Connect public, paid and private patent data with Google Patents Public Datasets

Optical modules that reduce speckle contrast and diffraction artifacts

Info

Publication number
WO2015042331A1
WO2015042331A1 PCT/US2014/056422 US2014056422W WO2015042331A1 WO 2015042331 A1 WO2015042331 A1 WO 2015042331A1 US 2014056422 W US2014056422 W US 2014056422W WO 2015042331 A1 WO2015042331 A1 WO 2015042331A1
Authority
WO
Grant status
Application
Patent type
Prior art keywords
laser
depth
system
light
emitting
Prior art date
Application number
PCT/US2014/056422
Other languages
French (fr)
Inventor
Joshua Hudman
Marshall Depue
Original Assignee
Microsoft Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • G02B19/0057Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode in the form of a laser diode array, e.g. laser diode bar
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B27/00Other optical systems; Other optical apparatus
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0961Lens arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B27/00Other optical systems; Other optical apparatus
    • G02B27/48Laser speckle optics; Speckle reduction arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic or multiview television systems; Details thereof
    • H04N13/0003Stereoscopic image signal coding, multiplexing, processing, recording or transmission
    • H04N13/0007Processing stereoscopic image signals
    • H04N13/0022Aspects relating to depth or disparity adjustment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic or multiview television systems; Details thereof
    • H04N13/02Picture signal generators
    • H04N13/0203Picture signal generators using a stereoscopic image camera
    • H04N13/0207Picture signal generators using a stereoscopic image camera involving a single 2D image pickup sensor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic or multiview television systems; Details thereof
    • H04N13/02Picture signal generators
    • H04N13/0203Picture signal generators using a stereoscopic image camera
    • H04N13/0207Picture signal generators using a stereoscopic image camera involving a single 2D image pickup sensor
    • H04N13/0228Picture signal generators using a stereoscopic image camera involving a single 2D image pickup sensor having a lenticular screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/225Television cameras ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/2251Constructional details
    • H04N5/2254Mounting of optical parts, e.g. lenses, shutters, filters; optical parts peculiar to the presence of use of an electronic image sensor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/225Television cameras ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/2256Television cameras ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infra-red radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic or multiview television systems; Details thereof
    • H04N2013/0074Stereoscopic image analysis
    • H04N2013/0081Depth or disparity estimation from stereoscopic image signals

Abstract

An optical module, for use in a depth camera, includes a plurality of laser emitting elements, each of which emits a corresponding laser beam, and a micro-lens array (MLA) that includes a plurality of lenslets. Laser beams emitted by adjacent laser emitting elements at least partially overlap one another prior to being incident on the MLA For each lenslet of at least a majority of the lenslets of the MLA, the lenslet is at least partially filled by light corresponding to laser beams emitted by at least two of the laser emitting elements. The inclusion of the plurality of laser emitting elements is used to reduce speckle contrast. The overlap of the laser beams, and the at least partially filling of the lenslets of the MLA with light corresponding to laser beams emitted by multiple laser emitting elements, is used to reduce diffraction artifacts.

Description

OPTICAL MODULES THAT REDUCE SPECKLE CONTRAST AND

DIFFRACTION ARTIFACTS

BACKGROUND

[0001] A depth camera can obtain depth images including information about a location of a human or other object in a physical space. The depth images may be used by an application in a computing system for a wide variety of applications. Many applications are possible, such as for military, entertainment, sports and medical purposes. For instance, depth images including information about a human can be mapped to a three- dimensional (3-D) human skeletal model and used to create an animated character or avatar.

[0002] To obtain a depth image, a depth camera typically projects infrared (IR) light onto one or more object in the camera's field of view. The IR light reflects off the object(s) and back to the camera, where it is incident on an image pixel detector array of the camera, and is processed to determine the depth image.

[0003] If a depth camera projects highly coherent IR light, then a speckle pattern may result, which reduces the resolution of the depth images obtained using the depth camera. Additionally, if an optical structure is used to achieve a desired illumination profile, the optical structure may produce undesirable diffraction artifacts, which also reduce the resolution of the depth images obtained using the depth camera.

SUMMARY

[0004] Certain embodiments of the present technology are related to optical modules for use with depth cameras, and systems that include a depth camera, which can be referred to as depth camera systems. In accordance with an embodiment, a depth camera system includes an optical module that outputs light that illuminates the capture area. Additionally, the depth camera includes an image pixel detector array that detects a portion of the light, output by the optical module, which has reflected off one or more objects within the capture area and is incident on the image pixel detector array. In accordance with an embodiment, the optical module includes a plurality of laser emitting elements, each of which emits a corresponding laser beam, and a micro-lens array that includes a plurality of lenslets. In certain embodiments, laser beams emitted by adjacent ones of the laser emitting elements at least partially overlap one another prior to being incident on the micro-lens array. Additionally, for each lenslet of at least a majority of the lenslets of the micro-lens array, the lenslet is at least partially filled by light corresponding to laser beams emitted by at least two of the laser emitting elements. The inclusion of the plurality of laser emitting elements in the optical module reduces speckle contrast in the light that is output by the optical module and illuminates the capture area. The overlap of the laser beams emitted by adjacent ones of the laser emitting elements, and the at least partially filling of the lenslets of the micro-lens array with light corresponding to laser beams emitted by at least two of the laser emitting elements, reduces diffraction pattern artifacts in the light that is output by the optical module and illuminates the capture area.

[0005] In accordance with an embodiment, for each lenslet of the at least a majority of the lenslets of the micro-lens array, the lenslet is at least partially filled by light corresponding to laser beams emitted by at least five of the laser emitting elements. More preferably, each lenslet of the micro-lens array is completely filled by light corresponding to laser beams emitted by at least five of the laser emitting elements.

[0006] In accordance with an embodiment, the plurality of laser emitting elements include five or more edge emitting lasers. For a more specific example, the five or more edge emitting lasers can comprise five or more parallel laser stripes fabricated on a same semiconductor substrate. In alternative embodiments, the plurality of laser emitting elements comprises an array of vertical-cavity surface-emitting lasers (VCSELs).

[0007] This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIGS. 1A and IB illustrate an example embodiment of a tracking system with a user playing a game.

[0009] FIG. 2A illustrates an example embodiment of a capture device that may be used as part of the tracking system.

[0010] FIG. 2B illustrates an exemplary embodiment of a depth camera that may be part of the capture device of FIG. 2A.

[0011] FIG. 3 illustrates an example embodiment of a computing system that may be used to track user behavior and update an application based on the user behavior. [0012] FIG. 4 illustrates another example embodiment of a computing system that may be used to track user behavior and update an application based on the tracked user behavior.

[0013] FIG. 5 illustrates an exemplary depth image.

[0014] FIG. 6 depicts exemplary data in an exemplary depth image.

[0015] FIG. 7 illustrates a side view of an optical module for use with a depth camera, according to an embodiment of the present technology.

[0016] FIG. 8 illustrates a front view of the micro-lens array of the optical module illustrated in FIG. 7.

[0017] FIG. 9 illustrates an exemplary desired illumination profile.

[0018] FIG. 10 is a high level flow diagram that is used to summarize methods according to various embodiments of the present technology.

DETAILED DESCRIPTION

[0019] Certain embodiments of the present technology disclosed herein are related to optical modules for use with depth cameras, and systems that include a depth camera, which can be referred to as depth camera systems. The optical modules are designed to reduce speckle contrast and diffraction artifacts, as will be explained below. However, before providing additional details of such embodiments of the present technology, exemplary details of larger systems with which embodiments of the present technology can be used will first be described.

[0020] FIGS. 1A and IB illustrate an example embodiment of a tracking system 100 with a user 118 playing a boxing video game. In an example embodiment, the tracking system 100 may be used to recognize, analyze, and/or track a human target such as the user 118 or other objects within range of the tracking system 100. As shown in FIG. 1A, the tracking system 100 includes a computing system 112 and a capture device 120. As will be describe in additional detail below, the capture device 120 can be used to obtain depth images and color images (also known as RGB images) that can be used by the computing system 112 to identify one or more users or other objects, as well as to track motion and/or other user behaviors. The tracked motion and/or other user behavior can be used to update an application. Therefore, a user can manipulate game characters or other aspects of the application by using movement of the user's body and/or objects around the user, rather than (or in addition to) using controllers, remotes, keyboards, mice, or the like. For example, a video game system can update the position of images displayed in a video game based on the new positions of the objects or update an avatar based on motion of the user.

[0021] The computing system 112 may be a computer, a gaming system or console, or the like. According to an example embodiment, the computing system 112 may include hardware components and/or software components such that computing system 112 may be used to execute applications such as gaming applications, non-gaming applications, or the like. In one embodiment, computing system 112 may include a processor such as a standardized processor, a specialized processor, a microprocessor, or the like that may execute instructions stored on a processor readable storage device for performing the processes described herein.

[0022] The capture device 120 may include, for example, a camera that may be used to visually monitor one or more users, such as the user 118, such that gestures and/or movements performed by the one or more users may be captured, analyzed, and tracked to perform one or more controls or actions within the application and/or animate an avatar or on-screen character, as will be described in more detail below.

[0023] According to one embodiment, the tracking system 100 may be connected to an audiovisual device 116 such as a television, a monitor, a high-definition television (HDTV), or the like that may provide game or application visuals and/or audio to a user such as the user 118. For example, the computing system 112 may include a video adapter such as a graphics card and/or an audio adapter such as a sound card that may provide audiovisual signals associated with the game application, non-game application, or the like. The audiovisual device 116 may receive the audiovisual signals from the computing system 112 and may then output the game or application visuals and/or audio associated with the audiovisual signals to the user 118. According to one embodiment, the audiovisual device 16 may be connected to the computing system 1 12 via, for example, an S-Video cable, a coaxial cable, an HDMI cable, a DVI cable, a VGA cable, component video cable, or the like.

[0024] As shown in FIGS. 1A and IB, the tracking system 100 may be used to recognize, analyze, and/or track a human target such as the user 118. For example, the user 118 may be tracked using the capture device 120 such that the gestures and/or movements of user 118 may be captured to animate an avatar or on-screen character and/or may be interpreted as controls that may be used to affect the application being executed by computing system 112. Thus, according to one embodiment, the user 118 may move his or her body to control the application and/or animate the avatar or on-screen character.

[0025] In the example depicted in FIGS. 1A and IB, the application executing on the computing system 112 may be a boxing game that the user 118 is playing. For example, the computing system 112 may use the audiovisual device 116 to provide a visual representation of a boxing opponent 138 to the user 118. The computing system 112 may also use the audiovisual device 116 to provide a visual representation of a player avatar 140 that the user 118 may control with his or her movements. For example, as shown in FIG. IB, the user 118 may throw a punch in physical space to cause the player avatar 140 to throw a punch in game space. Thus, according to an example embodiment, the computer system 112 and the capture device 120 recognize and analyze the punch of the user 118 in physical space such that the punch may be interpreted as a game control of the player avatar 140 in game space and/or the motion of the punch may be used to animate the player avatar 140 in game space.

[0026] Other movements by the user 118 may also be interpreted as other controls or actions and/or used to animate the player avatar, such as controls to bob, weave, shuffle, block, jab, or throw a variety of different power punches. Furthermore, some movements may be interpreted as controls that may correspond to actions other than controlling the player avatar 140. For example, in one embodiment, the player may use movements to end, pause, or save a game, select a level, view high scores, communicate with a friend, etc. According to another embodiment, the player may use movements to select the game or other application from a main user interface. Thus, in example embodiments, a full range of motion of the user 118 may be available, used, and analyzed in any suitable manner to interact with an application.

[0027] In example embodiments, the human target such as the user 118 may have an object. In such embodiments, the user of an electronic game may be holding the object such that the motions of the player and the object may be used to adjust and/or control parameters of the game. For example, the motion of a player holding a racket may be tracked and utilized for controlling an on-screen racket in an electronic sports game. In another example embodiment, the motion of a player holding an object may be tracked and utilized for controlling an on-screen weapon in an electronic combat game. Objects not held by the user can also be tracked, such as objects thrown, pushed or rolled by the user (or a different user) as well as self- propelled objects. In addition to boxing, other games can also be implemented. [0028] According to other example embodiments, the tracking system 100 may further be used to interpret target movements as operating system and/or application controls that are outside the realm of games. For example, virtually any controllable aspect of an operating system and/or application may be controlled by movements of the target such as the user 118.

[0029] FIG. 2A illustrates an example embodiment of the capture device 120 that may be used in the tracking system 100. According to an example embodiment, the capture device 120 may be configured to capture video with depth information including a depth image that may include depth values via any suitable technique including, for example, time-of-flight, structured light, stereo image, or the like. According to one embodiment, the capture device 120 may organize the depth information into "Z layers," or layers that may be perpendicular to a Z axis extending from the depth camera along its line of sight.

[0030] As shown in FIG. 2A, the capture device 120 may include an image camera component 222. According to an example embodiment, the image camera component 222 may be a depth camera that may capture a depth image of a scene. The depth image may include a two-dimensional (2-D) pixel area of the captured scene where each pixel in the 2-D pixel area may represent a depth value such as a distance in, for example, centimeters, millimeters, or the like of an object in the captured scene from the camera.

[0031] As shown in FIG. 2A, according to an example embodiment, the image camera component 222 may include an infra-red (IR) light component 224, a three-dimensional (3-D) camera 226, and an RGB camera 228 that may be used to capture the depth image of a scene. For example, in time-of-flight (TOF) analysis, the IR light component 224 of the capture device 120 may emit an infrared light onto the scene and may then use sensors (not specifically shown in FIG. 2A) to detect the backscattered light from the surface of one or more targets and objects in the scene using, for example, the 3-D camera 226 and/or the RGB camera 228. In some embodiments, pulsed IR light may be used such that the time between an outgoing light pulse and a corresponding incoming light pulse may be measured and used to determine a physical distance from the capture device 120 to a particular location on the targets or objects in the scene. Additionally or alternatively, the phase of the outgoing light wave may be compared to the phase of the incoming light wave to determine a phase shift. The phase shift may then be used to determine a physical distance from the capture device to a particular location on the targets or objects. Additional details of an exemplary TOF type of 3-D camera 226, which can also be referred to as a depth camera, are described below with reference to FIG. 2B. [0032] According to another example embodiment, TOF analysis may be used to indirectly determine a physical distance from the capture device 120 to a particular location on the targets or objects by analyzing the intensity of the reflected beam of light over time via various techniques including, for example, shuttered light pulse imaging.

[0033] In another example embodiment, the capture device 120 may use a structured light to capture depth information. In such an analysis, patterned light (i.e., light displayed as a known pattern such as grid pattern, a stripe pattern, or different pattern) may be projected onto the scene via, for example, the IR light component 224. Upon striking the surface of one or more targets or objects in the scene, the pattern may become deformed in response. Such a deformation of the pattern may be captured by, for example, the 3-D camera 226 and/or the RGB camera 228 and may then be analyzed to determine a physical distance from the capture device to a particular location on the targets or objects. In some implementations, the IR Light component 224 is displaced from the cameras 226 and 228 so triangulation can be used to determined distance from cameras 226 and 228. In some implementations, the capture device 120 will include a dedicated IR sensor to sense the IR light.

[0034] According to another embodiment, the capture device 120 may include two or more physically separated cameras that may view a scene from different angles to obtain visual stereo data that may be resolved to generate depth information. Other types of depth image sensors can also be used to create a depth image.

[0035] The capture device 120 may further include a microphone 230. The microphone 230 may include a transducer or sensor that may receive and convert sound into an electrical signal. According to one embodiment, the microphone 230 may be used to reduce feedback between the capture device 120 and the computing system 112 in the target recognition, analysis, and tracking system 100. Additionally, the microphone 230 may be used to receive audio signals (e.g., voice commands) that may also be provided by the user to control applications such as game applications, non-game applications, or the like that may be executed by the computing system 112.

[0036] In an example embodiment, the capture device 120 may further include a processor 232 that may be in operative communication with the image camera component 222. The processor 232 may include a standardized processor, a specialized processor, a microprocessor, or the like that may execute instructions including, for example, instructions for receiving a depth image, generating the appropriate data format (e.g., frame) and transmitting the data to computing system 112. [0037] The capture device 120 may further include a memory component 234 that may store the instructions that may be executed by the processor 232, images or frames of images captured by the 3-D camera and/or RGB camera, or any other suitable information, images, or the like. According to an example embodiment, the memory component 234 may include random access memory (RAM), read only memory (ROM), cache, Flash memory, a hard disk, or any other suitable storage component. As shown in FIG. 2A, in one embodiment, the memory component 234 may be a separate component in communication with the image capture component 222 and the processor 232. According to another embodiment, the memory component 234 may be integrated into the processor 232 and/or the image capture component 222.

[0038] As shown in FIG. 2A, the capture device 120 may be in communication with the computing system 212 via a communication link 236. The communication link 236 may be a wired connection including, for example, a USB connection, a Firewire connection, an Ethernet cable connection, or the like and/or a wireless connection such as a wireless 802.1 lb, g, a, or n connection. According to one embodiment, the computing system 112 may provide a clock to the capture device 120 that may be used to determine when to capture, for example, a scene via the communication link 236. Additionally, the capture device 120 provides the depth images and color images captured by, for example, the 3-D camera 226 and/or the RGB camera 228 to the computing system 112 via the communication link 236. In one embodiment, the depth images and color images are transmitted at 30 frames per second. The computing system 112 may then use the model, depth information, and captured images to, for example, control an application such as a game or word processor and/or animate an avatar or on-screen character.

[0039] Computing system 112 includes gestures library 240, structure data 242, depth image processing and object reporting module 244 and application 246. Depth image processing and object reporting module 244 uses the depth images to track motion of objects, such as the user and other objects. To assist in the tracking of the objects, depth image processing and object reporting module 244 uses gestures library 240 and structure data 242.

[0040] Structure data 242 includes structural information about objects that may be tracked. For example, a skeletal model of a human may be stored to help understand movements of the user and recognize body parts. Structural information about inanimate objects may also be stored to help recognize those objects and help understand movement. [0041] Gestures library 240 may include a collection of gesture filters, each comprising information concerning a gesture that may be performed by the skeletal model (as the user moves). The data captured by the cameras 226, 228 and the capture device 120 in the form of the skeletal model and movements associated with it may be compared to the gesture filters in the gesture library 240 to identify when a user (as represented by the skeletal model) has performed one or more gestures. Those gestures may be associated with various controls of an application. Thus, the computing system 112 may use the gestures library 240 to interpret movements of the skeletal model and to control application 246 based on the movements. As such, gestures library may be used by depth image processing and object reporting module 244 and application 246.

[0042] Application 246 can be a video game, productivity application, etc. In one embodiment, depth image processing and object reporting module 244 will report to application 246 an identification of each object detected and the location of the object for each frame. Application 246 will use that information to update the position or movement of an avatar or other images in the display.

[0043] FIG. 2B illustrates an example embodiment of a 3-D camera 226, which can also be referred to as a depth camera 226. The depth camera 226 is shown as including a driver 260 that drives a laser source 250 of an optical module 256. The laser source 250 can be, e.g., the IR light component 224 shown in FIG. 2A. More specifically, the laser source 250 can include one or more laser emitting elements, such as, but not limited to, edge emitting lasers or vertical-cavity surface-emitting lasers (VCSELs). While it is likely that such laser emitting elements emit IR light, light of alternative wavelengths can alternatively be emitted by the laser emitting elements.

[0044] The depth camera 226 is also shown as including a clock signal generator 262, which produces a clock signal that is provided to the driver 260. Additionally, the depth camera 226 is shown as including a microprocessor 264 that can control the clock signal generator 262 and/or the driver 260. The depth camera 226 is also shown as including an image pixel detector array 268, readout circuitry 270 and memory 266. The image pixel detector array 268 might include, e.g., 320 x 240 image pixel detectors, but is not limited thereto. Each image pixel detector can be, e.g., a complementary metal-oxide- semiconductor (CMOS) sensor or a charged coupled device (CCD) sensor, but is not limited thereto. Depending upon implementation, each image pixel detector can have its own dedicated readout circuit, or readout circuitry can be shared by many image pixel detectors. In accordance with certain embodiments, the components of the depth camera 226 shown within the block 280 are implemented in a single integrated circuit (IC), which can also be referred to as a single chip.

[0045] In accordance with an embodiment, the driver 260 produces a high frequency (HF) modulated drive signal in dependence on a clock signal received from clock signal generator 262. Accordingly, the driver 260 can include, for example, one or more buffers, amplifiers and/or modulators, but is not limited thereto. The clock signal generator 262 can include, for example, one or more reference clocks and/or voltage controlled oscillators, but is not limited thereto. The microprocessor 264, which can be part of a microcontroller unit, can be used to control the clock signal generator 262 and/or the driver 260. For example, the microprocessor 264 can access waveform information stored in the memory 266 in order to produce an HF modulated drive signal. The depth camera 226 can includes its own memory 266 and microprocessor 264, as shown in FIG. 2B. Alternatively, or additionally, the processor 232 and/or memory 234 of the capture device 120 can be used to control aspects of the depth camera 226.

[0046] In response to being driven by an HF modulated drive signal, the laser source 250 emits HF modulated light. For an example, a carrier frequency of the HF modulated drive signal and the HF modulated light can be in a range from about 30 MHz to many hundreds of MHz, but for illustrative purposes will be assumed to be about 100 MHz. The light emitted by the laser source 250 is transmitted through an optical structure 252, which can include a micro-lens array (MLA), towards one or more target object (e.g., a user 118). The laser source 250 and the optical structure 252 can be referred to, collectively, as an optical module 256. In accordance with certain embodiments of the present technology, discussed below with reference to FIGS. 7-9, the laser source 250 includes a plurality of laser emitting elements. In such embodiments, the optical structure 252 includes a micro-lens array (MLA) that receives a plurality of laser beams, output by the plurality of laser emitting elements of the laser source 250, and outputs light having an illumination profile that is substantially equal to a desired illumination profile.

[0047] Assuming that there is a target object within the field of view of the depth camera, a portion of the light emitted by the optical module reflects off the target object, passes through an aperture field stop and lens (collectively 272), and is incident on the image pixel detector array 268 where an image is formed. In some implementations, each individual image pixel detector of the array 268 produces an integration value indicative of a magnitude and a phase of detected HF modulated laser beam originating from the optical module 256 that has reflected off the object and is incident of the image pixel detector. Such integrations values, or more generally time-of-flight (TOF) information, enable distances (Z) to be determined, and collectively, enable depth images to be produced. In certain embodiments, optical energy from the light source 250 and detected optical energy signals are synchronized to each other such that a phase difference, and thus a distance Z, can be measured from each image pixel detector. The readout circuitry 270 converts analog integration values generated by the image pixel detector array 268 into digital readout signals, which are provided to the microprocessor 264 and/or the memory 266, and which can be used to produce depth images.

[0048] FIG. 3 illustrates an example embodiment of a computing system that may be the computing system 112 shown in FIGS. 1A-2B used to track motion and/or animate (or otherwise update) an avatar or other on-screen object displayed by an application. The computing system such as the computing system 112 described above with respect to FIGS. 1A-2 may be a multimedia console, such as a gaming console. As shown in FIG. 3, the multimedia console 300 has a central processing unit (CPU) 301 having a level 1 cache 102, a level 2 cache 304, and a flash ROM (Read Only Memory) 306. The level 1 cache 302 and a level 2 cache 304 temporarily store data and hence reduce the number of memory access cycles, thereby improving processing speed and throughput. The CPU 301 may be provided having more than one core, and thus, additional level 1 and level 2 caches 302 and 304. The flash ROM 306 may store executable code that is loaded during an initial phase of a boot process when the multimedia console 300 is powered ON.

[0049] A graphics processing unit (GPU) 308 and a video encoder/video codec (coder/decoder) 314 form a video processing pipeline for high speed and high resolution graphics processing. Data is carried from the graphics processing unit 308 to the video encoder/video codec 314 via a bus. The video processing pipeline outputs data to an A/V (audio/video) port 340 for transmission to a television or other display. A memory controller 310 is connected to the GPU 308 to facilitate processor access to various types of memory 312, such as, but not limited to, a RAM (Random Access Memory).

[0050] The multimedia console 300 includes an I/O controller 320, a system management controller 322, an audio processing unit 323, a network interface 324, a first USB host controller 326, a second USB controller 328 and a front panel I/O subassembly 330 that are preferably implemented on a module 318. The USB controllers 326 and 328 serve as hosts for peripheral controllers 342(l)-342(2), a wireless adapter 348, and an external memory device 346 (e.g., flash memory, external CD/DVD ROM drive, removable media, etc.). The network interface 324 and/or wireless adapter 348 provide access to a network (e.g., the Internet, home network, etc.) and may be any of a wide variety of various wired or wireless adapter components including an Ethernet card, a modem, a Bluetooth module, a cable modem, and the like.

[0051] System memory 343 is provided to store application data that is loaded during the boot process. A media drive 344 is provided and may comprise a DVD/CD drive, Blu- Ray drive, hard disk drive, or other removable media drive, etc. The media drive 344 may be internal or external to the multimedia console 300. Application data may be accessed via the media drive 344 for execution, playback, etc. by the multimedia console 300. The media drive 344 is connected to the I/O controller 320 via a bus, such as a Serial ATA bus or other high speed connection (e.g., IEEE 1394).

[0052] The system management controller 322 provides a variety of service functions related to assuring availability of the multimedia console 300. The audio processing unit 323 and an audio codec 332 form a corresponding audio processing pipeline with high fidelity and stereo processing. Audio data is carried between the audio processing unit 323 and the audio codec 332 via a communication link. The audio processing pipeline outputs data to the A/V port 340 for reproduction by an external audio player or device having audio capabilities.

[0053] The front panel I/O subassembly 330 supports the functionality of the power button 350 and the eject button 352, as well as any LEDs (light emitting diodes) or other indicators exposed on the outer surface of the multimedia console 300. A system power supply module 336 provides power to the components of the multimedia console 300. A fan 338 cools the circuitry within the multimedia console 300.

[0054] The CPU 301, GPU 308, memory controller 310, and various other components within the multimedia console 300 are interconnected via one or more buses, including serial and parallel buses, a memory bus, a peripheral bus, and a processor or local bus using any of a variety of bus architectures. By way of example, such architectures can include a Peripheral Component Interconnects (PCI) bus, PCI-Express bus, etc.

[0055] When the multimedia console 300 is powered ON, application data may be loaded from the system memory 343 into memory 312 and/or caches 302, 304 and executed on the CPU 301. The application may present a graphical user interface that provides a consistent user experience when navigating to different media types available on the multimedia console 300. In operation, applications and/or other media contained within the media drive 344 may be launched or played from the media drive 344 to provide additional functionalities to the multimedia console 300. [0056] The multimedia console 300 may be operated as a standalone system by simply connecting the system to a television or other display. In this standalone mode, the multimedia console 300 allows one or more users to interact with the system, watch movies, or listen to music. However, with the integration of broadband connectivity made available through the network interface 324 or the wireless adapter 348, the multimedia console 300 may further be operated as a participant in a larger network community.

[0057] When the multimedia console 300 is powered ON, a set amount of hardware resources are reserved for system use by the multimedia console operating system. These resources may include a reservation of memory (e.g., 16MB), CPU and GPU cycles (e.g., 5%), networking bandwidth (e.g., 8 Kbps), etc. Because these resources are reserved at system boot time, the reserved resources do not exist from the application's view.

[0058] In particular, the memory reservation preferably is large enough to contain the launch kernel, concurrent system applications and drivers. The CPU reservation is preferably constant such that if the reserved CPU usage is not used by the system applications, an idle thread will consume any unused cycles.

[0059] With regard to the GPU reservation, lightweight messages generated by the system applications (e.g., popups) are displayed by using a GPU interrupt to schedule code to render popup into an overlay. The amount of memory required for an overlay depends on the overlay area size and the overlay preferably scales with screen resolution. Where a full user interface is used by the concurrent system application, it is preferable to use a resolution independent of application resolution. A scaler may be used to set this resolution such that the need to change frequency and cause a TV resynch is eliminated.

[0060] After the multimedia console 300 boots and system resources are reserved, concurrent system applications execute to provide system functionalities. The system functionalities are encapsulated in a set of system applications that execute within the reserved system resources described above. The operating system kernel identifies threads that are system application threads versus gaming application threads. The system applications are preferably scheduled to run on the CPU 301 at predetermined times and intervals in order to provide a consistent system resource view to the application. The scheduling is to minimize cache disruption for the gaming application running on the console.

[0061] When a concurrent system application requires audio, audio processing is scheduled asynchronously to the gaming application due to time sensitivity. A multimedia console application manager (described below) controls the gaming application audio level (e.g., mute, attenuate) when system applications are active.

[0062] Input devices (e.g., controllers 342(1) and 342(2)) are shared by gaming applications and system applications. The input devices are not reserved resources, but are to be switched between system applications and the gaming application such that each will have a focus of the device. The application manager preferably controls the switching of input stream, without knowledge the gaming application's knowledge and a driver maintains state information regarding focus switches. The cameras 226, 228 and capture device 120 may define additional input devices for the console 300 via USB controller 326 or other interface.

[0063] FIG. 4 illustrates another example embodiment of a computing system 420 that may be the computing system 112 shown in FIGS. 1A-2B used to track motion and/or animate (or otherwise update) an avatar or other on-screen object displayed by an application. The computing system 420 is only one example of a suitable computing system and is not intended to suggest any limitation as to the scope of use or functionality of the presently disclosed subject matter. Neither should the computing system 420 be interpreted as having any dependency or requirement relating to any one or combination of components illustrated in the exemplary computing system 420. In some embodiments the various depicted computing elements may include circuitry configured to instantiate specific aspects of the present disclosure. For example, the term circuitry used in the disclosure can include specialized hardware components configured to perform function(s) by firmware or switches. In other examples embodiments the term circuitry can include a general purpose processing unit, memory, etc., configured by software instructions that embody logic operable to perform function(s). In example embodiments where circuitry includes a combination of hardware and software, an implementer may write source code embodying logic and the source code can be compiled into machine readable code that can be processed by the general purpose processing unit. Since one skilled in the art can appreciate that the state of the art has evolved to a point where there is little difference between hardware, software, or a combination of hardware/software, the selection of hardware versus software to effectuate specific functions is a design choice left to an implementer. More specifically, one of skill in the art can appreciate that a software process can be transformed into an equivalent hardware structure, and a hardware structure can itself be transformed into an equivalent software process. Thus, the selection of a hardware implementation versus a software implementation is one of design choice and left to the implementer.

[0064] Computing system 420 comprises a computer 441, which typically includes a variety of computer readable media. Computer readable media can be any available media that can be accessed by computer 441 and includes both volatile and nonvolatile media, removable and non-removable media. The system memory 422 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 423 and random access memory (RAM) 460. A basic input/output system 424 (BIOS), containing the basic routines that help to transfer information between elements within computer 441, such as during start-up, is typically stored in ROM 423. RAM 460 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 459. By way of example, and not limitation, FIG. 4 illustrates operating system 425, application programs 426, other program modules 427, and program data 428.

[0065] The computer 441 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only, FIG. 4 illustrates a hard disk drive 438 that reads from or writes to non-removable, nonvolatile magnetic media, a magnetic disk drive 439 that reads from or writes to a removable, nonvolatile magnetic disk 454, and an optical disk drive 440 that reads from or writes to a removable, nonvolatile optical disk 453 such as a CD ROM or other optical media. Other removable/non-removable, volatile/nonvolatile computer storage media that can be used in the exemplary operating environment include, but are not limited to, magnetic tape cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM, solid state ROM, and the like. The hard disk drive 438 is typically connected to the system bus 421 through an non-removable memory interface such as interface 434, and magnetic disk drive 439 and optical disk drive 440 are typically connected to the system bus 421 by a removable memory interface, such as interface 435.

[0066] The drives and their associated computer storage media discussed above and illustrated in FIG. 4, provide storage of computer readable instructions, data structures, program modules and other data for the computer 441. In FIG. 4, for example, hard disk drive 438 is illustrated as storing operating system 458, application programs 457, other program modules 456, and program data 455. Note that these components can either be the same as or different from operating system 425, application programs 426, other program modules 427, and program data 428. Operating system 458, application programs 457, other program modules 456, and program data 455 are given different numbers here to illustrate that, at a minimum, they are different copies. A user may enter commands and information into the computer 441 through input devices such as a keyboard 451 and pointing device 452, commonly referred to as a mouse, trackball or touch pad. Other input devices (not shown) may include a microphone, joystick, game pad, satellite dish, scanner, or the like. These and other input devices are often connected to the processing unit 459 through a user input interface 436 that is coupled to the system bus, but may be connected by other interface and bus structures, such as a parallel port, game port or a universal serial bus (USB). The cameras 226, 228 and capture device 120 may define additional input devices for the computing system 420 that connect via user input interface 436. A monitor 442 or other type of display device is also connected to the system bus 421 via an interface, such as a video interface 432. In addition to the monitor, computers may also include other peripheral output devices such as speakers 444 and printer 443, which may be connected through a output peripheral interface 433. Capture Device 120 may connect to computing system 420 via output peripheral interface 433, network interface 437, or other interface.

[0067] The computer 441 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 446. The remote computer 446 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computer 441, although only a memory storage device 447 has been illustrated in FIG. 4. The logical connections depicted include a local area network (LAN) 445 and a wide area network (WAN) 449, but may also include other networks. Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets and the Internet.

[0068] When used in a LAN networking environment, the computer 441 is connected to the LAN 445 through a network interface 437. When used in a WAN networking environment, the computer 441 typically includes a modem 450 or other means for establishing communications over the WAN 449, such as the Internet. The modem 450, which may be internal or external, may be connected to the system bus 421 via the user input interface 436, or other appropriate mechanism. In a networked environment, program modules depicted relative to the computer 441, or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation, FIG. 4 illustrates application programs 448 as residing on memory device 447. It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers may be used.

[0069] As explained above, the capture device 120 provides RGB images (also known as color images) and depth images to the computing system 112. The depth image may be a plurality of observed pixels where each observed pixel has an observed depth value. For example, the depth image may include a two-dimensional (2-D) pixel area of the captured scene where each pixel in the 2-D pixel area may have a depth value such as a length or distance in, for example, centimeters, millimeters, or the like of an object in the captured scene from the capture device.

[0070] FIG. 5 illustrates an example embodiment of a depth image that may be received at computing system 112 from capture device 120. According to an example embodiment, the depth image may be an image and/or frame of a scene captured by, for example, the 3- D camera 226 and/or the RGB camera 228 of the capture device 120 described above with respect to FIG. 2A. As shown in FIG. 5, the depth image may include a human target corresponding to, for example, a user such as the user 118 described above with respect to FIGS. 1A and IB and one or more non-human targets such as a wall, a table, a monitor, or the like in the captured scene. The depth image may include a plurality of observed pixels where each observed pixel has an observed depth value associated therewith. For example, the depth image may include a two-dimensional (2-D) pixel area of the captured scene where each pixel at particular x-value and y-value in the 2-D pixel area may have a depth value such as a length or distance in, for example, centimeters, millimeters, or the like of a target or object in the captured scene from the capture device. In other words, a depth image can specify, for each of the pixels in the depth image, a pixel location and a pixel depth. Following a segmentation process, each pixel in the depth image can also have a segmentation value associated with it. The pixel location can be indicated by an x- position value (i.e., a horizontal value) and a y-position value (i.e., a vertical value). The pixel depth can be indicated by a z-position value (also referred to as a depth value), which is indicative of a distance between the capture device (e.g., 120) used to obtain the depth image and the portion of the user represented by the pixel. The segmentation value is used to indicate whether a pixel corresponds to a specific user, or does not correspond to a user.

[0071] In one embodiment, the depth image may be colorized or grayscale such that different colors or shades of the pixels of the depth image correspond to and/or visually depict different distances of the targets from the capture device 120. Upon receiving the image, one or more high-variance and/or noisy depth values may be removed and/or smoothed from the depth image; portions of missing and/or removed depth information may be filled in and/or reconstructed; and/or any other suitable processing may be performed on the received depth image.

[0072] FIG. 6 provides another view/representation of a depth image (not corresponding to the same example as FIG. 5). The view of FIG. 6 shows the depth data for each pixel as an integer that represents the distance of the target to capture device 120 for that pixel. The example depth image of FIG. 6 shows 24x24 pixels; however, it is likely that a depth image of greater resolution would be used. Techniques for reducing speckle contrast and diffraction artifacts

[0073] As mentioned above, if a depth camera projects highly coherent light, then a speckle pattern may result, which reduces the resolution of the depth images obtained using the depth camera. The aforementioned speckle pattern is a result of the interference of many waves of the same frequency, having different phases and amplitudes, which add together to give a resultant wave whose amplitude, and therefore intensity, varies randomly. Such speckle patterns will often occur where a laser source, or more generally, a light source, produces highly coherent light. As also mentioned above, if an optical structure is used to achieve a desired illumination profile, the optical structure may produce undesirable diffraction pattern artifacts, which also reduce the resolution of the depth images obtained using the depth camera. Such diffraction pattern artifacts, which can also be referred to as diffraction artifacts, will often occur where the optical structure is a periodic structure. An example of a periodic structure is a micro-lens array (MLA) including an N x M arrays of substantially identical lenslets.

[0074] Certain embodiments described herein are directed to depth camera systems that include optical modules that reduce speckle contrast and diffraction pattern artifacts, and thereby, provide for improved depth image resolution. Embodiments are also directed to the optical modules themselves, as well as methods for use with depth camera systems.

[0075] FIG. 7 illustrates a side view of an optical module 702, according to an embodiment. This optical module 702 can be used, for example, as the optical module 256 described above with reference to the depth camera 226 shown in FIG. 2B. Referring to FIG. 7, the optical module 702 is shown as including a plurality of laser emitting elements 712a, 712b, 712c, 712d and 712e, which can collectively be referred to as laser emitting elements 712, and can individually be referred to as a laser emitting element 712. The optical module 702 is also shown as including a micro-lens array (MLA) 720 that includes a plurality of lenslets 722a, 722b, 722c, 722d, 712e, 722f and 722g. Multiple ones of the lenslets can collectively be referred to as lenslets 722, and can individually be referred to as a lenslet 722. While five laser emitting elements 712 are shown in FIG. 7, the optical module 702 can include more or less than five laser emitting element 712. However, it should be noted that where there is a desire to minimize speckle contrast, typically the greater the number of laser emitting elements the lower the speckle contrast that can be achieved.

[0076] In certain embodiments, each light emitting element 712 is an edge emitting laser. For example, the plurality of light emitting elements 712 can include a plurality of parallel edge emitting laser stripes fabricated on a same semiconductor substrate. In other embodiments, the plurality of light emitting elements 712 can be an array of vertical-cavity surface-emitting lasers (VCSELs) fabricated on a same semiconductor substrate. These are just a few examples, which are not meant to be all encompassing.

[0077] Since FIG. 7 is a side view of the optical module 702, only one column of the lenslets 722 of the MLA 720 can be seen in FIG. 7. FIG. 8, which illustrates a front view of the MLA 720, shows that the MLA 720, in accordance with an embodiment, actually includes a two-dimensional array of lenslets 722. In FIG. 8 the MLA 720 is shown as including a 7 x 7 array of lenslets 722, with each of the squares shown in FIG. 8 being a separate lenslet 722. However, depending on the desired illumination profile, the MLA can include some other number of lenslets 722. For example, the MLA 720 can include an array of 10 x 15 lenslets 722, but is not limited thereto. It is noted that the relative sizes of the light emitting elements 712 and the lenslets 722 are not drawn to scale in FIG. 7 and 8.

[0078] FIG. 7 and 8 also illustrate, pictorially, the laser beams emitted by the light emitting elements 712. More specifically, in FIG. 7, each laser beam is pictorially illustrated by a pair of lines emanating, with an angle of divergence, from a respective one of the light emitting elements 712. In FIG. 8, it is assumed that the laser emitting elements 712 are behind the MLA 720 and each laser beam is illustrates as an oval footprint that is incident on the MLA 720. To help differentiate one exemplary laser beam from the other laser beams, in FIGS. 7 and 8 the laser beam emitted by the light emitting element 712c has been shaded.

[0079] In accordance with specific embodiments, the laser beams emitted by adjacent ones of the laser emitting elements 712 at least partially overlap one another prior to being incident on the MLA 720, as shown in FIG. 7 and 8. Additionally, in accordance with specific embodiment, for each lenslet 722, of at least a majority of the lenslets 722 of the MLA 720, the lenslet 722 is at least partially filled by light corresponding to laser beams emitted by at least two of the laser emitting elements 712.

[0080] The inclusion of the plurality of laser emitting elements 712 in the optical module 702, and the overlapping of the laser beams emitted from the laser emitting elements 712, reduces the speckle contrast in the light that is output by the optical module 702, which is used to illuminate a capture area within a field of view of the depth camera. Additionally, the overlapping of the laser beams emitted by the laser emitting elements 712, and the at least partially filling of the lenslets 722 of the MLA 720 with light corresponding to laser beams emitted by at least two of the laser emitting elements 712, is used to the reduce diffraction pattern artifacts in the light that is output by the optical module 702, which is used to illuminates the capture area.

[0081] In general, the greater the number of laser emitting elements 712 and the greater the amount of overlap between the laser beams emitted by the laser emitting elements 712, the lower the speckle contrast. This is because an increase in the number of laser emitting elements 712, which are specially separated from one another, decreases the coherence of the light collectively output by the laser emitting elements 712. In general, the lower the coherence of the light, the lower the speckle contrast. Where there is a desire to achieve a speckle contrast of 20% or less, the optical module 702 would likely need to include at least five laser emitting elements 712 that emit laser beams that at least partially overlap one another. More specifically, speckle contrast will reduce by approximately the square root of the number of separate light emitting elements 712 that emit laser beams that at least partially overlap one another.

[0082] Additionally, the greater the amount of laser beams that at least partially fill each lenslet 722 of the MLA 720, the lower the diffraction artifacts caused by the light output by the optical module 702. This is because the diffraction artifacts, associated with the multiple laser beams that at least partially fill a common lenslet, are essentially averaged, thereby causing the diffraction artifacts to be washed or smoothed out. In generally, the greater the f-number of a lenslet, the greater the amount of beam overlap necessary to reduce diffraction artifacts to a predetermined desire level.

[0083] In an exemplary embodiment, the optical module 702 includes approximately ten parallel edge emitting laser stripes fabricated on a same semiconductor substrate, with each laser beam emitted by each light emitting element 712 (i.e., each laser stripe in this embodiment) at least partially overlapping each of the other laser beams emitted by each of the other light emitting elements 712, and with each laser beam at least partially filling each of the lenslets 722 of the MLA 720. In another exemplary embodiment, the optical module 702 includes an array of VCELSs that includes hundreds of VCELSs, with each laser beam emitted by each light emitting element 712 (i.e., each VCSEL in this embodiment) at least partially overlapping each of the other laser beams emitted by each of the other light emitting elements 712, and with each laser beam at least partially filling each of the lenslets 722 of the MLA 720. Preferably, each laser beam emitted by each light emitting element 712 completely fills each lenslet 722 of the MLA 720. However, depending upon implementation, it may be difficult for lenslets 722 near at the periphery of the MLA 720 to be filled by every laser beam. In order for the laser beam emitted by each light emitting element 712 to at least partially overlap the laser beams emitted by each of the other light emitting elements 712, and for each laser beam to at least partially fill each lenslet 722 of the MLA 720, the center-to-center distance between adjacent light emitting elements 712 may need to be very small. For example, in accordance with certain embodiments of the optical module 702, the center-to-center distance between adjacent light emitting elements 712 is less than 100 μιη, and the center-to-center distance between any one light emitting element 712 and the light emitting element 712 furthest from it is less than 1 mm. Other center-to-center distances are also possible and within the scope of an embodiment.

[0084] In accordance with certain embodiments, the light exiting the micro-lens array 720 is the light output by an optical module 702 that is used to illuminate a capture area. However, before illuminating the capture area the light might first pass through a glass or plastic plate (not shown) that is intended to conceal and/or protect the optical module 702. It is also possible, and within the scope of an embodiment, that one or more additional optical elements be located optically downstream from the micro-lens array 720. Such one or more additional optical elements, or a portion thereof, may or may not be part of the optical module 702.

[0085] In accordance with certain embodiments, a depth camera may include multiple optical modules 702 that simultaneously output light for use in illuminating a capture area. Multiple optical modules 702 may be used, for example, where the amount of light emitted by a single optical module 702 is less than the total amount of light desired. This is analogous to an conventional camera having a flash including multiple flash bulbs, because a single flash bulb is not as bright as desired. Where a depth camera includes multiple optical modules 702, each of the optical modules will includes its own plurality of laser emitting elements 712 and its own MLA 720. The different optical modules 702 can be located close enough to one another such that the light output be each of the different optical module 702 substantially overlap one another, and are collectively used to achieve an illumination profile that is substantially similar to a desired illumination profile. FIG. 9 illustrates an exemplary desired illumination profile that can be achieved, depending upon implementation, using a single optical module 702, or multiple optical modules 702. Other desired illumination profiles are possible and can be achieved using one or more of the optical modules described herein.

[0086] FIG. 10 is a high level flow diagram that is used to summarize methods according to various embodiments of the present technology. Such methods are for use with a depth camera, especially a depth camera that produces depth images based on time- of-flight (TOF) measurements.

[0087] Referring to FIG. 10, at step 1002, infrared (IR) light is output by one or more optical module to thereby illuminate a capture area, within the field-of-view of the depth camera, with the IR light. As was explain above in the discussion of FIGS. 7 and 8, the light output by an optical module can be produced by emitting a plurality of separate laser beams towards a micro-lens array (of the optical module) that includes a plurality of lenslets such that adjacent laser beams at least partially overlap one another prior to being incident on the micro-lens array, and such that for each lenslet of at least a majority of the lenslets of the micro-lens array, is at least partially filled by light corresponding to at least two of the laser beams. In accordance with certain embodiments, each of the laser beams at least partially overlaps each of the other laser beams of the plurality of separate laser beams, prior to the plurality of laser beams being incident on the micro-lens array. In accordance with certain embodiments, each lenslet of the micro-lens array of the optical module, is at least partially filled by each laser beam of the plurality of laser beams. In specific embodiments, each lenslet of at least a majority of the lenslets of a micro-lens array, is completely filled by at least five laser beams, to thereby achieve relatively low diffraction artifacts. Additional and alternative details of step 1002 can be appreciated from the above description of FIGS. 7 and 8.

[0088] At step 1004 a portion of the IR light that has reflected off one or more objects within the capture area is detected. As can be appreciated by the above discussion of FIG. 2B, an image pixel detector array (e.g., 268 in FIG. 2B) can be used to perform step 1004. At step 1006, a depth image is produced based on the portion of the IR light detected at step 1004. At step 1008, an application is updated based on the depth image. For example, the depth image can be used to change a position or other aspect of a game character, or to control an aspect of a non-gaming application, but is not limited thereto. Additional details of methods of embodiments of the present technology can be appreciated from the above discussion of FIGS. 1A-8.

[0089] Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims. It is intended that the scope of the technology be defined by the claims appended hereto.

Claims

1. An optical module for use with a depth camera system for use in obtaining a depth image of a capture area, the optical module comprising:
a plurality of laser emitting elements each of which emits a corresponding laser beam; and a micro-lens array including a plurality of lenslets;
wherein laser beams emitted by adjacent ones of the laser emitting elements at least partially overlap one another prior to being incident on the micro-lens array; and wherein for each lenslet of at least a majority of the lenslets of the micro-lens array, the lenslet is at least partially filled by light corresponding to laser beams emitted by at least two of the laser emitting elements.
2. The optical module of claim 1, wherein:
the inclusion of the plurality of laser emitting elements in the optical module reduces speckle contrast in the light that is output by the optical module and illuminates the capture area; and
the overlap of the laser beams emitted by adjacent ones of the laser emitting elements, and the at least partially filling of the lenslets of the micro-lens array with light corresponding to laser beams emitted by at least two of the laser emitting elements, reduces diffraction pattern artifacts in the light that is output by the optical module and illuminates the capture area.
3. The optical module of claim 1, wherein for each lenslet of the at least a majority of the lenslets of the micro-lens array, the lenslet is at least partially filled by light corresponding to laser beams emitted by at least five of the laser emitting elements.
4. The optical module of claim 1, wherein for each lenslet of the at least a majority of the lenslets of the micro-lens array, the lenslet is completely filled by light corresponding to laser beams emitted by at least five of the laser emitting elements.
5. The optical module of claim 1, wherein the plurality of laser emitting elements comprise:
five or more edge emitting parallel lasers; or
an array of vertical-cavity surface-emitting lasers (VCSELs).
6. A depth camera system comprising the optical module of any one of claims 1-5 and also comprising an image pixel detector array that detects a portion of the light, output by the optical module, that has reflected off one or more objects within a capture area and is incident on the image pixel detector array.
7. A method for use by a depth camera, the method comprising:
outputting infrared (IR) light from an optical module of the depth camera to thereby illuminate a capture area with the IR light;
wherein the outputting IR light from the optical module includes emitting a plurality of separate IR laser beams towards a micro-lens array that includes a plurality of lenslets such that
adjacent laser beams at least partially overlap one another prior to being incident on the micro-lens array, and
for each lenslet of at least a majority of the lenslets of the micro-lens array, the lenslet is at least partially filled by light corresponding to at least two of the laser beams.
8. The method of claim 7, further comprising:
detecting a portion of the IR light that has reflected off one or more objects within the capture area;
producing a depth image based on the detected portion of the IR light; and
updating an application based on the depth image.
9. The method of claim 7, wherein the emitting the plurality of separate laser beams towards the micro-lens array that includes the plurality of lenslets is performed such that each of the laser beams at least partially overlaps each of the other laser beams of the plurality of separate laser beams, prior to the plurality of laser beams being incident on the micro-lens array.
10. The method of any one of claims 7-9, wherein the emitting the plurality of separate laser beams towards the micro-lens array that includes the plurality of lenslets is performed such that each lenslet of the micro-lens array, is at least partially filled by each laser beam of the plurality of laser beams.
PCT/US2014/056422 2013-09-23 2014-09-19 Optical modules that reduce speckle contrast and diffraction artifacts WO2015042331A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/034,189 2013-09-23
US14034189 US9462253B2 (en) 2013-09-23 2013-09-23 Optical modules that reduce speckle contrast and diffraction artifacts

Publications (1)

Publication Number Publication Date
WO2015042331A1 true true WO2015042331A1 (en) 2015-03-26

Family

ID=51660057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/056422 WO2015042331A1 (en) 2013-09-23 2014-09-19 Optical modules that reduce speckle contrast and diffraction artifacts

Country Status (2)

Country Link
US (2) US9462253B2 (en)
WO (1) WO2015042331A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9462253B2 (en) * 2013-09-23 2016-10-04 Microsoft Technology Licensing, Llc Optical modules that reduce speckle contrast and diffraction artifacts
US20170068319A1 (en) * 2015-09-08 2017-03-09 Microvision, Inc. Mixed-Mode Depth Detection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1184706A2 (en) * 2000-08-30 2002-03-06 Dainippon Screen Mfg. Co., Ltd. Illuminating apparatus
WO2005085934A1 (en) * 2004-03-06 2005-09-15 Hentze-Lissotschenko Patentverwaltungs Gmbh & Co. Kg Device for producing a linear focussing area for a laser light source
EP1734771A1 (en) * 2005-06-14 2006-12-20 SONY DEUTSCHLAND GmbH Illumination optics, illumination unit and image generation unit
US20120051588A1 (en) * 2009-12-21 2012-03-01 Microsoft Corporation Depth projector system with integrated vcsel array
US20130038941A1 (en) * 2011-08-09 2013-02-14 Primesense Ltd. Lens Array Projector

Family Cites Families (178)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4603421A (en) 1982-11-24 1986-07-29 Xerox Corporation Incoherent composite multi-emitter laser for an optical arrangement
US4695953A (en) 1983-08-25 1987-09-22 Blair Preston E TV animation interactively controlled by the viewer
US4711543A (en) 1986-04-14 1987-12-08 Blair Preston E TV animation interactively controlled by the viewer
US4630910A (en) 1984-02-16 1986-12-23 Robotic Vision Systems, Inc. Method of measuring in three-dimensions at high speed
US4627620A (en) 1984-12-26 1986-12-09 Yang John P Electronic athlete trainer for improving skills in reflex, speed and accuracy
US4645458A (en) 1985-04-15 1987-02-24 Harald Phillip Athletic evaluation and training apparatus
US4702475A (en) 1985-08-16 1987-10-27 Innovating Training Products, Inc. Sports technique and reaction training system
US4843568A (en) 1986-04-11 1989-06-27 Krueger Myron W Real time perception of and response to the actions of an unencumbered participant/user
US4796997A (en) 1986-05-27 1989-01-10 Synthetic Vision Systems, Inc. Method and system for high-speed, 3-D imaging of an object at a vision station
US5184295A (en) 1986-05-30 1993-02-02 Mann Ralph V System and method for teaching physical skills
US4751642A (en) 1986-08-29 1988-06-14 Silva John M Interactive sports simulation system with physiological sensing and psychological conditioning
US4809065A (en) 1986-12-01 1989-02-28 Kabushiki Kaisha Toshiba Interactive system and related method for displaying data to produce a three-dimensional image of an object
US4817950A (en) 1987-05-08 1989-04-04 Goo Paul E Video game control unit and attitude sensor
US5239464A (en) 1988-08-04 1993-08-24 Blair Preston E Interactive video system providing repeated switching of multiple tracks of actions sequences
US5239463A (en) 1988-08-04 1993-08-24 Blair Preston E Method and apparatus for player interaction with animated characters and objects
US4901362A (en) 1988-08-08 1990-02-13 Raytheon Company Method of recognizing patterns
US4893183A (en) 1988-08-11 1990-01-09 Carnegie-Mellon University Robotic vision system
JPH02199526A (en) 1988-10-14 1990-08-07 David G Capper Control interface device
US5469740A (en) 1989-07-14 1995-11-28 Impulse Technology, Inc. Interactive video testing and training system
US4925189A (en) 1989-01-13 1990-05-15 Braeunig Thomas F Body-mounted video game exercise device
US5229756A (en) 1989-02-07 1993-07-20 Yamaha Corporation Image control apparatus
JPH03103822U (en) 1990-02-13 1991-10-29
US5101444A (en) 1990-05-18 1992-03-31 Panacea, Inc. Method and apparatus for high speed object location
US5148154A (en) 1990-12-04 1992-09-15 Sony Corporation Of America Multi-dimensional user interface
US5534917A (en) 1991-05-09 1996-07-09 Very Vivid, Inc. Video image based control system
US5295491A (en) 1991-09-26 1994-03-22 Sam Technology, Inc. Non-invasive human neurocognitive performance capability testing method and system
US6054991A (en) 1991-12-02 2000-04-25 Texas Instruments Incorporated Method of modeling player position and movement in a virtual reality system
DE69229474T2 (en) 1991-12-03 2000-03-02 French Sportech Corp Interactive video system for observation and workout performance of a person
US5875108A (en) 1991-12-23 1999-02-23 Hoffberg; Steven M. Ergonomic man-machine interface incorporating adaptive pattern recognition based control system
US5417210A (en) 1992-05-27 1995-05-23 International Business Machines Corporation System and method for augmentation of endoscopic surgery
JPH07325934A (en) 1992-07-10 1995-12-12 Walt Disney Co:The Method and device for supplying improved graphics to virtual word
US5999908A (en) 1992-08-06 1999-12-07 Abelow; Daniel H. Customer-based product design module
US5320538A (en) 1992-09-23 1994-06-14 Hughes Training, Inc. Interactive aircraft training system and method
DE69311364D1 (en) 1992-11-20 1997-07-10 Scuola Superiore Di Studi Universitari E Di Perfezionamento Sant Anna Device for monitoring a distal physiological unit for use as a sophisticated interface for machine and computer
US5495576A (en) 1993-01-11 1996-02-27 Ritchey; Kurtis J. Panoramic image based virtual reality/telepresence audio-visual system and method
US5690582A (en) 1993-02-02 1997-11-25 Tectrix Fitness Equipment, Inc. Interactive exercise apparatus
US5526182A (en) * 1993-02-17 1996-06-11 Vixel Corporation Multiple beam optical memory system
JP2799126B2 (en) 1993-03-26 1998-09-17 株式会社ナムコ Video game apparatus and a game input device
US5405152A (en) 1993-06-08 1995-04-11 The Walt Disney Company Method and apparatus for an interactive video game with physical feedback
US5454043A (en) 1993-07-30 1995-09-26 Mitsubishi Electric Research Laboratories, Inc. Dynamic and static hand gesture recognition through low-level image analysis
US5423554A (en) 1993-09-24 1995-06-13 Metamedia Ventures, Inc. Virtual reality game method and apparatus
US5980256A (en) 1993-10-29 1999-11-09 Carmein; David E. E. Virtual reality system with enhanced sensory apparatus
JP3419050B2 (en) 1993-11-19 2003-06-23 株式会社日立製作所 Input device
US5347306A (en) 1993-12-17 1994-09-13 Mitsubishi Electric Research Laboratories, Inc. Animated electronic meeting place
JP2552427B2 (en) 1993-12-28 1996-11-13 コナミ株式会社 TV game system
US5577981A (en) 1994-01-19 1996-11-26 Jarvik; Robert Virtual reality exercise machine and computer controlled video system
US5580249A (en) 1994-02-14 1996-12-03 Sarcos Group Apparatus for simulating mobility of a human
US5597309A (en) 1994-03-28 1997-01-28 Riess; Thomas Method and apparatus for treatment of gait problems associated with parkinson's disease
US5385519A (en) 1994-04-19 1995-01-31 Hsu; Chi-Hsueh Running machine
US5524637A (en) 1994-06-29 1996-06-11 Erickson; Jon W. Interactive system for measuring physiological exertion
JPH0844490A (en) 1994-07-28 1996-02-16 Matsushita Electric Ind Co Ltd Interface device
US5563988A (en) 1994-08-01 1996-10-08 Massachusetts Institute Of Technology Method and system for facilitating wireless, full-body, real-time user interaction with a digitally represented visual environment
US6714665B1 (en) 1994-09-02 2004-03-30 Sarnoff Corporation Fully automated iris recognition system utilizing wide and narrow fields of view
US5516105A (en) 1994-10-06 1996-05-14 Exergame, Inc. Acceleration activated joystick
US5638300A (en) 1994-12-05 1997-06-10 Johnson; Lee E. Golf swing analysis system
JPH08161292A (en) 1994-12-09 1996-06-21 Matsushita Electric Ind Co Ltd Method and system for detecting congestion degree
US5594469A (en) 1995-02-21 1997-01-14 Mitsubishi Electric Information Technology Center America Inc. Hand gesture machine control system
US5682229A (en) 1995-04-14 1997-10-28 Schwartz Electro-Optics, Inc. Laser range camera
US5913727A (en) 1995-06-02 1999-06-22 Ahdoot; Ned Interactive movement and contact simulation game
US6229913B1 (en) 1995-06-07 2001-05-08 The Trustees Of Columbia University In The City Of New York Apparatus and methods for determining the three-dimensional shape of an object using active illumination and relative blurring in two-images due to defocus
US5682196A (en) 1995-06-22 1997-10-28 Actv, Inc. Three-dimensional (3D) video presentation system providing interactive 3D presentation with personalized audio responses for multiple viewers
US5702323A (en) 1995-07-26 1997-12-30 Poulton; Craig K. Electronic exercise enhancer
US6430997B1 (en) 1995-11-06 2002-08-13 Trazer Technologies, Inc. System and method for tracking and assessing movement skills in multidimensional space
US6308565B1 (en) 1995-11-06 2001-10-30 Impulse Technology Ltd. System and method for tracking and assessing movement skills in multidimensional space
EP1059970A2 (en) 1998-03-03 2000-12-20 Arena, Inc, System and method for tracking and assessing movement skills in multidimensional space
US6098458A (en) 1995-11-06 2000-08-08 Impulse Technology, Ltd. Testing and training system for assessing movement and agility skills without a confining field
US6073489A (en) 1995-11-06 2000-06-13 French; Barry J. Testing and training system for assessing the ability of a player to complete a task
US5933125A (en) 1995-11-27 1999-08-03 Cae Electronics, Ltd. Method and apparatus for reducing instability in the display of a virtual environment
US5641288A (en) 1996-01-11 1997-06-24 Zaenglein, Jr.; William G. Shooting simulating process and training device using a virtual reality display screen
US6152856A (en) 1996-05-08 2000-11-28 Real Vision Corporation Real time simulation using position sensing
US6173066B1 (en) 1996-05-21 2001-01-09 Cybernet Systems Corporation Pose determination and tracking by matching 3D objects to a 2D sensor
US5989157A (en) 1996-08-06 1999-11-23 Walton; Charles A. Exercising system with electronic inertial game playing
CN1168057C (en) 1996-08-14 2004-09-22 挪拉赫梅特・挪利斯拉莫维奇・拉都包 Method for following and imaging subject's three-dimensional position and orientation, method for presentig virtual space to subject and system for implementing said method
JP3064928B2 (en) 1996-09-20 2000-07-12 日本電気株式会社 Subject extraction method
US20020019305A1 (en) * 1996-10-31 2002-02-14 Che-Kuang Wu Gray scale all-glass photomasks
DE69626208T2 (en) 1996-12-20 2003-11-13 Hitachi Europ Ltd A method and system for recognizing hand gestures
US6009210A (en) 1997-03-05 1999-12-28 Digital Equipment Corporation Hands-free interface to a virtual reality environment using head tracking
US6100896A (en) 1997-03-24 2000-08-08 Mitsubishi Electric Information Technology Center America, Inc. System for designing graphical multi-participant environments
US5877803A (en) 1997-04-07 1999-03-02 Tritech Mircoelectronics International, Ltd. 3-D image detector
US6215898B1 (en) 1997-04-15 2001-04-10 Interval Research Corporation Data processing system and method
JP3077745B2 (en) 1997-07-31 2000-08-14 日本電気株式会社 Data processing method and apparatus, the information storage medium
US6188777B1 (en) 1997-08-01 2001-02-13 Interval Research Corporation Method and apparatus for personnel detection and tracking
US6289112B1 (en) 1997-08-22 2001-09-11 International Business Machines Corporation System and method for determining block direction in fingerprint images
US6720949B1 (en) 1997-08-22 2004-04-13 Timothy R. Pryor Man machine interfaces and applications
WO1999012127A1 (en) 1997-09-02 1999-03-11 Dynamic Digital Depth Research Pty Ltd Image processing method and apparatus
EP0905644A3 (en) 1997-09-26 2004-02-25 Communications Research Laboratory, Ministry of Posts and Telecommunications Hand gesture recognizing device
US6141463A (en) 1997-10-10 2000-10-31 Electric Planet Interactive Method and system for estimating jointed-figure configurations
WO1999019828A1 (en) 1997-10-15 1999-04-22 Electric Planet, Inc. Method and apparatus for performing a clean background subtraction
US6130677A (en) 1997-10-15 2000-10-10 Electric Planet, Inc. Interactive computer vision system
US6072494A (en) 1997-10-15 2000-06-06 Electric Planet, Inc. Method and apparatus for real-time gesture recognition
US6384819B1 (en) 1997-10-15 2002-05-07 Electric Planet, Inc. System and method for generating an animatable character
US6101289A (en) 1997-10-15 2000-08-08 Electric Planet, Inc. Method and apparatus for unencumbered capture of an object
US6176782B1 (en) 1997-12-22 2001-01-23 Philips Electronics North America Corp. Motion-based command generation technology
US6181343B1 (en) 1997-12-23 2001-01-30 Philips Electronics North America Corp. System and method for permitting three-dimensional navigation through a virtual reality environment using camera-based gesture inputs
US6122109A (en) * 1998-04-16 2000-09-19 The University Of New Mexico Non-planar micro-optical structures
US6159100A (en) 1998-04-23 2000-12-12 Smith; Michael D. Virtual reality game
US6077201A (en) 1998-06-12 2000-06-20 Cheng; Chau-Yang Exercise bicycle
US7121946B2 (en) 1998-08-10 2006-10-17 Cybernet Systems Corporation Real-time head tracking system for computer games and other applications
US7036094B1 (en) 1998-08-10 2006-04-25 Cybernet Systems Corporation Behavior recognition system
US6801637B2 (en) 1999-08-10 2004-10-05 Cybernet Systems Corporation Optical body tracker
US7050606B2 (en) 1999-08-10 2006-05-23 Cybernet Systems Corporation Tracking and gesture recognition system particularly suited to vehicular control applications
US20010008561A1 (en) 1999-08-10 2001-07-19 Paul George V. Real-time object tracking system
US6950534B2 (en) 1998-08-10 2005-09-27 Cybernet Systems Corporation Gesture-controlled interfaces for self-service machines and other applications
US6681031B2 (en) 1998-08-10 2004-01-20 Cybernet Systems Corporation Gesture-controlled interfaces for self-service machines and other applications
US6316934B1 (en) 1998-09-17 2001-11-13 Netmor Ltd. System for three dimensional positioning and tracking
DE69936620D1 (en) 1998-09-28 2007-09-06 Matsushita Electric Ind Co Ltd Method and apparatus for segmenting hand gestures
WO2000034919A1 (en) 1998-12-04 2000-06-15 Interval Research Corporation Background estimation and segmentation based on range and color
US6147678A (en) 1998-12-09 2000-11-14 Lucent Technologies Inc. Video hand image-three-dimensional computer interface with multiple degrees of freedom
DE69840608D1 (en) 1998-12-16 2009-04-09 3Dv Systems Ltd Even Momentary photosensitive surface
US6570555B1 (en) 1998-12-30 2003-05-27 Fuji Xerox Co., Ltd. Method and apparatus for embodied conversational characters with multimodal input/output in an interface device
US6363160B1 (en) 1999-01-22 2002-03-26 Intel Corporation Interface using pattern recognition and tracking
US7003134B1 (en) 1999-03-08 2006-02-21 Vulcan Patents Llc Three dimensional object pose estimation which employs dense depth information
US6299308B1 (en) 1999-04-02 2001-10-09 Cybernet Systems Corporation Low-cost non-imaging eye tracker system for computer control
US6503195B1 (en) 1999-05-24 2003-01-07 University Of North Carolina At Chapel Hill Methods and systems for real-time structured light depth extraction and endoscope using real-time structured light depth extraction
US6476834B1 (en) 1999-05-28 2002-11-05 International Business Machines Corporation Dynamic creation of selectable items on surfaces
US6873723B1 (en) 1999-06-30 2005-03-29 Intel Corporation Segmenting three-dimensional video images using stereo
US6738066B1 (en) 1999-07-30 2004-05-18 Electric Plant, Inc. System, method and article of manufacture for detecting collisions between video images generated by a camera and an object depicted on a display
US7113918B1 (en) 1999-08-01 2006-09-26 Electric Planet, Inc. Method for video enabled electronic commerce
US6663491B2 (en) 2000-02-18 2003-12-16 Namco Ltd. Game apparatus, storage medium and computer program that adjust tempo of sound
US6633294B1 (en) 2000-03-09 2003-10-14 Seth Rosenthal Method and apparatus for using captured high density motion for animation
EP1152261A1 (en) 2000-04-28 2001-11-07 CSEM Centre Suisse d'Electronique et de Microtechnique SA Device and method for spatially resolved photodetection and demodulation of modulated electromagnetic waves
US6640202B1 (en) 2000-05-25 2003-10-28 International Business Machines Corporation Elastic sensor mesh system for 3-dimensional measurement, mapping and kinematics applications
US6731799B1 (en) 2000-06-01 2004-05-04 University Of Washington Object segmentation with background extraction and moving boundary techniques
US6788809B1 (en) 2000-06-30 2004-09-07 Intel Corporation System and method for gesture recognition in three dimensions using stereo imaging and color vision
DE60110425T2 (en) 2000-07-10 2006-03-09 Corporation For Laser Optics Research Systems ung method for speckle reduction due to bandwidth increase
US7227526B2 (en) 2000-07-24 2007-06-05 Gesturetek, Inc. Video-based image control system
US7058204B2 (en) 2000-10-03 2006-06-06 Gesturetek, Inc. Multiple camera control system
US7039676B1 (en) 2000-10-31 2006-05-02 International Business Machines Corporation Using video image analysis to automatically transmit gestures over a network in a chat or instant messaging session
US6539931B2 (en) 2001-04-16 2003-04-01 Koninklijke Philips Electronics N.V. Ball throwing assistant
US8035612B2 (en) 2002-05-28 2011-10-11 Intellectual Ventures Holding 67 Llc Self-contained interactive video display system
US7710391B2 (en) 2002-05-28 2010-05-04 Matthew Bell Processing an image utilizing a spatially varying pattern
US7259747B2 (en) 2001-06-05 2007-08-21 Reactrix Systems, Inc. Interactive video display system
US7170492B2 (en) 2002-05-28 2007-01-30 Reactrix Systems, Inc. Interactive video display system
US7348963B2 (en) 2002-05-28 2008-03-25 Reactrix Systems, Inc. Interactive video display system
JP3420221B2 (en) 2001-06-29 2003-06-23 株式会社コナミコンピュータエンタテインメント東京 Game apparatus and program
US6937742B2 (en) 2001-09-28 2005-08-30 Bellsouth Intellectual Property Corporation Gesture activated home appliance
US7607509B2 (en) 2002-04-19 2009-10-27 Iee International Electronics & Engineering S.A. Safety device for a vehicle
US7489812B2 (en) 2002-06-07 2009-02-10 Dynamic Digital Depth Research Pty Ltd. Conversion and encoding techniques
US7576727B2 (en) 2002-12-13 2009-08-18 Matthew Bell Interactive directed light/sound system
JP4235729B2 (en) 2003-02-03 2009-03-11 国立大学法人静岡大学 Distance image sensor
DE602004006190T8 (en) 2003-03-31 2008-04-10 Honda Motor Co., Ltd. The device, method and program for gesture recognition
US8072470B2 (en) 2003-05-29 2011-12-06 Sony Computer Entertainment Inc. System and method for providing a real-time three-dimensional interactive environment
JP4355341B2 (en) 2003-05-29 2009-10-28 本田技研工業株式会社 Visual tracking using the depth data
EP1631937A4 (en) 2003-06-12 2010-09-08 Honda Motor Co Ltd Target orientation estimation using depth sensing
DE60333632D1 (en) * 2003-09-01 2010-09-16 Avalon Photonics Ag High-energy top emitter VCSEL
WO2005041579A3 (en) 2003-10-24 2006-10-05 Matthew Bell Method and system for processing captured image information in an interactive video display system
KR20070057074A (en) * 2004-03-06 2007-06-04 헨처-리쏘췐코 파텐트페어발퉁스 게엠베하 운트 코. 카게 Device for homogenizing light and arrangement for illuminating or focussing with said device
CN100573548C (en) 2004-04-15 2009-12-23 格斯图尔泰克股份有限公司 Method and equipment for tracking bimanual movements
US7308112B2 (en) 2004-05-14 2007-12-11 Honda Motor Co., Ltd. Sign based human-machine interaction
DE102004034253A1 (en) * 2004-07-14 2006-02-09 Hentze-Lissotschenko Patentverwaltungs Gmbh & Co. Kg Device for the illumination of a surface
US7704135B2 (en) 2004-08-23 2010-04-27 Harrison Jr Shelton E Integrated game system, method, and device
KR20060070280A (en) 2004-12-20 2006-06-23 한국전자통신연구원 Apparatus and its method of user interface using hand gesture recognition
EP2487624A1 (en) 2005-01-07 2012-08-15 Qualcomm Incorporated(1/3) Detecting and tracking objects in images
WO2006074310A3 (en) 2005-01-07 2008-02-21 Gesturetek Inc Creating 3d images of objects by illuminating with infrared patterns
WO2006074290A3 (en) 2005-01-07 2007-05-18 Gesturetek Inc Optical flow based tilt sensor
CN101536494B (en) 2005-02-08 2017-04-26 奥布隆工业有限公司 A system and method for gesture-based control system
JP4686595B2 (en) 2005-03-17 2011-05-25 ザ オハイオ ステート ユニバーシティー リサーチ ファウンデーション Pose estimation based on the critical point analysis
JP5038296B2 (en) 2005-05-17 2012-10-03 クアルコム,インコーポレイテッド Orientation sensitive signal output
JP5161767B2 (en) 2005-05-31 2013-03-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Broadband laser lamp with a reduction of speckle
DE602005010696D1 (en) 2005-08-12 2008-12-11 Mesa Imaging Ag Sensitive, fast pixel for use in an image sensor
US20080026838A1 (en) 2005-08-22 2008-01-31 Dunstan James E Multi-player non-role-playing virtual world games: method for two-way interaction between participants and multi-player virtual world games
US7450736B2 (en) 2005-10-28 2008-11-11 Honda Motor Co., Ltd. Monocular tracking of 3D human motion with a coordinated mixture of factor analyzers
US7701439B2 (en) 2006-07-13 2010-04-20 Northrop Grumman Corporation Gesture recognition simulation system and method
JP5395323B2 (en) 2006-09-29 2014-01-22 ブレインビジョン株式会社 The solid-state imaging device
US7412077B2 (en) 2006-12-29 2008-08-12 Motorola, Inc. Apparatus and methods for head pose estimation and head gesture detection
US7729530B2 (en) 2007-03-03 2010-06-01 Sergey Antonov Method and apparatus for 3-D data input to a personal computer with a multimedia oriented operating system
WO2009007741A1 (en) * 2007-07-09 2009-01-15 Bae Systems Plc Improvements relating to optical vector matrix multipliers
US7852262B2 (en) 2007-08-16 2010-12-14 Cybernet Systems Corporation Wireless mobile indoor/outdoor tracking system
CN101254344B (en) 2008-04-18 2010-06-16 李刚 Game device of field orientation corresponding with display screen dot array in proportion and method
US7965754B1 (en) * 2009-04-21 2011-06-21 The Boeing Company Spherical array laser source
US9557574B2 (en) 2010-06-08 2017-01-31 Microsoft Technology Licensing, Llc Depth illumination and detection optics
US8308302B2 (en) 2010-07-13 2012-11-13 Microvision, Inc. Laser scanning imaging system with reduced speckle
US20120017153A1 (en) 2010-07-15 2012-01-19 Ken Matsuda Dynamic video editing
US20120154535A1 (en) * 2010-12-15 2012-06-21 Microsoft Corporation Capturing gated and ungated light in the same frame on the same photosurface
US20120206782A1 (en) 2011-02-16 2012-08-16 Hong Kong Applied Science and Technology Research Institute Company Limited Device for reducing speckle effect in a display system
US9462253B2 (en) * 2013-09-23 2016-10-04 Microsoft Technology Licensing, Llc Optical modules that reduce speckle contrast and diffraction artifacts
US9443310B2 (en) * 2013-10-09 2016-09-13 Microsoft Technology Licensing, Llc Illumination modules that emit structured light
US9660418B2 (en) * 2014-08-27 2017-05-23 Align Technology, Inc. VCSEL based low coherence emitter for confocal 3D scanner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1184706A2 (en) * 2000-08-30 2002-03-06 Dainippon Screen Mfg. Co., Ltd. Illuminating apparatus
WO2005085934A1 (en) * 2004-03-06 2005-09-15 Hentze-Lissotschenko Patentverwaltungs Gmbh & Co. Kg Device for producing a linear focussing area for a laser light source
EP1734771A1 (en) * 2005-06-14 2006-12-20 SONY DEUTSCHLAND GmbH Illumination optics, illumination unit and image generation unit
US20120051588A1 (en) * 2009-12-21 2012-03-01 Microsoft Corporation Depth projector system with integrated vcsel array
US20130038941A1 (en) * 2011-08-09 2013-02-14 Primesense Ltd. Lens Array Projector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date Type
US20150085075A1 (en) 2015-03-26 application
US9462253B2 (en) 2016-10-04 grant
US20160341829A1 (en) 2016-11-24 application

Similar Documents

Publication Publication Date Title
US20100278393A1 (en) Isolate extraneous motions
US20120089392A1 (en) Speech recognition user interface
US20120105473A1 (en) Low-latency fusing of virtual and real content
US20100238182A1 (en) Chaining animations
US20120309532A1 (en) System for finger recognition and tracking
US20130050426A1 (en) Method to extend laser depth map range
US8259163B2 (en) Display with built in 3D sensing
US20110169726A1 (en) Evolving universal gesture sets
US20110289455A1 (en) Gestures And Gesture Recognition For Manipulating A User-Interface
US20090077504A1 (en) Processing of Gesture-Based User Interactions
US8320621B2 (en) Depth projector system with integrated VCSEL array
US8417058B2 (en) Array of scanning sensors
US20120320080A1 (en) Motion based virtual object navigation
US20120110456A1 (en) Integrated voice command modal user interface
US20110301934A1 (en) Machine based sign language interpreter
US20100306715A1 (en) Gestures Beyond Skeletal
US7996793B2 (en) Gesture recognizer system architecture
US20100306685A1 (en) User movement feedback via on-screen avatars
US20110151974A1 (en) Gesture style recognition and reward
US20110317871A1 (en) Skeletal joint recognition and tracking system
US20110314381A1 (en) Natural user input for driving interactive stories
US20100199231A1 (en) Predictive determination
US20110295693A1 (en) Generating Tailored Content Based On Scene Image Detection
US8145594B2 (en) Localized gesture aggregation
US20100281439A1 (en) Method to Control Perspective for a Camera-Controlled Computer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14780711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14780711

Country of ref document: EP

Kind code of ref document: A1