WO2015045013A1 - エネルギー変換システム - Google Patents

エネルギー変換システム Download PDF

Info

Publication number
WO2015045013A1
WO2015045013A1 PCT/JP2013/075788 JP2013075788W WO2015045013A1 WO 2015045013 A1 WO2015045013 A1 WO 2015045013A1 JP 2013075788 W JP2013075788 W JP 2013075788W WO 2015045013 A1 WO2015045013 A1 WO 2015045013A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy conversion
conversion system
linear motor
circuit
phase
Prior art date
Application number
PCT/JP2013/075788
Other languages
English (en)
French (fr)
Inventor
市村 智
直哉 宮本
小山 拓
加藤 修治
恩田 謙一
井上 重徳
徹 吉原
岩路 善尚
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/075788 priority Critical patent/WO2015045013A1/ja
Priority to JP2015538666A priority patent/JP6101809B2/ja
Priority to TW103125858A priority patent/TWI523407B/zh
Publication of WO2015045013A1 publication Critical patent/WO2015045013A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0074Plural converter units whose inputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to an energy conversion system, and more particularly to an energy conversion system suitable for conversion between DC power and AC power, and conversion between AC power and mechanical power.
  • the generator or the motor is configured so that the stator and the rotor rotate relatively.
  • a first winding, a second winding, and a third winding are provided on the stator.
  • power generation or rotational power is obtained.
  • a semiconductor element as a constituent circuit an orthogonal transformation circuit consisting of a full bridge circuit is connected in parallel to each of a plurality of capacitors connected to a DC power supply, and an AC output terminal of the orthogonal transformation circuit,
  • a technique is known in which a plurality of AC input terminals insulated from each other are connected to each other in a rotating electrical machine.
  • a pseudo waveform is generated by conducting / cutting off DC power of a predetermined capacitor among a plurality of capacitors at a very short time interval by an orthogonal transformation circuit and supplied to, for example, a U-phase winding of an electric motor. Then, the DC power of the other two capacitors is turned on / off at very short time intervals to generate a pseudo waveform and supplied to, for example, V-phase and W-phase windings.
  • one object of the present invention is to reduce the power loss of the switching element of the orthogonal conversion circuit in an energy conversion system having conversion between DC power and AC power and conversion between AC power and mechanical power.
  • Another problem is to improve the AC voltage waveform shape in an energy conversion system having conversion between DC power and AC power and conversion between AC power and mechanical power.
  • an energy conversion system includes a plurality of conversion circuits that are formed of a full bridge circuit having four semiconductor elements and convert between direct current and alternating current.
  • a rotary machine or a linear type machine having a plurality of armature coils insulated from each other, a potential terminal on one side, and a potential terminal on the other side, and the plurality of conversion circuits include the potential terminal on the one side and the potential terminal on the other side
  • each converter circuit has a circuit terminal that forms part of the series connected circuit, and the circuit terminal of each converter circuit is directly or directly connected to the corresponding armature coil.
  • the output voltage of the armature coil is adjusted so that the voltage between the one-side potential terminal and the other-side potential terminal is constant, or is applied to the one-side potential terminal and the other-side potential terminal.
  • a constant voltage were divided in such a manner that the sum of the magnitude of the output voltage of the circuit terminals of each converter is equal to a constant voltage configured to operate the conversion circuit to output to the armature coils.
  • a rotation having a plurality of orthogonal transformation circuits that are formed of a full bridge circuit having four switching elements and converts direct current to alternating current and a plurality of alternating current input / output terminals that are insulated from each other is applied while a direct current voltage is applied.
  • the DC input / output terminals of the plurality of orthogonal transformation circuits are each connected in series, and the AC input / output terminals are respectively connected to the plurality of AC input / output terminals insulated from each other of the rotating electric machine or linear motor.
  • a transformer so that when the switching element is switched on and off in the orthogonal transformation circuit, a phase is formed in which three or more of the four switching elements are turned on. Configured.
  • the energy conversion system includes an orthogonal transform circuit formed of a 2 ⁇ N-phase (where N is 2 or more) full-bridge circuit and 2 ⁇ N electrical machines that output 2 ⁇ N-phase alternating current.
  • a rotary electric machine or linear device having 2 ⁇ N connection ends as a result of connecting the end portions of the armature coils to the end portions of the armature coils of the phase preceding and following the armature coil phase.
  • 2 ⁇ N AC input / output terminals of the orthogonal transformation circuit are connected to the 2 ⁇ N connection terminals of the rotating electrical machine directly or via a transformer, respectively, in the same phase context. It was configured as follows.
  • the energy conversion system includes an orthogonal conversion circuit formed by connecting two switching elements in series and connecting (M + 1) unit circuits in parallel with the connection end as an AC input / output end. And (M + 1) AC input / outputs of the orthogonal transform circuit, comprising a linear motor having (M + 1) connection ends as a result of connecting M armature coils and connecting ends of adjacent armature coils. The ends are connected to the (M + 1) connecting ends of the linear motor directly or via a transformer with the same phase relationship.
  • the rotating electric machine or the linear motor when the rotating electric machine or the linear motor is moving at a constant speed, the sum of absolute values of induced electromotive forces generated in a plurality of predetermined armature coils is constant. Configured.
  • an alternating voltage waveform shape can be improved.
  • FIG. 1 is a main circuit configuration diagram according to Embodiment 1.
  • FIG. 6 is a table showing the operation of each switching element for each operation phase according to the first embodiment. 6 is a table showing a potential relational expression for each operation phase according to the first embodiment.
  • FIG. 3 is a structural diagram illustrating the operation of the rotating electrical machine according to the first embodiment.
  • FIG. 3 is a magnetic flux density-electrical angle diagram in the field of the rotating electrical machine according to the first embodiment.
  • FIG. 3 is an induced electromotive force-electrical angle diagram in the rotating electrical machine according to the first embodiment.
  • FIG. 6 is a structural diagram illustrating the operation of another rotating electrical machine according to the first embodiment. The magnetic flux density-electrical angle diagram in the field of the other rotary electric machine which concerns on Example 1.
  • FIG. 3 is a switching element operation-time diagram according to the first embodiment.
  • FIG. 3 is an induced electromotive force-time diagram according to the first embodiment.
  • FIG. 3 is a structural diagram of another rotating electrical machine according to the first embodiment.
  • 1 is a structural diagram of a linear motor according to Embodiment 1.
  • FIG. 6 is a main circuit configuration diagram according to the second embodiment. 10 is a table showing the operation of each switching element during an initial operation according to the second embodiment.
  • FIG. 6 is a structural diagram illustrating the operation of a rotating electrical machine during an initial operation according to a second embodiment.
  • FIG. 6 is a main circuit configuration diagram according to the third embodiment.
  • 10 is a table showing the operation of each switching element for each operation phase according to the third embodiment.
  • 10 is a table showing a potential relational expression for each operation phase according to the third embodiment.
  • FIG. 9 is a structural diagram illustrating the operation of a rotating electrical machine according to a third embodiment.
  • FIG. 6 is a magnetic flux density-electrical angle diagram in the field of the rotating electrical machine according to the third embodiment.
  • FIG. 6 is an induced electromotive force-electrical angle diagram in the rotating electrical machine according to the third embodiment.
  • FIG. 6 is an induced electromotive force-time diagram according to the third embodiment.
  • FIG. 6 is an absolute diagram of induced electromotive force-time diagram according to the third embodiment.
  • FIG. 6 is a main circuit configuration diagram according to the fourth embodiment.
  • FIG. 10 is a main circuit configuration diagram according to the fifth embodiment. 10 is a table showing the operation of each switching element for each operation phase according to the fifth embodiment. Switching element operation-time diagram according to the fifth embodiment.
  • FIG. 10 is a structural diagram of a rotating electrical machine according to a fifth embodiment.
  • FIG. 10 is an induced electromotive force-time diagram according to the fifth embodiment.
  • FIG. 10 is an absolute value of induced electromotive force-time diagram according to the fifth embodiment.
  • FIG. 10 is a main circuit configuration diagram according to the sixth embodiment. 10 is a table showing the operation of each switching element for each operation phase according to Example 6.
  • FIG. 3 is a magnetic flux density-electrical angle diagram in the field of the rotating electrical machine according to the first embodiment.
  • FIG. 3 is an induced electromotive force-electrical angle diagram in the rotating electrical machine according to the first embodiment.
  • FIG. 3 is a structural diagram of another rotating electrical machine according to the first embodiment.
  • FIG. 3 is a structural diagram of a squirrel-cage conductor that constitutes a part of a rotor of another rotating electrical machine according to the first embodiment.
  • each switching element in the circuit the voltage drop in the diode, the resistance of the wiring, the inductance, the parasitic capacitance, the exciting inductance of the rotating electric machine and the transformer, etc. can be ignored. It will be described as a typical state.
  • FIG. 1 is a main circuit configuration diagram of the energy conversion system of the present embodiment
  • FIG. 2 is a diagram showing switching elements SW11, SW12, SW13, SW14, SW21, SW22, SW23, SW24, SW31, SW32 for each operation phase of the energy conversion system.
  • SW33, SW34, FIG. 3 is a table showing potential relational expressions for each operation phase
  • FIG. 4 is a structural diagram showing the operation of the rotating electrical machine in this embodiment
  • FIG. 5 is a field of the rotating electrical machine in FIG.
  • FIG. 6 is an induced electromotive force-electrical angle diagram in the rotating electrical machine of FIG. 4, FIG.
  • FIG. 7 is a structural diagram showing the operation of another rotating electrical machine of this embodiment
  • FIG. FIG. 9 is an induced electromotive force-electricity diagram in the rotating electrical machine of FIG. 7
  • FIG. 10 is an operation-time diagram of the switching element
  • FIG. Each electric FIG. 12 is an induced electromotive force absolute value-time diagram of each armature coil
  • FIG. 13 is a structural diagram of another rotating electric machine of this embodiment
  • FIG. 14 is an embodiment of this embodiment.
  • FIG. 36 is a structural diagram of a linear motor of an example
  • FIG. 36 is a magnetic flux density-electrical angle diagram in a field of another rotating electrical machine of this embodiment
  • FIG. 37 is an induced electromotive force-electrical angle diagram in another rotating electrical machine of the present embodiment.
  • the energy conversion system is configured by connecting a plurality of orthogonal conversion circuits 11, 21, and 31 that are formed of a full bridge circuit having four switching elements and convert direct current into alternating current in series.
  • the orthogonal transformation circuit 100 is comprised.
  • the orthogonal transform circuit 11 is formed as a full bridge circuit, and connects the switching elements SW11 and SW12 in series between the connection point a and the connection point d. Furthermore, the switching elements SW13 and SW14 are connected in series between the connection point a and the connection point d in parallel with the switching elements SW11 and SW12. Freewheel diodes DI11, DI12, DI13, and DI14 are connected in parallel to the switching elements SW11, SW12, SW13, and SW14.
  • a connection point between the switching elements SW11 and SW12 constitutes an input / output terminal b, and a connection point between the switching elements SW13 and SW14 constitutes an input / output terminal c.
  • the orthogonal transform circuit 21 and the orthogonal transform circuit 31 are configured by switching elements SW21, SW22, SW23, SW24, switching elements SW31, SW32, SW33, SW34, respectively, and have the same configuration as the orthogonal transform circuit 11.
  • Freewheel diodes DI31, DI32, DI33, DI34 are connected.
  • the switching element for example, a known element such as an IGBT can be used.
  • One end of the orthogonal transformation circuit 11 is connected to the variable DC power supply 50 via the connection point a, and the other end of the orthogonal transformation circuit 11 and one end of the orthogonal transformation circuit 21 are connected via the connection point d. 21 and one end of the orthogonal transformation circuit 31 are connected via a connection point g, and the other end of the orthogonal transformation circuit 31 is connected to the variable DC power source 50 via a connection point m.
  • the variable DC power supply 50 and the orthogonal transformation circuit 100 are connected at the connection point a and the connection point m.
  • a rotating electrical machine 70 having a plurality of armature coils Coil1, Coil2, and Coil3 that are insulated from each other is provided.
  • the armature coil Coil1 has end portions p11 and p12
  • the armature coil Coil2 has end portions p21 and p22
  • the armature coil Coil3 has end portions p31 and p32.
  • These end portions are respectively Input / output ends b and c of the orthogonal transformation circuit 11 are orthogonally transformed to the ends p11 and p12 of the armature coil Coil1, and input / output ends e and f of the orthogonal transformation circuit 21 are orthogonally transformed to the ends p21 and p22 of the armature coil Coil2.
  • the input / output terminals h and k of the circuit 31 are connected to the end parts p31 and p32 of the armature coil Coil3, respectively.
  • the switching elements SW11, SW12, SW13, SW14, SW21, SW22, SW23, SW24, SW31, SW32, SW33, SW34 are supplied with the ON / OFF pulse from the control means 2, that is, the ON signal is sent from the control means 2.
  • the ON signal is sent from the control means 2.
  • the ON / OFF pulse When it is received, it is turned on and turned off by the OFF signal, and the ON / OFF operation of each of the switching elements SW11, SW12, SW13, SW14, SW21, SW22, SW23, SW24, SW31, SW32, SW33, SW34 is performed by the control means 2. It is configured to control.
  • the main operation phases in the series of switching operations are those indicated by Ph1 to 12 in FIG.
  • the field 71 rotates with each ON / OFF operation of the switching elements SW11, SW12, SW13, SW14, SW21, SW22, SW23, SW24, SW31, SW32, SW33, SW34. That is, it rotates 60 degrees in the operation phases Ph1 and Ph2, then rotates 60 degrees in the operation phases Ph3 and Ph4, and rotates 360 degrees (one rotation) when moving from the operation phase Ph12 to Ph1.
  • Vbc means a voltage between the connection point b and the connection point c
  • E is an output voltage of the DC voltage 50 applied between the connection point a and the connection point m.
  • the operation phases Ph1, Ph3, Ph5, Ph7, Ph9, and Ph11 will be described.
  • the AC input / output both-ends voltage Vbc of the orthogonal transformation circuit 11 and the AC input / output both-ends voltage of the orthogonal transformation circuit 21 are described.
  • the value of each voltage is not determined by the orthogonal transform circuit 100 alone.
  • These voltage values are determined in relation to the induced electromotive forces V1, V2, and V3 generated by the connected rotating electrical machine 70.
  • the armature coils Coil1, Coil2, and Coil3 are configured to have an electrical angle of 120 degrees with respect to each other.
  • the operation phase indicated by the underline in FIG. 4 coincides with the operation phase shown in FIGS. However, for A and B added at the end of each operation phase, A indicates a state near the initial stage of the operation phase, and B indicates a state near the end of the operation phase.
  • FIG. 5 shows three examples (a), (b), and (c) as the magnetic flux density distribution generated by the field 71.
  • the example is as shown in (a).
  • the magnetic material is configured so that the magnetic flux density is gently reduced, it will be as shown in Example (A), and if the magnetic material is configured so that the magnetic flux density is reduced at the circumferential end of the field 71, the magnetic material in Example (C) It becomes like this.
  • These can be configured by selecting (a) to (c) by devising the configuration of the magnetic body of the field magnet 71.
  • FIG. 6 shows the waveform shape of the induced electromotive force generated at both ends of one armature coil when the field 71 having the magnetic flux density distribution of FIG. 5 rotates at a constant rotational speed, and the horizontal axis indicates the electrical angle.
  • FIG. 7 The operation phase indicated by the underline in FIG. 7 coincides with the operation phase shown in FIGS.
  • the magnetic flux density distribution generated by the field 71 is shown in FIG. It is shown in.
  • FIG. 8 shows three examples (a), (b), and (c) as the magnetic flux density distribution generated by the field 71.
  • FIG. 9 shows the waveform shape of the induced electromotive force generated at both ends of one armature coil when the field 71 having the magnetic flux density distribution of FIG. 8 rotates at a constant rotational speed, and the horizontal axis indicates the electrical angle.
  • This waveform shape is the same as the waveform shape shown in FIG.
  • FIG. 10 shows the operation timing of each switching element in the present embodiment in the time chart of the horizontal axis time.
  • T is one cycle of the AC output of each orthogonal transform circuit, and is the same value.
  • FIG. 11 and FIG. 12 show the voltage waveforms when the switching elements are operated in the time chart shown in FIG.
  • constant.
  • the energy conversion system of this embodiment can convert a constant DC voltage into a rotating mechanical force at a constant speed only by a periodic switching operation. In this system, since a current proportional to the resistance torque of the load connected to the rotating electrical machine flows, the rotational speed is automatically kept constant, so that adjustment by a special switching operation is unnecessary.
  • the sum of the absolute values of the induced electromotive force generated in each armature coil is not limited to the cases (a), (b), and (c) described above, and a distributed winding armature coil is provided.
  • the time differential value of the induced electromotive force is 0 at the time when the induced electromotive force generated in the armature coil is 0.
  • the time during which the induced electromotive force is 0 or a value close to 0 is longer than that in the example (a).
  • the timing at which the switch OFF occurs in the operation phase described above that is, the timing from Ph2 to Ph3, Ph4 to Ph5, Ph6 to Ph7, Ph8 to Ph9, Ph10 to Ph11, Ph12 to Ph1 is connected to the switch.
  • rotating electric machine having four magnetic poles shown in FIG. 13 and the linear motor shown in FIG. 14 may be applied to this embodiment.
  • a magnetic flux density-electric angle diagram in the field of the rotating electrical machine may be obtained.
  • an induced electromotive force-electric angle diagram in a rotating electrical machine may be obtained.
  • the rotary electric machine 70 may be configured as an induction motor, or may be a pure generator.
  • Example 2 will be described with reference to FIGS. In the figure, the same reference numerals are basically equivalent to those in the first embodiment. In the following embodiments, the description will focus on the differences from the embodiments described so far, and the portions that are not described are the same as long as they are not technically different from the embodiments described so far. Is.
  • FIG. 15 is a main circuit configuration diagram of the energy conversion system of this embodiment
  • FIG. 16 is a diagram illustrating each switching element SW11, SW12, SW13, SW14, SW21, SW22, SW23, SW24 for each operation phase during the initial operation of the energy conversion system.
  • FIG. 17 is a structural diagram showing the initial operation of the rotating electrical machine in this embodiment.
  • the variable DC power supply 50 in Embodiment 1 shown in FIG. 1 is replaced with a constant voltage output DC power supply 51. Since the sum of the absolute values of the induced electromotive force generated by the rotating electrical machine is smaller than the constant voltage E0 output from the DC power source 51 during the initial operation from when the rotating electrical machine reaches the rated rotational speed, FIG.
  • the switching operation shown in FIG. 5 is performed, an excessive current continues to flow, and the device may be damaged.
  • the switching operation shown in FIG. 16 is performed, that is, as shown by the portion surrounded by the black frame in FIG. 16, in the operation phase 2 ′, the switching elements SW21, SW22, SW23, SW24 are substituted for the operation phase 2.
  • the switching elements SW31, SW32, SW33, SW34 are all turned OFF instead of the operation phase 4, and in the operation phase 6 ′, the switching elements SW11, SW12, SW13, SW14 are replaced instead of the operation phase 6.
  • the supply of current is cut off to all of the armature coils Coil1, Coil2, and Coil3, and the operation is controlled so that the current flows intermittently.
  • the operation by the switching operation shown in FIG. 2 may be performed.
  • FIG. 18 is a main circuit configuration diagram of the energy conversion system of this embodiment
  • FIG. 19 shows the operation of each switching element SW11, SW12, SW13, SW14, SW21, SW22, SW23, SW24 for each operation phase of the energy conversion system.
  • 20 is a table showing potential relational expressions for each operation phase
  • FIG. 21 is a structural diagram showing the operation of the rotating electrical machine in this embodiment
  • FIG. 22 is a magnetic flux density-electrical angle diagram in the field of the rotating electrical machine in FIG. 23 is an induced electromotive force-electrical angle diagram in the rotating electric machine of FIG. 21
  • FIG. 24 is an operation-time diagram of the switching element
  • FIG. 25 is an induced electromotive force-time diagram of each armature coil of the rotating electrical machine.
  • 26 is an absolute value of induced electromotive force-time diagram of each armature coil.
  • the present embodiment is an energy conversion system using a two-phase alternating current. Also in the present embodiment, like the energy conversion system of the first embodiment, it is possible to convert a constant DC voltage into a rotating mechanical force having a constant speed only by a periodic switching operation. Moreover, since a current proportional to the resistance torque of the load connected to the rotating electrical machine flows, the rotational speed is automatically kept constant, so that adjustment by a special switching operation is unnecessary.
  • Example 4 will be described with reference to FIG.
  • the energy conversion system of the present embodiment shown in FIG. 27 is that the rotating electrical machine 70 is a pure generator, the switching elements are all replaced with diodes, and control means. The difference is that 2 is omitted and the DC power supply 50 is replaced with a load 60.
  • the rotary electric machine 70 as a pure generator, the system can be simplified, and a rotating mechanical force at a constant speed can be converted into a DC voltage having a constant voltage.
  • FIG. 28 is a main circuit configuration diagram of the energy conversion system of this embodiment
  • FIG. 29 is a diagram showing each switching element SW11, SW12, SW21, SW22, SW31, SW32, SW41, SW42, SW51, SW52 for each operation phase of the energy conversion system.
  • SW61, SW62 FIG. 30 shows the operation of the switching element—time diagram
  • FIG. 31 shows the structure of the rotating electric machine of this embodiment
  • FIG. 32 shows the induced electromotive force of each armature coil of the rotating electric machine—
  • FIG. 33 is a time diagram and FIG. 33 is an absolute value of induced electromotive force of each armature coil-time diagram.
  • the orthogonal transform circuit 100 formed of a six-phase bridge circuit includes six variable connection points 50 between the positive side connection point a and the negative side connection point m.
  • Bridge circuit, bridge circuit composed of switching elements SW11 and SW12, bridge circuit composed of switching elements SW21 and SW22, bridge circuit composed of switching elements SW31 and SW32, bridge circuit composed of switching elements SW41 and SW42, and composed of switching elements SW51 and SW52 A bridge circuit composed of a bridge circuit and switching elements SW61 and SW62 are connected in parallel.
  • armature coils Coil 1, Coil 2, Coil 3, Coil 4, Coil 5, Coil 6 that generate six-phase induced electromotive force of the rotating electric machine 70 and the ends p 11 and p 12 are connected to the armature coil Coil 1 p21 and p22 are connected to the armature coil Coil2, the ends p31 and p32 are connected to the armature coil Coil3, the ends p41 and p42 are connected to the armature coil Coil4, and the ends p51 and p52 are connected to the armature coil Coil5.
  • the ends p61 and p62 are connected to the armature coil Coil6.
  • the input / output end p1 between the switching elements SW11 and SW12 is connected between the ends p62 and p11, and the input / output end p2 between the switching elements SW21 and SW22 is connected between the ends p12 and p21.
  • the input / output end p3 between the switching elements SW31 and SW32 is connected between the ends p22 and p31, and the input / output end p4 between the switching elements SW41 and SW42 is connected between the ends p32 and p41.
  • the input / output end p5 between the switching elements SW51 and SW52 is connected between the ends p42 and p51, and the input / output end p6 between the switching elements SW61 and SW62 is connected between the ends p52 and p61.
  • the end portions p1, p2, p3, p4, p5, and p6 are directly connected to the six connection ends of the rotating electrical machine in the same phase relationship.
  • the switching operation shown in FIG. 29 is performed at the operation timing shown in FIG.
  • the switching elements SW11 and SW42 are on and the other switching elements are off
  • the power of the variable DC power supply 50 passes through the input / output terminal p1 via the switching element SW11 from the positive side of the variable DC power supply 50 and ends.
  • the power of the variable DC power supply 50 is supplied between predetermined ends from the positive side of the variable DC power supply 50 via the corresponding switching element, and passes through the armature coil.
  • a path is formed between the predetermined end portions, passes through the predetermined end portions, and returns to the variable DC power supply 50 via the corresponding switching element.
  • the detailed structure of the rotating electrical machine 70 and the state in each operation phase are as shown in FIG. 31, and the magnetic flux density distribution generated by the field 71 is the same as that shown in FIG.
  • the waveform shape of the induced electromotive force generated at both ends of one armature coil when the field magnet 71 rotates at a constant rotational speed is the same as that shown in FIG.
  • FIG. 34 is a main circuit configuration diagram of the energy conversion system of the present embodiment
  • FIG. 35 is a table showing the operation of each switching element for each operation phase of the energy conversion system.
  • the energy conversion system of the present embodiment uses a linear motor, and can also convert a constant DC voltage into a linear mechanical force at a constant speed only by a periodic switching operation. Since the current is proportional to the resistance force of the load connected to the linear motor, the speed is automatically kept constant, so that adjustment by a special switching operation is unnecessary.
  • switching element control means 11, 21, 31 ... orthogonal transformation circuit, SW11, SW12, SW13, SW14 ... main switching element, SW21, SW22, SW23, SW24 ... main switching element, SW31, SW32, SW33, SW34 ... main SW41, SW42, SW51, SW52, SW61, SW62, SW71, SW72, SW81, SW82, SW91, SW92, SW101, SW102, SW111, SW112, SWM1, SWM2,... Main switching elements, D11, D12, D13, D14 ... Diode, D21, D22, D23, D24 ... Diode, 12, 22 ...
  • Transformer Coil1, Coil2, Coil3, Coil4, Coil5, Coil6, Coil7, Coil8, Coil9, Oil10 ... armature coils, 70 ... rotary electric machine or a linear motor, 71 ... field, V1, V2, V3, V4, V5, V6, V7, V8, V9 ... induced electromotive force, 100 ... power converter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

 直流電力と交流電力との変換、交流電力と機械力との変換を有するエネルギー変換システムにおいて、交流電圧波形形状を改善すること。 直流電圧が印加されると共に、4つのスイッチング素子を有するフルブリッジ回路で形成されて直流を交流に変換する複数の直交変換回路と、相互に絶縁された複数の交流入出力端を有する回転電機またはリニアモータを備え、複数の前記直交変換回路の直流入出力端は各々直列に接続され、交流入出力端は前記回転電機またはリニアモータの相互に絶縁された複数の交流入出力端に各々直接または変圧器を介して接続され、前記直交変換回路における前記スイッチング素子のONとOFFの切替に際して、4つの前記スイッチング素子のうち、3つ以上がONとなる様なフェーズが形成される。

Description

エネルギー変換システム
 本発明は、エネルギー変換システムに係り、特に直流電力と交流電力との変換、交流電力と機械力との変換に好適なエネルギー変換システムに関する。  
 近年、エネルギーを変換するシステムには、発電機の発電出力を整流するために半導体素子から構成される回路、あるいは、電動機を駆動するために半導体素子で構成された回路が多く用いられている。
 発電機或いは電動機は、固定子と回転子とが相対的に回転するよう構成されるのであり、その固定子に、例えば、第1の巻線、第2の巻線、第3の巻線を設けて、その各々から出力電力を得て、あるいは、その各々に電力を供給することで、発電或いは回転動力を得ている。例えば、電動機の場合に、半導体素子を構成回路として、直流電源に接続された複数のコンデンサの各々にフルブリッジ回路からなる直交変換回路を並列に接続し、当該直交変換回路の交流出力端子と、回転電機において相互に絶縁された複数の交流入力端子との間を各々接続して構成する技術が知られている。
 この技術では、複数のうちの所定のコンデンサの直流電力を直交変換回路で非常に短い時間間隔で導通/遮断することで擬似的な波形を作り出して例えば電動機のU相巻線に供給し、一方、他の2つのコンデンサの直流電力を各々非常に短い時間間隔で導通/遮断することで擬似的な波形を作り出して例えばV相、W相の巻線に供給する。
 このような技術は、例えば、特開昭61-142995号公報に記載されている。
特開昭61-142995号公報
 上記の従来技術では、直流電圧を非常に短い時間間隔で導通/遮断するので、導通/遮断による損失が大きい。各々の直交変換回路を構成するスイッチング素子の電力損失低減や交流電圧波形形状の改善についは考慮されていない。
 そこで本発明の1つの課題は、直流電力と交流電力との変換、交流電力と機械力との変換を有するエネルギー変換システムにおいて、直交変換回路のスイッチング素子の電力損失を低減することにある。
 また、他の課題は、直流電力と交流電力との変換、交流電力と機械力との変換を有するエネルギー変換システムにおいて、交流電圧波形形状を改善することにある。
 上記のうちの少なくとも1つの課題を解決するために、本発明にかかるエネルギー変換システムは、4つの半導体素子を有するフルブリッジ回路で形成されて直流と交流との間を変換する複数の変換回路と、相互に絶縁された複数の電機子コイルを有する回転機またはリニア型機と、一方側電位端子と、他方側電位端子を備え、複数の変換回路は前記一方側電位端子と前記他方側電位端子の間に直列に接続され、各々の変換回路は前記直列に接続された回路の一部をなす回路端子を有し、各々の変換回路の回路端子は対応する電機子コイルに直接または変圧器を介して接続され、一方側電位端子と他方側電位端子との電圧が一定となるように電機子コイルの出力電圧を調整するか、あるいは、一方側電位端子と他方側電位端子とに印加された一定電圧を、各々の変換回路の回路端子の出力電圧の大きさの和が一定電圧と等しくなるように分割して電機子コイルに出力するよう変換回路を動作させるように構成した。
 また、直流電圧が印加されると共に、4つのスイッチング素子を有するフルブリッジ回路で形成されて直流を交流に変換する複数の直交変換回路と、相互に絶縁された複数の交流入出力端を有する回転電機またはリニアモータを備え、複数の前記直交変換回路の直流入出力端は各々直列に接続され、交流入出力端は前記回転電機またはリニアモータの相互に絶縁された複数の交流入出力端に各々直接または変圧器を介して接続され、前記直交変換回路における前記スイッチング素子のONとOFFの切替に際して、4つの前記スイッチング素子のうち、3つ以上がONとなる様なフェーズが形成されるように構成した。
 または、本発明にかかるエネルギー変換システムは、2×N相(但しNは2以上)のフルブリッジ回路で形成された直交変換回路と、2×N相の交流を出力する2×N個の電機子コイルを有し、各電機子コイルの端部が当該電機子コイルの相と前後する相の電機子コイルの端部と接続される結果、2×N個の接続端を有する回転電機またはリニアモータを備え、前記直交変換回路の2×N個の交流入出力端が相の前後関係を同じくして前記回転電機の2×N個の接続端に各々直接または変圧器を介して接続されるように構成した。
 あるいは、本発明にかかるエネルギー変換システムは、2つのスイッチング素子を直列に接続し、当該接続端を交流入出力端とする単位回路を(M+1)個並列に接続して形成される直交変換回路と、M個の電機子コイルを有し、隣接する電機子コイルの端部を接続する結果(M+1)個の接続端を有するリニアモータを備え、前記直交変換回路の(M+1)個の交流入出力端が相の前後関係を同じくして前記リニアモータの(M+1)個の接続端に各々直接または変圧器を介して接続されるように構成した。
 本発明にかかるエネルギー変換システムは、前記回転電機またはリニアモータが一定速度で運動している際に、所定の複数の電機子コイルに発生する誘導起電力の絶対値の和が一定であるように構成した。
 本発明によれば、直流電力と交流電力との変換、交流電力と機械力との変換を有するエネルギー変換システムにおいて、直交変換回路のスイッチング素子の電力損失を低減することができる。
 あるいは、直流電力と交流電力との変換、交流電力と機械力との変換を有するエネルギー変換システムにおいて、交流電圧波形形状を改善することができる。
実施例1に係る主回路構成図。 実施例1に係る動作フェーズ毎の各スイッチング素子の動作を示す表。 実施例1に係る動作フェーズ毎の電位関係式を示す表。 実施例1に係る回転電機の動作を示す構造図。 実施例1に係る回転電機の界磁における磁束密度-電気角図。 実施例1に係る回転電機における誘導起電力-電気角図。 実施例1に係る他の回転電機の動作を示す構造図。 実施例1に係る他の回転電機の界磁における磁束密度-電気角線図。 実施例1に係る他の回転電機における誘導起電力-電気角線図。 実施例1に係るスイッチング素子動作-時間線図。 実施例1に係る誘導起電力-時間線図。 実施例1に係る誘導起電力絶対値-時間線図。 実施例1に係る他の回転電機の構造図。 実施例1に係るリニアモータの構造図。 実施例2に係る主回路構成図。 実施例2に係る初期動作時の各スイッチング素子の動作を示す表。 実施例2に係る初期動作時の回転電機の動作を示す構造図。 実施例3に係る主回路構成図。 実施例3に係る動作フェーズ毎の各スイッチング素子の動作を示す表。 実施例3に係る動作フェーズ毎の電位関係式を示す表。 実施例3に係る回転電機の動作を示す構造図。 実施例3に係る回転電機の界磁における磁束密度-電気角図。 実施例3に係る回転電機における誘導起電力-電気角図。 実施例3に係るスイッチング素子動作-時間線図。 実施例3に係る誘導起電力-時間線図。 実施例3に係る誘導起電力絶対値-時間線図。 実施例4に係る主回路構成図。 実施例5に係る主回路構成図。 実施例5に係る動作フェーズ毎の各スイッチング素子の動作を示す表。 実施例5に係るスイッチング素子動作-時間線図。 実施例5に係る回転電機の構造図。 実施例5に係る誘導起電力-時間線図。 実施例5に係る誘導起電力絶対値-時間線図。 実施例6に係る主回路構成図。 実施例6に係る動作フェーズ毎の各スイッチング素子の動作を示す表。 実施例1に係る回転電機の界磁における磁束密度-電気角図。 実施例1に係る回転電機における誘導起電力-電気角図。 実施例1に係る他の回転電機の構造図。 実施例1に係る他の回転電機の回転子の一部を構成するかご形導体の構造図。
 以下、実施例を図面を用いて説明する。なお、本発明の本質を明らかにするため、以下の実施例では回路における各スイッチング素子、ダイオードにおける電圧低下や配線の抵抗、インダクタンス、寄生容量、回転電機や変圧器の励磁インダクタンス等が無視できる理想的な状態であるものとして説明する。
 実施例1について図1ないし図14、図36ないし図37を用いて説明する。図1は本実施例のエネルギー変換システムの主回路構成図、図2はそのエネルギー変換システムの動作フェーズ毎の各スイッチング素子SW11,SW12,SW13,SW14,SW21,SW22,SW23,SW24,SW31,SW32,SW33,SW34の動作を示す表、図3は動作フェーズ毎の電位関係式を示す表、図4は本実施例における回転電機の動作を示す構造図、図5は図4の回転電機の界磁における磁束密度-電気角図、図6は図4の回転電機における誘導起電力-電気角図、図7は本実施例の他の回転電機の動作を示す構造図、図8は図7の回転電機の界磁における磁束密度-電気角線図、図9は図7の回転電機における誘導起電力-電気角線図、図10はスイッチング素子の動作-時間線図、図11は回転電機の各電機子コイルの誘導起電力-時間線図、図12は各電機子コイルの誘導起電力絶対値-時間線図、図13は本実施例の他の回転電機の構造図、図14は本実施例のリニアモータの構造図、図36は本実施例の他の回転電機の界磁における磁束密度-電気角図。図37は本実施例の他の回転電機における誘導起電力-電気角図である。
 本実施例のエネルギー変換システムは、図1において、4つのスイッチング素子を有するフルブリッジ回路で形成されて直流を交流に変換する複数の直交変換回路11、21、31を直列に接続して構成される直交変換回路100からなる。
 直交変換回路11は、フルブリッジ回路として形成され、接続点aと接続点dの間にスイッチング素子SW11とSW12を直列に接続する。さらに、スイッチング素子SW11とSW12と並列に、接続点aと接続点dの間にスイッチング素子SW13,SW14を直列に接続する。スイッチング素子SW11,SW12,SW13,SW14に並列にフリーホイールダイオードDI11,DI12,DI13,DI14を接続する。スイッチング素子SW11とSW12の接続点は入出力端bを構成し、スイッチング素子SW13とSW14の接続点は入出力端cを構成する。
 直交変換回路21と直交変換回路31は、各々、スイッチング素子SW21,SW22,SW23,SW24,スイッチング素子SW31,SW32,SW33,SW34で構成され、直交変換回路11と同様な構成である。また、直交変換回路21と直交変換回路31では、各々、スイッチング素子SW21,SW22,SW23,SW24,スイッチング素子SW31,SW32,SW33,SW34に、並列に、フリーホイールダイオードDI21,DI22,DI23,DI24、フリーホイールダイオードDI31,DI32,DI33,DI34が接続される。なお、スイッチング素子は、例えば、IGBT等の周知の素子を使うことができる。
 直交変換回路11の一方端は接続点aを介して可変直流電源50に接続され、直交変換回路11の他方端と直交変換回路21の一方端は接続点dを介して接続され、直交変換回路21の他方端と直交変換回路31の一方端は接続点gを介して接続され、直交変換回路31の他方端は接続点mを介して可変直流電源50に接続される。このように、可変直流電源50と直交変換回路100とは接続点a及び接続点mにおいて接続されている。
 相互に絶縁された複数の電機子コイルCoil1、Coil2、Coil3を有する回転電機70を備えている。電機子コイルCoil1は端部p11、p12を有し、電機子コイルCoil2は端部p21、p22を有し、電機子コイルCoil3は端部p31、p32を有し、これらの端部は、各々、直交変換回路11の入出力端b、cは電機子コイルCoil1の端部p11、p12に、直交変換回路21の入出力端e、fは電機子コイルCoil2の端部p21、p22に、直交変換回路31の入出力端h、kは電機子コイルCoil3の端部p31、p32にそれぞれ接続されている。
 そして、スイッチング素子SW11,SW12,SW13,SW14,SW21,SW22,SW23,SW24,SW31,SW32,SW33,SW34は制御手段2からON/OFFパルスの供給を受け、すなわち、制御手段2からON信号を受けると導通状態に、OFF信号では遮断状態となり、スイッチング素子SW11,SW12,SW13,SW14,SW21,SW22,SW23,SW24,SW31,SW32,SW33,SW34の各々のON/OFF動作を制御手段2によって制御する構成としている。
 次に本実施例のエネルギー変換システムの動作を説明する。一連のスイッチング動作における主要動作フェーズは図2のPh1~12に示したものである。スイッチング素子SW11,SW12,SW13,SW14,SW21,SW22,SW23,SW24,SW31,SW32,SW33,SW34の各々のON/OFF動作に伴って界磁71が回転する。すなわち、動作フェーズPh1とPh2で60度回転し、次に、動作フェーズPh3とPh4で60度回転し、動作フェーズPh12からPh1に移るときに360度回転(1回転)する。
 また、これら主要動作フェーズにおいて、図1に図示した各接続点間の電圧間の関係式は図3に示したものとなる。図中、例えばVbcについては接続点bと接続点cとの間の電圧を意味し、接続点bの電位が接続点cの電位よりも高い場合を正、逆の場合を負としている。Eは、接続点aと接続点mの間に印加される直流電圧50の出力電圧である。
 例えば、先ず、動作フェーズPh1,Ph3,Ph5,Ph7,Ph9,Ph11について説明すると、これら動作フェーズにおいては、直交変換回路11の交流入出力両端電圧Vbcと、直交変換回路21の交流入出力両端電圧Vefと、直交変換回路31の交流入出力両端電圧Vhkの値について、各々、電機子コイルCoil1、Coil2、Coil3に出力電圧が供給されるところ、Vbc+Vef+Vhk=可変直流電源50の出力電圧Eの関係式が成り立つ。一方で、各々の電圧の値は直交変換回路100単独では定まらない。これらの電圧の値は接続された回転電機70が発生する誘導起電力V1、V2、V3との関係において決定される。ここで、電機子コイルCoil1、Coil2、Coil3は互いに電気角で120度づれて構成されているので、必然的、120度づれた同じ波形の電圧となる。
 一方、動作フェーズPh2,Ph4,Ph6,Ph8,Ph10,Ph12については、直交変換回路11、21、31の何れかの直交変換回路を構成する4つのスイッチング素子が全てON動作している一方で、他の直交変換回路については負荷に電流通路を形成する2つのスイッチング素子がON動作していることから、Vbc、Vef、Vhkについては、何れかが0、残りの2つの電圧の絶対値の和がEとなる。
 次に、本実施例において使用される回転電機70の詳細を図4ないし図6を用いて説明する。図4において下線で示してある動作フェーズは図2及び図3に示した動作フェーズと一致する。但し各動作フェーズの最後に付したA、Bについては、Aが動作フェーズの初期付近、Bが動作フェーズの終了付近の状態を示している。図4に示した回転電機は相数N=3の分布巻き電機子コイルCoil1、Coil2、Coil3で構成された電機子72を有しており、界磁71は永久磁石で構成されており、その界磁71の発生する磁束密度分布は図5に示したものである。
 図5には界磁71の発生する磁束密度分布として3つの例(ア)、(イ)、(ウ)を示している。例えば、界磁71について円周方向端部で発生する磁束密度が端部ぎりぎりまで同じとなるように磁性体を構成すると例(ア)のようになり、界磁71について円周方向端部でなだらかに磁束密度が小さくなるように磁性体を構成すると例(イ)のようになり、界磁71について円周方向端部では磁束密度が小さくなるように磁性体を構成すると例(ハ)のようになる。これらは、界磁71の磁性体の構成を工夫することで(ア)乃至、(ウ)が選択して構成できる。
 何れの場合においても界磁の片極の磁束が電気角で180°×(1-1/N)=90°以内の範囲に発生させている。図6には図5の磁束密度分布を有する界磁71が一定回転速度で回転した時に1つの電機子コイルの両端に発生する誘導起電力の波形形状を横軸を電気角で示している。
 上記で説明した構造を有する回転電機の他に、本実施例に好適に適用される他の回転電機の詳細を図7ないし図9を用いて説明する。図7において下線で示してある動作フェーズは図2及び図3に示した動作フェーズと一致する。図7に示した回転電機は相数N=3の集中巻き電機子コイルCoil1、Coil2、Coil3で構成された電機子72を有しており、その界磁71の発生する磁束密度分布は図8に示したものである。図8には界磁71の発生する磁束密度分布として3つの例(ア)、(イ)、(ウ)を示している。何れの場合においても界磁の片極の磁束が電気角で180°/N=60°以上の範囲で一定の磁束密度を発生させている。図9には図8の磁束密度分布を有する界磁71が一定回転速度で回転した時に1つの電機子コイルの両端に発生する誘導起電力の波形形状を横軸を電気角で示している。この波形形状は前記図6で示した波形形状と同一のものとなっている。
 次に、本実施例における各スイッチング素子の動作タイミングと各種電圧波形の関係を図10ないし図12を用いて説明する。図10は本実施例における各スイッチング素子の動作タイミングを横軸時間のタイムチャートで示したものである。本図には、図2で定義した主要動作フェーズも表記してある。図中、Tは各々の直交変換回路の交流出力の1周期であり、同一の値である。ΔTはPh1開始からPh3開始までの時間間隔であり、双方の直交変換回路で相似の動作をさせる場合にはΔT=T/Nとなる。そして本図に示したタイムチャートで各スイッチング素子を動作させた場合の各電圧波形を示したのが図11及び図12である。(ア)、(イ)、(ウ)の何れの例においても可変直流電源50の出力電圧EがE=|V1|+|V2|+|V3|=一定で制御されている。言い方を変えると、本実施例のエネルギー変換システムは一定電圧の直流電圧を周期的なスイッチング動作のみにより一定速度の回転機械力に変換することが可能となっている。そして本システムにおいては回転電機に接続された負荷の抵抗トルクに比例した電流が流れることで自動的に回転速度を一定に保つため、特殊なスイッチング動作による調整が不要となっている。
 なお、各々の電機子コイルに発生する誘導起電力の絶対値の和が一定となるのは例示した(ア)、(イ)、(ウ)の場合に限らず、分布巻き電機子コイルを備えた回転電機においては、界磁の片極の磁束が電気角で180°×(1-1/N)=90°以内の範囲に発生させてあればどの様な磁束密度分布であっても良く、また、集中巻き電機子コイルを備えた回転電機においては、界磁の片極の磁束が電気角で180°/N=60°以上の範囲で一定の磁束密度を発生させてあればどの様な磁束密度分布であっても良い。
 ところで(イ)と(ウ)の例では電機子コイルに発生する誘導起電力が0となる時刻において当該誘導起電力の時間微分値が0となっている。言い方を変えると誘導起電力が0または0に近い値となっている時間が(ア)の例と比べて長くなっている。このため、先に説明した動作フェーズでスイッチOFFが生じるタイミング、即ちPh2からPh3、Ph4からPh5、Ph6からPh7、Ph8からPh9、Ph10からPh11、Ph12からPh1のタイミングを当該スイッチと接続された電機子コイルに生じる誘導起電力が0または0に近い値となっている時間に合わせることが容易であり、ソフトスイッチングの一種である零電圧スイッチングを容易に実現できる。もちろん(ア)の例の場合であっても精度よくタイミングを制御することにより零電圧スイッチングを実現可能である。
 なお、本実施例に対して、図13に示した界磁の極数が4極の回転電機や、図14に示したリニアモータを適用しても良い。
 また、図38及び図39に示す様にかご形導体75を界磁71に取り付けた回転電機を適用した場合には、電機子コイルを流れる負荷電流が発生させる交流磁界を打ち消す様にかご形導体に誘導電流が流れることから、当該負荷電流に起因する誘導起電力の変動を抑制することができる。
 ここで、図36に示すように回転電機の界磁における磁束密度-電気角図を得られるようにしても良い。また、図37に示すように回転電機における誘導起電力-電気角図を得られるようにしても良い。
 また、エネルギー変換システムとして、回転電機70は、誘導電動機として構成しても良いし、また、純粋な発電機としても良い。
 実施例2について図15ないし図17を用いて説明する。図において符号の番号が同じものは実施例1と基本的に同等なものである。以下の実施例では、それまでに説明した実施例と異なる部分を中心に説明するのであって、説明が省略された部分はそれまでに説明された実施例と技術的に異なっていない限りにおいて同じものである。
 図15は本実施例のエネルギー変換システムの主回路構成図、図16はそのエネルギー変換システムの初期動作時における動作フェーズ毎の各スイッチング素子SW11,SW12,SW13,SW14,SW21,SW22,SW23,SW24,SW31,SW32,SW33,SW34の動作を示す表、図17は本実施例における回転電機の初期動作を示す構造図である。
 本実施例では、図1に示した実施例1における可変直流電源50が、一定電圧出力直流電源51に置き換わったものである。回転電機が停止状態から定格回転速度に達するまでの初期動作時においては、回転電機が発生する誘導起電力の絶対値の和が直流電源51が出力する一定電圧E0よりも小さいことから、図2に示したスイッチング動作をすると過大な電流が流れ続けるため装置を破損することが生じる。初期動作時において図16に示したスイッチング動作を実施し、すなわち図16の黒枠で囲った部分で示されるように、動作フェーズ2´では動作フェーズ2の代わりにスイッチング素子SW21,SW22,SW23,SW24を全てOFFとし、動作フェーズ4´では動作フェーズ4の代わりにスイッチング素子SW31,SW32,SW33,SW34を全てOFFとし、動作フェーズ6´では動作フェーズ6の代わりにスイッチング素子SW11,SW12,SW13,SW14を全てOFFとし、これにより、図17のPhase2´に示されるように、電機子コイルCoil1、Coil2、Coil3の全てに電流の供給が遮断され、断続的に電流を流す様に動作制御をして定格回転速度まで加速する様にすれば、過大電流が連続して流れることによる装置の破損を防止することができる。定格回転速度に達した後に図2に示したスイッチング動作による運転を実施すれば良い。
 実施例3について図18ないし図26を用いて説明する。図18は本実施例のエネルギー変換システムの主回路構成図、図19はそのエネルギー変換システムの動作フェーズ毎の各スイッチング素子SW11,SW12,SW13,SW14,SW21,SW22,SW23,SW24の動作を示す表、図20は動作フェーズ毎の電位関係式を示す表、図21は本実施例における回転電機の動作を示す構造図、図22は図21の回転電機の界磁における磁束密度-電気角図、図23は図21の回転電機における誘導起電力-電気角図、図24はスイッチング素子の動作-時間線図、図25は回転電機の各電機子コイルの誘導起電力-時間線図、図26は各電機子コイルの誘導起電力絶対値-時間線図である。
 実施例1が三相交流を使用していたのに対し、本実施例は、二相交流を使用したエネルギー変換システムとなっている。本実施例においても実施例1のエネルギー変換システムと同じく、一定電圧の直流電圧を周期的なスイッチング動作のみにより一定速度の回転機械力に変換することが可能となっている。また、回転電機に接続された負荷の抵抗トルクに比例した電流が流れることで自動的に回転速度を一定に保つため、特殊なスイッチング動作による調整が不要となっている。
 実施例4について図27を用いて説明する。図27に示した本実施例のエネルギー変換システムは実施例3のエネルギー変換システムと比較して、回転電機70が純粋な発電機である点、スイッチング素子が全てダイオードに置き換わっている点、制御手段2が省略されている点、直流電源50が負荷60に置き換わっている点が異なっている。回転電機70を純粋な発電機とすることでシステムが簡略化できるとともに、一定速度の回転機械力を一定電圧の直流電圧に変換することができる。
 実施例5について図28ないし図33を用いて説明する。図28は本実施例のエネルギー変換システムの主回路構成図、図29はそのエネルギー変換システムの動作フェーズ毎の各スイッチング素子SW11,SW12,SW21,SW22,SW31,SW32,SW41,SW42,SW51,SW52,SW61,SW62の動作を示す表、図30はスイッチング素子の動作-時間線図、図31は本実施例の回転電機の構造図、図32は回転電機の各電機子コイルの誘導起電力-時間線図、図33は各電機子コイルの誘導起電力絶対値-時間線図である。
 図28において、本実施例のエネルギー変換システムでは、六相のブリッジ回路で形成された直交変換回路100は、可変直流電源50の正側接続点aと負側接続点mの間に、6つのブリッジ回路、スイッチング素子SW11,SW12からなるブリッジ回路、スイッチング素子SW21,SW22からなるブリッジ回路、スイッチング素子SW31,SW32からなるブリッジ回路、スイッチング素子SW41,SW42からなるブリッジ回路、スイッチング素子SW51,SW52からなるブリッジ回路、スイッチング素子SW61,SW62からなるブリッジ回路を、各々、並列に接続している。
 回転電機70の六相の誘導起電力を発生する6個の電機子コイルCoil1、Coil2、Coil3、Coil4、Coil5、Coil6を有し、端部p11とp12が電機子コイルCoil1に接続され、端部p21とp22が電機子コイルCoil2に接続され、端部p31とp32が電機子コイルCoil3に接続され、端部p41とp42が電機子コイルCoil4に接続され、端部p51とp52が電機子コイルCoil5に接続され、端部p61とp62が電機子コイルCoil6に接続されている。
 スイッチング素子SW11とSW12の間の入出力端p1は、端部p62とp11の間に接続され、スイッチング素子SW21とSW22の間の入出力端p2は、端部p12とp21の間に接続され、スイッチング素子SW31とSW32の間の入出力端p3は、端部p22とp31の間に接続され、スイッチング素子SW41とSW42の間の入出力端p4は、端部p32とp41の間に接続され、スイッチング素子SW51とSW52の間の入出力端p5は、端部p42とp51の間に接続され、スイッチング素子SW61とSW62の間の入出力端p6は、端部p52とp61の間に接続される。このように、端部p1、p2、p3、p4、p5、p6が相の前後関係を同じくして前記回転電機の6個の接続端に各々直接接続されている。
 そして図29に示したスイッチング動作が、図30に示した動作タイミングで実施される。スイッチング素子SW11とSW42がオンであって他のスイッチング素子がオフのときは、可変直流電源50の電力は、可変直流電源50の正側からスイッチング素子SW11を介して入出力端子p1通って端部p61とp62の間に供給され、電機子コイルを通って、端部p41とp32の間から端部p4を通りスイッチング素子SW42を介して可変直流電源50に戻る経路を形成する。図29に示した他のスイッチング動作も同様に、可変直流電源50の電力は、可変直流電源50の正側から該当するスイッチング素子を介して所定の端部間に供給され、電機子コイルを通って、所定の端部間から所定の端部を通り該当するスイッチング素子を介して可変直流電源50に戻る経路を形成するのである。
 回転電機70の詳細構造及び各動作フェーズにおける状態は図31に示したものであり、その界磁71の発生する磁束密度分布は図5に示したものと同一である。界磁71が一定回転速度で回転した時に1つの電機子コイルの両端に発生する誘導起電力の波形形状は図6に示したものと同一である。
 本実施例のエネルギー変換システムにおいても実施例1と同じく、一定電圧の直流電圧を周期的なスイッチング動作のみにより一定速度の回転機械力に変換することが可能となっている。そして回転電機に接続された負荷の抵抗トルクに比例した電流が流れることで自動的に回転速度を一定に保つため、特殊なスイッチング動作による調整が不要となっている。
 実施例6について図34ないし図35を用いて説明する。図34は本実施例のエネルギー変換システムの主回路構成図、図35はそのエネルギー変換システムの動作フェーズ毎の各スイッチング素子の動作を示す表である。
 本実施例のエネルギー変換システムは、リニアモータを使用したものであり、やはり一定電圧の直流電圧を周期的なスイッチング動作のみにより一定速度の直線機械力に変換することが可能となっている。そしてリニアモータに接続された負荷の抵抗力に比例した電流が流れることで自動的に速度を一定に保つため、特殊なスイッチング動作による調整が不要となっている。
 以上の説明では、本発明の本質を明らかにするために回路における各スイッチング素子、ダイオードにおける電圧低下や配線の抵抗、インダクタンス、寄生容量、変圧器の励磁インダクタンス等が無い理想的な状態につき説明してきたが、実際の回路においてはいずれも大なり小なり存在する。これらの抵抗成分、静電容量成分、インダクタンス成分を補償する付加回路については従来から様々な方式が知られており、本発明の構成にこれら付加回路を付加することや、同一回路トポロジーの範囲で主要回路を改変することは同業者にとって容易である。
2…スイッチング素子制御手段、11,21,31…直交変換回路、SW11,SW12,SW13,SW14…主スイッチング素子、SW21,SW22,SW23,SW24…主スイッチング素子、SW31,SW32,SW33,SW34…主スイッチング素子、SW41,SW42,SW51,SW52、SW61,SW62,SW71,SW72、SW81,SW82,SW91,SW92、SW101,SW102,SW111,SW112、SWM1,SWM2…主スイッチング素子、D11,D12,D13,D14…ダイオード、D21,D22,D23,D24…ダイオード、12,22…変圧器、Coil1、Coil2、Coil3、Coil4、Coil5、Coil6、Coil7、Coil8、Coil9、Coil10…電機子コイル、70…回転電機またはリニアモータ、71…界磁、V1、V2、V3、V4、V5、V6、V7、V8、V9…誘導起電力、100…電力変換装置。

Claims (21)

  1.  4つの半導体素子を有するフルブリッジ回路で形成されて直流と交流との間を変換する複数の変換回路と、相互に絶縁された複数の電機子コイルを有する回転機またはリニア型機と、一方側電位端子と、他方側電位端子を備え、前記複数の変換回路は前記一方側電位端子と前記他方側電位端子の間に直列に接続され、前記各々の変換回路は前記直列に接続された回路の一部をなす回路端子を有し、前記各々の変換回路の回路端子は対応する前記電機子コイルに直接または変圧器を介して接続され、前記一方側電位端子と他方側電位端子との電圧が一定となるように前記電機子コイルの出力電圧を調整するか、あるいは、前記一方側電位端子と他方側電位端子とに印加された一定電圧を、各々の変換回路の回路端子の出力電圧の大きさの和が前記一定電圧と等しくなるように分割して前記電機子コイルに出力するよう前記変換回路を動作させることを特徴とするエネルギー変換システム。
  2.  請求項1に記載のエネルギー変換システムであって、前記回転機またはリニア型機が一定速度で運動している際に、各々の絶対値の和が一定となる誘導起電力を前記複数の電機子コイルが発生させることを特徴とするエネルギー変換システム
  3.  請求項2に記載のエネルギー変換システムであって、前記回転機またはリニア型機が2以上である相数Nの分布巻き電機子コイルを有するときに、前記回転機またはリニア型機の界磁の片極の磁束が電気角で180°×(1-1/N)以内の範囲に発生させることを特徴とするエネルギー変換システム。
  4.  請求項2に記載のエネルギー変換システムであって、前記回転機またはリニア型機が2以上である相数Nの集中巻き電機子コイルを有するときに、前記回転機またはリニア型機の界磁の片極の磁束が電気角で180°/N以上の範囲で一定の磁束密度を発生させることを特徴とするエネルギー変換システム。
  5.  4つのスイッチング素子を有するフルブリッジ回路で形成されて直流と交流との間で変換する複数の直交変換回路と、相互に絶縁された複数の電機子コイルを有する回転機またはリニアモータを備え、複数の前記直交変換回路の直流入出力端は各々直列に接続され、交流入出力端は前記回転電機またはリニアモータの相互に絶縁された複数の電機子コイルに各々直接または変圧器を介して接続され、前記直交変換回路における前記スイッチング素子のONとOFFの切替に際して、4つの前記スイッチング素子のうち、3つ以上がONとなる様なフェーズが形成されることを特徴とするエネルギー変換システム。
  6.  請求項5に記載のエネルギー変換システムであって、前記回転機またはリニアモータが一定速度で運動している際に、各々の絶対値の和が一定となる誘導起電力を前記複数の電機子コイルが発生させることを特徴とするエネルギー変換システム
  7.  請求項6に記載のエネルギー変換システムであって、前記回転機またはリニアモータが2以上である相数Nの分布巻き電機子コイルを有するときに、前記回転電機またはリニアモータの界磁の片極の磁束が電気角で180°×(1-1/N)以内の範囲に発生させることを特徴とするエネルギー変換システム。
  8.  請求項6に記載のエネルギー変換システムであって、前記回転機またはリニアモータが2以上である相数Nの集中巻き電機子コイルを有するときに、前記回転電機またはリニアモータの界磁の片極の磁束が電気角で180°/N以上の範囲で一定の磁束密度を発生させることを特徴とするエネルギー変換システム。
  9.  請求項5に記載のエネルギー変換システムであって、前記電機子コイルに発生させる誘導起電力が0となる時刻において、当該誘導起電力の時間微分値が0となることを特徴とするエネルギー変換システム
  10.  2×N相(但しNは2以上)のフルブリッジ回路で形成された直交変換回路と、2×N相の交流を出力する2×N個の電機子コイルを有し、各電機子コイルの端部が当該電機子コイルの相と前後する相の電機子コイルの端部と接続されて2×N個の接続端を有する回転電機またはリニアモータを備え、前記直交変換回路の2×N個の交流入出力端が相の前後関係を同じくして前記回転電機の2×N個の接続端に各々直接または変圧器を介して接続されることを特徴とするエネルギー変換システム。
  11.  請求項10に記載のエネルギー変換システムであって、前記直交変換回路における前記スイッチング素子のONとOFFの動作フェーズとして、ある一相の高圧側スイッチング素子と、その相からN相ずれた相の低圧側スイッチング素子が同時にONとなり、それ以外のスイッチング素子がOFFとなるフェーズが形成されることを特徴とするエネルギー変換システム。
  12.  請求項10に記載のエネルギー変換システムであって、前記回転電機またはリニアモータが一定速度で運動している際に、隣接する任意のN個の電機子コイルの発生する誘導起電力の絶対値の和が一定であることを特徴とするエネルギー変換システム。
  13.  請求項10に記載のエネルギー変換システムであって、前記回転電機またはリニアモータが相数2×Nの分布巻き電機子コイルを有するときに、前記回転電機またはリニアモータの界磁の片極の磁束が電気角で180°×(1-1/N)以内の範囲に発生させることを特徴とするエネルギー変換システム。
  14.   請求項10に記載のエネルギー変換システムであって、前記回転電機またはリニアモータが相数2×Nの集中巻き電機子コイルを有するときに、前記回転電機またはリニアモータの界磁の片極の磁束が電気角で180°/N以上の範囲で一定の磁束密度を発生させることを特徴とするエネルギー変換システム。
  15.  請求項10に記載のエネルギー変換システムであって、前記電機子コイルの発生する誘導起電力が0となる時刻において、当該誘導起電力の時間微分値が0となることを特徴とするエネルギー変換システム
  16.  2つのスイッチング素子を直列に接続し、当該接続端を交流入出力端とする単位回路を(M+1)個並列に接続して形成される直交変換回路と、M個の電機子コイルを有し、隣接する電機子コイルの端部を接続する結果(M+1)個の接続端を有するリニアモータを備え、前記直交変換回路の(M+1)個の交流入出力端が相の前後関係を同じくして前記リニアモータの(M+1)個の接続端に各々直接または変圧器を介して接続されることを特徴とするエネルギー変換システム。
  17.  請求項16に記載のエネルギー変換システムであって、前記直交変換回路における前記スイッチング素子のONとOFFの動作フェーズとして、ある単位回路の高圧側スイッチング素子と、その単位回路からN個(但しNは2以上)ずれた単位回路の低圧側スイッチング素子と、前記単位回路から2×N個ずれた単位回路の高圧側スイッチング素子と、前記単位回路から3×N個ずれた単位回路の低圧側スイッチング素子とが同時にONとなり、それ以外のスイッチング素子がOFFとなるフェーズが形成されることを特徴とするエネルギー変換システム。
  18.  請求項16に記載のエネルギー変換システムであって、前記リニアモータが一定速度で運動している際に、隣接する任意のN個の電機子コイルの発生する誘導起電力の絶対値の和が一定であることを特徴とするエネルギー変換システム。
  19.  請求項16に記載のエネルギー変換システムであって、前記リニアモータが分布巻き電機子コイルを有するときに、前記リニアモータの界磁の片極の磁束が電気角で180°×(1-1/N)以内の範囲に発生させることを特徴とするエネルギー変換システム。
  20.   請求項16に記載のエネルギー変換システムであって、前記リニアモータが集中巻き電機子コイルを有するときに、前記リニアモータの界磁の片極の磁束が電気角で180°/N以上の範囲で一定の磁束密度を発生させることを特徴とするエネルギー変換システム。
  21.  請求項16に記載のエネルギー変換システムであって、前記電機子コイルの発生する誘導起電力が0となる時刻において、当該誘導起電力の時間微分値が0となることを特徴とするエネルギー変換システム
PCT/JP2013/075788 2013-09-25 2013-09-25 エネルギー変換システム WO2015045013A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2013/075788 WO2015045013A1 (ja) 2013-09-25 2013-09-25 エネルギー変換システム
JP2015538666A JP6101809B2 (ja) 2013-09-25 2013-09-25 エネルギー変換システム
TW103125858A TWI523407B (zh) 2013-09-25 2014-07-29 能量變換系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/075788 WO2015045013A1 (ja) 2013-09-25 2013-09-25 エネルギー変換システム

Publications (1)

Publication Number Publication Date
WO2015045013A1 true WO2015045013A1 (ja) 2015-04-02

Family

ID=52742227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075788 WO2015045013A1 (ja) 2013-09-25 2013-09-25 エネルギー変換システム

Country Status (3)

Country Link
JP (1) JP6101809B2 (ja)
TW (1) TWI523407B (ja)
WO (1) WO2015045013A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019080449A (ja) * 2017-10-26 2019-05-23 三菱電機株式会社 駆動システム
CN112389231A (zh) * 2019-08-15 2021-02-23 比亚迪股份有限公司 能量转换装置及车辆
CN112389234A (zh) * 2019-08-15 2021-02-23 比亚迪股份有限公司 能量转换装置及车辆
CN112389229A (zh) * 2019-08-15 2021-02-23 比亚迪股份有限公司 能量转换装置及车辆
CN112389235A (zh) * 2019-08-15 2021-02-23 比亚迪股份有限公司 能量转换装置及车辆
CN112389269A (zh) * 2019-08-15 2021-02-23 比亚迪股份有限公司 一种汽车、能量转换装置及能量转换方法
CN112389270A (zh) * 2019-08-15 2021-02-23 比亚迪股份有限公司 能量转换装置及车辆
WO2021106323A1 (ja) * 2019-11-26 2021-06-03 阿部 力也 誘導機
CN114074561A (zh) * 2020-08-20 2022-02-22 比亚迪股份有限公司 能量转换装置及其运行方法、电动汽车

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104226A (ja) * 2008-10-22 2010-05-06 General Electric Co <Ge> 変換器を用いたエネルギー移行のための装置及びその製造方法
JP2011244557A (ja) * 2010-05-17 2011-12-01 Fuji Electric Co Ltd 電力変換装置
JP2012151960A (ja) * 2011-01-18 2012-08-09 Daikin Ind Ltd 電力変換装置
JP5000029B1 (ja) * 2011-03-31 2012-08-15 三菱電機株式会社 交流モータ駆動装置
JP2013143879A (ja) * 2012-01-12 2013-07-22 Panasonic Corp インバータ制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104226A (ja) * 2008-10-22 2010-05-06 General Electric Co <Ge> 変換器を用いたエネルギー移行のための装置及びその製造方法
JP2011244557A (ja) * 2010-05-17 2011-12-01 Fuji Electric Co Ltd 電力変換装置
JP2012151960A (ja) * 2011-01-18 2012-08-09 Daikin Ind Ltd 電力変換装置
JP5000029B1 (ja) * 2011-03-31 2012-08-15 三菱電機株式会社 交流モータ駆動装置
JP2013143879A (ja) * 2012-01-12 2013-07-22 Panasonic Corp インバータ制御装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019080449A (ja) * 2017-10-26 2019-05-23 三菱電機株式会社 駆動システム
CN112389270A (zh) * 2019-08-15 2021-02-23 比亚迪股份有限公司 能量转换装置及车辆
CN112389231B (zh) * 2019-08-15 2022-04-15 比亚迪股份有限公司 能量转换装置及车辆
CN112389229A (zh) * 2019-08-15 2021-02-23 比亚迪股份有限公司 能量转换装置及车辆
CN112389235A (zh) * 2019-08-15 2021-02-23 比亚迪股份有限公司 能量转换装置及车辆
CN112389269A (zh) * 2019-08-15 2021-02-23 比亚迪股份有限公司 一种汽车、能量转换装置及能量转换方法
CN112389231A (zh) * 2019-08-15 2021-02-23 比亚迪股份有限公司 能量转换装置及车辆
US11801764B2 (en) 2019-08-15 2023-10-31 Byd Company Limited Energy conversion device and vehicle
CN112389234B (zh) * 2019-08-15 2022-04-15 比亚迪股份有限公司 能量转换装置及车辆
CN112389235B (zh) * 2019-08-15 2022-04-15 比亚迪股份有限公司 能量转换装置及车辆
CN112389269B (zh) * 2019-08-15 2022-04-15 比亚迪股份有限公司 一种汽车、能量转换装置及能量转换方法
CN112389234A (zh) * 2019-08-15 2021-02-23 比亚迪股份有限公司 能量转换装置及车辆
JP2021087264A (ja) * 2019-11-26 2021-06-03 阿部 力也 誘導機
WO2021106323A1 (ja) * 2019-11-26 2021-06-03 阿部 力也 誘導機
CN114074561A (zh) * 2020-08-20 2022-02-22 比亚迪股份有限公司 能量转换装置及其运行方法、电动汽车

Also Published As

Publication number Publication date
TWI523407B (zh) 2016-02-21
JPWO2015045013A1 (ja) 2017-03-02
JP6101809B2 (ja) 2017-03-22
TW201526522A (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
JP6101809B2 (ja) エネルギー変換システム
Sathyan et al. An FPGA-based novel digital PWM control scheme for BLDC motor drives
WO2011123440A1 (en) Pm brushless motor drive circuit topology and control
US9762156B2 (en) Control apparatus for rotating electric machine
WO2016201405A1 (en) Modulation scheme for multiphase machines
JP5983581B2 (ja) システム、及びシステムの制御装置
Pramanick et al. A harmonic suppression scheme for full speed range of a two-level inverter fed induction motor drive using switched capacitive filter
Hosseyni et al. Vector controlled five-phase permanent magnet synchronous motor drive
Usman et al. A review of modeling, analysis and control methods of Brushless DCMotors
US10622859B2 (en) Method and device for operating an electric machine having external or hybrid excitation
CN110365133A (zh) 永磁交流发电机
JP2014039446A (ja) 極数変換モータ装置
US10027252B2 (en) Rotating electric machine system
US20140070750A1 (en) Hybrid Motor
JP6750364B2 (ja) 回転電機の回転角推定装置
Döbler et al. High performance drive for electric vehicles—System comparison between three and six phase permanent magnet synchronous machines
RU2418356C1 (ru) Электропривод с трехфазным асинхронным двигателем
JP2011130525A (ja) 電動機駆動システム
Wang et al. High speed control scheme of flux reversal machine
JP6387813B2 (ja) 超電導並列回路装置における偏流防止装置
Preethishri et al. Switched Reluctance Motor (SRM) Development by using matlab-simulink
Mbayed et al. Control of a hybrid excitation synchronous generator connected to a diode rectifier supplying a DC bus
CN103326653A (zh) 开关磁阻电机及其控制方法
Tomer et al. Performance analysis of two inverter fed six phase PMSM drive
WO2019038814A1 (ja) 電力変換装置および電動パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894809

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015538666

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13894809

Country of ref document: EP

Kind code of ref document: A1