WO2015040664A1 - Photo-alignment irradiation device and method for adjusting aperture of photo-alignment irradiation device - Google Patents

Photo-alignment irradiation device and method for adjusting aperture of photo-alignment irradiation device Download PDF

Info

Publication number
WO2015040664A1
WO2015040664A1 PCT/JP2013/074997 JP2013074997W WO2015040664A1 WO 2015040664 A1 WO2015040664 A1 WO 2015040664A1 JP 2013074997 W JP2013074997 W JP 2013074997W WO 2015040664 A1 WO2015040664 A1 WO 2015040664A1
Authority
WO
WIPO (PCT)
Prior art keywords
partial shielding
shielding member
opening
alignment
polarized light
Prior art date
Application number
PCT/JP2013/074997
Other languages
French (fr)
Japanese (ja)
Inventor
義和 大谷
瑞樹 中村
Original Assignee
信越エンジニアリング株式会社
株式会社エフケー光学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越エンジニアリング株式会社, 株式会社エフケー光学研究所 filed Critical 信越エンジニアリング株式会社
Priority to PCT/JP2013/074997 priority Critical patent/WO2015040664A1/en
Priority to TW103128078A priority patent/TW201523098A/en
Publication of WO2015040664A1 publication Critical patent/WO2015040664A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs

Definitions

  • the present invention is used in the field of manufacturing a liquid crystal display panel.
  • an alignment film is imparted with orientation so that liquid crystal molecules are aligned in a desired angle and direction on a substrate used in a liquid crystal display device. It is related with the photo-alignment irradiation apparatus for this.
  • the alignment film applied to the substrate surface is irradiated with polarized light to perform alignment processing.
  • polarized light is generated by a wire grid polarizer for a light source that irradiates a rod-shaped lamp.
  • the light emitted from the rod-shaped lamp can have a relatively uniform illuminance along the long axis, but there is a problem that the illuminance varies due to variations in the performance of the wire grid polarizer itself.
  • there is one in which light shielding means arranged side by side along one direction can be adjusted in a direction intersecting with the arranged one direction (Patent Document 1).
  • an ultraviolet lamp that irradiates substantially parallel light from the emission part of the light source toward the substrate irradiation surface
  • the irradiation light is substantially parallel light, so that high-quality light can be emitted, and the wavelength band is very little dependent. Since polarized irradiation light is generated by a star-type polarizer, there is an advantage that polarized light in a wide wavelength band can be used.
  • the ultraviolet lamp that irradiates substantially parallel light from the light emitting part toward the substrate irradiation surface a type in which a plurality of lamps are arranged at least along the long axis direction of the irradiation region has good light quality and heat characteristics.
  • ultraviolet lamps that irradiate substantially parallel light have slight variations in illuminance among individuals, and by arranging a plurality of these along at least the long axis direction of the irradiation region, the ultraviolet lamps are aligned along the long axis direction of the irradiation region. Illuminance variation occurs.
  • a plurality of lamp groups arranged along the long axis direction are further arranged in the short axis direction while being slightly shifted in the long axis direction, and the substantially rectangular irradiation areas of the respective rows are overlapped to follow the long axis direction. It is possible to alleviate the uneven illuminance. Further, there is also a technique in which variation is suppressed by arranging multiple rows in a direction orthogonal to the substrate transport direction without overlapping the substantially rectangular irradiation regions of each row (Patent Document 2).
  • the arrangement of a plurality of lamp groups arranged along the long axis direction and the arrangement of a very large number of rows and the overlapping of the substantially rectangular irradiation areas in each row means that the incident angle to the Brewster type polarizer varies.
  • the meaning of “quality light”, which is the advantage of the Brewster type is impaired, and the light receiving area of the Brewster type polarizer is reduced. This is not practical because it needs to be large and the size of the polarizer in the width direction becomes very large.
  • the lamp of the irradiation light source at a very far distance from the substrate or the Brewster type polarizer, and make the incident angle to the Brewster type polarizer acute. In this case, the height of the apparatus becomes very high, which is not practical.
  • the illuminance itself does not depend on the variation in the appropriate illuminance range, and the integration represented by the product of the illuminance and the irradiation time. Since the factor due to the amount of light is large, it has been found that even if the illuminance varies within an appropriate illuminance range, a stable alignment process can be realized by keeping the integrated light amount constant.
  • the present invention adjusts the position of the partial shielding member so that the amount of polarized light irradiated from the opening is suitable for the alignment process in the photo-alignment irradiation apparatus provided with the partial shielding member capable of adjusting the shielding amount of the opening.
  • the photo-alignment irradiation apparatus employs the following configuration.
  • a stage a polarized light irradiation unit, a scanning unit, a plurality of partial shielding members, a photosensor, and a control unit;
  • the stage is capable of placing a substrate on which an alignment film is formed,
  • the polarized light irradiation section is provided with an opening for emitting polarized light on the side facing the stage
  • the scanning unit is capable of relatively moving the polarized light irradiation unit and the stage,
  • Each of the partial shielding members is configured to be movable so as to change a shielding amount for shielding a part of the opening,
  • the optical sensor can measure the illuminance of incident light,
  • the control unit can perform an alignment process and a measurement process,
  • the alignment treatment irradiates the substrate with polarized light emitted from the opening while relatively moving the polarized light irradiation unit and the stage in the scanning unit, In the measurement process, at
  • the said control part determines the shielding amount based on the integrated light quantity measured for every said partial shielding member, and performs the adjustment process which adjusts the position of the said partial shielding member based on the determined shielding amount.
  • the adjustment process adjusts the position by moving the partial shielding member in the direction of shielding the opening from the position of the partial shielding member in the measurement process.
  • the shielding amount of each partial shielding amount is determined so that the shielding amount of the partial shielding member for which the lower limit value of the integrated light quantity is measured becomes the minimum shielding amount.
  • the photo-alignment irradiation apparatus is Having a protrusion that moves with the movement by the scanning unit;
  • the partial shielding member is movable in the relative movement direction of the polarized light irradiation unit by the scanning unit and the stage, In the adjustment process, the position of the partial shielding member is adjusted by moving the scanning unit in a state where the projection is in contact with the partial shielding member.
  • the protruding portion can be changed to a protruding state and a stored state on the partial shielding member side,
  • the projection is moved to a position facing the opening in the retracted state, and the scanning is performed by the scanning unit in a state where the protrusion is in contact with the opening-side end of the partial shielding member.
  • the position of the partial shielding member is adjusted by relatively moving the polarized light irradiation unit and the stage.
  • the protrusion is disposed on a movable portion that is possible in the direction in which the partial shielding members are arranged.
  • the optical sensor is disposed in the moving portion where the protrusion is disposed.
  • the partial shielding member has an overlapping portion between the adjacent partial shielding members.
  • the photo-alignment irradiation apparatus is A stage, a polarized light irradiation unit, a scanning unit, a plurality of partial shielding members, a protrusion, and a control unit;
  • the stage is capable of placing a substrate on which an alignment film is formed,
  • the polarized light irradiation unit is provided with an opening for emitting polarized light on the side facing the stage,
  • the scanning unit is capable of relatively moving the polarized light irradiation unit and the stage,
  • Each of the partial shielding members is movable in the relative movement direction of the polarized light irradiation unit by the scanning unit and the stage so as to change a shielding amount for shielding a part of the opening.
  • the protrusion moves as the scanning unit moves
  • the control unit can perform an alignment process and an adjustment process
  • the alignment treatment irradiates the substrate placed on the stage with polarized light emitted from the opening while moving the polarized light irradiation unit and the stage relatively in the scanning unit
  • the adjustment process the partial shielding member is moved by moving the scanning unit in a state where the projection is in contact with the partial shielding member.
  • the opening amount adjustment method of the photo-alignment irradiation apparatus is: An aperture adjustment method for a photo-alignment irradiation apparatus comprising a stage, a polarized light irradiation unit, a scanning unit, a plurality of partial shielding members, and an optical sensor,
  • the stage is capable of placing a substrate on which an alignment film is formed
  • the polarized light irradiation section is provided with an opening for emitting polarized light on the side facing the stage
  • the scanning unit is capable of relatively moving the polarized light irradiation unit and the stage
  • Each of the partial shielding members is configured to be movable so as to change a shielding amount for shielding a part of the opening
  • the optical sensor can measure the illuminance of incident light, While irradiating the substrate with polarized light emitted from the opening while relatively moving the polarized light irradiation unit and the stage in the scanning unit, At each partial shielding member position, the scanning unit receives
  • the shielding amount of each of the partial shielding amounts is determined so that the shielding amount of the partial shielding member for which the lower limit value of the integrated light quantity is measured is the minimum shielding amount.
  • the optical sensor receives the polarized light emitted from the opening while relatively moving the stage and the polarized light irradiation unit in the scanning unit, By measuring the integrated light amount obtained by temporally integrating the illuminance measured by the optical sensor, it is possible to measure the integrated light amount required for adjusting the position of each partial shielding member. Then, by adjusting the position of each partial shielding member based on the measured integrated light quantity, it is possible to make the integrated light quantity uniform and perform stable orientation processing.
  • the position of each partial shielding member is adjusted using the protrusions that use the movement of the scanning unit that allows the polarized light irradiation unit and the stage to move relative to each other.
  • the structure which moves a partial shielding member is not required, but it becomes possible to aim at simplification of a photo-alignment irradiation apparatus.
  • a scanning unit having excellent movement accuracy is often used, it is possible to improve the position adjustment accuracy of the partial shielding member by using such a scanning unit.
  • top view of the photo-alignment irradiation apparatus concerning the embodiment of the present invention
  • Side sectional view of a photo-alignment irradiation apparatus according to an embodiment of the present invention Front sectional view of a photo-alignment irradiation apparatus according to an embodiment of the present invention
  • the block diagram which shows the control structure of the photo-alignment irradiation apparatus which concerns on embodiment of this invention.
  • the flowchart which shows the light quantity adjustment process which concerns on embodiment of this invention The flowchart which shows the initialization process which concerns on embodiment of this invention Side sectional view which shows the 2nd opening opening process by the adjustment part which concerns on embodiment of this invention The figure which shows the 2nd opening opening process by the adjustment part which concerns on embodiment of this invention. Side sectional view which shows the measurement process by the optical sensor which concerns on embodiment of this invention The figure which shows the measurement process by the optical sensor which concerns on embodiment of this invention. Side sectional view which shows the 2nd opening closing process by the adjustment part which concerns on embodiment of this invention The figure which shows the 2nd opening closing process by the adjustment part which concerns on embodiment of this invention. The figure which shows the data structure of the partial shielding member related information which concerns on embodiment of this invention. The figure explaining the relationship between the integrated light quantity and shielding amount which concerns on embodiment of this invention The flowchart which shows the light quantity adjustment process which concerns on other embodiment of this invention. The flowchart which shows the partial shielding member reproduction process which concerns on other embodiment of this invention.
  • the photo-alignment irradiation apparatus 1 of the present embodiment includes a polarized light irradiation unit 2, a stage 11, and a scanning unit as main components.
  • the polarized light irradiation unit 2 irradiates the alignment film formed on the surface of the substrate S with ultraviolet rays through the second opening 21B formed on the stage 11 side, thereby imparting alignment characteristics to the alignment film. It is.
  • the surface of the stage 11 (the surface of the substrate S) is the XY plane, and the axis orthogonal to the XY plane is the Z axis.
  • the moving direction of the stage 11 is set in the Y direction.
  • a substrate S to be exposed is installed on the stage 11.
  • the substrate S is installed so that the scanning direction is the vertical direction or the horizontal direction when used as a liquid crystal display device.
  • an alignment film made of a film-like polymer made of a photoreactive polymer such as polyimide is formed on the surface of the substrate S to be exposed.
  • this alignment film is irradiated with polarized ultraviolet rays to modify the polymer film, and liquid crystal molecules are applied onto the polymer film in the subsequent steps (not shown), the liquid crystal molecules are affected by the polymer film in a specific direction. Align (orient).
  • a polymer film to which this alignment characteristic is imparted is referred to as an alignment film.
  • a polymer film before imparting the alignment characteristic is also referred to as an alignment film, and in this specification, before the alignment characteristic is imparted.
  • These polymer films are also referred to as alignment films.
  • the scanning unit is a member that relatively moves the polarized light irradiation unit 2 that irradiates ultraviolet rays and the stage 11.
  • the polarized light irradiation unit 2 is fixed with respect to the base 19, and the scanning unit moves the stage 11 with respect to the base 19 in the Y-axis direction.
  • the stage 11 is fixed on LM blocks 15a to 15d that move on the two LM rails 14a and 14b.
  • a ball screw 16 is used as a scanning unit that moves the stage 11.
  • the ball screw 16 is provided through a receiving portion provided below the stage 11.
  • the ball screw 16 is supported at one end by a bearing 18 and at the other end by a ball screw driving unit 17, and the stage 11 is moved in the Y-axis direction by rotation control of the ball screw driving unit 17.
  • the scanning unit of this embodiment is configured to move the stage 11 by fixing the polarization beam irradiation unit 2 in order to move the polarization beam irradiation unit 2 and the stage 11 relatively.
  • the polarized light irradiation unit 2 and the stage 11 may both be moved.
  • the ball screw 16 is employed in the scanning unit, various forms may be employed as means for moving the stage 11 or the polarized light irradiation unit 2.
  • a linear motor is preferably employed as the scanning unit in the present invention because it generates little vibration during driving and has high positioning accuracy.
  • FIG. 2 shows a state in which the substrate S passes through a position facing the second opening 21B (corresponding to the “opening” in the present invention). Ultraviolet rays are emitted from the second opening 21B and applied to the surface of the substrate S passing under the first opening 21B.
  • 3 and 4 are side cross-sectional views of the photo-alignment irradiation apparatus 1 according to the embodiment of the present invention, and in particular, are diagrams for explaining the internal configuration of the polarized light irradiation unit 2.
  • 3 shows a cross section in the YZ plane
  • FIG. 4 shows a cross section in the ZX plane.
  • the polarized light irradiation unit 2 has two chambers divided upward and downward at the first opening 21A portion in the irradiation unit housing 21, and a light source unit 22 is disposed in the upper chamber.
  • a plurality (n) of light source units 22 are arranged in the X-axis direction.
  • Each light source unit 22 includes an ultraviolet lamp 22a, a reflecting mirror 22b, and a filter 22c.
  • the ultraviolet lamp 22a of the present embodiment belongs to the type of point light source, and the ultraviolet light emitted from the ultraviolet lamp 22a is adjusted by the reflecting mirror 22b to become parallel light or partial parallel light, and then filtered. 22c is incident.
  • the ultraviolet lamp 22a as a point light source is used for the light source part 22
  • various forms such as the form which arrange
  • a plurality of light source units 22 are arranged in the X-axis direction, but a plurality of sets of light source units 22 arranged in the X-axis direction may be arranged in the Y-axis direction. At that time, by shifting the arrangement of the light source units 22 in the X-axis direction between the sets, it is possible to suppress the irradiation unevenness of the ultraviolet rays generated between the adjacent light source units 22.
  • the filter 22c has a function of adjusting the ultraviolet rays irradiated from the ultraviolet lamp 22a to characteristics suitable for orientation.
  • a function of transmitting a predetermined wavelength and a lens function are provided, but the function of these filters 22c can be appropriately selected as necessary.
  • a polarizing unit 24 is disposed in this lower chamber.
  • the polarization unit 24 is a means for extracting ultraviolet light polarized in a predetermined direction from incident ultraviolet light (non-polarized light), and in this embodiment, a Brewster polarizer is used. Therefore, it is arranged with a predetermined angle with respect to the ultraviolet rays incident from the light source unit 22.
  • the ultraviolet rays incident on the polarizing unit 24 are divided into ultraviolet rays that reflect the polarizing unit 24 and ultraviolet rays that pass through the polarizing unit 24 for each polarization direction.
  • the ultraviolet rays that have passed through the polarizing portion 24 are used for the alignment treatment.
  • the ultraviolet light polarized by the polarizing unit 24 in this way is emitted from the second opening 21 ⁇ / b> B provided below the irradiation unit housing 21 to the stage 11 side.
  • FIG. 3 shows a state in which the substrate S placed on the stage 11 is in a position facing the second opening 21B just as in FIG.
  • the polarized light irradiation unit 2 of the present embodiment is provided with a shielding member 23 capable of shielding the first opening 21A between the upper chamber and the lower chamber of the irradiation unit housing 21.
  • the first opening 21A is open, but the first opening 21 can be shielded by sliding the shielding member 23 in the direction of the arrow.
  • the first opening 21 ⁇ / b> A can be shielded by the shielding member 23.
  • the first opening 21A is interrupted by shielding the first opening 21A with the shielding member 23, and the first opening 21A is opened when ultraviolet irradiation is necessary. By opening it, it becomes possible to quickly recover the ultraviolet irradiation. Further, in normal payment, it is possible to protect the components of the apparatus from ultraviolet rays by not irradiating the ultraviolet rays during unnecessary time.
  • the alignment characteristics of the substrate S to be irradiated with ultraviolet light will be uneven due to unevenness of the integrated light quantity in a band (sensitive band) where the degree of contribution in the alignment process is large.
  • the photo-alignment irradiation apparatus 1 of the present embodiment is provided with a plurality of partial shielding members 25 in order to adjust the opening amount of the second opening 21B of the irradiation unit casing 21 in order to suppress such illuminance unevenness. .
  • the partial shielding member 25 is provided on the right side of the second opening 21B of the irradiation unit casing 21 as shown in FIG. 3, and the opening amount of the second opening 21B can be adjusted by moving left and right. In other words, the partial shielding member 25 can adjust the shielding amount on the second opening 21B side.
  • m (25 # 1 to 25 # m) of the partial shielding members 25 are arranged in the X-axis direction, and each partial shielding member 25 is independent. Thus, it can move in the Y-axis direction.
  • the positions of the partial shielding members 25 # 1 to 25 # m arranged in the X-axis direction the amount of ultraviolet light applied to the substrate S from the second opening 21B is adjusted in the X-axis direction. It becomes possible.
  • FIG. 5 schematically shows the arrangement of the second opening 21B and the partial shielding members 25 # 1 to 25 # m.
  • FIG. 5 shows the opening relationship for the partial shielding member 25 # 2 located second from the left.
  • an opening having an area of L ⁇ W is formed in the second opening 21B.
  • the position of each partial shielding member 25 # 1 to 25 # m can be adjusted in the Y-axis direction, the distance L in the Y-axis direction at the second opening 21B can be adjusted.
  • FIG. 6 shows a configuration around the partial shielding member 25 according to the embodiment of the present invention.
  • FIG. 6A shows a cross-sectional view in the YZ plane.
  • a rail 252 is fixed below the irradiation unit housing 21.
  • a movable portion 253 that is slidable in the Y-axis direction is provided, and the partial shielding member 25 is fixed to the movable portion 253 via a spacer 251.
  • the partial shielding member 25 is a plate-like member made of a material such as metal or resin.
  • the partial shielding member 25 is fixed to the movable portion 253 with two bolts (a fixing bolt 254 and a stopper bolt 255).
  • the stopper bolt 255 has a function of fixing the movable portion 253 to the rail.
  • the position of the partial shielding member 25 is adjusted by loosening the stopper bolt 255 and sliding the movable portion 253 on the rail. After the position adjustment, the partial shielding member 25 can be firmly fixed by tightening the stopper bolt 255.
  • FIG. 6B shows a state where the arrangement of the partial shielding member 25 is viewed from the negative direction of the Y axis, that is, from the second opening 21B.
  • each partial shielding member 25 is fixed to the movable portion 253 via the spacer 251.
  • the heights in the Z-axis direction of the spacers 251 used for fixing are made different so that the positions in the Z-axis direction between the adjacent partial shielding members 25 are changed. It is different.
  • An overlapping region is formed between adjacent partial shielding members 25 so that light does not leak between the partial shielding members 25 when light is shielded by the plurality of partial shielding members 25.
  • the position adjustment of the partial shielding member 25 may be performed manually, but in the present embodiment, an automatic adjustment mechanism by the adjustment unit 3 is used.
  • the adjustment unit 3 is arranged on the side surface of the stage 11 as shown in FIGS. 1 to 4 and is movable in the Y-axis direction as the stage 11 moves.
  • FIG. 3 shows a cross-sectional configuration of the adjustment unit 3.
  • the adjustment unit 3 of the present embodiment includes a moving unit 31 that enables movement in the X-axis direction.
  • the moving unit 31 is provided with an optical sensor 32 and an opening adjusting unit 33. By moving the moving part 31 in the X-axis direction, the adjusting part 3 can be moved to the position of the partial shielding member 25 to be measured or adjusted.
  • the optical sensor 32 installed in one adjusting unit 3 and the opening adjusting unit 33 can be used for the plurality of partial shielding members 25. That is, the optical sensor 32 and the opening adjustment unit 33 are installed on one member, but the optical sensor 32 and the opening adjustment unit 33 may be installed on another member. A plurality of optical sensors 32 may be provided. It is possible to simultaneously measure the integrated light quantity at the positions of the plurality of partial shielding members 25. In addition, since the optical sensor 32 and the moving means of the opening adjustment unit 33 are also used, the configuration is simplified.
  • the optical sensor 32 is a sensor that measures the illuminance of incident light, and the illuminance measurement in the photo-alignment irradiation apparatus 1 of the present embodiment is performed by moving the stage 11 in the Y-axis direction and moving the optical sensor 32 to the second. This is done by moving to a position below the opening 21B.
  • the optical sensor 32 is preferably provided with an optical filter corresponding to the sensitive band in consideration of the sensitive band of the alignment film.
  • an optical filter By providing an optical filter in the optical sensor 32, it is possible to measure the illuminance of ultraviolet rays in the sensitive band of the alignment film.
  • the sensitive bands may exist in different bands. In that case, an optical filter suitable for the optical sensor 32, that is, a filter suitable for the sensitive band to be used is used. Therefore, it is preferable that the optical filter of the optical sensor 32 is replaceable or variable to correspond to a plurality of sensitive bands.
  • the opening adjusting portion 33 is a means that can open and close the partial shielding member 25, that is, moves in the Y-axis direction.
  • the opening adjusting portion 33 includes a protrusion 33a that can be expanded and contracted in the Z-axis direction.
  • the opening amount of the second opening 21 ⁇ / b> B is changed by pressing the protruding portion 33 a against the end portion of the partial shielding member 25.
  • the opening adjustment unit 33 according to the present embodiment is configured to use the movement of the stage 11 by the scanning unit, and there is no need to separately provide a member for moving the opening adjustment unit 33. Therefore, the configuration can be simplified and the cost can be reduced. Further, since the movement by the scanning unit with high movement accuracy is used, the partial shielding member 25 can be moved with high precision.
  • the movement of the opening adjusting portion 33 relative to the partial shielding member 25 is indicated by a broken line.
  • the stage 11 is moved in the negative Y-axis direction with the projection 33a being in contact with the partial shielding member 25 at the position (c).
  • the partial shielding member 25 can be moved in a direction to shield the opening 21B.
  • the protrusion 33a interferes with the configuration of the stopper bolt 255 and the like and the partial shielding member 25 itself.
  • the position of the partial shielding member 25 can be adjusted at both the positions (a) and (c) by lowering (accommodating) the projection 33a as shown in (b).
  • the partial shielding member 25 is moved in the direction of opening the second opening 21B by moving the stage 11 in the positive Y-axis direction with the projection 33a in contact with the partial shielding member 25. Can be moved.
  • the protrusion 33a by allowing the protrusion 33a to expand and contract in the Z-axis direction, the protrusion 33a can be brought into contact with both ends of the partial shielding member 25 as shown in FIGS.
  • the shielding member 25 is movable in both the positive and negative directions of the Y axis.
  • the configuration is not limited to such a configuration, and the opening adjustment portion 33 may be configured to use a protrusion 33a whose position is fixed in the Z-axis direction. In that case, it is possible to adjust the position of the partial shielding member 25 in the direction of closing the second opening 21B at the position (c), and the position adjustment in the reverse direction is performed manually.
  • FIG. 7 shows a control configuration of the photo-alignment irradiation apparatus 1 according to the embodiment of the present invention.
  • the control unit 41 can be configured using a so-called computer, and includes a storage unit such as a CPU, a RAM, a ROM, and a hard disk.
  • the storage unit stores programs for executing various processes and information (data).
  • Connected to the control unit 41 are a display unit 42 for displaying various information to the user and an input unit 43 for inputting various information and instructions from the user.
  • the display unit 42 and the input unit 43 may be configured as a touch panel screen.
  • control unit 41 As a control target of the control unit 41, it is possible to perform rotation control of the ball screw 16 by the ball screw driving unit 17, rotation control of the stage 11 by the rotation unit 12, and lighting control of the ultraviolet lamp 22a. Further, as the control related to the adjustment unit 3, the movement unit 31 can move the adjustment unit 3 in the X-axis direction, and the light sensor 32 can measure the amount of incident light, and the elevation control of the projection 33a of the opening adjustment unit 33 can be performed. It is.
  • an alignment process for the alignment film of the substrate S and a light amount adjustment process for adjusting the amount of ultraviolet light applied to the alignment film are executed.
  • This light amount adjustment process before the alignment process it is possible to make the amount of ultraviolet light uniform in the alignment process.
  • FIG. 8 is a flowchart showing the light amount adjustment processing according to the embodiment of the present invention.
  • the light amount adjustment process is started based on a user instruction from the input unit 43.
  • the partial shielding member 25 according to the present embodiment employs a fixing mechanism using the stopper bolt 255 as described with reference to FIG. 6, before starting the light amount adjustment process, each of the partial shielding members 25 is manually loosened.
  • the partial shielding members 25 # 1 to 25 # m are set in a movable state.
  • the fixing mechanism of the partial shielding members 25 # 1 to 25 # m may be an automatic mechanism by the control unit 41.
  • a fixing mechanism may be provided for each of the partial shielding members 25 # 1 to 25 # m, or a fixing mechanism that fixes the positions of the plurality of partial shielding members 25 # 1 to 25 # m together may be used.
  • the light amount adjustment process is not limited to a user instruction, and may be started at a start time designated in advance from the input unit 43, such as a scheduled process. By setting the start time before the start of work or the like, it is possible to start the alignment process with the light amount adjusted at the start of work.
  • the reference integrated light amount is a reference for making the integrated light amounts coincide between the partial shielding members 25 or keeping them within a predetermined error range.
  • the absolute amount of the integrated light amount is designated, or the integrated light amount measured for each position of the partial shielding member 25 is adjusted to which integrated light amount (for example, the minimum integrated light amount is adjusted or each integrated light amount is adjusted). It is conceivable to specify that the amount of light is within ⁇ ⁇ %.
  • FIG. 9 is a flowchart showing the initialization process according to the embodiment of the present invention.
  • the ultraviolet lamp 22a is turned on and waits until the illuminance of the irradiated ultraviolet light is stabilized, and the shielding amount by each of the partial shielding members 25 # 1 to 25 # m is 0, that is, the second opening 21B is opened.
  • the partial shielding members 25 # 1 to 25 # m are moved so as to be fully opened.
  • the second opening 21B is fully opened, the integrated light quantity at the position corresponding to each partial shielding member 25 is measured, and each partial shielding member 25 is closed based on the measurement result. It is possible to make the light quantity uniform while the light quantity from the two openings 21B is large.
  • FIGS. 10A and 11A show the state of the second opening opening process for moving the partial shielding member 25 in the direction to open the second opening 21B.
  • FIG. 11 shows a state in which the second opening opening process is being executed for the partial shielding member 25 # 2 located second from the left.
  • FIGS. 10A and 11A are in an initial state, and the protrusion 33a of the opening adjustment portion 33 is in a retracted state.
  • the stage 11 With the projection 33a stored, the stage 11 is moved by the scanning unit, thereby moving the opening adjustment unit 33 to a position facing the second opening 21B (S202). At this time, it is preferable to move the partial shielding member 25 to the inner side of the position where the partial shielding member 25 can project to the second opening 21B side so as not to interfere (collision) with the partial shielding member 25.
  • the control unit 41 After moving the stage by the scanning unit, the control unit 41 causes the projection 33a to protrude from the opening adjustment unit 33 (S203).
  • FIGS. 10B and 11B show a state in which the protrusion 33a protrudes in the second opening 21B.
  • the process of moving each of the partial shielding members 25 # 1 to 25 # m to the initial position is thus performed by moving the protrusion 33a to the inner side of the second opening 21B, so that the partial shielding member 25 # is moved to the left side of the partial shielding member 25 in FIG. This is done by bringing the protrusion 33a into contact.
  • the moving unit 31 moves the adjusting unit 3 to the position of the i-th partial shielding member 25 # 1 in the X-axis direction (S205).
  • the stage 11 is moved by the scanning unit to be moved to the initial position of the partial shielding member 25 # 1 (in this embodiment, the position where the second opening 21B is fully opened).
  • 10C and 11C show a state where the partial shielding member 25 is moved by the movement of the protrusion 33a.
  • S205 and S206 for each partial shielding member 25 all the partial shielding members 25 # 1 to 25 # m are moved to the initial positions, and the second opening 21B is fully opened.
  • the projection 33a is stored, the stage 11 is moved by the scanning unit, and the opening projection 33 is moved to FIG. ) To the initial position in FIG. 11A, and the initialization process (S200) ends.
  • the measurement process of this embodiment is a process of measuring the integrated light amount corresponding to the position of each partial shielding member 25 for each position.
  • the illuminance at one or a plurality of locations corresponding to each position of each partial shielding member 25 may be measured by the optical sensor 32.
  • the integrated light amount at a certain location is scanned while scanning with ultraviolet rays. By measuring the amount of light, it is possible to measure the amount of light received by a certain location on the substrate S in the alignment process, and the light amount measurement conforms to the actual alignment process.
  • FIG. 12 and 13 show the state of the measurement process for measuring the integrated light amount using the optical sensor 32.
  • FIG. 13 the position of the adjusting unit 3 indicated by reference signs A, B, and C corresponds to FIGS.
  • FIG. 13 shows a state where the measurement process is being executed for the partial shielding member 25 # 2 located second from the left.
  • the moving unit 31 moves the adjusting unit 3 to the position of the i-th partial shielding member 25 # 1 in the X-axis direction (S103).
  • it is preferable to position the measurement position of the optical sensor 32 so as to be the center position of the width of the partial shielding member 25 in the X-axis direction.
  • the stage 11 is moved by the scanning unit, and as shown in FIG. 13, the ultraviolet irradiation region irradiated from the second opening 21 ⁇ / b> B as A ⁇ B ⁇ C.
  • the integrated light quantity (unit: mW / cm 2 ) of the ultraviolet light emitted from the second opening 21B that is, the integrated illuminance value (unit: mJ / cm 2 ) of the optical sensor 32 is measured. Is done.
  • the measured integrated light quantity is stored as the partial shielding member related information in the storage unit in the control unit 41 (S105).
  • FIG. 16 shows the data structure of the partial shielding member related information.
  • the partial shielding member-related information includes a board name, a measurement band, an execution date and time, and actual data as metadata.
  • the metadata is data input from the input unit 43 as input of various conditions during the light amount adjustment process.
  • the execution date and time can also be automatically input by the time measuring unit.
  • the actual data includes the partial shielding member number (corresponding to the subscripts (1 to m) of the partial shielding member 25), the integrated light amount, and the shielding amount.
  • the integrated light amount measured for each partial shielding member 25 is stored in association with the corresponding partial shielding member number (S105).
  • the shielding amount is a value determined based on the measured integrated light amount, and is an amount by which the partial shielding member 25 protrudes toward the second opening 21B.
  • FIG. 17 is a diagram showing the relationship between the integrated light amount and the shielding amount according to the embodiment of the present invention.
  • FIG. 17A shows the integrated light amount and the shielding amount before execution of the light amount adjustment process for each partial shielding member 25. It is shown.
  • FIG. 17B shows the integrated light amount and shielding amount after the light amount adjustment processing for each partial shielding member 25.
  • the solid line indicates the integrated light amount
  • the broken line indicates the shielding amount.
  • the shielding amounts of 25 # 1 to 25 # m of all the partial shielding members are 0 (minimum value).
  • the integrated light quantity shown in FIG. 17 (A) is a result measured by the measurement process, and variation is observed for each of the partial shielding members 25 # 1 to 25 # m.
  • the calculation of the shielding amount for each of the partial shielding members 25 # 1 to 25 # m is based on the measured integrated light amount.
  • the shielding amount of the partial shielding member 25 at the lower limit location of the integrated light quantity is set to 0, and the shielding amount of the other partial shielding member 25 is determined so as to coincide with the lower limit value.
  • the lower limit value of the integrated light quantity is measured at the position where the partial shielding member number is 11. Therefore, the shielding amount at this position is set to 0, and the shielding amount at other positions is determined.
  • the shielding amount can be calculated from the integrated light amount, and can simply be calculated by multiplying the integrated light amount by a predetermined coefficient. In order to improve accuracy, a predetermined relational expression based on an experimental result or the like may be used for calculating the shielding amount.
  • the calculated shielding amount for each partial shielding member 25 is stored in the actual data of the partial shielding member related information.
  • each partial shielding member 25 is set to the second amount corresponding to the shielding amount.
  • the second opening 21B is set in the fully opened state (the shielding amount of the partial shielding members 25 # 1 to 25 # m is the minimum) in the initialization process, and the second opening 21B is measured in the fully opened state.
  • the integrated light quantity is made uniform with reference to the lower limit value of the integrated light quantity, that is, the shielding amount of the partial shielding member 25 for which the lower limit value is measured is set to the minimum value, whereby the partial shielding members 25 # 1 to 25 # m
  • the amount of UV irradiation from the second opening 21 ⁇ / b> B is earned by suppressing the amount of shielding as much as possible.
  • the adjusted integrated light amount is made uniform, but when the adjusted integrated light amount allows an error (for example, 0 to + ⁇ %), the lower limit value of the measured integrated light amount is set.
  • the shielding amount of the partial shielding members 25 # 1 to 25 # m can be further reduced.
  • the shielding amount is set to 0, and the partial shielding member with the accumulated light amount greater than the allowable error (+ ⁇ % or more) is measured. For 25, the shielding amount according to the integrated light quantity is calculated.
  • each partial shielding member 25 # 1 to 25 # m is adjusted based on the shielding amount for each partial shielding member 25 # 1 to 25 # m calculated in S107.
  • 14 and 15 show the state of the second opening adjustment (closing) process.
  • FIG. 15 shows a state in which the second opening closing process is executed for the partial shielding member 25 # 2 located second from the left.
  • the protrusion 33a of the opening adjustment portion 33 is changed to a state of protruding in the positive Z-axis direction (S109).
  • the protrusion 33a is moved to the position of the partial shielding member 25 to be moved by the movement of the adjustment unit 3 in the X axis direction by the moving unit 31 (S110). Then, using the i-th shielding amount calculated and stored in S107, the position of the partial shielding member 25 is adjusted by moving the stage 11 in the scanning unit (S111).
  • the accuracy of position adjustment of the partial shielding member 25 can be improved.
  • each of the partial shielding members 25 # 1 to 25 # m After the position adjustment of each of the partial shielding members 25 # 1 to 25 # m is completed (S112: Yes), the protruding portion 33a is set in the retracted state shown in FIG. 14 (A) (S114), At the same time, the light amount adjustment process is completed. Since the partial shielding member 25 of the present embodiment employs a fixing mechanism using the stopper bolt 255 as described with reference to FIG. 6, each partial shielding member 25 is manually tightened with the stopper bolt 255 after the light amount adjustment processing. Fix position so that # 1-25 # m does not move.
  • each of the partial shielding members 25 # 1 to 25 # 25 is based on a command from the control unit 41 to the fixing mechanism. #m is fixed in position.
  • the unevenness of the integrated light quantity can be reduced with respect to ultraviolet rays (polarized light) generated in the X-axis direction in the alignment process. It becomes possible to suppress.
  • the position of the partial shielding member 25 is adjusted to the second opening 21B side, thereby adjusting the position only in the direction of shielding the second opening 21B.
  • the position of the second opening 21B may be adjusted in the opening direction by using the second opening opening process (FIGS. 10 and 11) described in the initialization process.
  • the measurement process is performed on all the partial shielding members 25 and then the second opening adjustment process is performed. For each partial shielding member 25, the measurement process and the second opening are performed. Adjustment processing may be performed in pairs.
  • FIG. 18 is a flowchart showing a light amount adjustment process according to another embodiment.
  • a reference integrated light amount absolute amount
  • the initialization process (S200) is the same as that described with reference to FIG. 9, and is a process of stabilizing the ultraviolet lamp 22 and fully opening the second opening 21B.
  • the ultraviolet light emitted from the second opening 21B is received by the optical sensor 32, whereby the integrated light amount is measured, and the partial shielding member related information in FIG. Store as actual data (S155).
  • the shielding amount is calculated (S156).
  • the calculated shielding amount is stored as actual data in the partial shielding member related information in FIG.
  • the projection 33a interferes with the configuration of the partial shielding member 25 and the like when the projection 33a is projected. . Therefore, during the measurement process, the protrusion 33a is set in the retracted state and protruded when the second opening adjustment process is performed (S156).
  • the position of the partial shielding member 25 is adjusted by moving the stage 11 by the scanning unit based on the shielding amount calculated in S156 with the protruding portion 33a protruding (S158). Then, the projection 33a is stored in preparation for the next measurement process (S159). As described above, by executing the processing of S153 to S159 for each of the partial shielding members 25 # 1 to 25 # m, the measurement processing and the second opening adjustment processing at the positions of the partial shielding members 25 # 1 to 25 # m are completed. (S160). After completion, the position of each of the partial shielding members 25 # 1 to 25 # m is fixed by the fixing mechanism.
  • a set of the measurement process and the second opening adjustment process is executed for each position of each partial shielding member 25, so that the number of tacts (number of steps) in the photo-alignment irradiation apparatus is reduced. Is possible.
  • the partial shielding member related information created by the light amount adjustment processing of FIGS. 8 and 18 and stored in the storage unit in the control unit 41 may be used for the partial shielding member reproduction processing for reproducing the position of the partial shielding member 25. Good.
  • alignment processing may be performed on different types of substrates S. Usually, the alignment process is performed for a certain number of lots, but the alignment process is performed on a different type of substrate S (substrate name B) following a certain type of substrate S (substrate name A).
  • the partial shielding member 25 information may be adjusted without performing measurement processing by using the partial shielding member related information of the different types of substrates S (substrate name B) stored previously.
  • the control unit 41 reads out the partial shielding member related information corresponding to the designated board name from the storage unit. However, if the partial shielding member related information does not exist in the storage unit (S302: No), or the read partial shielding member related information exists. When it is too old, that is, when a predetermined period or more has elapsed since the previous measurement (S303: No), a warning is given to the user by, for example, displaying a warning on the display unit 42 (S311). In this case, the user can select whether or not to execute the light amount adjustment process.
  • the adjustment positions of the partial shielding members 25 # 1 to 25 # m based on the partial shielding member related information are completed. .
  • the partial shielding member reproduction process is completed by setting the protrusion 33a to the retracted state (S309).
  • the partial shielding members 25 # 1 to 25 # m are fixed by the fixing mechanism, and the alignment process is executed.
  • moving part 254 ... fixed bolt, 255 ... stopper bolt, 3 ... adjusting part, 31 ... moving part, 32 ... Optical sensor 33 ... Opening adjustment portion 33a ... Projection portion S ... Substrate S '... Substrate installation position

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

[Problem] To measure the integrated amount of light emitted through an aperture in a photo-alignment irradiation device equipped with a partially-shielding member for adjusting the blocked amount of light emitted through the aperture to determine the amount of light blocked by the partially-shielding member. [Solution] A photo-alignment irradiation device according to the present invention is characterized by performing alignment processing during which a substrate is irradiated with polarized light emitted through the aperture while a scanning unit moves a polarized light irradiation unit and a stage relative to each other, and measurement processing during which a photosensor receives the polarized light emitted through the aperture at each position of the partially-shielding member while the scanning unit moves the stage and the polarized light irradiation unit relative to each other, and the integrated amount of light is measured by temporally integrating illuminance measured by the photosensor.

Description

光配向照射装置及び光配向照射装置の開口量調整方法Photo-alignment irradiation apparatus and aperture adjustment method for photo-alignment irradiation apparatus
 本発明は、液晶表示板製造分野にて使用されるものであって、特に、液晶表示装置に用いられる基板上において、液晶分子が望ましい角度と方向に整列するよう配向膜に配向性を付与するための光配向照射装置に関するものである。 INDUSTRIAL APPLICABILITY The present invention is used in the field of manufacturing a liquid crystal display panel. In particular, an alignment film is imparted with orientation so that liquid crystal molecules are aligned in a desired angle and direction on a substrate used in a liquid crystal display device. It is related with the photo-alignment irradiation apparatus for this.
 近年の液晶表示分野の利用が拡大し需要が増大するに従って、旧来の液晶表示装置の欠点であった視野角、コントラスト比、動画性能表示などの改善が強く求められている。特に液晶表示基板上にて、液晶分子に配向性を付与する配向膜においては、配向方向の均一化、プレチルト角の付与、単一画素内での複数領域の形成(マルチドメイン)など各種改善が進められている。 As the use of the liquid crystal display field in recent years expands and demand increases, improvements in the viewing angle, contrast ratio, video performance display, and the like, which have been disadvantages of conventional liquid crystal display devices, are strongly demanded. Especially for alignment films that give orientation to liquid crystal molecules on a liquid crystal display substrate, there are various improvements such as uniform alignment direction, pretilt angle, and formation of multiple regions within a single pixel (multi-domain). It is being advanced.
 従来、液晶表示基板上に形成されたポリマー層(配向膜)に配向特性を付与することの利点並びにそのための技術は広く知られている。このような配向特性を付与する方法として布ラビング法と称される方法があるが、この方法は、布を巻き付けたローラーを回転させつつ、基板を移動させて、表面のポリマー層を強く一方向に擦る処理である。 Conventionally, advantages of imparting alignment characteristics to a polymer layer (alignment film) formed on a liquid crystal display substrate and techniques therefor have been widely known. There is a method called a cloth rubbing method as a method for imparting such orientation characteristics. In this method, the substrate is moved while the roller around which the cloth is wound is rotated, and the polymer layer on the surface is strongly unidirectional. The process of rubbing.
 しかしながら、この布ラビング法では、静電気の発生、配向膜表面に生じる傷、粉じんの発生など様々な欠点が指摘されている。特に、近年、液晶表示装置が高精細化する状況においては、僅かな傷であっても観察する画質に影響することが考えられる。この布ラビング法の問題を回避するため、配向膜に紫外領域の偏光光を照射して配向特性を付与する光ラビング法が知られている。 However, in this cloth rubbing method, various disadvantages such as generation of static electricity, scratches on the alignment film surface, and generation of dust have been pointed out. In particular, in recent years, in a situation where the liquid crystal display device has become high definition, even a slight scratch may affect the observed image quality. In order to avoid this problem of the cloth rubbing method, there is known an optical rubbing method in which alignment films are imparted with alignment characteristics by irradiating polarized light in the ultraviolet region.
 基板面に塗布された配向膜に対して、偏光光を照射して配向処理を行う、光配向照射装置では、棒状のランプを照射する光源に対してワイヤーグリッド偏光子により、偏光照射光を生成するタイプのものがある。この照射装置では、棒状のランプでの出射光は長軸に沿った照度は比較的均一に出来るものの、ワイヤーグリッド偏光子自体の性能のバラつきによって照度がばらつく問題があり、これを均一化するために、一方向に沿って並べて配置された遮光手段を、並べた一方向と交差する方向に調整可能としたものがある(特許文献1)。 The alignment film applied to the substrate surface is irradiated with polarized light to perform alignment processing. In the photo alignment irradiation device, polarized light is generated by a wire grid polarizer for a light source that irradiates a rod-shaped lamp. There is a type to do. In this irradiation device, the light emitted from the rod-shaped lamp can have a relatively uniform illuminance along the long axis, but there is a problem that the illuminance varies due to variations in the performance of the wire grid polarizer itself. In addition, there is one in which light shielding means arranged side by side along one direction can be adjusted in a direction intersecting with the arranged one direction (Patent Document 1).
 その一方で、光源の出射部分から基板照射面に向けて略平行光を照射する紫外線ランプで、少なくとも照射領域の長軸方向に沿って複数並べたタイプのものがあり、このタイプの配向照射装置では、理論上、ランプの長尺方向の長さに制限が無いことや、照射光が略平行光であるために質の良い光が照射できること、更には波長帯の依存性が非常に少ないブリュースタータイプの偏光子によって偏光照射光が生成されるために、幅広い波長帯の偏光光が利用できるなどの利点がある。 On the other hand, there is an ultraviolet lamp that irradiates substantially parallel light from the emission part of the light source toward the substrate irradiation surface, and there is a type in which a plurality are arranged at least along the major axis direction of the irradiation region. Theoretically, there is no restriction on the length of the lamp in the long direction, the irradiation light is substantially parallel light, so that high-quality light can be emitted, and the wavelength band is very little dependent. Since polarized irradiation light is generated by a star-type polarizer, there is an advantage that polarized light in a wide wavelength band can be used.
 更に、略平行光を出射できる利点から、照射光源のランプ部と、基板照射面との距離を離すことができることと、ランプからの直接光が当たることが無く、基板照射面ではほぼ100%可視光や赤外線をカットしたフィルターを通した光が照射されることから、基板面での余分な温度上昇を避けることが可能である。 Furthermore, because of the advantage of being able to emit substantially parallel light, it is possible to increase the distance between the lamp portion of the irradiation light source and the substrate irradiation surface, and there is no direct light from the lamp, and almost 100% is visible on the substrate irradiation surface. Since light passing through a filter that cuts light and infrared rays is irradiated, it is possible to avoid an excessive temperature rise on the substrate surface.
 このように、光源の出射部分から基板照射面に向けて略平行光を照射する紫外線ランプで、少なくとも照射領域の長軸方向に沿って複数並べたタイプでは、光の質や熱に対する特性が良好な一方で、略平行光を照射する紫外線ランプは個体間で僅かな照度のバラつきがあり、これを照射領域の少なくとも長軸方向に沿って複数並べることによって、照射領域の長軸方向に沿った照度バラつきが発生する。 In this way, in the ultraviolet lamp that irradiates substantially parallel light from the light emitting part toward the substrate irradiation surface, a type in which a plurality of lamps are arranged at least along the long axis direction of the irradiation region has good light quality and heat characteristics. On the other hand, ultraviolet lamps that irradiate substantially parallel light have slight variations in illuminance among individuals, and by arranging a plurality of these along at least the long axis direction of the irradiation region, the ultraviolet lamps are aligned along the long axis direction of the irradiation region. Illuminance variation occurs.
 長軸方向に沿って複数並べられたランプ群を、更に長軸方向に僅かにずらしながら短軸方向にも複数列並べ、各列の略矩形の照射領域を重ねることによって、長軸方向に沿った照度バラつきを緩和することは可能である。また、上記各列の略矩形の照射領域を重ねなくても、基板の搬送方向に対して直交する方向に多連に並べることで、バラつきが抑えられるというものもある(特許文献2)。 A plurality of lamp groups arranged along the long axis direction are further arranged in the short axis direction while being slightly shifted in the long axis direction, and the substantially rectangular irradiation areas of the respective rows are overlapped to follow the long axis direction. It is possible to alleviate the uneven illuminance. Further, there is also a technique in which variation is suppressed by arranging multiple rows in a direction orthogonal to the substrate transport direction without overlapping the substantially rectangular irradiation regions of each row (Patent Document 2).
 しかしながら、長軸方向に沿って複数並べられたランプ群を、非常に多くの列数並べて、各列の略矩形の照射領域を重ねるということは、ブリュースタータイプの偏光子への入射角度が様々な方向からとなり、そこから得られる偏光光の消光比が低下することで、ブリュースタータイプの利点である「質の良い光」の意味が損なわれるとともに、ブリュースタータイプの偏光子の受光領域を大きく取る必要があり、偏光子の幅方向の大きさが非常に大きくなるために、実用的ではない。 However, the arrangement of a plurality of lamp groups arranged along the long axis direction and the arrangement of a very large number of rows and the overlapping of the substantially rectangular irradiation areas in each row means that the incident angle to the Brewster type polarizer varies. As the extinction ratio of the polarized light obtained from this direction decreases, the meaning of “quality light”, which is the advantage of the Brewster type, is impaired, and the light receiving area of the Brewster type polarizer is reduced. This is not practical because it needs to be large and the size of the polarizer in the width direction becomes very large.
 この解決の為に、照射光源のランプを、基板やブリュースタータイプの偏光子部分から非常に遠くの距離に配置し、ブリュースタータイプの偏光子への入射角度を鋭角にすることも考えられるが、この場合には装置の高さが非常に高くなってしまう為、これも実用的ではない。 In order to solve this problem, it is possible to arrange the lamp of the irradiation light source at a very far distance from the substrate or the Brewster type polarizer, and make the incident angle to the Brewster type polarizer acute. In this case, the height of the apparatus becomes very high, which is not practical.
 また、照射ランプの照度を個別に確認して選別し、初期照度を揃えた状態で照射を行った場合でも、個々の照射ランプの経時的な照度減衰には僅かにバラつきがあり、初期の照射ランプ照度と連動して減衰するわけではないため、時間変化によるバラつきが出てくることが懸念される。 In addition, even if the irradiation lamps are individually checked after checking the illuminance, and the irradiation is performed with the initial illuminance being uniform, the illuminance attenuation over time of each irradiation lamp varies slightly, and the initial irradiation Since it does not attenuate in conjunction with the lamp illuminance, there is a concern that variations due to changes in time will occur.
特許第5177266号公報Japanese Patent No. 5177266 特許第5077465号公報Japanese Patent No. 5077465
 一方で、光配向材料への配向処理においては、適当な照度範囲において、照度そのもののバラつきに依存するものではないことが実験の結果にて判明し、照度と照射時間の積で表される積算光量による要因が大きいことから、適当な照度範囲で照度のバラつきがあったとしても、積算光量を一定にすることで安定した配向処理が実現可能となることが分かった。 On the other hand, in the alignment treatment to the photo-alignment material, it was found from the experimental results that the illuminance itself does not depend on the variation in the appropriate illuminance range, and the integration represented by the product of the illuminance and the irradiation time. Since the factor due to the amount of light is large, it has been found that even if the illuminance varies within an appropriate illuminance range, a stable alignment process can be realized by keeping the integrated light amount constant.
 本発明は、開口の遮蔽量を調整可能な部分遮蔽部材を設けた光配向照射装置において、開口から照射される偏光光の光量を配向処理に適するように部分遮蔽部材の位置調整をするものであり、それに必要とされる各部分遮蔽部材位置での積算光量の測定を行うことを目的とするものである。 The present invention adjusts the position of the partial shielding member so that the amount of polarized light irradiated from the opening is suitable for the alignment process in the photo-alignment irradiation apparatus provided with the partial shielding member capable of adjusting the shielding amount of the opening. There is a purpose of measuring the integrated light quantity at each position of the partial shielding member required.
 そのため、本発明に係る光配向照射装置は、以下の構成を採用する。
 ステージと、偏光光照射部と、走査部と、複数の部分遮蔽部材と、光センサーと、制御部と、を備え、
 前記ステージは、配向膜が表面に形成された基板を載置可能とし、
 前記偏光光照射部は、前記ステージと対向する側に、偏光光を射出する開口が設けられ、
 前記走査部は、前記偏光光照射部と前記ステージを相対的に移動可能とし、
 各前記部分遮蔽部材は、前記開口の一部を遮蔽する遮蔽量を変更するように移動可能に構成され、
 前記光センサーは、入射光の照度を測定可能とし、
 前記制御部は、配向処理と、測定処理と、を実行可能とし、
 前記配向処理は、前記走査部にて前記偏光光照射部と前記ステージを相対的に移動させつつ、前記開口から射出される偏光光を前記基板に照射し、
 前記測定処理は、各前記部分遮蔽部材位置において、前記走査部にて前記ステージと前記偏光光照射部を相対的に移動させつつ、前記開口から射出される偏光光を前記光センサーに受光させ、前記光センサーで測定した照度を時間的に積算した積算光量を測定する。
Therefore, the photo-alignment irradiation apparatus according to the present invention employs the following configuration.
A stage, a polarized light irradiation unit, a scanning unit, a plurality of partial shielding members, a photosensor, and a control unit;
The stage is capable of placing a substrate on which an alignment film is formed,
The polarized light irradiation section is provided with an opening for emitting polarized light on the side facing the stage,
The scanning unit is capable of relatively moving the polarized light irradiation unit and the stage,
Each of the partial shielding members is configured to be movable so as to change a shielding amount for shielding a part of the opening,
The optical sensor can measure the illuminance of incident light,
The control unit can perform an alignment process and a measurement process,
The alignment treatment irradiates the substrate with polarized light emitted from the opening while relatively moving the polarized light irradiation unit and the stage in the scanning unit,
In the measurement process, at each partial shielding member position, the scanning unit receives the polarized light emitted from the opening while moving the stage and the polarized light irradiation unit relatively, An integrated light amount obtained by integrating the illuminance measured by the optical sensor over time is measured.
 さらに本発明に係る光配向照射装置において、
 前記制御部は、前記部分遮蔽部材毎に測定された積算光量に基づいて遮蔽量を決定し、決定した遮蔽量に基づいて前記部分遮蔽部材を位置調整する調整処理を実行する。
Furthermore, in the photo-alignment irradiation apparatus according to the present invention,
The said control part determines the shielding amount based on the integrated light quantity measured for every said partial shielding member, and performs the adjustment process which adjusts the position of the said partial shielding member based on the determined shielding amount.
 さらに本発明に係る光配向照射装置において、
 前記調整処理は、前記測定処理における前記部分遮蔽部材位置から、前記開口を遮蔽する方向に前記部分遮蔽部材を移動させることで位置調整を行う。
Furthermore, in the photo-alignment irradiation apparatus according to the present invention,
The adjustment process adjusts the position by moving the partial shielding member in the direction of shielding the opening from the position of the partial shielding member in the measurement process.
 さらに本発明に係る光配向照射装置において、
 前記調整処理は、積算光量の下限値が測定された前記部分遮蔽部材の遮蔽量が、最低の遮蔽量となるように各前記部分遮蔽量の遮蔽量を決定する。
Furthermore, in the photo-alignment irradiation apparatus according to the present invention,
In the adjustment process, the shielding amount of each partial shielding amount is determined so that the shielding amount of the partial shielding member for which the lower limit value of the integrated light quantity is measured becomes the minimum shielding amount.
 さらに本発明に係る光配向照射装置は、
 前記走査部による移動に伴って移動する突起部を有し、
 前記部分遮蔽部材は、前記走査部による偏光光照射部と前記ステージの相対的な移動方向に移動可能であり、
 前記調整処理は、前記突起部を前記部分遮蔽部材に当接させた状態で、前記走査部を移動させることで、前記部分遮蔽部材の位置調整を行う。
Furthermore, the photo-alignment irradiation apparatus according to the present invention is
Having a protrusion that moves with the movement by the scanning unit;
The partial shielding member is movable in the relative movement direction of the polarized light irradiation unit by the scanning unit and the stage,
In the adjustment process, the position of the partial shielding member is adjusted by moving the scanning unit in a state where the projection is in contact with the partial shielding member.
 さらに本発明に係る光配向照射装置において、
 前記突起部は、前記部分遮蔽部材側に突き出し状態と格納した状態に変更可能であり、
 前記調整処理は、前記突起部を格納した状態で、前記開口に対向する位置に移動させ、前記突起部を、前記部分遮蔽部材の前記開口側端に当接させた状態で、前記走査部により前記偏光光照射部と前記ステージを相対的に移動させることで、前記部分遮蔽部材の位置調整を行う。
Furthermore, in the photo-alignment irradiation apparatus according to the present invention,
The protruding portion can be changed to a protruding state and a stored state on the partial shielding member side,
In the adjustment process, the projection is moved to a position facing the opening in the retracted state, and the scanning is performed by the scanning unit in a state where the protrusion is in contact with the opening-side end of the partial shielding member. The position of the partial shielding member is adjusted by relatively moving the polarized light irradiation unit and the stage.
 さらに本発明に係る光配向照射装置において、
 前記突起部は、前記部分遮蔽部材が配列されている方向に可能な移動部に配置されている。
Furthermore, in the photo-alignment irradiation apparatus according to the present invention,
The protrusion is disposed on a movable portion that is possible in the direction in which the partial shielding members are arranged.
 さらに本発明に係る光配向照射装置において、
 前記光センサーは、前記突起部が配置されている前記移動部に配置されている。
Furthermore, in the photo-alignment irradiation apparatus according to the present invention,
The optical sensor is disposed in the moving portion where the protrusion is disposed.
 さらに本発明に係る光配向照射装置において、
 前記部分遮蔽部材は、隣接する前記部分遮蔽部材間で重畳部分を有する。
Furthermore, in the photo-alignment irradiation apparatus according to the present invention,
The partial shielding member has an overlapping portion between the adjacent partial shielding members.
 また本発明に係る光配向照射装置は、
 ステージと、偏光光照射部と、走査部と、複数の部分遮蔽部材と、突起部と、制御部と、を備え、
 前記ステージは、配向膜が表面に形成された基板を載置可能とし、
 前記偏光光照射部は、前記ステージと対向する側に偏光光を射出する開口が設けられ、
 前記走査部は、前記偏光光照射部と前記ステージを相対的に移動可能とし、
 各前記部分遮蔽部材は、前記開口の一部を遮蔽する遮蔽量を変更するように、前記走査部による偏光光照射部と前記ステージの相対的な移動方向に移動可能であり、
 前記突起部は、前記走査部による移動に伴って移動し、
 前記制御部は、配向処理と、調整処理と、を実行可能とし、
 前記配向処理は、前記走査部にて前記偏光光照射部と前記ステージを相対的に移動させつつ、前記開口から射出される偏光光を前記ステージに載置された前記基板に照射し、
 前記調整処理は、前記突起部を前記部分遮蔽部材に当接させた状態で、前記走査部を移動させることで、前記部分遮蔽部材を移動させる。
The photo-alignment irradiation apparatus according to the present invention is
A stage, a polarized light irradiation unit, a scanning unit, a plurality of partial shielding members, a protrusion, and a control unit;
The stage is capable of placing a substrate on which an alignment film is formed,
The polarized light irradiation unit is provided with an opening for emitting polarized light on the side facing the stage,
The scanning unit is capable of relatively moving the polarized light irradiation unit and the stage,
Each of the partial shielding members is movable in the relative movement direction of the polarized light irradiation unit by the scanning unit and the stage so as to change a shielding amount for shielding a part of the opening.
The protrusion moves as the scanning unit moves,
The control unit can perform an alignment process and an adjustment process,
The alignment treatment irradiates the substrate placed on the stage with polarized light emitted from the opening while moving the polarized light irradiation unit and the stage relatively in the scanning unit,
In the adjustment process, the partial shielding member is moved by moving the scanning unit in a state where the projection is in contact with the partial shielding member.
 また本発明に係る光配向照射装置の開口量調整方法は、
 ステージと、偏光光照射部と、走査部と、複数の部分遮蔽部材と、光センサーと、を備える光配向照射装置の開口量調整方法であって、
 前記ステージは、配向膜が表面に形成された基板を載置可能とし、
 前記偏光光照射部は、前記ステージと対向する側に、偏光光を射出する開口が設けられ、
 前記走査部は、前記偏光光照射部と前記ステージを相対的に移動可能とし、
 各前記部分遮蔽部材は、前記開口の一部を遮蔽する遮蔽量を変更するように移動可能に構成され、
 前記光センサーは、入射光の照度を測定可能とし、
 前記走査部にて前記偏光光照射部と前記ステージを相対的に移動させつつ、前記開口から射出される偏光光を前記基板に照射し、
 各前記部分遮蔽部材位置において、前記走査部にて前記ステージと前記偏光光照射部を相対的に移動させつつ、前記開口から射出される偏光光を前記光センサーに受光させ、前記光センサーで測定した照度を時間的に積算した積算光量を測定し、
 各前記部分遮蔽部材位置において測定した積算光量に基づいて決定された遮蔽量によって、対応する前記部分遮蔽部材を位置調整する。
Moreover, the opening amount adjustment method of the photo-alignment irradiation apparatus according to the present invention is:
An aperture adjustment method for a photo-alignment irradiation apparatus comprising a stage, a polarized light irradiation unit, a scanning unit, a plurality of partial shielding members, and an optical sensor,
The stage is capable of placing a substrate on which an alignment film is formed,
The polarized light irradiation section is provided with an opening for emitting polarized light on the side facing the stage,
The scanning unit is capable of relatively moving the polarized light irradiation unit and the stage,
Each of the partial shielding members is configured to be movable so as to change a shielding amount for shielding a part of the opening,
The optical sensor can measure the illuminance of incident light,
While irradiating the substrate with polarized light emitted from the opening while relatively moving the polarized light irradiation unit and the stage in the scanning unit,
At each partial shielding member position, the scanning unit receives the polarized light emitted from the opening while moving the stage and the polarized light irradiation unit relative to each other, and the optical sensor measures the light. Measure the integrated light intensity by integrating the measured illuminance over time,
The position of the corresponding partial shielding member is adjusted by the shielding amount determined based on the integrated light quantity measured at each partial shielding member position.
 さらに本発明に係る光配向照射装置の開口量調整方法において、
 各前記部分遮蔽量の遮蔽量は、積算光量の下限値が測定された前記部分遮蔽部材の遮蔽量が、最低の遮蔽量となるように決定される。
Furthermore, in the opening amount adjustment method of the photo-alignment irradiation apparatus according to the present invention,
The shielding amount of each of the partial shielding amounts is determined so that the shielding amount of the partial shielding member for which the lower limit value of the integrated light quantity is measured is the minimum shielding amount.
 本発明の光配向照射装置によれば、各部分遮蔽部材位置において、走査部にてステージと偏光光照射部を相対的に移動させつつ、開口から射出される偏光光を光センサーに受光させ、光センサーで測定した照度を時間的に積算した積算光量を測定することで、各部分遮蔽部材の位置調整をするのに必要とされる積算光量の測定を行うことを可能としている。そして、測定した積算光量に基づいて、各部分遮蔽部材を位置調整することで、積算光量の均一化を図り、安定した配向処理を行うことが可能となる。 According to the photo-alignment irradiation apparatus of the present invention, at each partial shielding member position, the optical sensor receives the polarized light emitted from the opening while relatively moving the stage and the polarized light irradiation unit in the scanning unit, By measuring the integrated light amount obtained by temporally integrating the illuminance measured by the optical sensor, it is possible to measure the integrated light amount required for adjusting the position of each partial shielding member. Then, by adjusting the position of each partial shielding member based on the measured integrated light quantity, it is possible to make the integrated light quantity uniform and perform stable orientation processing.
 また、本発明の光配向照射装置によれば、偏光光照射部とステージを相対的に移動可能とする走査部の移動を利用した突起部を使用して、各部分遮蔽部材の位置調整を行うことで、部分遮蔽部材を移動させる構成を必要とせず、光配向照射装置の簡略化を図ることが可能となる。また、走査部は移動精度の優れたものが使用されることが多いため、このような走査部を使用することで、部分遮蔽部材の位置調整精度の向上を図ることも可能である。 In addition, according to the photo-alignment irradiation apparatus of the present invention, the position of each partial shielding member is adjusted using the protrusions that use the movement of the scanning unit that allows the polarized light irradiation unit and the stage to move relative to each other. Thereby, the structure which moves a partial shielding member is not required, but it becomes possible to aim at simplification of a photo-alignment irradiation apparatus. In addition, since a scanning unit having excellent movement accuracy is often used, it is possible to improve the position adjustment accuracy of the partial shielding member by using such a scanning unit.
本発明の実施形態に係る光配向照射装置の上面図The top view of the photo-alignment irradiation apparatus concerning the embodiment of the present invention 本発明の実施形態に係る光配向照射装置の上面図(照射時)Top view of photo-alignment irradiation apparatus according to an embodiment of the present invention (during irradiation) 本発明の実施形態に係る光配向照射装置の側断面図Side sectional view of a photo-alignment irradiation apparatus according to an embodiment of the present invention 本発明の実施形態に係る光配向照射装置の正面断面図Front sectional view of a photo-alignment irradiation apparatus according to an embodiment of the present invention 本発明の実施形態に係る第2開口部分の構成を示す図The figure which shows the structure of the 2nd opening part which concerns on embodiment of this invention. 本発明の実施形態に係る部分遮蔽部材周りの構成を示す図The figure which shows the structure around the partial shielding member which concerns on embodiment of this invention. 本発明の実施形態に係る光配向照射装置の制御構成を示すブロック図The block diagram which shows the control structure of the photo-alignment irradiation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る光量調整処理を示すフロー図The flowchart which shows the light quantity adjustment process which concerns on embodiment of this invention. 本発明の実施形態に係る初期化処理を示すフロー図The flowchart which shows the initialization process which concerns on embodiment of this invention 本発明の実施形態に係る調整部による第2開口開放処理を示す側断面図Side sectional view which shows the 2nd opening opening process by the adjustment part which concerns on embodiment of this invention 本発明の実施形態に係る調整部による第2開口開放処理を示す図The figure which shows the 2nd opening opening process by the adjustment part which concerns on embodiment of this invention. 本発明の実施形態に係る光センサーによる測定処理を示す側断面図Side sectional view which shows the measurement process by the optical sensor which concerns on embodiment of this invention 本発明の実施形態に係る光センサーによる測定処理を示す図The figure which shows the measurement process by the optical sensor which concerns on embodiment of this invention. 本発明の実施形態に係る調整部による第2開口閉鎖処理を示す側断面図Side sectional view which shows the 2nd opening closing process by the adjustment part which concerns on embodiment of this invention 本発明の実施形態に係る調整部による第2開口閉鎖処理を示す図The figure which shows the 2nd opening closing process by the adjustment part which concerns on embodiment of this invention. 本発明の実施形態に係る部分遮蔽部材関連情報のデータ構成を示す図The figure which shows the data structure of the partial shielding member related information which concerns on embodiment of this invention. 本発明の実施形態に係る積算光量と遮蔽量の関係を説明する図The figure explaining the relationship between the integrated light quantity and shielding amount which concerns on embodiment of this invention 本発明の他の実施形態に係る光量調整処理を示すフロー図The flowchart which shows the light quantity adjustment process which concerns on other embodiment of this invention. 本発明の他の実施形態に係る部分遮蔽部材再現処理を示すフロー図The flowchart which shows the partial shielding member reproduction process which concerns on other embodiment of this invention.
 図1、図2は、本発明の実施形態に係る光配向照射装置の構成を示す上面図である。本実施形態の光配向照射装置1は、偏光光照射部2、ステージ11、走査部を主な構成要素として有する。偏光光照射部2は、基板Sの表面に形成された配向膜に対して、ステージ11側に形成された第2開口21Bを通して、紫外線を照射することで、配向膜に配向特性を付与する手段である。図1に示されるように、本実施形態では、ステージ11の面(基板Sの面)をXY平面とし、XY平面に直交する軸をZ軸としている。そして、ステージ11の移動方向をY方向に設定している。 1 and 2 are top views showing a configuration of a photo-alignment irradiation apparatus according to an embodiment of the present invention. The photo-alignment irradiation apparatus 1 of the present embodiment includes a polarized light irradiation unit 2, a stage 11, and a scanning unit as main components. The polarized light irradiation unit 2 irradiates the alignment film formed on the surface of the substrate S with ultraviolet rays through the second opening 21B formed on the stage 11 side, thereby imparting alignment characteristics to the alignment film. It is. As shown in FIG. 1, in the present embodiment, the surface of the stage 11 (the surface of the substrate S) is the XY plane, and the axis orthogonal to the XY plane is the Z axis. The moving direction of the stage 11 is set in the Y direction.
 ステージ11には、露光対象となる基板Sが設置される。本実施形態では、基板Sの走査方向が、液晶表示装置としての利用時における縦方向または横方向となるように設置される。露光対象となる基板Sの表面には、ポリイミドなどの光反応性高分子からなる膜状の高分子からなる配向膜が形成されている。この配向膜上に偏光紫外線を照射して高分子膜を変性せしめ、図示されていない以降の工程で高分子膜上に液晶分子を塗布すると、液晶分子が高分子膜から作用を受け特定の方向に整列(配向)する。本来は、この配向特性が付与された高分子膜を配向膜と称するが、一般に配向特性を付与する以前の高分子膜も配向膜と称しており、本明細書においても配向特性を付与する以前の高分子膜も含めて配向膜と称する。 On the stage 11, a substrate S to be exposed is installed. In the present embodiment, the substrate S is installed so that the scanning direction is the vertical direction or the horizontal direction when used as a liquid crystal display device. On the surface of the substrate S to be exposed, an alignment film made of a film-like polymer made of a photoreactive polymer such as polyimide is formed. When this alignment film is irradiated with polarized ultraviolet rays to modify the polymer film, and liquid crystal molecules are applied onto the polymer film in the subsequent steps (not shown), the liquid crystal molecules are affected by the polymer film in a specific direction. Align (orient). Originally, a polymer film to which this alignment characteristic is imparted is referred to as an alignment film. Generally, a polymer film before imparting the alignment characteristic is also referred to as an alignment film, and in this specification, before the alignment characteristic is imparted. These polymer films are also referred to as alignment films.
 走査部は、紫外線を照射する偏光光照射部2とステージ11を相対的に移動させる部材である。本実施形態では、基台19に対して偏光光照射部2は固定されており、走査部は、基台19に対してステージ11をY軸方向に移動させる。ステージ11は、図3に示されるように、2本のLMレール14a、14b上を移動するLMブロック15a~15d上に固定されている。本実施形態では、ステージ11を移動させる走査部として、ボールネジ16を使用している。ボールネジ16は、ステージ11の下方に設けられた受け部に貫通して設けられている。ボールネジ16は、一端が軸受け18で、他端がボールネジ駆動部17で軸支されており、ボールネジ駆動部17の回転制御にて、ステージ11をY軸方向に移動させる。 The scanning unit is a member that relatively moves the polarized light irradiation unit 2 that irradiates ultraviolet rays and the stage 11. In the present embodiment, the polarized light irradiation unit 2 is fixed with respect to the base 19, and the scanning unit moves the stage 11 with respect to the base 19 in the Y-axis direction. As shown in FIG. 3, the stage 11 is fixed on LM blocks 15a to 15d that move on the two LM rails 14a and 14b. In the present embodiment, a ball screw 16 is used as a scanning unit that moves the stage 11. The ball screw 16 is provided through a receiving portion provided below the stage 11. The ball screw 16 is supported at one end by a bearing 18 and at the other end by a ball screw driving unit 17, and the stage 11 is moved in the Y-axis direction by rotation control of the ball screw driving unit 17.
 本実施形態の走査部は、偏光光照射部2とステージ11を相対的に移動させるため、偏光光照射部2を固定し、ステージ11を移動させる形態としているが、偏光光照射部2を移動させる、あるいは、偏光光照射部2とステージ11を両方移動させる形態としてもよい。また、走査部には、ボールネジ16を採用しているが、ステージ11あるいは偏光光照射部2を移動させる手段には、各種形態を採用することが考えられる。例えば、リニアモータを採用することが考えられる。リニアモータは、駆動時に振動の発生が少ないとともに、位置決めの精度が高いため、本発明における走査部として採用することが好適である。 The scanning unit of this embodiment is configured to move the stage 11 by fixing the polarization beam irradiation unit 2 in order to move the polarization beam irradiation unit 2 and the stage 11 relatively. Alternatively, the polarized light irradiation unit 2 and the stage 11 may both be moved. Further, although the ball screw 16 is employed in the scanning unit, various forms may be employed as means for moving the stage 11 or the polarized light irradiation unit 2. For example, it is conceivable to employ a linear motor. The linear motor is preferably employed as the scanning unit in the present invention because it generates little vibration during driving and has high positioning accuracy.
 図1に示す状態から、偏光光照射部2にて紫外線を照射しつつ、ステージ11を移動させることで、ステージ11上に載置された基板Sに対する配向処理が実行される。ステージ11の移動は、ボールネジ駆動部17でボールネジ16を回転させることで行われる。図2には、基板Sが第2開口21B(本発明における「開口」に相当)に対向する位置を通過する様子が示されている。第2開口21Bからは紫外線が射出され、第1開口21B下方を通過する基板Sの表面に照射される。このように基板Sに紫外線を照射する配向処理を行うことで、基板Sの表面に形成されている配向膜に配向特性を付与することが可能となる。 From the state shown in FIG. 1, the alignment process for the substrate S placed on the stage 11 is executed by moving the stage 11 while irradiating the polarized light irradiation unit 2 with ultraviolet rays. The stage 11 is moved by rotating the ball screw 16 by the ball screw driving unit 17. FIG. 2 shows a state in which the substrate S passes through a position facing the second opening 21B (corresponding to the “opening” in the present invention). Ultraviolet rays are emitted from the second opening 21B and applied to the surface of the substrate S passing under the first opening 21B. By performing the alignment process of irradiating the substrate S with ultraviolet rays in this way, alignment characteristics can be imparted to the alignment film formed on the surface of the substrate S.
 図3、図4は、本発明の実施形態に係る光配向照射装置1の側断面図であって、特に、偏光光照射部2の内部構成について説明するための図である。図3には、YZ平面内での断面が、図4には、ZX平面内での断面が示されている。偏光光照射部2は、照射部筐体21中、第1開口21A部分で上方、下方に分けられた2室を有し、上室には光源部22が配置されている。本実施形態ではX軸方向に複数(n個)の光源部22が配置されている。各光源部22は、紫外線ランプ22a、反射鏡22b、フィルター22cを備えて構成される。本実施形態の紫外線ランプ22aは、点光源の種類に属し、紫外線ランプ22aから照射された紫外線は、反射鏡22bで平行光、もしくは、部分的な平行光となるように整えられた後、フィルター22cに入射する。 3 and 4 are side cross-sectional views of the photo-alignment irradiation apparatus 1 according to the embodiment of the present invention, and in particular, are diagrams for explaining the internal configuration of the polarized light irradiation unit 2. 3 shows a cross section in the YZ plane, and FIG. 4 shows a cross section in the ZX plane. The polarized light irradiation unit 2 has two chambers divided upward and downward at the first opening 21A portion in the irradiation unit housing 21, and a light source unit 22 is disposed in the upper chamber. In the present embodiment, a plurality (n) of light source units 22 are arranged in the X-axis direction. Each light source unit 22 includes an ultraviolet lamp 22a, a reflecting mirror 22b, and a filter 22c. The ultraviolet lamp 22a of the present embodiment belongs to the type of point light source, and the ultraviolet light emitted from the ultraviolet lamp 22a is adjusted by the reflecting mirror 22b to become parallel light or partial parallel light, and then filtered. 22c is incident.
 このように本実施形態では、光源部22に点光源としての紫外線ランプ22aを使用しているが、光源部22には直線状の線光源をX軸方向に配置した形態など、各種形態を採用することが可能である。また、本実施形態では、X軸方向に光源部22を複数配置しているが、X軸方向に並んだ複数の光源部22のセットを、Y軸方向に複数配置してもよい。その際、各セット間で、光源部22の配置をX軸方向にずらしておくことで、隣接する光源部22間で生じる紫外線の照射ムラを抑制することが可能となる。 Thus, in this embodiment, although the ultraviolet lamp 22a as a point light source is used for the light source part 22, various forms, such as the form which arrange | positioned the linear line light source in the X-axis direction, are employ | adopted for the light source part 22. Is possible. In the present embodiment, a plurality of light source units 22 are arranged in the X-axis direction, but a plurality of sets of light source units 22 arranged in the X-axis direction may be arranged in the Y-axis direction. At that time, by shifting the arrangement of the light source units 22 in the X-axis direction between the sets, it is possible to suppress the irradiation unevenness of the ultraviolet rays generated between the adjacent light source units 22.
 フィルター22cは、紫外線ランプ22aから照射された紫外線を、配向に適した特性に整える機能を備えている。本実施形態では、所定の波長を透過させる機能、及び、レンズ機能を備えているが、これらフィルター22cの機能は必要に応じて適宜選択することが可能である。 The filter 22c has a function of adjusting the ultraviolet rays irradiated from the ultraviolet lamp 22a to characteristics suitable for orientation. In the present embodiment, a function of transmitting a predetermined wavelength and a lens function are provided, but the function of these filters 22c can be appropriately selected as necessary.
 上室の光源部22から照射された紫外線は、第1開口21Aを通過した後、照射部筐体21の下室に入射する。この下室には、偏光部24が配置されている。偏光部24は、入射する紫外線(無偏光)から所定方向に偏光した紫外線を取り出す手段であって、本実施形態では、ブリュースター偏光子を使用している。そのため、光源部22から入射する紫外線に対して、所定の角度を設けて配置される。偏光部24に入射した紫外線は、偏光方向毎に、偏光部24を反射する紫外線と偏光部24を透過する紫外線に分けられる。本実施形態では、偏光部24を透過した紫外線を配向処理に使用している。このように偏光部24で偏光された紫外線は、照射部筐体21の下方に設けられた第2開口21Bから、ステージ11側へと射出される。図3は、ちょうど図2のようにステージ11上に載置された基板Sが第2開口21Bと対向する位置にあるときの様子である。 The ultraviolet rays irradiated from the light source unit 22 in the upper chamber enter the lower chamber of the irradiation unit casing 21 after passing through the first opening 21A. A polarizing unit 24 is disposed in this lower chamber. The polarization unit 24 is a means for extracting ultraviolet light polarized in a predetermined direction from incident ultraviolet light (non-polarized light), and in this embodiment, a Brewster polarizer is used. Therefore, it is arranged with a predetermined angle with respect to the ultraviolet rays incident from the light source unit 22. The ultraviolet rays incident on the polarizing unit 24 are divided into ultraviolet rays that reflect the polarizing unit 24 and ultraviolet rays that pass through the polarizing unit 24 for each polarization direction. In the present embodiment, the ultraviolet rays that have passed through the polarizing portion 24 are used for the alignment treatment. The ultraviolet light polarized by the polarizing unit 24 in this way is emitted from the second opening 21 </ b> B provided below the irradiation unit housing 21 to the stage 11 side. FIG. 3 shows a state in which the substrate S placed on the stage 11 is in a position facing the second opening 21B just as in FIG.
 また、本実施形態の偏光光照射部2には、照射部筐体21の上室と下室間の第1開口21Aを遮蔽可能な遮蔽部材23が設けられている。図3は、第1開口21Aは開いた状態であるが、遮蔽部材23を矢印の方向にスライドさせることで、第1開口21を遮蔽することが可能である。偏光光照射部2による紫外線照射が不要な場合、遮蔽部材23で第1開口21Aを遮蔽することが可能である。光源部22に使用する紫外線ランプを、消灯した後、再度点灯した場合、照度が安定化するのに数十分必要となる。本実施形態では、紫外線照射が一時的に不要な場合、遮蔽部材23で第1開口21Aを遮蔽しておくことで、紫外線照射を中断するとともに、紫外線照射が必要なときに第1開口21Aを開放することで、紫外線照射を迅速に復旧させることが可能となる。また、通常の精算においては、不要な時間に紫外線を照射させないことで装置の構成部品を紫外線から保護することが可能となる。 Further, the polarized light irradiation unit 2 of the present embodiment is provided with a shielding member 23 capable of shielding the first opening 21A between the upper chamber and the lower chamber of the irradiation unit housing 21. In FIG. 3, the first opening 21A is open, but the first opening 21 can be shielded by sliding the shielding member 23 in the direction of the arrow. When ultraviolet irradiation by the polarized light irradiation unit 2 is unnecessary, the first opening 21 </ b> A can be shielded by the shielding member 23. When the ultraviolet lamp used for the light source unit 22 is turned off and then turned on again, several tens of minutes are required to stabilize the illuminance. In this embodiment, when ultraviolet irradiation is temporarily unnecessary, the first opening 21A is interrupted by shielding the first opening 21A with the shielding member 23, and the first opening 21A is opened when ultraviolet irradiation is necessary. By opening it, it becomes possible to quickly recover the ultraviolet irradiation. Further, in normal payment, it is possible to protect the components of the apparatus from ultraviolet rays by not irradiating the ultraviolet rays during unnecessary time.
 このような光配向照射装置1では、照射する光(紫外線)により、基板S上の配向膜を配向させる際、できるだけ均一に配向させることが好ましい。均一な配向のためには、照射する光を積算光量のムラなく均一に照射することが必要となる。本実施形態のように複数の光源部22を使用する場合、各光源部22の照射領域内での積算光量のムラ、各紫外線ランプ22a間における照度の経時特性の変化の違いによる積算光量のムラ、あるいは配向処理における寄与度が大きい帯域(感応帯)での積算光量のムラなどを理由として、紫外線照射対象となる基板Sの配向特性にムラが生じることとなる。本実施形態の光配向照射装置1は、このような照度ムラを抑制するため、照射部筐体21の第2開口21Bの開口量を調整するため、複数の部分遮蔽部材25が設けられている。 In such a photo-alignment irradiation apparatus 1, when aligning the alignment film on the substrate S with the irradiated light (ultraviolet rays), it is preferable to align as uniformly as possible. In order to achieve uniform orientation, it is necessary to irradiate the irradiated light uniformly with no unevenness in the integrated light amount. When a plurality of light source units 22 are used as in the present embodiment, the integrated light amount unevenness in the irradiation region of each light source unit 22 and the integrated light amount unevenness due to the change in the illuminance temporal characteristics between the ultraviolet lamps 22a. Alternatively, the alignment characteristics of the substrate S to be irradiated with ultraviolet light will be uneven due to unevenness of the integrated light quantity in a band (sensitive band) where the degree of contribution in the alignment process is large. The photo-alignment irradiation apparatus 1 of the present embodiment is provided with a plurality of partial shielding members 25 in order to adjust the opening amount of the second opening 21B of the irradiation unit casing 21 in order to suppress such illuminance unevenness. .
 この部分遮蔽部材25は、図3に示されるように照射部筐体21の第2開口21Bの右側に設けられ、左右の移動によって第2開口21Bの開口量が調整可能である。言い換えると、部分遮蔽部材25は、第2開口21B側の遮蔽量を調整可能としている。図4のZX平面内での断面図から分かるように、この部分遮蔽部材25は、X軸方向に、m個(25#1~25#m)配置されており、各部分遮蔽部材25が独立してY軸方向に移動可能となっている。これらX軸方向に配列された各部分遮蔽部材25#1~25#mを位置調整することで、第2開口21Bから基板Sに対して照射される紫外線の光量を、X軸方向に関して調整することが可能となる。 The partial shielding member 25 is provided on the right side of the second opening 21B of the irradiation unit casing 21 as shown in FIG. 3, and the opening amount of the second opening 21B can be adjusted by moving left and right. In other words, the partial shielding member 25 can adjust the shielding amount on the second opening 21B side. As can be seen from the cross-sectional view in the ZX plane of FIG. 4, m (25 # 1 to 25 # m) of the partial shielding members 25 are arranged in the X-axis direction, and each partial shielding member 25 is independent. Thus, it can move in the Y-axis direction. By adjusting the positions of the partial shielding members 25 # 1 to 25 # m arranged in the X-axis direction, the amount of ultraviolet light applied to the substrate S from the second opening 21B is adjusted in the X-axis direction. It becomes possible.
 図5には、第2開口21Bと部分遮蔽部材25#1~25#mの配置の様子を模式的に示したものである。図5には左から2番目に位置する部分遮蔽部材25#2について、開口の関係が示されている。部分遮蔽部材25#2位置では、第2開口21BにおけるY軸方向の距離がL、部分遮蔽部材25#2の幅がWであるため、第2開口21BにおいてL×Wの面積の開口を形成する。各部分遮蔽部材25#1~25#mは、Y軸方向に位置調整可能であるため、第2開口21BにおけるY軸方向の距離Lを調整可能としている。このような部分遮蔽部材25#1~25#mを位置調整することで、第2開口21Bから照射される紫外線に関し、X軸方向における照度を調整することを可能としている。 FIG. 5 schematically shows the arrangement of the second opening 21B and the partial shielding members 25 # 1 to 25 # m. FIG. 5 shows the opening relationship for the partial shielding member 25 # 2 located second from the left. At the position of the partial shielding member 25 # 2, since the distance in the Y-axis direction of the second opening 21B is L and the width of the partial shielding member 25 # 2 is W, an opening having an area of L × W is formed in the second opening 21B. To do. Since the position of each partial shielding member 25 # 1 to 25 # m can be adjusted in the Y-axis direction, the distance L in the Y-axis direction at the second opening 21B can be adjusted. By adjusting the positions of such partial shielding members 25 # 1 to 25 # m, it is possible to adjust the illuminance in the X-axis direction with respect to the ultraviolet rays irradiated from the second opening 21B.
 図6には、本発明の実施形態に係る部分遮蔽部材25周りの構成が示されている。図6(A)には、YZ平面内における断面図が示されている。照射部筐体21の下方にはレール252が固定されている。レール252上には、Y軸方向に摺動可能な可動部253が設けられ、部分遮蔽部材25は、可動部253にスペーサ251を介して固定されている。部分遮蔽部材25は、金属あるいは樹脂等の素材で構成された板状部材である。可動部253に対する部分遮蔽部材25の固定は、2つのボルト(固定ボルト254とストッパボルト255)で行われる。この2つのボルトの内、ストッパボルト255は、レールに対して可動部253を固定する機能を有している。部分遮蔽部材25の位置調整は、ストッパボルト255を緩め、可動部253をレール上で摺動させることで行われる。位置調整した後、ストッパボルト255を締め付けることで、部分遮蔽部材25をしっかりと位置固定することが可能である。 FIG. 6 shows a configuration around the partial shielding member 25 according to the embodiment of the present invention. FIG. 6A shows a cross-sectional view in the YZ plane. A rail 252 is fixed below the irradiation unit housing 21. On the rail 252, a movable portion 253 that is slidable in the Y-axis direction is provided, and the partial shielding member 25 is fixed to the movable portion 253 via a spacer 251. The partial shielding member 25 is a plate-like member made of a material such as metal or resin. The partial shielding member 25 is fixed to the movable portion 253 with two bolts (a fixing bolt 254 and a stopper bolt 255). Of these two bolts, the stopper bolt 255 has a function of fixing the movable portion 253 to the rail. The position of the partial shielding member 25 is adjusted by loosening the stopper bolt 255 and sliding the movable portion 253 on the rail. After the position adjustment, the partial shielding member 25 can be firmly fixed by tightening the stopper bolt 255.
 図6(B)は、Y軸負の方向、すなわち、第2開口21Bから部分遮蔽部材25の配置を眺めた様子である。図6(A)で説明したように各部分遮蔽部材25は、スペーサ251を介して可動部253に固定されている。本実施形態では、X軸方向に隣接する部分遮蔽部材25について、固定に使用するスペーサ251のZ軸方向の高さを異ならせることで、隣接する部分遮蔽部材25間のZ軸方向の位置を異ならせている。そして、隣接する部分遮蔽部材25間で重畳する領域を形成し、複数の部分遮蔽部材25による遮光の際、部分遮蔽部材25間で光に漏れが生じないようにしている。 FIG. 6B shows a state where the arrangement of the partial shielding member 25 is viewed from the negative direction of the Y axis, that is, from the second opening 21B. As described with reference to FIG. 6A, each partial shielding member 25 is fixed to the movable portion 253 via the spacer 251. In the present embodiment, with respect to the partial shielding members 25 adjacent to each other in the X-axis direction, the heights in the Z-axis direction of the spacers 251 used for fixing are made different so that the positions in the Z-axis direction between the adjacent partial shielding members 25 are changed. It is different. An overlapping region is formed between adjacent partial shielding members 25 so that light does not leak between the partial shielding members 25 when light is shielded by the plurality of partial shielding members 25.
 部分遮蔽部材25の位置調整は、手動で行うこととしてもよいが、本実施形態では、調整部3による自動調整機構を使用することとしている。この調整部3は、図1~図4に示されるようにステージ11の側面に配置され、ステージ11の移動にしたがって、Y軸方向に移動可能としている。図3には、この調整部3の断面構成が示されている。本実施形態の調整部3は、X軸方向への移動を可能とする移動部31を備える。この移動部31には光センサー32と開口調整部33が設置されている。この移動部31をX軸方向へ移動させることで、測定あるいは位置調整対象となる部分遮蔽部材25の位置に調整部3を移動させることが可能となっている。このように本実施形態では、1つの調整部3に設置された光センサー32、そして、開口調整部33を複数の部分遮蔽部材25に対して使用可能としている。すなわち、光センサー32と開口調整部33は、1つの部材上に設置された形態となっているが、これら光センサー32と開口調整部33は、別の部材上に設置することとしてもよい。また、光センサー32は複数設けることとしてもよい。複数の部分遮蔽部材25の位置での積算光量を同時に測定することが可能となる。また、光センサー32と開口調整部33の移動手段を兼用したことで、構成の簡略化も図られている。光センサー32は、入射する光の照度を測定を行うセンサーであって、本実施形態の光配向照射装置1における照度計測は、ステージ11をY軸方向に移動して、光センサー32を第2開口21Bの下方位置に移動して行う。 The position adjustment of the partial shielding member 25 may be performed manually, but in the present embodiment, an automatic adjustment mechanism by the adjustment unit 3 is used. The adjustment unit 3 is arranged on the side surface of the stage 11 as shown in FIGS. 1 to 4 and is movable in the Y-axis direction as the stage 11 moves. FIG. 3 shows a cross-sectional configuration of the adjustment unit 3. The adjustment unit 3 of the present embodiment includes a moving unit 31 that enables movement in the X-axis direction. The moving unit 31 is provided with an optical sensor 32 and an opening adjusting unit 33. By moving the moving part 31 in the X-axis direction, the adjusting part 3 can be moved to the position of the partial shielding member 25 to be measured or adjusted. As described above, in the present embodiment, the optical sensor 32 installed in one adjusting unit 3 and the opening adjusting unit 33 can be used for the plurality of partial shielding members 25. That is, the optical sensor 32 and the opening adjustment unit 33 are installed on one member, but the optical sensor 32 and the opening adjustment unit 33 may be installed on another member. A plurality of optical sensors 32 may be provided. It is possible to simultaneously measure the integrated light quantity at the positions of the plurality of partial shielding members 25. In addition, since the optical sensor 32 and the moving means of the opening adjustment unit 33 are also used, the configuration is simplified. The optical sensor 32 is a sensor that measures the illuminance of incident light, and the illuminance measurement in the photo-alignment irradiation apparatus 1 of the present embodiment is performed by moving the stage 11 in the Y-axis direction and moving the optical sensor 32 to the second. This is done by moving to a position below the opening 21B.
 ところで、配向膜の配向への寄与度の大きい光の帯域(感応帯)が存在することが知られている。光センサー32には、このよう配向膜の感応帯を考慮して感応帯に応じた光学フィルターを設けることが好ましい。光センサー32に光学フィルターを設けることで、配向膜の感応帯における紫外線の照度を測定することが可能となる。また、紫外線の感応帯以外の帯域、あるいは、光配向照射装置1の設置環境に配置された照明光など、不必要な光の照度を除外することで、感応帯における紫外線の照度測定をより精度の高いものとすることが可能である。なお、使用する配向膜の種類によっては、感応帯が異なる帯域に存在する場合がある。その場合、光センサー32の光学フィルターを適したもの、すなわち、使用する感応帯に応じたものが使用される。したがって、光学センサー32の光学フィルターは交換可能、あるいは、複数の感応帯に対応すべく可変可能とすることが好ましい。 Incidentally, it is known that there is a light band (sensitive band) that greatly contributes to the alignment of the alignment film. The optical sensor 32 is preferably provided with an optical filter corresponding to the sensitive band in consideration of the sensitive band of the alignment film. By providing an optical filter in the optical sensor 32, it is possible to measure the illuminance of ultraviolet rays in the sensitive band of the alignment film. In addition, by removing unnecessary light illuminance, such as illumination light placed in a band other than the ultraviolet sensitive band or in the installation environment of the photo-alignment irradiation device 1, the illuminance measurement of ultraviolet light in the sensitive band is more accurate. Can be high. Depending on the type of alignment film used, the sensitive bands may exist in different bands. In that case, an optical filter suitable for the optical sensor 32, that is, a filter suitable for the sensitive band to be used is used. Therefore, it is preferable that the optical filter of the optical sensor 32 is replaceable or variable to correspond to a plurality of sensitive bands.
 開口調整部33は、部分遮蔽部材25を開閉可能、すなわち、Y軸方向に移動させる手段である。開口調整部33はZ軸方向に伸縮可能な突起部33aを備えている。第2開口21Bの開口量の可変は、突起部33aを部分遮蔽部材25の端部に押し当てることで行われる。本実施形態の開口調整部33は、走査部によるステージ11の移動を利用した形態となっており、開口調整部33を移動させる部材を別途設ける必要が無い。したがって、構成の簡略化、コスト削減を図ることが可能となっている。また、移動精度の高い走査部による移動を利用するため、部分遮蔽部材25の移動も高い精度で行うことを可能としている。 The opening adjusting portion 33 is a means that can open and close the partial shielding member 25, that is, moves in the Y-axis direction. The opening adjusting portion 33 includes a protrusion 33a that can be expanded and contracted in the Z-axis direction. The opening amount of the second opening 21 </ b> B is changed by pressing the protruding portion 33 a against the end portion of the partial shielding member 25. The opening adjustment unit 33 according to the present embodiment is configured to use the movement of the stage 11 by the scanning unit, and there is no need to separately provide a member for moving the opening adjustment unit 33. Therefore, the configuration can be simplified and the cost can be reduced. Further, since the movement by the scanning unit with high movement accuracy is used, the partial shielding member 25 can be moved with high precision.
 図6(A)には、部分遮蔽部材25に対する開口調整部33の移動の様子が破線で示されている。第2開口21Bの遮蔽量を多くする場合、(c)の位置で突起部33aを部分遮蔽部材25に当接させた状態で、ステージ11をY軸負の方向に移動させることで、第2開口21Bを遮蔽する方向に部分遮蔽部材25を移動させることが可能である。また、本実施形態では、突起部33aを、(a)の位置に移動させることで、部分遮蔽部材25による遮蔽量を小さくする、すなわち、第2開口21Bを開放することも可能としている。(c)の位置から(a)の位置に移動の際、突起部33aは、ストッパボルト255等の構成、そして、部分遮蔽部材25自身と干渉することとなる。移動の際は、(b)に示すように突起部33aを下げる(収納する)ことで、(a)、(c)の両方の位置での、部分遮蔽部材25の位置調整を可能としている。(a)の位置では、突起部33aを部分遮蔽部材25に当接させた状態で、ステージ11をY軸正の方向に移動させることで、第2開口21Bを開放する方向に部分遮蔽部材25を移動させることが可能である。 In FIG. 6A, the movement of the opening adjusting portion 33 relative to the partial shielding member 25 is indicated by a broken line. When the shielding amount of the second opening 21B is increased, the stage 11 is moved in the negative Y-axis direction with the projection 33a being in contact with the partial shielding member 25 at the position (c). The partial shielding member 25 can be moved in a direction to shield the opening 21B. In the present embodiment, it is also possible to reduce the amount of shielding by the partial shielding member 25, that is, to open the second opening 21B by moving the protrusion 33a to the position (a). When moving from the position (c) to the position (a), the protrusion 33a interferes with the configuration of the stopper bolt 255 and the like and the partial shielding member 25 itself. When moving, the position of the partial shielding member 25 can be adjusted at both the positions (a) and (c) by lowering (accommodating) the projection 33a as shown in (b). At the position (a), the partial shielding member 25 is moved in the direction of opening the second opening 21B by moving the stage 11 in the positive Y-axis direction with the projection 33a in contact with the partial shielding member 25. Can be moved.
 このように本実施形態では、突起部33aをZ軸方向に伸縮可能とすることで、(a)、(c)のように部分遮蔽部材25の両端に突起部33aを当接可能とし、部分遮蔽部材25をY軸の正負、両方向に移動可能としている。このような形態に限らず、開口調整部33は、Z軸方向に位置固定された突起部33aを使用する構成であってもよい。その場合、(c)の位置にて、第2開口21Bを閉鎖する方向に部分遮蔽部材25を位置調整することが可能であり、逆方向の位置調整は手動で行われる。 As described above, in the present embodiment, by allowing the protrusion 33a to expand and contract in the Z-axis direction, the protrusion 33a can be brought into contact with both ends of the partial shielding member 25 as shown in FIGS. The shielding member 25 is movable in both the positive and negative directions of the Y axis. The configuration is not limited to such a configuration, and the opening adjustment portion 33 may be configured to use a protrusion 33a whose position is fixed in the Z-axis direction. In that case, it is possible to adjust the position of the partial shielding member 25 in the direction of closing the second opening 21B at the position (c), and the position adjustment in the reverse direction is performed manually.
 図7には、本発明の実施形態に係る光配向照射装置1の制御構成が示されている。制御構成としては、光配向照射装置1を統括して制御する制御部41を有している。制御部41は、所謂コンピュータを利用して構成することが可能であり、CPU、RAM、ROM、ハードディスク等の記憶部を備えている。記憶部には、各種処理を実行するためのプログラムや、情報(データ)が記憶される。制御部41には、ユーザーに対して各種情報を表示するための表示部42、ユーザーから各種情報、指示を入力するための入力部43が接続されている。表示部42と入力部43は、タッチパネル画面として構成することとしてもよい。制御部41の制御対象としては、ボールネジ駆動部17によるボールネジ16の回転制御、回転部12によるステージ11の回転制御、紫外線ランプ22aの点灯制御を行うことが可能である。また、調整部3に関する制御としては、移動部31による調整部3のX軸方向への移動、そして、光センサー32による入射光の光量計測、開口調整部33の突起部33aの昇降制御が可能である。 FIG. 7 shows a control configuration of the photo-alignment irradiation apparatus 1 according to the embodiment of the present invention. As a control structure, it has the control part 41 which controls the photo-alignment irradiation apparatus 1 in an integrated manner. The control unit 41 can be configured using a so-called computer, and includes a storage unit such as a CPU, a RAM, a ROM, and a hard disk. The storage unit stores programs for executing various processes and information (data). Connected to the control unit 41 are a display unit 42 for displaying various information to the user and an input unit 43 for inputting various information and instructions from the user. The display unit 42 and the input unit 43 may be configured as a touch panel screen. As a control target of the control unit 41, it is possible to perform rotation control of the ball screw 16 by the ball screw driving unit 17, rotation control of the stage 11 by the rotation unit 12, and lighting control of the ultraviolet lamp 22a. Further, as the control related to the adjustment unit 3, the movement unit 31 can move the adjustment unit 3 in the X-axis direction, and the light sensor 32 can measure the amount of incident light, and the elevation control of the projection 33a of the opening adjustment unit 33 can be performed. It is.
 このような光配向照射装置1の制御構成に基づき、基板Sの配向膜に対する配向処理、並びに、配向膜に照射する紫外線の光量を調整する光量調整処理が実行される。この光量調整処理は、配向処理の実行前に行うことで、配向処理における紫外線の光量の均一化を図ることが可能となる。 Based on such a control configuration of the photo-alignment irradiation apparatus 1, an alignment process for the alignment film of the substrate S and a light amount adjustment process for adjusting the amount of ultraviolet light applied to the alignment film are executed. By performing this light amount adjustment process before the alignment process, it is possible to make the amount of ultraviolet light uniform in the alignment process.
 図8には、本発明の実施形態に係る光量調整処理を示すフロー図が示されている。図7の制御構成中、入力部43からのユーザー指示に基づいて、光量調整処理が開始される。本実施形態の部分遮蔽部材25は、図6で説明したようにストッパボルト255による固定機構を採用するため、光量調整処理を開始する前に、手動によるストッパボルト255を緩めておくことで、各部分遮蔽部材25#1~25#mを移動可能な状態にしておく。なお、部分遮蔽部材25#1~25#mの固定機構を制御部41による自動機構としてもよい。その場合、各部分遮蔽部材25#1~25#m毎に固定機構を設けてもよいし、複数の部分遮蔽部材25#1~25#mをまとめて位置固定する固定機構としてもよい。なお、光量調整処理は、ユーザー指示に限らず、定時処理など、入力部43から予め指定された開始時間に開始されることとしてもよい。開始時間を始業前などに設定しておくことで、始業時には、光量が調整された状態で、配向処理を開始することが可能となる。 FIG. 8 is a flowchart showing the light amount adjustment processing according to the embodiment of the present invention. In the control configuration of FIG. 7, the light amount adjustment process is started based on a user instruction from the input unit 43. Since the partial shielding member 25 according to the present embodiment employs a fixing mechanism using the stopper bolt 255 as described with reference to FIG. 6, before starting the light amount adjustment process, each of the partial shielding members 25 is manually loosened. The partial shielding members 25 # 1 to 25 # m are set in a movable state. The fixing mechanism of the partial shielding members 25 # 1 to 25 # m may be an automatic mechanism by the control unit 41. In that case, a fixing mechanism may be provided for each of the partial shielding members 25 # 1 to 25 # m, or a fixing mechanism that fixes the positions of the plurality of partial shielding members 25 # 1 to 25 # m together may be used. The light amount adjustment process is not limited to a user instruction, and may be started at a start time designated in advance from the input unit 43, such as a scheduled process. By setting the start time before the start of work or the like, it is possible to start the alignment process with the light amount adjusted at the start of work.
 光量調整処理の開始に伴い、基準積算光量、光量調整処理の対象となる基板名、測定帯域など、各種条件が入力される(S101)。ここで、基準積算光量とは、各部分遮蔽部材25間で積算光量を一致させる、もしくは、所定の誤差範囲に収めるための基準である。この基準としては、積算光量の絶対量を指定する、あるいは、部分遮蔽部材25の位置毎に測定された積算光量について、どの積算光量にあわせるか(例えば、最低積算光量にあわせる、あるいは、各積算光量が±α%内に収まるようにあわせる)を指定することが考えられる。 Along with the start of the light amount adjustment process, various conditions such as a reference integrated light amount, a substrate name subject to the light amount adjustment process, and a measurement band are input (S101). Here, the reference integrated light amount is a reference for making the integrated light amounts coincide between the partial shielding members 25 or keeping them within a predetermined error range. As the reference, the absolute amount of the integrated light amount is designated, or the integrated light amount measured for each position of the partial shielding member 25 is adjusted to which integrated light amount (for example, the minimum integrated light amount is adjusted or each integrated light amount is adjusted). It is conceivable to specify that the amount of light is within ± α%.
 各種条件が入力された後、制御部41は、光配向照射装置に対する初期化処理(S200)を実行する。図9には、本発明の実施形態に係る初期化処理を示すフロー図が示されている。この初期化処理では、紫外線ランプ22aを点灯し、照射される紫外線の照度が安定するまで待つとともに、各部分遮蔽部材25#1~25#mによる遮蔽量が0、すなわち、第2開口21Bが全開となるように、各部分遮蔽部材25#1~25#mを移動させる処理である。本実施形態では、第2開口21Bを全開として、各部分遮蔽部材25に対応する位置での積算光量を計測し、計測結果に基づいて、各部分遮蔽部材25を閉鎖していくことで、第2開口21Bからの光量が大きい状態で、光量の均一化を図ることを可能としている。 After the various conditions are input, the control unit 41 executes an initialization process (S200) for the optical alignment irradiation device. FIG. 9 is a flowchart showing the initialization process according to the embodiment of the present invention. In this initialization process, the ultraviolet lamp 22a is turned on and waits until the illuminance of the irradiated ultraviolet light is stabilized, and the shielding amount by each of the partial shielding members 25 # 1 to 25 # m is 0, that is, the second opening 21B is opened. In this process, the partial shielding members 25 # 1 to 25 # m are moved so as to be fully opened. In the present embodiment, the second opening 21B is fully opened, the integrated light quantity at the position corresponding to each partial shielding member 25 is measured, and each partial shielding member 25 is closed based on the measurement result. It is possible to make the light quantity uniform while the light quantity from the two openings 21B is large.
 初期化処理では、まず、全ての紫外線ランプ22#1~22#nを点灯させる(S201)。次に、m個の部分遮蔽部材25#1~25#mを初期位置に移動させる処理を実行する。図10、図11には、第2開口21Bを開放する方向に部分遮蔽部材25を移動させる第2開口開放処理の様子が示されている。図11は、左から2番目に位置する部分遮蔽部材25#2に対して、第2開口開放処理を実行しているときの様子である。図10(A)、図11(A)は、初期状態であって、開口調整部33の突起部33aは、格納された状態となっている。突起部33aを格納した状態で、走査部によりステージ11を移動させることで、第2開口21Bと対向する位置に開口調整部33を移動させる(S202)。このとき、部分遮蔽部材25と干渉(衝突)しないよう、部分遮蔽部材25が第2開口21B側に突出可能な位置よりも内側に移動させることが好ましい。走査部によるステージの移動後、制御部41は、開口調整部33に対して突起部33aを突出させる(S203)。図10(B)、図11(B)には、第2開口21B内で突起部33aを突出させたときの様子が示されている。 In the initialization process, all the ultraviolet lamps 22 # 1 to 22 # n are first turned on (S201). Next, a process of moving the m partial shielding members 25 # 1 to 25 # m to the initial position is executed. 10 and 11 show the state of the second opening opening process for moving the partial shielding member 25 in the direction to open the second opening 21B. FIG. 11 shows a state in which the second opening opening process is being executed for the partial shielding member 25 # 2 located second from the left. FIGS. 10A and 11A are in an initial state, and the protrusion 33a of the opening adjustment portion 33 is in a retracted state. With the projection 33a stored, the stage 11 is moved by the scanning unit, thereby moving the opening adjustment unit 33 to a position facing the second opening 21B (S202). At this time, it is preferable to move the partial shielding member 25 to the inner side of the position where the partial shielding member 25 can project to the second opening 21B side so as not to interfere (collision) with the partial shielding member 25. After moving the stage by the scanning unit, the control unit 41 causes the projection 33a to protrude from the opening adjustment unit 33 (S203). FIGS. 10B and 11B show a state in which the protrusion 33a protrudes in the second opening 21B.
 各部分遮蔽部材25#1~25#mを初期位置に移動させる処理は、このように、突起部33aを第2開口21Bの内側に移動させることで、図10において部分遮蔽部材25の左側に突起部33aを当接させることで行われる。i=1に設定した(S204)後、移動部31にて、調整部3をX軸方向についてi番目の部分遮蔽部材25#1の位置に移動させる(S205)。そして、ステージ11を走査部にて移動することで、部分遮蔽部材25#1の初期位置(本実施形態では、第2開口21Bが全開する位置)に移動させる。図10(C)、図11(C)には、突起部33aの移動によって部分遮蔽部材25を移動させるときの様子が示されている。S205、S206を各部分遮蔽部材25毎に実行することで、全ての部分遮蔽部材25#1~25#mを初期位置に移動させ、第2開口21Bは全開状態となる。 The process of moving each of the partial shielding members 25 # 1 to 25 # m to the initial position is thus performed by moving the protrusion 33a to the inner side of the second opening 21B, so that the partial shielding member 25 # is moved to the left side of the partial shielding member 25 in FIG. This is done by bringing the protrusion 33a into contact. After setting i = 1 (S204), the moving unit 31 moves the adjusting unit 3 to the position of the i-th partial shielding member 25 # 1 in the X-axis direction (S205). Then, the stage 11 is moved by the scanning unit to be moved to the initial position of the partial shielding member 25 # 1 (in this embodiment, the position where the second opening 21B is fully opened). FIGS. 10C and 11C show a state where the partial shielding member 25 is moved by the movement of the protrusion 33a. By executing S205 and S206 for each partial shielding member 25, all the partial shielding members 25 # 1 to 25 # m are moved to the initial positions, and the second opening 21B is fully opened.
 最後(m番目)の部分遮蔽部材25#mの移動が終了した場合(S207:Yes)、
紫外線ランプ22#1~22#nの照度が安定するのを待つ(S209)。照度の安定は、紫外線ランプ22#1~22#nを点灯開始(S201)から所定時間経過したことで判断することが可能である。あるいは、図10(B)、図11(B)のように第2開口21Bに対向した箇所に位置する光センサー32の検出値を利用して、照度の安定を判定してもよい。
When the movement of the last (m-th) partial shielding member 25 # m is completed (S207: Yes),
It waits for the illuminance of the ultraviolet lamps 22 # 1 to 22 # n to stabilize (S209). The stability of the illuminance can be determined when a predetermined time has elapsed from the start of lighting of the ultraviolet lamps 22 # 1 to 22 # n (S201). Or you may determine stability of illumination intensity using the detection value of the optical sensor 32 located in the location facing 2nd opening 21B like FIG. 10 (B) and FIG. 11 (B).
 紫外線ランプ22#1~22#nについて照度の安定が判定された場合(S209:Yes)、突起部33aを格納し、ステージ11を走査部にて移動させ、開口突起部33を図10(A)、図11(A)の初期位置に移動させ、初期化処理(S200)が終了する。 When it is determined that the illuminance is stable for the ultraviolet lamps 22 # 1 to 22 # n (S209: Yes), the projection 33a is stored, the stage 11 is moved by the scanning unit, and the opening projection 33 is moved to FIG. ) To the initial position in FIG. 11A, and the initialization process (S200) ends.
 図8に示すように、光量調整処理では、初期化処理(S200)の終了後、測定処理(S102~S106)と、第2開口調整処理(S108~S114)を実行する。本実施形態の測定処理は、各部分遮蔽部材25の位置毎に、その位置に対応する積算光量を測定する処理である。測定処理では、各部分遮蔽部材25の位置毎に対応する1乃至複数箇所の照度を光センサー32で測定することとしてもよいが、本実施形態では、紫外線を走査させつつ、ある箇所における積算光量を測定することで、配向処理において、基板S上のある箇所が受光する光量を測定することが可能であり、実際の配向処理に即した光量測定となっている。 As shown in FIG. 8, in the light amount adjustment process, after the initialization process (S200) is completed, the measurement process (S102 to S106) and the second opening adjustment process (S108 to S114) are executed. The measurement process of this embodiment is a process of measuring the integrated light amount corresponding to the position of each partial shielding member 25 for each position. In the measurement process, the illuminance at one or a plurality of locations corresponding to each position of each partial shielding member 25 may be measured by the optical sensor 32. In the present embodiment, the integrated light amount at a certain location is scanned while scanning with ultraviolet rays. By measuring the amount of light, it is possible to measure the amount of light received by a certain location on the substrate S in the alignment process, and the light amount measurement conforms to the actual alignment process.
 図12、図13には、光センサー32を使用して積算光量を測定する測定処理の様子が示されている。図13中、符号A、B、Cで示される調整部3の位置は、図12(A)、(B)、(C)に対応している。また、図13は、左から2番目に位置する部分遮蔽部材25#2について、測定処理を実行しているときの様子である。i=1に設定した(S102)後、移動部31にて、調整部3をX軸方向についてi番目の部分遮蔽部材25#1の位置に移動させる(S103)。このとき、光センサー32の測定位置が、部分遮蔽部材25のX軸方向の幅の中心位置となるように位置させることが好ましい。 12 and 13 show the state of the measurement process for measuring the integrated light amount using the optical sensor 32. FIG. In FIG. 13, the position of the adjusting unit 3 indicated by reference signs A, B, and C corresponds to FIGS. FIG. 13 shows a state where the measurement process is being executed for the partial shielding member 25 # 2 located second from the left. After setting i = 1 (S102), the moving unit 31 moves the adjusting unit 3 to the position of the i-th partial shielding member 25 # 1 in the X-axis direction (S103). At this time, it is preferable to position the measurement position of the optical sensor 32 so as to be the center position of the width of the partial shielding member 25 in the X-axis direction.
 そして、光センサー32によって照度を測定しつつ、ステージ11を走査部にて移動させ、図13に示されるように、A→B→Cのように第2開口21Bから照射される紫外線の照射領域にわたって光センサー32を移動させることで、第2開口21Bから照射される紫外線の積算光量(単位:mW/cm2)すなわち、光センサー32による照度の積算値(単位:mJ/cm2)が測定される。測定された積算光量は、制御部41内の記憶部に部分遮蔽部材関連情報として記憶される(S105)。 Then, while the illuminance is measured by the optical sensor 32, the stage 11 is moved by the scanning unit, and as shown in FIG. 13, the ultraviolet irradiation region irradiated from the second opening 21 </ b> B as A → B → C. By moving the optical sensor 32 over the entire area, the integrated light quantity (unit: mW / cm 2 ) of the ultraviolet light emitted from the second opening 21B, that is, the integrated illuminance value (unit: mJ / cm 2 ) of the optical sensor 32 is measured. Is done. The measured integrated light quantity is stored as the partial shielding member related information in the storage unit in the control unit 41 (S105).
 図16には、部分遮蔽部材関連情報のデータ構成が示されている。部分遮蔽部材関連情報は、メタデータとしての基板名、測定帯域、実行日時と、実データを含んで構成されている。メタデータは、光量調整処理中、各種条件の入力として入力部43から入力されるデータである。実行日時などは計時部による自動入力とすることも可能である。実データは、部分遮蔽部材ナンバー(部分遮蔽部材25の添字(1~m)に相当)と、積算光量、遮蔽量を有している。測定処理では、部分遮蔽部材25毎に計測した積算光量を、対応する部分遮蔽部材ナンバーに対応付けて記憶する(S105)。遮蔽量は、測定した積算光量に基づいて決定される値であって、部分遮蔽部材25が第2開口21B側に突き出す量である。 FIG. 16 shows the data structure of the partial shielding member related information. The partial shielding member-related information includes a board name, a measurement band, an execution date and time, and actual data as metadata. The metadata is data input from the input unit 43 as input of various conditions during the light amount adjustment process. The execution date and time can also be automatically input by the time measuring unit. The actual data includes the partial shielding member number (corresponding to the subscripts (1 to m) of the partial shielding member 25), the integrated light amount, and the shielding amount. In the measurement process, the integrated light amount measured for each partial shielding member 25 is stored in association with the corresponding partial shielding member number (S105). The shielding amount is a value determined based on the measured integrated light amount, and is an amount by which the partial shielding member 25 protrudes toward the second opening 21B.
 全ての部分遮蔽部材について測定処理が完了する(S106:Yes)と、部分遮蔽部材関連情報として記憶した積算光量に基づいて、各部分遮蔽部材25#1~25#mの遮蔽量を算出(決定)する(S107)。図17は、本発明の実施形態に係る積算光量と遮蔽量の関係を示す図であり、図17(A)は、各部分遮蔽部材25について、光量調整処理実行前の積算光量と遮蔽量が示されている。また、図17(B)は、各部分遮蔽部材25について、光量調整処理実行後の積算光量と遮蔽量が示されている。図中、実線は積算光量を、破線は遮蔽量を示している。初期化処理で説明したように、初期化前は、全ての部分遮蔽部材の25#1~25#mの遮蔽量は0(最低値)となっている。図17(A)に示される積算光量は、計測処理で計測された結果であり、各部分遮蔽部材25#1~25#m毎にバラツキがみられる。 When the measurement process is completed for all the partial shielding members (S106: Yes), the shielding amounts of the partial shielding members 25 # 1 to 25 # m are calculated (determined) based on the accumulated light quantity stored as the partial shielding member related information. (S107). FIG. 17 is a diagram showing the relationship between the integrated light amount and the shielding amount according to the embodiment of the present invention. FIG. 17A shows the integrated light amount and the shielding amount before execution of the light amount adjustment process for each partial shielding member 25. It is shown. FIG. 17B shows the integrated light amount and shielding amount after the light amount adjustment processing for each partial shielding member 25. In the figure, the solid line indicates the integrated light amount, and the broken line indicates the shielding amount. As described in the initialization process, before the initialization, the shielding amounts of 25 # 1 to 25 # m of all the partial shielding members are 0 (minimum value). The integrated light quantity shown in FIG. 17 (A) is a result measured by the measurement process, and variation is observed for each of the partial shielding members 25 # 1 to 25 # m.
 各部分遮蔽部材25#1~25#mに対する遮蔽量の算出は、測定した積算光量に基づくものである。本実施形態では、積算光量の下限値箇所の部分遮蔽部材25の遮蔽量を0として、当該下限値と一致するように、他の部分遮蔽部材25の遮蔽量を決定している。図17の例では、部分遮蔽部材ナンバーが11の位置で積算光量の下限値が計測されている。したがって、この位置での遮蔽量を0として、他の位置での遮蔽量を決定する。遮蔽量は積算光量から算出可能であり、単純には積算光量に所定係数を乗算することで算出することが可能である。精度を向上させるため、遮蔽量の算出には、実験結果などに基づく所定の関係式を使用することとしてもよい。算出された部分遮蔽部材25毎の遮蔽量は、部分遮蔽部材関連情報の実データに記憶される。 The calculation of the shielding amount for each of the partial shielding members 25 # 1 to 25 # m is based on the measured integrated light amount. In the present embodiment, the shielding amount of the partial shielding member 25 at the lower limit location of the integrated light quantity is set to 0, and the shielding amount of the other partial shielding member 25 is determined so as to coincide with the lower limit value. In the example of FIG. 17, the lower limit value of the integrated light quantity is measured at the position where the partial shielding member number is 11. Therefore, the shielding amount at this position is set to 0, and the shielding amount at other positions is determined. The shielding amount can be calculated from the integrated light amount, and can simply be calculated by multiplying the integrated light amount by a predetermined coefficient. In order to improve accuracy, a predetermined relational expression based on an experimental result or the like may be used for calculating the shielding amount. The calculated shielding amount for each partial shielding member 25 is stored in the actual data of the partial shielding member related information.
 図17(B)には、調整後の積算光量の予測値が実線で示されている(本実施形態では、計測は行っていない)が、各部分遮蔽部材25を遮蔽量の分だけ第2開口21B側に移動させることで、理想的には、実線で示すように部分遮蔽部材25#1~25#m間で均一化が図られることとなる。本実施形態では、初期化処理にて第2開口21Bを全開状態(部分遮蔽部材25#1~25#mの遮蔽量が最低の状態)にしておき、第2開口21Bが全開状態で測定された積算光量の下限値を基準として積算光量の均一化を行う、すなわち、下限値が測定された部分遮蔽部材25の遮蔽量を最低値とすることで、部分遮蔽部材25#1~25#mの遮蔽量をできるだけ抑え、第2開口21Bからの紫外線照射量をかせぐこととしている。 In FIG. 17B, the predicted value of the integrated integrated light quantity is indicated by a solid line (in this embodiment, no measurement is performed), but each partial shielding member 25 is set to the second amount corresponding to the shielding amount. By moving to the opening 21B side, ideally, uniformity is achieved between the partial shielding members 25 # 1 to 25 # m as shown by the solid line. In the present embodiment, the second opening 21B is set in the fully opened state (the shielding amount of the partial shielding members 25 # 1 to 25 # m is the minimum) in the initialization process, and the second opening 21B is measured in the fully opened state. The integrated light quantity is made uniform with reference to the lower limit value of the integrated light quantity, that is, the shielding amount of the partial shielding member 25 for which the lower limit value is measured is set to the minimum value, whereby the partial shielding members 25 # 1 to 25 # m The amount of UV irradiation from the second opening 21 </ b> B is earned by suppressing the amount of shielding as much as possible.
 本実施形態では、調整後の積算光量を均一化させることとしているが、調整後の積算光量が誤差(例えば、0~+α%)を許容する場合には、計測された積算光量の下限値を誤差の最大値(+α%)に設定することで、部分遮蔽部材25#1~25#mの遮蔽量をさらに減少させることも可能となる。この場合、許容誤差(0~+α%)の積算光量が計測された部分遮蔽部材25については、その遮蔽量を0とし、許容誤差以上(+α%以上)の積算光量が計測された部分遮蔽部材25については、積算光量に応じた遮蔽量が算出される。 In the present embodiment, the adjusted integrated light amount is made uniform, but when the adjusted integrated light amount allows an error (for example, 0 to + α%), the lower limit value of the measured integrated light amount is set. By setting the maximum error (+ α%), the shielding amount of the partial shielding members 25 # 1 to 25 # m can be further reduced. In this case, with respect to the partial shielding member 25 for which the accumulated light amount with the allowable error (0 to + α%) is measured, the shielding amount is set to 0, and the partial shielding member with the accumulated light amount greater than the allowable error (+ α% or more) is measured. For 25, the shielding amount according to the integrated light quantity is calculated.
 S108~S109の第2開口調整処理では、S107で算出された各部分遮蔽部材25#1~25#mに対する遮蔽量に基づいて、各部分遮蔽部材25#1~25#mを位置調整する。図14、図15には、第2開口調整(閉鎖)処理の様子が示されている。図15は、左から2番目に位置する部分遮蔽部材25#2に対して、第2開口閉鎖処理を実行しているときの様子である。図10(A)に示されるように開口調整部33の突起部33aをZ軸正の方向に突出させた状態に変更する(S109)。そして、移動部31による調整部3のX軸方向の移動によって、突起部33aを移動対象とする部分遮蔽部材25の位置に移動させる(S110)。そして、S107で算出、記憶したi番目の遮蔽量を使用して、走査部にてステージ11を移動させることで、部分遮蔽部材25の位置を調整する(S111)。このように本実施形態では、部分遮蔽部材25の位置調整に、ステージの移動を行う走査部を使用することで、部分遮蔽部材25用の移動手段を設ける必要が無い。また、移動精度に優れた走査部を使用することで、部分遮蔽部材25の位置調整の精度向上も図られる。 In the second opening adjustment process in S108 to S109, the position of each partial shielding member 25 # 1 to 25 # m is adjusted based on the shielding amount for each partial shielding member 25 # 1 to 25 # m calculated in S107. 14 and 15 show the state of the second opening adjustment (closing) process. FIG. 15 shows a state in which the second opening closing process is executed for the partial shielding member 25 # 2 located second from the left. As shown in FIG. 10A, the protrusion 33a of the opening adjustment portion 33 is changed to a state of protruding in the positive Z-axis direction (S109). Then, the protrusion 33a is moved to the position of the partial shielding member 25 to be moved by the movement of the adjustment unit 3 in the X axis direction by the moving unit 31 (S110). Then, using the i-th shielding amount calculated and stored in S107, the position of the partial shielding member 25 is adjusted by moving the stage 11 in the scanning unit (S111). Thus, in this embodiment, it is not necessary to provide a moving means for the partial shielding member 25 by using the scanning unit that moves the stage for adjusting the position of the partial shielding member 25. In addition, by using a scanning unit with excellent movement accuracy, the accuracy of position adjustment of the partial shielding member 25 can be improved.
 各部分遮蔽部材25#1~25#mの位置調整が完了後(S112:Yes)、突起部33aを、図14(A)に示される格納状態にして(S114)、第2開口調整処理、並びに、光量調整処理が終了する。本実施形態の部分遮蔽部材25は、図6で説明したようにストッパボルト255による固定機構を採用するため、光量調整処理を行った後、手動によるストッパボルト255の締め付けによって、各部分遮蔽部材25#1~25#mが移動しないように位置固定する。なお、固定機構を制御部41による自動機構とすることも考えられるが、この場合、第2開口調整処理の完了後、制御部41から固定機構に対する指令に基づき各部分遮蔽部材25#1~25#mを位置固定する。 After the position adjustment of each of the partial shielding members 25 # 1 to 25 # m is completed (S112: Yes), the protruding portion 33a is set in the retracted state shown in FIG. 14 (A) (S114), At the same time, the light amount adjustment process is completed. Since the partial shielding member 25 of the present embodiment employs a fixing mechanism using the stopper bolt 255 as described with reference to FIG. 6, each partial shielding member 25 is manually tightened with the stopper bolt 255 after the light amount adjustment processing. Fix position so that # 1-25 # m does not move. Although it is conceivable that the fixing mechanism is an automatic mechanism by the control unit 41, in this case, after the second opening adjustment process is completed, each of the partial shielding members 25 # 1 to 25 # 25 is based on a command from the control unit 41 to the fixing mechanism. #m is fixed in position.
 以上、測定処理と第2開口調整処理を含む光量調整処理を、配向処理を行う前に実行しておくことで、配向処理においてX軸方向に生ずる紫外線(偏光光)について、積算光量のムラを抑制することが可能となる。なお、本実施形態の光量調整処理(第2開口調整処理)では、部分遮蔽部材25を第2開口21B側に位置調整することで、第2開口21Bを遮蔽する方向にのみ位置調整しているが、初期化処理で説明した第2開口開放処理(図10、図11)を使用することで、第2開口21Bを開放する方向に位置調整することとしてもよい。図8で説明した光量調整処理では、全ての部分遮蔽部材25について測定処理を行った後、第2開口調整処理を行うことしているが、各部分遮蔽部材25毎に、測定処理と第2開口調整処理を組で行うこととしてもよい。 As described above, by performing the light amount adjustment process including the measurement process and the second opening adjustment process before performing the alignment process, the unevenness of the integrated light quantity can be reduced with respect to ultraviolet rays (polarized light) generated in the X-axis direction in the alignment process. It becomes possible to suppress. In the light amount adjustment process (second opening adjustment process) of the present embodiment, the position of the partial shielding member 25 is adjusted to the second opening 21B side, thereby adjusting the position only in the direction of shielding the second opening 21B. However, the position of the second opening 21B may be adjusted in the opening direction by using the second opening opening process (FIGS. 10 and 11) described in the initialization process. In the light amount adjustment process described with reference to FIG. 8, the measurement process is performed on all the partial shielding members 25 and then the second opening adjustment process is performed. For each partial shielding member 25, the measurement process and the second opening are performed. Adjustment processing may be performed in pairs.
 図18には、他の実施形態に係る光量調整処理を示すフロー図が示されている。本実施形態では、S151における各種条件の入力において、基準となる積算光量(絶対量)が指定される。初期化処理(S200)は、図9で説明した形態と同様であって、紫外線ランプ22の安定化と、第2開口21Bを全開状態とする処理である。本実施形態の光量調整処理では、各部分遮蔽部材25#1~25#m毎に測定処理と第2開口調整処理を組で実行する。i=1に設定した(S152)後、移動部31による移動によって、調整部3を1(i)番目の部分遮蔽部材25#1に移動させる(S153)。そして、走査部によりステージ11を移動させつつ(S154)、第2開口21Bから照射される紫外線を光センサー32で受光することで、積算光量を測定し、図16の部分遮蔽部材関連情報中の実データとして記憶する(S155)。 FIG. 18 is a flowchart showing a light amount adjustment process according to another embodiment. In the present embodiment, a reference integrated light amount (absolute amount) is designated in inputting various conditions in S151. The initialization process (S200) is the same as that described with reference to FIG. 9, and is a process of stabilizing the ultraviolet lamp 22 and fully opening the second opening 21B. In the light amount adjustment process of the present embodiment, the measurement process and the second opening adjustment process are executed in pairs for each of the partial shielding members 25 # 1 to 25 # m. After setting i = 1 (S152), the adjustment unit 3 is moved to the 1 (i) th partial shielding member 25 # 1 by the movement of the moving unit 31 (S153). Then, while moving the stage 11 by the scanning unit (S154), the ultraviolet light emitted from the second opening 21B is received by the optical sensor 32, whereby the integrated light amount is measured, and the partial shielding member related information in FIG. Store as actual data (S155).
 第2開口調整処理では、現在位置する部分遮蔽部材25の位置における積算光量が、S151で設定した基準積算光量となるように、S155で測定した積算光量とS151で設置した基準積算光量に基づいて遮蔽量を算出する(S156)。算出した遮蔽量は、図16の部分遮蔽部材関連情報中の実データとして記憶する。本実施形態では、各部分遮蔽部材25#1~25#m毎に測定処理を行うため、突起部33aを突出させた状態では、突起部33aが部分遮蔽部材25などの構成と干渉してしまう。したがって、測定処理を実行中は、突起部33aを格納状態としておき、第2開口調整処理を行う時に突出させる(S156)こととしている。 In the second opening adjustment process, based on the integrated light amount measured in S155 and the reference integrated light amount installed in S151 so that the integrated light amount at the position of the partial shielding member 25 at the current position becomes the reference integrated light amount set in S151. The shielding amount is calculated (S156). The calculated shielding amount is stored as actual data in the partial shielding member related information in FIG. In the present embodiment, since the measurement process is performed for each of the partial shielding members 25 # 1 to 25 # m, the projection 33a interferes with the configuration of the partial shielding member 25 and the like when the projection 33a is projected. . Therefore, during the measurement process, the protrusion 33a is set in the retracted state and protruded when the second opening adjustment process is performed (S156).
 突起部33aを突出させた状態で、S156で算出した遮蔽量に基づいて、走査部にてステージ11を移動させることで、部分遮蔽部材25の位置を調整する(S158)。そして、次の測定処理に備え、突起部33aを格納する(S159)。以上、S153~S159の処理を、各部分遮蔽部材25#1~25#mについて実行することで、各部分遮蔽部材25#1~25#m位置での測定処理と第2開口調整処理が完了する(S160)。完了後は、固定機構にて各部分遮蔽部材25#1~25#mを位置固定する。 The position of the partial shielding member 25 is adjusted by moving the stage 11 by the scanning unit based on the shielding amount calculated in S156 with the protruding portion 33a protruding (S158). Then, the projection 33a is stored in preparation for the next measurement process (S159). As described above, by executing the processing of S153 to S159 for each of the partial shielding members 25 # 1 to 25 # m, the measurement processing and the second opening adjustment processing at the positions of the partial shielding members 25 # 1 to 25 # m are completed. (S160). After completion, the position of each of the partial shielding members 25 # 1 to 25 # m is fixed by the fixing mechanism.
 本実施形態の光量調整処理では、測定処理と第2開口調整処理の組を、各部分遮蔽部材25の位置毎に実行するため、光配向照射装置におけるタクト数(工程数)の削減を図ることが可能である。 In the light amount adjustment process of the present embodiment, a set of the measurement process and the second opening adjustment process is executed for each position of each partial shielding member 25, so that the number of tacts (number of steps) in the photo-alignment irradiation apparatus is reduced. Is possible.
 図8、図18の光量調整処理で作成され、制御部41内の記憶部に記憶した部分遮蔽部材関連情報は、部分遮蔽部材25の位置を再現する部分遮蔽部材再現処理に使用することとしてもよい。光配向処理装置では、異なる種類の基板Sに対して配向処理を行うことがある。通常、ある程度、まとまったロット数について配向処理を行うこととなるが、ある種類の基板S(基板名A)に引き続き、異なる種類の基板S(基板名B)に対して配向処理を実行する場合、以前に記憶させた異なる種類の基板S(基板名B)の部分遮蔽部材関連情報を使用し、計測処理を行うこと無く、部分遮蔽部材25の位置調整を行うこととしてもよい。 The partial shielding member related information created by the light amount adjustment processing of FIGS. 8 and 18 and stored in the storage unit in the control unit 41 may be used for the partial shielding member reproduction processing for reproducing the position of the partial shielding member 25. Good. In an optical alignment processing apparatus, alignment processing may be performed on different types of substrates S. Usually, the alignment process is performed for a certain number of lots, but the alignment process is performed on a different type of substrate S (substrate name B) following a certain type of substrate S (substrate name A). The partial shielding member 25 information may be adjusted without performing measurement processing by using the partial shielding member related information of the different types of substrates S (substrate name B) stored previously.
 部分遮蔽部材再現処理が開始されると、ユーザーに対して基板名を指定させる(S301)。制御部41は、指定された基板名に対応する部分遮蔽部材関連情報を記憶部から読み出すこととなるが、記憶部に存在しない場合(S302:No)、あるいは、読み出した部分遮蔽部材関連情報が古すぎる、すなわち、前回の測定から所定期間以上経過している場合(S303:No)、表示部42に対して注意喚起表示をする等して、ユーザーに警告を行う(S311)。この場合、ユーザーは、光量調整処理の実行可否を選択することが可能であり、光量調整処理の実行が選択された場合(S312:Yes)には、図8あるいは図18で説明した光量調整処理が実行される。一方、光量調整処理の実行が選択されなかった場合(S312:No)には、部分遮蔽部材再現処理を終了する。 When the partial shielding member reproduction process is started, the user is allowed to specify a board name (S301). The control unit 41 reads out the partial shielding member related information corresponding to the designated board name from the storage unit. However, if the partial shielding member related information does not exist in the storage unit (S302: No), or the read partial shielding member related information exists. When it is too old, that is, when a predetermined period or more has elapsed since the previous measurement (S303: No), a warning is given to the user by, for example, displaying a warning on the display unit 42 (S311). In this case, the user can select whether or not to execute the light amount adjustment process. When the execution of the light amount adjustment process is selected (S312: Yes), the light amount adjustment process described with reference to FIG. 8 or FIG. Is executed. On the other hand, when the execution of the light amount adjustment process is not selected (S312: No), the partial shielding member reproduction process is terminated.
 部分遮蔽部材再現処理中S305~S310では、読み出した部分遮蔽部材関連情報に基づいて、以前に行った光量調整処理での部分遮蔽部材25#1~25#mの位置を再現する。そのため、i=1に設定した(S304)後、突起部33aを突出した状態にし(S305)、移動部31にて、調整部3をX軸方向についてi番目の部分遮蔽部材25#1の位置に移動させる(S306)。そして、部分遮蔽部材25に応じた遮蔽量を使用してステージ11を移動させることで、部分遮蔽部材25を位置調整する。S306、S307の処理を、全ての部分遮蔽部材25#1~25#mについて実行することで、部分遮蔽部材関連情報に基づく、各部分遮蔽部材25#1~25#mの調整位置が完了する。完了後(S308:Yes)、突起部33aを格納状態とすること(S309)で部分遮蔽部材再現処理が終了する。終了後、固定機構にて各部分遮蔽部材25#1~25#mを固定して、配向処理を実行される。 During partial shielding member reproduction processing S305 to S310, the positions of partial shielding members 25 # 1 to 25 # m in the light amount adjustment processing performed previously are reproduced based on the read partial shielding member related information. Therefore, after setting i = 1 (S304), the protruding portion 33a is protruded (S305), and the moving unit 31 moves the adjusting unit 3 to the position of the i-th partial shielding member 25 # 1 in the X-axis direction. (S306). Then, the position of the partial shielding member 25 is adjusted by moving the stage 11 using a shielding amount corresponding to the partial shielding member 25. By executing the processes of S306 and S307 for all the partial shielding members 25 # 1 to 25 # m, the adjustment positions of the partial shielding members 25 # 1 to 25 # m based on the partial shielding member related information are completed. . After the completion (S308: Yes), the partial shielding member reproduction process is completed by setting the protrusion 33a to the retracted state (S309). After the completion, the partial shielding members 25 # 1 to 25 # m are fixed by the fixing mechanism, and the alignment process is executed.
 なお、本発明はこれらの実施形態のみに限られるものではなく、それぞれの実施形態の構成を適宜組み合わせて構成した実施形態も本発明の範疇となるものである。 Note that the present invention is not limited to these embodiments, and embodiments configured by appropriately combining the configurations of the respective embodiments also fall within the scope of the present invention.
1…光配向照射装置、2…偏光光照射部、11…ステージ、12…回転部、13…可動台、14a、14b…LMレール、15c、15d…LMブロック、16…ボールネジ、17…ボールネジ駆動部、18…軸受け、19…基台、21…照射部筐体、21A…第1開口、21B…第2開口、22…光源部、22a…紫外線ランプ、22b…反射鏡、22c…フィルター、23…遮蔽部材、24…変更部、25…部分遮蔽部材、251…スペーサ、252…レール、253…可動部、254…固定ボルト、255…ストッパボルト、3…調整部、31…移動部、32…光センサー、33…開口調整部、33a…突起部、S…基板、S’…基板設置位置 DESCRIPTION OF SYMBOLS 1 ... Light orientation irradiation apparatus, 2 ... Polarized light irradiation part, 11 ... Stage, 12 ... Rotation part, 13 ... Movable stand, 14a, 14b ... LM rail, 15c, 15d ... LM block, 16 ... Ball screw, 17 ... Ball screw drive , 18 ... bearing, 19 ... base, 21 ... irradiation unit housing, 21A ... first opening, 21B ... second opening, 22 ... light source part, 22a ... ultraviolet lamp, 22b ... reflector, 22c ... filter, 23 ... shielding member, 24 ... changing part, 25 ... partial shielding member, 251 ... spacer, 252 ... rail, 253 ... moving part, 254 ... fixed bolt, 255 ... stopper bolt, 3 ... adjusting part, 31 ... moving part, 32 ... Optical sensor 33 ... Opening adjustment portion 33a ... Projection portion S ... Substrate S '... Substrate installation position

Claims (12)

  1.  ステージと、偏光光照射部と、走査部と、複数の部分遮蔽部材と、光センサーと、制御部と、を備え、
     前記ステージは、配向膜が表面に形成された基板を載置可能とし、
     前記偏光光照射部は、前記ステージと対向する側に、偏光光を射出する開口が設けられ、
     前記走査部は、前記偏光光照射部と前記ステージを相対的に移動可能とし、
     各前記部分遮蔽部材は、前記開口の一部を遮蔽する遮蔽量を変更するように移動可能に構成され、
     前記光センサーは、入射光の照度を測定可能とし、
     前記制御部は、配向処理と、測定処理と、を実行可能とし、
     前記配向処理は、前記走査部にて前記偏光光照射部と前記ステージを相対的に移動させつつ、前記開口から射出される偏光光を前記基板に照射し、
     前記測定処理は、各前記部分遮蔽部材位置において、前記走査部にて前記ステージと偏光光照射部を相対的に移動させつつ、前記開口から射出される偏光光を前記光センサーに受光させ、前記光センサーで測定した照度を時間的に積算した積算光量を測定する
     光配向照射装置。
    A stage, a polarized light irradiation unit, a scanning unit, a plurality of partial shielding members, a photosensor, and a control unit;
    The stage is capable of placing a substrate on which an alignment film is formed,
    The polarized light irradiation section is provided with an opening for emitting polarized light on the side facing the stage,
    The scanning unit is capable of relatively moving the polarized light irradiation unit and the stage,
    Each of the partial shielding members is configured to be movable so as to change a shielding amount for shielding a part of the opening,
    The optical sensor can measure the illuminance of incident light,
    The control unit can perform an alignment process and a measurement process,
    The alignment treatment irradiates the substrate with polarized light emitted from the opening while relatively moving the polarized light irradiation unit and the stage in the scanning unit,
    In the measurement process, at each partial shielding member position, the scanning unit receives the polarized light emitted from the opening while moving the stage and the polarized light irradiation unit relative to each other. A photo-alignment irradiation device that measures the integrated light intensity by integrating the illuminance measured by the optical sensor over time.
  2.  前記制御部は、前記部分遮蔽部材毎に測定された積算光量に基づいて遮蔽量を決定し、決定した遮蔽量に基づいて前記部分遮蔽部材を位置調整する調整処理を実行する
     請求項1に記載の光配向照射装置。
    The said control part determines the shielding amount based on the integrated light quantity measured for every said partial shielding member, and performs the adjustment process which adjusts the position of the said partial shielding member based on the determined shielding amount. Photo-alignment irradiation device.
  3.  前記調整処理は、前記測定処理における前記部分遮蔽部材位置から、前記開口を遮蔽する方向に前記部分遮蔽部材を移動させることで位置調整を行う
     請求項2に記載の光配向照射装置。
    The photo-alignment irradiation apparatus according to claim 2, wherein the adjustment process performs position adjustment by moving the partial shielding member in a direction in which the opening is shielded from the position of the partial shielding member in the measurement process.
  4.  前記調整処理は、積算光量の下限値が測定された前記部分遮蔽部材の遮蔽量が、最低の遮蔽量となるように各前記部分遮蔽量の遮蔽量を決定する
     請求項2に記載の光配向照射装置。
    The photo-alignment according to claim 2, wherein the adjustment processing determines a shielding amount of each partial shielding amount so that a shielding amount of the partial shielding member for which a lower limit value of an integrated light amount is measured becomes a minimum shielding amount. Irradiation device.
  5.  前記走査部による移動に伴って移動する突起部を有し、
     前記部分遮蔽部材は、前記走査部による偏光光照射部と前記ステージの相対的な移動方向に移動可能であり、
     前記調整処理は、前記突起部を前記部分遮蔽部材に当接させた状態で、前記走査部を移動させることで、前記部分遮蔽部材の位置調整を行う
     請求項3に記載の光配向照射装置。
    Having a protrusion that moves with the movement by the scanning unit;
    The partial shielding member is movable in the relative movement direction of the polarized light irradiation unit by the scanning unit and the stage,
    The photo-alignment irradiation apparatus according to claim 3, wherein the adjustment process adjusts the position of the partial shielding member by moving the scanning unit in a state where the protrusion is in contact with the partial shielding member.
  6.  前記突起部は、前記部分遮蔽部材側に突き出し状態と格納した状態に変更可能であり、
     前記調整処理は、前記突起部を格納した状態で、前記開口に対向する位置に移動させ、前記突起部を、前記部分遮蔽部材の前記開口側端に当接させた状態で、前記走査部により前記偏光光照射部と前記ステージを相対的に移動させることで、前記部分遮蔽部材の位置調整を行う
     請求項5に記載の光配向照射装置。
    The protruding portion can be changed to a protruding state and a stored state on the partial shielding member side,
    In the adjustment process, the projection is moved to a position facing the opening in the retracted state, and the scanning is performed by the scanning unit in a state where the protrusion is in contact with the opening-side end of the partial shielding member. The photo-alignment irradiation apparatus according to claim 5, wherein the position of the partial shielding member is adjusted by relatively moving the polarized light irradiation unit and the stage.
  7.  前記突起部は、前記部分遮蔽部材が配列されている方向に可能な移動部に配置されている
     請求項5に記載の光配向照射装置。
    The photo-alignment irradiation apparatus according to claim 5, wherein the protrusion is disposed on a movable portion that is possible in a direction in which the partial shielding members are arranged.
  8.  前記光センサーは、前記突起部が配置されている前記移動部に配置されている
     請求項7に記載の光配向照射装置。
    The photo-alignment irradiation apparatus according to claim 7, wherein the optical sensor is disposed in the moving unit in which the protrusion is disposed.
  9.  前記部分遮蔽部材は、隣接する前記部分遮蔽部材間で重畳部分を有する
     請求項1に記載の光配向照射装置。
    The photo-alignment irradiation apparatus according to claim 1, wherein the partial shielding member has an overlapping portion between adjacent partial shielding members.
  10.  ステージと、偏光光照射部と、走査部と、複数の部分遮蔽部材と、突起部と、制御部と、を備え、
     前記ステージは、配向膜が表面に形成された基板を載置可能とし、
     前記偏光光照射部は、前記ステージと対向する側に偏光光を射出する開口が設けられ、
     前記走査部は、前記偏光光照射部と前記ステージを相対的に移動可能とし、
     各前記部分遮蔽部材は、前記開口の一部を遮蔽する遮蔽量を変更するように、前記走査部による偏光光照射部と前記ステージの相対的な移動方向に移動可能であり、
     前記突起部は、前記走査部による移動に伴って移動し、
     前記制御部は、配向処理と、調整処理と、を実行可能とし、
     前記配向処理は、前記走査部にて前記偏光光照射部と前記ステージを相対的に移動させつつ、前記開口から射出される偏光光を前記ステージに載置された前記基板に照射し、
     前記調整処理は、前記突起部を前記部分遮蔽部材に当接させた状態で、前記走査部を移動させることで、前記部分遮蔽部材を移動させる
     光配向照射装置。
    A stage, a polarized light irradiation unit, a scanning unit, a plurality of partial shielding members, a protrusion, and a control unit;
    The stage is capable of placing a substrate on which an alignment film is formed,
    The polarized light irradiation unit is provided with an opening for emitting polarized light on the side facing the stage,
    The scanning unit is capable of relatively moving the polarized light irradiation unit and the stage,
    Each of the partial shielding members is movable in the relative movement direction of the polarized light irradiation unit by the scanning unit and the stage so as to change a shielding amount for shielding a part of the opening.
    The protrusion moves as the scanning unit moves,
    The control unit can perform an alignment process and an adjustment process,
    The alignment treatment irradiates the substrate placed on the stage with polarized light emitted from the opening while moving the polarized light irradiation unit and the stage relatively in the scanning unit,
    The alignment process is an optical alignment irradiation apparatus that moves the partial shielding member by moving the scanning unit in a state in which the protrusion is in contact with the partial shielding member.
  11.  ステージと、偏光光照射部と、走査部と、複数の部分遮蔽部材と、光センサーと、を備える光配向照射装置の開口量調整方法であって、
     前記ステージは、配向膜が表面に形成された基板を載置可能とし、
     前記偏光光照射部は、前記ステージと対向する側に、偏光光を射出する開口が設けられ、
     前記走査部は、前記偏光光照射部と前記ステージを相対的に移動可能とし、
     各前記部分遮蔽部材は、前記開口の一部を遮蔽する遮蔽量を変更するように移動可能に構成され、
     前記光センサーは、入射光の照度を測定可能とし、
     前記走査部にて前記偏光光照射部と前記ステージを相対的に移動させつつ、前記開口から射出される偏光光を前記基板に照射し、
     各前記部分遮蔽部材位置において、前記走査部にて前記ステージと偏光光照射部を相対的に移動させつつ、前記開口から射出される偏光光を前記光センサーに受光させ、前記光センサーで測定した照度を時間的に積算した積算光量を測定し、
     各前記部分遮蔽部材位置において測定した積算光量に基づいて決定された遮蔽量によって、対応する前記部分遮蔽部材を位置調整する
     光配向照射装置の開口量調整方法。
    An aperture adjustment method for a photo-alignment irradiation apparatus comprising a stage, a polarized light irradiation unit, a scanning unit, a plurality of partial shielding members, and an optical sensor,
    The stage is capable of placing a substrate on which an alignment film is formed,
    The polarized light irradiation section is provided with an opening for emitting polarized light on the side facing the stage,
    The scanning unit is capable of relatively moving the polarized light irradiation unit and the stage,
    Each of the partial shielding members is configured to be movable so as to change a shielding amount for shielding a part of the opening,
    The optical sensor can measure the illuminance of incident light,
    While irradiating the substrate with polarized light emitted from the opening while relatively moving the polarized light irradiation unit and the stage in the scanning unit,
    At each of the partial shielding member positions, the scanning unit relatively moves the stage and the polarized light irradiation unit, and the polarized light emitted from the opening is received by the optical sensor and measured by the optical sensor. Measure the integrated light intensity by integrating the illuminance over time,
    A method of adjusting an opening amount of a light alignment irradiation device, wherein the position of the corresponding partial shielding member is adjusted by a shielding amount determined based on an integrated light amount measured at each partial shielding member position.
  12.  各前記部分遮蔽量の遮蔽量は、積算光量の下限値が測定された前記部分遮蔽部材の遮蔽量が、最低の遮蔽量となるように決定される
     請求項11に記載の光配向照射装置の開口量調整方法。
    The photo-alignment irradiation apparatus according to claim 11, wherein the shielding amount of each partial shielding amount is determined so that the shielding amount of the partial shielding member for which the lower limit value of the integrated light quantity is measured is the minimum shielding amount. Opening amount adjustment method.
PCT/JP2013/074997 2013-09-17 2013-09-17 Photo-alignment irradiation device and method for adjusting aperture of photo-alignment irradiation device WO2015040664A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/074997 WO2015040664A1 (en) 2013-09-17 2013-09-17 Photo-alignment irradiation device and method for adjusting aperture of photo-alignment irradiation device
TW103128078A TW201523098A (en) 2013-09-17 2014-08-15 Photo-alignment irradiation device and method for adjusting aperture of photo-alignment irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/074997 WO2015040664A1 (en) 2013-09-17 2013-09-17 Photo-alignment irradiation device and method for adjusting aperture of photo-alignment irradiation device

Publications (1)

Publication Number Publication Date
WO2015040664A1 true WO2015040664A1 (en) 2015-03-26

Family

ID=52688352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074997 WO2015040664A1 (en) 2013-09-17 2013-09-17 Photo-alignment irradiation device and method for adjusting aperture of photo-alignment irradiation device

Country Status (2)

Country Link
TW (1) TW201523098A (en)
WO (1) WO2015040664A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017072769A (en) * 2015-10-08 2017-04-13 ウシオ電機株式会社 Light irradiation device
JP2019179274A (en) * 2019-07-24 2019-10-17 ウシオ電機株式会社 Light irradiation device and light irradiation method
WO2021235305A1 (en) * 2020-05-21 2021-11-25 フェニックス電機株式会社 Light projecting device, and exposure device provided therewith
JP2021184083A (en) * 2020-05-21 2021-12-02 フェニックス電機株式会社 Light irradiation device and exposure device with the same
US11454848B2 (en) * 2018-10-23 2022-09-27 HKC Corporation Limited Power-on carrying apparatuses and alignment ultraviolet liquid crystal irradiation devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350858A (en) * 2001-05-28 2002-12-04 Sony Corp Light orientation device
JP2005234266A (en) * 2004-02-20 2005-09-02 Hayashi Telempu Co Ltd Polarization exposure method
JP2012221726A (en) * 2011-04-08 2012-11-12 Ushio Inc Lamp unit, and light irradiation device having the same
JP5105567B1 (en) * 2012-04-19 2012-12-26 信越エンジニアリング株式会社 Photo-alignment irradiation device
JP2013045053A (en) * 2011-08-26 2013-03-04 Ushio Inc Polarization element unit, light radiation device using polarization element unit, and transmittance setting method of polarization element unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350858A (en) * 2001-05-28 2002-12-04 Sony Corp Light orientation device
JP2005234266A (en) * 2004-02-20 2005-09-02 Hayashi Telempu Co Ltd Polarization exposure method
JP2012221726A (en) * 2011-04-08 2012-11-12 Ushio Inc Lamp unit, and light irradiation device having the same
JP2013045053A (en) * 2011-08-26 2013-03-04 Ushio Inc Polarization element unit, light radiation device using polarization element unit, and transmittance setting method of polarization element unit
JP5105567B1 (en) * 2012-04-19 2012-12-26 信越エンジニアリング株式会社 Photo-alignment irradiation device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017072769A (en) * 2015-10-08 2017-04-13 ウシオ電機株式会社 Light irradiation device
US11454848B2 (en) * 2018-10-23 2022-09-27 HKC Corporation Limited Power-on carrying apparatuses and alignment ultraviolet liquid crystal irradiation devices
JP2019179274A (en) * 2019-07-24 2019-10-17 ウシオ電機株式会社 Light irradiation device and light irradiation method
WO2021235305A1 (en) * 2020-05-21 2021-11-25 フェニックス電機株式会社 Light projecting device, and exposure device provided therewith
JP2021184083A (en) * 2020-05-21 2021-12-02 フェニックス電機株式会社 Light irradiation device and exposure device with the same
JP7142380B2 (en) 2020-05-21 2022-09-27 フェニックス電機株式会社 Light irradiation device and exposure device provided with same
JP2022184872A (en) * 2020-05-21 2022-12-13 フェニックス電機株式会社 Light irradiation device and exposure apparatus including the same
JP7257719B2 (en) 2020-05-21 2023-04-14 フェニックス電機株式会社 Light irradiation device and exposure device provided with same

Also Published As

Publication number Publication date
TW201523098A (en) 2015-06-16

Similar Documents

Publication Publication Date Title
KR101462273B1 (en) Light illuminating apparatus for photo-alignment
WO2015040664A1 (en) Photo-alignment irradiation device and method for adjusting aperture of photo-alignment irradiation device
US7463418B2 (en) Polarization element unit and polarization light emitting apparatus
JP2008164729A (en) Light irradiator, light irradiation apparatus, and exposure method
JP6742453B2 (en) Photo-alignment control method and photo-alignment apparatus
US8873019B2 (en) Manufacturing and detecting device and method of birefringent lens grating
TWI585387B (en) Polarization measuring process, polarization measuring apparatus, polarization measuring system and photo-alignment irradiation apparatus
KR102272435B1 (en) Polarizing light irradiation device
WO2012102104A1 (en) Exposure apparatus, liquid crystal display device and method for manufacturing same
JP3603758B2 (en) Polarizing element of polarized light irradiation device for photo-alignment of liquid crystal alignment film
JP5131886B1 (en) Photo-alignment irradiation device
JP4216220B2 (en) Manufacturing method of liquid crystal display element
WO2012105393A1 (en) Exposure device, liquid crystal display device, and method of manufacturing same
JP2011069994A (en) Polarized exposure apparatus
JP2012123207A (en) Exposure apparatus and exposure method
KR20050039564A (en) A polarized light illuminating apparatus used for light orientation and method for regulating the polarization axis of the same
JP2011203669A (en) Polarizing exposure apparatus
JP7193196B2 (en) Measuring Mechanism for Alignment Film Exposure Apparatus and Adjustment Method for Alignment Film Exposure Apparatus
KR20200035045A (en) Optical orientation exposure device
JP2018159902A (en) Optical processor
JP2015057639A (en) Polarizing element unit and polarized light irradiation device using polarizing element unit
KR101393460B1 (en) Rubbing and photo-aligning device
JP2016024416A (en) Light orientation irradiation device and light orientation irradiation method
JP2013143561A (en) Scanning type projection exposure device
JP2010181215A (en) Color filter pattern inspecting apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP