WO2015040322A1 - Plateforme semi-submersible équipée d'un système d'amplification angulaire - Google Patents

Plateforme semi-submersible équipée d'un système d'amplification angulaire Download PDF

Info

Publication number
WO2015040322A1
WO2015040322A1 PCT/FR2014/052300 FR2014052300W WO2015040322A1 WO 2015040322 A1 WO2015040322 A1 WO 2015040322A1 FR 2014052300 W FR2014052300 W FR 2014052300W WO 2015040322 A1 WO2015040322 A1 WO 2015040322A1
Authority
WO
WIPO (PCT)
Prior art keywords
float
platform
power plant
wave
box
Prior art date
Application number
PCT/FR2014/052300
Other languages
English (en)
Inventor
José Antonio RUIZ DIEZ
Original Assignee
Waves Ruiz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waves Ruiz filed Critical Waves Ruiz
Priority to CN201480051445.0A priority Critical patent/CN105745437A/zh
Priority to CA2921545A priority patent/CA2921545A1/fr
Priority to EP14784299.1A priority patent/EP3047140A1/fr
Priority to US15/022,971 priority patent/US20160230739A1/en
Priority to BR112016005972A priority patent/BR112016005972A2/pt
Priority to JP2016543446A priority patent/JP2017500491A/ja
Publication of WO2015040322A1 publication Critical patent/WO2015040322A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/20Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" wherein both members, i.e. wom and rem are movable relative to the sea bed or shore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • F05B2240/932Mounting on supporting structures or systems on a structure floating on a liquid surface which is a catamaran-like structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/406Transmission of power through hydraulic systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the invention relates to the field of energy production, and more specifically to the field of producing electrical energy from wave energy.
  • the invention relates to a wave power plant equipped with a platform and a wave machine mounted on this platform and equipped with floats whose upward movement or descent following the swell (which also exerts on the floats a horizontal thrust) is converted into hydraulic energy, this hydraulic energy being in turn converted into electrical energy by means of a hydraulic motor associated with a generator, or a hydroelectric turbine.
  • a wave power plant of this type is particularly known from US 2013/067903 (Sea Power Ltd).
  • This plant comprises two floats (called pontoons in the document) mutually articulated by arms. These floats are designed to follow the vertical movements of the swell and produce mechanical energy by mutual rotation.
  • This architecture is not without inconvenience.
  • the plant is sensitive to the heel, induced by the lateral pressure exerted by the water on the stem of the floats. This pressure is not constant over the entire length of the plant.
  • the heel generates in the hinge arms torsional stress likely to accelerate the aging of the structure by mechanical fatigue. In case of rough seas, the risk of breakage is not zero.
  • One solution would be to resize the arms to increase the stiffness, but it would result in increasing their inertia, to the detriment of the energy efficiency of the plant.
  • a first objective is to propose a wave power plant with increased energy efficiency.
  • a second objective is to propose a wave power plant with increased stability, particularly in relation to the deposit.
  • a third objective is to propose a wave power plant with increased compactness, in particular to benefit from rigidity and manufacturing costs.
  • a fourth objective is to propose a wave power plant with good reliability, so as to minimize maintenance operations.
  • a wave power plant which comprises:
  • a semi-submersible platform provided with at least one longitudinal box which extends from a bow to a stern of the platform, this platform having at its bow a stabilizing fin which extends transversely below a lower edge of the box, and at its stern a transverse floating beam secured to the box;
  • this machine comprising:
  • At least one float arranged to allow the transformation of the wave energy into mechanical energy, the float being mounted on an arm rotatably mounted on a fixed axis of the gantry,
  • the float and the floating beam can be animated oscillatory movements in opposite direction, maximizing the angular travel of the arm (and thus the output of the power plant).
  • the beam has, in longitudinal section, a circular contour; the beam extends about halfway up the box;
  • the or each box has, at the stern, an enlarged end and / or raised;
  • the portico extends perpendicular to the fin
  • each converter comprises a pair of jacks preferably operating in tension, for example in opposition, whose pistons are coupled to the arm;
  • each arm is rigid
  • each arm is rigidly secured to the float;
  • each float comprises a hydrodynamic appendage in the form of a gutter fixed under a hull of the float;
  • the wave power plant comprises at least two longitudinal boxes delimiting a central channel in which is disposed the float, wherein the gantry is mounted transversely between the boxes, and wherein the floating beam connects transversely caissons.
  • Figure 1 is a perspective view of a wave power plant
  • Figure 2 is a top view of the wave power plant of Figure 1;
  • FIG. 3 is a schematic view showing a power converter equipping the plant
  • Figure 4 is a sectional view of the central of Figure 2, along the section plane IV-IV;
  • Figure 5 is a sectional detail showing a box of the central unit of Figure 2, along the section plane V-V;
  • Figure 6 is a detailed sectional view showing a float of the central of Figure 2, along the section plane VI-VI;
  • Figure 7 is a view similar to Figure 6, showing a float according to an alternative embodiment wherein the float is equipped with a hydrodynamic appendage;
  • Figure 8 is a side detail view showing the plant according to an alternative embodiment
  • Figure 9 is a view similar to Figure 8, showing the central according to another embodiment
  • Figure 10 is a view similar to Figure 1, showing the central according to yet another embodiment.
  • FIG 1 a central 1 wave.
  • This plant intended to be installed offshore, comprises a semi-submersible platform 2 and a wave machine 3 mounted on the platform 2.
  • the semi-submersible platform 2 is equipped with a plurality of elongate floating caissons 4 arranged substantially parallel in a longitudinal direction which, when the central station 1 is at sea, corresponds to the main direction of propagation of the swell (represented by the arrows located on the left in Figure 2).
  • the boxes 4 are two in number and have a parallelepipedal shape, square section or (as illustrated) rectangular, a height preferably greater than their thickness.
  • the caissons 4 have solid or perforated lateral walls 5 which jointly delimit a central channel 6 extending from a bow 7 (on the left in FIGS. 1, 2 and 4) to a stern 8 (on the right in FIGS. , 2 and 4) of platform 2.
  • the seawater is channeled in the channel 6 along the main direction of propagation of the swell, which limits the roll movements (or heel) of the platform 2.
  • Each box 4 has an opposite upper longitudinal edge 9 and an opposite lower longitudinal edge 10 which are respectively emerged and immersed in calm (although hearable) sea to moderately agitated.
  • Each box 4 is preferably hollow, and made by assembling metal plates (for example anti-corrosion treated steel), composite material or any other material sufficiently rigid and resistant to bending forces as corrosion.
  • Each box 4 can be stiffened by means of internal ribs, in order to better withstand the bending stresses both in the longitudinal plane (especially when the box extends cantilevered at the top of a ridge, or when is carried at both ends by two successive ridges) only in the transverse plane (especially in case of local vortex).
  • Each box 4 may further be compartmentalized to form ballasts that can be at least partially filled with seawater or drained so as to adjust the waterline.
  • the filling and emptying of the ballasts can be carried out by means of pumps, preferably actuated automatically. This adjustment is preferably carried out so that the waterline is substantially median on the caissons 4 - in other words so that the draft and the freeboard of the caissons 4 are substantially identical.
  • each box 4 has, at the stern 8, an enlarged end (as is more particularly visible in Figure 2) and / or elevated (as is more particularly visible in Figure 4). In this way, the volume of air trapped in the caissons 4 is higher, and the buoyancy of the platform 2 is locally increased at its stern 8.
  • the platform 2 comprises, at its stern 8, a flotation beam 11 secured to the caissons 4, and which extends transversely connecting them.
  • the beam 11 performs a float function to keep the stern 8 permanently at sea level.
  • the stern 8 follows the swell (shown in dashed lines in this figure).
  • the beam 11 may have, in longitudinal section (FIG. 4), any shape, but it is preferable, in order to optimize its float function, to have a circular shape in longitudinal section.
  • the beam 11 is tubular, hollow, circular section.
  • the vertical positioning of the beam 11 is adapted to the architecture of the platform 2 and in particular to the shape of the caissons 4; in the example shown, the beam 11 extends about halfway up the caissons 4.
  • the platform 2 further comprises at least one stabilizing fin 12 which, at sea, is normally immersed permanently, this fin 12 extending transversely below the lower edges of the caissons 4, at the bow of the platform 2.
  • the bow 12 extends only a portion of the length of the platform 2 (typically between 1/5 and 1/10 of this length).
  • the fin 12 has a surface 13 upper or extrados substantially flat, parallel to and facing the lower longitudinal edges 10 of the caissons 4, and a lower face or intrados 14 by which the platform 2 can be anchored to the seabed by means of a catenary 15 integral with the platform 2.
  • the anchoring of the catenary 15 on the fin 12 can automatically orientate the platform 2 facing the swell, the forces being applied in the axis thereof and ensuring a continuous voltage of the catenary 15.
  • the fin 12 has a U-shaped cross-section and comprises two lateral sides 16 extending from the lower edges of the caissons 4, in the vertical extension thereof. ci, so that the extrados 13 extends away from the lower edges of the caissons 4 so that the fin 12, located below the caissons 4, is always immersed to a depth sufficient to be immune effects of the swell.
  • the stern 8 follows the swell thanks to the floatation of the stern ends of the caissons 4 combined with that of the beam 11.
  • the swell induces on the platform 2 a swinging movement of the stern 8, centered on a axis substantially coincident with a median transverse line at the fin 12.
  • the wave machine 3 is mounted on the platform 2 at its bow 7, for example at the base of the fin 8.
  • the machine 3 comprises, in the first place, a gantry 17 mounted on the caissons 4 extending transversely between them, and which couples them on the side of their upper edges.
  • the wave machine 3 comprises, secondly, at least one movable float 18 mounted in the channel between the bow 7 and the stern
  • the machine 3 comprises a transverse row of floats
  • the floats 18 are four in number, namely a pair of side floats 18 adjacent the boxes 4 on the edges of the channel 6, and a pair of central floats 18 mounted between the lateral floats 18 in the center of the channel 6. Alternatively, the number of floats 18 could be greater.
  • Each float 18 is preferably profiled as a boat hull, and for this purpose has a bow 19 oriented towards the bow 7 of the platform 2. As can be seen in FIG. 4, each float 18 extends beyond the fin 12 in the direction of the stern 8.
  • Each float 18 is mounted on a rigid rigid angled arm 20, rotatably mounted on an axis 21 secured to the gantry 17.
  • the axis 21 is preferably common to all the arms 20.
  • Each arm extends towards the stern 8 from the axis 21.
  • each float 18 can be articulated with respect to the arm 20. In this way, each float 18 is pitched according to the swell, regardless of the angular position of its arm 20.
  • connection between the float 18 and its arm 20 is recessed.
  • the arm 20 is rigidly secured to the float 18.
  • each float 18 and its arm 20 can even be supported by means of brackets 22.
  • the energy efficiency of the machine 3 is better because there is no loss of friction at the junction between the float 18 and its arm 20.
  • the gantry 17 is preferably dimensioned sufficiently generously to form a technical room welcoming and housing the equipment of the plant 1, in particular for the conversion of the mechanical energy of the swell into hydraulic energy, and then the hydraulic energy into energy electric.
  • the machine 3 comprises for this purpose, thirdly, for each float 18, a converter 23 of mechanical energy in hydraulic energy.
  • This converter 23 comprises at least one jack 24 provided with a cylinder 25 defining a chamber 26 filled with a hydraulic fluid and a piston 27 slidably mounted in the chamber 26 and coupled to the arm 20.
  • the piston 27 is coupled to a wheel 28 integral with the axis 21 of rotation of the arm 20, so that the rotation thereof, caused by a movement of upward movement or descent of the float 18 accompanying the swell, alternately biases the piston 27 in tension (in the direction of the large right arrow in FIG. 3) and in compression by spring effect (in the direction of the small right arrow in FIG. 3).
  • the jack 24 is preferably simple effect, being arranged so that the fluid is compressed (and injected into an external fluid circuit connected to turbines generating electricity, possibly stored in accumulators) only when the piston 27 is stressed in tension.
  • each converter 23 comprises a pair of jacks 24 operating in opposition (and both in traction), whose pistons 27 are coupled to the wheel 28, so that each oscillation of the arm 20 alternately exerts traction on each of the pistons 27, the energy of the swell being thus recovered both during the movements of ascent and descent of the float 18, as well as during any movements due to the horizontal thrust of the swell.
  • the wave machine 3 may be equipped with a force balancing system, for example in the form of a torque reverser interposed between the energy converter 23 and the arm 20.
  • the central unit 1 is preferably arranged so that the center of gravity of the floats 18 (which preferably extends vertically above the anchoring point of the arm 20 on the float 18) is at a distance from the beam 11 equal to at about half of the average wavelength of the swell in the maritime zone where the plant 1 is installed. For example, for a swell with an average wavelength of 150 m, it will be ensured that the distance from the beam 11 to the centers of gravity of the floats 18 is about 75 m.
  • the caissons 18 and the beam 11 are animated reciprocating movements in the opposite direction, the amplitude of which corresponds to the vertical vertical-peak distance of the swell. It can be seen in FIG. 4 that, when the beam 11 is in the hollow of a wave, the floats 18 are on the crest of the next wave. Conversely, when the beam 11 is on the crest of a wave, the floats are in the hollow thereof. This phase opposition allows maximize the angular amplitude of the rotational movement of the arm 20 relative to the platform 2.
  • each caisson 4 can be V-shaped, so as to improve the penetration of the caisson 4 into the water and to minimize the bending forces induced by the swell on the latter. this.
  • each float 18 has a hull 29 which, in cross section ( Figure 6) is V-shaped rather than flat, so as to improve the penetration of the float 18 in the water.
  • each float 18 may be equipped with a hydrodynamic appendage 30 for increasing the amplitude of displacement of the float 18 and the value of the engine torque exerted by the arm 20 on its axis 21 of rotation.
  • the hydrodynamic appendage 30 is in the form of a gutter fixed under the hull 29 of the float 18, either directly (in the illustrated example) or via spacer (not shown).
  • the width of the gutter 30 is greater than the width of the float 18, its side edges being spaced from the side walls of the float 18. It follows from this configuration:
  • each float 18 makes it possible to recover the sum of the buoyancy forces due to the swell, and the forces resulting from the frontal thrust of the waves.
  • the caissons 4 together form an effective barrier against the taking of the platform 2 (and therefore the central 1), which effectively channels the swell in the channel 6 and thus optimize the operation of the floats 18
  • the floats 18 are thus protected against transverse forces that may affect their good rotation about their axis 21. This results in increased transverse stability of the central 1, and a better reliability thereof.
  • FIG. 8 shows a variant of the central unit 1, in which the stabilizing fin 12 is mounted articulated with respect to the caissons 4, and more precisely with respect to the sides 16, around a central axis 31.
  • This articulation allows the fin 12 to remain substantially horizontal while the platform 2 pivots at the mercy of the swell, driven by the beam 11 of flotation.
  • each float 18 has, instead of a boat-shaped form, a cylindrical shape which limits its axial extension (that is to say, parallel to the large one). axle of the platform 2) and thus makes it less sensitive (see insensitive) to the bending forces experienced by a float in the form of a boat hull due to the passage of the swell.
  • the platform 2 comprises a single floating caisson 4 arranged centrally, on either side of which are distributed the floats 18, the gantry 17, the stabilizer wing 12 and the flotation beam 11, which remains integral with the casing 4 at the stern 8.
  • the shape of the casing 4 remains generally unchanged, except that it preferably has a thickness (measured transversally) greater, for the purpose of resistance and mechanical stiffness.
  • the number of floats 18 illustrated corresponds to an exemplary embodiment, but this number could be lower (up to two distributed on either side of the central box 4), or higher.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Toys (AREA)
  • Escalators And Moving Walkways (AREA)

Abstract

Centrale houlomotrice, qui comprend : • une plateforme (2) semi-submersible munie d'au moins un caisson (4) longitudinal qui s'étend d'une proue (7) à une poupe (8) de la plateforme (2), cette plateforme (2) ayant à sa proue (7) un aileron (12) stabilisateur qui s'étend transversalement en-deçà d'un bord (9) inférieur du caisson (4), et à sa poupe (8) une poutre (11) de flottaison solidaire du caisson (4); • une machine (3) houlomotrice montée sur la plateforme (2), qui comporte : • un portique (17) monté transversalement sur le caisson (4) à la proue de la plateforme (2), • au moins un flotteur (18) agencé pour permettre la transformation de l'énergie de la houle en énergie mécanique, le flotteur (18) étant monté sur un bras (20) monté en rotation sur un axe (21) solidaire du portique (17), • un convertisseur (23) d'énergie mécanique du flotteur (18) en énergie hydraulique.

Description

Plateforme semi-submersible équipée d'un système d'amplification angulaire
L'invention a trait au domaine de la production d'énergie, et plus précisément au domaine de la production d'énergie électrique à partir de l'énergie de la houle.
L'invention concerne une centrale houlomotrice équipée d'une plateforme et d'une machine houlomotrice montée sur cette plateforme et équipée de flotteurs dont le mouvement d'ascension ou de descente suivant la houle (qui exerce également sur les flotteurs une poussée horizontale) est converti en énergie hydraulique, cette énergie hydraulique étant à son tour convertie en énergie électrique au moyen d'un moteur hydraulique associé à un générateur, ou d'une turbine hydroélectrique.
Une centrale houlomotrice de ce type est notamment connue du document US 2013/067903 (Sea Power Ltd). Cette centrale comprend deux flotteurs (dénommés pontons dans le document) mutuellement articulés par des bras. Ces flotteurs sont conçus pour suivre les mouvements verticaux de la houle et produire une énergie mécanique par rotation mutuelle.
Cette architecture ne va pas sans inconvénient. En particulier, la centrale est sensible à la gîte, induite par la pression latérale exercée par l'eau sur l'étrave des flotteurs. Cette pression n'est pas constante sur toute la longueur de la centrale. Aussi la gîte génère-t-elle dans les bras d'articulation des contraintes de torsion de nature à accélérer le vieillissement de la structure par fatigue mécanique. En cas de mer agitée, le risque de rupture n'est pas nul. Une solution serait de redimensionner les bras pour en accroître la raideur, mais il en résulterait l'augmentation de leur inertie, au détriment du rendement énergétique de la centrale.
Un premier objectif est de proposer une centrale houlomotrice présentant un rendement énergétique accru.
Un deuxième objectif est de proposer une centrale houlomotrice présentant une stabilité accrue, en particulier face à la gîte.
Un troisième objectif est de proposer une centrale houlomotrice présentant une compacité accrue, au bénéfice notamment de la rigidité et des coûts de fabrication. Un quatrième objectif est de proposer une centrale houlomotrice présentant une bonne fiabilité, de sorte à minimiser les opérations de maintenance.
A cet effet, il est proposé une centrale houlomotrice, qui comprend :
une plateforme semi-submersible munie d'au moins un caisson longitudinal qui s'étend d'une proue à une poupe de la plateforme, cette plateforme ayant à sa proue un aileron stabilisateur qui s'étend transversalement en-deçà d'un bord inférieur du caisson, et à sa poupe une poutre de flottaison transversale solidaire du caisson ;
une machine houlomotrice montée sur la plateforme, cette machine comportant :
o un portique monté transversalement sur le caisson à la proue de la plateforme,
o au moins un flotteur agencé pour permettre la transformation de l'énergie de la houle en énergie mécanique, le flotteur étant monté sur un bras monté en rotation sur un axe solidaire du portique,
o un convertisseur d'énergie mécanique du flotteur en énergie hydraulique.
Grâce à cette architecture, le flotteur et la poutre flottante peuvent être animés de mouvements oscillatoires en sens inverse, maximisant la course angulaire du bras (et donc le rendement de la centrale).
Diverses caractéristiques peuvent être prévues, seules ou en combinaison :
la poutre présente, en section longitudinale, un contour circulaire ; la poutre s'étend à environ mi-hauteur du caisson ;
le ou chaque caisson présente, à la poupe, une extrémité élargie et/ou surélevée ;
le portique s'étend à l'aplomb de l'aileron ;
chaque convertisseur comprend une paire de vérins fonctionnant de préférence en traction, par exemple en opposition, dont les pistons sont accouplés au bras ;
- chaque bras est rigide ;
chaque bras est rigidement solidaire du flotteur ; chaque flotteur comprend un appendice hydrodynamique sous forme d'un chéneau fixé sous une carène du flotteur ;
la centrale houlomotrice comprend au moins deux caissons longitudinaux délimitant un chenal central dans lequel est disposé le flotteur, dans lequel le portique est monté transversalement entre les caissons, et dans lequel la poutre de flottaison relie transversalement les caissons.
D'autres objets et avantages de l'invention apparaîtront à la lumière de la description d'un mode de réalisation, faite ci-après en référence aux dessins annexés dans lesquels :
la figure 1 est une vue en perspective d'une centrale houlomotrice ;
la figure 2 est une vue de dessus de la centrale houlomotrice de la figure 1 ;
- la figure 3 est une vue schématique montrant un convertisseur d'énergie équipant la centrale ;
la figure 4 est une vue en coupe de la centrale de la figure 2, suivant le plan de coupe IV-IV ;
la figure 5 est une de détail en coupe montrant un caisson de la centrale de la figure 2, suivant le plan de coupe V-V ;
la figure 6 est une vue de détail en coupe montrant un flotteur de la centrale de la figure 2, suivant le plan de coupe VI-VI ;
la figure 7 est une vue similaire à la figure 6, montrant un flotteur selon une variante de réalisation dans laquelle le flotteur est équipé d'un appendice hydrodynamique ;
la figure 8 est une vue de détail de côté montrant la centrale selon une variante de réalisation ;
la figure 9 est une vue similaire à la figure 8, montrant la centrale selon une autre variante de réalisation ;
- la figure 10 est une vue similaire à la figure 1, montrant la centrale selon encore une autre variante de réalisation.
Sur la figure 1 est représentée une centrale 1 houlomotrice. Cette centrale 1, destinée à être installée offshore, comprend une plateforme 2 semi-submersible et une machine 3 houlomotrice montée sur la plateforme 2. La plateforme 2 semi-submersible est équipée d'une pluralité de caissons 4 flottants allongés, disposés sensiblement parallèlement suivant une direction longitudinale qui, lorsque la centrale 1 est en mer, correspond à la direction principale de propagation de la houle (représentée par les flèches situées à gauche sur la figure 2).
Dans l'exemple illustré, les caissons 4 sont au nombre de deux et présentent une forme parallélépipédique, à section carrée ou (comme illustré) rectangulaire, d'une hauteur de préférence supérieure à leur épaisseur. Les caissons 4 présentent des parois 5 latérales pleines ou ajourées qui délimitent conjointement un chenal 6 central qui s'étend d'une proue 7 (à gauche sur les figures 1 , 2 et 4) à une poupe 8 (à droite sur les figures 1, 2 et 4) de la plateforme 2.
Grâce aux parois 5 latérales des caissons 4, l'eau de mer est canalisée dans le chenal 6 suivant la direction principale de propagation de la houle, ce qui limite les mouvements de roulis (ou gîte) de la plateforme 2.
Chaque caisson 4 présente un bord 9 longitudinal supérieur et un bord 10 longitudinal inférieur opposés qui, par mer calme (bien qu'houleuse) à modérément agitée, sont respectivement émergé et immergé.
Chaque caisson 4 est de préférence creux, et réalisé par assemblage de plaques métalliques (par exemple en acier traité anticorrosion), en matériau composite ou dans tout autre matériau suffisamment rigide et résistant aux efforts de flexion comme à la corrosion. Chaque caisson 4 peut être raidi au moyen de nervures intérieures, afin de mieux résister aux contraintes de flexion tant dans le plan longitudinal (notamment lorsque le caisson s'étend en porte-à- faux au sommet d'une crête, ou lorsqu'il est porté à ses deux extrémités par deux crêtes successives) que dans le plan transversal (notamment en cas de vortex local).
Chaque caisson 4 peut en outre être compartimenté pour former des ballasts pouvant être au moins partiellement remplis d'eau de mer ou vidangés de sorte à ajuster la ligne de flottaison. Le remplissage et la vidange des ballasts peuvent être réalisés au moyen de pompes, de préférence actionnées de manière automatique. Cet ajustement est de préférence réalisé de sorte que la ligne de flottaison soit sensiblement médiane sur les caissons 4 - en d'autres termes pour que le tirant d'eau et le franc bord des caissons 4 soient sensiblement identiques.
Selon un mode de réalisation illustré sur les figures 1, 2 et 4, chaque caisson 4 présente, à la poupe 8, une extrémité élargie (comme cela est plus particulièrement visible sur la figure 2) et/ou surélevée (comme cela est plus particulièrement visible sur la figure 4). De la sorte, le volume d'air emprisonné dans les caissons 4 y est supérieur, et la flottabilité de la plateforme 2 est localement accrue à sa poupe 8.
Comme on le voit sur les figures 1, 2 et 4, la plateforme 2 comprend, à sa poupe 8, une poutre 11 de flottaison solidaire des caissons 4, et qui s'étend transversalement en les reliant. Outre une fonction d'accouplement et d'entretoisement des caissons 4, et de rigidification de la plateforme 2, la poutre 11 remplit une fonction de flotteur pour maintenir en permanence la poupe 8 au niveau de la mer. En d'autres termes, comme on le voit biens sur la figure 4, la poupe 8 suit la houle (représentée en pointillés sur cette figure).
La poutre 11 peut présenter, en section longitudinale (figure 4) une forme quelconque, mais il est préférable, pour optimiser sa fonction de flotteur, qu'elle présente en section longitudinale une forme circulaire. Ainsi, dans l'exemple illustré, la poutre 11 est-elle tubulaire, creuse, à section circulaire. Le positionnement vertical de la poutre 11 est adapté à l'architecture de la plateforme 2 et en particulier à la forme des caissons 4 ; dans l'exemple illustré, la poutre 11 s'étend à environ mi- hauteur des caissons 4.
La plateforme 2 comprend en outre au moins un aileron 12 stabilisateur qui, en mer, est normalement immergé en permanence, cet aileron 12 s'étendant transversalement en deçà des bords 10 inférieurs des caissons 4, à la proue de la plateforme 2.
L'aileron 12 de proue s'étend sur une partie seulement de la longueur de la plateforme 2 (typiquement entre 1/5 et 1/10 de cette longueur).
L'aileron 12 présente une face 13 supérieure ou extrados sensiblement plane, parallèle à et en regard des bords 10 longitudinaux inférieurs des caissons 4, et une face inférieure ou intrados 14 par laquelle la plateforme 2 peut être ancrée sur le fond marin au moyen d'une caténaire 15 solidaire de la plateforme 2. L'ancrage de la caténaire 15 sur l'aileron 12 permet d'orienter de manière automatique la plateforme 2 face à la houle, les efforts étant appliqués dans l'axe de celle-ci et assurant une tension continue de la caténaire 15.
Comme on le devine sur la figure 1, l'aileron 12 présente, en section transversale, une forme en U et comprend deux côtés 16 latéraux qui s'étendent à partir des bords 10 inférieurs des caissons 4, dans le prolongement vertical de ceux-ci, de sorte que l'extrados 13 s'étend à distance des bords 10 inférieurs des caissons 4 afin que l'aileron 12, situé en contrebas des caissons 4, soit toujours immergé à une profondeur suffisante pour être à l'abri des effets de la houle.
II en résulte un maintien stable de l'assiette de la plateforme 2 grâce au poids de la colonne d'eau qui surmonte l'aileron 12, et qui fait office d'amortisseur des mouvements de la plateforme 2, notamment de roulis (ou gîte). Les effets combinés de la fonction d'amortisseur de l'aileron 12 et de l'ancrage de la plateforme 2 au moyen de la caténaire 15 font que la proue 7 de la plateforme 2 est peu sensible à la houle et se maintient à une assiette sensiblement constante.
A contrario, la poupe 8 suit la houle grâce à la flottaison des extrémités de poupe des caissons 4 combinée à celle de la poutre 11. Ainsi, la houle induit sur la plateforme 2 un mouvement d'oscillation de la poupe 8, centrée sur un axe sensiblement confondu avec une ligne transversale médiane à l'aileron 12.
La machine 3 houlomotrice est montée sur la plateforme 2 à sa proue 7, par exemple à l'aplomb de l'aileron 8. La machine 3 comprend, en premier lieu, un portique 17 monté sur les caissons 4 en s'étendant transversalement entre eux, et qui les accouple du côté de leurs bords 9 supérieurs.
La machine 3 houlomotrice comprend, en deuxième lieu, au moins un flotteur 18 mobile monté dans le chenal entre la proue 7 et la poupe
8 pour permettre la transformation de l'énergie de la houle en énergie mécanique. Selon un mode de réalisation préféré illustré sur les figures
1, 2 et 4, la machine 3 comprend une rangée transversale de flotteurs
18 disposés côte à côte dans le chenal 6.
Dans l'exemple illustré, les flotteurs 18 sont au nombre de quatre, à savoir une paire de flotteurs 18 latéraux jouxtant les caissons 4 sur les bords du chenal 6, et une paire de flotteurs 18 centraux montés entre les flotteurs 18 latéraux au centre du chenal 6. En variante, le nombre de flotteurs 18 pourrait être supérieur. Chaque flotteur 18 est de préférence profilé comme une coque de bateau, et présente à cet effet une étrave 19 orientée vers la proue 7 de la plateforme 2. Comme on le voit sur la figure 4, chaque flotteur 18 s'étend au-delà de l'aileron 12 en direction de la poupe 8.
Chaque flotteur 18 est monté sur un bras 20 rigide coudé rigide, monté en rotation sur un axe 21 solidaire du portique 17. L'axe 21 est de préférence commun à tous les bras 20. Chaque bras s'étend en direction de la poupe 8 à partir de l'axe 21.
Selon un mode de réalisation non représenté, chaque flotteur 18 peut être articulé par rapport au bras 20. De la sorte, chaque flotteur 18 tangue au gré de la houle, indépendamment de la position angulaire de son bras 20.
Selon un mode préféré de réalisation toutefois, la liaison entre le flotteur 18 et son bras 20 est à encastrement. En d'autres termes, le bras 20 est rigidement solidaire du flotteur 18.
Aux fins de rigidité, la jonction entre chaque flotteur 18 et son bras 20 peut même être étayée au moyen d'équerres 22. Dans cette configuration, où l'orientation du flotteur 18 par rapport à la plateforme ne dépend que de l'angle de rotation du bras 20, le rendement énergétique de la machine 3 est meilleur car aucune perte par frottement n'est à déplorer à la jonction entre le flotteur 18 et son bras 20.
Le portique 17 est de préférence dimensionné de façon suffisamment généreuse pour former un local technique accueillant et abritant les équipements de la centrale 1, notamment pour la conversion de l'énergie mécanique de la houle en énergie hydraulique, puis de l'énergie hydraulique en énergie électrique.
La machine 3 comprend à cet effet, en troisième lieu, pour chaque flotteur 18, un convertisseur 23 d'énergie mécanique en énergie hydraulique. Ce convertisseur 23 comprend au moins un vérin 24 muni d'un cylindre 25 définissant une chambre 26 remplie d'un fluide hydraulique et d'un piston 27 monté coulissant dans la chambre 26 et couplé au bras 20.
Plus précisément, comme illustré sur la figure 3, le piston 27 est accouplé à une roue 28 solidaire de l'axe 21 de rotation du bras 20, de sorte que la rotation de celle-ci, provoquée par un mouvement d'ascension ou de descente du flotteur 18 accompagnant la houle, sollicite alternativement le piston 27 en traction (dans le sens de la grosse flèche droite sur la figure 3) et en compression par effet ressort (dans le sens de la petite flèche droite sur la figue 3).
Afin de limiter la fatigue des pièces mécaniques, le vérin 24 est de préférence simple effet, étant agencé pour que le fluide ne soit compressé (et injecté dans un circuit fluidique externe relié à des turbines génératrice d'électricité, éventuelle stockée dans des accumulateurs) que lorsque le piston 27 est sollicité en traction.
Dans l'exemple illustré, chaque convertisseur 23 comprend une paire de vérins 24 fonctionnant en opposition (et tous deux en traction), dont les pistons 27 sont accouplés à la roue 28, de sorte que chaque oscillation du bras 20 exerce alternativement une traction sur chacun des pistons 27, l'énergie de la houle étant ainsi récupérée tant lors des mouvements d'ascension que de descente du flotteur 18, ainsi que lors des éventuels mouvements dus à la poussée horizontale de la houle.
Afin d'éviter que les efforts de traction exercés simultanément sur les pistons 27 de l'ensemble des flotteurs 18 ne se traduise par un couple global appliqué à la plateforme 2, tendant à faire basculer celle- ci autour de l'axe 21 des bras 20, la machine 3 houlomotrice peut être équipée d'un système d'équilibrage des efforts, par exemple sous forme d'un inverseur de couple interposé entre le convertisseur 23 d'énergie et le bras 20.
La centrale 1 est de préférence agencée pour que le centre de gravité des flotteurs 18 (qui s'étend de préférence à l'aplomb du point d'ancrage du bras 20 sur le flotteur 18) se trouve à une distance de la poutre 11 égale à environ la moitié de la longueur d'onde moyenne de la houle dans la zone maritime où est installée la centrale 1. Ainsi par exemple, pour une houle d'une longueur d'onde moyenne de 150 m, on veillera à ce que la distance de la poutre 11 aux centres de gravité des flotteurs 18 soit d'environ 75 m.
De la sorte, les caissons 18 et la poutre 11 (laquelle entraîne la poupe 8) sont animés de mouvements alternatifs en sens inverse, dont l'amplitude correspond à la distance verticale creux-crête de la houle. On voit sur la figure 4 que, lorsque la poutre 11 est au creux d'une vague, les flotteurs 18 sont sur la crête de la vague suivante. Inversement, lorsque la poutre 11 est sur la crête d'une vague, les flotteurs sont au creux de celle-ci. Cette opposition de phase permet de maximiser l'amplitude angulaire du mouvement de rotation du bras 20 par rapport à la plateforme 2.
Diverses astuces de conception permettent d'optimiser le fonctionnement de la centrale 1.
En particulier, comme illustré sur la figure 5, le bord 10 inférieur de chaque caisson 4 peut être profilé en V, de sorte à améliorer la pénétration du caisson 4 dans l'eau et minimiser les efforts de flexion induits par la houle sur celui-ci.
De même, chaque flotteur 18 présente une carène 29 qui, en section transversale (figure 6) est profilée en V plutôt que plate, de sorte à améliorer la pénétration du flotteur 18 dans l'eau.
En outre, chaque flotteur 18 peut être équipé d'un appendice 30 hydrodynamique visant à accroître l'amplitude du déplacement du flotteur 18 et la valeur du couple moteur exercé par le bras 20 sur son axe 21 de rotation.
Selon un mode de réalisation illustré sur la figure 7, l'appendice 30 hydrodynamique se présente sous forme d'un chéneau fixé sous la carène 29 du flotteur 18, soit directement (dans l'exemple illustré), soit par l'intermédiaire d'entretoise (non représentées). Comme on le voit en outre sur la figure 7, la largeur du chéneau 30 est supérieure à la largeur du flotteur 18, ses bords latéraux étant espacés des parois latérales du flotteur 18. Il résulte de cette configuration :
d'une part, une restriction locale de la section de passage de la houle au niveau des flotteurs 18, ce qui surélève le niveau d'eau et accroît ainsi l'amplitude de la houle (et donc du mouvement des flotteurs)
d'autre part, une augmentation, du côté de l'étrave 19, de la surface frontale apparente (et donc du coefficient de traînée) des flotteurs 18, ce qui accroît la pression frontale exercée par l'eau, et donc le couple moteur exercé par chaque flotteur 18 sur l'axe 21 de rotation de son bras 20.
De la sorte, chaque flotteur 18 permet de récupérer la somme des efforts de flottaison dus à la houle, et des efforts résultant de la poussée frontale des vagues.
II résulte de l'architecture de la centrale 1 qui vient d'être décrite plusieurs avantages. Premièrement, comme nous l'avons vu, la présence de la poutre 11 de flottaison à la poupe 8 de la plateforme 2, à une distance des flotteurs 18 égale à environ la moitié de la longueur d'onde moyenne de la houle, permet de maximiser l'amplitude angulaire du mouvement d'oscillation des bras. Il en résulte une amplification de la récupération d'énergie de la houle, et par conséquent un rendement énergétique accru.
Deuxièmement, les caissons 4 forment ensemble une barrière efficace contre la prise de gîte de la plateforme 2 (et donc de la centrale 1), ce qui permet de canaliser efficacement la houle dans le chenal 6 et ainsi d'optimiser le fonctionnement des flotteurs 18. En outre, les flotteurs 18 sont ainsi protégés des efforts transversaux susceptibles de nuire à leur bonne rotation autour de leur axe 21. Il en résulte une stabilité transversale accrue de la centrale 1, et une meilleure fiabilité de celle-ci.
Troisièmement, le fait de monter les caissons entre la proue 7 et la poupe 8 de la plateforme 2 confère à la centrale 1 une bonne compacité (et donc une meilleure rigidité), qui permet notamment de minimiser les coûts de fabrication.
II est à noter qu'il est envisageable de coupler plusieurs centrales
1, soit en les alignant sur une même ligne de vagues, soit en les décalant longitudinalement (i.e. dans le sens de la houle).
Diverses variantes peuvent être envisagées sans sortir du cadre de la présente invention.
Ainsi, on a représenté sur la figure 8 une variante de la centrale 1, dans laquelle l'aileron 12 stabilisateur est monté articulé par rapport aux caissons 4, et plus précisément par rapport aux côtés 16, autour d'un axe central 31.
Cette articulation permet à l'aileron 12 de demeurer sensiblement horizontal tandis que la plateforme 2 pivote au gré de la houle, entraînée par la poutre 11 de flottaison.
Il en résulte une meilleure facilité de pivotement de la plateforme
2, puisque l'aileron 12 n'offre plus de résistance à son propre basculement.
En outre, comme on le voit également sur la figure 8, l'aileron 12 peut être muni d'un contrepoids 32 prévue en saillie sous l'intrados 14 et qui, servant de quille, maintient l'assiette de l'aileron 12. Selon une autre variante de réalisation, qui peut être combinée à la précédente, chaque flotteur 18 présente, au lieu d'une forme en coque de bateau, une forme cylindrique qui limite son extension axiale (c'est- à-dire parallèlement au grand axe de la plateforme 2) et le rend ainsi moins sensible (voir insensible) aux efforts de flexion que subit un flotteur en forme de coque de bateau en raison du passage de la houle.
Selon encore une autre variante de réalisation, illustrée sur la figure 10, la plateforme 2 comprend un unique caisson 4 flottant agencé de manière centrale, de part et d'autre duquel sont répartis les flotteurs 18, le portique 17, l'aileron 12 stabilisateur et la poutre 11 de flottaison, qui demeure solidaire du caisson 4 à la poupe 8. La forme du caisson 4 demeure globalement inchangée, si ce n'est qu'il présente de préférence une épaisseur (mesurée transversalement) supérieure, aux fins de résistance et de rigidité mécaniques.
Le nombre de flotteurs 18 illustrés (en l'espèce huit) correspond à un exemple de réalisation, mais ce nombre pourrait être inférieur (jusqu'à deux répartis de part et d'autre du caisson 4 central), ou supérieur.

Claims

REVENDICATIONS
1. Centrale (1) houlomotrice, qui comprend :
une plateforme (2) semi-submersible munie d'au moins un caisson (4) longitudinal qui s'étend d'une proue (7) à une poupe (8) de la plateforme (2), cette plateforme (2) ayant à sa poupe (8) une poutre (11) de flottaison transversale solidaire du caisson (4) ;
une machine (3) houlomotrice montée sur la plateforme (2), cette machine (3) est caractérisée en ce qu'elle comprend :
o un portique (17) monté transversalement sur le caisson (4) à la proue de la plateforme (2),
o au moins un flotteur (18) agencé pour permettre la transformation de l'énergie de la houle en énergie mécanique, le flotteur (18) étant monté sur un bras (20) monté en rotation sur un axe (21) solidaire du portique (17),
o un convertisseur (23) d'énergie mécanique du flotteur (18) en énergie hydraulique,
o un aileron (12) stabilisateur qui s'étend transversalement en- deçà d'un bord (9) inférieur du caisson (4).
2. Centrale (1) houlomotrice selon la revendication 1, dans laquelle la poutre (11) présente, en section longitudinale, un contour circulaire.
3. Centrale (1) houlomotrice selon la revendication 1 ou la revendication 2, dans laquelle la poutre (11) s'étend à environ mi- hauteur du caisson (4).
4. Centrale (1) houlomotrice selon l'une des revendications précédentes, dans laquelle chaque caisson (4) présente, à la poupe (8), une extrémité élargie et/ou surélevée.
5. Centrale (1) houlomotrice selon l'une des revendications précédentes, dans laquelle le portique (17) s'étend à l'aplomb de l'aileron (12).
6. Centrale (1) houlomotrice selon l'une des revendications précédentes, dans laquelle chaque convertisseur (23) comprend une paire de vérins (24) fonctionnant en opposition, dont les pistons (27) sont accouplés au bras (20).
7. Centrale (1) houlomotrice selon l'une des revendications précédentes, dans laquelle chaque bras (20) est rigide.
8. Centrale (1) houlomotrice selon l'une des revendications précédentes, dans laquelle chaque bras est rigidement solidaire du flotteur (18).
9. Centrale (1) houlomotrice selon l'une des revendications précédentes, dans laquelle chaque flotteur (18) comprend un appendice
(30) hydrodynamique sous forme d'un chéneau fixé sous une carène (29) du flotteur (18).
10. Centrale (1) houlomotrice selon l'une des revendications précédentes, qui comprend au moins deux caissons (4) longitudinaux délimitant un chenal (6) central dans lequel est disposé le flotteur (18), dans lequel le portique (17) est monté transversalement entre les caissons (4), et dans lequel la poutre (11) de flottaison relie transversalement les caissons (4).
PCT/FR2014/052300 2013-09-20 2014-09-16 Plateforme semi-submersible équipée d'un système d'amplification angulaire WO2015040322A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201480051445.0A CN105745437A (zh) 2013-09-20 2014-09-16 配有角度增强系统的半潜式平台
CA2921545A CA2921545A1 (fr) 2013-09-20 2014-09-16 Plateforme semi-submersible equipee d'un systeme d'amplification angulaire
EP14784299.1A EP3047140A1 (fr) 2013-09-20 2014-09-16 Plateforme semi-submersible équipée d'un système d'amplification angulaire
US15/022,971 US20160230739A1 (en) 2013-09-20 2014-09-16 Semisubmersible platform equipped with an angular amplification system
BR112016005972A BR112016005972A2 (pt) 2013-09-20 2014-09-16 plataforma semisubmersível equipada com um sistema de amplificação angular
JP2016543446A JP2017500491A (ja) 2013-09-20 2014-09-16 角度振幅システムを装備した半潜水型プラットフォーム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1359085 2013-09-20
FR1359085A FR3011042A1 (fr) 2013-09-20 2013-09-20 Plateforme semi-submersible equipee d’un systeme d’amplification angulaire

Publications (1)

Publication Number Publication Date
WO2015040322A1 true WO2015040322A1 (fr) 2015-03-26

Family

ID=49713249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/052300 WO2015040322A1 (fr) 2013-09-20 2014-09-16 Plateforme semi-submersible équipée d'un système d'amplification angulaire

Country Status (8)

Country Link
US (1) US20160230739A1 (fr)
EP (1) EP3047140A1 (fr)
JP (1) JP2017500491A (fr)
CN (1) CN105745437A (fr)
BR (1) BR112016005972A2 (fr)
CA (1) CA2921545A1 (fr)
FR (1) FR3011042A1 (fr)
WO (1) WO2015040322A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017103346A1 (fr) * 2015-12-14 2017-06-22 Waves Ruiz Centrale houlomotrice à déflecteurs

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT230406Y1 (it) * 1993-09-16 1999-06-07 Cristofani Alessandro Imballo multiplo per bottiglie perfezionato
CN107933819A (zh) * 2018-01-02 2018-04-20 哈尔滨海映天初科技有限公司 一种方便生产加工制造的实验船体基座
US10788011B2 (en) 2018-10-31 2020-09-29 Loubert S. Suddaby Wave energy capture device and energy storage system utilizing a variable mass, variable radius concentric ring flywheel
US10837420B2 (en) 2018-10-31 2020-11-17 Loubert S. Suddaby Wave energy capture device and energy storage system utilizing a variable mass, variable radius concentric ring flywheel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7448210B1 (en) * 2005-10-24 2008-11-11 Andalia Roger R Wave powered system for generating energy
EP2088312A1 (fr) * 2007-07-27 2009-08-12 Vyacheslav Viktorovich Ovsyankin Centrale électrique houlomotrice
WO2009153787A1 (fr) * 2008-06-18 2009-12-23 Guy Gavish Système de transformation de l'énergie houlomotrice en énergie utile
WO2011104294A1 (fr) * 2010-02-26 2011-09-01 Ruiz-Diez Jose-Antonio Dispositif de recuperation de l'energie de la houle
US20130067903A1 (en) 2010-05-26 2013-03-21 Sea Power Limited Wave Energy Conversion Device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6045339A (en) * 1998-01-20 2000-04-04 Berg; John L. Wave motor
KR100524525B1 (ko) * 2003-04-19 2005-11-01 임명식 파력발전장치
US7223137B1 (en) * 2005-07-15 2007-05-29 Sosnowski Michael J Floating, water current-driven electrical power generation system
AP3190A (en) * 2009-04-07 2015-03-31 Ceto Ip Pty Ltd Energy release buoyant actuator
EP2425123B1 (fr) * 2009-05-01 2013-03-27 Limerick Wave Limited Générateur électrique alimenté par eau
US20120087732A1 (en) * 2010-10-07 2012-04-12 Dennis John Gray Simplified Wave Energy Device Without One-way Clutches
CN103264765A (zh) * 2013-05-31 2013-08-28 上海海洋大学 一种双体船用波浪能发电装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7448210B1 (en) * 2005-10-24 2008-11-11 Andalia Roger R Wave powered system for generating energy
EP2088312A1 (fr) * 2007-07-27 2009-08-12 Vyacheslav Viktorovich Ovsyankin Centrale électrique houlomotrice
WO2009153787A1 (fr) * 2008-06-18 2009-12-23 Guy Gavish Système de transformation de l'énergie houlomotrice en énergie utile
WO2011104294A1 (fr) * 2010-02-26 2011-09-01 Ruiz-Diez Jose-Antonio Dispositif de recuperation de l'energie de la houle
US20130067903A1 (en) 2010-05-26 2013-03-21 Sea Power Limited Wave Energy Conversion Device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017103346A1 (fr) * 2015-12-14 2017-06-22 Waves Ruiz Centrale houlomotrice à déflecteurs

Also Published As

Publication number Publication date
CN105745437A (zh) 2016-07-06
JP2017500491A (ja) 2017-01-05
BR112016005972A2 (pt) 2017-08-01
EP3047140A1 (fr) 2016-07-27
US20160230739A1 (en) 2016-08-11
CA2921545A1 (fr) 2015-03-26
FR3011042A1 (fr) 2015-03-27

Similar Documents

Publication Publication Date Title
WO2014162096A1 (fr) Centrale houlomotrice équipée d'un système d'équilibrage des efforts
EP2867115A1 (fr) Plateforme semi-submersible à aileron stabilisateur, et centrale houlomotrice offshore intégrant une telle plateforme
WO2015040322A1 (fr) Plateforme semi-submersible équipée d'un système d'amplification angulaire
EP2454149B1 (fr) Bateau de type catamaran utile pour l'assemblage, le transport et la dépose au fond de la mer d'éolienne maritime
WO2014184454A1 (fr) Éolienne offshore sur support flottant comportant une combinaison de moyens d'amortissement
FR3025176A1 (fr) Aile portante escamotable
CA2940724A1 (fr) Centrale houlomotrice a flotteurs decales
EP2539580A1 (fr) Dispositif de recuperation de l'energie de la houle
EP3286069B1 (fr) Support flottant avec section horizontale variable avec la profondeur
EP0694008B1 (fr) Hydroptere a voile
EP3490882B1 (fr) Support flottant comportant un flotteur et une plaque d'amortissement munie d'une rangee d'orifines
WO2008068390A1 (fr) Dispositif de recuperation de l'energie de la houle
EP3490883B1 (fr) Éolienne marine comprenant une éolienne et un support flottant
WO2007006907A1 (fr) Bateau multicoque a grande vitesse
FR3021291A1 (fr) Centrale houlomotrice equipee de plusieurs unites houlomotrices alignees
CA1281555C (fr) Plate-forme semi-submersible, notamment pour la recherche et/ou l'exploitation de gisements sous- marins en mers froides
FR2493924A1 (fr) Procede et dispositif de transformation de l'energie de la houle marine
WO2017103346A1 (fr) Centrale houlomotrice à déflecteurs
FR3027968A1 (fr) Centrale houlomotrice a deflecteurs
WO2024200584A1 (fr) Dispositif houlomoteur
EP4289716A1 (fr) Ensemble de flottaison et de propulsion et bateau comportant un tel ensemble
EP1908679A2 (fr) Voilier multicoque a ailerons de sustentation et methode de navigation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14784299

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014784299

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014784299

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2921545

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016543446

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15022971

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016005972

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016005972

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160317