WO2015063427A2 - Procédé de contrôle d'un moteur électrique polyphasé de direction assistée électrique - Google Patents

Procédé de contrôle d'un moteur électrique polyphasé de direction assistée électrique Download PDF

Info

Publication number
WO2015063427A2
WO2015063427A2 PCT/FR2014/052771 FR2014052771W WO2015063427A2 WO 2015063427 A2 WO2015063427 A2 WO 2015063427A2 FR 2014052771 W FR2014052771 W FR 2014052771W WO 2015063427 A2 WO2015063427 A2 WO 2015063427A2
Authority
WO
WIPO (PCT)
Prior art keywords
electric
impedance
control method
control
electrical
Prior art date
Application number
PCT/FR2014/052771
Other languages
English (en)
Other versions
WO2015063427A3 (fr
Inventor
Michel Plaideau
Fabien DI NALLO
Original Assignee
Valeo Systemes De Controle Moteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes De Controle Moteur filed Critical Valeo Systemes De Controle Moteur
Priority to EP14805999.1A priority Critical patent/EP3063051A2/fr
Priority to CN201480059286.9A priority patent/CN105683025A/zh
Publication of WO2015063427A2 publication Critical patent/WO2015063427A2/fr
Publication of WO2015063427A3 publication Critical patent/WO2015063427A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0487Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting motor faults
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0484Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures for reaction to failures, e.g. limp home
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2209/00Indexing scheme relating to controlling arrangements characterised by the waveform of the supplied voltage or current
    • H02P2209/01Motors with neutral point connected to the power supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions

Definitions

  • the invention relates to a method for controlling a multi-phase electric motor for electric power steering of a motor vehicle.
  • Electric power steering devices use a polyphase electric motor to help the driver orient the vehicle wheels.
  • this type of mechanical relay may have reliability defects over time. Indeed, these relays are more and more solicited, especially in the case of vehicles equipped with "stop & start” system. This type of system cuts off power to the power steering system at each stop of the vehicle causing the opening of the mechanical relays.
  • the invention aims, among other things, to meet this need and achieves it by means of a method for controlling a multi-phase electrical power steering motor of a motor vehicle, said motor comprising a stator having:
  • the opening state of the electrical relays being controlled by means of an electric current flowing in said impedance.
  • the method according to the invention makes it possible to control the opening of the phases of the electric motor by electrical relays thus increasing the reliability and the longevity of the control of the opening of the phases.
  • control of electrical relays by means of an electric current makes it possible to increase the reliability of the control with respect to a voltage control and to dispense with a protection device of the zener diode type.
  • the method according to the invention may also comprise one or more of the following characteristics, considered individually or in any technically possible combination:
  • the electric motor is a three-phase motor
  • each electrical relay comprises a field effect transistor
  • the impedance is connected on the one hand to the gate of the field effect transistor and on the other hand to the neutral of the winding; and or
  • the impedance is connected on the one hand to the gate of the field effect transistor and on the other hand to one of the electrodes of the transistor other than the gate, in particular at the source; and or
  • the electric current is controlled by a current generator and an isolated power supply; and or
  • the stator comprises a plurality of impedances of the same value, each impedance being dedicated to a phase and being interposed between the control electrode of the electrical relay for opening said phase and the neutral of the winding; and or
  • the same impedance is common to the phases of the stator and is interposed between each control electrode of an electrical relay and the neutral of the winding;
  • the impedance is a resistive impedance
  • the impedance is greater than or equal to 2k ⁇ and less than or equal to 101 ⁇ ;
  • the electric current flowing in the impedance has an intensity greater than or equal to 1 mA and less than or equal to 5 mA.
  • the invention also relates to a method for controlling a multi-phase electric motor for electric power steering of a motor vehicle, said motor comprising a stator having:
  • the opening state of the electrical relays being controlled by means of an electric current flowing in said impedance, said electric current being determined by a current generator powered by an isolated power supply.
  • This method according to the invention may comprise one or more of the characteristics described above.
  • This method according to the invention may also comprise one or more of the following characteristics, considered individually or in any technically possible combination: said insulated power supply is connected to a second power supply delivering an energy to said motor via a control unit; in particular the power supply comprises a secondary circuit connected to said second power supply;
  • the current generator is activated to open the electrical relays via a transistor connected to a control terminal of the current generator;
  • the method comprises providing a current generator having a transistor having two signal terminals and a control terminal, a first signal terminal being connected to the control electrode of the electrical relay, a second signal terminal and the control terminal being connected to a respective resistor, said resistors being connected by their other terminal to the isolated power supply.
  • FIG. 1 represents a first configuration of an electric power steering motor that can be controlled by a method according to the invention
  • FIG. 2 represents a second configuration of an electric power steering motor that can be controlled by a method according to the invention
  • FIG. 3 represents another configuration of an electric power steering motor that can be controlled by a method. according to the invention.
  • the invention relates to a method for controlling a multi-phase electric motor for electric power steering of a motor vehicle.
  • the method according to the invention is remarkable in that the opening state of at least one electrical relay of at least one of the electric phases of the motor is controlled by means of an electric current flowing in an impedance.
  • control of the opening state of the electrical phases of the electric power steering motor assisted by an electric current and not by a voltage makes it possible to limit the number of electrical connections necessary to control the state of opening of the electrical phases of the electric motor. engine.
  • the method of the invention makes it possible to control an electric power steering motor in a configuration shown in FIG.
  • the multi-phase power steering electric motor comprises a stator 1.
  • the opening state of the electric motor stator phases is controlled by means of a current generator 2.
  • the electric steering motor assisted is controlled by a steering unit 3.
  • the stator 1 comprises a star-connected electrical winding defining three electrical phases 12, 14, 16 of the stator, for example by means of electric coils. Between each of three electrical phases 12, 14, 16 and the neutral of the electric winding is arranged an electrical relay 22, 24, 26.
  • An impedance 30 is disposed between the neutral of the electric winding and the control electrode of each of the electric relays 22, 24, 26.
  • the same impedance 30 is common to the three electrical phases 12, 14, 16 of the stator.
  • this configuration makes it possible to limit the number of components and wires between the current generator 2 and the stator 1. Indeed, only one wire is necessary to control the current state of opening of the electrical relays 22, 24, 26. Moreover, a single impedance makes it possible to control the states of opening and closing of all the electrical relays of the stator 1.
  • the current generator 2 may comprise an isolated power supply, for example a flyback type converter.
  • the use of a current generator and an isolated power supply makes it possible to eliminate the risks of overvoltage coming from the vehicle battery.
  • the impedance 30 is a resistive impedance.
  • the impedance 30 is a resistance having a value greater than or equal to 2 k ⁇ and less than or equal to 10 k ⁇ .
  • the electric current flowing in the impedance 30 may have an intensity greater than or equal to 1 mA and less than or equal to 5 mA.
  • the electrical relays 22, 24, 26 may be field effect transistors (MOS).
  • MOS field effect transistors
  • the gates of the field effect transistors correspond to the control electrode of the electrical relays.
  • the impedance 30 is connected on the one hand to the gates of the field effect transistors and on the other hand to the neutral of the winding.
  • the impedance 30 is connected on the one hand to the gate of each of the field effect transistors and on the other hand to a second electrode of the field effect transistor, for example the sources of the field effect transistors. field effect transistors.
  • the third electrode of each of the field effect transistors is connected to the control unit 3.
  • the configuration of FIG. 1, in which the electrical relays 22, 24, 26 are arranged between the phases 12, 14, 16 and the neutral of the electric winding, makes it possible to control the electrical relays by means of a current electric using only one connection between the electric power steering motor and the current generator 2.
  • the method of the invention makes it possible to control an electric power steering motor having a configuration as shown in FIG. 2.
  • the electric power steering motor represented in FIG. 2 comprises a stator 1.
  • the state of opening of the electric phases of the stator of the electric motor is controlled by means of a current generator 2
  • the electric power steering motor is driven by a steering unit 3.
  • the stator 1 comprises a star-connected electrical winding defining three electrical phases 12, 14, 16 of the stator, for example by means of electric coils and electrical relays 22, 24, 26 for opening said phases.
  • the electrical phases 12, 14, 16 are arranged between the electrical relays 22, 24, 26 and the neutral of the electric winding.
  • Impedances 32, 34, 36 are arranged between the control electrodes of each of the electrical relays 22, 24, 26 and the neutral of the electric winding.
  • the impedances 32, 34, 36 have substantially the same value.
  • the impedances 32, 34, 36 are preferably resistive impedances.
  • the values of the resistors 32, 34, 36 are preferably greater than or equal to 2 k ⁇ and less than or equal to 10 k ⁇ , the electric current flowing in each of the impedances 32, 34, 36 may have an intensity greater than or equal to 1 mA and less or equal to 5 mA.
  • phase-opening electrical relays 22, 24, 26 are preferably field-effect transistors whose grids constitute the control electrodes.
  • the sources of the field effect transistors 22, 24, 26 are connected to the electrical phases 12, 14, 16, and the drains of these field effect transistors are connected to the control unit 3.
  • the configuration according to FIG. 2 makes it possible to control the state of opening of the phases of the stator 1 by means of electric currents generated by the current generator 2. According to the configuration of FIG. 2, three connections are made between the current generator 2 and the stator 1 to control the opening state of the three phases 12, 14,16.
  • the opening state of the electrical relays would be controlled by means of a voltage generator.
  • a voltage control of the open state of the electrical relays as configured according to FIG. 2 requires six connections between the voltage generator and the stator (two connections per electrical relay to be controlled).
  • the electrical relays are not necessarily limited to MOS, the impedance is not limited to a resistive impedance and the electric power steering motor is not necessarily three-phase.
  • FIG. 3 represents an exemplary configuration in which the current generator 2 is powered by an isolated power supply 50.
  • the example of FIG. 3 is moreover similar to that illustrated in FIG. 1 or that illustrated in FIG. 2.
  • the power supply 50 comprises an isolation barrier separating a primary circuit from a secondary circuit.
  • the current generator 2 is connected to a terminal of the power supply 50, in particular the secondary circuit is connected to the current generator 2.
  • the secondary circuit can then be connected to the voltage Vbat d a second power supply which supplies the motor via the control unit 3.
  • the neutral N of the electric winding has a floating electrical potential which fluctuates between the voltage Vbat of the second power supply and zero.
  • the voltage delivered by the power supply 50 must deliver a voltage Vbat + X volts.
  • the current generator 2 comprises a bipolar transistor 210.
  • the collector 210a of the transistor 210 is connected to the control electrode of the electrical relay 26.
  • the emitter 210b of the transistor 210 is connected to a resistor 220.
  • the gate 210c of the transistor 210 is connected to a resistor 230.
  • the terminals of the resistors 220, 230 which are not connected to the transistor 210 are connected to the isolated power supply 50.
  • the components 210, 220, 230 of the current generator 2 make it possible to deliver a constant current in a simple way. However, the current generator 2 could have another configuration to deliver a constant current.
  • the variation of the neutral potential N is not seen upstream, that is to say say at the level of the power supply supplying the disconnection or the connection of the electrical relays 22, 24, 26. Only the voltage Vce between the collector 210a and the emitter 210b is impacted by the fluctuation of the potential of the neutral N.
  • the example illustrated in FIG. 3 may comprise a bipolar transistor 300 connected to the gate 210c of the transistor 210 of the current generator 2.
  • the transistor 300 makes it possible to activate or deactivate the current generator 2 to open or close the electric relay 26.
  • the transistor 300 is controlled in closing to ground the terminal 210c of the transistor 210 of the current generator 2.
  • the transistor 300 is controlled in opening.
  • the signal controlling the transistor 300 may come from a control unit such as a microcontroller, or may result from a loss of power in the vehicle.
  • the example illustrated in FIG. 3 may comprise a temperature sensor on the return to earth from the neutral N. This return to ground is represented by a branch comprising a resistor 60 between the neutral N and ground.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

Procédé de contrôle d'un moteur électrique polyphasé de direction assistée électrique d'un véhicule automobile, ledit moteur comprenant un stator (1) ayant: un enroulement électrique connecté en étoile et définissant les phases électriques (12, 14, 16) du stator (1), des relais électriques (22, 24, 26) d'ouverture desdites phases (12, 14, 16), et au moins une impédance (30, 32, 34, 36) interposée entre l'électrode de commande d'au moins un relais électrique (22, 24, 26)et le neutre de l'enroulement électrique, dans lequel que l'état d'ouverture des relais électriques (22, 24, 26) est contrôlé au moyen d'un courant électrique circulant dans ladite impédance, ledit courant électrique étant déterminé par un générateur de courant alimenté par une alimentation électrique isolée.

Description

Procédé de contrôle d'un moteur électrique polyphasé de direction assistée électrique
L'invention se rapporte à un procédé de contrôle d'un moteur électrique polyphasé de direction assistée électrique d'un véhicule automobile.
De plus en plus de véhicules automobiles sont équipés d'un dispositif de direction assistée électrique. Les dispositifs de direction assistée électrique utilisent un moteur électrique polyphasé pour aider le conducteur à orienter les roues du véhicule.
Pour des raisons de sécurité, il est important de pouvoir ouvrir les phases du moteur électrique en cas de disfonctionnement du dispositif de direction assistée. En effet, il y a un risque en cas de disfonctionnement de blocage des roues du véhicule.
Pour remédier à ce risque, il est connu d'utiliser des relais mécaniques afin de permettre l'ouverture des phases du moteur électrique de direction assistée électrique en cas de disfonctionnement.
Outre un encombrement important, ce type de relais mécanique peut présenter des défauts de fiabilité sur la durée. En effet, ces relais sont de plus en plus sollicités, en particulier dans le cas des véhicules équipés de système « stop & start ». Ce type de système entraîne la coupure de l'alimentation de la direction assistée à chaque arrêt du véhicule entraînant l'ouverture des relais mécaniques.
Ainsi, il existe un besoin de réduire l'encombrement et d'augmenter la fiabilité des relais permettant l'ouverture des phases du moteur électrique de direction assisté électrique.
L'invention a pour but, entre autre, de répondre à ce besoin et y parvient au moyen d'un procédé de contrôle d'un moteur électrique polyphasé de direction assistée électrique d'un véhicule automobile, ledit moteur comprenant un stator ayant:
- un enroulement électrique connecté en étoile et définissant les phases électriques du stator,
- des relais électriques d'ouverture desdites phases, et
- au moins une impédance interposée entre l'électrode de commande d'au moins un relais électrique et le neutre de l'enroulement électrique,
l'état d'ouverture des relais électriques étant contrôlé au moyen d'un courant électrique circulant dans ladite impédance.
Avantageusement, le procédé selon l'invention permet de contrôler l'ouverture des phases du moteur électrique par des relais électriques augmentant ainsi la fiabilité et la longévité du contrôle de l'ouverture des phases.
De plus, le contrôle des relais électriques au moyen d'un courant électrique permet d'augmenter la fiabilité du contrôle par rapport à un contrôle en tension et de s'affranchir d'un dispositif de protection de type diode zener. Le procédé selon l'invention peut également comprendre une ou plusieurs des caractéristiques ci-dessous, considérées individuellement ou selon toutes les combinaisons techniquement possibles :
- le moteur électrique est un moteur triphasé ; et/ou
- chaque relais électrique comprend un transistor à effet de champ ; et/ou
- l'impédance est connectée d'une part à la grille du transistor à effet de champ et d'autre part au neutre de l'enroulement ; et/ou
- l'impédance est connectée d'une part à la grille du transistor à effet de champ et d'autre part à une des électrodes du transistor autre que la grille, notamment à la source ; et/ou
- le courant électrique est contrôlé par un générateur de courant et une alimentation isolée ; et/ou
- le stator comprend une pluralité d'impédances de même valeur, chaque impédance étant dédiée à une phase et étant interposée entre l'électrode de commande du relais électrique d'ouverture de ladite phase et le neutre de l'enroulement ; et/ou
- la même impédance est commune aux phases du stator et est interposée entre chaque électrode de commande d'un relais électrique et le neutre de l'enroulement ; et/ou
- l'impédance est une impédance résistive ; et/ou
- l'impédance est supérieure ou égale à 2 kQ et inférieure ou égale à 101<Ω ; et/ou
- le courant électrique circulant dans l'impédance a une intensité supérieure ou égale à 1mA et inférieure ou égale à 5mA.
L'invention concerne aussi un procédé de contrôle d'un moteur électrique polyphasé de direction assistée électrique d'un véhicule automobile, ledit moteur comprenant un stator ayant:
- un enroulement électrique connecté en étoile et définissant les phases électriques du stator,
- des relais électriques d'ouverture desdites phases, et
- au moins une impédance interposée entre l'électrode de commande d'au moins un relais électrique et le neutre de l'enroulement électrique,
l'état d'ouverture des relais électriques étant contrôlé au moyen d'un courant électrique circulant dans ladite impédance, ledit courant électrique étant déterminé par un générateur de courant alimenté par une alimentation électrique isolée.
Ce procédé selon l'invention peut comprendre une ou plusieurs des caractéristiques décrites précédemment. Ce procédé selon l'invention peut également comprendre une ou plusieurs des caractéristiques ci-dessous, considérées individuellement ou selon toutes les combinaisons techniquement possibles : - ladite alimentation électrique isolée est reliée à une seconde alimentation électrique délivrant une énergie audit moteur par l'intermédiaire d'une unité de pilotage ; notamment l'alimentation électrique comprend un circuit secondaire relié à ladite seconde alimentation électrique ;
- le générateur de courant est activé pour ouvrir les relais électriques par l'intermédiaire d'un transistor connecté à une borne de commande du générateur de courant ;
- le procédé comprend la fourniture d'un générateur de courant comportant un transistor ayant deux bornes de signal et une borne de commande, une première borne de signal étant connectée à l'électrode de commande du relais électrique, une deuxième borne de signal et la borne de commande étant connectées à une résistance respective, lesdites résistances étant connectées par leur autre borne à l'alimentation électrique isolée.
L'invention sera mieux comprise à la lecture de la description qui va suivre donnée à titre d'exemple non limitatif de mise en œuvre de celle-ci, et à l'examen du dessin annexé sur lequel :
la figure 1 représente une première configuration d'un moteur électrique de direction assistée apte à être contrôlé par un procédé selon l'invention,
la figure 2 représente une deuxième configuration d'un moteur électrique de direction assistée apte à être contrôlé par un procédé selon l'invention, et la figure 3 représente une autre configuration d'un moteur électrique de direction assistée apte à être contrôlé par un procédé selon l'invention.
L'invention se rapporte à un procédé de contrôle d'un moteur électrique polyphasé de direction assistée électrique d'un véhicule automobile. Le procédé selon l'invention est remarquable en ce que l'état d'ouverture d'au moins un relais électrique d'au moins une des phases électriques du moteur est contrôlé au moyen d'un courant électrique circulant dans une impédance.
Avantageusement, le contrôle de l'état d'ouverture des phases électriques du moteur électrique de direction assistée par un courant électrique et non par une tension permet de limiter le nombre de connexions électriques nécessaires pour contrôler l'état d'ouverture des phases électriques du moteur.
Selon un premier mode de réalisation, le procédé de l'invention permet de contrôler un moteur électrique de direction assistée selon une configuration représentée à la figure 1.
Comme représenté à la figure 1 , le moteur électrique polyphasé de direction assistée comprend un stator 1. L'état d'ouverture des phases électriques du stator du moteur électrique est contrôlé au moyen d'un générateur de courant 2. Le moteur électrique de direction assistée est piloté par une unité de pilotage 3.
Le stator 1 comprend un enroulement électrique connecté en étoile et définissant trois phases électriques 12, 14, 16 du stator, par exemple au moyen de bobines électriques. Entre chacune des trois phases électriques 12, 14, 16 et le neutre de l'enroulement électrique est disposé un relais électrique 22, 24, 26.
Une impédance 30 est disposée entre le neutre de l'enroulement électrique et l'électrode de commande de chacun des relais électriques 22, 24, 26.
Dans la configuration représentée à la figure 1, une même impédance 30 est commune aux trois phases électriques 12, 14, 16 du stator.
Avantageusement, cette configuration permet de limiter le nombre de composants et de fils entre le générateur de courant 2 et le stator 1. En effet, un seul fil est nécessaire pour contrôler en courant l'état d'ouverture des relais électriques 22, 24, 26. De plus, une seule impédance permet de contrôler les états d'ouverture et de fermeture de l'ensemble des relais électriques du stator 1.
En outre, le générateur de courant 2 peut comprendre une alimentation isolée, par exemple un convertisseur de type flyback.
Avantageusement, l'utilisation d'un générateur de courant et d'une alimentation isolée, permet d'éliminer les risques de surtension venant de la batterie du véhicule. Ainsi, il est possible d'affranchir des dispositifs de protection en surtension du moteur électrique, de type diode Zener, réduisant encore le nombre de composants et l'encombrement.
Selon un mode de réalisation, l'impédance 30 est une impédance résistive.
Typiquement, l'impédance 30 est une résistance ayant une valeur supérieure ou égale à 2 kQ et inférieure ou égale à 10 kQ. Le courant électrique circulant dans l'impédance 30 peut avoir une intensité supérieure ou égale à 1mA et inférieure ou égale à 5 mA.
Selon un mode de réalisation de l'invention, les relais électriques 22, 24,26 peuvent être des transistors à effet de champ (MOS). Les grilles des transistors à effet de champ correspondent à l'électrode de contrôle des relais électriques. En d'autres termes, l'impédance 30 est connectée d'une part aux grilles des transistors à effet de champ et d'autre part au neutre de l'enroulement.
Selon la configuration de la figure 1, l'impédance 30 est connectée d'une part à la grille de chacun des transistors à effet de champ et d'autre part à une deuxième électrode du transistor à effet de champ, par exemple les sources des transistors à effet de champ.
La troisième électrode de chacun des transistors à effet de champ, par exemple le drain, est connectée à l'unité de pilotage 3.
Avantageusement, la configuration de la figure 1, selon laquelle les relais électriques 22, 24, 26 sont disposés entre les phases 12, 14,16 et le neutre de l'enroulement électrique, permet de contrôler les relais électriques au moyen d'un courant électrique en n'utilisant qu'une seule liaison entre le moteur électrique de direction assistée et le générateur de courant 2. Selon un deuxième mode de réalisation, le procédé de l'invention permet de contrôler un moteur électrique de direction assistée ayant une configuration comme représenté à la figure 2.
Comme pour la configuration de la figure 1, le moteur électrique de direction assistée représentée à la figure 2 comprend un stator 1. L'état d'ouverture des phases électriques du stator du moteur électrique est contrôlé au moyen d'un générateur de courant 2. Le moteur électrique de direction assistée est piloté par une unité de pilotage 3.
Le stator 1 comprend un enroulement électrique connecté en étoile et définissant trois phases électriques 12, 14, 16 du stator, par exemple au moyen de bobines électriques et des relais électriques 22, 24, 26 d'ouverture desdites phases.
Contrairement à la configuration de la figure 1 , selon la configuration de la figure 2, les phases électriques 12, 14,16 sont disposées entre les relais électriques 22, 24, 26 et le neutre de l'enroulement électrique.
Des impédances 32, 34, 36 sont disposées entre les électrodes de commande de chacun des relais électriques 22, 24, 26 et le neutre de l'enroulement électrique. De préférence, les impédances 32, 34, 36 ont sensiblement la même valeur.
Comme pour la configuration de la figure 1, selon la configuration de la figure 2, les impédances 32, 34, 36 sont de préférence des impédances résistives.
Les valeurs des résistances 32, 34, 36 sont de préférence supérieures ou égales à 2 kQ et inférieures ou égales à 10 kQ, le courant électrique circulant dans chacune des impédances 32, 34, 36 peut avoir une intensité supérieure ou égale à 1mA et inférieure ou égale à 5 mA.
Les relais électriques d'ouverture de phases 22, 24, 26 sont de préférence des transistors à effet de champ dont les grilles constituent les électrodes de commande. Les sources des transistors à effet de champ 22, 24, 26 sont reliées aux phases électriques 12, 14, 16, et les drains de ces transistors à effet de champ sont reliés à l'unité de pilotage 3.
La configuration selon la figure 2 permet de contrôler l'état d'ouverture des phases du stator 1 au moyen de courants électriques générés par le générateur de courant 2. Selon la configuration de la figure 2, trois connexions sont réalisées entre le générateur de courant 2 et le stator 1 à fin de contrôler l'état d'ouverture des trois phases 12, 14,16.
Bien que nécessitant plus de connexions que la configuration de la figure 1 , la configuration de la figure 2 reste avantageuse par rapport à une configuration équivalente dont l'état d'ouverture des relais électriques serait contrôlé au moyen d'un générateur de tension. En effet, un contrôle en tension de l'état d'ouverture des relais électriques tels que configurés selon la figure 2 nécessite six connexions entre le générateur de tension et le stator (deux connexions par relais électrique à contrôler). Enfin, il est bien entendu que de nombreuses adaptations des configurations décrites en en détail ci-dessus peuvent être introduites, tout en conservant certains au moins des avantages de l'invention. En particulier, les relais électrique ne sont pas forcément limités à des MOS, l'impédance n'est pas limitée à une impédance résistive et le moteur électrique de direction assistée n'est pas forcément triphasé.
La figure 3 représente un exemple de configuration dans laquelle le générateur de courant 2 est alimenté par une alimentation électrique isolée 50. L'exemple de la figure 3 est par ailleurs similaire à celui illustré en figure 1 ou celui illustré en figure 2.
L'alimentation électrique 50 comporte une barrière d'isolation séparant un circuit primaire d'un circuit secondaire. Le générateur de courant 2 est connecté à une borne de l'alimentation électrique 50, en particulier le circuit secondaire est relié au générateur de courant 2. En isolant l'alimentation électrique 50, on peut alors relier le circuit secondaire à la tension Vbat d'une seconde alimentation électrique qui alimente le moteur par l'intermédiaire de l'unité de pilotage 3. Le neutre N de l'enroulement électrique a un potentiel électrique flottant qui fluctue entre la tension Vbat de la seconde alimentation électrique et zéro. Pour générer une tension positive aux bornes de l'impédance 30, la tension délivrée par l'alimentation électrique 50 doit délivrer une tension Vbat +X volts.
Le générateur de courant 2 comporte un transistor bipolaire 210. Le collecteur 210a du transistor 210 est connecté à l'électrode de contrôle du relais électrique 26. L'émetteur 210b du transistor 210 est connecté à une résistance 220. La grille 210c du transistor 210 est connectée à une résistance 230. Les bornes des résistances 220, 230 qui ne sont pas connectées au transistor 210 sont connectées à l'alimentation électrique isolée 50. Les composants 210, 220, 230 du générateur de courant 2 permettent de délivrer un courant constant de manière simple. Cependant le générateur de courant 2 pourrait avoir une autre configuration pour délivrer un courant constant.
Grâce à l'utilisation d'un générateur de courant 2 pour commander l'ouverture ou la fermeture des relais électriques 22, 24, 26, la variation du potentiel au neutre N n'est pas vue en amont, c'est-à-dire au niveau de l'alimentation électrique alimentant la déconnexion ou la connexion des relais électriques 22, 24, 26. Seule la tension Vce entre le collecteur 210a et l'émetteur 210b est impactée par la fluctuation du potentiel du neutre N.
L'exemple illustré en figure 3 peut comprendre un transistor bipolaire 300 connecté à la grille 210c du transistor 210 du générateur de courant 2. Le transistor 300 permet d'activer ou désactiver le générateur de courant 2 pour ouvrir ou fermer le relais électrique 26. Pour activer le générateur de courant 2, le transistor 300 est commandé en fermeture pour lier à la masse la borne de commande 210c du transistor 210 du générateur de courant 2. Pour désactiver le générateur de courant 2, le transistor 300 est commandé en ouverture. Le signal commandant le transistor 300 peut provenir d'une unité de commande telle qu'un microcontrôleur, ou peut résulter d'une perte d'alimentation dans le véhicule.
L'exemple illustré en figure 3 peut comprendre un capteur de température sur le retour à la masse depuis le neutre N. Ce retour à la masse est représenté par une branche comprenant une résistance 60 entre le neutre N et la masse.

Claims

REVENDICATIONS
1. Procédé de contrôle d'un moteur électrique polyphasé de direction assistée électrique d'un véhicule automobile, ledit moteur comprenant un stator (1) ayant:
- un enroulement électrique connecté en étoile et définissant les phases électriques (12, 14, 16) du stator (1),
- des relais électriques (22, 24, 26) d'ouverture desdites phases (12, 14, 16), et
- au moins une impédance (30, 32, 34, 36) interposée entre l'électrode de commande d'au moins un relais électrique (22, 24, 26) et le neutre de l'enroulement électrique,
l'état d'ouverture des relais électriques (22, 24, 26) étant contrôlé au moyen d'un courant électrique circulant dans ladite impédance, ledit courant électrique étant déterminé par un générateur de courant (2) alimenté par une alimentation électrique isolée (50).
2. Procédé de contrôle selon la revendication 1, dans lequel ladite alimentation électrique isolée (50) est reliée à une seconde alimentation électrique (Vbat) délivrant une énergie audit moteur par l'intermédiaire d'une unité de pilotage (3).
3. Procédé de contrôle selon la revendication 1 ou 2, dans lequel le générateur de courant (2) est activé pour ouvrir les relais électriques (22, 24, 26) par l'intermédiaire d'un transistor (300) connecté à une borne de commande (210c) du générateur de courant (2).
4. Procédé de contrôle selon l'une des revendications 1 à 3, comprenant la fourniture d'un générateur de courant (2) comportant un transistor (210) ayant deux bornes de signal (210a, 210b) et une borne de commande (210c), une première borne de signal (210a) étant connectée à l'électrode de commande du relais électrique, une deuxième borne de signal (210b) et la borne de commande (210c) étant connectées à une résistance (220, 230) respective, lesdites résistances (220, 230) étant connectées par leur autre borne à l'alimentation électrique isolée (50).
5. Procédé de contrôle selon l'une des revendications précédentes, dans lequel le moteur électrique est un moteur triphasé.
6. Procédé de contrôle selon l'une des revendications précédentes, dans lequel chaque relais électrique (22, 24, 26) comprend un transistor à effet de champ.
7. Procédé de contrôle selon la revendication 6, dans lequel l'impédance (30, 32, 34, 36) est connectée d'une part à la grille du transistor à effet de champ et d'autre part au neutre de l'enroulement.
8. Procédé de contrôle selon la revendication 6, dans lequel l'impédance (30) est connectée d'une part à la grille du transistor à effet de champ et d'autre part à une des électrodes du transistor autre que la grille, notamment à la source.
9. Procédé de contrôle selon l'une quelconque des revendications précédentes, dans lequel le stator comprend une pluralité d'impédances (32, 34, 36) de même valeur, chaque impédance étant dédiée à une phase et étant interposée entre l'électrode de commande du relais électrique d'ouverture de ladite phase et le neutre de l'enroulement.
10. Procédé de contrôle selon l'une quelconque des revendications 1 à 8, dans lequel la même impédance (30) est commune aux phases du stator et est interposée entre chaque électrode de commande d'un relais électrique et le neutre de l'enroulement.
1 1. Procédé de contrôle selon l'une quelconque des revendications précédentes, dans lequel l'impédance (30, 32, 34, 36) est une impédance résistive.
12. Procédé de contrôle selon la revendication 9, dans lequel l'impédance est supérieure ou égale à 2 Q et inférieure ou égale à lOkQ.
13. Procédé de contrôle selon l'une quelconque des revendications précédentes, dans lequel le courant électrique circulant dans l'impédance a une intensité supérieure ou égale à 1mA et inférieure ou égale à 5mA.
PCT/FR2014/052771 2013-10-31 2014-10-30 Procédé de contrôle d'un moteur électrique polyphasé de direction assistée électrique WO2015063427A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14805999.1A EP3063051A2 (fr) 2013-10-31 2014-10-30 Procédé de contrôle d'un moteur électrique polyphasé de direction assistée électrique
CN201480059286.9A CN105683025A (zh) 2013-10-31 2014-10-30 用于控制多相电动助力转向马达的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1360694 2013-10-31
FR1360694A FR3012695B1 (fr) 2013-10-31 2013-10-31 Procede de controle d'un moteur electrique polyphase de direction assistee electrique

Publications (2)

Publication Number Publication Date
WO2015063427A2 true WO2015063427A2 (fr) 2015-05-07
WO2015063427A3 WO2015063427A3 (fr) 2015-06-18

Family

ID=50179683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/052771 WO2015063427A2 (fr) 2013-10-31 2014-10-30 Procédé de contrôle d'un moteur électrique polyphasé de direction assistée électrique

Country Status (4)

Country Link
EP (1) EP3063051A2 (fr)
CN (1) CN105683025A (fr)
FR (1) FR3012695B1 (fr)
WO (1) WO2015063427A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017005320A1 (fr) * 2015-07-08 2017-01-12 Thyssenkrupp Presta Ag Double utilisation de noyau d'inducteur dans des blocs d'alimentation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3507169B1 (fr) * 2016-08-30 2021-09-29 thyssenkrupp Presta AG Mesure d'humidité dans un moteur d'une direction assistée de véhicule basée sur un potentiel galvanique

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245650A (ja) * 1992-03-06 1993-09-24 Akio Wada スポット溶接機用電源装置
DE102007019257A1 (de) * 2007-04-24 2008-11-06 Zf Lenksysteme Gmbh Schutzeinrichtung für eine Hilfskraftlenkung
DE102007024659A1 (de) * 2007-05-26 2008-11-27 Zf Lenksysteme Gmbh Hilfskraftlenkung
DE102010033440B4 (de) * 2010-08-04 2013-10-24 Thyssenkrupp Presta Aktiengesellschaft Verfahren und Vorrichtung zur Sicherheitsabschaltung einer elektromechanischen Servolenkung
FR2975244B1 (fr) * 2011-05-13 2013-04-26 Michelin Soc Tech Installation comprenant une source d'energie electrique comportant au moins deux elements de technologies differentes et un onduleur de pilotage d'un moteur electrique a courant alternatif
DE102012101127B4 (de) * 2012-02-14 2020-03-12 Robert Bosch Automotive Steering Gmbh Servolenkvorrichtung eines kraftfahrzeugs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017005320A1 (fr) * 2015-07-08 2017-01-12 Thyssenkrupp Presta Ag Double utilisation de noyau d'inducteur dans des blocs d'alimentation
CN107735307A (zh) * 2015-07-08 2018-02-23 蒂森克虏伯普利斯坦股份公司 在电力供应中双重使用的电感器芯
US10421480B2 (en) 2015-07-08 2019-09-24 Thyssenkrupp Presta Ag Dual usage of inductor core in power supplies
CN107735307B (zh) * 2015-07-08 2020-07-24 蒂森克虏伯普利斯坦股份公司 在电力供应中双重使用的电感器芯

Also Published As

Publication number Publication date
WO2015063427A3 (fr) 2015-06-18
FR3012695B1 (fr) 2017-05-05
FR3012695A1 (fr) 2015-05-01
CN105683025A (zh) 2016-06-15
EP3063051A2 (fr) 2016-09-07

Similar Documents

Publication Publication Date Title
EP3105845B1 (fr) Systeme d&#39;alimentation a tension continue configure pour precharger un condensateur de filtrage avant l&#39;alimentation d&#39;une charge
EP2044681B1 (fr) Circuit d&#39;alimentation d&#39;un moteur pourvu d&#39;un organe assurant une commutation de puissance, une protection contre une inversion de polarites et une limitation du courant d&#39;appel d&#39;un élément capacitif
FR3035284A1 (fr) Regulateur de tension d&#39;un alternateur de vehicule automobile, porte-balais regulateur et alternateurs correspondants
FR3000322A1 (fr) Dispositif de protection contre une surintensite electrique d&#39;au moins une branche electronique de commutation, systeme de conversion comportant un tel dispositif de protection, et procede de pilotage associe
WO2015063427A2 (fr) Procédé de contrôle d&#39;un moteur électrique polyphasé de direction assistée électrique
EP2346154B1 (fr) Système d&#39;alimentation d&#39;un élément, parmi un rotor et un stator d&#39;une machine électrique, et procédé de commande d&#39;un tel système
EP3900187B1 (fr) Systeme d&#39;interrupteur comprenant un dispositif de limitation de courant
EP3523867B1 (fr) Circuit de decharge d&#39;un système electrique haute tension
EP3208906A1 (fr) Système de commande d&#39;un onduleur d&#39;un moteur électrique, système de moteur comportant un tel système de commande
EP2882094B1 (fr) Procédé d&#39;évacuation de l&#39;énergie stockée dans un stator d&#39;un moteur électrique
EP3877774B1 (fr) Dispositif d&#39;inhibition de la sortie de courant d&#39;un équipement, à éléments de commutation à fuite surveillée
EP3689663B1 (fr) Procédé de mise en sécurité des segments d&#39;un système d&#39;alimentation par le sol et système associé
EP3515746A1 (fr) Pulseur d&#39;air pour vehicule automobile alimente par deux tensions
EP3900175B1 (fr) Systeme de commande d&#39;un convertisseur de tension
WO2022029379A2 (fr) Dispositif de coupure de courant pour courant électrique sous haute tension continue, installation avec un tel dispositif, procede de pilotage, et processus d&#39;evaluation de l&#39;integrite d&#39;un conducteur electrique
EP3991290A1 (fr) Commutateur electronique
FR3041827B1 (fr) Dispositif electronique de connexion/deconnexion pour batterie a haute-tension et procede associe
EP2991225A1 (fr) Relais statique de commande d&#39;un démarreur électrique de véhicule automobile et démarreur électrique de véhicule automobile correspondant
FR3019396A1 (fr) Systeme de stabilisation de tension
FR3098042A1 (fr) Systeme de moteur electrique a rotor bobine
FR3038470A1 (fr) Circuit electrique d&#39;alimentation
FR3083393A1 (fr) Procede de detection d&#39;avalanche d&#39;un pont de puissance
WO2020002675A1 (fr) Dispositif de protection d&#39;un composant de puissance pour un pont de transistors
FR3056710A1 (fr) Pulseur d&#39;air pour vehicule automobile alimente par deux tensions
FR2747474A1 (fr) Testeur portable pour les composants semi-conducteurs de puissance et leurs elements de protection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14805999

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2014805999

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE