WO2015056518A1 - 異方性導電フィルム - Google Patents

異方性導電フィルム Download PDF

Info

Publication number
WO2015056518A1
WO2015056518A1 PCT/JP2014/074639 JP2014074639W WO2015056518A1 WO 2015056518 A1 WO2015056518 A1 WO 2015056518A1 JP 2014074639 W JP2014074639 W JP 2014074639W WO 2015056518 A1 WO2015056518 A1 WO 2015056518A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
insulating resin
layer
melt viscosity
minimum melt
Prior art date
Application number
PCT/JP2014/074639
Other languages
English (en)
French (fr)
Inventor
誠一郎 篠原
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN201480054891.7A priority Critical patent/CN105594063A/zh
Priority to US15/027,607 priority patent/US10424538B2/en
Priority to KR1020167008804A priority patent/KR20160050078A/ko
Publication of WO2015056518A1 publication Critical patent/WO2015056518A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/706Anisotropic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/27003Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for holding or transferring the layer preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/271Manufacture and pre-treatment of the layer connector preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2902Disposition
    • H01L2224/29026Disposition relative to the bonding area, e.g. bond pad, of the semiconductor or solid-state body
    • H01L2224/29028Disposition relative to the bonding area, e.g. bond pad, of the semiconductor or solid-state body the layer connector being disposed on at least two separate bonding areas, e.g. bond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29083Three-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29355Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/2939Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29455Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32104Disposition relative to the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32227Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83862Heat curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/38Effects and problems related to the device integration
    • H01L2924/381Pitch distance

Definitions

  • the present invention relates to an anisotropic conductive film.
  • the driving IC and the substrate are anisotropically conductively connected via an anisotropic conductive film, and the display elements in recent years have become more precise and functional.
  • the bumps of such ICs are also narrowed.
  • conductive particles are dispersed on the adhesive layer of the adhesive sheet in which the adhesive layer is formed on the base sheet, and the conductive particles not in contact with the adhesive layer are removed by air blowing to form a single conductive particle-containing layer.
  • the base sheet on which the conductive particle-containing layer is formed is biaxially stretched at a predetermined stretch ratio so that the intended interparticle distance can be obtained, thereby arranging the conductive particles as a single layer (Patent Document 1).
  • the conductive particles can be arranged in a single layer by arranging conductive particles in a specific region of the magnetic medium, removing the excessively attached conductive particles, and then transferring the arranged conductive particles to an insulating adhesive film. It has been proposed (Patent Document 2). In these cases, it is considered that by reducing the particle size of the conductive particles and increasing the density of the conductive particles in the anisotropic conductive film, it becomes easy to cope with the narrow pitch.
  • An object of the present invention is to solve the above-described problems of the conventional technology, and when an anisotropic conductive film is used to connect electrical components with a narrow pitch using an anisotropic conductive film, a short circuit occurs.
  • production is suppressed and it is enabling it to suppress that conduction
  • each resin composition in which the object of the present invention can be achieved by adjusting the minimum melt viscosity of the present invention, and have completed the present invention.
  • the present invention is an anisotropic conductive film in which a conductive particle-containing layer in which conductive particles are arranged in a single layer in a layered binder resin composition is laminated on at least a first insulating resin composition layer.
  • an anisotropic conductive film in which the minimum melt viscosity of the binder resin composition is not less than the minimum melt viscosity of the first insulating resin composition.
  • This anisotropic conductive film of the present invention includes the following aspects.
  • a second insulating resin composition layer is further laminated on the surface of the conductive particle-containing layer opposite to the first insulating resin composition layer, and the minimum melt viscosity of the binder resin composition is A mode higher than the minimum melt viscosity of the second insulating resin composition.
  • This embodiment is an embodiment in which the minimum melt viscosity of one of the first insulating resin composition and the second insulating resin composition is higher than the other minimum melt viscosity, or the first insulating resin composition
  • An embodiment in which the layer thickness is thicker than the other layer thickness is included.
  • the present invention is also a connection body obtained by anisotropically connecting the terminals of the first electrical component and the terminals of the second electrical component through the anisotropic conductive film of the present invention,
  • a connection body characterized in that a conductive particle-containing layer is in a curved state when a cross section is observed from a side surface direction.
  • the anisotropic conductive film of the present invention at least a conductive particle-containing layer in which conductive particles are arranged in a single layer in a layered binder resin composition is laminated on the first insulating resin composition layer.
  • the minimum melt viscosity of the resin composition is adjusted to be equal to or higher than the minimum melt viscosity of the first insulating resin composition. For this reason, the terminal of the first electrical component and the terminal of the second electrical component are arranged so that the anisotropic conductive film is placed between them and the first insulating resin composition layer is on the first electrical component side.
  • connection body is formed by arranging anisotropic conductive connections and observing from the plane direction of the connection surface, the conductive particles 1 blended at a high particle density are continuously arranged as shown in FIG. 1A. It also seems to short-circuit between the electrodes 2 due to contact. However, as shown in FIG. 1B, when observed from the cross-sectional direction along line AA, the conductive particles containing the thermocompression bonded between the terminal 3a of the first electrical component 3 and the terminal 4a of the second electrical component 4 are contained.
  • the layer 10 is pushed to the opposite side of the first insulating resin composition layer 11 to bend, and as a result, the conductive particles 1 move to the second electric component 4 side, and the conductive particles 1 are separated from each other in the thickness direction. Therefore, the occurrence of a short circuit is suppressed, and the decrease in conduction reliability is also suppressed.
  • the resin components are often mixed with each other, and the interface between them is often unclear.
  • the first insulating resin composition layer 11 may also enter the second electrical component 4 side of the conductive particle-containing layer 10.
  • FIG. 1B shows a state in which the first insulating resin composition layer 11 has also entered the second electrical component 4 side of the conductive particle-containing layer 10 as described above.
  • a second insulating resin composition layer is further laminated on the surface of the conductive particle-containing layer opposite to the first insulating resin composition layer, and the minimum melt viscosity of the binder resin composition is When it is higher than the minimum melt viscosity of the second insulating resin composition, the minimum melt viscosity of either the first insulating resin composition or the second insulating resin composition is higher than the minimum melt viscosity of the other. It can be expensive. As shown in FIG.
  • the conductive particle-containing layer 22 is As a result, the conductive particles are pressed and curved toward the first insulating resin composition having the lowest minimum melt viscosity. As a result, the conductive particles are separated from each other in the thickness direction.
  • the conductive particle-containing layer 22, the first insulating resin composition layer 20, and the second insulating resin composition layer 21 may be mixed with resin components and the interface between them may be unclear. Many.
  • the thickness of one of the first insulating resin composition layer 30 and the second insulating resin composition layer 31 may be greater than the thickness of the other layer. . If the layer thickness of the first insulating resin composition layer is thicker than the layer thickness of the second insulating resin composition layer 31, the conductive particle-containing layer 32 has the second insulating property with a small layer thickness.
  • the conductive particles are pushed into the resin composition layer 31 and bent, and as a result, the conductive particles are separated from each other in the thickness direction, so that the occurrence of a short circuit is suppressed and the decrease in conduction reliability is also suppressed.
  • the conductive particle-containing layer 32, the first insulating resin composition layer 30, and the second insulating resin composition layer 31 may be mixed with resin components and the interface between them may be unclear. Many.
  • the conductive particle-containing layer is placed on the side where the terminal height is low. May be able to be pushed and curved.
  • FIG. 1A is a plan perspective view of a connection body. 1B is a cross-sectional view taken along line AA in FIG. 1A.
  • FIG. 2 is a cross-sectional view of the connection body.
  • FIG. 3 is a cross-sectional view of the connection body.
  • FIG. 4 is a cross-sectional view of the anisotropic conductive film of the present invention.
  • FIG. 5 is a cross-sectional view of the anisotropic conductive film of the present invention.
  • FIG. 6A is an explanatory diagram of a device configuration for arranging a single layer of conductive particles.
  • FIG. 6B is an explanatory diagram of an apparatus configuration for arranging a single layer of conductive particles.
  • FIG. 6C is a cross-sectional view of a conductive squeegee.
  • the anisotropic conductive film 40 of the present invention includes at least a first insulating resin composition layer 41 and conductive particles 42 arranged in a single layer in a layered binder resin composition 43.
  • the conductive particle-containing layer 44 has a laminated structure, and the minimum melt viscosity of the binder resin composition is equal to or higher than the minimum melt viscosity of the insulating resin composition. If the minimum melt viscosity of the binder resin composition is equal to or higher than the minimum melt viscosity of the first insulating resin composition, the conductive particle-containing layer 44 may be curved between adjacent terminals during anisotropic conductive connection. It becomes easy.
  • the minimum melt viscosity is a value measured with a viscoelasticity measuring device (Rheometer RS150, Haake).
  • the minimum melt viscosity of the first insulating resin composition layer 41 is preferably adjusted to 10 to 5000 mPa ⁇ s, more preferably 50 to 3000 mPa ⁇ s from the viewpoint of uniform fluidity.
  • the minimum melt viscosity can be adjusted by selecting the type of constituent components of the resin composition, selecting the blending ratio, performing preliminary heating or UV irradiation.
  • the layer thickness of the first insulating resin composition layer 41 is preferably 0.5 to 30 ⁇ m, more preferably 3 to 20 ⁇ m from the viewpoint of preventing short circuit after connection.
  • the first insulating resin composition layer 41 is a layer formed of an insulating thermoplastic resin composition, an insulating thermosetting resin composition, or an insulating photocurable resin composition.
  • the component constitution of these resin compositions can be appropriately selected from known component constitutions, but since most anisotropic conductive connection is carried out by thermocompression bonding, the thermosetting resin composition A configuration is preferable.
  • the polymerization type of the thermosetting resin composition may be thermal radical polymerization, thermal cationic polymerization, or thermal anion polymerization, but thermal cationic polymerization is preferred from the viewpoint of rapid curing at low temperature and connection stability.
  • thermal cationic polymerization type curable resin composition examples include 5 to 80 parts by mass (preferably 10 to 70 parts by mass) of a thermal cationic polymerization compound such as an epoxy compound, an oxetane compound and a vinyl ether compound, and an aromatic sulfonium salt. 0.2-30 parts by mass (preferably 0.5-20 parts by mass) of a thermal cationic polymerization initiator such as 5 and 95 parts by mass (preferably 10-90 parts by mass) of a film forming resin such as a phenoxy resin. Preferable examples include mixed compositions. If necessary, the thermal cationic polymerization type curable resin composition may contain additives such as a silane coupling agent, a rust inhibitor, a colorant, and a solvent.
  • additives such as a silane coupling agent, a rust inhibitor, a colorant, and a solvent.
  • the conductive particle-containing layer 44 has a structure in which the conductive particles 42 are arranged in a single layer on a layered binder resin composition 43.
  • the method of arranging the conductive particles 42 in a single layer in the layered binder resin composition 43 is not particularly limited as long as the effects of the invention are not impaired.
  • the methods disclosed in Patent Documents 1 and 2 mentioned in the section of the prior art can be employed.
  • conductive particles constituting a known anisotropic conductive film can be employed.
  • examples thereof include metal particles such as nickel, and metal-coated resin particles in which a metal plating film such as nickel is formed on the surface of the resin core.
  • An insulating thin film may be formed as necessary.
  • the average particle diameter of the conductive particles 42 is preferably 1 to 20 ⁇ m, more preferably 2 to 10 ⁇ m, from the viewpoint of contact between the terminal to be connected and the conductive particles.
  • Conductive particle density in the conductive particle-containing layer 44 from the viewpoint of preventing short-circuit, preferably 5000 to 80,000 / mm 2, more preferably from 10,000 to 60,000 / mm 2.
  • the distance between adjacent conductive particles is preferably 1 ⁇ m or more, more preferably 1 ⁇ m or more, more preferably 30 ⁇ m or more, particularly preferably 2 ⁇ m or more, from the viewpoint of short circuit prevention. It is within 20 times the conductive particle diameter.
  • This inter-particle distance means a distance from any conductive particle arranged to the closest conductive particle.
  • the conductive particles selected to determine the interparticle distance exist independently without being aggregated.
  • the binder resin composition 43 constituting the conductive particle-containing layer 44 is the same as the first insulating resin composition except that the minimum melt viscosity is not less than the minimum melt viscosity of the first insulating resin composition. It can be set as the same structure.
  • the layer thickness of the conductive particle-containing layer 44 is preferably 0.3 to 3 times, more preferably 0.5 to 2 times the conductive particle diameter, from the viewpoint of stabilizing the retention of the conductive particles.
  • the anisotropic conductive film 50 is further provided with a second insulating film on the surface of the conductive particle-containing layer 44 on the side opposite to the first insulating resin composition layer 41.
  • the resin composition layer 51 has a laminated structure. Also in this aspect, the minimum melt viscosity of the binder resin composition 43 constituting the conductive particle-containing layer 44 is higher than the minimum melt viscosity of the first and second insulating resin composition layers 41 and 51.
  • the conductive particle-containing layer 44 is adjacent to each other during anisotropic conductive connection. It becomes easy to bend between terminals.
  • the second insulating resin composition layer 51 can have the same configuration as the first insulating resin composition layer 41 with respect to the constituent components and the layer thickness.
  • the minimum melt viscosity of the first insulating resin composition and the minimum melt viscosity of the second insulating resin composition may be the same, but the contact between the conductive particles is stabilized by stabilizing the flow. From the standpoint of prevention, it is preferable that one is higher than the other minimum melt viscosity. In this case, the difference between the two is preferably adjusted to 50 to 10000 mPa ⁇ s, more preferably 100 to 5000 mPa ⁇ s from the viewpoint of controlling the direction of flow.
  • the first insulation is preferably 1 to 20 ⁇ m, more preferably 2 to 15 ⁇ m thicker than the thickness of the other layer.
  • the anisotropic conductive film having the structure shown in FIG. 4 can be manufactured by various methods. One example will be described below.
  • the thermal cation polymerizable compound, the thermal cation polymerization initiator, and the film-forming resin are dissolved in a solvent such as ethyl acetate or toluene so that the solid content is 50%, and the resulting solution is removed from the release PET base.
  • the first insulating resin composition layer is applied onto the peeled PET base film by applying to the film by a known method so as to have a predetermined dry thickness, and drying in an oven at 50 to 80 ° C. for 3 to 10 minutes, for example. Can be created.
  • a wiring substrate 62 is prepared in which a line electrode 61 having a predetermined electrode width a, an interelectrode distance b, and an electrode depth c is provided on an insulating substrate 60. A positive potential is applied to 61. Conductive particles 63 are dispersed on the surface of the wiring board 62. Next, a charger 64 for positively charging the conductive particles 63 is arranged on the wiring substrate 62 so as to be orthogonal to the line electrode 61 and to be movable in the length direction on the line electrode 61.
  • a conductive squeegee 65 for squeezing the conductive particles 63 positively charged by the charger 64 is set on the wiring board 62.
  • a conductive squeegee 65 for squeezing the conductive particles 63 positively charged by the charger 64 is set on the wiring board 62.
  • rectangular convex portions 65a corresponding to the line-shaped electrode width a and concave portions 65b corresponding to the interelectrode distance b are alternately provided (FIG. 6C).
  • the charger 64 is moved in the length direction of the line electrode 61 while the conductive particles 63 are positively charged by the charger 64.
  • the positively charged conductive particles 63 are concentrated between the line electrodes 61 to which a positive potential is applied.
  • the conductive squeegee 65 is squeezed on the surface of the wiring board 62 so that the rectangular convex portion 65 a comes into contact with the line electrode 61. Thereby, the single-layer conductive particles 63 can be arranged in a line between the line-shaped electrodes 61.
  • the binder resin composition layer formed on the peeled PET base film which was prepared in the same manner as the first insulating resin composition, was thermocompression-bonded to the conductive particles arranged in a line shape at a level at which the binder resin composition layer was not fully cured. Transfer is performed so as to embed conductive particles in the resin composition layer, whereby a conductive particle-containing layer can be formed on the peeled PET base film.
  • a method of arranging the conductive particles a known method such as a method using a stretched film or a method of transferring using a mold can be employed.
  • Regularity means a sequence that is not a random sequence.
  • the first insulating resin composition layer prepared as described above and the conductive particle-containing layer are opposed to each other and integrated by thermocompression bonding at a level that does not cause the main curing, whereby the anisotropic structure shown in FIG. Conductive film can be obtained.
  • the anisotropic conductive film having the structure shown in FIG. 5 can be manufactured by various methods. One example will be described below.
  • a first insulating resin composition layer and a conductive particle-containing layer are prepared. Further, a second insulating resin composition layer is prepared in the same manner as the first insulating resin composition layer.
  • the anisotropic conductive film of the present invention is provided between a terminal (for example, a bump) of a first electric component (for example, an IC chip) and a terminal (for example, a bump or pad) of a second electric component (for example, a wiring board).
  • the connection body is obtained by arranging in the above-described manner and carrying out main curing from the first or second electric component side by thermocompression bonding and anisotropic conductive connection. When this connection body is observed from the plane direction, the adjacent electrodes may appear to be short-circuited as shown in FIG. 1A, but when this cross section is observed from the side direction, as shown in FIG.
  • the conductive particle-containing layer is curved, the conductive particles are not in contact with each other, and the planar direction is insulated. Therefore, in the connection body, occurrence of a short circuit is suppressed and a decrease in conduction reliability is also suppressed.
  • the regularity of the particles works effectively to suppress short-circuiting, considering that the conductive particles appear to be in contact with each other in the observation from the planar direction.
  • the conductive particle-containing layer is in a curved state when the arranged conductive particles are regarded as a group, the group exhibits flexibility.
  • Examples 1 to 8, Comparative Examples 1 and 2 (Formation of first insulating resin composition layer)
  • a first insulating resin composition mixed solution of 50% solid content was prepared using toluene, and this mixed solution was applied to a peeled PET base sheet as shown in Table 1. It apply
  • the minimum melt viscosity of the first insulating resin composition layer was measured with a viscoelasticity measuring device (Rheometer RS150, Haake), and the results are shown in Table 1.
  • Second insulating resin composition layer (Formation of second insulating resin composition layer) According to the composition shown in Table 1 (unit: parts by mass), a second insulating resin composition mixed solution of 50% solid content is prepared using toluene, and this mixed solution is applied to the peeled PET base sheet as shown in Table 1. It apply
  • Electrode width in Table 1 distance between electrodes: 3.5 ⁇ m, electrode depth: 3.5 ⁇ m
  • conductive particles having an average particle diameter of 3 ⁇ m (AUL703, Sekisui) on the wiring board. Chemical Industry Co., Ltd.) was arranged in a single layer in a line at the particle density shown in Table 1.
  • the conductive particles are arranged on the binder resin composition layer by arranging a binder resin composition layer on the conductive particles arranged in a single layer in this line shape and laminating at 40 ° C. and 0.1 MPa from the peeled PET base sheet side.
  • a conductive particle-containing layer having the indented structure and having a thickness of Table 1 was formed.
  • the first insulating resin composition layer is disposed on the surface of the conductive particle-containing layer on the side where the conductive particles are pressed, and the second insulating resin composition layer is disposed on the other surface.
  • An anisotropic conductive film was prepared by laminating at 1 MPa.
  • Example 9 An anisotropic conductive film having a two-layer structure was prepared in accordance with the operation performed in Example 1 except that the second insulating resin composition layer was not used.
  • Example 10 An anisotropic conductive film having a two-layer structure was prepared in accordance with the operation performed in Example 1 except that the first insulating resin composition layer was not used.
  • the short-circuit occurrence rate was calculated by “number of short-circuits / total number of 7.5 ⁇ m spaces”. Practically, it is desirably 100 ppm or less.
  • Initial conduction resistance The initial conduction resistance of the connection body immediately after preparation was measured using a commercially available resistance measuring instrument. Practically, it is desired to be 10 ⁇ or less.
  • the anisotropic connection portion of the connection structure is cut in a direction perpendicular to the planar direction and perpendicular to the line-shaped conductive particle array, and the cut surface is observed with a microscope to obtain “conductive particles.
  • the bending direction of the containing layer was examined. When the curvature of the conductive particle-containing layer existing in the space between the bumps in the plane direction of the connection body is convex toward the first insulating resin composition layer side, the bending direction is “up”, and the second insulating resin The curve direction was defined as “down” when the composition layer was convex.
  • connection structure is cut in a direction perpendicular to the planar direction and perpendicular to the line-shaped conductive particle array, and the cut surface is observed with a microscope to obtain “conductive particles.
  • the bending length of the containing layer was determined.
  • the shortest distance from the straight line extending in the horizontal direction between the centers of the opposing bumps that were anisotropically conductively connected to the tip of the curved convex portion of the conductive particle-containing layer was defined as the “curved length of the conductive particle-containing layer”.
  • connection between conductive particles The anisotropic connection portion of the connection structure is cut in a direction perpendicular to the planar direction and perpendicular to the line-shaped conductive particle array, and the cut surface is observed with a microscope to obtain “conductive particles. "Distance” was calculated. The distance between the adjacent conductive particles in the conductive particle-containing layer existing in the space between the bumps in the planar direction of the connection body was defined as “distance between the conductive particles”.
  • the minimum melt viscosity of the binder resin composition constituting the conductive particle-containing layer is equal to or higher than the minimum melt viscosity of the first insulating resin composition.
  • the particle-containing layer was convexly curved toward the wiring board side. For this reason, the initial conduction resistance was also low, and the conduction reliability after the high temperature and high humidity load test was also high. Moreover, the occurrence of a short circuit was also suppressed.
  • the minimum melt viscosity of the binder resin composition constituting the conductive particle-containing layer is equal to or higher than the minimum melt viscosity of the second insulating resin composition.
  • the particle-containing layer was convexly curved toward the IC chip. For this reason, the initial conduction resistance was also low, and the conduction reliability after the high temperature and high humidity load test was also high. Moreover, the occurrence of a short circuit was also suppressed.
  • the minimum melt viscosity of the binder resin composition constituting the conductive particle-containing layer is the minimum melt viscosity of the first and second insulating resin compositions. Higher. Moreover, the minimum melt viscosity of one of the first insulating resin composition and the second insulating resin composition is higher than the other minimum melt viscosity. For this reason, the conductive particle-containing layer in the connection body was convexly curved toward the insulating resin composition layer exhibiting a lower minimum melt viscosity. For this reason, the initial conduction resistance was also low, and the conduction reliability after the high temperature and high humidity load test was also high. Moreover, the occurrence of a short circuit was also suppressed.
  • the minimum melt viscosity of the binder resin composition constituting the conductive particle-containing layer is higher than the minimum melt viscosity of the first and second insulating resin compositions.
  • the minimum melt viscosity of the first insulating resin composition and the second insulating resin composition was the same.
  • the bump height of the IC chip is much larger than the electrode height of the wiring board, the conductive particle-containing layer in the connection body is convexly curved toward the first insulating resin composition layer side on the IC chip side. did. For this reason, the initial conduction resistance was also low, and the conduction reliability after the high temperature and high humidity load test was also high. Moreover, the occurrence of a short circuit was also suppressed.
  • the minimum melt viscosity of the binder resin composition constituting the conductive particle-containing layer is higher than the minimum melt viscosity of the first and second insulating resin compositions.
  • the minimum melt viscosity of the first insulating resin composition and the second insulating resin composition was the same.
  • the layer thickness of the first insulating resin composition is much thicker than the layer thickness of the second insulating resin composition, the conductive particle-containing layer in the connection body is the second on the wiring board side. It was convexly curved toward the insulating resin composition layer side. For this reason, the initial conduction resistance was also low, and the conduction reliability after the high temperature and high humidity load test was also high. Moreover, the occurrence of a short circuit was also suppressed.
  • the anisotropic conductive film of Comparative Example 1 and the anisotropic conductive film of Comparative Example 2 have different conductive particle densities, but the first insulating resin composition, the binder resin composition, and the second The minimum melt viscosity of the insulating resin composition was the same. For this reason, the connection body using the anisotropic conductive film of Comparative Example 1 had a high incidence of short circuit. The connection body using the anisotropic conductive film of Comparative Example 2 had low conduction reliability.
  • anisotropic conductive film of the present invention when an anisotropic conductive film is used to make an anisotropic conductive connection between narrowed electrical components, the occurrence of a short circuit is suppressed, and a high temperature and high humidity environment is achieved. It can suppress that conduction

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Geometry (AREA)
  • Non-Insulated Conductors (AREA)
  • Wire Bonding (AREA)

Abstract

 狭ピッチ化された電気部品同士を異方性導電接続する際に、ショートの発生を抑制し、高温高湿環境下での保管により導通信頼性が低下することを抑制できる異方性導電フィルムは、少なくとも、第一の絶縁性樹脂組成物層上に、導電粒子が層状のバインダ樹脂組成物に単層配列されてなる導電粒子含有層が積層された構造を有する。ここで、バインダ樹脂組成物の最低溶融粘度は、第一の絶縁性樹脂組成物の最低溶融粘度以上である。また、導電粒子含有層の、第一の絶縁性樹脂組成物層と反対面に、更に第二の絶縁性樹脂組成物層が積層されていてもよい。その場合、バインダ樹脂組成物の最低溶融粘度は、第一及び第二の絶縁性樹脂組成物の最低溶融粘度より高い。

Description

異方性導電フィルム
 本発明は、異方性導電フィルムに関する。
 液晶パネルや有機ELパネル等の多くの表示素子においては、駆動ICと基板とが異方性導電フィルムを介して異方性導電接続されており、近年の表示素子の高精細化と高機能化とを実現するために、そのようなICのバンプも狭ピッチ化している。
 従来、ICバンプの狭ピッチ化に対応するために、異方性導電フィルム中で導電粒子を単層で配列することが提案されている。たとえば、ベースシートに接着剤層を形成した接着シートの当該接着剤層に導電粒子を散布し、接着剤層に接触していない導電粒子をエアブローで取り除いて単層の導電粒子含有層を形成し、その導電粒子含有層が形成されたベースシートを、意図した粒子間距離が得られるように所定の延伸倍率で2軸延伸することで、導電粒子を単層配列することや(特許文献1)、磁性媒体の特定領域に導電粒子を配置させ、過剰に付着した導電粒子を取り除いた後、配置された導電粒子を絶縁性接着剤フィルムに転写することで、導電粒子を単層配列することが提案されている(特許文献2)。これらの場合、導電粒子の粒径を小さくし、異方性導電フィルム中の導電粒子密度を高くすることで、狭ピッチ化に対応し易くなると考えられている。
特許第4789738号 特許第4887700号
 しかしながら、特許文献1~2の技術を利用して作成された、導電粒子含有層のみの単層タイプの異方性導電フィルムや、更に絶縁性樹脂組成物層を積層した2層構造タイプの異方性導電フィルムは、ICチップの高レベルの狭ピッチ化に十分に対応できない場合があった。具体的には、そのような異方性導電フィルムを使用して電気部品同士を異方性導電接続した際に、ショートの発生が増大したり、高温高湿環境下での保管により導通抵抗が増大して導通信頼性が低下するという問題が発生する場合があった。
 本発明の目的は、以上の従来の技術の問題点を解決することであり、異方性導電フィルムを使用して狭ピッチ化された電気部品同士を異方性導電接続した際に、ショートの発生を抑制し、高温高湿環境下での保管により導通信頼性が低下することを抑制できるようにすることである。
 本発明者は、少なくとも、第一の絶縁性樹脂組成物層上に、導電粒子が層状のバインダ樹脂組成物に単層配列されてなる導電粒子含有層が積層された異方性導電フィルムにおいて、あるいは、第一の絶縁性樹脂組成物層と反対側の導電粒子含有層の表面に、更に第二の絶縁性樹脂組成物層が積層されている異方性導電フィルムにおいて、それぞれの樹脂組成物の最低溶融粘度を調整することにより本願発明の目的を達成できることを見出し、本発明を完成させるに至った。
 即ち、本発明は、少なくとも、第一の絶縁性樹脂組成物層上に、導電粒子が層状のバインダ樹脂組成物に単層配列されてなる導電粒子含有層が積層された異方性導電フィルムであって、
 バインダ樹脂組成物の最低溶融粘度が、第一の絶縁性樹脂組成物の最低溶融粘度以上である異方性導電フィルムを提供する。本発明のこの異方性導電フィルムは以下の態様を包含する。
 導電粒子含有層の、第一の絶縁性樹脂組成物層と反対面に、更に第二の絶縁性樹脂組成物層が積層されており、バインダ樹脂組成物の最低溶融粘度が、第一及び第二の絶縁性樹脂組成物の最低溶融粘度より高い態様。
 なお、この態様は、第一の絶縁性樹脂組成物と第二の絶縁性樹脂組成物の一方の最低溶融粘度が、他方の最低溶融粘度よりも高い態様や、第一の絶縁性樹脂組成物の最低溶融粘度と第二の絶縁性樹脂組成物の最低溶融粘度とが同一もしくは略同一である場合に、第一の絶縁性樹脂組成物層及び第二の絶縁性樹脂組成物層の一方の層厚が他方の層厚よりも厚い態様を包含する。
 本発明は、また、第一の電気部品の端子と第二の電気部品の端子とを、本発明の異方性導電フィルムを介して異方性導電接続してなる接続体であって、その断面を側面方向から観察したときに、導電粒子含有層が湾曲した状態になることを特徴とする接続体を提供する。
 少なくとも、第一の絶縁性樹脂組成物層上に、導電粒子が層状のバインダ樹脂組成物に単層配列されてなる導電粒子含有層が積層された本発明の異方性導電フィルムにおいては、バインダ樹脂組成物の最低溶融粘度が、第一の絶縁性樹脂組成物の最低溶融粘度以上に調整されている。このため、第一の電気部品の端子と第二の電気部品の端子とを、それらの間に異方性導電フィルムを第一の絶縁性樹脂組成物層が第一の電気部品側になるように配置して異方性導電接続して接続体を作成した場合、その接続面の平面方向から観察すると、図1Aのように、高粒子密度で配合された導電粒子1同士が互いに連続的に接触して電極2間をショートさせてしまうようにも見える。しかし、図1Bに示すように、A-A線断面方向から観察したときには、第一の電気部品3の端子3aと第二の電気部品4の端子4aとの間で熱圧着された導電粒子含有層10が第一の絶縁性樹脂組成物層11と反対側に押し込まれて湾曲し、その結果、導電粒子1が第二の電気部品4側に移動し、厚み方向で導電粒子1同士が離隔するので、ショートの発生が抑制され、導通信頼性の低下も抑制される。この場合、導電粒子含有層10と第一の絶縁性樹脂組成物層11とは、樹脂成分が互いに混ざり合い、それらの界面が不明確になる場合が多い。また、導電粒子含有層10の第二の電気部品4側にも第一の絶縁性樹脂組成物層11が入り込む場合がある。図1Bは、そのように、導電粒子含有層10の第二の電気部品4側にも第一の絶縁性樹脂組成物層11が入り込んでいる様子を示している。
 また、第一の絶縁性樹脂組成物層と反対側の導電粒子含有層の表面に、更に第二の絶縁性樹脂組成物層が積層され、バインダ樹脂組成物の最低溶融粘度が、第一及び第二の絶縁性樹脂組成物の最低溶融粘度より高い場合、第一の絶縁性樹脂組成物と第二の絶縁性樹脂組成物のいずれか一方の最低溶融粘度が、他方の最低溶融粘度よりも高い場合が考えられる。図2に示すように、仮に第一の絶縁性樹脂組成物層20の最低溶融粘度が第二の絶縁性樹脂組成物21の最低溶融粘度よりも低い場合には、導電粒子含有層22が、最低溶融粘度が低い第一の絶縁性樹脂組成物側に押し込まれて湾曲し、その結果、厚み方向で導電粒子同士が離隔するので、ショートの発生が抑制され、導通信頼性の低下も抑制される。この場合、導電粒子含有層22と第一の絶縁性樹脂組成物層20と第二の絶縁性樹脂組成物層21とは、樹脂成分が互いに混ざり合い、それらの界面が不明確になる場合が多い。
 なお、第一の絶縁性樹脂組成物の最低溶融粘度と第二の絶縁性樹脂組成物の最低溶融粘度とが同一もしくは略同一である場合、導電粒子含有層の湾曲を形成できないようにも考えられるが、図3に示すように、第一の絶縁性樹脂組成物層30及び第二の絶縁性樹脂組成物層31のいずれか一方の層厚が他方の層厚よりも厚くなる場合がある。仮に第一の絶縁性樹脂組成物層の層厚が第二の絶縁性樹脂組成物層31の層厚よりも厚い場合には、導電粒子含有層32は、層厚の薄い第二の絶縁性樹脂組成物層31側に押し込まれて湾曲し、その結果、厚み方向で導電粒子同士が離隔するので、ショートの発生が抑制され、導通信頼性の低下も抑制される。この場合、導電粒子含有層32と第一の絶縁性樹脂組成物層30と第二の絶縁性樹脂組成物層31とは、樹脂成分が互いに混ざり合い、それらの界面が不明確になる場合が多い。
 なお、第一の電気部品の端子(例えばバンプ)の高さと、第二の電気部品の端子(例えばバンプ)の高さとが互いに大きく異なる場合には、端子高さが低い側に導電粒子含有層を押し込み、湾曲させることが可能になる場合がある。
図1Aは、接続体の平面透視図である。 図1Bは、図1AのA-A線断面図である。 図2は、接続体の断面図である。 図3は、接続体の断面図である。 図4は、本発明の異方性導電フィルムの断面図である。 図5は、本発明の異方性導電フィルムの断面図である。 図6Aは、導電粒子を単層配列するための装置構成説明図である。 図6Bは、導電粒子を単層配列するための装置構成説明図である。 図6Cは、導電スキージの断面図である。
<異方性導電フィルム>
 本発明の異方性導電フィルム40は、図4に示すように、少なくとも、第一の絶縁性樹脂組成物層41に、導電粒子42が層状のバインダ樹脂組成物43に単層配列されてなる導電粒子含有層44が積層された構造を有し、バインダ樹脂組成物の最低溶融粘度が、絶縁性樹脂組成物の最低溶融粘度以上であることを特徴とする。バインダ樹脂組成物の最低溶融粘度が、第一の絶縁性樹脂組成物の最低溶融粘度以上であれば、異方性導電接続の際に導電粒子含有層44を、隣接端子間で湾曲させることが容易となる。ここで、最低溶融粘度は、粘弾性測定装置(レオメーターRS150、ハーケ社)で測定した値である。
<第一の絶縁性樹脂組成物層>
 第一の絶縁性樹脂組成物層41の最低溶融粘度は、均一な流動性の点から、好ましくは10~5000mPa・s、より好ましくは50~3000mPa・sに調整する。最低溶融粘度の調整は、樹脂組成物の構成成分の種類の選択、配合割合の選択、予備的な加熱もしくはUV照射の実施等により行うことができる。
 第一の絶縁性樹脂組成物層41の層厚は、接続後の短絡防止の点から、好ましくは0.5~30μm、より好ましくは3~20μmである。
 第一の絶縁性樹脂組成物層41は、絶縁性熱可塑性樹脂組成物、絶縁性熱硬化性樹脂組成物、あるいは絶縁性光硬化性樹脂組成物により形成された層である。これらの樹脂組成物の成分構成については、公知の成分構成の中から適宜選択することができるが、殆どの異方性導電接続が熱圧着により実施されることから、熱硬化性樹脂組成物の構成とすることが好ましい。熱硬化性樹脂組成物の重合形式としては、熱ラジカル重合でも、熱カチオン重合でも、熱アニオン重合でもかまわないが、低温での迅速な硬化と接続安定性の点から熱カチオン重合が好ましい。このような熱カチオン重合型硬化性樹脂組成物としては、エポキシ化合物、オキセタン化合物、ビニルエーテル化合物等の熱カチオン重合性化合物5~80質量部(好ましくは10~70質量部)と、芳香族スルホニウム塩などの熱カチオン重合開始剤0.2~30質量部(好ましくは0.5~20質量部)と、フェノキシ樹脂等の成膜樹脂5~95質量部(好ましくは10~90質量部)とを混合した組成物を好ましく挙げることができる。必要に応じて、熱カチオン重合型硬化性樹脂組成物には、シランカップリング剤、防錆剤、着色剤、溶剤などの添加剤を含有することができる。
<導電粒子含有層>
 導電粒子含有層44は、導電粒子42が層状のバインダ樹脂組成物43に単層配列された構造を有する。導電粒子42を、層状のバインダ樹脂組成物43に単層配列する手法としては、発明の効果を損なわないかぎり、特に限定されない。例えば、従来技術の欄で言及した特許文献1~2に開示の手法を採用することができる。
 導電粒子42としては、公知の異方性導電フィルムを構成している導電粒子を採用することができる。例えば、ニッケルなどの金属粒子、樹脂コアの表面にニッケル等の金属メッキ膜を形成した金属被覆樹脂粒子等が挙げられる。必要に応じて絶縁薄膜が形成されていてもよい。
 このような導電粒子42の平均粒径としては、接続されるべき端子と導電粒子との接触性の点から、好ましくは1~20μm、より好ましくは2~10μmである。
 導電粒子含有層44における導電粒子密度は、短絡防止の観点から、好ましくは5000~80000個/mmで、より好ましくは10000~60000個/mmである。
 また、導電粒子含有層44において、互いに隣接する導電粒子同士の粒子間距離は、短絡防止の観点から、好ましくは1μm以上、より好ましくは1μm以上導電粒子径の30倍以内、特に好ましくは2μm以上導電粒子径の20倍以内である。この粒子間距離は、配列されている任意の導電粒子から最も近接している導電粒子までの距離を意味する。ここで、粒子間距離を確定するために選択される導電粒子は、凝集せずに独立的に存在しているものである。
 なお、導電粒子含有層44を構成するバインダ樹脂組成物43としては、その最低溶融粘度を第一の絶縁性樹脂組成物の最低溶融粘度以上とすること以外、第一の絶縁性樹脂組成物と同様の構成とすることができる。
 導電粒子含有層44の層厚は、導電粒子の保持性を安定させる点から、好ましくは導電粒子径の0.3倍以上3倍以下、より好ましくは0.5倍以上2倍以下である。
<別の態様の異方性導電フィルム>
 図5に示すように、本発明の別の態様の異方性導電フィルム50は、第一の絶縁性樹脂組成物層41と反対側の導電粒子含有層44の表面に、更に第二の絶縁性樹脂組成物層51が積層されている構造を有する。この態様においても、導電粒子含有層44を構成するバインダ樹脂組成物43の最低溶融粘度が、第一及び第二の絶縁性樹脂組成物層41、51の最低溶融粘度より高くなっている。バインダ樹脂組成物43の最低溶融粘度が、第一及び第二の絶縁性樹脂組成物層41、51の最低溶融粘度より高いと、異方性導電接続の際に導電粒子含有層44を、隣接端子間で湾曲させることが容易となる。
<第二の絶縁性樹脂組成物層>
 第二の絶縁性樹脂組成物層51は、構成成分、層厚については、第一の絶縁性樹脂組成物層41と同様の構成とすることができる。
 なお、第一の絶縁性樹脂組成物の最低溶融粘度と第二の絶縁性樹脂組成物の最低溶融粘度とは、同じであってもよいが、流動を安定させることにより導電粒子同士の接触を防止する点から、一方が他方の最低溶融粘度よりも高いことが好ましい。この場合、両者の差は、流動の方向性を制御する点から、好ましくは50~10000mPa・s、より好ましくは100~5000mPa・sに調整する。
 第一の絶縁性樹脂組成物の最低溶融粘度と第二の絶縁性樹脂組成物の最低溶融粘度とが同一もしくは略同一である場合、同一方向への流動を実現するために、第一の絶縁性樹脂組成物層41及び第二の絶縁性樹脂組成物層51のいずれか一方の層厚を、他方の層厚よりも好ましくは1~20μm、より好ましくは2~15μm厚くすることが好ましい。
<図4に示す構造の異方性導電フィルムの製造>
 図4に示す構造の異方性導電フィルムは、種々の手法により製造することができる。その一例を以下に説明する。
(第一の絶縁性樹脂組成物層の作成)
 熱カチオン重合性化合物と、熱カチオン重合開始剤と、成膜樹脂とを、固形分が50%となるように、酢酸エチルやトルエン等の溶媒に溶解し、得られた溶液を、剥離PETベースフィルムに所定の乾燥厚となるように公知の手法で塗布し、例えば50~80℃のオーブン中で3~10分間乾燥することにより、剥離PETベースフィルム上に第一の絶縁性樹脂組成物層が作成できる。
(導電粒子含有層の作成)
 図6A、6Bに示すように、絶縁基板60上に、所定の電極巾aと電極間距離bと電極深さcを有するライン状電極61が設けられた配線基板62を用意し、ライン状電極61に正電位を付与する。その配線基板62表面に導電粒子63を散布する。次に、配線基板62上に、導電粒子63を正に帯電させるための帯電器64をライン状電極61に直交するように且つライン状電極61に長さ方向に移動可能に配置する。更に、帯電器64で正に帯電させた導電粒子63をスキージする導電スキージ65を配線基板62上にセットする。導電スキージ65のスキージ表面には、ライン状の電極巾aに相当する矩形凸部65aと電極間距離bに相当する凹部65bが交互に設けられている(図6C)。次に、帯電器64で導電粒子63を正に帯電させながら当該帯電器64をライン状電極61の長さ方向に移動させる。そうすると、正に帯電した導電粒子63は、正電位が付与されているライン状電極61間に集中するようになる。次に、帯電器64の移動に続いて、導電スキージ65を、矩形凸部65aがライン状電極61に当接するように配線基板62表面をスキージする。これにより、ライン状電極61間に単層の導電粒子63をライン状に配列することができる。
 このライン状に配列した導電粒子に対し、第一の絶縁性樹脂組成物と同様に作成した、剥離PETベースフィルム上に形成されたバインダ樹脂組成物層を本硬化しないレベルで熱圧着し、バインダ樹脂組成物層に導電粒子を埋めこむように転写し、これにより剥離PETベースフィルム上に導電粒子含有層を作成できる。このように、導電粒子を配列させる手法は、延伸フィルムを用いる手法、型を用いて転写させる手法等、公知の手法を採用することができる。ここで、導電粒子を配列する際、個数基準で90%以上、好ましくは95%以上の導電粒子に規則性を持たせることが望ましい。規則性とは、ランダム配列ではない配列を意味する。
(導電粒子含有層と第一の絶縁性樹脂組成物層との一体化)
 上述のように用意した第一の絶縁性樹脂組成物層と、導電粒子含有層とを対向させて本硬化しないレベルで熱圧着することにより一体化することにより、図4に示す構造の異方性導電フィルムを得ることができる。
<図5に示す構造の異方性導電フィルムの製造>
 図5に示す構造の異方性導電フィルムは、種々の手法により製造することができる。その一例を以下に説明する。
 図4に示す構造の異方性導電フィルムを製造する場合と同様に、第一の絶縁性樹脂組成物層と、導電粒子含有層とを作成する。更に、第一の絶縁性樹脂組成物層の作成と同様に第二の絶縁性樹脂組成物層を作成する。上述のように用意した導電粒子含有層を、第一の絶縁性樹脂組成物層と第二の絶縁性樹脂組成物層とで挟み、本硬化しないレベルで熱圧着することにより一体化することにより、図5に示す構造の異方性導電フィルムを得ることができる。
<接続体>
 本発明の異方性導電フィルムは、第一の電気部品(例えば、ICチップ)の端子(例えばバンプ)と、第二の電気部品(例えば配線基板)の端子(例えばバンプ、パッド)との間に配置し、第一又は第二の電気部品側から熱圧着により本硬化させて異方性導電接続することにより接続体が得られる。この接続体を平面方向から観察したときには、隣接電極間が図1Aに示すように、ショートしているように見える場合があるが、この断面を側面方向から観察すると、図1Bに示すように、導電粒子含有層が湾曲し、導電粒子同士が互いに接触しておらず、平面方向は絶縁されている。従って、接続体は、ショートの発生が抑制され、導通信頼性の低下も抑制されたものとなる。ここで、平面方向からの観察では導電粒子が互いに接触しているように見えていることを考慮すると、粒子の規則性がショートの抑制に効果的に働いていることがわかる。なお、導電粒子含有層が湾曲した状態になるということは、配列された導電粒子を群と見なした場合に、その群が屈曲性を示していると解することができる。
 以下、本発明を実施例により具体的に説明する。
  実施例1~8、比較例1、2
(第一の絶縁性樹脂組成物層の形成)
 表1に示す配合(単位:質量部)に従って、トルエンを用いて50%固形分の第一の絶縁性樹脂組成物混合液を調製し、この混合液を剥離PETベースシート上に、表1の乾燥厚となるように塗布し、80℃で5分間乾燥することにより、第一の絶縁性樹脂組成物層を形成した。なお、第一の絶縁性樹脂組成物層の最低溶融粘度を粘弾性測定装置(レオメーターRS150、ハーケ社)で測定し、その結果を表1に示した。
(第二の絶縁性樹脂組成物層の形成)
 表1に示す配合(単位:質量部)に従って、トルエンを用いて50%固形分の第二の絶縁性樹脂組成物混合液を調製し、この混合液を剥離PETベースシート上に、表1の乾燥厚となるように塗布し、80℃で5分間乾燥することにより、第二の絶縁性樹脂組成物層を形成した。なお、第二の絶縁性樹脂組成物層の最低溶融粘度を粘弾性測定装置(レオメーターRS150、ハーケ社)で測定し、その結果を表1に示した。
(導電粒子含有層の形成)
 表1に示す配合(単位:質量部)に従って、トルエンを用いて50%固形分のバインダ樹脂組成物混合液を調製し、この混合液を剥離PETベースシート上に、表1の乾燥厚となるように塗布し、80℃で5分間乾燥することにより、バインダ樹脂組成物層を形成した。なお、バインダ樹脂組成物層の最低溶融粘度を粘弾性測定装置(レオメーターRS150、ハーケ社)で測定し、その結果を表1に示した。
 次に、図6A、6Bに示す装置(表1の電極巾、電極間距離3.5μm、電極深さ3.5μm)を用いて、配線基板上に平均粒径3μmの導電粒子(AUL703、積水化学工業(株))を表1の粒子密度でライン状に単層配列させた。このライン状に単層配列された導電粒子に対し、バインダ樹脂組成物層を配置し、剥離PETベースシート側から40℃、0.1MPaでラミネートすることにより、導電粒子がバインダ樹脂組成物層に押し込まれた構造を有する表1の厚みの導電粒子含有層を形成した。
(異方性導電フィルムの作成)
 導電粒子含有層の導電粒子を押し込んだ側の表面に、第一の絶縁性樹脂組成物層を配置し、他面に第二の絶縁性樹脂組成物層を配置し、全体を40℃、0.1MPaでラミネートすることにより、異方性導電フィルムを作成した。
  実施例9
 第二の絶縁性樹脂組成物層を使用しない以外は、実施例1で行われた操作に準じて2層構造の異方性導電フィルムを作成した。
  実施例10
 第一の絶縁性樹脂組成物層を使用しない以外は、実施例1で行われた操作に準じて2層構造の異方性導電フィルムを作成した。
<接続体の評価>
(接続体の作成)
 各実施例及び比較例で作成した異方性導電フィルムを用いて、ICチップのバンプとポリイミドベースの配線基板の電極との間を、熱圧着により異方性導電接続した。なお、異方性接続時には第一の絶縁性樹脂組成物層をICチップ側に配置した。
 熱圧着条件: 180℃、80MPa、5秒
 ICチップのサイズ:1.5mm×13mm、0.5mmt
 ICチップのバンプ:金メッキバンプ、25μm×25μm、バンプ高さ(表1)、バンプ間スペース7.5μm
 配線基板の電極:金メッキ電極、Line/Space=16.5μm/16μm、電極高さ(表1)、電極間スペース7.5μm
(性能評価)
 得られた接続体について、以下に説明するように、「導電粒子捕捉数」、「ショート発生率」、「初期導通抵抗」、「高温高湿負荷試験後の導通抵抗(導通信頼性)」、「導電粒子含有層の湾曲方向」、「導電粒子含有層の湾曲長」、「導電粒子間距離」について測定した。得られた結果を表1に示す。
「導電粒子捕捉数」
 圧着したICの全バンプから任意の300個のバンプを選択し、バンプ上に存在する導電粒子数を顕微鏡にてカウントし、その平均値と標準偏差とを求めた。接続実用上、導電粒子数は平均-3σの値が3個以上であることが望まれる。
「ショート発生率」
 ショート発生率は、「ショートの発生数/7.5μmスペース総数」で算出した。実用上、100ppm以下であることが望ましい。
「初期導通抵抗」
 作成直後の接続体の初期導通抵抗を市販の抵抗測定器を用いて測定した。実用上、10Ω以下であることが望まれる。
「高温高湿負荷試験後の導通抵抗(導通信頼性)」
 接続体を、85℃、85%Rhに維持されたチャンバー中で1000時間放置した後の接続体の導通抵抗を市販の抵抗測定器を用いて測定した。実用上、10Ω以下であることが望まれる。
「導電粒子含有層の湾曲方向」
 接続構造体の異方性接続部を平面方向に対して垂直方向であって、且つライン状の導電粒子配列に対して直交する方向に切断し、その切断面を顕微鏡観察して、「導電粒子含有層の湾曲方向」を調べた。接続体の平面方向におけるバンプ間スペースに存在する導電粒子含有層の湾曲が、第一の絶縁性樹脂組成物層側に凸である場合を湾曲方向が「上」とし、第二の絶縁性樹脂組成物層側に凸である場合を湾曲方向が「下」とした。
「導電粒子含有層の湾曲長」
 接続構造体の異方性接続部を平面方向に対して垂直方向であって、且つライン状の導電粒子配列に対して直交する方向に切断し、その切断面を顕微鏡観察して、「導電粒子含有層の湾曲長」を求めた。異方性導電接続した対向するバンプ間の中心を水平方向に延ばした直線と、導電粒子含有層の湾曲凸部先端までの最短距離を、「導電粒子含有層の湾曲長」とした。
「導電粒子間距離」
 接続構造体の異方性接続部を平面方向に対して垂直方向であって、且つライン状の導電粒子配列に対して直交する方向に切断し、その切断面を顕微鏡観察して、「導電粒子間距離」を求めた。接続体の平面方向におけるバンプ間スペースに存在する導電粒子含有層における互いに隣接する導電粒子間の距離を、「導電粒子間距離」とした。
Figure JPOXMLDOC01-appb-T000001
<考察>
 実施例9の異方性導電フィルムの場合、導電粒子含有層を構成するバインダ樹脂組成物の最低溶融粘度が、第一の絶縁性樹脂組成物の最低溶融粘度以上であるので、接続体における導電粒子含有層が配線基板側に凸に湾曲した。このため、初期導通抵抗も低く、高温高湿負荷試験後の導通信頼性も高いものであった。また、ショートの発生も抑制されていた。
 実施例10の異方性導電フィルムの場合、導電粒子含有層を構成するバインダ樹脂組成物の最低溶融粘度が、第二の絶縁性樹脂組成物の最低溶融粘度以上であるので、接続体における導電粒子含有層がICチップ側に凸に湾曲した。このため、初期導通抵抗も低く、高温高湿負荷試験後の導通信頼性も高いものであった。また、ショートの発生も抑制されていた。
 実施例1、2、5~8の異方性導電フィルムの場合、導電粒子含有層を構成するバインダ樹脂組成物の最低溶融粘度が、第一及び第二の絶縁性樹脂組成物の最低溶融粘度より高くなっている。しかも、第一の絶縁性樹脂組成物と第二の絶縁性樹脂組成物の一方の最低溶融粘度が、他方の最低溶融粘度よりも高くなっている。このため、接続体における導電粒子含有層が、より低い最低溶融粘度を示す絶縁性樹脂組成物層側に凸に湾曲した。このため、初期導通抵抗も低く、高温高湿負荷試験後の導通信頼性も高いものであった。また、ショートの発生も抑制されていた。
 実施例3の異方性導電フィルムの場合、導電粒子含有層を構成するバインダ樹脂組成物の最低溶融粘度が、第一及び第二の絶縁性樹脂組成物の最低溶融粘度より高くなっているが、第一の絶縁性樹脂組成物と第二の絶縁性樹脂組成物の最低溶融粘度が同じであった。しかし、ICチップのバンプ高さが配線基板の電極高さよりも非常に大きくなっていたため、接続体における導電粒子含有層が、ICチップ側の第一の絶縁性樹脂組成物層側に凸に湾曲した。このため、初期導通抵抗も低く、高温高湿負荷試験後の導通信頼性も高いものであった。また、ショートの発生も抑制されていた。
 実施例4の異方性導電フィルムの場合、導電粒子含有層を構成するバインダ樹脂組成物の最低溶融粘度が、第一及び第二の絶縁性樹脂組成物の最低溶融粘度より高くなっているが、第一の絶縁性樹脂組成物と第二の絶縁性樹脂組成物の最低溶融粘度が同じであった。しかし、第一の絶縁性樹脂組成物の層厚が、第二の絶縁性樹脂組成物の層厚よりも非常に厚くなっていたため、接続体における導電粒子含有層が、配線基板側の第二の絶縁性樹脂組成物層側に凸に湾曲した。このため、初期導通抵抗も低く、高温高湿負荷試験後の導通信頼性も高いものであった。また、ショートの発生も抑制されていた。
 それに対し、比較例1の異方性導電フィルムと比較例2の異方性導電フィルムとは、導電粒子密度が互いに異なるものの、第一の絶縁性樹脂組成物、バインダ樹脂組成物及び第二の絶縁性樹脂組成物の最低溶融粘度が同じであった。このため、比較例1の異方性導電フィルムを使用した接続体は、ショートの発生率が高いものであった。比較例2の異方性導電フィルムを使用した接続体は、導通信頼性が低いものであった。
 本発明の異方性導電フィルムによれば、異方性導電フィルムを使用して狭ピッチ化された電気部品同士を異方性導電接続した際に、ショートの発生を抑制し、高温高湿環境下での保管により導通信頼性が低下することを抑制できる。従って、ICチップを配線基板にフリップチップ実装する際に有用である。
 1、42、63 導電粒子
 2 電極
 3 第一の電気部品
 3a 端子
 4 第二の電気部品
 4a 端子
 10、22、32、44 導電粒子含有層
 11、20、30、41 第一の絶縁性樹脂組成物層
 21、31、51 第二の絶縁性樹脂組成物層
 40、50 異方性導電フィルム
 43 バインダ樹脂組成物
 60 絶縁基板
 61 ライン状電極
 62 配線基板
 64 帯電器
 65 導電スキージ
 65a 矩形凸部
 65b 凹部
 a 電極巾
 b 電極間距離
 c 電極深さ

Claims (7)

  1.  少なくとも、第一の絶縁性樹脂組成物層上に、導電粒子が層状のバインダ樹脂組成物に単層配列されてなる導電粒子含有層が積層された異方性導電フィルムであって、
     バインダ樹脂組成物の最低溶融粘度が、第一の絶縁性樹脂組成物の最低溶融粘度以上である異方性導電フィルム。
  2.  導電粒子含有層の、第一の絶縁性樹脂組成物層と反対面に、更に第二の絶縁性樹脂組成物層が積層されており、バインダ樹脂組成物の最低溶融粘度が、第一及び第二の絶縁性樹脂組成物の最低溶融粘度より高い請求項1記載の異方性導電フィルム。
  3.  第一の絶縁性樹脂組成物と第二の絶縁性樹脂組成物の一方の最低溶融粘度が、他方の最低溶融粘度よりも高い請求項2記載の異方性導電フィルム。
  4.  第一の絶縁性樹脂組成物の最低溶融粘度と第二の絶縁性樹脂組成物の最低溶融粘度とが同一もしくは略同一である場合に、第一の絶縁性樹脂組成物層及び第二の絶縁性樹脂組成物層の一方の層厚が他方の層厚よりも厚い請求項2記載の異方性導電フィルム。
  5.  導電粒子含有層において、互いに隣接する導電粒子同士の粒子間距離が、1μm以上である請求項1~4のいずれかに記載の異方性導電フィルム。
  6.  第一の電気部品の端子と第二の電気部品の端子とを、請求項1~5のいずれかに記載の異方性導電フィルムを介して異方性導電接続してなる接続体であって、その断面を側面方向から観察したときに、導電粒子含有層が湾曲していることを特徴とする接続体。
  7.  接続体の平面方向から観察したときに、隣接電極間がショートしているように見える請求項6記載の接続体。
PCT/JP2014/074639 2013-10-15 2014-09-18 異方性導電フィルム WO2015056518A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480054891.7A CN105594063A (zh) 2013-10-15 2014-09-18 各向异性导电膜
US15/027,607 US10424538B2 (en) 2013-10-15 2014-09-18 Anisotropic conductive film
KR1020167008804A KR20160050078A (ko) 2013-10-15 2014-09-18 이방성 도전 필름

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-214753 2013-10-15
JP2013214753A JP2015079586A (ja) 2013-10-15 2013-10-15 異方性導電フィルム

Publications (1)

Publication Number Publication Date
WO2015056518A1 true WO2015056518A1 (ja) 2015-04-23

Family

ID=52827971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074639 WO2015056518A1 (ja) 2013-10-15 2014-09-18 異方性導電フィルム

Country Status (6)

Country Link
US (1) US10424538B2 (ja)
JP (1) JP2015079586A (ja)
KR (1) KR20160050078A (ja)
CN (2) CN112117257A (ja)
TW (1) TWI602696B (ja)
WO (1) WO2015056518A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017175093A (ja) * 2016-03-25 2017-09-28 デクセリアルズ株式会社 電子部品、接続体、電子部品の設計方法
US20190106548A1 (en) * 2016-05-05 2019-04-11 Dexerials Corporation Filler disposition film

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102332272B1 (ko) * 2014-11-18 2021-12-01 삼성디스플레이 주식회사 이방성 도전 필름 및 이를 갖는 표시장치
GB201509080D0 (en) * 2015-05-27 2015-07-08 Landa Labs 2012 Ltd Coating apparatus
JP7274811B2 (ja) * 2016-05-05 2023-05-17 デクセリアルズ株式会社 異方性導電フィルム
CN113707361B (zh) * 2016-05-05 2023-08-22 迪睿合株式会社 各向异性导电膜
WO2017191779A1 (ja) 2016-05-05 2017-11-09 デクセリアルズ株式会社 異方性導電フィルム
KR20210060732A (ko) * 2019-11-18 2021-05-27 삼성디스플레이 주식회사 표시 장치의 제조 방법
CN111179750A (zh) * 2019-12-12 2020-05-19 武汉华星光电技术有限公司 显示面板的结构和其制作方法
JP2023051504A (ja) * 2021-09-30 2023-04-11 デクセリアルズ株式会社 導電フィルム、接続構造体及びその製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04366630A (ja) * 1991-06-13 1992-12-18 Sharp Corp 異方性導電接着テープ
JP2005200521A (ja) * 2004-01-15 2005-07-28 Sony Chem Corp 接着フィルム、接着フィルムの製造方法
JP2008103347A (ja) * 2007-11-19 2008-05-01 Hitachi Chem Co Ltd 接続部材及びこれを用いた電極の接続構造
JP2010009804A (ja) * 2008-06-25 2010-01-14 Asahi Kasei E-Materials Corp 異方導電性接着シート及び微細接続構造体
JP2010199087A (ja) * 2010-05-11 2010-09-09 Sony Chemical & Information Device Corp 異方性導電膜及びその製造方法、並びに、接合体及びその製造方法
JP2010278025A (ja) * 2010-08-30 2010-12-09 Sony Chemical & Information Device Corp 異方性導電フィルム
JP2013143292A (ja) * 2012-01-11 2013-07-22 Sekisui Chem Co Ltd 異方性導電フィルム材料、接続構造体及び接続構造体の製造方法
US20130196129A1 (en) * 2010-12-23 2013-08-01 Woo Suk Lee Anisotropic conductive film and apparatus including the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4190763B2 (ja) 2001-04-27 2008-12-03 旭化成株式会社 異方性を有する導電性接着シートおよびその製造方法
JP4130747B2 (ja) 2002-03-28 2008-08-06 旭化成エレクトロニクス株式会社 異方導電性接着シートおよびその製造方法
JP5099284B2 (ja) * 2005-02-24 2012-12-19 ソニーケミカル&インフォメーションデバイス株式会社 異方性接続シート材料
JP4887700B2 (ja) 2005-09-09 2012-02-29 住友ベークライト株式会社 異方導電性フィルムおよび電子・電機機器
WO2007125993A1 (ja) * 2006-04-27 2007-11-08 Asahi Kasei Emd Corporation 導電粒子配置シート及び異方導電性フィルム
JP4789738B2 (ja) 2006-07-28 2011-10-12 旭化成イーマテリアルズ株式会社 異方導電性フィルム
JP4880533B2 (ja) * 2007-07-03 2012-02-22 ソニーケミカル&インフォメーションデバイス株式会社 異方性導電膜及びその製造方法、並びに接合体
JP5032961B2 (ja) * 2007-11-29 2012-09-26 ソニーケミカル&インフォメーションデバイス株式会社 異方性導電膜及びこれを用いた接合体
US8715833B2 (en) * 2008-07-11 2014-05-06 Sony Chemical & Information Device Corporation Anisotropic conductive film
JP2010067360A (ja) * 2008-09-08 2010-03-25 Tokai Rubber Ind Ltd 異方性導電膜およびその使用方法
CN103988289A (zh) 2011-12-16 2014-08-13 旭化成电子材料株式会社 带各向异性导电薄膜的半导体芯片、带各向异性导电薄膜的半导体晶片、以及半导体装置
JP5209778B2 (ja) * 2011-12-27 2013-06-12 デクセリアルズ株式会社 異方性導電膜及びこれを用いた接合体
JP6151597B2 (ja) * 2013-07-29 2017-06-21 デクセリアルズ株式会社 導電性接着フィルムの製造方法、導電性接着フィルム、接続体の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04366630A (ja) * 1991-06-13 1992-12-18 Sharp Corp 異方性導電接着テープ
JP2005200521A (ja) * 2004-01-15 2005-07-28 Sony Chem Corp 接着フィルム、接着フィルムの製造方法
JP2008103347A (ja) * 2007-11-19 2008-05-01 Hitachi Chem Co Ltd 接続部材及びこれを用いた電極の接続構造
JP2010009804A (ja) * 2008-06-25 2010-01-14 Asahi Kasei E-Materials Corp 異方導電性接着シート及び微細接続構造体
JP2010199087A (ja) * 2010-05-11 2010-09-09 Sony Chemical & Information Device Corp 異方性導電膜及びその製造方法、並びに、接合体及びその製造方法
JP2010278025A (ja) * 2010-08-30 2010-12-09 Sony Chemical & Information Device Corp 異方性導電フィルム
US20130196129A1 (en) * 2010-12-23 2013-08-01 Woo Suk Lee Anisotropic conductive film and apparatus including the same
JP2013143292A (ja) * 2012-01-11 2013-07-22 Sekisui Chem Co Ltd 異方性導電フィルム材料、接続構造体及び接続構造体の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017175093A (ja) * 2016-03-25 2017-09-28 デクセリアルズ株式会社 電子部品、接続体、電子部品の設計方法
CN107978579A (zh) * 2016-03-25 2018-05-01 迪睿合株式会社 电子部件、连接体、电子部件的设计方法
US20190106548A1 (en) * 2016-05-05 2019-04-11 Dexerials Corporation Filler disposition film

Also Published As

Publication number Publication date
US20160240468A1 (en) 2016-08-18
KR20160050078A (ko) 2016-05-10
CN105594063A (zh) 2016-05-18
TWI602696B (zh) 2017-10-21
CN112117257A (zh) 2020-12-22
US10424538B2 (en) 2019-09-24
TW201524766A (zh) 2015-07-01
JP2015079586A (ja) 2015-04-23

Similar Documents

Publication Publication Date Title
WO2015056518A1 (ja) 異方性導電フィルム
JP6380591B2 (ja) 異方導電性フィルム及び接続構造体
TWI604467B (zh) Anisotropically conductive film and its manufacturing method
CN107534231B (zh) 各向异性导电性膜及连接构造体
JP6950797B2 (ja) 異方性導電フィルム
KR102326117B1 (ko) 이방성 도전 필름, 그 제조 방법, 및 접속 구조체
KR102018042B1 (ko) 이방 도전성 필름 및 접속 구조체
WO2015076234A1 (ja) 異方導電性フィルム及び接続構造体
JP2011192651A (ja) 異方性導電フィルム、接続方法及び接続構造体
CN107112253B (zh) 凸点形成用膜、半导体装置及其制造方法以及连接构造体
TW201728012A (zh) 異向性導電膜及連接結構體
JP4175347B2 (ja) 異方導電性接着フィルムの製造方法
JP2012015544A (ja) 接続構造体の製造方法及び接続構造体並びに接続方法
WO2018150897A1 (ja) 異方性導電接続構造体、異方性導電接続構造体の製造方法、異方性導電フィルム、及び異方性導電ペースト
JP2017147211A (ja) 異方導電性フィルム及び接続構造体
JP2016178029A (ja) 異方性導電フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854093

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20167008804

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15027607

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14854093

Country of ref document: EP

Kind code of ref document: A1