WO2015049779A1 - Base station, radio communication system, and radio communication method - Google Patents

Base station, radio communication system, and radio communication method Download PDF

Info

Publication number
WO2015049779A1
WO2015049779A1 PCT/JP2013/077029 JP2013077029W WO2015049779A1 WO 2015049779 A1 WO2015049779 A1 WO 2015049779A1 JP 2013077029 W JP2013077029 W JP 2013077029W WO 2015049779 A1 WO2015049779 A1 WO 2015049779A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal
precoding matrix
coefficient
matrix indicator
Prior art date
Application number
PCT/JP2013/077029
Other languages
French (fr)
Japanese (ja)
Inventor
栄里子 武田
玉木 剛
矢野 隆
玉木 諭
倫太郎 片山
山本 知史
仁志 石田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/077029 priority Critical patent/WO2015049779A1/en
Publication of WO2015049779A1 publication Critical patent/WO2015049779A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection

Definitions

  • the present invention relates to a radio communication technique in a radio communication system including a base station and a terminal.
  • Patent Document 1 discloses that the zone control device changes the zone shape of the base station based on the position information of the mobile station and the base station and the zone determination result.
  • Patent Document 1 shows that the zone control device selects a base station that is a zone change target based on a distance between a location where a new zone is set and a surrounding base station.
  • the mobile station selects the base station that is closest to the position that the base station has determined not to be in the service zone, and changes the radio wave transmission direction and transmission power of the base station to change the zone. It is stated to change the shape of.
  • Patent Document 1 does not consider the actual propagation environment. Specifically, there is a possibility that a large shielding object or the like exists between the base station and a position determined not to be a zone, and generally, radio waves reflected by various objects reach the terminal. Considering these, even if the radio wave transmission direction and transmission power of the base station that are close to each other are changed, there is a possibility that sufficient radio waves may not reach the desired position.
  • an object of the present invention is to provide a radio communication system, a radio communication method, and a base station apparatus for a base station to form a desired communication area.
  • a radio signal transmitting / receiving unit that transmits a reference signal to a terminal and receives a precoding matrix indicator determined based on the reference signal from the terminal, and a precoding matrix indicator received from one or more terminals, And a processing unit that determines a coefficient to be multiplied with a transmission signal to be transmitted to the base station.
  • the communication area of the base station can be changed in consideration of the propagation environment between the base station and the terminal.
  • wireless communications system which forms the communication area which has the desired communication characteristic of a base station can be provided.
  • FIG. 1 is a diagram illustrating a concept of a base station, its communication area, a terminal, and information fed back from the terminal in the first embodiment.
  • the wireless communication system according to the first embodiment includes a base station (11) and a terminal (12) that communicates with the base station (11).
  • the base station 11 has a communication area (13) shown in FIG.
  • the base station (11) transmits a cell-specific reference signal, which is one of broadcast signals, to the terminal.
  • the terminal determines a precoding matrix indicator (PMI) associated with the precoding matrix for the signal transmitted from the base station based on the received cell-specific reference signal, A precoding matrix indicator is fed back to the base station.
  • the precoding matrix indicator is an indicator that represents a precoding matrix that is expected to be optimal in order to increase the throughput from the base station to the own terminal and is multiplied by a signal destined for the own terminal.
  • a method for selecting an optimal precoding matrix is described below.
  • the terminal estimates a spatial channel between the terminal and the base station from the received cell-specific reference signal. From the channel matrix obtained by the estimation of the spatial channel, the number of layers (rank) that can be transmitted by communication with the base station is determined.
  • the terminal selects one of the precoding matrices set for each rank and uses the previously estimated channel matrix and the selected precoding matrix, the expected value of the throughput of the signal reaching the terminal Calculate This operation is performed for all the precoding matrices, a precoding matrix indicator corresponding to the precoding matrix having the largest expected value of throughput reaching the terminal is determined, and the precoding matrix indicator is fed back to the base station.
  • FIG. 1 shows that the precoding matrix indicator determined by each terminal (12) is “indicator: n” (14) and is fed back (15) to the base station.
  • the base station (11) determines the cell specific coefficient using statistical information obtained by collecting the indicator (14) fed back from the one or more terminals (12).
  • the base station multiplies the determined cell specific coefficient by the transmission signal and transmits the transmission signal to the terminal. That is, the communication area of the base station is formed depending on the cell specific coefficient. Thus, since the indicator fed back from the terminal is used, a communication area can be formed in consideration of the actual propagation environment, and the communication characteristics of the base station can be improved.
  • Equation 1 shows an equation used when the base station determines the cell specific coefficient by changing the weighting of two kinds of coefficients (matrix) based on the statistical information of the precoding matrix indicator fed back from the terminal.
  • W is a cell specific coefficient to be multiplied by a transmission signal from the base station after the next change timing
  • Wc is a current cell specific coefficient
  • W (PMI n ).
  • K is a normalization coefficient determined by the number of transmission antennas.
  • FIG. 2 shows a part of the functional blocks of the base station in this embodiment.
  • a unique signal (161) to each terminal is multiplied by a precoding matrix determined based on a precoding matrix indicator fed back by each terminal in a precoding matrix multiplication unit (164), and the output thereof is output.
  • the cell-specific reference signal (162) and other signals (163) are also input to the layer mapping unit (165) and mapped to a predetermined position.
  • the signal output from the layer mapping unit (165) is multiplied by the cell specific coefficient in the cell specific coefficient multiplication unit (166), and the output is input to the IFFT unit (167).
  • the IFFT unit converts the input signal on the frequency axis into a signal on the time axis.
  • the terminal estimates the spatial channel between the base station and the terminal based on the cell-specific reference signal
  • the cell-specific reference signal multiplied by the cell-specific coefficient is transmitted between the terminal and the base station. Is equivalent to changing the spatial channel of.
  • the cell specific coefficient is determined using an indicator fed back from the terminal. Therefore, the terminal feeds back the precoding matrix indicator to the base station based on the spatial channel changed in consideration of the actual propagation environment. Then, since precoding matrix multiplication section 164 multiplies signal 161 unique to each terminal by a precoding matrix corresponding to the indicator, throughput can be improved.
  • the output of the IFFT unit may be multiplied by the cell specific coefficient.
  • FIG. 3 is a diagram illustrating an example of an operation sequence of the base station and the terminal in the first embodiment of the present embodiment.
  • the operation sequence of FIG. 3 only the sequence related to the present embodiment is extracted and described in the wireless communication system of the present embodiment.
  • the base station (11) sets the cell specific coefficient to an initial value (22) at time t0 and transmits a cell specific reference signal (23) to the terminal (12).
  • the terminal determines a precoding matrix based on the received cell-specific reference signal (24), and feeds back the precoding matrix indicator to the base station (25).
  • the base station collects the information of the indicator fed back from each terminal as cell specific coefficient related information (26).
  • a precoding matrix indicator “1” is assigned to a precoding matrix with rank 1
  • a precoding matrix is also assigned to a precoding matrix with rank 2.
  • the terminal may feed back a rank indicator indicating rank information and a precoding matrix indicator for the rank.
  • the frequency and timing at which the rank indicator and the precoding matrix indicator are fed back to the base station may be different, and the cycle for feeding back the rank indicator may be an integer multiple of the cycle for feeding back the precoding matrix indicator.
  • the base station may use the currently held rank indicator value until the rank indicator information is updated.
  • the base station can return the rank only by feeding back the precoding matrix indicator. Since the precoding matrix can be determined, only the precoding matrix indicator may be fed back.
  • system may be configured so that information necessary for the base station to determine the cell specific coefficient is fed back from the terminal to the base station. Examples of other information will be described in examples described later.
  • the base station changes the cell-specific coefficient using the statistical information collected so far after a certain time (t1 hour) (27). Thereafter, a cell-specific reference signal multiplied by the changed cell-specific coefficient is transmitted to the terminal (23), and the terminal determines a precoding matrix based on the cell-specific reference signal after the coefficient change (24), and the result Is fed back to the base station (29).
  • the base station continues to collect cell specific coefficient related information while changing the cell specific coefficient every t1 time.
  • the base station is configured to return the cell specific coefficient to the initial value (22) after a predetermined time (t2) has elapsed while continuing these operations.
  • the subsequent operation is a repetition of the above-described operation.
  • the cell specific coefficient is periodically reset to the initial value, so that the mobile station communicates with the base station because the area has moved from the initial state and moved to the vicinity of the base station.
  • a terminal that has not been able to receive a signal from the base station may be able to communicate with the base station.
  • the cell specific coefficient is periodically returned to the initial value, but it goes without saying that the timing for returning the cell specific coefficient to the initial value is not limited to this.
  • the base station of this embodiment is linked with another base station and detects that the load of the other base station exceeds the threshold, the terminal is handed over from the other base station to the own base station.
  • the cell specific coefficient may be returned to the initial value.
  • the base station sets a cell specific coefficient to an initial value (31).
  • a unit matrix is used as the initial value, but other values may be used as the initial value.
  • cell-specific coefficient related information fed back from the terminal is collected (32).
  • the cell specific coefficient is changed to the newly calculated cell specific coefficient at the change timing of the cell specific coefficient (34).
  • the above operation is repeated for a certain time.
  • the cell specific coefficient is set to the initial value (31), and the same operation is repeated.
  • the base station (11) includes a wired interface (43), a radio signal transmission / reception unit (41), a bus (44), and a base station operation control unit (42). Although not shown in the drawing, a plurality of antennas are included in the wireless transmission / reception unit (41).
  • the wired interface (43) is an interface with a backhaul or the like.
  • the wireless signal transmission / reception unit (41) performs wireless communication with the terminal via the antenna.
  • a signal received via the wired interface (43) or a signal created in the base station operation control unit, for example, in the base station is converted into a radio signal by the radio signal transmission / reception unit (41).
  • the radio signal received via the antenna is converted into a digital signal by the radio signal transmitting / receiving unit (41).
  • the wireless signal transmitting / receiving unit (41) includes at least a wireless front end unit.
  • the base station operation control unit (42) includes a signal processing unit (421) and another base station operation control unit (429).
  • the signal processing unit (421) includes a control signal processing unit (422) and a data signal processing unit (428).
  • the control signal processing unit (422) includes a cell specific coefficient processing unit (423), a cell specific reference signal creation unit (426), and other signal processing units (427).
  • the cell specific coefficient processing unit (423) includes a cell specific coefficient related information collection unit (424) and a weighting coefficient determination unit (425).
  • FIG. 6 is a diagram illustrating an example of a hardware configuration of the cell specific coefficient processing unit 423 in the first embodiment.
  • the cell intrinsic coefficient processing unit can be realized by a normal computer configuration, and in addition to the bus 55, a central processing unit (CPU) 51 as a processing unit, a memory 53 as a storage unit, and further, as necessary. Accordingly, an input / output unit 54 may be provided.
  • a cell specific coefficient processing program (52) is executed to perform processing to multiply the signal by the changed coefficient in accordance with the change timing of the cell specific coefficient.
  • This program is stored in the memory 53 or the like, and is executed by the CPU 51 as necessary, thereby realizing the functions described above. Also, a program for performing other operations necessary for the base station in the present embodiment can be realized by a hardware configuration similar to the configuration shown in FIG.
  • the terminal 12 includes at least a radio signal transmission / reception unit 61 including an antenna, a radio communication control unit 62 including a precoding matrix indicator determination unit 621 and other radio communication control units 624, and an application control unit 63.
  • the wireless signal transmission / reception unit 61, the wireless communication control unit 62, and the application control unit 63 are connected to each other by a bus 64 and can exchange signals with each other.
  • the radio signal transmission / reception unit transmits / receives radio signals to / from the base station and includes at least a radio front end unit.
  • the wireless communication control unit 62 and the application control unit 63 can be configured by a normal CPU and a memory, respectively. Various functions can be realized by the CPU executing various programs stored in the memory.
  • the precoding matrix indicator determination part (621) which is the characteristic of a present Example is demonstrated. Since other functions are the same as those of a general terminal, description thereof is omitted.
  • the precoding matrix indicator determination unit (621) is included in the wireless communication control unit 62.
  • the precoding matrix indicator determination unit (621) includes a precoding matrix indicator selection unit (622) and a precoding matrix related information feedback signal generation unit (623) that generates a signal for feeding back the precoding matrix related information. It is configured to include at least.
  • the precoding matrix indicator selection unit (622) uses the received cell-specific reference signal to determine a precoding matrix suitable for the base station to transmit a signal to its own terminal. As a result, one precoding matrix indicator is selected. Select coding matrix indicator.
  • FIG. 8 is an example of a list (71) showing the relationship between the precoding matrix (73) and the indicator (72) when the rank is 2 in the first embodiment.
  • FIG. 9 shows an example of the list (81) of the precoding matrix (83) and its indicator (82) when the rank is 1 in the first embodiment.
  • precoding matrix indicator selection unit may be stored in a separate memory so that information can be read there.
  • values and types of precoding matrices are not limited to those described here. If the number of antennas used in a wireless communication system increases, the types of ranks and types of precoding matrices for the ranks increase. It is clear to do. Needless to say, the system may be configured using a precoding matrix determined by 3GPP.
  • the precoding matrix related information feedback signal creation unit selects an indicator for one precoding matrix selected by the precoding matrix indicator selection unit, and creates a signal for feeding back the information to the base station.
  • the information that the terminal feeds back to the base station is not limited to the precoding matrix indicator. As described above, if the terminal maintains a list of precoding matrices for each rank, the base station And the information on the indicator for the precoding matrix at that rank may be fed back to the base station.
  • FIG. 10 shows a hardware configuration of the precoding matrix indicator determination unit of the terminal in the first embodiment.
  • This configuration is the same as the hardware configuration of the cell specific coefficient processing unit of the base station shown in FIG.
  • the precoding matrix indicator determination unit can be realized by a normal computer configuration, and in addition to the bus 95, a central processing unit (CPU) 91 as a processing unit, a memory 93 as a storage unit, and further necessary It is also possible to provide an input / output unit 94 according to the above.
  • the CPU 91 executes a precoding matrix related information determination program (92) for determining a precoding matrix indicator from the reception result of the cell-specific reference signal.
  • This program is stored in the memory 93 or the like, and is executed by the CPU 91 as necessary, thereby realizing the above-described functions.
  • a program for performing other operations necessary for the terminal in the present embodiment can be realized with the same hardware configuration as the configuration shown in FIG.
  • both the base station and the terminal maintain the same list of precoding matrices and their indicators.
  • the base station may maintain a list for converting one rank of the precoding matrix indicator fed back from the terminal into another rank of the precoding matrix indicator.
  • the base station is a system that can transmit a signal to a terminal in a maximum of two layers, in which one terminal that feeds back 1 as a precoding matrix indicator, It is shown that there are 4 terminals that feed back 2 and 2 terminals that feed back 3 as an indicator. In the example described in FIG. 1, it is assumed that only two terminals that feed back the indicator 3 have a rank of 1 and all other terminals have a rank of 2.
  • the base station may communicate with both rank 1 and rank 2 terminals, and rank 1 terminals are ranked 1 precoding matrices.
  • An indicator may be fed back, and a rank 2 terminal may feed back a rank 2 precoding matrix indicator.
  • the base station needs to convert the rank-1 precoding matrix indicator into a rank-2 precoding matrix indicator to obtain statistical information.
  • the base station may maintain a conversion list as shown in FIG. 11, for example.
  • the conversion list (191) is a list for converting the indicator (192) of the rank-1 precoding matrix fed back from the terminal into the rank-2 indicator used in the cell-specific coefficient processing unit of the base station.
  • the base station feeds back the rank-2 precoding matrix indicator 1 from the terminal.
  • the cell specific coefficient processing unit performs processing.
  • FIG. 12 is a diagram showing the relationship between the ratio of terminals that feed back the indicator n and the weighting coefficient X (n).
  • Example 1 the statistical information of the indicator fed back from the terminal is taken, and the weighting coefficient X (n) is determined by the ratio of the terminal that fed back the same indicator with respect to the total number of terminals.
  • X (n) is a weighting coefficient when the indicator is n
  • N (total) is the total number of terminals.
  • the base station collects information for a certain period of time from the terminals and obtains statistical information. It is assumed that the ratio of terminals that perform feedback is 4/7 and the ratio of terminals that feed back the indicator 1 of rank 1 is 2/7.
  • the base station uses the statistical information and the conversion list shown in FIG. 11, and X (1) is the value on the vertical axis 100 when the value on the horizontal axis 101 is 1/7 in FIG.
  • X (1) is the value on the vertical axis 100 when the value on the horizontal axis 101 is 1/7 in FIG.
  • the cell specific coefficient is calculated by Equation 1 using the value on the vertical axis when the value on the horizontal axis is 6/7 in FIG.
  • FIG. 12A shows that the weighting coefficient increases as the proportion of terminals that feed back n as an indicator increases. That is, as the proportion of terminals that show the same indicator in the communication area increases, a signal is transmitted so that a signal from the base station can easily reach a terminal that has fed back the indicator.
  • the SN ratio (signal-to-noise ratio) is improved, that is, the communication environment is improved, and it is possible to transmit a signal in a state in which the number of modulation multi-values is larger than in the past.
  • the effect of improving the throughput during transmission can be obtained.
  • the change of communication environment that is, the speed of change of communication area can be changed by the value of X (n). That is, when the ratio of terminals that feed back the same indicator is the same, if X (n) is set to a large value, the communication environment changes in a short time, and if X (n) is set to a small value, the communication environment changes. It happens little by little. Therefore, the value of X (n) may be set so as to match the speed of change in the distribution of terminals within the communication area. That is, if the terminal distribution changes slowly, the value of X (n) is decreased, and if it changes rapidly, the value of X (n) may be increased.
  • radio resources possessed by the base station can be used effectively, and as a result, system throughput can be improved.
  • a section where the coefficient is 0 may be provided when the ratio of terminals is equal to or less than a certain value as shown in FIG.
  • the weighting coefficient in the first embodiment may have a shape such that the value increases as the proportion of terminals that feed back the same indicator increases, or increases stepwise while taking the same value every fixed interval. Needless to say, the number is not limited to twelve.
  • a terminal 113 at the boundary between a base station 111 constituting the communication area 112 and another base station 114 constituting the communication area 115 performs handover between a plurality of communication areas.
  • a method of determining the weighting coefficient X (n) of the cell specific coefficient to prevent repetition will be described.
  • the base station is configured to receive a terminal currently communicating with the base station and a terminal that has communicated with the base station within a certain period of time.
  • a handover history management unit (430) that manages a history related to handover such as the number of times the terminal has been handed over to the base station.
  • the weighting coefficient X (n) is determined based on the ratio of the number of terminals that feed back the same indicator among all terminals.
  • the weighting coefficient X (n) is determined based on the ratio of the number of terminals that feed back the same indicator among the total number of terminals for which the number of handovers per unit time exceeds the threshold. .
  • FIG. 15 is a diagram illustrating the relationship between the ratio of terminals that feed back the same indicator and the weighting coefficient X (n) in the second embodiment.
  • N ′ (total) indicates the total number of terminals whose number of handovers per unit time exceeds the threshold
  • the terminal described in FIG. 13 includes two terminals that feed back the indicator 1 of rank 2, three terminals that feed back the indicator 2 of rank 2, and one terminal that feeds back the indicator 3 of rank 1. It has become. Among these, terminals whose number of handovers within a certain time exceeds a predetermined threshold are only two terminals that have fed back the rank 1 indicator 1 and one terminal that has fed back the rank 1 indicator 3.
  • the parameter number of the terminal for calculating the weight of the cell specific coefficient is 3.
  • X (1) is the value on the vertical axis when the horizontal axis 121 corresponds to 2/3 in FIG. In 2)
  • the cell specific coefficient is calculated by Equation 1 using the value of the vertical axis when the horizontal axis corresponds to 1/3 in FIG.
  • the transmission signal from the base station By multiplying the transmission signal from the base station by the cell specific coefficient calculated by the above method, a terminal located near the boundary between the communication area of the other base station and the communication area of the own base station and having repeated the handover On the other hand, the signal from the own base station can be made easier to reach than before. As a result, the number of terminal handovers can be reduced, and a stable communication environment can be provided. In addition, it is possible to reduce the processing of the base station required for handover.
  • the base station 131 determines that the filling rate of the resource block used for data signal transmission and the number of connected terminals are lower than a predetermined threshold and that there is a margin in radio resources. is doing.
  • a terminal communicating with the base station 134 is required to effectively use radio resources of the base station 131.
  • a method for determining a cell specific coefficient for facilitating a handover to communication with 131 will be described.
  • the base station 131 is the same as that in the first embodiment until statistical information of the indicator fed back from the terminal is obtained.
  • the base station 131 is located where the rank 1 indicator 1 becomes an appropriate precoding matrix indicator. May be difficult to reach.
  • the weighting coefficient X (( n) is set to be large.
  • X (n) is a weighting coefficient when the indicator is n
  • N (total) is the total number of terminals.
  • the weighting coefficient X (1) for the indicator 1 of rank 2 is larger than the weighting coefficient X (2) for the indicator 2 of rank 2.
  • the base station 134 By transmitting such a weighted signal from the base station, it is possible to make the signal easier to reach even where the signal is difficult to reach than when no weighting is performed. As a result, it is possible to increase the probability that a terminal (for example, the terminal 136) connected to the base station 134 will be handed over to the base station 131.
  • the base station 134 transmits the cell-specific reference signal as described above to the base station 131. If the terminal can be handed over to the base station, the usage rate of the radio resources of both base stations can be averaged.
  • the present embodiment there is a surplus in the usage rate of the radio resources of the own base station, and it is possible to provide an environment in which the terminal can be easily handed over when the terminal is handed over from another base station. . As a result, it is possible to average the radio resource usage rate of each base station and average the load applied to each base station.
  • the cell specific coefficient may be returned to before the change. Further, as in the first embodiment, an indicator having a large proportion of terminals that feed back the same indicator may be changed to a cell specific coefficient with a large weighting coefficient.
  • the cell specific coefficient is set back to the initial value after a certain time has elapsed, but as shown in FIG. 18, when there are no terminals connected to the own base station (155 ), The cell specific coefficient may be returned to the initial value. Note that steps 31 to 34 in FIG. 4 and steps 151 to 154 in FIG. 18 are the same.
  • the embodiment of the present invention has been described above, but the configuration of the present invention is not limited to this, and it is obvious that various modifications may be made without departing from the gist of the present invention.
  • the method for determining the cell specific coefficient is not limited to Formula 1, but may be determined using Formula 2, for example, or may be determined using Formulas other than Formula 1 and Formula 2.
  • the base station holds in advance a table indicating the relationship between the statistical information state of the precoding matrix indicator and the corresponding cell specific coefficient, and refers to that table.
  • the cell specific coefficient may be determined from the state of the statistical information.
  • the present invention may be applied to a wireless communication system having a larger number of antennas, that is, a larger number of layers.
  • the formulas 1 and 2 may be modified according to the number of layers.
  • precoding matrices and their indicators held by the base station and the terminal are not limited to the types and values described in the present specification, and the types and values may be wirelessly communicated without departing from the gist of the present invention. It goes without saying that various settings may be made according to the use and configuration of the system.

Abstract

The objective of the invention is to provide a radio communication system, a radio communication method and a base station apparatus for enabling a base station to form a desired communication area. Included are a base station and one or more terminals. The base station transmits a cell-specific reference signal to the terminals, and the terminals each select, on the basis of the received cell-specific reference signal, a precoding matrix indicator and feed back the selected precoding matrix indicator to the base station. The base station then collects information of the indicators fed back from the one or more terminals and uses the collected information to determine a factor by which a transmission signal of the base station is to be multiplied.

Description

基地局、無線通信システム、および無線通信方法Base station, radio communication system, and radio communication method
 本発明は、基地局と端末から構成された無線通信システムにおける無線通信技術に関する。 The present invention relates to a radio communication technique in a radio communication system including a base station and a terminal.
 基地局の通信エリアの変更に関しては、その目的と方法に対して様々な技術が提案されている。 Various technologies have been proposed for the purpose and method of changing the communication area of a base station.
 特許文献1では、ゾーン制御装置が、移動局および基地局の位置情報とゾーン判定結果に基づいて、基地局のゾーン形状を変更させることが開示されている。 Patent Document 1 discloses that the zone control device changes the zone shape of the base station based on the position information of the mobile station and the base station and the zone determination result.
特開2002-125258公報JP 2002-125258 A
 特許文献1においては、ゾーン制御装置は、ゾーンの変更対象となる基地局を、新しいゾーンを設定する場所と周辺基地局との距離によって選択することが示されている。一例として、移動局が基地局がサービスを提供しているゾーンでないと判定した位置に最も距離が近い基地局を選定し、その基地局の電波の送信方向と送信電力を変更させることで、ゾーンの形状を変更することが述べられている。 Patent Document 1 shows that the zone control device selects a base station that is a zone change target based on a distance between a location where a new zone is set and a surrounding base station. As an example, the mobile station selects the base station that is closest to the position that the base station has determined not to be in the service zone, and changes the radio wave transmission direction and transmission power of the base station to change the zone. It is stated to change the shape of.
 しかしながら、特許文献1では、実際の伝搬環境について考慮されていない。具体的には、当該基地局とゾーンでないと判定した位置の間に大きな遮蔽物などが存在する可能性があり、また、一般に、端末にはいろいろな物体によって反射された電波が届く。これらを考慮すると、両者の距離が近い基地局の電波の送信方向と送信電力を変更しても、所望の位置に十分な電波が届かない恐れがある。 However, Patent Document 1 does not consider the actual propagation environment. Specifically, there is a possibility that a large shielding object or the like exists between the base station and a position determined not to be a zone, and generally, radio waves reflected by various objects reach the terminal. Considering these, even if the radio wave transmission direction and transmission power of the base station that are close to each other are changed, there is a possibility that sufficient radio waves may not reach the desired position.
 本発明はこのような状況を鑑み、基地局が所望の通信エリアを形成するための無線通信システム、無線通信方法ならびに基地局装置を提供することを目的とする。 In view of such circumstances, an object of the present invention is to provide a radio communication system, a radio communication method, and a base station apparatus for a base station to form a desired communication area.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、下記の通りである。 Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.
 端末に対して参照信号を送信し、参照信号に基づいて決定されるプリコーディング行列インジケータを端末から受信する無線信号送受信部と、1つ以上の端末から受信したプリコーディング行列インジケータを用いて、端末に送信する送信信号に乗算する係数を決定する処理部と、を有することを特徴とする基地局である。 A radio signal transmitting / receiving unit that transmits a reference signal to a terminal and receives a precoding matrix indicator determined based on the reference signal from the terminal, and a precoding matrix indicator received from one or more terminals, And a processing unit that determines a coefficient to be multiplied with a transmission signal to be transmitted to the base station.
 本発明によれば、基地局と端末の間の伝搬環境を考慮して、基地局の通信エリアの変更を行なうことができる。これにより、基地局の所望の通信特性を有する通信エリアを形成する無線通信システムを提供することができる。 According to the present invention, the communication area of the base station can be changed in consideration of the propagation environment between the base station and the terminal. Thereby, the radio | wireless communications system which forms the communication area which has the desired communication characteristic of a base station can be provided.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
基地局とその通信エリア、端末、並びに端末からフィードバックされる情報の概念を示す図である。It is a figure which shows the concept of the information fed back from a base station, its communication area, a terminal, and a terminal. 基地局の機能ブロックの一部の一例を示す図である。It is a figure which shows an example of a part of functional block of a base station. 基地局と端末の動作シーケンスの一例を示す図である。It is a figure which shows an example of the operation | movement sequence of a base station and a terminal. 基地局の動作フローチャートの一例を示す図である。It is a figure which shows an example of the operation | movement flowchart of a base station. 基地局の構成の一例を示す図である。It is a figure which shows an example of a structure of a base station. 基地局のセル固有係数処理部のハードウエア構成の一例を示す図である。It is a figure which shows an example of the hardware constitutions of the cell specific coefficient process part of a base station. 端末の構成の一例を示す図である。It is a figure which shows an example of a structure of a terminal. プリコーディング行列とそのインジケータのリストの一例を示す図である。It is a figure which shows an example of the list of a precoding matrix and its indicator. プリコーディング行列とそのインジケータのリストの他の一例を示す図である。It is a figure which shows another example of the list of a precoding matrix and its indicator. 端末のプリコーディング行列インジケータ決定部のハードウエア構成の一例を示す図である。It is a figure which shows an example of the hardware constitutions of the precoding matrix indicator determination part of a terminal. 変換リストの一例を示す図である。It is a figure which shows an example of a conversion list. 重み付け係数X(n)の一例を示す図である。It is a figure which shows an example of the weighting coefficient X (n). 重み付け係数X(n)の一例を示す図である。It is a figure which shows an example of the weighting coefficient X (n). 基地局とその通信エリア、端末、また、隣接する基地局とその通信エリアの概念を示す図である。It is a figure which shows the concept of a base station and its communication area, a terminal, and an adjacent base station and its communication area. 基地局の構成の一例を示す図である。It is a figure which shows an example of a structure of a base station. 重み付け係数の一例を示す図である。It is a figure which shows an example of a weighting coefficient. 基地局とその通信エリア、端末、また、前記基地局の通信エリアと、通信エリアの一部がオーバーラップしている他の基地局とその通信エリアの概念を示す図である。It is a figure which shows the concept of a base station, its communication area, a terminal, the communication area of the said base station, the other base station with which a part of communication area overlaps, and its communication area. 重み付け係数の一例を示す図である。It is a figure which shows an example of a weighting coefficient. 基地局の動作フローチャートの一例を示す図である。It is a figure which shows an example of the operation | movement flowchart of a base station.
 以下、図面を用いて、本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 なお、以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互い無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明などの関係にある。各実施の形態は、個別で実施してもよいが、組合せて実施してもよい。 In the following embodiment, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments, but they are not irrelevant unless otherwise specified. The other part or all of the modifications, details, supplementary explanations, and the like are related. Each embodiment may be implemented individually or in combination.
 また、以下の実施の形態において、要素の数など(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合及び原理的に明らかに特定の数に限定される場合などを除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよいものとする。 Also, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), particularly when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be a specific number or more.
 さらに、以下の実施の形態において、その構成要素(要素ステップなどを含む)は、特に明示した場合及び原理的に明らかに必須であると考えられる場合などを除き、必ずしも必須のものではないことは言うまでもない。 Further, in the following embodiments, the constituent elements (including element steps) are not necessarily essential unless explicitly stated or considered to be clearly essential in principle. Needless to say.
 同様に、以下の実施の形態において、構成要素などの形状、位置関係等に言及するときは、特に明示した場合及び原理的に明らかにそうでないと考えられる場合などを除き、実質的にその形状などに近似または類似するものなどを含むものとする。このことは前記数値及び範囲についても同様である。 Similarly, in the following embodiments, when referring to the shape, positional relationship, etc., of components, etc., the shape is substantially the same unless otherwise specified or otherwise apparent in principle. And the like are included. The same applies to the numerical values and ranges.
 以下、各種の実施例を詳述する。 Hereinafter, various examples will be described in detail.
 図1は実施例1における基地局とその通信エリア、端末、並びに端末からフィードバックされる情報の概念を示す図である。実施例1における無線通信システムは、基地局(11)と、基地局(11)と通信する端末(12)とから構成されている。基地局11は、図1に示す通信エリア(13)を有している。
本実施例の無線通信システムでは、基地局(11)は、端末に対して、報知信号の1つであるセル固有の参照信号を送信する。端末は、受信した前記セル固有の参照信号をもとに、基地局から送信される信号に対して、プリコーディング行列に対応付けられるプリコーディング行列インジケータ(precoding matrix indicator、PMI)を決定し、そのプリコーディング行列インジケータを基地局にフィードバックする。プリコーディング行列インジケータとは、前記基地局から自端末へのスループットを大きくするために最適と期待される、自端末あての信号に乗算されるプリコーディング行列を表すインジケータである。
FIG. 1 is a diagram illustrating a concept of a base station, its communication area, a terminal, and information fed back from the terminal in the first embodiment. The wireless communication system according to the first embodiment includes a base station (11) and a terminal (12) that communicates with the base station (11). The base station 11 has a communication area (13) shown in FIG.
In the wireless communication system of the present embodiment, the base station (11) transmits a cell-specific reference signal, which is one of broadcast signals, to the terminal. The terminal determines a precoding matrix indicator (PMI) associated with the precoding matrix for the signal transmitted from the base station based on the received cell-specific reference signal, A precoding matrix indicator is fed back to the base station. The precoding matrix indicator is an indicator that represents a precoding matrix that is expected to be optimal in order to increase the throughput from the base station to the own terminal and is multiplied by a signal destined for the own terminal.
 最適なプリコーディング行列を選択するための一方法を以下に述べる。端末は受信したセル固有の参照信号から、端末と基地局の間の空間チャネルを推定する。空間チャネルの推定により得られたチャネル行列から、基地局との通信で送信可能なレイヤ数(ランク)を判断する。次に、端末は、ランク毎に設定されているプリコーディング行列の1つを選択し、先に推定したチャネル行列と選択したプリコーディング行列を用いた場合に、端末に届く信号のスループットの期待値を計算する。この動作をすべてのプリコーディング行列に対して行い、端末に届くスループットの期待値が最も大きくなるプリコーディング行列に対応するプリコーディング行列インジケータを決定し、そのプリコーディング行列インジケータを基地局にフィードバックする。 A method for selecting an optimal precoding matrix is described below. The terminal estimates a spatial channel between the terminal and the base station from the received cell-specific reference signal. From the channel matrix obtained by the estimation of the spatial channel, the number of layers (rank) that can be transmitted by communication with the base station is determined. Next, when the terminal selects one of the precoding matrices set for each rank and uses the previously estimated channel matrix and the selected precoding matrix, the expected value of the throughput of the signal reaching the terminal Calculate This operation is performed for all the precoding matrices, a precoding matrix indicator corresponding to the precoding matrix having the largest expected value of throughput reaching the terminal is determined, and the precoding matrix indicator is fed back to the base station.
 図1では、各端末(12)が決定したプリコーディング行列インジケータを「インジケータ:n」(14)として、基地局にフィードバック(15)する様子を示している。 FIG. 1 shows that the precoding matrix indicator determined by each terminal (12) is “indicator: n” (14) and is fed back (15) to the base station.
 本実施例では、基地局(11)は前記1つ以上の端末(12)からフィードバックされたインジケータ(14)を収集して得た統計情報を用いてセル固有係数を決定する。 In this embodiment, the base station (11) determines the cell specific coefficient using statistical information obtained by collecting the indicator (14) fed back from the one or more terminals (12).
 基地局は、決定したセル固有係数を送信信号に乗算し、その送信信号を端末に送信する。すなわち、基地局の通信エリアは、セル固有係数に依存して形成される。このように、端末からフィードバックされるインジケータを用いるため、実際の伝搬環境を考慮した通信エリアの形成が可能となり、基地局の通信特性の向上を図ることができる。 The base station multiplies the determined cell specific coefficient by the transmission signal and transmits the transmission signal to the terminal. That is, the communication area of the base station is formed depending on the cell specific coefficient. Thus, since the indicator fed back from the terminal is used, a communication area can be formed in consideration of the actual propagation environment, and the communication characteristics of the base station can be improved.
 以下、基地局が2つのアンテナを用いて送信する場合を例にとり、セル固有係数の決定方法を説明する。基地局が、端末からフィードバックされたプリコーディング行列インジケータの統計情報に基づき、2種類の係数(行列)の重み付けを変化させて、セル固有係数を決定する場合に用いる式を数式1に示す。 Hereinafter, a method for determining a cell specific coefficient will be described by taking as an example a case where a base station transmits using two antennas. Equation 1 shows an equation used when the base station determines the cell specific coefficient by changing the weighting of two kinds of coefficients (matrix) based on the statistical information of the precoding matrix indicator fed back from the terminal.
Figure JPOXMLDOC01-appb-M000001
 数式1では、Wは次回の変更タイミング以降で基地局からの送信信号に乗算するセル固有係数、Wcは現在のセル固有係数、W(PMI=n)は「インジケータ:n(nは番号)」に対応して決まる係数、X(n)はW(PMI=n)に対する重み付け係数であり、「インジケータ:n」の割合に対応して決定される値であり、数式1ではW(PMI=n)の指数となる。W(PMI=n)ならびにX(n)は、端末からフィードバックされたインジケータの情報を基地局側で処理して得られる。また、Kは、送信アンテナ数によって決まる規格化係数である。
Figure JPOXMLDOC01-appb-M000001
In Equation 1, W is a cell specific coefficient to be multiplied by a transmission signal from the base station after the next change timing, Wc is a current cell specific coefficient, and W (PMI = n) is “indicator: n (n is a number)”. , X (n) is a weighting coefficient for W (PMI = n), and is a value determined corresponding to the ratio of “indicator: n”. In Equation 1, W (PMI = n ). W (PMI = n) and X (n) are obtained by processing the indicator information fed back from the terminal on the base station side. K is a normalization coefficient determined by the number of transmission antennas.
 本実施例における基地局の機能ブロックの一部を図2に示す。以下、図2を用いて、基地局からの送信信号へのセル固有係数の乗算について説明する。基地局では、各端末への固有の信号(161)はプリコーディング行列乗算部(164)において、各端末がフィードバックしたプリコーディング行列インジケータに基づいて決定されたプリコーディング行列が乗算されて、その出力がレイヤマッピング部(165)に入力され、所定の位置にマッピングされる。また、セル固有の参照信号(162)とその他の信号(163)も、レイヤマッピング部(165)に入力され、所定の位置にマッピングされる。レイヤマッピング部(165)から出力された信号に対して、セル固有係数乗算部(166)においてセル固有係数が乗算され、その出力がIFFT部(167)に入力される。IFFT部では、入力された周波数軸上の信号を時間軸上の信号へ変換する。 FIG. 2 shows a part of the functional blocks of the base station in this embodiment. Hereinafter, the multiplication of the cell specific coefficient to the transmission signal from the base station will be described with reference to FIG. In the base station, a unique signal (161) to each terminal is multiplied by a precoding matrix determined based on a precoding matrix indicator fed back by each terminal in a precoding matrix multiplication unit (164), and the output thereof is output. Is input to the layer mapping unit (165) and mapped to a predetermined position. The cell-specific reference signal (162) and other signals (163) are also input to the layer mapping unit (165) and mapped to a predetermined position. The signal output from the layer mapping unit (165) is multiplied by the cell specific coefficient in the cell specific coefficient multiplication unit (166), and the output is input to the IFFT unit (167). The IFFT unit converts the input signal on the frequency axis into a signal on the time axis.
 端末は、セル固有の参照信号に基づいて基地局と端末の間の空間チャネルの推定を行うため、セル固有の参照信号にセル固有係数を乗算して送信することは、端末と基地局の間の空間チャネルを変化させることに相当する。本実施例では、端末からフィードバックされるインジケータを用いてセル固有係数を決定する。そのため、実際の伝搬環境を考慮して変化させた空間チャネルに基づいて、端末はプリコーディング行列インジケータを基地局にフィードバックする。そして、プリコーディング行列乗算部164は、各端末への固有の信号161にそのインジケータに対応するプリコーディング行列を乗算するため、スループットの向上を図ることができる。 Since the terminal estimates the spatial channel between the base station and the terminal based on the cell-specific reference signal, the cell-specific reference signal multiplied by the cell-specific coefficient is transmitted between the terminal and the base station. Is equivalent to changing the spatial channel of. In this embodiment, the cell specific coefficient is determined using an indicator fed back from the terminal. Therefore, the terminal feeds back the precoding matrix indicator to the base station based on the spatial channel changed in consideration of the actual propagation environment. Then, since precoding matrix multiplication section 164 multiplies signal 161 unique to each terminal by a precoding matrix corresponding to the indicator, throughput can be improved.
 本実施例では、基地局から送信される全ての信号に対して、セル固有係数を乗算する構成としているため、IFFT部の出力に対してセル固有係数を乗算する構成としても良い。 In this embodiment, since all the signals transmitted from the base station are multiplied by the cell specific coefficient, the output of the IFFT unit may be multiplied by the cell specific coefficient.
 以下、図3を用いて、基地局と端末の動作シーケンスを説明する。図3は本実施例の実施例1における基地局と端末の動作シーケンスの例を示す図である。図3の動作シーケンスでは、本実施例の無線通信システムの中で、本実施例に関連するシーケンスのみ抽出して記載している。 Hereinafter, the operation sequence of the base station and the terminal will be described with reference to FIG. FIG. 3 is a diagram illustrating an example of an operation sequence of the base station and the terminal in the first embodiment of the present embodiment. In the operation sequence of FIG. 3, only the sequence related to the present embodiment is extracted and described in the wireless communication system of the present embodiment.
 基地局(11)は、時刻t0において、セル固有係数を初期値に設定(22)して、セル固有の参照信号(23)を端末(12)に送信する。端末は、受信したセル固有の参照信号に基づき、プリコーディング行列を決定し(24)、そのプリコーディング行列インジケータを基地局にフィードバックする(25)。基地局は、各端末からフィードバックされたインジケータの情報を、セル固有係数関連情報として収集する(26)。 The base station (11) sets the cell specific coefficient to an initial value (22) at time t0 and transmits a cell specific reference signal (23) to the terminal (12). The terminal determines a precoding matrix based on the received cell-specific reference signal (24), and feeds back the precoding matrix indicator to the base station (25). The base station collects the information of the indicator fed back from each terminal as cell specific coefficient related information (26).
 ランク毎にプリコーディング行列インジケータがつけられている場合、例えば、ランク1のあるプリコーディング行列にプリコーディング行列インジケータ「1」が割り当てられ、ランク2のあるプリコーディング行列に対しても、プリコーディング行列インジケータ「1」が割り当てている場合は、端末は、ランクの情報を示すランクインジケータと、そのランクに対するプリコーディング行列インジケータをフィードバックすればよい。また、ランクインジケータとプリコーディング行列インジケータを基地局にフィードバックする頻度やタイミングは、異なっていても良く、ランクインジケータをフィードバックする周期は、プリコーディング行列インジケータをフィードバックする周期の整数倍としても良い。その場合、基地局では、ランクインジケータの情報が更新されるまでは、現在、保持しているランクインジケータの値を用いればよい。 When a precoding matrix indicator is attached to each rank, for example, a precoding matrix indicator “1” is assigned to a precoding matrix with rank 1, and a precoding matrix is also assigned to a precoding matrix with rank 2. When the indicator “1” is assigned, the terminal may feed back a rank indicator indicating rank information and a precoding matrix indicator for the rank. Also, the frequency and timing at which the rank indicator and the precoding matrix indicator are fed back to the base station may be different, and the cycle for feeding back the rank indicator may be an integer multiple of the cycle for feeding back the precoding matrix indicator. In this case, the base station may use the currently held rank indicator value until the rank indicator information is updated.
 また、端末と基地局が保持するプリコーディング行列インジケータが、異なるランクに対するプリコーディング行列に対して、異なるインジケータがつけられている場合は、プリコーディング行列インジケータをフィードバックするだけで、基地局はランクとプリコーディング行列を判断することができるため、プリコーディング行列インジケータのみをフィードバックするようにしても良い。 Also, when the precoding matrix indicator held by the terminal and the base station is different from the precoding matrix for the different ranks, the base station can return the rank only by feeding back the precoding matrix indicator. Since the precoding matrix can be determined, only the precoding matrix indicator may be fed back.
 また、それ以外にも、基地局がセル固有係数を決定するために必要とする情報も、端末から基地局にフィードバックするようにシステムを構成しても良い。その他の情報の例は、後述の実施例で述べる。 In addition, the system may be configured so that information necessary for the base station to determine the cell specific coefficient is fed back from the terminal to the base station. Examples of other information will be described in examples described later.
 基地局は、一定時間(t1時間)経過したら、それまでに収集した統計情報を用いて、セル固有係数を変更する(27)。その後、変更したセル固有係数を乗算したセル固有の参照信号を端末に送信し(23)、端末は、係数変更後のセル固有の参照信号に基づきプリコーディング行列を決定し(24)、その結果を基地局にフィードバックする(29)。基地局は、t1時間ごとにセル固有係数の変更を行いながら、セル固有係数関連情報の収集を続ける。 The base station changes the cell-specific coefficient using the statistical information collected so far after a certain time (t1 hour) (27). Thereafter, a cell-specific reference signal multiplied by the changed cell-specific coefficient is transmitted to the terminal (23), and the terminal determines a precoding matrix based on the cell-specific reference signal after the coefficient change (24), and the result Is fed back to the base station (29). The base station continues to collect cell specific coefficient related information while changing the cell specific coefficient every t1 time.
 本実施例では、基地局は、これらの動作を続けながら、一定時間(t2)経過後にセル固有係数を初期値に戻す(22)ように構成する。その後の動作は、上述の動作の繰り返しとなる。 In the present embodiment, the base station is configured to return the cell specific coefficient to the initial value (22) after a predetermined time (t2) has elapsed while continuing these operations. The subsequent operation is a repetition of the above-described operation.
 本実施例のように、定期的にセル固有係数を初期値にリセットする構成とすることで、エリアを初期状態から変更した後に、基地局の近傍に移動してきたなどの理由で基地局と通信できなかった端末が、基地局からの信号を受信できるようになり、基地局と通信できるようになる可能性がある。 As in this embodiment, the cell specific coefficient is periodically reset to the initial value, so that the mobile station communicates with the base station because the area has moved from the initial state and moved to the vicinity of the base station. A terminal that has not been able to receive a signal from the base station may be able to communicate with the base station.
 本実施例では、定期的にセル固有係数を初期値に戻す構成としたが、セル固有係数を初期値に戻すタイミングはこれに限ったものでないことは言うまでもない。例えば、本実施例の基地局が他の基地局と連携しており、他の基地局の負荷が閾値を越えたことを検知した場合に、他の基地局から自基地局に端末をハンドオーバしやすくするために、セル固有係数を初期値に戻すように構成してもよい。 In the present embodiment, the cell specific coefficient is periodically returned to the initial value, but it goes without saying that the timing for returning the cell specific coefficient to the initial value is not limited to this. For example, when the base station of this embodiment is linked with another base station and detects that the load of the other base station exceeds the threshold, the terminal is handed over from the other base station to the own base station. In order to facilitate, the cell specific coefficient may be returned to the initial value.
 次に、図4に示す基地局の動作フローチャートを用いて、実施例1における無線通信システムの動作を説明する。基地局はまず、セル固有係数を初期値に設定する(31)。本実施例では、初期値に単位行列を用いるが、その他の値を初期値としても良い。次に、図3を用いて説明したように、端末からフィードバックされるセル固有係数関連情報を収集する(32)。次に、例えば、数式1に記載した式を用いてセル固有係数を決定する場合は、収集した結果の統計処理により、数式1に示した重み付け係数X(n)を決定し、決定したX(n)とW(PMI=n)を用いてセル固有係数を算出する(33)。次に、セル固有係数の変更タイミングで、新しく算出したセル固有係数に変更する(34)。上記動作を一定時間繰り返し、一定時間経過したら(35)、セル固有係数を初期値に設定し(31)、また同じ動作を繰り返す。 Next, the operation of the wireless communication system according to the first embodiment will be described using the operation flowchart of the base station shown in FIG. First, the base station sets a cell specific coefficient to an initial value (31). In this embodiment, a unit matrix is used as the initial value, but other values may be used as the initial value. Next, as described with reference to FIG. 3, cell-specific coefficient related information fed back from the terminal is collected (32). Next, for example, when the cell specific coefficient is determined using the expression described in Expression 1, the weighting coefficient X (n) illustrated in Expression 1 is determined by statistical processing of the collected results, and the determined X ( The cell specific coefficient is calculated using n) and W (PMI = n) (33). Next, the cell specific coefficient is changed to the newly calculated cell specific coefficient at the change timing of the cell specific coefficient (34). The above operation is repeated for a certain time. When the certain time has elapsed (35), the cell specific coefficient is set to the initial value (31), and the same operation is repeated.
 図5を用いて、実施例1における基地局の一構成を説明する。 A configuration of the base station in the first embodiment will be described with reference to FIG.
 基地局(11)は、有線インタフェース(43)と、無線信号送受信部(41)、バス(44)、基地局動作制御部(42)とから構成されている。図には示されていないが、複数のアンテナが無線送受信部(41)に含まれている。
有線インタフェース(43)は、バックホールなどとのインタフェースである。無線信号送受信部(41)は、アンテナ経由で、端末と無線通信を行う。有線インタフェース(43)経由で受信した信号や、基地局内で、例えば、基地局動作制御部で作成された信号は無線信号送受信部(41)で無線信号に変換される。また、アンテナ経由で受信した無線信号は、無線信号送受信部(41)でデジタル信号に変換される。無線信号送受信部(41)は、少なくとも無線フロントエンド部を含んで構成される。また、基地局動作制御部(42)は信号処理部(421)とその他の基地局動作制御部(429)を含んで構成される。また信号処理部(421)は制御信号処理部(422)とデータ信号処理部(428)を含んで構成される。制御信号処理部(422)は、セル固有係数処理部(423)と、セル固有の参照信号作成部(426)とその他の信号処理部(427)を含んで構成される。また、セル固有係数処理部(423)は、セル固有係数関連情報収集部(424)、重み付け係数決定部(425)を含んで構成される。
The base station (11) includes a wired interface (43), a radio signal transmission / reception unit (41), a bus (44), and a base station operation control unit (42). Although not shown in the drawing, a plurality of antennas are included in the wireless transmission / reception unit (41).
The wired interface (43) is an interface with a backhaul or the like. The wireless signal transmission / reception unit (41) performs wireless communication with the terminal via the antenna. A signal received via the wired interface (43) or a signal created in the base station operation control unit, for example, in the base station is converted into a radio signal by the radio signal transmission / reception unit (41). The radio signal received via the antenna is converted into a digital signal by the radio signal transmitting / receiving unit (41). The wireless signal transmitting / receiving unit (41) includes at least a wireless front end unit. The base station operation control unit (42) includes a signal processing unit (421) and another base station operation control unit (429). The signal processing unit (421) includes a control signal processing unit (422) and a data signal processing unit (428). The control signal processing unit (422) includes a cell specific coefficient processing unit (423), a cell specific reference signal creation unit (426), and other signal processing units (427). The cell specific coefficient processing unit (423) includes a cell specific coefficient related information collection unit (424) and a weighting coefficient determination unit (425).
 これらの中で、セル固有係数処理部(423)以外は、一般的な基地局と同等の機能であるため、ここでは説明を省略する。また、本実施例に特有のセル固有係数処理部(423)の動作は、図3ならびに図4を用いて説明したとおりである。 Of these, functions other than the cell-specific coefficient processing unit (423) have the same functions as those of a general base station, and thus description thereof is omitted here. The operation of the cell specific coefficient processing unit (423) specific to the present embodiment is as described with reference to FIGS.
 図6は実施例1におけるセル固有係数処理部423のハードウエア構成の例を示す図である。セル固有係数処理部は、通常のコンピュータ構成で実現可能であり、バス55に加え、処理部である中央処理部(Central Processing Unit:CPU)51、記憶部であるメモリ53、更には、必要に応じて入出力部54を備えることも可能である。CPU51は、収集したセル固有係数関連情報から、数式1に示した重み付け係数X(n)を決定し、決定したX(n)とW(PMI=n)を用いてセル固有係数を算出し、セル固有係数の変更タイミングに応じて、変更された係数を信号に乗算するように処理を行う、セル固有係数処理プログラム(52)を実行する。このプログラムは、メモリ53等に記憶され、必要に応じてCPU51で実行されることにより、上述の機能を実現する。また、本実施例における基地局に必要なその他の動作を行うためのプログラムも、図6に示す構成と同様のハードウエア構成で実現することができる。 FIG. 6 is a diagram illustrating an example of a hardware configuration of the cell specific coefficient processing unit 423 in the first embodiment. The cell intrinsic coefficient processing unit can be realized by a normal computer configuration, and in addition to the bus 55, a central processing unit (CPU) 51 as a processing unit, a memory 53 as a storage unit, and further, as necessary. Accordingly, an input / output unit 54 may be provided. The CPU 51 determines the weighting coefficient X (n) shown in Formula 1 from the collected cell specific coefficient related information, calculates the cell specific coefficient using the determined X (n) and W (PMI = n), A cell specific coefficient processing program (52) is executed to perform processing to multiply the signal by the changed coefficient in accordance with the change timing of the cell specific coefficient. This program is stored in the memory 53 or the like, and is executed by the CPU 51 as necessary, thereby realizing the functions described above. Also, a program for performing other operations necessary for the base station in the present embodiment can be realized by a hardware configuration similar to the configuration shown in FIG.
 次に、図7を用いて実施例1における端末の一構成を説明する。 Next, a configuration of the terminal according to the first embodiment will be described with reference to FIG.
 端末12はアンテナを含む無線信号送受信部61、プリコーディング行列インジケータ決定部621とその他の無線通信制御部624を含む無線通信制御部62、アプリケーション制御部63を少なくとも含んで構成されている。無線信号送受信部61、無線通信制御部62、アプリケーション制御部63はバス64によって、それぞれ接続されており、互いに信号のやり取りをすることができる。 The terminal 12 includes at least a radio signal transmission / reception unit 61 including an antenna, a radio communication control unit 62 including a precoding matrix indicator determination unit 621 and other radio communication control units 624, and an application control unit 63. The wireless signal transmission / reception unit 61, the wireless communication control unit 62, and the application control unit 63 are connected to each other by a bus 64 and can exchange signals with each other.
 無線信号送受信部は基地局と無線信号の送受信を行い、少なくとも無線フロントエンド部を含んで構成される。無線通信制御部62、アプリケーション制御部63は、通常のCPUとメモリなどで、それぞれ構成可能である。CPUがメモリに格納された各種プログラムを実行することで、各種機能の実現が可能である。 The radio signal transmission / reception unit transmits / receives radio signals to / from the base station and includes at least a radio front end unit. The wireless communication control unit 62 and the application control unit 63 can be configured by a normal CPU and a memory, respectively. Various functions can be realized by the CPU executing various programs stored in the memory.
 以下では、本実施例の特徴である、プリコーディング行列インジケータ決定部(621)について説明する。その他の機能は一般的な端末と同等であるため、説明を省略する。実施例1における端末では、プリコーディング行列インジケータ決定部(621)は無線通信制御部62に含まれている。プリコーディング行列インジケータ決定部(621)は、プリコーディング行列インジケータ選択部(622)ならびにプリコーディング行列関連情報をフィードバックするための信号を作成する、プリコーディング行列関連情報フィードバック用信号作成部(623)を少なくとも含んで構成されている。 
 プリコーディング行列インジケータ選択部(622)は受信したセル固有の参照信号を用いて、自端末あてに基地局が信号を送信する場合に適したプリコーディング行列を決定し、その結果として、1つプリコーディング行列インジケータを選択する。
Below, the precoding matrix indicator determination part (621) which is the characteristic of a present Example is demonstrated. Since other functions are the same as those of a general terminal, description thereof is omitted. In the terminal according to the first embodiment, the precoding matrix indicator determination unit (621) is included in the wireless communication control unit 62. The precoding matrix indicator determination unit (621) includes a precoding matrix indicator selection unit (622) and a precoding matrix related information feedback signal generation unit (623) that generates a signal for feeding back the precoding matrix related information. It is configured to include at least.
The precoding matrix indicator selection unit (622) uses the received cell-specific reference signal to determine a precoding matrix suitable for the base station to transmit a signal to its own terminal. As a result, one precoding matrix indicator is selected. Select coding matrix indicator.
 図8は、実施例1におけるランクが2のときのプリコーディング行列(73)とそのインジケータ(72)の関係を示すリスト(71)の一例である。図9は、実施例1における、ランクが1のときのプリコーディング行列(83)とそのインジケータ(82)のリスト(81)の一例を示している。 FIG. 8 is an example of a list (71) showing the relationship between the precoding matrix (73) and the indicator (72) when the rank is 2 in the first embodiment. FIG. 9 shows an example of the list (81) of the precoding matrix (83) and its indicator (82) when the rank is 1 in the first embodiment.
 これらのリストは、プリコーディング行列インジケータ選択部内のメモリに保持しても良く、また、別に設けたメモリに保持しておき、そこに情報を読みにいくように構成しても良い。 
 また、プリコーディング行列の値と種類は、ここに記載したものに限ったものではなく、無線通信システムに使用するアンテナ数が増えれば、ランクの種類ならびに、そのランクに対するプリコーディング行列の種類が増加するのは明らかである。また、3GPPで決められているプリコーディング行列を使用してシステムを構成してもよいことは言うまでもない。
These lists may be stored in a memory in the precoding matrix indicator selection unit, or may be stored in a separate memory so that information can be read there.
Also, the values and types of precoding matrices are not limited to those described here. If the number of antennas used in a wireless communication system increases, the types of ranks and types of precoding matrices for the ranks increase. It is clear to do. Needless to say, the system may be configured using a precoding matrix determined by 3GPP.
 プリコーディング行列関連情報フィードバック用信号作成部では、プリコーディング行列インジケータ選択部で選択した1つのプリコーディング行列に対するインジケータを選択し、その情報を基地局にフィードバックするための信号を作成する。端末が基地局にフィードバックする情報は、プリコーディング行列インジケータだけに限らなくてもよく、上述したように、端末がランクごとにプリコーディング行列のリストを保持している場合は、基地局に、ランクの情報とそのランクでのプリコーディング行列に対するインジケータの2つの情報を基地局にフィードバックするようにしても良い。 The precoding matrix related information feedback signal creation unit selects an indicator for one precoding matrix selected by the precoding matrix indicator selection unit, and creates a signal for feeding back the information to the base station. The information that the terminal feeds back to the base station is not limited to the precoding matrix indicator. As described above, if the terminal maintains a list of precoding matrices for each rank, the base station And the information on the indicator for the precoding matrix at that rank may be fed back to the base station.
 図10に実施例1における端末のプリコーディング行列インジケータ決定部のハードウエアの一構成を示す。本構成は図6に示した、基地局のセル固有係数処理部のハードウエア構成と同様である。プリコーディング行列インジケータ決定部は、通常のコンピュータ構成で実現可能であり、バス95に加え、処理部である中央処理部(Central Processing Unit:CPU)91、記憶部であるメモリ93、更には、必要に応じて入出力部94を備えることも可能である。CPU91は、セル固有の参照信号の受信結果から、プリコーディング行列インジケータを決定するためのプリコーディング行列関連情報決定プログラム(92)を実行する。このプログラムは、メモリ93等に記憶され、必要に応じてCPU91で実行されることにより、上述の機能を実現する。 FIG. 10 shows a hardware configuration of the precoding matrix indicator determination unit of the terminal in the first embodiment. This configuration is the same as the hardware configuration of the cell specific coefficient processing unit of the base station shown in FIG. The precoding matrix indicator determination unit can be realized by a normal computer configuration, and in addition to the bus 95, a central processing unit (CPU) 91 as a processing unit, a memory 93 as a storage unit, and further necessary It is also possible to provide an input / output unit 94 according to the above. The CPU 91 executes a precoding matrix related information determination program (92) for determining a precoding matrix indicator from the reception result of the cell-specific reference signal. This program is stored in the memory 93 or the like, and is executed by the CPU 91 as necessary, thereby realizing the above-described functions.
 また、本実施例における端末に必要なその他の動作を行うためのプログラムも、図10に示す構成と同様のハードウエア構成で実現することができる。 Also, a program for performing other operations necessary for the terminal in the present embodiment can be realized with the same hardware configuration as the configuration shown in FIG.
 プリコーディング行列とそのインジケータのリストは、基地局と端末双方が同じリストを保持することが望ましい。基地局は、端末からフィードバックされた、あるランクのプリコーディング行列インジケータを、別のランクのプリコーディング行列インジケータに変換するためのリストを保持しても良い。 It is desirable that both the base station and the terminal maintain the same list of precoding matrices and their indicators. The base station may maintain a list for converting one rank of the precoding matrix indicator fed back from the terminal into another rank of the precoding matrix indicator.
 例えば、図1に記載した例では、基地局は端末に対して、最大で2レイヤで信号を送信できるシステムであり、その中で、プリコーディング行列インジケータとして1をフィードバックする端末が1台、インジケータとして2をフィードバックする端末が4台、インジケータとして3をフィードバックする端末が2台となっていることを示している。図1に記載した例では、インジケータ3をフィードバックした端末2台のみランクが1であり、その他の端末は、全てランク2であるとする。 For example, in the example described in FIG. 1, the base station is a system that can transmit a signal to a terminal in a maximum of two layers, in which one terminal that feeds back 1 as a precoding matrix indicator, It is shown that there are 4 terminals that feed back 2 and 2 terminals that feed back 3 as an indicator. In the example described in FIG. 1, it is assumed that only two terminals that feed back the indicator 3 have a rank of 1 and all other terminals have a rank of 2.
 このように、基地局と各端末の間の伝搬環境によっては、基地局は、ランク1の端末とランク2の端末の両方と通信する場合があり、ランク1の端末がランク1のプリコーディング行列インジケータをフィードバックし、ランク2の端末がランク2のプリコーディング行列インジケータをフィードバックする場合がある。その場合は、基地局はランク1のプリコーディング行列インジケータを、ランク2のプリコーディング行列インジケータに変換して、統計情報をとる必要がある。基地局は、このために、例えば、図11に示すような変換リストを保持してもよい。変換リスト(191)は、端末からフィードバックされたランク1のプリコーディング行列のインジケータ(192)を、基地局のセル固有係数処理部で用いるランク2のインジケータに変換するためのリストである。図11に示すリストを用いて、基地局は、例えば、端末からフィードバックされたランク1のプリコーディング行列インジケータ(192)が1または2の場合は、端末からランク2のプリコーディング行列インジケータ1がフィードバックされたとみなして、セル固有係数処理部で処理を行う。 Thus, depending on the propagation environment between the base station and each terminal, the base station may communicate with both rank 1 and rank 2 terminals, and rank 1 terminals are ranked 1 precoding matrices. An indicator may be fed back, and a rank 2 terminal may feed back a rank 2 precoding matrix indicator. In this case, the base station needs to convert the rank-1 precoding matrix indicator into a rank-2 precoding matrix indicator to obtain statistical information. For this purpose, the base station may maintain a conversion list as shown in FIG. 11, for example. The conversion list (191) is a list for converting the indicator (192) of the rank-1 precoding matrix fed back from the terminal into the rank-2 indicator used in the cell-specific coefficient processing unit of the base station. Using the list shown in FIG. 11, for example, when the rank-1 precoding matrix indicator (192) fed back from the terminal is 1 or 2, the base station feeds back the rank-2 precoding matrix indicator 1 from the terminal. The cell specific coefficient processing unit performs processing.
 図12は、インジケータnをフィードバックする端末の割合と重み付け係数X(n)との関係を示す図である。実施例1では、端末からフィードバックされたインジケータの統計情報をとり、トータルの端末数に対して、同じインジケータをフィードバックした端末の割合によって、重み付け係数X(n)を決める。図12において、X(n)は、インジケータがnの場合の重み付け係数、N(PMI=n)はインジケータとしてnをフィードバックした端末数、N(total)はトータルの端末数である。 FIG. 12 is a diagram showing the relationship between the ratio of terminals that feed back the indicator n and the weighting coefficient X (n). In Example 1, the statistical information of the indicator fed back from the terminal is taken, and the weighting coefficient X (n) is determined by the ratio of the terminal that fed back the same indicator with respect to the total number of terminals. In FIG. 12, X (n) is a weighting coefficient when the indicator is n, N (PMI = n) is the number of terminals that fed back n as an indicator, and N (total) is the total number of terminals.
 図1に示すシステムにおいて、基地局が端末から一定時間の情報を収集し、統計情報を取った結果、ランク2のインジケータ1をフィードバックする端末の割合は1/7、ランク2のインジケータ2をフィードバックする端末の割合は4/7、ランク1のインジケータ3をフィードバックする端末の割合は2/7となったとする。基地局は、その統計情報と図11に示す変換リストを用いて、X(1)は図12(a)において横軸101の値が1/7のときの縦軸100の値、同様にX(2)は図12(a)において横軸の値が6/7のときの縦軸の値を用いて、数式1により、セル固有係数を算出する。また、端末からフィードバックされたインジケータがnのときに、基地局側で乗算する係数であるW(PMI=n)は、本実施例では、インジケータが1のときは、ランク2のインジケータ1に対応するプリコーディング行列を参照して作成したユニタリー行列、また、インジケータが2のときは、ランク2のインジケータ2に対応するプリコーディング行列を参照して作成したユニタリー行列を用いる。 In the system shown in FIG. 1, the base station collects information for a certain period of time from the terminals and obtains statistical information. It is assumed that the ratio of terminals that perform feedback is 4/7 and the ratio of terminals that feed back the indicator 1 of rank 1 is 2/7. The base station uses the statistical information and the conversion list shown in FIG. 11, and X (1) is the value on the vertical axis 100 when the value on the horizontal axis 101 is 1/7 in FIG. In (2), the cell specific coefficient is calculated by Equation 1 using the value on the vertical axis when the value on the horizontal axis is 6/7 in FIG. Also, when the indicator fed back from the terminal is n, W (PMI = n), which is a coefficient to be multiplied on the base station side, corresponds to indicator 1 of rank 2 when the indicator is 1. The unitary matrix created by referring to the precoding matrix to be used, and when the indicator is 2, the unitary matrix created by referring to the precoding matrix corresponding to the indicator 2 of rank 2 is used.
 図12(a)は、インジケータとしてnをフィードバックする端末の割合が多くなるに従い、その重み付け係数が大きくなっていくことを示している。すなわち、通信エリア内で、同じインジケータを示す端末の割合が大きくなるほど、そのインジケータをフィードバックした端末に対して、基地局からの信号が届きやすくなるように信号を送信することを示す。 FIG. 12A shows that the weighting coefficient increases as the proportion of terminals that feed back n as an indicator increases. That is, as the proportion of terminals that show the same indicator in the communication area increases, a signal is transmitted so that a signal from the base station can easily reach a terminal that has fed back the indicator.
 その結果として、SN比(信号対雑音比)が改善され、すなわち、通信環境が改善され、従来よりも変調多値数が多い状態で信号を送信することが可能になる等、端末への信号送信時のスループットを改善できる効果が得られる。 As a result, the SN ratio (signal-to-noise ratio) is improved, that is, the communication environment is improved, and it is possible to transmit a signal in a state in which the number of modulation multi-values is larger than in the past. The effect of improving the throughput during transmission can be obtained.
 また、X(n)の値によって通信環境の変化、すなわち、通信エリアの変化の速さを変更することができる。すなわち、同じインジケータをフィードバックする端末の割合が同じ場合に、X(n)を大きな値にすると通信環境の変化が短時間でおこり、またX(n)を小さな値にすると、通信環境の変化が少しずつおこる。従って、X(n)の値は、通信エリア内での端末の分布の変化の速度に合うように設定すればよい。すなわち、端末の分布が緩やかに変化する場合はX(n)の値を小さくし、急激に変化する場合は、X(n)の値を大きくすれば良い。 Also, the change of communication environment, that is, the speed of change of communication area can be changed by the value of X (n). That is, when the ratio of terminals that feed back the same indicator is the same, if X (n) is set to a large value, the communication environment changes in a short time, and if X (n) is set to a small value, the communication environment changes. It happens little by little. Therefore, the value of X (n) may be set so as to match the speed of change in the distribution of terminals within the communication area. That is, if the terminal distribution changes slowly, the value of X (n) is decreased, and if it changes rapidly, the value of X (n) may be increased.
 このように端末の分布の変化に追従できる通信エリアを提供する基地局とすることで、その基地局の有する無線リソースを有効に活用でき、その結果、システムのスループットを改善することができる。 Thus, by using a base station that provides a communication area that can follow changes in the distribution of terminals, radio resources possessed by the base station can be used effectively, and as a result, system throughput can be improved.
 また、重み付け係数の一例は、図12(b)のように端末の割合が一定値以下の場合は、係数が0になる区間を設けても良い。このような構成とすることで、同じインジケータをフィードバックする端末の割合が一定値以上のものだけを重み係数の計算に取り入れ、一定値以下のものは計算に取り入れないようになるため、計算処理を簡単にすることができる。第一の実施例における重み付け係数は、同じインジケータをフィードバックする端末の割合が増えるに従って、値が増加する、または一定区間ごとに同じ値をとりながら階段状に増加する、などの形状でも良く、図12に限ったものではないことは言うまでもない。 Also, as an example of the weighting coefficient, a section where the coefficient is 0 may be provided when the ratio of terminals is equal to or less than a certain value as shown in FIG. By adopting such a configuration, only the ratio of terminals that feed back the same indicator is included in the calculation of the weighting factor only, and those below the predetermined value are not included in the calculation. Can be simple. The weighting coefficient in the first embodiment may have a shape such that the value increases as the proportion of terminals that feed back the same indicator increases, or increases stepwise while taking the same value every fixed interval. Needless to say, the number is not limited to twelve.
 次に本発明の実施例2を説明する。実施例2では、図13に示すように、通信エリア112を構成する基地局111と通信エリア115を構成する他の基地局114の境界にある端末113が、複数の通信エリアの間でハンドオーバを繰り返す場合ことを防ぐための、セル固有係数の重み付け係数X(n)の決定方法について説明する。 Next, a second embodiment of the present invention will be described. In the second embodiment, as shown in FIG. 13, a terminal 113 at the boundary between a base station 111 constituting the communication area 112 and another base station 114 constituting the communication area 115 performs handover between a plurality of communication areas. A method of determining the weighting coefficient X (n) of the cell specific coefficient to prevent repetition will be described.
 実施例2の基地局は、図14に示すように、現在、基地局と通信中である端末、ならびに、ある一定時間のうちに基地局と通信したことがある端末に対して、単位時間当たりに端末が自基地局にハンドオーバされた回数など、ハンドオーバに関する履歴を管理する、ハンドオーバ履歴管理部(430)を有している。 As shown in FIG. 14, the base station according to the second embodiment is configured to receive a terminal currently communicating with the base station and a terminal that has communicated with the base station within a certain period of time. A handover history management unit (430) that manages a history related to handover such as the number of times the terminal has been handed over to the base station.
 実施例1では、重み付け係数を決めるときに、全ての端末に対して、その中で同じインジケータをフィードバックする端末数の割合を基準として、重み付け係数X(n)を決定した。 In Example 1, when determining the weighting coefficient, the weighting coefficient X (n) is determined based on the ratio of the number of terminals that feed back the same indicator among all terminals.
 しかし、実施例2では、単位時間当たりのハンドオーバ回数が閾値を超えた端末の総数に対して、その中で同じインジケータをフィードバックする端末数の割合を基準として、重み付け係数X(n)を決定する。 However, in the second embodiment, the weighting coefficient X (n) is determined based on the ratio of the number of terminals that feed back the same indicator among the total number of terminals for which the number of handovers per unit time exceeds the threshold. .
 図15は、実施例2における、同じインジケータをフィードバックする端末の割合と重み付け係数X(n)との関係を示す図である。図15では、N’(total)は単位時間当たりのハンドオーバ回数が閾値を超えた端末の総数、N’(PMI=n)は、その中でインジケータとしてnをフィードバックした端末数を示している。 FIG. 15 is a diagram illustrating the relationship between the ratio of terminals that feed back the same indicator and the weighting coefficient X (n) in the second embodiment. In FIG. 15, N ′ (total) indicates the total number of terminals whose number of handovers per unit time exceeds the threshold, and N ′ (PMI = n) indicates the number of terminals that have fed back n as an indicator.
 例えば、図13に記載された端末は、ランク2のインジケータ1をフィードバックする端末が2台、ランク2のインジケータ2をフィードバックする端末が3台、ランク1のインジケータ3をフィードバックする端末が1台となっている。この中で、一定時間内のハンドオーバの回数が、予め定められた閾値を超える端末がランク2のインジケータ1をフィードバックした2台の端末とランク1のインジケータ3をフィードバックした1台の端末だけである場合、セル固有係数の重みを計算するための端末の母数は3となる。実施例1と同じように、統計情報をとった場合にも同じ割合を示す場合は、X(1)は図15において横軸121が2/3に相当するときの縦軸の値、X(2)は図15において横軸が1/3に相当するときの縦軸の値を用いて、数式1により、セル固有係数を算出する。 For example, the terminal described in FIG. 13 includes two terminals that feed back the indicator 1 of rank 2, three terminals that feed back the indicator 2 of rank 2, and one terminal that feeds back the indicator 3 of rank 1. It has become. Among these, terminals whose number of handovers within a certain time exceeds a predetermined threshold are only two terminals that have fed back the rank 1 indicator 1 and one terminal that has fed back the rank 1 indicator 3. In this case, the parameter number of the terminal for calculating the weight of the cell specific coefficient is 3. As in the first embodiment, when the same ratio is shown when statistical information is taken, X (1) is the value on the vertical axis when the horizontal axis 121 corresponds to 2/3 in FIG. In 2), the cell specific coefficient is calculated by Equation 1 using the value of the vertical axis when the horizontal axis corresponds to 1/3 in FIG.
 上述の方法で算出したセル固有係数を基地局からの送信信号に乗算することにより、他の基地局の通信エリアと自基地局の通信エリアの境界付近に位置し、ハンドオーバを繰り替えしていた端末に対して、自基地局からの信号を従来より届きやすくすることができる。その結果、端末のハンドオーバ回数を低減でき、安定した通信環境を提供できる。またハンドオーバのために必要となる基地局の処理を低減することができる。 By multiplying the transmission signal from the base station by the cell specific coefficient calculated by the above method, a terminal located near the boundary between the communication area of the other base station and the communication area of the own base station and having repeated the handover On the other hand, the signal from the own base station can be made easier to reach than before. As a result, the number of terminal handovers can be reduced, and a stable communication environment can be provided. In addition, it is possible to reduce the processing of the base station required for handover.
 次に、本発明の実施例3を説明する。実施例3では、図16に示すよう、基地局131と基地局134の、2つの基地局が設置されており、それぞれの通信エリア(132、135)の少なくとも一部がオーバーラップしている。 Next, a third embodiment of the present invention will be described. In the third embodiment, as shown in FIG. 16, two base stations, a base station 131 and a base station 134, are installed, and at least a part of each communication area (132, 135) overlaps.
 実施例3では、基地局131が、例えば、データ信号の送信に用いるリソースブロックの充填率や接続端末数が予め定められた閾値よりも低く、無線リソースに余裕があると判断された場合を想定している。このように、他の基地局からの端末のオフロード対象となることが可能な場合に、基地局131の無線リソースの有効活用のために、基地局134と通信している端末が、基地局131との通信にハンドオーバしやすくなるようにするための、セル固有係数の決定方法について述べる。 In the third embodiment, for example, it is assumed that the base station 131 determines that the filling rate of the resource block used for data signal transmission and the number of connected terminals are lower than a predetermined threshold and that there is a margin in radio resources. is doing. As described above, when it is possible to be an offload target of a terminal from another base station, a terminal communicating with the base station 134 is required to effectively use radio resources of the base station 131. A method for determining a cell specific coefficient for facilitating a handover to communication with 131 will be described.
 本実施例では、基地局131は、端末からのフィードバックされたインジケータの統計情報をとるところまでは実施例1と同様である。図16に示した例ではランク2のインジケータ2をフィードバックする端末は3台、ランク1のインジケータ3をフィードバックする端末は3台となっており、ランク2のインジケータ1をフィードバックする端末は1台となっている。この場合、基地局からの送信方向などを変更しない場合、また実施例1で示した方法を適用した場合は、ランク2のインジケータ1が適切なプリコーディング行列インジケータとなる場所には、基地局131からの信号が届きにくくなっている可能性がある。 In the present embodiment, the base station 131 is the same as that in the first embodiment until statistical information of the indicator fed back from the terminal is obtained. In the example shown in FIG. 16, there are three terminals that feed back the indicator 2 of rank 2, three terminals that feed back the indicator 3 of rank 1, and one terminal that feeds back the indicator 1 of rank 2 It has become. In this case, when the transmission direction from the base station is not changed, or when the method shown in the first embodiment is applied, the base station 131 is located where the rank 1 indicator 1 becomes an appropriate precoding matrix indicator. May be difficult to reach.
 このような場合、実施例3では、実施例1とは逆に、図17に示すように、トータルの端末数に対して、同じインジケータをフィードバックする端末の割合が少なくなるに従い、重み付け係数X(n)が大きくなるように設定する。図17において、X(n)は、インジケータがnの場合の重み付け係数、N(PMI=n)はインジケータとしてnをフィードバックした端末数、N(total)はトータルの端末数である。 In such a case, in the third embodiment, contrary to the first embodiment, as shown in FIG. 17, the weighting coefficient X (( n) is set to be large. In FIG. 17, X (n) is a weighting coefficient when the indicator is n, N (PMI = n) is the number of terminals that fed back n as an indicator, and N (total) is the total number of terminals.
 従って、図16に示した例の場合は、実施例3では、ランク2のインジケータ1に対する重み付け係数X(1)は、ランク2のインジケータ2に対する重み付け係数X(2)よりも大きな値となる。 Therefore, in the case of the example shown in FIG. 16, in Example 3, the weighting coefficient X (1) for the indicator 1 of rank 2 is larger than the weighting coefficient X (2) for the indicator 2 of rank 2.
 このような重み付けをした信号を基地局から送信することで、重み付けをしない場合よりも、信号が届きにくかった場所に対しても信号を届きやすくすることが可能となる。その結果、基地局134と接続していた端末(例えば、端末136)が、基地局131にハンドオーバする確率を高くすることが可能となる。基地局134の無線リソースの使用率が高く、基地局131の無線リソースの使用率が低かった場合には、上述のようなセル固有の参照信号を送信することで、基地局134から基地局131に端末をハンドオーバさせることができれば、両基地局の無線リソースの使用率を、平均化することができる。 By transmitting such a weighted signal from the base station, it is possible to make the signal easier to reach even where the signal is difficult to reach than when no weighting is performed. As a result, it is possible to increase the probability that a terminal (for example, the terminal 136) connected to the base station 134 will be handed over to the base station 131. When the usage rate of the radio resource of the base station 134 is high and the usage rate of the radio resource of the base station 131 is low, the base station 134 transmits the cell-specific reference signal as described above to the base station 131. If the terminal can be handed over to the base station, the usage rate of the radio resources of both base stations can be averaged.
 このように、本実施例によれば、自基地局の無線リソースの使用率に余裕があり、他の基地局から端末をハンドオーバさせたい場合に、端末にハンドオーバしやすい環境を提供することができる。その結果、各基地局の無線リソースの使用率を平均化し、各基地局にかかる負荷を平均化できるという効果が得られる。 As described above, according to the present embodiment, there is a surplus in the usage rate of the radio resources of the own base station, and it is possible to provide an environment in which the terminal can be easily handed over when the terminal is handed over from another base station. . As a result, it is possible to average the radio resource usage rate of each base station and average the load applied to each base station.
 さらに本実施例では、ランク2のインジケータ1を所望する位置に、端末が存在しないことも有りうるため、一定時間経過しても、他の基地局からハンドオーバしてくる端末がない場合、また、これまで基地局と接続していた端末が他の基地局にハンドオーバすることが生じる場合は、セル固有係数を変更前に戻すようにしても良い。さらに、実施例1のように、同じインジケータをフィードバックする端末の割合が多いインジケータに、大きな重み付け係数をつけたセル固有係数となるように変更しても良い。 Further, in the present embodiment, since there may be no terminal at a position where the indicator 1 of rank 2 is desired, if there is no terminal to be handed over from another base station even after a certain period of time, When a terminal that has been connected to the base station so far is handed over to another base station, the cell specific coefficient may be returned to before the change. Further, as in the first embodiment, an indicator having a large proportion of terminals that feed back the same indicator may be changed to a cell specific coefficient with a large weighting coefficient.
 以上の実施例では、図4に示すように、一定時間経過後にセル固有係数を初期値に戻す設定としているが、図18に示すように、自基地局に接続する端末がなくなった場合(155)にセル固有係数を初期値に戻すようにしても良い。なお、図4のステップ31~34と図18のステップ151~154は同じである。 In the above embodiment, as shown in FIG. 4, the cell specific coefficient is set back to the initial value after a certain time has elapsed, but as shown in FIG. 18, when there are no terminals connected to the own base station (155 ), The cell specific coefficient may be returned to the initial value. Note that steps 31 to 34 in FIG. 4 and steps 151 to 154 in FIG. 18 are the same.
 一定時間毎に初期値に戻す場合は、定期的な通信エリアのリセットが可能になる。しかし、リセット直前の通信エリアが、重み付け係数をリセットし初期値とした場合の通信エリアと大きく異なっていた場合は、重み付け係数のリセットにより、通信環境が急激に変化する端末が発生する可能性がある。一方、基地局と通信する端末が存在しないタイミングでリセットすれば、端末に対して急激な通信環境の変化の発生を防ぐことができる。 If you reset to the initial value at regular intervals, you can reset the communication area periodically. However, if the communication area immediately before the reset is significantly different from the communication area when the weighting coefficient is reset to the initial value, there is a possibility that a terminal whose communication environment changes rapidly due to the resetting of the weighting coefficient may occur. is there. On the other hand, if the reset is performed at a timing when there is no terminal communicating with the base station, it is possible to prevent a sudden change in the communication environment with respect to the terminal.
 以上、本発明の実施例を述べたが、本発明の構成はこれに限ることはなく、本発明の主旨を逸脱しない範囲では、種々変更してもよいことは明白である。またセル固有係数の決定方法も、数式1に限らず、例えば数式2を用いて決定してもよく、数式1や数式2以外の数式を用いて決定してもよい。数式2におけるW、Wc、W(PMI=n)、X(n)、Kの意味は数式1と同じである。ただし、数式2では、数式2に示すように、X(n)はW(PMI=n)の指数ではない。 The embodiment of the present invention has been described above, but the configuration of the present invention is not limited to this, and it is obvious that various modifications may be made without departing from the gist of the present invention. The method for determining the cell specific coefficient is not limited to Formula 1, but may be determined using Formula 2, for example, or may be determined using Formulas other than Formula 1 and Formula 2. The meanings of W, Wc, W (PMI = n), X (n), and K in Equation 2 are the same as those in Equation 1. However, in Equation 2, as shown in Equation 2, X (n) is not an index of W (PMI = n).
Figure JPOXMLDOC01-appb-M000002
 また、数式を用いて算出するのではなく、例えば、基地局が、プリコーディグ行列インジケータの統計情報の状態と、それに対応したセル固有係数の関係を示すテーブルを予め保持し、そのテーブルを参照して、統計情報の状態からセル固有係数を決定するようにしても良い。
Figure JPOXMLDOC01-appb-M000002
Also, instead of calculating using mathematical formulas, for example, the base station holds in advance a table indicating the relationship between the statistical information state of the precoding matrix indicator and the corresponding cell specific coefficient, and refers to that table. The cell specific coefficient may be determined from the state of the statistical information.
 また、実施例では、送受信でそれぞれ2つのアンテナを使用するレイヤ2の無線通信システムの場合について説明したが、さらにアンテナ数の多い、すなわちレイヤ数の多い無線通信システムに適用してもよい。その場合、数式1や数式2は、そのレイヤ数にあわせて変形すればよい。 In the embodiment, the case of the layer 2 wireless communication system using two antennas for transmission and reception has been described. However, the present invention may be applied to a wireless communication system having a larger number of antennas, that is, a larger number of layers. In that case, the formulas 1 and 2 may be modified according to the number of layers.
 また、基地局ならびに端末が保持するプレイコーディング行列とそのインジケータのリストも、本明細に記載した種類や値に限ったものではなく、本発明の主旨を逸脱しない範囲では、種類や値を無線通信システムの用途や構成にあわせて種々設定してよいことは言うまでもない。 In addition, the list of precoding matrices and their indicators held by the base station and the terminal are not limited to the types and values described in the present specification, and the types and values may be wirelessly communicated without departing from the gist of the present invention. It goes without saying that various settings may be made according to the use and configuration of the system.
11、111、114、131、134:基地局
12、113,133,136:端末
13、112,115,132,135:通信エリア
14:インジケータ
41、61:無線信号送受信部
43:有線IF
44、64:バス
423:セル固有係数処理部 
621:プリコーディング行列インジケータ決定部 
11, 111, 114, 131, 134: base station 12, 113, 133, 136: terminal 13, 112, 115, 132, 135: communication area 14: indicator 41, 61: wireless signal transmission / reception unit 43: wired IF
44, 64: Bus 423: Cell specific coefficient processing unit
621: Precoding matrix indicator determination unit

Claims (15)

  1.  端末に対して参照信号を送信し、前記参照信号に基づいて決定されるプリコーディング行列インジケータを前記端末から受信する無線信号送受信部と、
     1つ以上の前記端末から受信した前記プリコーディング行列インジケータを用いて、前記端末に送信する送信信号に乗算する係数を決定する処理部と、を有することを特徴とする基地局。
    A radio signal transmitting / receiving unit that transmits a reference signal to a terminal and receives a precoding matrix indicator determined based on the reference signal from the terminal;
    A base station comprising: a processing unit that determines a coefficient by which a transmission signal to be transmitted to the terminal is multiplied by using the precoding matrix indicator received from one or more of the terminals.
  2.  請求項1に記載の基地局であって、
     前記処理部は、前記基地局に接続する全ての端末に対して、同じプリコーディング行列インジケータを送信する端末の割合に基づいて、前記係数を決定することを特徴とする基地局。
    The base station according to claim 1, wherein
    The base station, wherein the processing unit determines the coefficient based on a ratio of terminals that transmit the same precoding matrix indicator to all terminals connected to the base station.
  3.  請求項1に記載の基地局であって、
     前記処理部は、単位時間当たりのハンドオーバ回数が所定の閾値を超えた端末の総数に対して、同じプリコーディング行列インジケータを送信する端末の割合に基づいて、前記係数を決定することを特徴とする基地局。
    The base station according to claim 1, wherein
    The processing unit determines the coefficient based on a ratio of terminals transmitting the same precoding matrix indicator with respect to a total number of terminals whose number of handovers per unit time exceeds a predetermined threshold. base station.
  4.  請求項1に記載の基地局であって、
     前記係数の初期値は単位行列とすることを特徴とする基地局。
    The base station according to claim 1, wherein
    An initial value of the coefficient is a unit matrix.
  5.  請求項1に記載の基地局であって、
     前記処理部は、定期的に前記係数を変更し、一定時間経過後又は前記基地局に接続する端末がない場合に、前記係数を初期値に戻すことを特徴とする基地局。
    The base station according to claim 1, wherein
    The base station is characterized in that the processing unit periodically changes the coefficient and returns the coefficient to an initial value after a predetermined time has elapsed or when there is no terminal connected to the base station.
  6.  請求項1に記載の基地局であって、
     前記係数を前記端末への前記参照信号に乗算する係数乗算部を有することを特徴とする基地局。
    The base station according to claim 1, wherein
    A base station comprising a coefficient multiplier for multiplying the reference signal to the terminal by the coefficient.
  7.  請求項6に記載の基地局であって、
     プリコーディング行列乗算部をさらに有し、
     前記無線信号送受信部は、前記係数が乗算された前記参照信号に基づいて決定されるプリコーディング行列インジケータを前記端末から受信し、 前記プリコーディング行列乗算部は、当該プリコーディング行列インジケータに対応するプリコーディング行列を、前記端末への固有の信号に乗算することを特徴とする基地局。
    The base station according to claim 6, wherein
    A precoding matrix multiplication unit;
    The radio signal transmitting / receiving unit receives a precoding matrix indicator determined based on the reference signal multiplied by the coefficient from the terminal, and the precoding matrix multiplying unit receives a precoding matrix indicator corresponding to the precoding matrix indicator. A base station that multiplies a coding matrix by a unique signal to the terminal.
  8.  端末と、
     前記端末と通信する基地局と、を有する無線通信システムであって、
     前記基地局は、前記端末に対して参照信号を送信する第1の無線信号送受信部を有し、
     前記端末は、前記参照信号に基づいてプリコーディング行列インジケータを決定するプリコーディング行列インジケータ決定部と、前記プリコーディング行列インジケータを前記基地局に送信する第2の無線信号送受信部と、を有し、
     前記基地局は、1つ以上の前記端末から受信した前記プリコーディング行列インジケータを用いて、前記端末に送信する送信信号に乗算する係数を決定する処理部を有することを特徴とする無線通信システム。
    A terminal,
    A base station that communicates with the terminal, comprising:
    The base station has a first radio signal transmission / reception unit that transmits a reference signal to the terminal,
    The terminal includes a precoding matrix indicator determination unit that determines a precoding matrix indicator based on the reference signal, and a second radio signal transmission / reception unit that transmits the precoding matrix indicator to the base station,
    The base station includes a processing unit that determines a coefficient for multiplying a transmission signal to be transmitted to the terminal using the precoding matrix indicator received from one or more of the terminals.
  9.  請求項8に記載の無線通信システムであって、
     前記処理部は、前記基地局に接続する全ての端末に対して、同じプリコーディング行列インジケータを送信する端末の割合に基づいて、前記係数を決定することを特徴とする無線通信システム。
    A wireless communication system according to claim 8,
    The wireless communication system, wherein the processing unit determines the coefficient based on a ratio of terminals transmitting the same precoding matrix indicator to all terminals connected to the base station.
  10.  請求項8に記載の無線通信システムであって、
     前記処理部は、単位時間当たりのハンドオーバ回数が所定の閾値を超えた端末の総数に対して、同じプリコーディング行列インジケータを送信する端末の割合に基づいて、前記係数を決定することを特徴とする無線通信システム。
    A wireless communication system according to claim 8,
    The processing unit determines the coefficient based on a ratio of terminals transmitting the same precoding matrix indicator with respect to a total number of terminals whose number of handovers per unit time exceeds a predetermined threshold. Wireless communication system.
  11.  請求項8に記載の無線通信システムであって、
     前記係数の初期値は単位行列とすることを特徴とする無線通信システム。
    A wireless communication system according to claim 8,
    The wireless communication system, wherein an initial value of the coefficient is a unit matrix.
  12.  請求項8に記載の無線通信システムであって、
     前記処理部は、定期的に前記係数を変更し、一定時間経過後又は前記基地局に接続する端末がない場合に、前記係数を初期値に戻すことを特徴とする無線通信システム。
    A wireless communication system according to claim 8,
    The wireless communication system, wherein the processing unit periodically changes the coefficient and returns the coefficient to an initial value after a fixed time has elapsed or when there is no terminal connected to the base station.
  13.  請求項8に記載の無線通信システムであって、
     前記基地局は、前記係数を前記端末への前記参照信号に乗算する係数乗算部を有することを特徴とする無線通信システム。
    A wireless communication system according to claim 8,
    The base station includes a coefficient multiplier that multiplies the reference signal to the terminal by the coefficient.
  14.  請求項13に記載の無線通信システムであって、
     前記基地局は、プリコーディング行列乗算部をさらに有し、
     前記第1の無線信号送受信部は、前記係数が乗算された前記参照信号に基づいて決定されるプリコーディング行列インジケータを前記端末から受信し、
     前記プリコーディング行列乗算部は、当該プリコーディング行列インジケータに対応するプリコーディング行列を、前記端末への固有の信号に乗算することを特徴とする無線通信システム。
    A wireless communication system according to claim 13,
    The base station further includes a precoding matrix multiplication unit,
    The first radio signal transmitting / receiving unit receives a precoding matrix indicator determined based on the reference signal multiplied by the coefficient from the terminal,
    The wireless communication system, wherein the precoding matrix multiplication unit multiplies a signal specific to the terminal by a precoding matrix corresponding to the precoding matrix indicator.
  15.  端末と、前記端末と通信する基地局とを有する無線通信システムにおける無線通信方法であって、
     前記基地局は、前記端末に対して参照信号を送信し、
     前記端末は、前記参照信号に基づいてプリコーディング行列インジケータを決定し、前記プリコーディング行列インジケータを前記基地局に送信し、
     前記基地局は、1つ以上の前記端末から受信した前記プリコーディング行列インジケータを用いて、前記端末に送信する送信信号に乗算する係数を決定することを特徴とする無線通信方法。
    A wireless communication method in a wireless communication system having a terminal and a base station that communicates with the terminal,
    The base station transmits a reference signal to the terminal,
    The terminal determines a precoding matrix indicator based on the reference signal, and transmits the precoding matrix indicator to the base station;
    The base station determines a coefficient by which a transmission signal to be transmitted to the terminal is multiplied using the precoding matrix indicator received from one or more of the terminals.
PCT/JP2013/077029 2013-10-04 2013-10-04 Base station, radio communication system, and radio communication method WO2015049779A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/077029 WO2015049779A1 (en) 2013-10-04 2013-10-04 Base station, radio communication system, and radio communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/077029 WO2015049779A1 (en) 2013-10-04 2013-10-04 Base station, radio communication system, and radio communication method

Publications (1)

Publication Number Publication Date
WO2015049779A1 true WO2015049779A1 (en) 2015-04-09

Family

ID=52778388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077029 WO2015049779A1 (en) 2013-10-04 2013-10-04 Base station, radio communication system, and radio communication method

Country Status (1)

Country Link
WO (1) WO2015049779A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010532951A (en) * 2007-07-06 2010-10-14 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Maximum power setting in a base station with multiple antennas in a mobile communication system
JP2013502780A (en) * 2009-08-20 2013-01-24 富士通株式会社 Method and apparatus for performing downlink multi-input multi-output transmission
JP2013118567A (en) * 2011-12-05 2013-06-13 Ntt Docomo Inc Radio base station device, radio communication system, and radio communication method
WO2013145046A1 (en) * 2012-03-29 2013-10-03 日本電気株式会社 Base station device, mobile communication system, control method for base station device, and computer-readable medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010532951A (en) * 2007-07-06 2010-10-14 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Maximum power setting in a base station with multiple antennas in a mobile communication system
JP2013502780A (en) * 2009-08-20 2013-01-24 富士通株式会社 Method and apparatus for performing downlink multi-input multi-output transmission
JP2013118567A (en) * 2011-12-05 2013-06-13 Ntt Docomo Inc Radio base station device, radio communication system, and radio communication method
WO2013145046A1 (en) * 2012-03-29 2013-10-03 日本電気株式会社 Base station device, mobile communication system, control method for base station device, and computer-readable medium

Similar Documents

Publication Publication Date Title
TWI467938B (en) Methods for reducing interference in communication systems
JP2021519001A (en) Measurement reporting method, terminal equipment and network equipment
CN102415002B (en) Channel state information reconstruction from sparse data
EP2387859B1 (en) Model based channel state information feedback
US10686498B2 (en) Systems and methods for massive MIMO adaptation
TW200537835A (en) A method for determining transmit weights
CN104081853A (en) System and method for selecting operating parameter in communications system
CN102598764A (en) Base station, communication method and mobile station
JP2013502760A (en) Channel state information non-periodic reporting method and apparatus
JP6296575B2 (en) Downlink transmission method, control apparatus, base station, and heterogeneous system in heterogeneous network
CN106941688B (en) PDMA system power distribution method based on historical information
US20220407616A1 (en) Method for predicting channel state information and apparatus
US9397864B2 (en) Adaptive channel estimation for coordinated multipoint cellular communication
KR20120097028A (en) Method and apparatus for precoding mode selection with joint processing/transmission based on linited feedback in mobile communication system
EP3734855A1 (en) Multiuser pairing method and apparatus, and base station
EP3370345B1 (en) Joint data transmission method and device
WO2013008167A1 (en) Packet scheduling in a cellular communication network for the purpose of device -to -device communications
WO2015049779A1 (en) Base station, radio communication system, and radio communication method
WO2014093697A2 (en) System and method for channel estimation in a wireless communications system
JP2016163354A (en) Radio base station, mobile station, and method for determining transmission power
US20230412003A1 (en) Wireless energy transfer from network node to user equipment based on predictions
Zahiri et al. Cooperative wireless transmission for smart metering
KR101997822B1 (en) Methods for cooperative transmission in multi-cell cooperation systems
US20170005762A1 (en) Method, apparatus, and system for processing interference in massive multiple-input multiple-output system
CN105656539A (en) SRS transmission control method and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13895083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13895083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP