方向に等間隔で配列された半導体レーザアレイと、半導体レーザアレイが搭載される第1の面と第1の面と対向し冷却部が接する第2の面とを有し、複数本の半導体レーザのうちでストライプの幅方向において中央側の半導体レーザの放熱部が接する第1の面のうちの第1の領域に対向する第2の面のうちの第2の領域の面積が複数本の半導体レーザのうちでストライプの幅方向において中央側の半導体レーザ以外の放熱部が接する第1の面のうちの第3の領域に対向する第2の面のうちの第4の領域の面積よりも半導体レーザ1本当たりの面積に換算すると小さいヒートシンクとを備えたことを特徴とする。
 また、この発明に係る別の半導体レーザ光源は、複数本の半導体レーザを有し、複数本の半導体レーザのストライプがストライプの幅方向に等間隔で配列された半導体レーザアレイと、半導体レーザアレイが搭載される第3の面と第3の面と対向し冷却部が接する第4の面とを有し、複数本の半導体レーザのうちでストライプの幅方向において中央側の半導体レーザの放熱部が接する第5の領域に対応する第1の部分の材質よりも中央側の半導体レーザ以外の放熱部が接する第6の領域に対応する第2の部分の材質の方が熱伝導率が高いヒートシンクとを備えたことを特徴とする。
 この発明によれば、生産性の低下を抑制しつつ、スペックルノイズを軽減できる半導体レーザ光源を得ることができる。
本発明の実施の形態1に係る半導体レーザ光源の構成を示す図である。 本発明の実施の形態1に係る半導体レーザ光源の構成の変形例を示す図である。 本発明の実施の形態2に係る半導体レーザ光源の構成を示す図である。 本発明の実施の形態2に係る半導体レーザ光源の構成の第1の変形例を示す図である。 本発明の実施の形態2に係る半導体レーザ光源の構成の第2の変形例を示す図である。
実施の形態1.
 図1は、本発明の実施の形態1に係る半導体レーザ光源100の構造図である。半導体レーザアレイ2は、複数本の半導体レーザを有すると共に、複数本の半導体レーザのストライプ(図示せず)がストライプの幅方向に等間隔で配列され、半導体レーザアレイ2の端面には各半導体レーザに対応してレーザ光の出射端面部1を有している。ヒートシンク3aは、半導体レーザアレイ2が搭載される第1の面と、第1の面と対向した第2の面とを有している。半導体レーザアレイ2は、各半導体レーザの放熱部がヒートシンク3aの第1の面に接することで、各半導体レーザで発生する熱が放熱されるようにしている。ヒートシンク3aを冷却する冷却部4は、ヒートシンク3aの第2の面と接合される。なお、半導体レーザアレイ2に電流を供給すると発光するストライプ及びストライプに電流を供給するためのストライプ状電極は図示していないが、図1において左右方向がストライプの長さ方向で図1において前後方向がストライプの幅方向となっている。
 半導体レーザアレイ2を構成する各半導体レーザは、電流を供給すると出射端面部1からレーザ光が出射すると同時に、各半導体レーザの温度が上昇する。半導体レーザアレイ2を構成する各半導体レーザの温度が上がりすぎると発光効率が落ちて半導体レーザ光源100の出力が下がってしまうため、ヒートシンク3aにより放熱する。ヒートシンク3aは、熱伝導性の良い例えば銅等の材料で作られている。冷却部4は、ペルチェ素子及びチラー等を用いて構成される。
 図1に示すように、以下では、半導体レーザアレイ2を構成する複数の半導体レーザのうち、図1に示すストライプの幅方向において中央側の半導体レーザを半導体レーザ群2a1と呼び、半導体レーザ群2a1以外の両端側の半導体レーザを半導体レーザ群2a2と呼ぶものとする。また、ヒートシンク3aの中央側を第1の部分3a1と呼び、両端側を第2の部分3a2と呼ぶものとする。本実施の形態のヒートシンク3aは、半導体レーザ群2a1の放熱部が中央側の第1の部分3a1と面で接し、半導体レーザ群2a2の放熱部が両端側の第2の部分3a2と面で接している。さらに、ヒートシンク3aの第1の部分3a1及び第2の部分3a2は、冷却部4と面で接している。ここで、ヒートシンク3aにおいて、第1の部分3a1の表面で第1の面に含まれる領域を第1の領域と呼び、第2の部分3a2の表面で第1の面に含まれる領域を第3の領域と呼ぶものとする。さらに、第1の部分3a1の表面で第2の面に含まれる領域を第2の領域と呼び、第2の部分3a2の表面で第2の面に含まれる領域を第4の領域と呼ぶものとする。半導体レーザ群2a1で発生した熱は、ヒートシンク3aの第1の部分3a1の第1の領域が面で接触することで放熱され、第1の部分3a1の第2の領域と冷却部4とが面で接触することで冷却される。半導体レーザ群2a2で発生した熱は、シンク3aの第2の部分3a2の第3の領域が面で接触することで放熱され、第2の部分3a2の第4の領域と冷却部4とが面で接触することで冷却される。ここで、図1から明らかなように、ヒートシンク3aにおいて、第2の領域の面積が、第4の領域の面積よりも、半導体レーザ1本当たりの面積に換算すると小さくなっている。ここで、換算とは、面積を対応する半導体レーザの本数で割ることを意味する。
 言い換えると、ヒートシンク3aは、半導体レーザ群2a1の放熱部が接する第1の領域に対向する第2の領域の面積が半導体レーザ群2a2の放熱部が接する第3の領域に対向する第4の領域の面積よりも半導体レーザ1本当たりの面積に換算すると小さくなるように構成されている。
 ところで、半導体レーザアレイ2で発生した熱は、放熱部から半導体レーザアレイ2とヒートシンク3aとの接合面に対して垂直方向に伝導するが、ヒートシンク3a中で水平方向へも伝導する。ヒートシンク3aの形状が熱の広がり方向に対して十分大きいと、冷却部4を通して効率よく放熱される。一方、複数本の半導体レーザのうちストライプの幅方向における中央側は、冷却部4との接触面積が端部側よりも小さいので、ヒートシンク3aに熱が広がって伝導していく過程において、熱の一部は冷却部4まで到達する前にヒートシンク3aが冷却部4に接触していない面から、冷却部4を介さずに空気中に放熱されることになる。空気の熱伝導率は、ヒートシンク3a及び冷却部4の熱伝導率と比較して非常に小さいため、放熱効果は限られたものになってしまう。すなわち、複数本の半導体レーザのうちストライプの幅方向で放熱効率が不均一になる。その結果、半導体レーザ光源100の波長幅が広がり、スペックルノイズが軽減できる。
 なお、一般に半導体レーザは温度が高くなると発光効率が低下し、それに伴い発光強度が低くなる。したがって、放熱効率の高い半導体レーザ群2a2の各半導体レーザの1本当たりの発光強度に比べて、放熱効率が幾分低くなった半導体レーザ群2a1の各半導体レーザの1本当たりの発光強度が低下する傾向がある。そこで、半導体レーザ群2a1を構成する半導体レーザの本数を半導体レーザ群2a2を構成する半導体レーザの本数よりも多くすることが望ましい。このようにすることで、半導体レーザ光源100の波長幅の広がり形状の偏りが低減され、一層のスペックルノイズの軽減が得られる。
 以上のように、本実施の形態によると、生産性の低下を抑制しつつ、スペックルノイズを軽減できる半導体レーザ光源を得ることができる。
 なお、図1に示したヒートシンク3aの形状は一つの例であって、複数本の半導体レーザのうちストライプの幅方向で部分的に熱伝導率が異なる構造ならば図1に示した形状に限らない。例えば、図2に、本発明の実施の形態1に係る半導体レーザ光源100の構成の変形例である半導体レーザ光源200を示す。ここで、図2に示すストライプの幅方向において中央側の半導体レーザを半導体レーザ群2b1と呼び、半導体レーザ群2b1以外の両端側の半導体レーザを半導体レーザ群2b2と呼ぶものとする。さらに、ヒートシンク3bの中央側を第1の部分3b1(図1に示した実施の形態1の例と区別するためにこの図2に示した変形例では符号を図1と異ならせている。)と呼び、両端側を第2の部分3b2(図1に示した実施の形態1の例と区別するためにこの図2に示した変形例では符号を図1とは異ならせている。)と呼ぶものとする。図2に示すように、ヒートシンク3bの形状は、第2の部分3b2の表面で第2の面に含まれる第4の領域の半導体レーザ1本当たりの面積が、前記ストライプの幅方向において、中央側から両端側にかけて徐々に大きくなっていく形状にしても良い。
 したがって、複数本の半導体レーザのうちストライプの幅方向で放熱効率が不均一になる。その結果、この変形例においても、半導体レーザ光源100の波長幅が広がり、スペックルノイズが軽減できる点は同様である。
実施の形態2.
 図3は、本発明の実施の形態2に係る半導体レーザ光源300の構造図である。本実施の形態は、実施の形態1とはヒートシンク3cの構造が異なっており、それ以外は実施の形態1と同様である。ここで、ヒートシンク3cの中央側を第1の部分3c1(実施の形態1と区別するために符号を実施の形態2とは異ならせている。)と呼び、両端側を第2の部分3c2(実施の形態1と区別するために図3に示した実施の形態2の例では符号をそれ以外とは異ならせている。)と呼ぶものとする。
 本実施の形態のヒートシンク3cは、半導体レーザアレイ2が搭載される第3の面と、第3の面と対向した第4の面とを有している。また、ヒートシンク3cは、半導体レーザ群2a1の放熱部が中央側の第1の部分3c1と面で接し、半導体レーザ群2a2の放熱部が両端側の第2の部分3c2と面で接している。ここで、ヒートシンク3cにおいて、第1の部分3c1の表面で第3の面に含まれる領域を第5の領域と呼び、第2の部分3c2の表面で第3の面に含まれる領域を第6の領域と呼ぶものとする。
さらに、ヒートシンク3cの第1の部分3c1及び第2の部分3c2は、冷却部4と第4の面で接している。
 半導体レーザ群2a1で発生した熱は、ヒートシンク3cの第1の部分3c1の第5の領域が面で接触することで放熱され、第1の部分3c1と冷却部4とが面で接触することで冷却される。半導体レーザ群2a2で発生した熱は、ヒートシンク3cの第2の部分3c2の第6の領域が面で接触することで放熱され、第2の部分3c2と冷却部4とが面で接触することで冷却される。ここで、ヒートシンク3cは、第1の部分3c1と第2の部分3c2とで異なる材質により構成されている。第1の部分3c1の材質は、第2の部分3c2の材質よりも熱伝導率が低い。
 言い換えると、半導体レーザ群2a1の放熱部が接する第5の領域に対応する第1の部分の材質よりも半導体レーザ群2a2の放熱部が接する第6の領域に対応する第2の部分の材質の方が熱伝導率が高くなるように構成されている。
 本実施の形態によると、ヒートシンク3cが複数本の半導体レーザのうちストライプの幅方向の中央側と端部側とで異なる材質で構成されているため、半導体レーザ光源300は、複数本の半導体レーザのうちストライプの幅方向で放熱効率が不均一になる。その結果、半導体レーザ光源300の波長幅が広がり、スペックルノイズが軽減できる。
 また、本実施の形態によると、生産性の低下を抑制しつつ、スペックルノイズを軽減できる半導体レーザ光源を得ることができる。また、加工が容易であることから、半導体レーザアレイ2の製造ばらつきに対して、安定した性能を得るために容易に対応できる。
 また、実施の形態1と同様に、半導体レーザ群2a1を構成する半導体レーザの本数を半導体レーザ群2a2を構成する半導体レーザの本数よりも多くすることが望ましい。このようにすることで、半導体レーザ光源300の波長幅の広がり形状の偏りが低減され、一層のスペックルノイズの軽減が得られる。
 なお、図3に示したヒートシンク3cの形状は一つの例であって、複数本の半導体レーザのうちストライプの幅方向で放熱効率が不均一になる構造ならば図3に示した形状に限らない。例えば、図4に、本発明の実施の形態2に係る半導体レーザ光源300の構成の第1の変形例である半導体レーザ光源400を示す。ここで、ヒートシンク3dの中央側を第1の部分3d1(他の例と区別するために符号を他の例とは異ならせている。)と呼び、両端側を第2の部分3d2(他の例と区別するために符号を他の例とは異ならせている。)と呼ぶものとする。半導体レーザ光源400を、図4のAから矢印の方向に見た断面視、すなわちストライプの長さ方向に見た断面視において、ヒートシンク3dは、第1の部分3d1に対応する第2の部分3d2の割合が前記ストライプの幅方向において中央側から両端側にかけて徐々に大きくなる部分を含んでいる。
 したがって、複数本の半導体レーザのうちストライプの幅方向で放熱効率が不均一になる。その結果、半導体レーザ光源400の波長幅が広がり、スペックルノイズが軽減できる。この変形例においても、半導体レーザ群2a1を構成する半導体レーザの本数を半導体レーザ群2a2を構成する半導体レーザの本数よりも多くすることで、一層のスペックルノイズの軽減が得られる点は同様である。
 図5に、本発明の実施の形態2に係る半導体レーザ光源300の構成の第2の変形例である半導体レーザ光源500を示す。ここで、ヒートシンク3eの中央側を第1の部分3e1(他の例と区別するために符号を他の例とは異ならせている。)と呼び、両端側を第2の部分3e2(他の例と区別するために符号を他の例とは異ならせている。)と呼ぶものとする。本実施の形態のヒートシンク3eは、半導体レーザ群2a1の放熱部が中央側の第1の部分3e1と面で接し、半導体レーザ群2a2の放熱部が両端側の第2の部分3e2と面で接している。さらに、ヒートシンク3eの第1の部分3e1及び第2の部分3e2は、冷却部4と面で接している。
 なお、本実施の形態の第2の変形例では、ヒートシンク3eの第1の部分3e1の部分が空洞になっている。すなわち、第1の部分3e1の材質が空気である。したがって、複数本の半導体レーザのうちストライプの幅方向で放熱効率が不均一になる。その結果、半導体レーザ光源500の波長幅が広がり、スペックルノイズが軽減できる。この変形例においても、半導体レーザ群2a1を構成する半導体レーザの本数を半導体レーザ群2a2を構成する半導体レーザの本数よりも多くすることで、一層のスペックルノイズの軽減が得られる点は同様である。
2 半導体レーザアレイ、2a1 半導体レーザアレイ群、
2b1 半導体レーザアレイ群、3a ヒートシンク、3a1 第1の部分、
3a2 第2の部分、3b ヒートシンク、3b1 第1の部分、3b2 第2の部分、
3c ヒートシンク、3c1 第1の部分、3c2 第2の部分、3d ヒートシンク、3d1 第1の部分、3d2 第2の部分、3e ヒートシンク、3e1 第1の部分、3e2 第2の部分、100 半導体レーザ光源、200 半導体レーザ光源、
300 半導体レーザ光源、400 半導体レーザ光源、500 半導体レーザ光源。

Claims (6)

  1.  複数本の半導体レーザを有し、前記複数本の半導体レーザのストライプが前記ストライプの幅方向に等間隔で配列された半導体レーザアレイと、
     前記半導体レーザアレイが搭載される第1の面と前記第1の面と対向し冷却部が接する第2の面とを有し、前記複数本の半導体レーザのうちで前記ストライプの幅方向において中央側の半導体レーザの放熱部が接する前記第1の面のうちの第1の領域に対向する前記第2の面のうちの第2の領域の面積が前記複数本の半導体レーザのうちで前記ストライプの幅方向において前記中央側の半導体レーザ以外の放熱部が接する前記第1の面のうちの第3の領域に対向する前記第2の面のうちの第4の領域の面積よりも前記半導体レーザ1本当たりの面積に換算すると小さいヒートシンクと、
     を備えた半導体レーザ光源。
  2.  複数本の半導体レーザを有し、前記複数本の半導体レーザのストライプが前記ストライプの幅方向に等間隔で配列された半導体レーザアレイと、
     前記半導体レーザアレイが搭載される第3の面と前記第3の面と対向し冷却部が接する第4の面とを有し、前記複数本の半導体レーザのうちで前記ストライプの幅方向において中央側の半導体レーザの放熱部が接する第5の領域に対応する第1の部分の材質よりも前記中央側の半導体レーザ以外の放熱部が接する第6の領域に対応する第2の部分の材質の方が熱伝導率が高いヒートシンクと、
     を備えた半導体レーザ光源。
  3.  前記ヒートシンクは、前記第1の部分の材質が空気であること
     を特徴とする請求項2に記載の半導体レーザ光源。
  4.  前記複数の半導体レーザのうちで、前記中央側の半導体レーザの本数は前記中央側以外の半導体レーザの本数よりも多いこと
     を特徴とする請求項1から請求項3のいずれか1項に記載の半導体レーザ光源。
  5.  前記ヒートシンクは、前記第4の領域の前記半導体レーザ1本当たりの面積が、前記ストライプの幅方向において中央側から両端側にかけて徐々に大きくなっていくこと
     を特徴とする請求項1に記載の半導体レーザ光源。
  6.  前記ヒートシンクは、前記ストライプの長さ方向に見た断面視で前記第1の部分に対応する前記第2の部分の割合が前記ストライプの幅方向において中央側から両端側にかけて徐々に大きくなる部分を含むこと
     を特徴とする請求項2に記載の半導体レーザ光源。
PCT/JP2014/003398 2013-11-01 2014-06-25 半導体レーザ光源 WO2015063973A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015544761A JP6156510B2 (ja) 2013-11-01 2014-06-25 半導体レーザ光源
US15/028,488 US9667029B2 (en) 2013-11-01 2014-06-25 Semiconductor laser light source
EP14859126.6A EP3065236B1 (en) 2013-11-01 2014-06-25 Semiconductor laser beam source
CA2928970A CA2928970C (en) 2013-11-01 2014-06-25 Semiconductor laser light source
CN201480058124.3A CN105659448B (zh) 2013-11-01 2014-06-25 半导体激光光源

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013228387 2013-11-01
JP2013-228387 2013-11-01

Publications (1)

Publication Number Publication Date
WO2015063973A1 true WO2015063973A1 (ja) 2015-05-07

Family

ID=53003611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003398 WO2015063973A1 (ja) 2013-11-01 2014-06-25 半導体レーザ光源

Country Status (6)

Country Link
US (1) US9667029B2 (ja)
EP (1) EP3065236B1 (ja)
JP (1) JP6156510B2 (ja)
CN (1) CN105659448B (ja)
CA (1) CA2928970C (ja)
WO (1) WO2015063973A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018163926A (ja) * 2017-03-24 2018-10-18 日本オクラロ株式会社 光送信モジュール、光モジュール、及び光伝送装置、並びにそれらの製造方法
WO2019163276A1 (ja) * 2018-02-26 2019-08-29 パナソニック株式会社 半導体発光装置
JP2019216191A (ja) * 2018-06-13 2019-12-19 日亜化学工業株式会社 光源装置
WO2020144794A1 (ja) * 2019-01-10 2020-07-16 三菱電機株式会社 半導体レーザ装置
JPWO2020225952A1 (ja) * 2019-05-09 2020-11-12
JP2022089985A (ja) * 2019-01-10 2022-06-16 三菱電機株式会社 半導体レーザ装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2567880B (en) * 2017-10-30 2022-11-30 Bae Systems Plc Laser diode array
US11962122B2 (en) * 2018-07-30 2024-04-16 Panasonic Holdings Corporation Semiconductor light emitting device and external resonance type laser device
DE102020112806A1 (de) * 2020-05-12 2021-11-18 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Halbleiterlaserbauelement und verfahren zum betrieb zumindest eines halbleiterlasers
CN117954957B (zh) * 2024-03-25 2024-07-09 度亘核芯光电技术(苏州)有限公司 一种散热装置及半导体激光器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005511A (ja) * 2003-06-12 2005-01-06 Fanuc Ltd 半導体レーザ装置
JP2008004743A (ja) 2006-06-22 2008-01-10 Sony Corp 半導体レーザアレイおよび光学装置
JP2008198759A (ja) * 2007-02-13 2008-08-28 Seiko Epson Corp レーザ光源、レーザ光源装置、照明装置、モニタ装置、及び画像表示装置
US20090104727A1 (en) * 2007-09-20 2009-04-23 Bookham Technology Plc High power semiconductor laser diodes
JP2009111230A (ja) 2007-10-31 2009-05-21 Sony Corp レーザモジュール
JP2009152277A (ja) * 2007-12-19 2009-07-09 Sony Corp 半導体レーザアレイ、発光装置、表示装置、加工装置および駆動方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2863678B2 (ja) 1992-09-28 1999-03-03 三菱電機株式会社 半導体レーザ装置及びその製造方法
JP2001284729A (ja) 2000-03-31 2001-10-12 Matsushita Electric Ind Co Ltd 半導体レーザアレイ装置及びその製造方法
DE102011055891B9 (de) * 2011-11-30 2017-09-14 Osram Opto Semiconductors Gmbh Halbleiterlaserdiode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005511A (ja) * 2003-06-12 2005-01-06 Fanuc Ltd 半導体レーザ装置
JP2008004743A (ja) 2006-06-22 2008-01-10 Sony Corp 半導体レーザアレイおよび光学装置
JP2008198759A (ja) * 2007-02-13 2008-08-28 Seiko Epson Corp レーザ光源、レーザ光源装置、照明装置、モニタ装置、及び画像表示装置
US20090104727A1 (en) * 2007-09-20 2009-04-23 Bookham Technology Plc High power semiconductor laser diodes
JP2009111230A (ja) 2007-10-31 2009-05-21 Sony Corp レーザモジュール
JP2009152277A (ja) * 2007-12-19 2009-07-09 Sony Corp 半導体レーザアレイ、発光装置、表示装置、加工装置および駆動方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3065236A4

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7022513B2 (ja) 2017-03-24 2022-02-18 日本ルメンタム株式会社 光送信モジュール、光モジュール、及び光伝送装置、並びにそれらの製造方法
US11081858B2 (en) 2017-03-24 2021-08-03 Lumentum Japan, Inc. Optical transmitter module, optical module, optical transmission equipment and method of manufacturing thereof
JP2018163926A (ja) * 2017-03-24 2018-10-18 日本オクラロ株式会社 光送信モジュール、光モジュール、及び光伝送装置、並びにそれらの製造方法
WO2019163276A1 (ja) * 2018-02-26 2019-08-29 パナソニック株式会社 半導体発光装置
JP7232239B2 (ja) 2018-02-26 2023-03-02 パナソニックホールディングス株式会社 半導体発光装置
JPWO2019163276A1 (ja) * 2018-02-26 2021-02-04 パナソニック株式会社 半導体発光装置
JP2019216191A (ja) * 2018-06-13 2019-12-19 日亜化学工業株式会社 光源装置
JP7518412B2 (ja) 2018-06-13 2024-07-18 日亜化学工業株式会社 光源装置
JP2022191293A (ja) * 2018-06-13 2022-12-27 日亜化学工業株式会社 光源装置
US10951004B2 (en) 2018-06-13 2021-03-16 Nichia Corporation Light source device
JP7152652B2 (ja) 2018-06-13 2022-10-13 日亜化学工業株式会社 光源装置
JPWO2020144794A1 (ja) * 2019-01-10 2021-09-09 三菱電機株式会社 半導体レーザ装置
DE112019006646T5 (de) 2019-01-10 2021-12-09 Mitsubishi Electric Corporation Halbleiter-Laservorrichtung
JP2022089985A (ja) * 2019-01-10 2022-06-16 三菱電機株式会社 半導体レーザ装置
JP7145977B2 (ja) 2019-01-10 2022-10-03 三菱電機株式会社 半導体レーザ装置
KR20210073571A (ko) 2019-01-10 2021-06-18 미쓰비시덴키 가부시키가이샤 반도체 레이저 장치
KR102490650B1 (ko) * 2019-01-10 2023-01-19 미쓰비시덴키 가부시키가이샤 반도체 레이저 장치
JP7297121B2 (ja) 2019-01-10 2023-06-23 三菱電機株式会社 半導体レーザ装置
DE112019006646B4 (de) 2019-01-10 2024-04-18 Mitsubishi Electric Corporation Halbleiter-Laservorrichtung
WO2020144794A1 (ja) * 2019-01-10 2020-07-16 三菱電機株式会社 半導体レーザ装置
WO2020225952A1 (ja) * 2019-05-09 2020-11-12 パナソニック株式会社 半導体レーザ装置および外部共振型レーザ装置
JPWO2020225952A1 (ja) * 2019-05-09 2020-11-12
JP7391953B2 (ja) 2019-05-09 2023-12-05 パナソニックホールディングス株式会社 半導体レーザ装置および外部共振型レーザ装置

Also Published As

Publication number Publication date
JP6156510B2 (ja) 2017-07-05
US9667029B2 (en) 2017-05-30
CN105659448B (zh) 2018-12-28
US20160254639A1 (en) 2016-09-01
EP3065236B1 (en) 2020-09-23
EP3065236A4 (en) 2017-06-28
EP3065236A1 (en) 2016-09-07
JPWO2015063973A1 (ja) 2017-03-09
CA2928970C (en) 2018-08-28
CN105659448A (zh) 2016-06-08
CA2928970A1 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP6156510B2 (ja) 半導体レーザ光源
KR200476144Y1 (ko) 높은 방열 특성을 갖는 전각도 발광 소자
JP6311424B2 (ja) 光源装置
WO2013150715A1 (ja) 半導体レーザ装置およびその製造方法
JP3736462B2 (ja) 半導体レーザ装置
JP2007096326A (ja) レーザダイオード装置、少なくとも1つのレーザダイオード装置を有するレーザシステムおよび光学式ポンピングレーザ
JP2009076730A (ja) 窒化物半導体レーザ装置
US9083136B1 (en) Semiconductor laser light source
JP2010192672A (ja) 面発光レーザ
JP2007088266A (ja) レーザ光源装置及び光学装置
JP2019062033A (ja) 半導体レーザ装置
EP3370312B1 (en) Laser light source module
JP5880042B2 (ja) 光源装置
JP2015115273A (ja) Led照明用放熱装置
JP2007080867A (ja) 発光装置
KR101262917B1 (ko) 기판 일체형 방열 구조를 갖는 광소자 어레이 기판 및 그 제조 방법
US10971899B2 (en) Laser light source unit
JP2007180264A (ja) アレイ型半導体レーザ装置
JP2015088682A (ja) 半導体レーザ装置
CN220585710U (zh) 一种激光芯片器件
WO2018020644A1 (ja) 光源装置および投写型表示装置、半導体発光素子の冷却方法
JP2006013038A (ja) 半導体レーザアレイ装置
Kudsieh et al. Controlling thermal uniformity among LED chips assembly packages for high-power solid state lighting
JP2021057512A (ja) 半導体レーザ光源装置
WO2020044882A1 (ja) 半導体レーザ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859126

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015544761

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15028488

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014859126

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2928970

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE