WO2015050087A1 - 紫外線吸収性ポリカーボネート - Google Patents

紫外線吸収性ポリカーボネート Download PDF

Info

Publication number
WO2015050087A1
WO2015050087A1 PCT/JP2014/075936 JP2014075936W WO2015050087A1 WO 2015050087 A1 WO2015050087 A1 WO 2015050087A1 JP 2014075936 W JP2014075936 W JP 2014075936W WO 2015050087 A1 WO2015050087 A1 WO 2015050087A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
atom
general formula
linear
Prior art date
Application number
PCT/JP2014/075936
Other languages
English (en)
French (fr)
Inventor
根岸 由典
和清 野村
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to US15/025,062 priority Critical patent/US9951180B2/en
Priority to CN201480054778.9A priority patent/CN105612195B/zh
Priority to EP14850138.0A priority patent/EP3053943B1/en
Priority to KR1020167007310A priority patent/KR102206409B1/ko
Publication of WO2015050087A1 publication Critical patent/WO2015050087A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • C08G64/08Aromatic polycarbonates not containing aliphatic unsaturation containing atoms other than carbon, hydrogen or oxygen
    • C08G64/12Aromatic polycarbonates not containing aliphatic unsaturation containing atoms other than carbon, hydrogen or oxygen containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • C08G64/14Aromatic polycarbonates not containing aliphatic unsaturation containing a chain-terminating or -crosslinking agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/26General preparatory processes using halocarbonates
    • C08G64/28General preparatory processes using halocarbonates and phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/66Substances characterised by their function in the composition
    • C08L2666/78Stabilisers against oxidation, heat, light or ozone

Definitions

  • the present invention relates to a polycarbonate having ultraviolet absorptivity and excellent weather resistance.
  • Polycarbonate resin is widely used as an engineering plastic with excellent heat resistance, impact resistance, transparency, etc. for applications such as optical parts, mechanical parts, electrical / electronic parts, automotive parts, resin glass, and building materials. .
  • the weather resistance of the polycarbonate resin is insufficient, and when exposed to ultraviolet rays, there is a problem that the molecular weight is lowered or yellowing occurs, so that it easily deteriorates.
  • the weather resistance is insufficient, and when exposed to ultraviolet rays, there is a problem that the molecular weight is lowered or yellowing occurs, so that it easily deteriorates.
  • weather resistance when used outdoors, there was a problem with its weather resistance.
  • an ultraviolet absorber In order to improve the weather resistance of this polycarbonate resin, a method of adding an ultraviolet absorber to the polycarbonate resin has been performed.
  • these ultraviolet absorbers include conventionally known ultraviolet absorbers such as benzophenone series, benzotriazole series, triazine series, and cyanoacrylate series.
  • Patent Documents 1 to 4 disclose a method of copolymerizing an ultraviolet absorber as a method for preventing volatilization of the ultraviolet absorber. However, their weather resistance is still not sufficient.
  • JP 49-99596 A JP-A-1-201330 JP-A-3-39326 JP-A-6-1077779
  • an object of the present invention is to provide a polycarbonate which has ultraviolet absorptivity, is excellent in heat resistance without deterioration in performance during processing, contamination of processing equipment, and excellent weather resistance.
  • the ultraviolet-absorbing polycarbonate of the present invention is represented by the following general formula (1).
  • n represents an integer of 2 to 300
  • B 1 is a linear or branched alkylidene group having 2 to 10 carbon atoms, an alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 12 carbon atoms, or an aryl-substituted alkylene having 7 to 20 carbon atoms.
  • R 1 to R 4 each independently represents a hydrogen atom, a halogen atom, a linear or branched alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, or 6 to 18 carbon atoms.
  • a 1 and A 2 each independently represent a group represented by the following general formula (2), a hydrogen atom, or a group represented by the following general formula (3). However, at least one of A 1 and A 2 is a group represented by the following general formula (2).
  • G 1 is a carbon atom substituted with a halogen atom, a linear or branched alkyl group having 1 to 18 carbon atoms, or a linear or branched alkoxy group having 1 to 18 carbon atoms.
  • a linear or branched alkylene group having 1 to 18 atoms or an unsubstituted linear or branched alkylene group having 1 to 18 carbon atoms is represented.
  • the alkylene group may be interrupted by an oxygen atom, a sulfur atom, a carbonyl group, an ester group, an amide group or an imino group, and the above substitution and interruption may be combined.
  • R 5 to R 8 are each independently a hydroxy group, a halogen atom, an alkyl group having 1 to 12 carbon atoms or a straight chain having 1 to 12 carbon atoms substituted with an alkoxy group having 1 to 12 carbon atoms, Branched alkyl group; unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms; hydroxy group, halogen atom, alkyl group having 1 to 12 carbon atoms, or alkoxy group having 1 to 12 carbon atoms A linear or branched alkoxy group having 1 to 12 carbon atoms substituted with an unsubstituted linear or branched alkoxy group having 1 to 12 carbon atoms; a hydroxy group, a halogen atom, or 1 to 1 carbon atom; A cycloalkyl group having 3 to 8 carbon atoms substituted by 12 alkyl groups or an alkoxy group having 1 to 12 carbon atoms; an unsubstituted cycloalkyl group
  • the alkyl group, alkoxy group, cycloalkyl group, alkenyl group, aryl group, alkylaryl group and arylalkyl group may be interrupted by an oxygen atom, sulfur atom, carbonyl group, ester group, amide group or imino group. The above substitutions and interruptions may be combined.
  • R 9 and R 10 are each independently a hydroxy group, a halogen atom, an alkyl group having 1 to 12 carbon atoms or a straight chain having 1 to 12 carbon atoms substituted with an alkoxy group having 1 to 12 carbon atoms or Branched alkyl group; unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms; hydroxy group, halogen atom, alkyl group having 1 to 12 carbon atoms, or alkoxy group having 1 to 12 carbon atoms A linear or branched alkoxy group having 1 to 12 carbon atoms substituted with an unsubstituted linear or branched alkoxy group having 1 to 12 carbon atoms; a hydroxy group, a halogen atom, or 1 to 1 carbon atom; A cycloalkyl group having 3 to 8 carbon atoms substituted with 12 alkyl groups or an alkoxy group having 1 to 12 carbon atoms; an unsubstituted cycloalkyl group
  • the alkyl group, alkoxy group, cycloalkyl group, alkenyl group, aryl group, alkylaryl group and arylalkyl group may be interrupted by an oxygen atom, sulfur atom, carbonyl group, ester group, amide group or imino group.
  • the above substitutions and interruptions may be combined.
  • two adjacent groups among the groups represented by R 5 , R 7 , and R 9 may be linked to form a 5- to 7-membered ring together with the carbon atom to which each group is bonded, and R 6 , R 8 , R 10 , two adjacent groups may be linked to form a 5- to 7-membered ring together with the carbon atoms to which they are bonded.
  • R 11 represents a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms. Moreover, it couple
  • R 12 represents a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or an arylalkyl group having 7 to 18 carbon atoms.
  • R 13 represents a hydrogen atom or a methyl group. Moreover, it couple
  • n represents an integer of 2 to 300
  • a 1 and A 2 are each independently a group represented by the following general formula (5), a hydrogen atom, or the general formula (3) It is group represented by these.
  • at least one of A 1 and A 2 is a group represented by the following general formula (5).
  • G 1 is a carbon atom substituted with a halogen atom, a linear or branched alkyl group having 1 to 18 carbon atoms, or a linear or branched alkoxy group having 1 to 18 carbon atoms.
  • a linear or branched alkylene group having 1 to 18 atoms or an unsubstituted linear or branched alkylene group having 1 to 18 carbon atoms is represented.
  • the alkylene group may be interrupted by an oxygen atom, a sulfur atom, a carbonyl group, an ester group, an amide group or an imino group, and the above substitution and interruption may be combined.
  • R 5 , R 6 , R 9 and R 10 are each independently a hydroxyl group, a halogen atom, an alkyl group having 1 to 12 carbon atoms or a carbon atom having 1 carbon atom substituted with an alkoxy group having 1 to 12 carbon atoms.
  • the alkyl group, alkoxy group, cycloalkyl group, alkenyl group, aryl group, alkylaryl group and arylalkyl group may be interrupted by an oxygen atom, sulfur atom, carbonyl group, ester group, amide group or imino group.
  • the above substitutions and interruptions may be combined. Moreover, it couple
  • the UV-absorbing polycarbonate resin composition of the present invention is characterized by adding an additive for synthetic resin to the above-mentioned UV-absorbing polycarbonate.
  • the weather-resistant thermoplastic resin composition of the present invention is characterized in that the above-mentioned ultraviolet-absorbing polycarbonate is added to a thermoplastic resin.
  • a triazine compound represented by the following general formula (7) is added during the polymerization reaction of an aromatic dihydroxy compound represented by the following general formula (6) and a carbonate precursor. It is characterized by this.
  • B 1 is the same as B 1 in the general formula (1)
  • R 1 ⁇ R 4 are the same as R 1 ⁇ R 4 in the general formula (1).
  • G 1 is the same as G 1 in the general formula 2 in
  • R 5 ⁇ R 8 is the same as R 5 ⁇ R 8 in the general formula 2
  • R 9 and R 10 are the same as R 9 and R 10 in the general formula (2)
  • R 11 is the same as R 11 in the general formula (2).
  • a polycarbonate resin which has ultraviolet absorptivity, is excellent in heat resistance without degradation in performance during processing, contamination of processing equipment, and excellent weather resistance.
  • examples of the linear or branched alkylidene group having 2 to 10 carbon atoms that B 1 can take include, for example, ethylidene, propylidene, isopropylidene, butylidene, pentylidene, hexylidene, heptylidene, octylidene, Nonylidene, decylidene and the like can be mentioned.
  • Examples of the alkylene group having 1 to 10 carbon atoms include methylene, ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, nonylene and decylene.
  • Examples of the arylene group having 6 to 12 carbon atoms include phenylene, tolylene, xylylene, naphthylene, and biphenylene.
  • Examples of the aryl-substituted alkylene group having 7 to 20 carbon atoms include phenylmethylene and diphenylethylene.
  • Examples of the arylalkylidene group having 8 to 20 carbon atoms include 1-phenyl-1-ethylidene and 1-phenyl-2-propylidene.
  • Examples of the cycloalkylidene group having 3 to 15 carbon atoms include cyclopentylidene and cyclohexylidene.
  • Examples of the cycloalkylene group having 3 to 15 carbon atoms include 1,3-cyclopentylene, 1,4-cyclohexylene and the like.
  • Examples of the alkylidene-arylene-alkylidene having 10 to 20 carbon atoms include m-diisopropylidenephenylene and p-diisopropylidenephenylene.
  • B 1 is preferably an isopropylidene group from the viewpoint of heat resistance, weather resistance and impact resistance of polycarbonate.
  • examples of the linear or branched alkyl group having 1 to 12 carbon atoms that R 1 to R 4 can take include, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, second Examples include linear or branched alkyl groups such as tertiary butyl, tertiary butyl, amyl, tertiary amyl, hexyl, octyl, secondary octyl, tertiary octyl, 2-ethylhexyl, decyl, undecyl, and dodecyl. .
  • Examples of the cycloalkyl group having 3 to 8 carbon atoms include cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl group and the like.
  • Examples of the aryl group having 6 to 18 carbon atoms include phenyl, naphthyl, biphenyl and the like.
  • Examples of the alkylaryl group having 7 to 18 carbon atoms include methylphenyl, dimethylphenyl, ethylphenyl and octylphenyl groups.
  • arylalkyl group having 7 to 18 carbon atoms examples include benzyl, 2-phenylethyl, 1-methyl-1-phenylethyl group, 2-phenylpropan-2-yl group and the like.
  • R 1 to R 4 are preferably hydrogen atoms from the viewpoint of heat resistance, weather resistance and impact resistance.
  • both A 1 and A 2 are preferably groups represented by the general formula (2).
  • examples of the linear or branched alkylene group having 1 to 18 carbon atoms that G 1 can take include methylene, ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, and nonylene. Decylene, undecylene, dodecylene, tridecylene, tetradecylene, pentadecylene, hexadecylene, heptadecylene, octadecylene and the like.
  • linear or branched alkyl group having 1 to 18 carbon atoms that may be substituted for this alkylene group include, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, secondary butyl, tertiary Examples include butyl, amyl, tertiary amyl, hexyl, octyl, secondary octyl, tertiary octyl, 2-ethylhexyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl and octadecyl groups.
  • Examples of the linear or branched alkoxy group having 1 to 18 carbon atoms include an alkoxy group corresponding to the alkyl group.
  • G 1 represents an unsubstituted linear or branched alkylene group having 1 to 10 carbon atoms, or a branched chain having 1 to 10 carbon atoms substituted with a linear or branched alkoxy group having 1 to 10 carbon atoms.
  • An alkylene group is preferred.
  • examples of the linear or branched alkyl group having 1 to 12 carbon atoms of R 5 to R 10 include the same alkyl groups as those described above.
  • Examples of the linear or branched alkoxy group having 1 to 12 carbon atoms include those similar to the alkoxy group.
  • Examples of the cycloalkyl group having 3 to 8 carbon atoms include those similar to the cycloalkyl group.
  • Examples of the alkenyl group having 2 to 8 carbon atoms include alkenyl groups corresponding to the above alkyl groups.
  • Examples of the aryl group having 6 to 18 carbon atoms include those similar to the aryl group.
  • Examples of the alkylaryl group having 7 to 18 carbon atoms include the same alkylaryl groups as those described above.
  • Examples of the arylalkyl group having 7 to 18 carbon atoms include those similar to the arylalkyl group.
  • Examples of the alkyl group having 1 to 12 carbon atoms which may be substituted for these include the same alkyl groups as those described above.
  • Examples of the alkoxy group having 1 to 12 carbon atoms include alkoxy groups corresponding to the alkyl group.
  • R 5 and R 6 are preferably a hydrogen atom, an alkyl group, or an aryl group, and particularly preferably a hydrogen atom, a methyl group, or a phenyl group from the viewpoint of heat resistance and weather resistance.
  • R 7 and R 8 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or a methyl group, from the viewpoints of heat resistance and weather resistance.
  • R 9 and R 10 are preferably a hydrogen atom, an alkyl group or a hydroxy group, more preferably a hydrogen atom, a methyl group or a hydroxy group, and most preferably a hydrogen atom or a methyl group, from the viewpoints of heat resistance and weather resistance.
  • examples of the linear or branched alkyl group having 1 to 12 carbon atoms of R 11 include the same alkyl groups as those described above.
  • R 11 is preferably a hydrogen atom or a methyl group from the viewpoint of heat resistance and weather resistance, and more preferably a hydrogen atom.
  • examples of the alkyl group having 1 to 9 carbon atoms of R 12 include those having 1 to 9 carbon atoms among the alkyl groups, and those having 7 to 18 carbon atoms.
  • examples of the arylalkyl group include benzyl, 2-phenylethyl, 1-methyl-1-phenylethyl group, 2-phenylpropan-2-yl group and the like.
  • R 12 is preferably a tertiary butyl group or a 2-phenylpropan-2-yl group from the viewpoint of heat resistance.
  • n represents an integer of 2 to 300
  • a 1 and A 2 may be the same or different from each other, and are a group represented by the following general formula (5), a hydrogen atom, or the general formula It is group represented by (3).
  • at least one of A 1 and A 2 is a group represented by the following general formula (5).
  • G 1 , R 5 and R 6 , R 9 and R 10 are the same as described above. Moreover, it couple
  • a 1 and A 2 are preferably both of the two is a group represented by the general formula (5).
  • R 5 and R 6 are preferably a hydrogen atom, an alkyl group, or an aryl group, more preferably a hydrogen atom, a methyl group, or a phenyl group from the viewpoint of heat resistance and weather resistance.
  • R 9 and R 10 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or a methyl group, from the viewpoint of heat resistance and weather resistance.
  • Examples of the ultraviolet-absorbing polycarbonate represented by the general formula (1) of the present invention include the following compound No. 1-No. 8 etc. are mentioned.
  • n represents an integer of 2 to 300.
  • n represents an integer of 2 to 300.
  • n represents an integer of 2 to 300.
  • n represents an integer of 2 to 300.
  • n represents an integer of 2 to 300, and
  • X 1 represents a C 12 H 25 group and / or a C 13 H 27 group.
  • n represents an integer of 2 to 300.
  • the ultraviolet-absorbing polycarbonate of the present invention can be produced by adding a triazine compound of the following general formula (7) at the time of the polymerization reaction between the aromatic dihydroxy compound represented by the following general formula (6) and the carbonate precursor. Good.
  • B 1 and R 1 to R 4 are the same as those in general formula (1).
  • G 1 , R 5 to R 8 , R 9 and R 10 , R 11 are the same as those in the general formula (2).
  • aromatic dihydroxy compounds may be used alone or in combination of two or more in any proportion.
  • carbonyl halide, carbonate ester, haloformate, or the like is used as a carbonate precursor to be polymerized with an aromatic dihydroxy compound.
  • phosgene phosgene
  • phosgene derivatives such as triphosgene (bistrichloromethyl carbonate)
  • diaryl carbonates such as diphenyl carbonate and ditolyl carbonate
  • dialkyl carbonates such as dimethyl carbonate and diethyl carbonate
  • dihaloformates of dihydric phenols can be mentioned.
  • These carbonate precursors may also be used alone or in combination of two or more in any proportion.
  • the compound of the general formula (7) used in the production method of the present invention is a compound in which the * part of the group of the general formula (2) in the target compound of the general formula (1) is an OH group. is there.
  • the compound of the general formula (7) is used in place of the terminal terminator (molecular weight regulator) used in a conventionally known polycarbonate polymerization method or in combination with a terminal terminator, so that the general formula (2) is added to the terminal of the polycarbonate.
  • the target group can be obtained by bonding these groups.
  • the terminal terminator as described below, a compound having a monovalent phenolic hydroxyl group that brings about the structure represented by the general formula (3) is used.
  • the method of reacting the aromatic dihydroxy compound of the general formula (6), the carbonate precursor, and the compound of the general formula (7) is not particularly limited, and any conventionally known arbitrary The method can be adopted. Specific examples include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, and a solid phase transesterification method of a prepolymer.
  • an interfacial polymerization method will be described first.
  • the polymerization reaction is carried out in the presence of an organic solvent inert to the reaction and an aqueous alkali solution, usually maintaining the pH at 9 or higher, an aromatic dihydroxy compound, a terminal terminator, and if necessary an aromatic dihydroxy compound.
  • a polymerization catalyst such as a tertiary amine or a quaternary ammonium salt is added and interfacial polymerization is performed to obtain a polycarbonate.
  • a polymerization catalyst such as a tertiary amine or a quaternary ammonium salt
  • the addition of the compound of the general formula (7) is not particularly limited as long as it is from the time of phosgenation to the start of the polymerization reaction.
  • the reaction temperature is, for example, 0 to 40 ° C.
  • the reaction time is, for example, several minutes (for example, 10 minutes) to several hours (for example, 6 hours).
  • organic solvent inert to the reaction examples include chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform, monochlorobenzene and dichlorobenzene; aromatic hydrocarbons such as benzene, toluene and xylene. Etc .;
  • alkali compound used in the alkaline aqueous solution examples include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide.
  • Examples of the terminal terminator used in combination with the compound of the general formula (7) include compounds having a monovalent phenolic hydroxyl group, and specifically include m-methylphenol, p-methylphenol, m- Examples include propylphenol, p-propylphenol, p-tert-butylphenol, and p-long chain alkyl-substituted phenol.
  • Polymerization catalysts include tertiary amines such as trimethylamine, triethylamine, tributylamine, tripropylamine, trihexylamine, pyridine; quaternary ammonium salts such as trimethylbenzylammonium chloride, tetramethylammonium chloride, triethylbenzylammonium chloride, etc. ;
  • triphosgene (bistrichloromethyl carbonate) or the like may be used and reacted in a solution in the same manner.
  • the polymerization reaction in this production method is, for example, a transesterification reaction between a carbonic acid diester and an aromatic dihydroxy compound.
  • the carbonic acid diester include dialkyl carbonate compounds such as dimethyl carbonate, diethyl carbonate and di-tert-butyl carbonate, and substituted diphenyl carbonates such as diphenyl carbonate and ditolyl carbonate.
  • diphenyl carbonate and substituted diphenyl carbonate are preferable as the carbonic acid diester, and diphenyl carbonate is particularly preferable.
  • the compound of the general formula (7) is used as a terminal terminator. You may use together with the terminal stopper which has the above-mentioned monovalent phenolic hydroxyl group.
  • a transesterification catalyst is usually used.
  • the transesterification catalyst conventionally known ones can be arbitrarily used. Specifically, for example, alkali metal compounds and / or alkaline earth metal compounds are preferable.
  • a basic compound such as a basic boron compound, a basic phosphorus compound, a basic ammonium compound, or an amine compound may be used in combination.
  • the transesterification reaction using the above raw materials is usually performed at a temperature of 100 to 320 ° C., and finally, a melt polycondensation reaction is performed while removing by-products such as aromatic hydroxy compounds under a reduced pressure of 2 mmHg or less. Can be done.
  • the melt polycondensation can be performed by either a batch method or a continuous method. Among these, in consideration of the stability of the aromatic polycarbonate resin used in the present invention and the resin composition of the present invention, it is preferable to carry out in a continuous manner.
  • the catalyst deactivator used in the melt transesterification method it is preferable to use a compound that neutralizes the transesterification reaction catalyst, such as a sulfur-containing acidic compound or a derivative formed therefrom.
  • the molecular weight of the obtained polycarbonate can be adjusted by adjusting the amount of the compound of the general formula (7).
  • the ultraviolet absorbing polycarbonate of the present invention is also preferably used as an ultraviolet absorbing polycarbonate resin composition by blending an additive for synthetic resin.
  • the ultraviolet-absorbing polycarbonate of the present invention has an ultraviolet-absorbing property, it is not particularly necessary to add an ultraviolet absorber, but it may be used in combination with other ultraviolet absorbers.
  • additives for synthetic resins include phenolic antioxidants, phosphorus antioxidants, thioether antioxidants, UV absorbers, hindered amine light stabilizers, triazine ring-containing compounds, metal hydroxides, phosphoric acid Ester flame retardant, condensed phosphate ester flame retardant, phosphate flame retardant, inorganic phosphorus flame retardant, (poly) phosphate flame retardant, halogen flame retardant, silicon flame retardant, antimony oxide, inorganic flame retardant Flame retardants, organic flame retardant aids, antistatic agents, lubricants, nucleating agents, plasticizers, mold release agents, compatibilizers, foaming agents, light-absorbing dyes, pigments, dyes, processing aids, metal Examples include activators, inorganic fine particles, antibacterial agents, antifungal agents, fillers, fillers, and the like.
  • phenolic antioxidant examples include 2,6-ditert-butyl-p-cresol, 2,6-diphenyl-4-octadecyloxyphenol, distearyl (3,5-ditert-butyl-4). -Hydroxybenzyl) phosphonate, 1,6-hexamethylenebis [(3,5-ditert-butyl-4-hydroxyphenyl) propionic acid amide], 4,4'-thiobis (6-tert-butyl-m-cresol ), 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 2,2′-methylenebis (4-ethyl-6-tert-butylphenol), 4,4′-butylidenebis (6-tert-butyl) -M-cresol), 2,2'-ethylidenebis (4,6-ditert-butylphenol), 2,2'-ethylidenebis (4-secondarybutyl-6-tert-butyl) Eno
  • Examples of the phosphorus antioxidant include trisnonylphenyl phosphite, tris [2-tert-butyl-4- (3-tert-butyl-4-hydroxy-5-methylphenylthio) -5-methylphenyl].
  • Phosphite tridecyl phosphite, octyl diphenyl phosphite, di (decyl) monophenyl phosphite, di (tridecyl) pentaerythritol diphosphite, di (nonylphenyl) pentaerythritol diphosphite, bis (2,4-di Tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-ditert-butyl-4-methylphenyl) pentaerythritol diphosphite, bis (2,4,6-tritert-butylphenyl) pentaerythritol diphosphite Phosphite, bis (2,4-dicumylphenyl) pe Taerythritol diphosphite, tetra (tridecyl) isopropylidene diphenol diphosphit
  • thioether-based antioxidant examples include dialkylthiodipropionates such as dilauryl thiodipropionate, dimyristyl thiodipropionate, distearyl thiodipropionate, and pentaerythritol tetra ( ⁇ -alkylthiopropionic acid). Examples include esters.
  • the addition amount of these thioether-based antioxidants is preferably 0.001 to 10 parts by mass, more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the UV-absorbing polycarbonate.
  • ultraviolet absorber examples include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, and 5,5′-methylenebis (2-hydroxy-4-methoxybenzophenone).
  • 2-Hydroxybenzophenones such as 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-ditert-butylphenyl) -5-chloro Benzotriazole, 2- (2′-hydroxy-3′-tert-butyl-5′-methylphenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-5′-tert-octylphenyl) Benzotriazole, 2- (2′-hydroxy-3 ′, 5′-dicumylphenyl) benzotriazole, 2 2- (methylenebis (4-tert-octyl-6- (benzotriazolyl) phenol), 2- (2′-hydroxy-3′-tert-butyl-5′-carboxyphenyl) benzotriazole and the like 2- ( 2'-hydroxyphenyl) benzotriazoles; phenyl salicylate, resorcinol monobenzoate, 2,4-
  • hindered amine light stabilizer examples include 2,2,6,6-tetramethyl-4-piperidyl stearate, 1,2,2,6,6-pentamethyl-4-piperidyl stearate, 2,2, 6,6-tetramethyl-4-piperidylbenzoate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-tetramethyl-4-piperidyl) Sebacate, bis (1-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4 -Butanetetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, bis (2,2 , 6,6-tetramethyl-4-piperidyl) -di (tridec
  • triazine ring-containing compound examples include melamine, ammelin, benzguanamine, acetoguanamine, phthalodiguanamine, melamine cyanurate, melamine pyrophosphate, butylenediguanamine, norbornene diguanamine, methylene diguanamine, ethylene dimelamine, trimethylene Dimelamine, tetramethylene dimelamine, hexamethylene dimelamine, 1,3-hexylene dimelamine and the like can be mentioned.
  • metal hydroxide examples include magnesium hydroxide, aluminum hydroxide, calcium hydroxide, barium hydroxide, zinc hydroxide, Kismer 5A (magnesium hydroxide: manufactured by Kyowa Chemical Industry Co., Ltd.) and the like.
  • phosphate ester flame retardant examples include, for example, trimethyl phosphate, triethyl phosphate, tributyl phosphate, tributoxyethyl phosphate, trischloroethyl phosphate, trisdichloropropyl phosphate, triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, Trixylenyl phosphate, octyl diphenyl phosphate, xylenyl diphenyl phosphate, trisisopropylphenyl phosphate, 2-ethylhexyl diphenyl phosphate, t-butylphenyl diphenyl phosphate, bis- (t-butylphenyl) phenyl phosphate, tris- (t-butyl Phenyl) phosphate, isopropylphenyldiphenylphosphate, bis- ( Isopropy
  • condensed phosphate ester flame retardant examples include 1,3-phenylene bis (diphenyl phosphate), 1,3-phenylene bis (dixylenyl phosphate), bisphenol A bis (diphenyl phosphate), and the like.
  • Examples of the (poly) phosphate flame retardant include ammonium salts and amine salts of (poly) phosphoric acid such as ammonium polyphosphate, melamine polyphosphate, piperazine polyphosphate, melamine pyrophosphate, and piperazine pyrophosphate.
  • Examples of inorganic flame retardant aids include inorganic compounds such as titanium oxide, aluminum oxide, magnesium oxide, hydrotalcite, talc, montmorillonite, and surface-treated products thereof.
  • TIPAQUE R-680 titanium oxide
  • Kyowa Mag 150 magnesium oxide: Kyowa Chemical Industry Co., Ltd.
  • DHT-4A Hydrotalcite: Kyowa Chemical Industry Co., Ltd.
  • Alkamizer 4 Zinc-modified hydrotalcite: Kyowa Chemical Industry Co., Ltd.
  • the organic flame retardant aid include pentaerythritol.
  • Antistatic agents include, for example, cationic antistatic agents such as fatty acid quaternary ammonium ion salts and polyamine quaternary salts; higher alcohol phosphate esters, higher alcohol EO adducts, polyethylene glycol fatty acid esters, anionic alkyls Anionic antistatic agents such as sulfonate, higher alcohol sulfate ester salt, higher alcohol ethylene oxide adduct sulfate ester, higher alcohol ethylene oxide adduct phosphate ester salt; polyhydric alcohol fatty acid ester, polyglycol phosphate ester, polyoxy Nonionic antistatic agents such as ethylene alkyl allyl ether; amphoteric antistatic agents such as amphoteric alkylbetaines such as alkyldimethylaminoacetic acid betaine and imidazoline type amphoteric activators.
  • cationic antistatic agents such as fatty acid quaternary ammonium ion salts and polyamine quatern
  • the lubricant examples include hydrocarbon lubricants such as liquid paraffin, paraffin wax and polyethylene wax; aliphatic lubricants such as stearyl alcohol, stearic acid and 12-hydroxystearic acid; stearic acid amide, oleic acid amide and erucic acid amide Amide lubricants such as methylenebis stearamide, ethylene stearate; calcium stearate, zinc stearate, magnesium stearate, lead stearate, aluminum stearate, barium stearate, barium stearate / zinc stearate complex, Metal soap lubricants such as zinc stearate / calcium stearate complex; hardened oil, glycerin monostearate, butyl stearate, pentaerythritol stearate, stearate stearate Ester lubricant such as Le like.
  • hydrocarbon lubricants such as liquid paraffin, paraffin wax and polyethylene wax
  • nucleating agent examples include dibenzylidene sorbitol, bis (p-methylbenzylidene) sorbitol, bis (p-ethylbenzylidene) sorbitol, hydroxy-di (t-butylbenzoic acid) aluminum, and bis (4-t-butyl phosphate).
  • nucleating agents such as sodium phenyl and sodium 2,2-methylenebis (4,6-di-t-butylphenyl) phosphate.
  • plasticizers such as phthalic acid esters, dibasic acid esters, chlorinated paraffins, polyesters, epoxidized esters, phosphoric acid esters, trimellitic acid esters, and the like.
  • Examples of the filler include calcium silicate powder, silica powder, talc powder, mica powder, alumina powder, titanium oxide powder, and glass flakes.
  • Examples of the filler include glass fiber and carbon fiber.
  • the method for producing the ultraviolet-absorbing polycarbonate resin composition of the present invention is not particularly limited, and any conventionally known method for producing a resin composition can be employed. Specifically, for example, after mixing the UV-absorbing polycarbonate and the additive component in advance using various mixers such as a tumbler and a Henschel mixer, a Banbury mixer, roll, Brabender, single-screw kneading extruder, twin-screw kneading extrusion Examples thereof include a melt kneading method using a machine or a kneader.
  • various mixers such as a tumbler and a Henschel mixer, a Banbury mixer, roll, Brabender, single-screw kneading extruder, twin-screw kneading extrusion
  • mixers such as a tumbler and a Henschel mixer, a Banbury mixer, roll, Brabender, single-screw knead
  • the resin composition may be produced by mixing each component in advance or by mixing only a part of the components in advance, supplying the mixture to an extruder using a feeder, and melt-kneading the mixture. Furthermore, a resin composition obtained by mixing some components in advance, supplying them to an extruder and melt-kneading is used as a master batch, and the resin composition is manufactured by mixing again with other components and melt-kneading. You can also *
  • the molded article excellent in weather resistance can be obtained by molding the ultraviolet absorbing polycarbonate or the ultraviolet absorbing polycarbonate resin composition of the present invention.
  • the molding method is not particularly limited, and examples thereof include extrusion processing, calendar processing, injection molding, roll, compression molding, blow molding, rotational molding, and the like. Resin plate, sheet, film, bottle, fiber, irregular shape product Various shaped products such as these can be manufactured.
  • the ultraviolet absorbing polycarbonate of the present invention may be used as an ultraviolet absorber by adding it to various thermoplastic resins as well as conventionally known ultraviolet absorbers, in addition to being used as a resin component. Of course, you may mix
  • the weather resistant thermoplastic resin composition of the present invention is obtained by adding the ultraviolet absorbing polycarbonate of the present invention to a thermoplastic resin.
  • the blending amount is preferably 0.01 to 90 parts by weight, more preferably 0.05 to 50 parts by weight with respect to 100 parts by weight of the thermoplastic resin. Part, more preferably 0.1 to 30 parts by weight.
  • Thermoplastic resins are isoprene rubber, butadiene rubber, acrylonitrile-butadiene copolymer rubber, styrene-butadiene copolymer rubber, fluorine rubber, silicone rubber, olefin elastomer, styrene elastomer, polyester elastomer, nitrile elastomer, nylon. It may be an elastomer such as a base elastomer, a vinyl chloride elastomer, a polyamide elastomer, or a polyurethane elastomer. These thermoplastic resins may be used alone or in combination of two or more. Further, the thermoplastic resin may be alloyed.
  • thermoplastic resins include molecular weight, degree of polymerization, density, softening point, proportion of insoluble matter in solvent, degree of stereoregularity, presence or absence of catalyst residue, type and blending ratio of monomer as raw material, type of polymerization catalyst (For example, Ziegler catalyst, metallocene catalyst, etc.) can be used.
  • the ultraviolet-absorbing polycarbonate of the present invention is particularly preferably used for applications requiring weather resistance, and can be used for optical parts, mechanical parts, electric / electronic parts, automobile parts, resin glass, building materials, and the like. More specifically, printers, personal computers, word processors, keyboards, PDAs (small information terminals), telephones, copiers, facsimiles, ECRs (electronic cash registers), calculators, electronic notebooks, cards, holders, stationery, etc.
  • AV equipment such as liquid crystal displays, connectors, relays, capacitors, switches, printed boards, coil bobbins, semiconductor sealing materials, LED sealing materials, electric wires, cables, transformers, deflection yokes, distribution boards, watches, etc. It is used for applications such as communication equipment. Furthermore, it is used for optical material applications such as optical discs, CD disc
  • seats filling, dressing, etc.
  • wire covering material electrical insulation material, paint, coating material, upholstery material, flooring, corner wall, carpet, wallpaper, wall covering material, exterior material, interior material, roofing material, deck material, wall material, pillar material , Floorboards, fence materials, frameworks and repetitive shapes, windows and door shapes, slabs, siding, terraces, balconies, soundproof plates, heat insulation plates, window materials, etc.
  • Example 1 Compound No. 1 Synthesis of No. 1 5.93 g of bisphenol A (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.), 0.35 g of the following triazine compound A, 160 g of dichloromethane, 6.41 g of triethylamine, and a 300 ml two-necked round bottom flask equipped with a Dimroth. And dissolved at room temperature. After cooling to 5 ° C., 3.13 g of triphosgene was added little by little over 1 hour, and then the temperature was raised to 40 ° C. and refluxed for 1 hour. After completion of the reaction, the reaction mixture was cooled to room temperature and washed with 50 ml of ion exchange water three times.
  • the obtained Compound No. The number average molecular weight (Mn) of 1 was measured by the following molecular weight measurement method. The results are shown in Table 1.
  • Mn number average molecular weight
  • 1% weight loss temperature was measured by the following heat resistance test method. The results are shown in Table 1.
  • the cast film was produced with the following cast film production method. The cast film thus obtained was subjected to a Haze value by the following transparency test method and a weather resistance test by the following weather resistance test method. The results are shown in Table 1.
  • Example 2 Compound No. Synthesis of 2 5.86 g of bisphenol A (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.), 0.35 g of the following triazine compound B, 160 g of dichloromethane, 6.40 g of triethylamine, and a 300 ml two-necked round bottom flask equipped with a Dimroth. And dissolved at room temperature. After cooling to 5 ° C., 3.10 g of triphosgene was added little by little over 1 hour, and then the temperature was raised to 40 ° C. and refluxed for 1 hour. After completion of the reaction, the reaction mixture was cooled to room temperature and washed with 50 ml of ion exchange water three times.
  • the obtained Compound No. The number average molecular weight (Mn) of 2 was measured by the following molecular weight measurement method. The results are shown in Table 1.
  • Mn number average molecular weight
  • the obtained compound No. As a heat resistance test of No. 2, a 1% weight loss temperature was measured by the following heat resistance test method. The results are shown in Table 1.
  • the cast film was produced with the following cast film production method. The cast film thus obtained was subjected to a Haze value by the following transparency test method and a weather resistance test by the following weather resistance test method. The results are shown in Table 1.
  • Example 3 Compound no. Synthesis of 4 300 ml two-necked round bottom flask equipped with 5.38 g of bisphenol A (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), 0.35 g of the following triazine compound C, 160 g of dichloromethane, 5.34 g of triethylamine and Dimroth. And dissolved at room temperature. After cooling to 5 ° C., 2.61 g of triphosgene was added little by little over 1 hour, and then the temperature was raised to 40 ° C. and refluxed for 1 hour. After completion of the reaction, the reaction mixture was cooled to room temperature and washed with 50 ml of ion exchange water three times.
  • the obtained Compound No. The number average molecular weight (Mn) of 4 was measured by the following molecular weight measurement method. The results are shown in Table 1.
  • Mn number average molecular weight
  • the cast film was produced with the following cast film production method. The cast film thus obtained was subjected to a Haze value by the following transparency test method and a weather resistance test by the following weather resistance test method. The results are shown in Table 1.
  • Example 4 Compound no. Synthesis of No. 5 6.39 g of bisphenol A (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.), 0.38 g of the following triazine compound D, 160 g of dichloromethane, 6.89 g of triethylamine and 300 ml two-necked round bottom flask equipped with a Dimroth And dissolved at room temperature. After cooling to 5 ° C., 3.37 g of triphosgene was added little by little over 1 hour, and then the temperature was raised to 40 ° C. and refluxed for 1 hour. After completion of the reaction, the reaction mixture was cooled to room temperature and washed with 50 ml of ion exchange water three times.
  • bisphenol A a reagent manufactured by Tokyo Chemical Industry Co., Ltd.
  • the obtained Compound No. The number average molecular weight (Mn) of 5 was measured by the following molecular weight measurement method. The results are shown in Table 1.
  • the cast film was produced with the following cast film production method. The cast film thus obtained was subjected to a Haze value by the following transparency test method and a weather resistance test by the following weather resistance test method. The results are shown in Table 1.
  • Mn number average molecular weight
  • GPC gel permeation chromatography
  • thermogravimetric / differential thermal analyzer Thermo plus EVO manufactured by Rigaku Corporation
  • the temperature was increased from 30 ° C. to 400 ° C. at a rate of temperature increase of 10 ° C./min under an air flow of 200 ml / min. It was measured.
  • ⁇ Cast film production method Compound No. 1 which is the ultraviolet absorbing polycarbonate of the present invention obtained above. 1, compound no. 2, Compound No. 4, Compound No. Each of 5 was dried at 120 ° C. for 6 hours. Thereafter, 250 mg of each UV-absorbing polycarbonate and 2.25 g of a commercially available polycarbonate resin (manufactured by Mitsubishi Engineering Plastics Co., Ltd .: Iupilon S-3000F) were melt-kneaded with Labo Plast Mill Micro (manufactured by Toyo Seiki Seisakusho). 300 degreeC, 50 rpm, 5 minutes), and the pellet of the ultraviolet absorptive polycarbonate resin composition was obtained.
  • a commercially available polycarbonate resin manufactured by Mitsubishi Engineering Plastics Co., Ltd .: Iupilon S-3000F
  • Comparative Example 1 Synthesis of Comparative Compound-1 Bisphenol A (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) 6.06 g, 4-tert-butylphenol 0.14 g, dichloromethane 160 g, triethylamine 6.56 g equipped with Dimroth And was dissolved at room temperature. After cooling to 5 ° C., 3.21 g of triphosgene was added little by little over 1 hour, and then the temperature was raised to 40 ° C. and refluxed for 1 hour. After completion of the reaction, the reaction mixture was cooled to room temperature and washed with 50 ml of ion exchange water three times.
  • the number average molecular weight (Mn) of the obtained comparative compound-1 was measured by the above molecular weight measurement method. The results are shown in Table 1. Further, as a heat resistance test of the obtained Comparative Compound-1, a 1% weight loss temperature was measured by the above heat resistance test method. The results are shown in Table 1. In addition, Compound No. A cast film was obtained in the same manner as in Example 1, except that 250 mg of Comparative Compound-1 was used instead of 1. Using the obtained cast film, a transparency test and a weather resistance test were conducted in the same manner as in the Examples. The results are shown in Table 1.
  • Comparative compound-2 was 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- (hexyl) oxyphenol, which is a triazine ultraviolet absorber having the following structure.
  • Compound No. A cast film was obtained in the same manner as in Example 1 except that 250 mg of Comparative Compound-2 was used instead of 1. Using the obtained cast film, the transparency test and the weather resistance test were conducted in the same manner as in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

 紫外線吸収性を有し、加工時に性能の低下や、加工設備の汚染がなく耐熱性に優れ、更に耐候性にも優れたポリカーボネートを提供する。 下記一般式(1)で表されることを特徴とする紫外線吸収性ポリカーボネートである。式(1)中、nは2~300の整数を表し、Bは、炭素原子数2~10の直鎖又は分岐鎖のアルキリデン基等を表し、R~Rは、それぞれ独立に、水素原子等を表す。A及びAは、それぞれ独立に、下記一般式(2)で表される基等を表す。式(2)中、Gは、炭素原子数1~18の直鎖又は分岐鎖のアルキレン基等を表す。R~Rは、炭素原子数1~12の直鎖又は分岐鎖のアルキル基等を表す。R及びR10は、炭素原子数1~12の直鎖又は分岐鎖のアルキル基等を表す。R11は水素原子等を表す。式(3)中、R12、R13は水素原子等を表す。

Description

紫外線吸収性ポリカーボネート
 本発明は、紫外線吸収性を有する耐候性に優れたポリカーボネートに関する。
 ポリカーボネート樹脂は、耐熱性,耐衝撃性,透明性などに優れたエンジニアリングプラスチックとして、例えば、光学部品、機械部品、電気・電子部品,自動車部品、樹脂ガラス、建材などの用途に広く用いられている。しかしポリカーボネート樹脂の耐候性は不十分であり、紫外線に暴露されると分子量低下や黄変などを起こし、容易に劣化する問題があった。特に屋外で使用する場合はその耐候性に問題があった。
 このポリカーボネート樹脂の耐候性を改善するために、ポリカーボネート樹脂に紫外線吸収剤を添加する方法が行われている。これら紫外線吸収剤としては、ベンゾフェノン系、ベンゾトリアゾール系、トリアジン系、シアノアクリレート系等の従来公知の紫外線吸収剤が挙げられる。
 しかし、これら従来の紫外線吸収剤を添加する方法は、樹脂の加工時(押出や射出成形等)の熱により、紫外線吸収剤が熱分解したり、揮散したりしてしまい、その効力が低下したり、加工設備を汚染したりする耐熱性の問題があった。また屋外使用時にも、徐々に紫外線吸収剤が揮散し、長期的な耐候性が得られないという問題があった。
 これに対し、特許文献1~4には、この紫外線吸収剤の揮散を防止する方法として、紫外線吸収剤を共重合する方法が開示されている。しかしこれらの耐候性は、いまだ十分ではなかった。
特開昭49-99596号公報 特開平1-201330号公報 特開平3-39326号公報 特開平6-107779号公報
 従って、本発明の目的は、紫外線吸収性を有し、加工時に性能の低下や、加工設備の汚染がなく耐熱性に優れ、更に耐候性にも優れたポリカーボネートを提供することにある。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、特定の構造を有するポリカーボネートが上記課題を解決しうることを見出し、本発明を完成するに至った。
 すなわち、本発明の紫外線吸収性ポリカーボネートは、下記一般式(1)で表されることを特徴とするものである。
Figure JPOXMLDOC01-appb-I000008
 式(1)中、nは2~300の整数を表し、
 Bは、炭素原子数2~10の直鎖又は分岐鎖のアルキリデン基、炭素原子数1~10のアルキレン基、炭素原子数6~12のアリーレン基、炭素原子数7~20のアリール置換アルキレン基、炭素原子数8~20のアリール置換アルキリデン基、炭素原子数3~15のシクロアルキリデン基、炭素原子数3~15のシクロアルキレン基、炭素原子数10~20のアルキリデン-アリーレン-アルキリデン基、酸素原子、硫黄原子、カルボニル基、スルホニル基、又は直接結合を表し、
 R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素原子数1~12の直鎖又は分岐鎖のアルキル基、炭素原子数3~8のシクロアルキル基、炭素原子数6~18のアリール基、炭素原子数7~18のアルキルアリール基又は炭素原子数7~18のアリールアルキル基を表す。
 A及びAは、それぞれ独立に、下記一般式(2)で表される基、水素原子又は下記一般式(3)で表される基を表す。但し、A及びAの少なくとも一つは下記一般式(2)で表される基である。
Figure JPOXMLDOC01-appb-I000009
 式(2)中、Gは、ハロゲン原子、炭素原子数1~18の直鎖又は分岐鎖のアルキル基、又は炭素原子数1~18の直鎖又は分岐鎖のアルコキシ基で置換された炭素原子数1~18の直鎖又は分岐鎖のアルキレン基、又は、無置換の炭素原子数1~18の直鎖又は分岐鎖のアルキレン基を表す。該アルキレン基は、酸素原子、硫黄原子、カルボニル基、エステル基、アミド基又はイミノ基で中断されていてもよく、上記の置換及び中断は組み合わされてもよい。
 R~Rは、それぞれ独立に、ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数1~12の直鎖又は分岐鎖のアルキル基;無置換の炭素原子数1~12の直鎖又は分岐鎖のアルキル基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数1~12の直鎖又は分岐鎖のアルコキシ基;無置換の炭素原子数1~12の直鎖又は分岐鎖のアルコキシ基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数3~8のシクロアルキル基;無置換の炭素原子数3~8のシクロアルキル基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数2~8のアルケニル基;無置換の炭素原子数2~8のアルケニル基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数6~18のアリール基;無置換の炭素原子数6~18のアリール基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数7~18のアルキルアリール基;無置換の炭素原子数7~18のアルキルアリール基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数7~18のアリールアルキル基;無置換の炭素原子数7~18のアリールアルキル基;又は、水素原子を表す。該アルキル基、アルコキシ基、シクロアルキル基、アルケニル基、アリール基、アルキルアリール基およびアリールアルキル基は、酸素原子、硫黄原子、カルボニル基、エステル基、アミド基又はイミノ基で中断されていてもよく、上記の置換及び中断は組み合わされてもよい。
 R及びR10は、それぞれ独立に、ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数1~12の直鎖又は分岐鎖のアルキル基;無置換の炭素原子数1~12の直鎖又は分岐鎖のアルキル基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数1~12の直鎖又は分岐鎖のアルコキシ基;無置換の炭素原子数1~12の直鎖又は分岐鎖のアルコキシ基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数3~8のシクロアルキル基;無置換の炭素原子数3~8のシクロアルキル基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数2~8のアルケニル基;無置換の炭素原子数2~8のアルケニル基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数6~18のアリール基;無置換の炭素原子数6~18のアリール基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数7~18のアルキルアリール基;無置換の炭素原子数7~18のアルキルアリール基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数7~18のアリールアルキル基;無置換の炭素原子数7~18のアリールアルキル基;水素原子、又は、ヒドロキシ基を表す。該アルキル基、アルコキシ基、シクロアルキル基、アルケニル基、アリール基、アルキルアリール基およびアリールアルキル基は、酸素原子、硫黄原子、カルボニル基、エステル基、アミド基又はイミノ基で中断されていてもよく、上記の置換及び中断は組み合わされてもよい。
 また、R、R、Rで示される基のうち隣り合う2個の基が連結してそれぞれが結合する炭素原子とともに5~7員環を形成してもよく、R、R、R10で示される基のうち隣り合う2個の基が連結してそれぞれが結合する炭素原子とともに5~7員環を形成してもよい。
 R11は水素原子又は炭素原子数1~12の直鎖又は分岐鎖のアルキル基を表す。
 また、*位置で一般式(1)に結合する。
Figure JPOXMLDOC01-appb-I000010
 式(3)中、R12は、水素原子、炭素原子数1~9のアルキル基、又は、炭素原子数7~18のアリールアルキル基を表す。R13は水素原子、又は、メチル基を表す。また、*位置で一般式(1)に結合する。
 また、本発明の紫外線吸収性ポリカーボネートとしては、下記式で表されるものが好ましい。
Figure JPOXMLDOC01-appb-I000011
 式(4)中、nは2~300の整数を表し、A及びAは、それぞれ独立に、下記一般式(5)で表される基、水素原子、又は、前記一般式(3)で表される基である。但し、A及びAの少なくとも一つは下記一般式(5)で表される基である。
Figure JPOXMLDOC01-appb-I000012
 式(5)中、Gは、ハロゲン原子、炭素原子数1~18の直鎖又は分岐鎖のアルキル基、又は炭素原子数1~18の直鎖又は分岐鎖のアルコキシ基で置換された炭素原子数1~18の直鎖又は分岐鎖のアルキレン基、又は、無置換の炭素原子数1~18の直鎖又は分岐鎖のアルキレン基を表す。該アルキレン基は、酸素原子、硫黄原子、カルボニル基、エステル基、アミド基又はイミノ基で中断されていてもよく、上記の置換及び中断は組み合わされてもよい。
 R、R、R及びR10は、それぞれ独立に、ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数1~12の直鎖又は分岐鎖のアルキル基;無置換の炭素原子数1~12の直鎖又は分岐鎖のアルキル基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数1~12の直鎖又は分岐鎖のアルコキシ基;無置換の炭素原子数1~12の直鎖又は分岐鎖のアルコキシ基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数3~8のシクロアルキル基;無置換の炭素原子数3~8のシクロアルキル基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数2~8のアルケニル基;無置換の炭素原子数2~8のアルケニル基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数6~18のアリール基;無置換の炭素原子数6~18のアリール基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数7~18のアルキルアリール基;無置換の炭素原子数7~18のアルキルアリール基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数7~18のアリールアルキル基;無置換の炭素原子数7~18のアリールアルキル基、又は、水素原子を表す。該アルキル基、アルコキシ基、シクロアルキル基、アルケニル基、アリール基、アルキルアリール基およびアリールアルキル基は、酸素原子、硫黄原子、カルボニル基、エステル基、アミド基又はイミノ基で中断されていてもよく、上記の置換及び中断は組み合わされてもよい。
 また、*位置で、一般式(4)に結合する。
 本発明の紫外線吸収性ポリカーボネート樹脂組成物は、上記の紫外線吸収性ポリカーボネートに合成樹脂用添加剤を添加してなることを特徴とするものである。
 本発明の耐候性熱可塑性樹脂組成物は、上記の紫外線吸収性ポリカーボネートを熱可塑性樹脂に添加してなることを特徴とするものである。
 本発明の紫外線吸収性ポリカーボネートの製造方法は、下記一般式(6)で表される芳香族ジヒドロキシ化合物とカーボネート前駆体の重合反応時に、下記一般式(7)で表されるトリアジン化合物を添加することを特徴とするものである。
Figure JPOXMLDOC01-appb-I000013
 式(6)中、Bは、前記一般式(1)中のBと同様であり、R~Rは、前記一般式(1)中のR~Rと同様である。
Figure JPOXMLDOC01-appb-I000014
 式(7)中、Gは、前記一般式(2)中のGと同様であり、R~Rは、前記一般式(2)中のR~Rと同様であり、R及びR10は、前記一般式(2)中のR及びR10と同様であり、R11は前記一般式(2)中のR11と同様である。
 本発明によれば、紫外線吸収性を有し、加工時に性能の低下や、加工設備の汚染がなく耐熱性に優れ、更に耐候性に優れたポリカーボネート樹脂を提供することができる。
 以下本発明について詳述する。
 前記一般式(1)において、Bがとりうる炭素原子数2~10の直鎖又は分岐鎖のアルキリデン基としては、例えば、エチリデン、プロピリデン、イソプロピリデン、ブチリデン、ペンチリデン、ヘキシリデン、ヘプチリデン、オクチリデン、ノニリデン、デシリデン等が挙げられる。
 炭素原子数1~10のアルキレン基の例としては、メチレン、エチレン、プロピレン、ブチレン、ペンチレン、ヘキシレン、ヘプチレン、オクチレン、ノニレン、デシレン等が挙げられる。
 炭素原子数6~12のアリーレン基の例としては、フェニレン、トリレン、キシリレン、ナフチレン、ビフェニレンが挙げられる。
 炭素原子数7~20のアリール置換アルキレン基の例としては、フェニルメチレン、ジフェニルエチレン等が挙げられる。
 炭素原子数8~20のアリールアルキリデン基としては、1-フェニル-1-エチリデン、1-フェニル-2-プロピリデン等が挙げられる。
 炭素原子数3~15のシクロアルキリデン基の例としては、シクロペンチリデン、シクロヘキシリデンが挙げられる。
 炭素原子数3~15のシクロアルキレン基の例としては、1,3-シクロペンチレン、1,4-シクロヘキシレン等が挙げられる。
 炭素原子数10~20のアルキリデン-アリーレン-アルキリデンの例としては、m-ジイソプロピリデンフェニレン、p-ジイソプロピリデンフェニレン等が挙げられる。
 Bは、ポリカーボネートの耐熱性、耐候性と耐衝撃性の点から、イソプロピリデン基が好ましい。
 前記一般式(1)において、R~Rがとりうる炭素原子数1~12の直鎖又は分岐鎖のアルキル基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、第二級ブチル、第三級ブチル、アミル、第三級アミル、ヘキシル、オクチル、第二級オクチル、第三級オクチル、2-エチルヘキシル、デシル、ウンデシル、ドデシル等の直鎖又は分岐のアルキル基が挙げられる。
 炭素原子数3~8のシクロアルキル基の例としては、シクロプロピル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル基等が挙げられる。
 炭素原子数6~18のアリール基の例としては、フェニル、ナフチル、ビフェニル等が挙げられる。
 炭素原子数7~18のアルキルアリール基の例としては、メチルフェニル、ジメチルフェニル、エチルフェニル、オクチルフェニル基等が挙げられる。
 炭素原子数7~18のアリールアルキル基の例としては、ベンジル、2-フェニルエチル、1-メチル-1-フェニルエチル基、2-フェニルプロパン-2-イル基等が挙げられる。
 R~Rは、耐熱性、耐候性と耐衝撃性の物性の点から、水素原子が好ましい。
 一般式(1)において、耐熱性、耐候性の点から、A及びAは、2つとも一般式(2)で表される基であることが好ましい。
 前記一般式(2)において、Gがとりうる炭素原子数1~18の直鎖又は分岐鎖のアルキレン基としては、例えば、メチレン、エチレン、プロピレン、ブチレン、ペンチレン、ヘキシレン、ヘプチレン、オクチレン、ノニレン、デシレン、ウンデシレン、ドデシレン、トリデシレン、テトラデシレン、ペンタデシレン、ヘキサデシレン、ヘプタデシレン、オクタデシレン等が挙げられる。このアルキレン基を置換してもよい、炭素原子数1~18の直鎖又は分岐鎖のアルキル基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、第二級ブチル、第三級ブチル、アミル、第三級アミル、ヘキシル、オクチル、第二級オクチル、第三級オクチル、2-エチルヘキシル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル基が挙げられる。炭素原子数1~18の直鎖又は分岐鎖のアルコキシ基としては、前記アルキル基に対応するアルコキシ基が挙げられる。Gとしては、無置換の炭素原子数1~10の直鎖又は分岐鎖アルキレン基、炭素原子数1~10の直鎖又は分岐鎖アルコキシ基で置換された炭素原子数1~10の分岐鎖アルキレン基が好ましい。
 前記一般式(2)において、R~R10の炭素原子数1~12の直鎖又は分岐鎖のアルキル基の例としては、前記アルキル基と同様のものが挙げられる。炭素原子数1~12の直鎖又は分岐鎖のアルコキシ基の例としては、前記アルコキシ基と同様のものが挙げられる。炭素原子数3~8のシクロアルキル基の例としては、前記シクロアルキル基と同様のものが挙げられる。炭素原子数2~8のアルケニル基の例としては、前記アルキル基に対応するアルケニル基が挙げられる。炭素原子数6~18のアリール基の例としては、前記アリール基と同様のものが挙げられる。炭素原子数7~18のアルキルアリール基の例としては、前記アルキルアリール基と同様のものが挙げられる。炭素原子数7~18のアリールアルキル基の例としては、前記アリールアルキル基と同様のものが挙げられる。これらを置換していてもよい炭素原子数1~12のアルキル基は前記アルキル基と同様のものが挙げられる。炭素原子数1~12のアルコキシ基は前記アルキル基に対応するアルコキシ基が挙げられる。
 一般式(2)において、R及びRは、耐熱性と耐候性の点から、水素原子、アルキル基、又はアリール基が好ましく、水素原子、メチル基、フェニル基が特に好ましい。R及びRは、耐熱性と耐候性の点から、水素原子又はアルキル基が好ましく、水素原子又はメチル基がより好ましい。R及びR10は、耐熱性と耐候性の点から、水素原子、アルキル基又はヒドロキシ基が好ましく、水素原子、メチル基、ヒドロキシ基がより好ましく、水素原子又はメチル基が最も好ましい。
 前記一般式(2)において、R11の炭素原子数1~12の直鎖又は分岐鎖のアルキル基の例としては、前記アルキル基と同様のものが挙げられる。R11は耐熱性と耐候性の点から水素原子又はメチル基が好ましく、水素原子がより好ましい。
 前記一般式(3)において、R12の炭素原子数1~9のアルキル基の例としては、前記アルキル基のうち、炭素原子数1~9のものが挙げられ、炭素原子数7~18のアリールアルキル基の例としては、ベンジル、2-フェニルエチル、1-メチル-1-フェニルエチル基、2-フェニルプロパン-2-イル基等が挙げられる。R12は、耐熱性との点から、第三ブチル基、2-フェニルプロパン-2-イル基が好ましい。
 一般式(1)で表される紫外線吸収性ポリカーボネートのうち、耐熱性、耐候性と耐衝撃性の点から、下記一般式(4)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-I000015
 式(4)中、nは2~300の整数を表し、A及びAは、互いに同一でも異なっていてもよく、下記一般式(5)で表される基、水素原子又は前記一般式(3)で表される基である。但し、A及びAの少なくともひとつは下記一般式(5)で表される基である。
Figure JPOXMLDOC01-appb-I000016
 式(5)中、G、R及びR、R及びR10は、上記と同様である。また、*位置で、一般式(4)に結合する。
 また、前記一般式(4)において、耐候性の点から、A及びAは、2つとも一般式(5)で表される基であることが好ましい。
 R及びRは、耐熱性と耐候性の点から、水素原子、アルキル基又はアリール基が好ましく、水素原子、メチル基、フェニル基がより好ましい。
 R及びR10は、耐熱性と耐候性の点から、水素原子又はアルキル基が好ましく、水素原子又はメチル基がより好ましい。
 本発明の一般式(1)で表される紫外線吸収性ポリカーボネートとしては、例えば下記の化合物No.1~No.8等の化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000017
nは2~300の整数を表す。
Figure JPOXMLDOC01-appb-I000018
 nは2~300の整数を表す。
Figure JPOXMLDOC01-appb-I000019
 nは2~300の整数を表す。
Figure JPOXMLDOC01-appb-I000020
 nは2~300の整数を表す。
Figure JPOXMLDOC01-appb-I000021
 nは2~300の整数を表す。
Figure JPOXMLDOC01-appb-I000022
 nは2~300の整数を表す。
Figure JPOXMLDOC01-appb-I000023
 nは2~300の整数を表し、XはC1225基及び/又はC1327基を表す。
Figure JPOXMLDOC01-appb-I000024
 nは2~300の整数を表す。
 次に本発明の紫外線吸収性ポリカーボネートの製造方法について説明する。
 本発明の紫外線吸収性ポリカーボネートは、下記一般式(6)で表される芳香族ジヒドロキシ化合物と、カーボネート前駆体との重合反応時に、下記一般式(7)のトリアジン化合物を添加して製造すればよい。
Figure JPOXMLDOC01-appb-I000025
 式(6)中、B、R~Rは、上記一般式(1)と同様である。
Figure JPOXMLDOC01-appb-I000026
 式(7)中、G、R~R、R及びR10、R11は上記一般式(2)と同様である。
 本発明の製造方法に使用される一般式(6)で表される芳香族ジヒドロキシ化合物の例を挙げると、例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン(=ビスフェノールA)、2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)プロパン(=テトラブロモビスフェノールA)、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(3-tert-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(3-ブロモ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-フェニル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、2,2-ビス(4-ヒドロキシフェニル)-1,1,1-トリクロロプロパン、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサクロロプロパン、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン等のビス(ヒドロキシアリール)アルカン類;
 1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン等のビス(ヒドロキシアリール)シクロアルカン類;
 9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン等のカルド構造含有ビスフェノール類;4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエーテル等のジヒドロキシジアリールエーテル類;
 4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類;4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類;
 4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類;ハイドロキノン、レゾルシン、4,4’-ジヒドロキシジフェニル等が挙げられる。
 これらの中でもビス(4-ヒドロキシフェニル)アルカン類が好ましく、特に耐衝撃性の点から2,2-ビス(4-ヒドロキシフェニル)プロパン[=ビスフェノールA]が好ましい。これらの芳香族ジヒドロキシ化合物は、1種または任意の割合で2種以上を併用してもよい。
 本発明の製造方法で、芳香族ジヒドロキシ化合物と重合反応させるカーボネート前駆体としては、カルボニルハライド、カーボネートエステル、ハロホルメート等が使用される。具体的には例えば、ホスゲン;トリホスゲン(炭酸ビストリクロロメチル)等のホスゲン誘導体;ジフェニルカーボネート、ジトリルカーボネート等のジアリールカーボネート類;ジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート類;二価フェノールのジハロホルメート等が挙げられる。これらのカーボネート前駆体もまた、1種または任意の割合で2種以上を併用してもよい。
 本発明の製造方法で使用される一般式(7)の化合物は、目的とする前記一般式(1)の化合物における一般式(2)の基の*の部分がOH基となっている化合物である。この一般式(7)の化合物を、従来公知のポリカーボネートの重合方法において用いられる末端停止剤(分子量調節剤)の代わりに又は末端停止剤と併用することで、ポリカーボネートの末端に一般式(2)の基を結合させ、目的物を得ることができる。末端停止剤としては、下記するように、一般式(3)で表される構造をもたらすような一価のフェノール性水酸基を有する化合物が用いられる。
 本発明の製造方法において、一般式(6)の芳香族ジヒドロキシ化合物と、カーボネート前駆体、さらに一般式(7)の化合物を反応させる方法は、特に限定されるものではなく、従来公知の任意の方法を採用できる。具体的には例えば、界面重合法、溶融エステル交換法、ピリジン法、環状カーボネート化合物の開環重合法、プレポリマーの固相エステル交換法等が挙げられる。
 これら、芳香族ポリカーボネート樹脂の代表的な製造方法として、まず界面重合法について説明する。
 この製造方法における重合反応は、反応に不活性な有機溶媒、及びアルカリ水溶液の存在下で、通常pHを9以上に保ち、芳香族ジヒドロキシ化合物と、末端停止剤および必要に応じて芳香族ジヒドロキシ化合物の酸化防止のための酸化防止剤を用い、ホスゲンと反応させた後、第三級アミンまたは第四級アンモニウム塩等の重合触媒を添加し、界面重合を行うことによってポリカーボネートを得る。
 本発明では、この末端停止剤として、一般式(7)の化合物を用いればよい。
 一般式(7)の化合物の添加はホスゲン化時から重合反応開始時までの間であれば特に限定されない。なお、反応温度は、例えば、0~40℃で、反応時間は、例えば、数分(例えば、10分)~数時間(例えば、6時間)である。
 反応に不活性な有機溶媒としては、具体的には例えば、ジクロロメタン、1,2-ジクロロエタン、クロロホルム、モノクロロベンゼン、ジクロロベンゼン等の塩素化炭化水素等;ベンゼン、トルエン、キシレン等の芳香族炭化水素等;が挙げられる。またアルカリ水溶液に用いられるアルカリ化合物としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物が挙げられる。
 一般式(7)の化合物と併用して用いられる末端停止剤としては、例えば一価のフェノール性水酸基を有する化合物が挙げられ、具体的には、m-メチルフェノール、p-メチルフェノール、m-プロピルフェノール、p-プロピルフェノール、p-tert-ブチルフェノール、及びp-長鎖アルキル置換フェノール等が挙げられる。
 重合触媒としてはトリメチルアミン、トリエチルアミン、トリブチルアミン、トリプロピルアミン、トリヘキシルアミン、ピリジン等の第三級アミン類;トリメチルベンジルアンモニウムクロライド、テトラメチルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド等の第四級アンモニウム塩等;が挙げられる。
 また、ホスゲンの代わりに、トリホスゲン(炭酸ビストリクロロメチル)等を用いて、同様にして溶液中で反応させてもよい。
 次に、溶融エステル交換法について説明する。この製造方法における重合反応は、例えば炭酸ジエステルと芳香族ジヒドロキシ化合物とのエステル交換反応である。炭酸ジエステルとしては、具体的には例えばジメチルカーボネート、ジエチルカーボネート、ジ-tert-ブチルカーボネート等の炭酸ジアルキル化合物、ジフェニルカーボネート及びジトリルカーボネート等の置換ジフェニルカーボネート等が挙げられる。炭酸ジエステルとしては中でもジフェニルカーボネートや置換ジフェニルカーボネート等が好ましく、特にジフェニルカーボネートが好ましい。
 溶融エステル交換法においても、末端停止剤として一般式(7)の化合物を用いる。上記した一価のフェノール性水酸基を有する末端停止剤と併用してもよい。溶融エステル交換法によりポリカーボネートを製造する際には、通常、エステル交換触媒が使用される。エステル交換触媒は従来公知のものを任意に使用でき、中でも具体的には例えば、アルカリ金属化合物および/またはアルカリ土類金属化合物が好ましい。また補助的に、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物またはアミン系化合物などの塩基性化合物を併用してもよい。
 上記原料を用いたエステル交換反応は、通常、100~320℃の温度で反応を行い、最終的には2mmHg以下の減圧下、芳香族ヒドロキシ化合物等の副生成物を除去しながら溶融重縮合反応を行えばよい。
 溶融重縮合は、バッチ式、連続式の何れの方法でも行うことができる。中でも、本発明に用いる芳香族ポリカーボネート樹脂や、本発明の樹脂組成物の安定性等を考慮すると、連続式で行うことが好ましい。溶融エステル交換法に用いる触媒失活剤としては、該エステル交換反応触媒を中和する化合物、例えばイオウ含有酸性化合物またはそれより形成される誘導体を使用することが好ましい。
 本発明の製造方法において、一般式(7)の化合物の量を調整することによって、得られるポリカーボネートの分子量を調整することができる。
 本発明の紫外線吸収性ポリカーボネートは、合成樹脂用添加剤を配合し、紫外線吸収性ポリカーボネート樹脂組成物として用いることも好ましい。
 但し、本発明の紫外線吸収性ポリカーボネートは、紫外線吸収性を有しているため、特に紫外線吸収剤の配合は必要としないが、他の紫外線吸収剤と併用してもよい。
 合成樹脂用添加剤の例としては、フェノール系酸化防止剤、リン系酸化防止剤、チオエーテル系酸化防止剤、紫外線吸収剤、ヒンダードアミン系光安定剤、トリアジン環含有化合物、金属水酸化物、リン酸エステル系難燃剤、縮合リン酸エステル系難燃剤、ホスフェート系難燃剤、無機リン系難燃剤、(ポリ)リン酸塩系難燃剤、ハロゲン系難燃剤、シリコン系難燃剤、酸化アンチモン、無機系難燃助剤、有機系難燃助剤、帯電防止剤、滑剤、造核剤、可塑剤、離型剤、相溶化剤、発泡剤、光吸収性色素、顔料、染料、加工助剤、金属不活性化剤、無機微粒子、抗菌剤、防黴剤、充填剤、フィラー等が挙げられる。
 上記フェノール系酸化防止剤としては、例えば、2,6-ジ第三ブチル-p-クレゾール、2,6-ジフェニル-4-オクタデシロキシフェノール、ジステアリル(3,5-ジ第三ブチル-4-ヒドロキシベンジル)ホスホネート、1,6-ヘキサメチレンビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオン酸アミド〕、4,4’-チオビス(6-第三ブチル-m-クレゾール)、2,2’-メチレンビス(4-メチル-6-第三ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-第三ブチルフェノール)、4,4’-ブチリデンビス(6-第三ブチル-m-クレゾール)、2,2’-エチリデンビス(4,6-ジ第三ブチルフェノール)、2,2’-エチリデンビス(4-第二ブチル-6-第三ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタン、1,3,5-トリス(2,6-ジメチル-3-ヒドロキシ-4-第三ブチルベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ第三ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ第三ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン、2-第三ブチル-4-メチル-6-(2-アクリロイルオキシ-3-第三ブチル-5-メチルベンジル)フェノール、ステアリル(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート、テトラキス〔3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオン酸メチル〕メタン、チオジエチレングリコールビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサメチレンビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート〕、ビス〔3,3-ビス(4-ヒドロキシ-3-第三ブチルフェニル)ブチリックアシッド〕グリコールエステル、ビス〔2-第三ブチル-4-メチル-6-(2-ヒドロキシ-3-第三ブチル-5-メチルベンジル)フェニル〕テレフタレート、1,3,5-トリス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル〕イソシアヌレート、3,9-ビス〔1,1-ジメチル-2-{(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル〕-2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン、トリエチレングリコールビス〔(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート〕等が挙げられる。これらのフェノール系酸化防止剤の添加量は、紫外線吸収性ポリカーボネート100質量部に対して、0.001~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。
 上記リン系酸化防止剤としては、例えば、トリスノニルフェニルホスファイト、トリス〔2-第三ブチル-4-(3-第三ブチル-4-ヒドロキシ-5-メチルフェニルチオ)-5-メチルフェニル〕ホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、ジ(デシル)モノフェニルホスファイト、ジ(トリデシル)ペンタエリスリトールジホスファイト、ジ(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ第三ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4,6-トリ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、テトラ(トリデシル)イソプロピリデンジフェノールジホスファイト、テトラ(トリデシル)-4,4’-n-ブチリデンビス(2-第三ブチル-5-メチルフェノール)ジホスファイト、ヘキサ(トリデシル)-1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタントリホスファイト、テトラキス(2,4-ジ第三ブチルフェニル)ビフェニレンジホスホナイト、9,10-ジハイドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、2,2’-メチレンビス(4,6-第三ブチルフェニル)-2-エチルヘキシルホスファイト、2,2’-メチレンビス(4,6-第三ブチルフェニル)-オクタデシルホスファイト、2,2’-エチリデンビス(4,6-ジ第三ブチルフェニル)フルオロホスファイト、トリス(2-〔(2,4,8,10-テトラキス第三ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン-6-イル)オキシ〕エチル)アミン、2-エチル-2-ブチルプロピレングリコールと2,4,6-トリ第三ブチルフェノールのホスファイト等が挙げられる。これらのリン系酸化防止剤の添加量は、紫外線吸収性ポリカーボネート100質量部に対して0.001~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。
 上記チオエーテル系酸化防止剤としては、例えば、チオジプロピオン酸ジラウリル、チオジプロピオン酸ジミリスチル、チオジプロピオン酸ジステアリル等のジアルキルチオジプロピオネート類、および、ペンタエリスリトールテトラ(β-アルキルチオプロピオン酸)エステル類が挙げられる。これらのチオエーテル系酸化防止剤の添加量は、紫外線吸収性ポリカーボネート100質量部に対して、0.001~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。
 上記紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、5,5’-メチレンビス(2-ヒドロキシ-4-メトキシベンゾフェノン)等の2-ヒドロキシベンゾフェノン類;2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ第三ブチルフェニル)-5-クロロベンゾトリアゾ-ル、2-(2’-ヒドロキシ-3’-第三ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-5’-第三オクチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジクミルフェニル)ベンゾトリアゾール、2,2’-メチレンビス(4-第三オクチル-6-(ベンゾトリアゾリル)フェノール)、2-(2’-ヒドロキシ-3’-第三ブチル-5’-カルボキシフェニル)ベンゾトリアゾール等の2-(2’-ヒドロキシフェニル)ベンゾトリアゾール類;フェニルサリシレート、レゾルシノールモノベンゾエート、2,4-ジ第三ブチルフェニル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート、2,4-ジ第三アミルフェニル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート、ヘキサデシル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート等のベンゾエート類;2-エチル-2’-エトキシオキザニリド、2-エトキシ-4’-ドデシルオキザニリド等の置換オキザニリド類;エチル-α-シアノ-β、β-ジフェニルアクリレート、メチル-2-シアノ-3-メチル-3-(p-メトキシフェニル)アクリレート等のシアノアクリレート類;2-(2-ヒドロキシ-4-オクトキシフェニル)-4,6-ビス(2,4-ジ第三ブチルフェニル)-s-トリアジン、2-(2-ヒドロキシ-4-メトキシフェニル)-4,6-ジフェニル-s-トリアジン、2-(2-ヒドロキシ-4-プロポキシ-5-メチルフェニル)-4,6-ビス(2,4-ジ第三ブチルフェニル)-s-トリアジン等のトリアリールトリアジン類が挙げられる。これらの紫外線吸収剤の添加量は、紫外線吸収性ポリカーボネート100質量部に対して、0.001~30質量部であることが好ましく、0.05~10質量部であることがより好ましい。
 上記ヒンダードアミン系光安定剤としては、例えば、2,2,6,6-テトラメチル-4-ピペリジルステアレート、1,2,2,6,6-ペンタメチル-4-ピペリジルステアレート、2,2,6,6-テトラメチル-4-ピペリジルベンゾエート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1-オクトキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,4,4-ペンタメチル-4-ピペリジル)-2-ブチル-2-(3,5-ジ第三ブチル-4-ヒドロキシベンジル)マロネート、1-(2-ヒドロキシエチル)-2,2,6,6-テトラメチル-4-ピペリジノール/コハク酸ジエチル重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-モルホリノ-s-トリアジン重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-第三オクチルアミノ-s-トリアジン重縮合物、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8,12-テトラアザドデカン、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8-12-テトラアザドデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン等のヒンダードアミン化合物が挙げられる。これらのヒンダードアミン系光安定剤の添加量は、紫外線吸収性ポリカーボネート100質量部に対して0.001~30質量部であることが好ましく、0.05~10質量部であることがより好ましい。 
 上記トリアジン環含有化合物としては、例えば、メラミン、アンメリン、ベンズグアナミン、アセトグアナミン、フタロジグアナミン、メラミンシアヌレート、ピロリン酸メラミン、ブチレンジグアナミン、ノルボルネンジグアナミン、メチレンジグアナミン、エチレンジメラミン、トリメチレンジメラミン、テトラメチレンジメラミン、ヘキサメチレンジメラミン、1,3-ヘキシレンジメラミン等が挙げられる。
 上記金属水酸化物としては、例えば、水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウム、水酸化バリウム、水酸化亜鉛、キスマー5A(水酸化マグネシウム:協和化学工業(株)製)等が挙げられる。
 上記リン酸エステル系難燃剤としては、例えば、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリブトキシエチルホスフェート、トリスクロロエチルホスフェート、トリスジクロロプロピルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、トリキシレニルホスフェート、オクチルジフェニルホスフェート、キシレニルジフェニルホスフェート、トリスイソプロピルフェニルホスフェート、2-エチルヘキシルジフェニルホスフェート、t-ブチルフェニルジフェニルホスフェート、ビス-(t-ブチルフェニル)フェニルホスフェート、トリス-(t-ブチルフェニル)ホスフェート、イソプロピルフェニルジフェニルホスフェート、ビス-(イソプロピルフェニル)ジフェニルホスフェート、トリス-(イソプロピルフェニル)ホスフェートなどが挙げられる。
 上記縮合リン酸エステル系難燃剤の例としては、1,3-フェニレンビス(ジフェニルホスフェート)、1,3-フェニレンビス(ジキシレニルホスフェート)、ビスフェノールAビス(ジフェニルホスフェート)等が挙げられる。
 上記(ポリ)リン酸塩系難燃剤の例としては、ポリリン酸アンモニウム、ポリリン酸メラミン、ポリリン酸ピペラジン、ピロリン酸メラミン、ピロリン酸ピペラジン等の(ポリ)リン酸のアンモニウム塩やアミン塩が挙げられる。
 無機系難燃助剤としては、例えば、酸化チタン、酸化アルミニウム、酸化マグネシウム、ハイドロタルサイト、タルク、モンモリロナイトなどの無機化合物、およびその表面処理品が挙げられ、例えば、TIPAQUE R-680(酸化チタン:石原産業(株)製)、キョーワマグ150(酸化マグネシウム:協和化学工業(株)製)、DHT-4A(ハイドロタルサイト:協和化学工業(株)製)、アルカマイザー4(亜鉛変性ハイドロタルサイト:協和化学工業(株)製)、などの種々の市販品を用いることができる。また、有機系難燃助剤としては、例えば、ペンタエリスリトールが挙げられる。
 帯電防止剤としては、例えば、脂肪酸第四級アンモニウムイオン塩、ポリアミン四級塩等のカチオン系帯電防止剤;高級アルコールリン酸エステル塩、高級アルコールEO付加物、ポリエチレングリコール脂肪酸エステル、アニオン型のアルキルスルホン酸塩、高級アルコール硫酸エステル塩、高級アルコールエチレンオキシド付加物硫酸エステル塩、高級アルコールエチレンオキシド付加物リン酸エステル塩等のアニオン系帯電防止剤;多価アルコール脂肪酸エステル、ポリグリコールリン酸エステル、ポリオキシエチレンアルキルアリルエーテル等のノニオン系帯電防止剤;アルキルジメチルアミノ酢酸ベタイン等の両性型アルキルベタイン、イミダゾリン型両性活性剤等の両性帯電防止剤が挙げられる。
 滑剤としては、例えば、流動パラフィン、パラフィンワックス、ポリエチレンワックス等の炭化水素系滑剤;ステアリルアルコール、ステアリン酸、12-ヒドロキシステアリン酸等の脂肪族系滑剤;ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、メチレンビスステアリン酸アミド、エチレンステアリン酸アミド等のアミド系滑剤;ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム、ステアリン酸鉛、ステアリン酸アルミニウム、ステアリン酸バリウム、ステアリン酸バリウム/ステアリン酸亜鉛複合体、ステアリン酸亜鉛/ステアリン酸カルシウム複合体等の金属石鹸系滑剤;硬化油脂、グリセリンモノステアレート、ステアリン酸ブチル、ペンタエリスリトールステアレート、ステアリン酸ステアリル等のエステル系滑剤が挙げられる。
 造核剤としては、例えばジベンジリデンソルビトール、ビス(p-メチルベンジリデン)ソルビトール、ビス(p-エチルベンジリデン)ソルビトール、ヒドロキシ-ジ(t-ブチル安息香酸)アルミニウム、リン酸ビス(4-t-ブチルフェニル)ナトリウム、リン酸2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)ナトリウム塩等の造核剤が挙げられる。
 可塑剤としては、例えば、フタル酸エステル、二塩基酸エステル、塩素化パラフィン、ポリエステル、エポキシ化エステル、リン酸エステル、トリメリット酸エステル等の可塑剤が挙げられる。
 充填剤としては、例えば、ケイ酸カルシウム粉、シリカ粉、タルク粉、マイカ粉、アルミナ粉、酸化チタン粉、ガラスフレーク等が挙げられる。フィラーとしては、ガラス繊維、炭素繊維等が挙げられる。
 本発明の紫外線吸収性ポリカーボネート樹脂組成物の製造方法は特に制限はなく、従来公知の任意の、樹脂組成物の製造方法を採用することができる。
 具体的には例えば、紫外線吸収性ポリカーボネートと添加剤成分を、タンブラーやヘンシェルミキサーなどの各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどで溶融混練する方法が挙げられる。
 また各成分を予め混合せずに、又は一部の成分のみ予め混合して、フィーダーを用いて押出機に供給し溶融混練して、樹脂組成物を製造してもよい。更には、一部の成分を予め混合し押出機に供給して溶融混練することで得られる樹脂組成物をマスターバッチとし、再度、他の成分と混合し溶融混練することによって樹脂組成物を製造することもできる。 
 本発明の紫外線吸収性ポリカーボネート又は紫外線吸収性ポリカーボネート樹脂組成物は、成形することにより、耐候性に優れた成形体を得ることができる。成形方法としては、特に限定されるものではなく、押出加工、カレンダー加工、射出成形、ロール、圧縮成形、ブロー成形、回転成形等が挙げられ、樹脂板、シート、フィルム、ボトル、繊維、異形品等の種々の形状の成形品が製造できる。
 また本発明の紫外線吸収性ポリカーボネートは、樹脂成分として使用する以外に、紫外線吸収剤として、従来公知の紫外線吸収剤と同様に、各種熱可塑性樹脂に添加して使用してもよい。もちろん、従来公知のポリカーボネートに配合して使用してもよい。本発明の耐候性熱可塑性樹脂組成物は、上記本発明の紫外線吸収性ポリカーボネートを熱可塑性樹脂に添加してなるものである。本発明の紫外線吸収性ポリカーボネートを熱可塑性樹脂に配合する場合、その配合量は、熱可塑性樹脂100質量部に対して、好ましくは0.01~90質量部、より好ましくは0.05~50質量部、さらに好ましくは0.1~30質量部である。
 本発明の耐候性熱可塑性樹脂組成物に用いることのできる熱可塑性樹脂の例としては、ポリプロピレン、高密度ポリエチレン、低密度ポリエチレン、直鎖低密度ポリエチレン、架橋ポリエチレン、超高分子量ポリエチレン、ポリブテン-1、ポリ-3-メチルペンテン、ポリ-4-メチルペンテン等のα-オレフィン重合体またはエチレン-酢酸ビニル共重合体、エチレン-エチルアクリレート共重合体、エチレン-プロピレン共重合体等のポリオレフィン系樹脂およびこれらの共重合体;ポリ塩化ビニル、ポリ塩化ビニリデン、塩素化ポリエチレン、塩素化ポリプロピレン、ポリフッ化ビニリデン、塩化ゴム、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-エチレン共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-塩化ビニリデン-酢酸ビニル三元共重合体、塩化ビニル-アクリル酸エステル共重合体、塩化ビニル-マレイン酸エステル共重合体、塩化ビニル-シクロヘキシルマレイミド共重合体等の含ハロゲン樹脂;石油樹脂、クマロン樹脂、ポリスチレン、ポリ酢酸ビニル、アクリル樹脂、スチレンおよび/またはα-メチルスチレンと他の単量体(例えば、無水マレイン酸、フェニルマレイミド、メタクリル酸メチル、ブタジエン、アクリロニトリル等)との共重合体(例えば、AS樹脂、ABS樹脂、ACS樹脂、SBS樹脂、MBS樹脂、耐熱ABS樹脂等);ポリメチルメタクリレート、ポリビニルアルコール、ポリビニルホルマール、ポリビニルブチラール;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリシクロヘキサンジメチレンテレフタレート等のポリアルキレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等のポリアルキレンナフタレート等の芳香族ポリエステル及びポリテトラメチレンテレフタレート等の直鎖ポリエステル;ポリヒドロキシブチレート、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリ乳酸、ポリリンゴ酸、ポリグリコール酸、ポリジオキサン、ポリ(2-オキセタノン)等の分解性脂肪族ポリエステル;ポリフェニレンオキサイド、ポリカプロラクタムおよびポリヘキサメチレンアジパミド等のポリアミド、ポリカーボネート、ポリカーボネート/ABS樹脂、分岐ポリカーボネート、ポリアセタール、ポリフェニレンサルファイド、ポリウレタン、繊維素系樹脂、ポリイミド樹脂、ポリサルフォン、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、液晶ポリマー等の熱可塑性樹脂およびこれらのブレンド物を挙げることができる。また、熱可塑性樹脂は、イソプレンゴム、ブタジエンゴム、アクリロニトリル-ブタジエン共重合ゴム、スチレン-ブタジエン共重合ゴム、フッ素ゴム、シリコーンゴム、オレフィン系エラストマー、スチレン系エラストマー、ポリエステル系エラストマー、ニトリル系エラストマー、ナイロン系エラストマー、塩化ビニル系エラストマー、ポリアミド系エラストマー、ポリウレタン系エラストマー等のエラストマーであってもよい。これらの熱可塑性樹脂は、単独で使用してもよく、2種以上を併せて使用してもよい。また、熱可塑性樹脂はアロイ化されていてもよい。
 これらの熱可塑性樹脂は、分子量、重合度、密度、軟化点、溶媒への不溶分の割合、立体規則性の程度、触媒残渣の有無、原料となるモノマーの種類や配合比率、重合触媒の種類(例えば、チーグラー触媒、メタロセン触媒等)等に関わらず使用することができる。
 また、本発明の紫外線吸収性ポリカーボネートは、特に耐候性を必要とする用途に好ましく用いられ、光学部品、機械部品、電気・電子部品,自動車部品、樹脂ガラス、建材等に使用することができる。より具体的には、プリンター、パソコン、ワープロ、キーボード、PDA(小型情報端末機)、電話機、複写機、ファクシミリ、ECR(電子式金銭登録機)、電卓、電子手帳、カード、ホルダー、文具等の事務、OA機器、洗濯機、冷蔵庫、掃除機、電子レンジ、照明器具、ゲーム機、アイロン、コタツ等の家電機器、TV、VTR、ビデオカメラ、ラジカセ、テープレコーダー、ミニディスク、CDプレーヤー、スピーカー、液晶ディスプレー等のAV機器、コネクター、リレー、コンデンサー、スイッチ、プリント基板、コイルボビン、半導体封止材料、LED封止材料、電線、ケーブル、トランス、偏向ヨーク、分電盤、時計等の電気・電子部品及び通信機器等の用途に用いられる。
 更に、光ディスク、CDディスク、DVDディスク、レンズ等の光学材料用途やガラス代替用途に用いられる。
 更に、座席(詰物、表地等)、ベルト、天井張り、コンパーチブルトップ、アームレスト、ドアトリム、リアパッケージトレイ、カーペット、マット、サンバイザー、ホイルカバー、マットレスカバー、エアバック、絶縁材、吊り手、吊り手帯、電線被覆材、電気絶縁材、塗料、コーティング材、上張り材、床材、隅壁、カーペット、壁紙、壁装材、外装材、内装材、屋根材、デッキ材、壁材、柱材、敷板、塀の材料、骨組及び繰形、窓及びドア形材、こけら板、羽目、テラス、バルコニー、防音板、断熱板、窓材等の、自動車、車両、船舶、航空機、建物、住宅及び建築用材料や、土木材料、衣料、カーテン、シーツ、合板、合繊板、絨毯、玄関マット、シート、バケツ、ホース、容器、眼鏡、鞄、ケース、ゴーグル、スキー板、ラケット、テント、楽器等の生活用品、スポーツ用品、等の各種用途に使用される。
 以下、実施例及び比較例により本発明を詳細に示す。但し、本発明は以下の実施例により何ら制限されるものではない。
〔実施例1〕化合物No.1の合成
 ビスフェノールA(東京化成工業(株)製試薬)を5.93g、下記トリアジン化合物Aを0.35g、ジクロロメタンを160g、トリエチルアミン6.41gをジムロートを装着した300mlの2つ口丸底フラスコに加え、室温で溶解させた。5℃まで冷却後トリホスゲン3.13gを1時間かけて少量ずつ添加後、40℃まで昇温し1時間還流した。反応終了後、室温まで冷却の後50mlのイオン交換水で3回水洗した。反応マスをメタノール300gの入った500mlビーカーに滴下しポリマーを沈殿させた後、ろ過してポリマーを回収した。ろ過後、回収したポリマーをメタノール100mlで3回洗浄した。洗浄後、90℃、減圧下で乾燥し、本発明の紫外線吸収性ポリカーボネートである下記化合物No.1を6.51g(収率=93.3%)得た。
 得られた化合物No.1の数平均分子量(Mn)を、下記分子量測定方法で測定した。結果を表1に示す。
 また、得られた化合物No.1の耐熱性試験として、下記耐熱性試験方法で、1%重量減少温度を測定した。結果を表1に示す。
 また、下記キャストフィルム作製方法で、キャストフィルムを作製した。得られたキャストフィルムを用いて、下記透明性試験方法でHaze値を、下記耐候性試験方法で耐候性試験を行った。それぞれの結果を表1に示す。
Figure JPOXMLDOC01-appb-I000027
Figure JPOXMLDOC01-appb-I000028
〔実施例2〕化合物No.2の合成
 ビスフェノールA(東京化成工業(株)製試薬)を5.86g、下記トリアジン化合物Bを0.35g、ジクロロメタンを160g、トリエチルアミン6.40gをジムロートを装着した300mlの2つ口丸底フラスコに加え、室温で溶解させた。5℃まで冷却後トリホスゲン3.10gを1時間かけて少量ずつ添加後、40℃まで昇温し1時間還流した。反応終了後、室温まで冷却の後50mlのイオン交換水で3回水洗した。反応マスをメタノール300gの入った500mlビーカーに滴下しポリマーを沈殿させた後、ろ過してポリマーを回収した。ろ過後、回収したポリマーをメタノール100mlで3回洗浄した。洗浄後、90℃、減圧下で乾燥し、本発明の紫外線吸収性ポリカーボネートである下記化合物No.2を6.43g(収率=93.4%)得た。
 得られた化合物No.2の数平均分子量(Mn)を、下記分子量測定方法で測定した。結果を表1に示す。
 また、得られた化合物No.2の耐熱性試験として、下記耐熱性試験方法で、1%重量減少温度を測定した。結果を表1に示す。
 また、下記キャストフィルム作製方法で、キャストフィルムを作製した。得られたキャストフィルムを用いて、下記透明性試験方法でHaze値を、下記耐候性試験方法で耐候性試験を行った。それぞれの結果を表1に示す。
Figure JPOXMLDOC01-appb-I000029
Figure JPOXMLDOC01-appb-I000030
〔実施例3〕化合物No.4の合成
 ビスフェノールA(東京化成工業(株)製試薬)を5.38g、下記トリアジン化合物Cを0.35g、ジクロロメタンを160g、トリエチルアミン5.34gをジムロートを装着した300mlの2つ口丸底フラスコに加え、室温で溶解させた。5℃まで冷却後トリホスゲン2.61gを1時間かけて少量ずつ添加後、40℃まで昇温し1時間還流した。反応終了後、室温まで冷却の後50mlのイオン交換水で3回水洗した。反応マスをメタノール300gの入った500mlビーカーに滴下しポリマーを沈殿させた後、ろ過してポリマーを回収した。ろ過後、回収したポリマーをメタノール100mlで3回洗浄した。洗浄後、90℃、減圧下で乾燥し、本発明の紫外線吸収性ポリカーボネートである下記化合物No.4を5.87g(収率=92.2%)得た。
 得られた化合物No.4の数平均分子量(Mn)を、下記分子量測定方法で測定した。結果を表1に示す。
 また、得られた化合物No.4の耐熱性試験として、下記耐熱性試験方法で、1%重量減少温度を測定した。結果を表1に示す。
 また、下記キャストフィルム作製方法で、キャストフィルムを作製した。得られたキャストフィルムを用いて、下記透明性試験方法でHaze値を、下記耐候性試験方法で耐候性試験を行った。それぞれの結果を表1に示す。
Figure JPOXMLDOC01-appb-I000031
Figure JPOXMLDOC01-appb-I000032
〔実施例4〕化合物No.5の合成
 ビスフェノールA(東京化成工業(株)製試薬)を6.39g、下記トリアジン化合物Dを0.38g、ジクロロメタンを160g、トリエチルアミン6.89gをジムロートを装着した300mlの2つ口丸底フラスコに加え、室温で溶解させた。5℃まで冷却後トリホスゲン3.37gを1時間かけて少量ずつ添加後、40℃まで昇温し1時間還流した。反応終了後、室温まで冷却の後50mlのイオン交換水で3回水洗した。反応マスをメタノール300gの入った500mlビーカーに滴下しポリマーを沈殿させた後、ろ過してポリマーを回収した。ろ過後、回収したポリマーをメタノール100mlで3回洗浄した。洗浄後、90℃、減圧下で乾燥し、本発明の紫外線吸収性ポリカーボネートである下記化合物No.5を7.05g(収率=93.9%)得た。
 得られた化合物No.5の数平均分子量(Mn)を、下記分子量測定方法で測定した。結果を表1に示す。
 また、得られた化合物No.5の耐熱性試験として、下記耐熱性試験方法で、1%重量減少温度を測定した。結果を表1に示す。
 また、下記キャストフィルム作製方法で、キャストフィルムを作製した。得られたキャストフィルムを用いて、下記透明性試験方法でHaze値を、下記耐候性試験方法で耐候性試験を行った。それぞれの結果を表1に示す。
Figure JPOXMLDOC01-appb-I000033
Figure JPOXMLDOC01-appb-I000034
<分子量測定方法>
 数平均分子量(以下、「Mn」と称する)はゲルパーミションクロマトグラフィー(GPC)法によって測定を行った。Mnの測定条件は以下の通りである。
装置     :日本分光株式会社製GPC装置
溶媒     :テトラヒドロフラン
基準物質   :ポリスチレン
検出器    :示差屈折計(RI検出器)
カラム固定相 :昭和電工(株)製Shodex KF-804L
カラム温度  :40℃
サンプル濃度 :1mg/1mL
流量     :0.8mL/min.
注入量    :100μL
<耐熱性試験方法>
 熱重量・示差熱分析装置Thermo plus EVO(株式会社リガク製)で、空気200ml/分の気流下で昇温速度10℃/分で30℃から400℃まで昇温し、1%重量減少温度を測定した。
<キャストフィルム作製方法>
 上記で得られた本発明の紫外線吸収性ポリカーボネートである化合物No.1、化合物No.2、化合物No.4、化合物No.5のそれぞれを120℃で6時間乾燥させた。その後、それぞれの紫外線吸収性ポリカーボネート250mgと、市販のポリカーボネート樹脂(三菱エンジニアリングプラスチックス株式会社製:ユーピロンS-3000F)2.25gをラボプラストミルマイクロ((株)東洋精機製作所製)で溶融混練(300℃、50rpm、5分)し、紫外線吸収性ポリカーボネート樹脂組成物のペレットを得た。
 得られたペレットそれぞれの1.25gを25mlメスフラスコへ入れ、ジクロロメタンを標線まで加えた。1時間ほど室温で放置し溶解した後、この溶液を4mlホールピペットでシャーレ(直径:60mm)へ入れ、30分間室温で乾燥させた。乾燥後、シャーレからフィルムをはがし取ることで、50μm厚のポリカーボネートキャストフィルムが得られた。
<透明性試験方法>
 上記で得られたキャストフィルムのHaze値を測定した。
 測定は、ヘイズ・ガードII((株)東洋精機製作所製の商品名)を用いて、フィルム上の5点について行い、その平均値を求めた。
<耐候試験方法>
 上記で得られたキャストフィルムについて、スガ試験機株式会社製 サンシャインウェザーメーター(83℃、水スプレーあり)で1000時間後のフィルムの黄色度(Y.I.)を、スガ試験機株式会社製 多光源分光測色計で透過法により測定した。
〔比較例1〕比較化合物-1の合成
 ビスフェノールA(東京化成工業(株)製試薬)を6.06g、4-tert-ブチルフェノールを0.14g、ジクロロメタンを160g、トリエチルアミン6.56gをジムロートを装着した300mlの2つ口丸底フラスコに加え、室温で溶解させた。5℃まで冷却後トリホスゲン3.21gを1時間かけて少量ずつ添加後、40℃まで昇温し1時間還流した。反応終了後、室温まで冷却の後50mlのイオン交換水で3回水洗した。反応マスをメタノール300gの入った500mlビーカーに滴下しポリマーを沈殿させた後、ろ過してポリマーを回収した。ろ過後、回収したポリマーをメタノール100mlで3回洗浄した。洗浄後、90℃、減圧下で乾燥し、比較用ポリカーボネートである下記比較化合物-1を6.33g(収率=91.8%)得た。
 得られた比較化合物-1の数平均分子量(Mn)を、上記分子量測定方法で測定した。結果を表1に示す。
 また得られた比較化合物-1の耐熱性試験として、上記耐熱性試験方法で、1%重量減少温度を測定した。結果を表1に示す。
 また、化合物No.1に替えて、比較化合物-1を250mg用いた以外は、実施例1と同様にして、キャストフィルムを得た。得られたキャストフィルムを用いて実施例と同様に、透明性試験と耐候性試験を行った。結果を表1に示す。
〔比較例2〕
 下記構造を有するトリアジン系紫外線吸収剤である、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-(ヘキシル)オキシフェノールを比較化合物-2とした。化合物No.1に代えて、比較化合物-2を250mg用いた以外は、実施例1と同様にして、キャストフィルムを得た。得られたキャストフィルムを用いて実施例1と同様に、透明性試験と耐候性試験を行った。
〔比較例3〕
 化合物No.1に代えて、比較化合物-1を237.5mg及び比較化合物-2を12.5mg用いた以外は実施例1と同様にして、キャストフィルムを得た。得られたキャストフィルムを用いて実施例と同様に、透明性試験と耐候性試験を行った。
Figure JPOXMLDOC01-appb-I000035
Figure JPOXMLDOC01-appb-I000036
Figure JPOXMLDOC01-appb-T000037

Claims (5)

  1.  下記一般式(1)で表されることを特徴とする紫外線吸収性ポリカーボネート。
    Figure JPOXMLDOC01-appb-I000001
     式(1)中、nは2~300の整数を表し、
     Bは、炭素原子数2~10の直鎖又は分岐鎖のアルキリデン基、炭素原子数1~10のアルキレン基、炭素原子数6~12のアリーレン基、炭素原子数7~20のアリール置換アルキレン基、炭素原子数8~20のアリール置換アルキリデン基、炭素原子数3~15のシクロアルキリデン基、炭素原子数3~15のシクロアルキレン基、炭素原子数10~20のアルキリデン-アリーレン-アルキリデン基、酸素原子、硫黄原子、カルボニル基、スルホニル基、又は直接結合を表し、
     R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素原子数1~12の直鎖又は分岐鎖のアルキル基、炭素原子数3~8のシクロアルキル基、炭素原子数6~18のアリール基、炭素原子数7~18のアルキルアリール基又は炭素原子数7~18のアリールアルキル基を表す。
     A及びAは、それぞれ独立に、下記一般式(2)で表される基、水素原子又は下記一般式(3)で表される基を表す。但し、A及びAの少なくとも一つは下記一般式(2)で表される基である。
    Figure JPOXMLDOC01-appb-I000002
     式(2)中、Gは、ハロゲン原子、炭素原子数1~18の直鎖又は分岐鎖のアルキル基、又は炭素原子数1~18の直鎖又は分岐鎖のアルコキシ基で置換された炭素原子数1~18の直鎖又は分岐鎖のアルキレン基、又は、無置換の炭素原子数1~18の直鎖又は分岐鎖のアルキレン基を表す。該アルキレン基は、酸素原子、硫黄原子、カルボニル基、エステル基、アミド基又はイミノ基で中断されていてもよく、上記の置換及び中断は組み合わされてもよい。
     R~Rは、それぞれ独立に、ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数1~12の直鎖又は分岐鎖のアルキル基;無置換の炭素原子数1~12の直鎖又は分岐鎖のアルキル基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数1~12の直鎖又は分岐鎖のアルコキシ基;無置換の炭素原子数1~12の直鎖又は分岐鎖のアルコキシ基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数3~8のシクロアルキル基;無置換の炭素原子数3~8のシクロアルキル基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数2~8のアルケニル基;無置換の炭素原子数2~8のアルケニル基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数6~18のアリール基;無置換の炭素原子数6~18のアリール基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数7~18のアルキルアリール基;無置換の炭素原子数7~18のアルキルアリール基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数7~18のアリールアルキル基;無置換の炭素原子数7~18のアリールアルキル基;又は、水素原子を表す。該アルキル基、アルコキシ基、シクロアルキル基、アルケニル基、アリール基、アルキルアリール基およびアリールアルキル基は、酸素原子、硫黄原子、カルボニル基、エステル基、アミド基又はイミノ基で中断されていてもよく、上記の置換及び中断は組み合わされてもよい。
     R及びR10は、それぞれ独立に、ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数1~12の直鎖又は分岐鎖のアルキル基;無置換の炭素原子数1~12の直鎖又は分岐鎖のアルキル基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数1~12の直鎖又は分岐鎖のアルコキシ基;無置換の炭素原子数1~12の直鎖又は分岐鎖のアルコキシ基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数3~8のシクロアルキル基;無置換の炭素原子数3~8のシクロアルキル基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数2~8のアルケニル基;無置換の炭素原子数2~8のアルケニル基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数6~18のアリール基;無置換の炭素原子数6~18のアリール基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数7~18のアルキルアリール基;無置換の炭素原子数7~18のアルキルアリール基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数7~18のアリールアルキル基;無置換の炭素原子数7~18のアリールアルキル基;水素原子、又は、ヒドロキシ基を表す。該アルキル基、アルコキシ基、シクロアルキル基、アルケニル基、アリール基、アルキルアリール基およびアリールアルキル基は、酸素原子、硫黄原子、カルボニル基、エステル基、アミド基又はイミノ基で中断されていてもよく、上記の置換及び中断は組み合わされてもよい。
     また、R、R、Rで示される基のうち隣り合う2個の基が連結してそれぞれが結合する炭素原子とともに5~7員環を形成してもよく、R、R、R10で示される基のうち隣り合う2個の基が連結してそれぞれが結合する炭素原子とともに5~7員環を形成してもよい。
     R11は水素原子又は炭素原子数1~12の直鎖又は分岐鎖のアルキル基を表す。
     また、*位置で一般式(1)に結合する。
    Figure JPOXMLDOC01-appb-I000003
     式(3)中、R12は、水素原子、炭素原子数1~9のアルキル基、又は、炭素原子数7~18のアリールアルキル基を表す。R13は水素原子、又は、メチル基を表す。また、*位置で一般式(1)に結合する。
  2.  下記一般式(4)で表される請求項1記載の紫外線吸収性ポリカーボネート。
    Figure JPOXMLDOC01-appb-I000004
     式(4)中、nは2~300の整数を表し、A及びAは、それぞれ独立に、下記一般式(5)で表される基、水素原子、又は、前記一般式(3)で表される基を表す。但し、A及びAの少なくとも一つは下記一般式(5)で表される基である。
    Figure JPOXMLDOC01-appb-I000005
     式(5)中、Gは、ハロゲン原子、炭素原子数1~18の直鎖又は分岐鎖のアルキル基、又は炭素原子数1~18の直鎖又は分岐鎖のアルコキシ基で置換された炭素原子数1~18の直鎖又は分岐鎖のアルキレン基、又は、無置換の炭素原子数1~18の直鎖又は分岐鎖のアルキレン基を表す。該アルキレン基は、酸素原子、硫黄原子、カルボニル基、エステル基、アミド基又はイミノ基で中断されていてもよく、上記の置換及び中断は組み合わされてもよい。
     R、R、R及びR10は、それぞれ独立に、ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数1~12の直鎖又は分岐鎖のアルキル基;無置換の炭素原子数1~12の直鎖又は分岐鎖のアルキル基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数1~12の直鎖又は分岐鎖のアルコキシ基;無置換の炭素原子数1~12の直鎖又は分岐鎖のアルコキシ基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数3~8のシクロアルキル基;無置換の炭素原子数3~8のシクロアルキル基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数2~8のアルケニル基;無置換の炭素原子数2~8のアルケニル基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数6~18のアリール基;無置換の炭素原子数6~18のアリール基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数7~18のアルキルアリール基;無置換の炭素原子数7~18のアルキルアリール基;ヒドロキシ基、ハロゲン原子、炭素原子数1~12のアルキル基又は炭素原子数1~12のアルコキシ基で置換された炭素原子数7~18のアリールアルキル基;無置換の炭素原子数7~18のアリールアルキル基;又は、水素原子を表す。該アルキル基、アルコキシ基、シクロアルキル基、アルケニル基、アリール基、アルキルアリール基およびアリールアルキル基は、酸素原子、硫黄原子、カルボニル基、エステル基、アミド基又はイミノ基で中断されていてもよく、上記の置換及び中断は組み合わされてもよい。
     また、*位置で、一般式(4)に結合する。
  3.  請求項1記載の紫外線吸収性ポリカーボネートに合成樹脂用添加剤を添加してなることを特徴とする紫外線吸収性ポリカーボネート樹脂組成物。
  4.  請求項1記載の紫外線吸収性ポリカーボネートを熱可塑性樹脂に添加してなることを特徴とする耐候性熱可塑性樹脂組成物。
  5.  下記一般式(6)で表される芳香族ジヒドロキシ化合物とカーボネート前駆体の重合反応時に、下記一般式(7)で表されるトリアジン化合物を添加することを特徴とする請求項1記載の紫外線吸収性ポリカーボネートの製造方法。
    Figure JPOXMLDOC01-appb-I000006
     式(6)中、Bは、前記一般式(1)中のBと同様であり、R~Rは、前記一般式(1)中のR~Rと同様である。
    Figure JPOXMLDOC01-appb-I000007
     式(7)中、Gは、前記一般式(2)中のGと同様であり、R~Rは、前記一般式(2)中のR~Rと同様であり、R及びR10は、前記一般式(2)中のR及びR10と同様であり、R11は前記一般式(2)中のR11と同様である。
PCT/JP2014/075936 2013-10-02 2014-09-29 紫外線吸収性ポリカーボネート WO2015050087A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/025,062 US9951180B2 (en) 2013-10-02 2014-09-29 Ultraviolet-ray-absorbing polycarbonate
CN201480054778.9A CN105612195B (zh) 2013-10-02 2014-09-29 紫外线吸收性聚碳酸酯
EP14850138.0A EP3053943B1 (en) 2013-10-02 2014-09-29 Ultraviolet-ray-absorbing polycarbonate
KR1020167007310A KR102206409B1 (ko) 2013-10-02 2014-09-29 자외선 흡수성 폴리카보네이트

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-207595 2013-10-02
JP2013207595A JP6238283B2 (ja) 2013-10-02 2013-10-02 紫外線吸収性ポリカーボネート

Publications (1)

Publication Number Publication Date
WO2015050087A1 true WO2015050087A1 (ja) 2015-04-09

Family

ID=52778677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075936 WO2015050087A1 (ja) 2013-10-02 2014-09-29 紫外線吸収性ポリカーボネート

Country Status (7)

Country Link
US (1) US9951180B2 (ja)
EP (1) EP3053943B1 (ja)
JP (1) JP6238283B2 (ja)
KR (1) KR102206409B1 (ja)
CN (1) CN105612195B (ja)
TW (1) TWI635115B (ja)
WO (1) WO2015050087A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180283014A1 (en) * 2017-04-03 2018-10-04 Columbia Insurance Company Rigid composite board floor coverings
KR102166306B1 (ko) * 2018-08-20 2020-10-15 주식회사 엘지화학 폴리카보네이트 수지 조성물 및 이를 포함하는 광학 성형품
CN115960407B (zh) * 2022-12-19 2024-01-30 金发科技股份有限公司 一种低摩擦抗静电聚乙烯组合物及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4999596A (ja) 1973-01-25 1974-09-20
JPH021330A (ja) 1988-03-14 1990-01-05 Oki Electric Ind Co Ltd ワイヤドット印字ヘッドの可動部の製造方法
JPH0339326A (ja) 1989-07-06 1991-02-20 Mitsubishi Gas Chem Co Inc コーポリカーボネート樹脂およびその製法
JPH06107779A (ja) 1992-09-29 1994-04-19 Mitsubishi Gas Chem Co Inc コーポリカーボネート樹脂及びその製造法
JP2779981B2 (ja) * 1989-12-05 1998-07-23 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド 安定化した有機材料
JP2005507957A (ja) * 2001-08-28 2005-03-24 ゼネラル・エレクトリック・カンパニイ トリアジン化合物、トリアジン構造単位を含むポリマー、及び方法
JP2005510611A (ja) * 2001-11-30 2005-04-21 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド ポリマーネットワーク用2−ヒドロキシフェニル−s−トリアジン架橋剤

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201330A (ja) 1988-02-08 1989-08-14 Mitsubishi Gas Chem Co Inc 耐候性ポリカーボネート樹脂の製法
US5736597A (en) 1989-12-05 1998-04-07 Ciba-Geigy Corporation Stabilized organic material
TWI318208B (en) 2001-07-02 2009-12-11 Ciba Sc Holding Ag Highly compatible hydroxyphenyltriazine uv-absorbers
EP1746445B1 (en) * 2004-05-12 2012-02-22 Adeka Corporation Optical film
US20120287556A1 (en) * 2011-05-12 2012-11-15 Norberto Silvi Amorphous polycarbonate films for capacitors, methods of manufacture, and articles manufactured therefrom

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4999596A (ja) 1973-01-25 1974-09-20
JPH021330A (ja) 1988-03-14 1990-01-05 Oki Electric Ind Co Ltd ワイヤドット印字ヘッドの可動部の製造方法
JPH0339326A (ja) 1989-07-06 1991-02-20 Mitsubishi Gas Chem Co Inc コーポリカーボネート樹脂およびその製法
JP2779981B2 (ja) * 1989-12-05 1998-07-23 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド 安定化した有機材料
JPH06107779A (ja) 1992-09-29 1994-04-19 Mitsubishi Gas Chem Co Inc コーポリカーボネート樹脂及びその製造法
JP2005507957A (ja) * 2001-08-28 2005-03-24 ゼネラル・エレクトリック・カンパニイ トリアジン化合物、トリアジン構造単位を含むポリマー、及び方法
JP2005510611A (ja) * 2001-11-30 2005-04-21 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド ポリマーネットワーク用2−ヒドロキシフェニル−s−トリアジン架橋剤

Also Published As

Publication number Publication date
JP6238283B2 (ja) 2017-11-29
TWI635115B (zh) 2018-09-11
US20160229954A1 (en) 2016-08-11
TW201522416A (zh) 2015-06-16
US9951180B2 (en) 2018-04-24
KR20160067097A (ko) 2016-06-13
KR102206409B1 (ko) 2021-01-21
EP3053943A4 (en) 2017-06-21
CN105612195B (zh) 2017-10-27
EP3053943A1 (en) 2016-08-10
JP2015071679A (ja) 2015-04-16
EP3053943B1 (en) 2018-11-14
CN105612195A (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
JP6377437B2 (ja) 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体
JP6649363B2 (ja) 樹脂添加剤組成物および帯電防止性熱可塑性樹脂組成物
US10385162B2 (en) Polyolefin resin composition
US20220177757A1 (en) Antistatic agent, antistatic composition comprising same, antistatic resin composition comprising same, and molded article thereof
JP6662645B2 (ja) 帯電防止性熱可塑性樹脂組成物およびそれを成形してなる成形体
JP6238283B2 (ja) 紫外線吸収性ポリカーボネート
US9969702B2 (en) Triazine compound and synthetic resin composition using same
JP6586346B2 (ja) 紫外線吸収剤及び合成樹脂組成物
WO2016093108A1 (ja) 新規トリアジン化合物及びこれを用いてなる合成樹脂組成物
JP2017128677A (ja) 帯電防止性熱可塑性樹脂組成物およびそれを成形してなる成形体
WO2019021944A1 (ja) 高分子化合物、これを含む組成物、これらを含む樹脂組成物、およびその成形体
JP7329934B2 (ja) 組成物、これを含有する樹脂組成物、およびその成形体
US11780990B2 (en) Particulate ultraviolet absorber and resin composition
JP2022165548A (ja) 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、および、その成形体
WO2023047822A1 (ja) 熱可塑性樹脂組成物、造形体を製造する方法および造形体
WO2024048524A1 (ja) 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、その成形体およびフィルム
JP2023045169A (ja) 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、およびその成形体
WO2019021943A1 (ja) 組成物、これを含む樹脂組成物、およびその成形体
JP2023026250A (ja) 流動性向上剤、熱可塑性樹脂組成物および成形品
JP2023059110A (ja) 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、およびその成形体
JP2019116523A (ja) 高分子化合物、これを含有する組成物、これらを含有する樹脂組成物およびその成形体
WO2016080259A1 (ja) 紫外線吸収剤及び合成樹脂組成物
JP2011052166A (ja) 難燃性ポリカーボネート樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850138

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167007310

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15025062

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014850138

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014850138

Country of ref document: EP