WO2015039572A1 - Polymer article and ink compositon and methods for selectively metalizing polymer article and insulating substrate - Google Patents

Polymer article and ink compositon and methods for selectively metalizing polymer article and insulating substrate Download PDF

Info

Publication number
WO2015039572A1
WO2015039572A1 PCT/CN2014/086022 CN2014086022W WO2015039572A1 WO 2015039572 A1 WO2015039572 A1 WO 2015039572A1 CN 2014086022 W CN2014086022 W CN 2014086022W WO 2015039572 A1 WO2015039572 A1 WO 2015039572A1
Authority
WO
WIPO (PCT)
Prior art keywords
metallic compound
polymer article
polymer
formula
weight parts
Prior art date
Application number
PCT/CN2014/086022
Other languages
French (fr)
Inventor
Fangxiang ZHOU
Jiang Huang
Original Assignee
Byd Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Byd Company Limited filed Critical Byd Company Limited
Priority to EP14845841.7A priority Critical patent/EP3046960B1/en
Publication of WO2015039572A1 publication Critical patent/WO2015039572A1/en
Priority to US15/064,477 priority patent/US10017859B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1608Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/14Printing inks based on carbohydrates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1612Process or apparatus coating on selected surface areas by direct patterning through irradiation means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1875Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment only one step pretreatment
    • C23C18/1882Use of organic or inorganic compounds other than metals, e.g. activation, sensitisation with polymers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2026Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by radiant energy
    • C23C18/204Radiation, e.g. UV, laser
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2053Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment only one step pretreatment
    • C23C18/206Use of metal other than noble metals and tin, e.g. activation, sensitisation with metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2053Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment only one step pretreatment
    • C23C18/2066Use of organic or inorganic compounds other than metals, e.g. activation, sensitisation with polymers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • C23C18/405Formaldehyde
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/325Calcium, strontium or barium phosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/326Magnesium phosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/328Phosphates of heavy metals

Definitions

  • the present disclosure relates to a polymer article, an ink composition, a method for selectively metalizing a polymer article and a method for selectively metalizing an insulating substrate.
  • a metal layer as a transmission access of an electromagnetic signal formed on a surface of a polymer article is widely used in the fields of automobiles, industries, computers, communications and so on. Selectively forming a metal layer on the surface of the polymer article is a key step in a process of manufacturing such polymer articles.
  • US2004/0241422A1 discloses that: inorganic compound powders of a spinel structure are added to a polymer matrix, such an inorganic compound contains elements such as copper, nickel, cobalt, chromium, iron and so on, then activation is performed with ultraviolet laser (with a wavelength of 248nm, 308nm, 355nm, 532nm) and infrared laser (with a wavelength of 1064nm and 10600nm) .
  • US2004/0241422A1 particularly mentions that an oxide of a spinel structure may be reduced into metal simple substances under the action of laser, and metal chemical deposition are induced using the metal simple substances as a crystal nucleus to form a metal layer. The realization of such a procedure require strict process control, high laser energy is needed to reduce the oxide of the spinel structure into metal simple substances to induce metal chemical deposition, and the requirements for equipments and processes are both high.
  • Embodiments of the present disclosure seek to solve at least one of the problems existing in the prior art to at least some extent.
  • Embodiments of a first aspect of the present disclosure provide a polymer article.
  • the polymer article comprises a polymer matrix and a metallic compound dispersed in the polymer matrix.
  • the metallic compound is a compound represented by formula (I) ,
  • Embodiments of a second aspect of the present disclosure provide an ink composition.
  • the ink composition contains at least one metallic compound and at least one binder.
  • the metallic compound is a compound represented by formula (I) ,
  • Embodiments of a third aspect of the present disclosure provide a method for selectively metalizing a polymer article.
  • the method comprises steps of: irradiating a surface of the polymer article to be metalized with energy beam; and performing chemical plating on the irradiated polymer article.
  • the polymer article comprises a polymer matrix and a metallic compound dispersed in the polymer matrix, wherein the metallic compound is a compound represented by formula (I) ,
  • Embodiments of a fourth aspect of the present disclosure provide a method for selectively metalizing an insulating substrate. The method comprises steps of:
  • the metallic compound is a compound represented by formula (I) ,
  • the metallic compound can be directly used as a chemical plating accelerator, without reducing the metallic compound into a metal simple substance. Therefore, with the polymer article containing the metallic compound, it is only necessary to selectively roughen the surface of the polymer article to selectively metalize the surface of the polymer article by chemical plating; or the ink composition may be selectively coated on the surface of the substrate, and then the surface of the polymer article can be selectively metalized by chemical plating.
  • the surface of the polymer article is selectively irradiated using laser to realize surface roughening, without requiring excessive energy to reduce the metallic compound into a metal simple substance, it is only necessary to gasify the polymer to expose the metallic compound to perform chemical plating, so as to selectively metalize the surface of the polymer article, so that the process is simple and the energy requirement is low.
  • the color of the metallic compound used in the present disclosure is light, and thus the polymer article according to embodiments of the present disclosure also can show light color. Additionally, the metallic compound can be obtained using a conventional method.
  • a polymer article comprises a polymer matrix and a metallic compound dispersed in the polymer matrix, in which the metallic compound is a compound represented by formula (I) ,
  • A is at least one element selected from Group IIA of the periodic table of elements, preferably, A is selected from a group consisting of Ca, Mg, Ba, Sr, or a combination thereof.
  • the metallic compound may include, but are not limited to, Cu 2.7 Mg 0.3 (PO 4 ) 2 , Cu 1.5 Mg 1.5 (PO 4 ) 2 , Cu 1.5 Ba 0.75 Sr 0.75 (PO 4 ) 2 , Cu 0.15 Mg 2.85 (PO 4 ) 2 , Cu 1.5 Ca 1.5 (PO 4 ) 2 , Cu 0.15 Ca 2.85 (PO 4 ) 2 , Cu 2 Ba (PO 4 ) 2 , CuSr 2 (PO 4 ) 2 , Cu 0.4 Sr 2.6 (PO 4 ) 2 , and a combination thereof.
  • the color of the metallic compound is light green or light sky blue, and thus the polymer article according to the present disclosure also can show light color.
  • the metallic compound may be obtained by sintering a mixture containing a Cu source, a Group IIA metal source and a phosphate.
  • the Cu source may be a CuO and/or a substance capable of forming CuO in a sintering condition.
  • the substance capable of forming CuO in the sintering condition may be various copper salts, such as copper salts of inorganic acids and/or copper salts of organic acids.
  • Specific examples of the substance capable of forming CuO in the sintering condition may include, but are not limited to, cupric oxalate and/or copper carbonate.
  • the Group IIA metal source may be a Group IIA metal oxide and/or a compound capable of forming a Group IIA metal oxide in a sintering condition.
  • the compound capable of forming the Group IIA metal oxide in the sintering condition may be Group IIA metal salts of organic acids and/or Group IIA metal salts of inorganic acids, for example, Group IIA metal salts of carbonic acid and/or Group IIA metal salts of oxalic acid.
  • Group IIA metal source may include, but are not limited to, magnesium oxide, magnesium carbonate, magnesium oxalate, calcium oxide, calcium carbonate, calcium oxalate, strontium oxide, strontium carbonate, barium oxide, barium carbonate, barium oxalate and a combination thereof.
  • the phosphate may be various commonly used metal salts of phosphoric acid and/or ammonium salts of phosphoric acid. Specific examples of the phosphate may include, but are not limited to, diammonium hydrogen phosphate and/or ammonium dihydrogen phosphate.
  • the relative proportion among the Cu source, the Group IIA metal source and the phosphate is such that the content of various elements in the finally obtained metallic compound satisfies the above-described requirement.
  • the sintering may be performed using a single-stage sintering process or a two-stage sintering process.
  • the single-stage sintering process comprises sintering a mixture containing the Cu source, the Group IIA metal source and the phosphate at a temperature of 900°Cto 1000°C for 10h to 20h, and grinding the obtained sinter.
  • the two-stage sintering process comprises: sintering a mixture of the Cu source, the Group IIA metal source and the phosphate at a temperature of 600°C to 900°C for 2h to 10h, then grinding the obtained solid substance, and then sintering the grinded substance at a temperature of 900°C to 1000°C for 10h to 20h.
  • the sintering is performed at a temperature of 900°C to 950°C for 10h to 20h, whether the single-stage sintering process or the two-stage sintering process.
  • the mixture containing the Cu source, the Group IIA metal source and the phosphate may be obtained by grinding the Cu source, the Group IIA metal source and the phosphate.
  • the grinding may be dry grinding, a wet grinding, or a semi-dry grinding, preferably wet grinding or semi-dry grinding, more preferably wet grinding.
  • a dispersing agent for the wet grinding may be various commonly used dispersing agents which are suitable for metal oxides.
  • the dispersing agent may be water and/or anhydrous ethanol. There are no special limits on the amount of the dispersing agent.
  • the content of the metallic compound in the polymer article may be selected appropriately.
  • the content of the metallic compound may be 1 wt%to 40 wt%, preferably 10 wt%to 40 wt%.
  • the polymer article may be prepared using a commonly used polymer molding method.
  • the polymer article may be obtained by mixing a polymer matrix component with a metallic compound uniformly, and molding the obtained mixture.
  • the polymer matrix component means a component for forming the polymer matrix, comprising a polymer and an optional aid.
  • the polymer may be selected appropriately according to the specific application occasions of the polymer article.
  • the polymer article may be formed from a thermoplastic polymer, and may also be formed by a thermoset polymer.
  • the polymer may be a plastic, may also be a rubber, and may also be a fiber.
  • polystyrene such as polystyrene, polypropylene, poly (methyl methacrylate) and poly (acrylonitrile-butadiene-styrene)
  • polycarbonate such as poly (1, 4-cyclohexylenedimethylene terephthalate) , poly (diallyl isophthalate) , poly (dially terephthalate) , poly (butylene naphthalate) , poly (ethylene terephthalate) and poly (butylene terephthalate)
  • polyamides such as poly (hexamethylene adipamide) , poly (hexamethylene azelamide) , poly (hexamethylene succinamide) , poly (hexamethylene lauramide) , poly (hexamethylene sebacamide) , poly (decamethylene sebacamide) , poly (undecanoic amide) , poly (lauramide) , poly (olefin, such as polystyrene, polypropylene,
  • the aid may be a substance which can improve the property of the polymer article or give the polymer article a new property, for example, a filler, an antioxidant and a light stabilizer.
  • the content of the aid may be selected appropriately according to the type and the specific use requirements of the aid, without special limits.
  • the content of the filler may be 1 weight part to 40 weight parts
  • the content of the antioxidant may be 0.01 weight parts to 1 weight part
  • the content of the light stabilizer may be 0.01 weight parts to 1 weight part, with respect to 100 weight parts of the polymer.
  • the filler may be a filler which is physically or chemically non-reactive under the action of laser, for example, talcum powder and calcium carbonate. Glass fiber is insensitive to laser, but adding glass fiber can greatly enlarge the recessed depth of the plastic matrix after laser activation, which benefits for copper deposition in the chemical copper plating.
  • the filler may also be an inorganic filler which is reactive under the action of laser, for example, tin oxide, particularly, nano tin oxide, which can increase the energy usage ratio of infrared laser when stripping the plastic surface; a functional filler such as carbon black, which also can increase absorption of the infrared laser by the plastic and increase the stripping degree of the plastic.
  • the filler may also be selected from a group consisting of glass microbeads, calcium sulfate, barium sulfate, titanium dioxide, pearl powder, wollastonite, siliceous earth, kaolin, coal powder, pot clay, mica, oil shale ash, aluminium silicate, aluminium oxide, carbon fiber, silicon dioxide, zinc oxide and a combination thereof.
  • the antioxidant can improve the antioxygenic property of the polymer article, thus improving the useful life of the article.
  • the antioxidant may be various commonly used antioxidants in the polymer field, for example, may contain a primary antioxidant and a secondary antioxidant.
  • the ratio between the primary antioxidant and the secondary antioxidant may be selected appropriately according to the type of the antioxidant. Generally, the weight ratio of the primary antioxidant to the secondary antioxidant may be 1:1 to 1:4.
  • the primary antioxidant may be a hindered phenol type antioxidant.
  • the primary antioxidant may include, but are not limited to, antioxidant 1098 and antioxidant 1010, in which the main component of the antioxidant 1098 is 3,3'-bis (3, 5-di-tert-butyl-4-hydroxyphenyl) -N, N'-hexamethylenedipropionamide, and the main component of the antioxidant 1010 is pentaerythritol tetrakis (3- (3, 5-di-tert-butyl-4-hydroxyphenyl) propionate) .
  • the secondary antioxidant may be a phosphite type antioxidant.
  • Specific examples of the secondary antioxidant may include, but are not limited to, antioxidant 168, in which the main component of the antioxidant 168 is tris (2, 4-di-tert-butyl-pheny) phosphite.
  • the light stabilizer may be various well known light stabilizers, for example, a hindered amine type light stabilizer.
  • Specific examples of the light stabilizer may include, but are not limited to, bis (2, 2, 6, 6-tetramethyl-4-piperidyl) sebacate.
  • the aid also may comprise various substances, such as a lubricant, which are able to improve the processability of the polymer matrix.
  • the lubricant may be various substances, which can improve the flowability of the polymer melt.
  • the lubricant may be selected from a group consisting of ethylene/vinyl acetate copolymer (EVA wax) , polyethylene wax (PE wax) , stearate and a combination thereof.
  • EVA wax ethylene/vinyl acetate copolymer
  • PE wax polyethylene wax
  • stearate stearate
  • the content of the lubricant may be 0.01 weight parts to 1 weight part, with respect to 100 weight parts of the polymer.
  • the particle size of the metallic compound may be selected according to the molding method, such that a compact polymer article may be formed.
  • the volume average particle size of the metallic compound may be 0.1 ⁇ m to 5 ⁇ m, preferably 0.4 ⁇ m to 2 ⁇ m.
  • the molding method may be various commonly used molding methods in the polymer molding field, for example, injection molding, or extrusion molding.
  • an ink composition contains at least one metallic compound and at least one binder, in which the metallic compound is a compound represented by formula (I) ,
  • the particle size of the metallic compound is such that it is possible to ensure that the finally formed ink composition can form a uniform ink layer.
  • the volume average particle size of the metallic compound may be 20 nm to 500 nm.
  • the ink composition further contains at least one binder
  • the binder may perform the function of dispersing the metallic compound uniformly on the surface of the insulating substrate, and then forming a film having certain strength and having certain adhesion to the insulating substrate on the surface of the insulating substrate.
  • the binder is an organic adhesive. More preferably, the binder is selected from a group consisting of cellulose acetate, a polyacrylate resin, ethylene vinyl acetate copolymer, polyvinyl alcohol, polyvinyl acetal, polyvinyl acetate, polyvinylpyrrolidone, polyphosphonic acid and a combination thereof.
  • the binder may be, for example, CAB series cellulose acetate butyrates (for example, cellulose acetate butyrates under the trade name of CAB381-0.5, CAB381-20, CAB551-0.2 and CAB381-2) , commercially available from Eastman Chemical Company of US; and Mowital series polyvinyl butyrals (for example, polyvinyl butyrals under the trade name of Mowital B 60T, Mowital B 75H and Mowital B 60H) , commercially available from Kuraray company of Japan.
  • CAB series cellulose acetate butyrates for example, cellulose acetate butyrates under the trade name of CAB381-0.5, CAB381-20, CAB551-0.2 and CAB381-2
  • Mowital series polyvinyl butyrals for example, polyvinyl butyrals under the trade name of Mowital B 60T, Mowital B 75H and Mowital B 60H
  • the relative proportion between the binder and the metallic compound is such that the metallic compound is uniformly dispersed on the surface of the insulating substrate, an ink layer having certain strength and having certain adhesion to the insulating substrate is formed, and the metal layer can be plated on the ink layer.
  • the amount of the binder may be 1 weight part to 60 weight parts, preferably 15 weight parts to 30 weight parts.
  • the ink composition preferably contains a solvent.
  • a solvent is selected from a group consisting of water, C 1 -C 12 alcohols, C 3 -C 12 ketones, C 6 -C 12 aromatic hydrocarbons, C 1 -C 12 haloalkanes and C 2 -C 12 haloolefins and a combination thereof.
  • the solvent may be selected from a group consisting of methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, n-pentanol, n-hexanol, n-heptanol, n-octanol, acetone, 2-pentanone, 2-butanone, 3-methyl-2-pentanone, 2, 3-butanedione, 2, 3-pentanedione, 2,5-hexanedione, 1, 3-cyclohexanedione, toluene, xylene, trichloroethene and a combination thereof.
  • the amount of the solvent may be 20 weight parts to 200 weight parts, preferably 20 weight parts to 100 weight parts.
  • the ink composition may further contain various commonly used aids in the ink field, to give the ink composition specific property or function.
  • the aid is selected from a group consisting of a dispersing agent, a defoamer, a leveling agent, a viscosity regulator and a combination thereof.
  • the amount of the aid may be 0.1 weight parts to 20 weight parts, preferably 0.5 weight parts to 10 weight parts.
  • the dispersing agent is used for shorting the time of dispersing the metallic compound in the binder and the optional solvent, and improving the dispersion stability of the metallic compound in the binder and the optional solvent.
  • the dispersing agent may be various commonly used substances in the art, which can realize the above-mentioned function.
  • the dispersing agent may be an organic dispersing agent commonly used in the art, for example, an aliphatic amine dispersing agent, an alcohol amine dispersing agent, a cyclic unsaturated amine dispersing agent, a fatty acid dispersing agent, an aliphatic amide dispersing agent, an ester dispersing agent, a paraffin dispersing agent, a phosphate dispersing agent, a polymer dispersing agent (for example, a polyacrylate dispersing agent and a polyester dispersing agent) and an organic phosphine dispersing agent.
  • an organic dispersing agent commonly used in the art, for example, an aliphatic amine dispersing agent, an alcohol amine dispersing agent, a cyclic unsaturated amine dispersing agent, a fatty acid dispersing agent, an aliphatic amide dispersing agent, an ester dispersing agent, a paraffin dispersing agent, a phosphate dispersing agent, a
  • the dispersing agent may be various commercially available dispersing agents commonly used in the art. Specifically, the dispersing agent may be selected from a group consisting of: dispersing agents under the trade name of ANTI-TERRA-U, ANTI-TERRA-U 80, ANTI-TERRA-U 100, DISPERBYK-101, DISPERBYK-130, BYK-220 S, LACTIMON, LACTIMON-WS, BYK-W 966, DISPERBYK, BYK-154, BYK-9076, DISPERBYK-108, DISPERBYK-109, DISPERBYK-110, DISPERBYK-102, DISPERBYK-111, DISPERBYK-180, DISPERBYK-106, DISPERBYK-187, DISPERBYK-181, DISPERBYK-140, DISPERBYK-142, DISPERBYK-145
  • the amount of the dispersing agent there are no special limits on the amount of the dispersing agent. Generally, with respect to 100 weight parts of the metallic compound, the amount of the dispersing agent may be 0.1 weight parts to 4 weight parts.
  • the defoamer may be various commonly used substances in the art, which can suppress the formation of foams, destroy the formed foams or discharge the formed foams from the system.
  • the defoamer may be an organic polysiloxane defoamer, a polyether defoamer and a higher alcohol defoamer.
  • the defoamer is an organic polysiloxane defoamer.
  • the defoamer may be various commercially available defoamer commonly used in the art. Specifically, the defoamer may be selected from a group consisting of defoamers under the trade name of BYK-051, BYK-052, BYK-053, BYK-055, BYK-057, BYK-020, BYK-065, BYK-066N, BYK-067A, BYK-070, BYK-080A, BYK-088, BYK-141, BYK-019, BYK-021, BYK-022, BYK-023, BYK-024, BYK-025, BYK-028, BYK-011, BYK-031, BYK-032, BYK-033, BYK-034, BYK-035, BYK-036, BYK-037, BYK-038, BYK-045, BYK-A530, BYK-051, B
  • the amount of the defoamer is 0.1 weight parts to 3 weight parts.
  • the leveling agent is used for enabling the ink composition to form a more flat, smooth and uniform film in the drying process.
  • the leveling agent may be a commonly used substance that can realize the above-mentioned function in the art.
  • the leveling agent may be selected from a group consisting of a polyacrylate leveling agent, a polydimethylsiloxane leveling agent, a polymethyl phenyl siloxane leveling agent, a fluorine-containing surfactant and a combination thereof.
  • the leveling agent may be various commercially available leveling agents commonly used in the art.
  • the leveling agent may be selected from a group consisting of leveling agents under the trade name of BYK-333, BYK-306, BYK-358N, BYK-310, BYK-354, BYK-356 and a combination thereof, commercially available from BYK company of Germany.
  • the amount of the leveling agent is 0.3 weight parts to 4 weight parts.
  • the viscosity regulator is used for adjusting the viscosity of the ink composition.
  • the viscosity regulator may be selected from a group consisting of fumed silica, polyamide wax, organic bentonite, hydrogenated castor oil, metallic soap, hydroxyalkyl celluloses and derivatives thereof, polyvinyl alcohol and polyacrylate and a combination thereof.
  • the amount of the viscosity regulator is 0.3 weight parts to 3 weight parts.
  • the ink composition contains the metallic compound, the binder, a solvent, a dispersing agent, a defoamer, a leveling agent and a viscosity regulator.
  • the amount of the binder is 1 weight part to 30 weight parts
  • the amount of the solvent is 20 weight parts to 200 weight parts
  • the amount of the dispersing agent is 0.4 weight parts to 4 weight parts
  • the amount of the defoamer is 0.1 weight parts to 3 weight parts
  • the amount of the leveling agent is 0.3 weight parts to 4 weight parts
  • the amount of the viscosity regulator is 0.3 weight parts to 3 weight parts.
  • the ink composition may be obtained by mixing the metallic compound with the binder as well as the optional solvent and aid uniformly in a mixer such as a planet-type ball mill.
  • a mixer such as a planet-type ball mill.
  • the method and the conditions of mixing individual components uniformly are well known in the art, so a detailed description thereof will be omitted here for the clarity purpose.
  • the ink composition according to embodiments of the present disclosure can be applied on the surface of the insulating (i.e. nonconductive) substrate, and chemical plating may be performed on the surface of the insulating substrate, thus selectively metalizing the surface of the insulating substrate and consequently forming a signal transmission pathway on the surface of the nonconductive substrate.
  • a method for selectively metalizing a polymer article comprises steps of:
  • the polymer article is the abovementioned polymer article.
  • the energy beam may be various energy beams, which can gasify the polymer, for example, laser, electron beam or ion beam, preferably laser.
  • the irradiating condition of the energy beam is such that the polymer on the surface of the polymer article is gasified to expose the metallic compound, and the irradiating condition of the energy beam may be selected according to the type of the polymer and the type of the energy beam.
  • the laser when laser is used as the energy beam, the laser has a wavelength of 157nm to 10.6 ⁇ m, a scanning speed of 500 mm/s to 8000 mm/s, a step of 3 ⁇ m to 9 ⁇ m, a delay time of 30 ⁇ s to 100 ⁇ s, a frequency of 30kHz to 40kHz, a power of 3kW to 4kW, and a filling gap of 10 ⁇ m to 50 ⁇ m.
  • the thickness of the etched polymer is a few microns to tens of microns, thus exposing the catalyst component particles in the polymer article, and forming a crude surface structure having uneven pores on at least part of the surface of the polymer article.
  • the metal particles will be embedded into the pores in the crude surface, thus forming very strong binding force with the plastic samples.
  • the method of performing chemical plating on the polymer article on which catalyst component particles are exposed is well known to a person skilled in the art.
  • the method may comprise contacting the etched polymer article with a copper plating solution.
  • the copper plating solution contains a copper salt and a reducing agent.
  • the pH value of the copper plating solution is 12 to 13.
  • the reducing agent can reduce copper ions in the copper salt into copper simple substances.
  • the reducing agent for example, may be selected from a group consisting of glyoxylic acid, hydrazine, sodium hypophosphite, and a combination thereof.
  • electroplating may be performed or the chemical plating may be performed once or many times, in order to further increase the thickness of the plating layer or form other metal plating layers on the chemical plating layer.
  • one nickel layer may be formed by chemical plating to prevent the surface of the copper plating layer from being oxidized.
  • a method for selectively metalizing an insulating substrate comprises steps of:
  • the metallic compound is a compound represented by formula (I) ,
  • the ink composition may be applied on the surface of the insulating substrate to be metalized by a method selected from a group consisting of screen printing, spray coating, laser printing, ink jet printing, pad printing, gravure printing, letterpress printing, and lithographic printing.
  • a method selected from a group consisting of screen printing, spray coating, laser printing, ink jet printing, pad printing, gravure printing, letterpress printing, and lithographic printing Particular operating steps and conditions of screen printing, spray coating, laser printing, ink jet printing, pad printing, gravure printing, letterpress printing, and lithographic printing are well known in the art, so a detailed description thereof will be omitted here for the clarity purpose.
  • the ink composition is particularly applied on the surface of the insulating substrate to be metalized by ink jet printing or laser printing.
  • the method according to embodiments of the present disclosure may further comprise the step of drying the substrate having the ink composition.
  • the drying method may be selected appropriately according to the type of the binder as well as the optional solvent in the ink composition.
  • the drying may be performed at a temperature of 40°C to 150°C for 0.5 h to 5 h.
  • the drying may be performed under the normal pressure, and may also be performed under a reduced pressure.
  • the thickness of the ink layer may be selected appropriately according to the constituent of the ink composition, such that chemical plating may be performed on the surface of the insulating substrate to selectively metalize a surface of the insulating substrate.
  • the thickness of the ink layer is 8 ⁇ m to 50 ⁇ m. More preferably, the thickness of the ink layer is 12 ⁇ m to 40 ⁇ m. Further preferably, the thickness of the ink layer is 12 ⁇ m to 25 ⁇ m.
  • the method of the chemical plating is also well known to a person skilled in the art.
  • the method may comprise contacting the insulating substrate having the ink layer with a copper plating solution.
  • the copper plating solution contains a copper salt and a reducing agent.
  • the pH value of the copper plating solution is 12 to 13.
  • the reducing agent can reduce copper ions in the copper salt into copper simple substances.
  • the reducing agent may be selected from a group consisting of glyoxylic acid, hydrazine, sodium hypophosphite and a combination thereof.
  • electroplating may be performed or the chemical plating may be performed once or many times, in order to further increase the thickness of the plating layer or form other metal plating layers on the chemical plating layer.
  • one nickel layer may be formed by chemical plating to prevent the surface of the copper plating layer from being oxidized.
  • the method according to the fourth aspect of the present disclosure preferably further comprises irradiating the surface of the ink layer using energy beam, to gasify the surface of the ink layer.
  • the energy beam may be a laser, electron beam or ion beam, preferably laser.
  • the irradiating condition of the energy beam is such that the surface of the ink layer may be gasified.
  • the energy beam is laser
  • the laser has a wavelength of 157nm to 10.6 ⁇ m, a scanning speed of 500 mm/s to 8000 mm/s, a step of 3 ⁇ m to 9 ⁇ m, a delay time of 30 ⁇ s to 100 ⁇ s, a frequency of 30kHz to 40kHz, a power of 3kW to 4kW, and a filling gap of 10 ⁇ m to 50 ⁇ m.
  • the method according to embodiments of the present disclosure can perform selectively metalizing on various insulating substrates.
  • the insulating substrate for example, may be a plastic substrate, a rubber substrate, a fiber substrate, a coating formed by a coating material, a ceramic substrate, a glass substrate, a wooden substrate, a cement substrate or paper.
  • the insulating substrate is a plastic substrate or a ceramic substrate.
  • the insulating substrate is a flexible plastic substrate (for example, polyethylene glycol terephthalate, polyimide, polycarbonate, polyether ketone, poly (ether ether ketone) or liquid crystal polymer)
  • the article obtained by applying the ink composition on the surface of the substrate and selectively metalizing the substrate is particularly suitable for preparing a flexible circuit board.
  • the composition of the metallic compound was measured by an inductively coupled plasma-atomic emission spectrometry (ICP-AES) .
  • volume average particle size was measured by a Laser Particle Sizer commercially available from Chengdu Jingxin Powder Analyse Instrument Co., Ltd., China.
  • the adhesion of the metal layer formed on the surface of the substrate was measured by a cross-cut process.
  • a surface of the sample to be measured was cut using a cross-cut knife to form 100 grids (1 mm ⁇ 1 mm) .
  • a gap between adjacent grids was formed to reach the bottom of the metal layer.
  • Debris in the test region was cleaned using a brush, and then an adhesive tape (3M600 gummed paper) was sticked to grids in the test region.
  • One end of the sticked adhesive paper was rapidly torn off in a vertical direction. Two identical tests were performed on the same grid region. The result of the adhesion was determined according to the following standard.
  • ISO Grade 1 the metal layers at the cut intersection partially peel off, but no more than 5% (area percent) of the metal layers peel off.
  • ISO Grade 2 the metal layers both at the cut edge and the cut intersection partially peel off, and 5%to 15% (area percent) of the metal layers peel off.
  • ISO Grade 3 the metal layers at both the cut edge and the cut intersection partially peel off, and 15%to 35% (area percent) of the metal layers peel off.
  • ISO Grade 4 the metal layers at both the cut edge and the cut intersection partially peel off, and 35%to 65% (area percent) of the metal layers peel off.
  • ISO Grade 5 the metal layers at both the cut edge and the cut intersection partially peel off, and more than 65% (area percent) of the metal layers peel off.
  • Examples 1 to 4 are used for describing the polymer article and the method for selectively metalizing the polymer article.
  • CuO, MgCO 3 and NH 4 H 2 PO 4 were mixed uniformly, in which the molar ratio between the CuO, MgCO 3 and NH 4 H 2 PO 4 was 2.7:0.3:2. Then, wet grinding was performed for the obtained mixture on a grinding mill, in which the dispersing agent was anhydrous ethanol. With respect to 100 weight parts of the mixture, the amount of anhydrous ethanol was 150 weight parts. The grinding was performed at a rotating speed of 500 rpm for 5 hours.
  • the obtained powder was put in an oven, and the powder was dried in an air atmosphere at a temperature of 80°C for 12 hours.
  • the dried powder was put in a muffle furnace and sintered in an air atmosphere at a temperature of 900°C for 2 hours. Then, dry grinding was performed for the sinter. Then, the obtained powder was put in the muffle furnace and sintered in an air atmosphere at a temperature of 950°C for 10 hours again, and then dry grinding was performed for the sinter, thus obtaining a metallic compound having a volume average particle size of 2 ⁇ m.
  • the detection result shows that the formula of the metallic compound is Cu 2.7 Mg 0.3 (PO 4 ) 2 .
  • the metallic compound shows light sky blue with a hexadecimal color code (i.e. HEX format) of #87CEFA, and a RGB color model (i.e. RGB format) of (135, 206, 250) .
  • Polycarbonate, antioxidant 1098, PE wax as a lubricant and the metallic compound prepared in step (1) were mixed.
  • the amount of the metallic compound was 10 weight parts
  • the amount of the antioxidant was 0.05 weight parts
  • the amount of the lubricant was 0.04 weight parts.
  • the polymer sheet obtained in step (2) was put on the sample stage of the laser device, then the laser was focused, the movement of the laser beam or the sample stage was controlled by a computer program.
  • the laser device was Hans YLP-20 type laser device.
  • the laser parameters were as follows: the wavelength was 1064nm, the scanning speed was 1000mm/s, the step was 6 ⁇ m, the delay time was 50 ⁇ s, the frequency was 30kHz, the power was 4kW, and the filling gap was 20 ⁇ m.
  • a decontamination processing on the sample was performed, and then the sample was put in a plating solution to perform chemical plating, thus obtaining a plating layer with a thickness of 12 ⁇ m.
  • the plating solution comprised 5g/L copper sulfate pentahydrate, 25g/L potassium sodium tartrate, 7g/L sodium hydroxide, 10g/L formaldehyde, and 0.1g/L stabilizer.
  • the test result shows that the plating speed is 8 ⁇ m/h and the adhesion of the plating layer is ISO Grade 1.
  • CuO, CaO and NH 4 H 2 PO 4 were mixed uniformly, in which the molar ratio between the CuO, CaO and NH 4 H 2 PO 4 was 1.5:1.5:2. Then, wet grinding was performed for the obtained mixture on a grinding mill, in which the dispersing agent was anhydrous ethanol. With respect to 100 weight parts of the mixture, the amount of anhydrous ethanol was 150 weight parts. The grinding was performed at a rotating speed of 500 rpm for 5 hours.
  • the obtained powder was put in an oven, and the powder was dried in an air atmosphere at a temperature of 80°C for 12 hours.
  • the dried powder was put in the muffle furnace and sintered in an air atmosphere at a temperature of 1000°C for 20 hours. Then, dry grinding was performed for the sinter, thus obtaining a metallic compound having a volume average particle size of 1.5 ⁇ m.
  • the detection result shows that the chemical formula of the metallic compound is Cu 1.5 Ca 1.5 (PO 4 ) 2 .
  • the metallic compound shows light green with a hexadecimal color code (i.e. HEX format) of #90EE90 and a RGB color model (i.e. RGB format) of 144, 238, 144.
  • Polycarbonate, antioxidant 1098, PE wax as a lubricant and the metallic compound prepared in step (1) were mixed.
  • the amount of the metallic compound was 20 weight parts
  • the amount of the antioxidant was 0.05 weight parts
  • the amount of the lubricant was 0.04 weight parts.
  • the polymer sheet obtained in step (2) was put on the sample stage of the laser device, then the laser was focused, the movement of the laser beam or the sample stage was controlled by a computer program.
  • the laser device was Hans YLP-20 type laser device.
  • the laser parameters were as follows: the wavelength was 1064nm, the scanning speed was 1000mm/s, the step was 6 ⁇ m, the delay time was 50 ⁇ s, the frequency was 30kHz, the power was 4kW, and the filling gap was 20 ⁇ m.
  • a decontamination processing was performed for the plastic sample, and then the plastic sample was put in a plating solution to perform chemical plating, thus obtaining a plating layer with a thickness of 10 ⁇ m.
  • the plating solution comprised 5g/L copper sulfate pentahydrate, 25g/L potassium sodium tartrate, 7g/L sodium hydroxide, 10g/L formaldehyde, and 0.1g/L stabilizer.
  • the test result shows that the plating speed is 6 ⁇ m/h and the adhesion of the plating layer is ISO Grade 1.
  • CuO, BaCO 3 , SrCO 3 and NH 4 H 2 PO 4 were mixed uniformly, in which the molar ratio between the CuO, BaCO 3 , SrCO 3 and NH 4 H 2 PO 4 was 1.5:0.75:0.75:2.
  • wet grinding was performed for the obtained mixture on a grinding mill, in which the dispersing agent was anhydrous ethanol. With respect to 100 weight parts of the mixture, the amount of anhydrous ethanol was 150 weight parts. The grinding was performed at a rotating speed of 500 rpm for 5 hours.
  • the obtained powder was put in an oven, and the powder was dried in an air atmosphere at a temperature of 80°C for 12 hours.
  • the dried powder was put in the muffle furnace and sintered in an air atmosphere at a temperature of 600°C for 10 hours. Then, dry grinding was performed for the sinter, thus obtaining a metallic compound. Then, the obtained powder was put in the muffle furnace and sintered in an air atmosphere at a temperature of 1000°C for 15 hours again, thus obtaining a metallic compound having a volume average particle size of 2 ⁇ m.
  • the detection result shows that the chemical formula of the metallic compound is Cu 1.5 Ba 0.75 Sr 0.75 (PO 4 ) 2 .
  • the metallic compound shows light green with a hexadecimal color code (i.e. HEX format) of #90EE90 and a RGB color model (i.e. RGB format) of 144, 238, 144.
  • Polycarbonate, antioxidant 1098, PE wax as a lubricant and the metallic compound prepared in step (1) were mixed.
  • the amount of the metallic compound was 30 weight parts
  • the amount of the antioxidant was 0.05 weight parts
  • the amount of the lubricant was 0.04 weight parts.
  • the polymer sheet obtained in step (2) was put on the sample stage of the laser device, then the laser was focused, the movement of the laser beam or the sample stage was controlled by a computer program.
  • the laser device was Hans YLP-20 type laser device.
  • the laser parameters were as follows: the wavelength was 1064nm, the scanning speed was 1000mm/s, the step was 6 ⁇ m, the delay time was 50 ⁇ s, the frequency was 30kHz, the power was 4kW, and the filling gap was 20 ⁇ m.
  • a decontamination processing was performed for the plastic sample, and then the plastic sample was put in a plating solution to perform chemical plating, thus obtaining a plating layer with a thickness of 12 ⁇ m.
  • the plating solution comprised 5g/L copper sulfate pentahydrate, 25g/L potassium sodium tartrate, 7g/L sodium hydroxide, 10g/L formaldehyde, and 0.1g/L stabilizer.
  • the test result shows that the plating speed is 9 ⁇ m/h and the adhesion of the plating layer is ISO Grade 1.
  • CuO, calcium oxalate and NH 4 H 2 PO 4 were mixed uniformly, in which the molar ratio between the CuO, calcium oxalate and NH 4 H 2 PO 4 was 0.15:2.85:2.
  • wet grinding was performed for the obtained mixture on a grinding mill, in which the dispersing agent was anhydrous ethanol. With respect to 100 weight parts of the mixture, the amount of anhydrous ethanol was 150 weight parts. The grinding was performed at a rotating speed of 500 rpm for 5 hours.
  • the obtained powder was put in an oven, and the powder was dried in an air atmosphere at a temperature of 80°C for 12 hours.
  • the dried powder was put in the muffle furnace and sintered in an air atmosphere at a temperature of 900°C for 10 hours. Then, dry grinding was performed for the sinter. Then, the obtained powder was put in the muffle furnace and sintered in an air atmosphere at a temperature of 1000°C for 20 hours again, thus obtaining a metallic compound having a volume average particle size of 2 ⁇ m.
  • the detection result shows that the chemical formula of the metallic compound is Cu 0.15 Ca 2.85 (PO 4 ) 2 .
  • the metallic compound shows light cyan with a hexadecimal color code (i.e. HEX format) of #E1FFFF and a RGB color model (i.e. RGB format) of 225, 255, 255.
  • Polycarbonate, antioxidant 1098, PE wax as a lubricant and the metallic compound prepared in step (1) were mixed.
  • the amount of the metallic compound was 40 weight parts
  • the amount of the antioxidant was 0.05 weight parts
  • the amount of the lubricant was 0.04 weight parts.
  • the polymer sheet obtained in step (2) was put on the sample stage of the laser device, then the laser was focused, the movement of the laser beam or the sample stage was controlled by a computer program.
  • the laser device was Hans YLP-20 type laser device.
  • the laser parameters were as follows: the wavelength was 1064nm, the scanning speed was 1000mm/s, the step was 6 ⁇ m, the delay time was 50 ⁇ s, the frequency was 30kHz, the power was 4kW, and the filling gap was 20 ⁇ m.
  • a decontamination processing was performed for the plastic sample, and then the plastic sample was put in a plating solution to perform chemical plating, thus obtaining a plating layer with a thickness of 12 ⁇ m.
  • the plating solution comprised 5g/L copper sulfate pentahydrate, 25g/L potassium sodium tartrate, 7g/L sodium hydroxide, 10g/L formaldehyde, and 0.1g/L stabilizer.
  • the test result shows that the plating speed is 5 ⁇ m/h and the adhesion of the plating layer is ISO Grade 1.
  • Cu 2 O, Cr 2 O 3 and Al 2 O 3 were mixed uniformly, in which the molar ratio between the Cu 2 O, Cr 2 O 3 and Al 2 O 3 was 1:0.3:0.7. Then, wet grinding was performed for the obtained mixture on a grinding mill, in which the dispersing agent was water. With respect to 100 weight parts of the mixture, the amount of the water was 150 weight parts. The grinding was performed at a rotating speed of 500 rpm for 5 hours.
  • the obtained powder was put in an oven, and the powder was dried in an air atmosphere at a temperature of 100°C for 12 hours.
  • the dried powder was put in the muffle furnace and sintered in an air atmosphere at a temperature of 800°C for 2 hours. Then, dry grinding was performed for the sinter, thus obtaining a metallic compound having a volume average particle size of 2 ⁇ m.
  • the detection result shows that the chemical formula of the metallic compound is Cu 2 Cr 0.6 Al 1.4 O 3.3 .
  • the metallic compound shows light sky blue with a hexadecimal color code (i.e. HEX format) of #87CEFA and a RGB color model (i.e. RGB format) of 135, 206, 250.
  • the polymer sheet was prepared using substantially the same method as step (2) of Example 1, except that the metallic compound was the metallic compound prepared in step (1) of Comparative Example 1.
  • the laser etching and the chemical plating were performed using substantially the same method as step (3) in Example 1, except that the polymer sheet was a polymer sheet prepared in step (2) of Comparative Example 1.
  • the test result shows that the plating speed is 5 ⁇ m/h, and the adhesion of the plating layer is ISO Grade 1.
  • the metallic compound was prepared using substantially the same method as step (1) of Comparative Example 1, except that CuO was used instead of Cu 2 O.
  • the detection result shows that the chemical formula of the metallic compound was CuCrAlO 4 ; based on the total amount of the metallic compound, the content of the CuO was 0.008mol%; the color of the metallic compound was black with a hexadecimal color code of #000000 and a RGB color model of 0, 0, 0.
  • the polymer sheet was prepared using substantially the same method as step (2) of Example 1, except that the metallic compound was a metallic compound prepared in step (1) of Comparative Example 2.
  • the color of the polymer sheet was black with a hexadecimal color code of #000000 and a RGB color model of 0, 0, 0.
  • the surface of the polymer sheet was metalized using substantially the same method as step (3) of Example 1, except that the polymer sheet was the polymer sheet obtained in step (3) of Comparative Example 2.
  • the chemical plating was performed using substantially the same method as step (3) in Example 1.
  • the test result shows that the plating speed is 2 ⁇ m/h, and the adhesion of the plating layer is ISO Grade 4.
  • the metallic compound was prepared using substantially the same method as step (1) of Comparative Example 1, except that the sintering was performed in an air atmosphere.
  • the detection result shows that chemical formula of the metallic compound is CuCr 0.3 Al 0.7 O 4 .
  • the metallic compound shows black with a hexadecimal color code of #000000 and a RGB color model of 0, 0, 0.
  • the polymer sheet was prepared using substantially the same method as step (2) of the Example 1, except that the metallic compound was the metallic compound prepared in step (1) of Comparative Example 3.
  • the color of the polymer sheet was black with a hexadecimal color code of #000000 and a RGB color model of 0, 0, 0.
  • the surface of the polymer sheet was metalized using substantially the same method as step (3) of the Example 1, except that the polymer sheet was the polymer sheet obtained in step (2) of Comparative Example 3.
  • the chemical plating was performed using substantially the same method as step (3) in Example 1.
  • the test result shows that the plating speed is 2 ⁇ m/h, and the adhesion of the plating layer is ISO Grade 4.
  • Example 1 By comparing Example 1 with Comparative Examples 1 to 3, it can be seen that the metallic compound in the polymer article can be prepared using the conventional raw materials in the conventional sintering condition, and the metallic compound is not only light-colored, but also has a higher activity of promoting chemical plating.
  • Examples 5 to 9 are used for describing the ink composition and the method for selectively metalizing an insulating substrate.
  • the metallic compound was prepared using substantially the same method as step (1) of Example 1, except that the metallic compound was grinded into particles with a volume average particle size of 80 nm.
  • 100 g of the metallic compound prepared in step (1) 20 g of a binder (under the trade name of CAB381-0.5 commercially available from Eastman Company, US) , 100 g of n-heptanol, 2 g of a dispersing agent (under the trade name of DISPERBYK-165 commercially available from BYK company, Germany) , 0.2 g of a defoamer (under the trade name of BYK-051 commercially available from BYK company, Germany) , 0.4 g of a leveling agent (under the trade name of BYK-333 commercially available from BYK company, Germany) and 0.5 g of hydrogenated castor oil (commercially available from Wuhan GPC-China Chemistry Co. , Ltd. , China) were mixed uniformly, thus obtaining an ink composition.
  • a binder under the trade name of CAB381-0.5 commercially available from Eastman Company, US
  • 100 g of n-heptanol 100 g
  • the ink composition prepared in step (2) was applied on a surface of an Al 2 O 3 ceramic substrate by ink jet printing, and then dried at a temperature of 110°C for 5 hours, thus forming an ink layer on the surface of the substrate.
  • the substrate obtained in step (3) was put in a plating solution to perform chemical plating, thus obtaining a plating layer with a thickness of 2 ⁇ m.
  • the plating solution comprised 5g/L copper sulfate pentahydrate, 25g/L potassium sodium tartrate, 7g/L sodium hydroxide, 10g/L formaldehyde, 0.1g/L stabilizer.
  • the test result shows that the plating speed is 8 ⁇ m/h and the adhesion of the plating layer is ISO Grade 1.
  • the ink composition was prepared and coated on the surface of the substrate and chemical plating was performed, using substantially the same method as Example 5, except that the metallic compound was prepared using substantially the same method as step (1) of Comparative Example 2.
  • the metallic compound was prepared using substantially the same method as step (1) of Example 2, except that the sinter was grinded into particles with a volume average particle size of 100nm.
  • the ink composition prepared in step (2) was applied on a surface of a poly (ether ether ketone) (PEEK) substrate by ink jet printing, and dried at a temperature of 150°C for 4 hours, thus forming an ink layer with a thickness of 25 ⁇ m on the surface of the substrate.
  • PEEK poly (ether ether ketone)
  • the substrate obtained in step (3) was put in a plating solution to perform chemical plating, thus obtaining a plating layer with a thickness of 4 ⁇ m.
  • the plating solution comprised 5g/L copper sulfate pentahydrate, 25g/L potassium sodium tartrate, 7g/L sodium hydroxide, 10g/L formaldehyde, and 0.1g/L stabilizer.
  • the test result shows that the plating speed is 5 ⁇ m/h and the adhesion of the plating layer is ISO Grade 1.
  • the metallic compound was prepared using substantially the same method as step (1) of Example 3, except that the sinter was grinded into particles with a volume average particle size of 40nm.
  • EVA binder commercially available from Eastman Company, US
  • a dispersing agent under the trade name of ANTI-TERRA-U 80 commercially available from BYK company, Germany
  • the ink composition prepared in step (2) was applied on a surface of a polycarbonate substrate by ink jet printing, and dried at a temperature of 150°C for 4 hours, thus forming an ink layer with a thickness of 15 ⁇ m on the surface of the substrate.
  • the substrate obtained in step (3) was put in a plating solution to perform chemical plating, thus obtaining a plating layer with a thickness of 3 ⁇ m.
  • the plating solution comprised 5g/L copper sulfate pentahydrate, 25g/L potassium sodium tartrate, 7g/L sodium hydroxide, 10g/L formaldehyde, and 0.1g/L stabilizer.
  • the test result shows that the plating speed is 5 ⁇ m/h and the adhesion of the plating layer is ISO Grade 1.
  • the ink composition was prepared, and a plating layer was formed on the surface of the substrate, using substantially the same method as Example 8, except that before the substrate obtained in step (3) was put in the plating solution to perform chemical plating, the ink layer formed in step (3) was irradiated using laser, then the irradiated substrate was put in a plating solution to perform chemical plating.
  • the conditions of the laser irradiation are as follows: the laser wavelength was 1064nm, the power was 5W, the frequency was 20kHz, the line scan speed was 800mm/s, and the filling gap was 20 ⁇ m.
  • the test result shows that the plating speed is 9 ⁇ m/h and the adhesion of the plating layer is ISO Grade 1.
  • Example 5 to 8 indicate that the surface of the substrate having the ink layer formed by the ink composition according to embodiments of the present disclosure has a chemical plating activity, on which chemical plating can be directly performed.
  • Example 9 it can be seen that before chemical plating is performed on the surface of the substrate having the ink layer formed by the ink composition according to embodiments of the present disclosure, the ink layer is irradiated using laser to gasify the surface of the ink layer, thus achieving a higher plating speed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Molecular Biology (AREA)
  • Chemically Coating (AREA)

Abstract

A polymer article, an ink composition, a method for selectively metalizing a polymer article and a method for selectively metalizing an insulating substrate are provided. The polymer article comprises a polymer matrix and a metallic compound dispersed in the polymer matrix. The metallic compound is a compound represented by formula (I). In formula (I), A is at least one element selected from Group IIA of the periodic table of elements, x/y=0.1 to 20, x+y=3. AxCuy (PO4) 2 (I)

Description

POLYMER ARTICLE AND INK COMOSITON AND METHORDS FOR SELECTIVELY METALIZING POLYMER ARTICLE AND INSULATING SUBSTRATE
CROSS-REFERENCE TO RELATED APPLICATION
This application claims priority to and benefits of Chinese Patent Application Serial No. 201310425978.8, filed with the State Intellectual Property Office of P. R. China on September 17, 2013, the entire content of which is incorporated herein by reference.
FIELD
The present disclosure relates to a polymer article, an ink composition, a method for selectively metalizing a polymer article and a method for selectively metalizing an insulating substrate.
BACKGROUND
A metal layer as a transmission access of an electromagnetic signal formed on a surface of a polymer article is widely used in the fields of automobiles, industries, computers, communications and so on. Selectively forming a metal layer on the surface of the polymer article is a key step in a process of manufacturing such polymer articles.
US2004/0241422A1 discloses that: inorganic compound powders of a spinel structure are added to a polymer matrix, such an inorganic compound contains elements such as copper, nickel, cobalt, chromium, iron and so on, then activation is performed with ultraviolet laser (with a wavelength of 248nm, 308nm, 355nm, 532nm) and infrared laser (with a wavelength of 1064nm and 10600nm) . US2004/0241422A1 particularly mentions that an oxide of a spinel structure may be reduced into metal simple substances under the action of laser, and metal chemical deposition are induced using the metal simple substances as a crystal nucleus to form a metal layer. The realization of such a procedure require strict process control, high laser energy is needed to reduce the oxide of the spinel structure into metal simple substances to induce metal chemical deposition, and the requirements for equipments and processes are both high.
SUMMARY
Embodiments of the present disclosure seek to solve at least one of the problems existing in  the prior art to at least some extent.
Embodiments of a first aspect of the present disclosure provide a polymer article. The polymer article comprises a polymer matrix and a metallic compound dispersed in the polymer matrix. The metallic compound is a compound represented by formula (I) ,
AxCuy (PO42   (I)
wherein in formula (I) , A is at least one element selected from Group IIA of the periodic table of elements, x/y=0.1 to 20, x+y=3.
Embodiments of a second aspect of the present disclosure provide an ink composition. The ink composition contains at least one metallic compound and at least one binder. The metallic compound is a compound represented by formula (I) ,
AxCuy (PO42   (I)
wherein in formula (I) , A is at least one element selected from Group IIA of the periodic table of elements, x/y=0.1 to 20, x+y=3.
Embodiments of a third aspect of the present disclosure provide a method for selectively metalizing a polymer article. The method comprises steps of: irradiating a surface of the polymer article to be metalized with energy beam; and performing chemical plating on the irradiated polymer article. The polymer article comprises a polymer matrix and a metallic compound dispersed in the polymer matrix, wherein the metallic compound is a compound represented by formula (I) ,
AxCuy (PO42   (I)
wherein in formula (I) , A is at least one element selected from Group IIA of the periodic table of elements, x/y=0.1 to 20, x+y=3.
Embodiments of a fourth aspect of the present disclosure provide a method for selectively metalizing an insulating substrate. The method comprises steps of:
mixing at least one metallic compound and at least one binder to obtain an ink composition, applying the ink composition on a surface of the insulating substrate to be metalized to form an ink layer, wherein the metallic compound is a compound represented by formula (I) ,
AxCuy (PO42   (I)
wherein in formula (I) , A is at least one element selected from Group IIA of the periodic table of elements, x/y=0.1 to 20, x+y=3; and
performing chemical plating on the insulating substrate having the ink layer to plate at least  one metal layer on the ink layer.
With the polymer article and the ink composition according to embodiments of the present disclosure, the metallic compound can be directly used as a chemical plating accelerator, without reducing the metallic compound into a metal simple substance. Therefore, with the polymer article containing the metallic compound, it is only necessary to selectively roughen the surface of the polymer article to selectively metalize the surface of the polymer article by chemical plating; or the ink composition may be selectively coated on the surface of the substrate, and then the surface of the polymer article can be selectively metalized by chemical plating. Moreover, when the surface of the polymer article is selectively irradiated using laser to realize surface roughening, without requiring excessive energy to reduce the metallic compound into a metal simple substance, it is only necessary to gasify the polymer to expose the metallic compound to perform chemical plating, so as to selectively metalize the surface of the polymer article, so that the process is simple and the energy requirement is low.
Furthermore, the color of the metallic compound used in the present disclosure is light, and thus the polymer article according to embodiments of the present disclosure also can show light color. Additionally, the metallic compound can be obtained using a conventional method.
DETAILED DESCRIPTION
According to a first aspect of the present disclosure, a polymer article is provided. The polymer article comprises a polymer matrix and a metallic compound dispersed in the polymer matrix, in which the metallic compound is a compound represented by formula (I) ,
AxCuy (PO42   (I) .
in which in formula (I) , A is at least one element selected from Group IIA of the periodic table of elements, preferably, A is selected from a group consisting of Ca, Mg, Ba, Sr, or a combination thereof.
In formula (I) , x/y=0.1 to 20, x+y=3.
Specific examples of the metallic compound may include, but are not limited to, Cu2.7Mg0.3 (PO42, Cu1.5Mg1.5 (PO42, Cu1.5Ba0.75Sr0.75 (PO42, Cu0.15Mg2.85 (PO42, Cu1.5Ca1.5 (PO42, Cu0.15Ca2.85 (PO42, Cu2Ba (PO42, CuSr2 (PO42, Cu0.4Sr2.6 (PO42, and a combination thereof.
The color of the metallic compound is light green or light sky blue, and thus the polymer article according to the present disclosure also can show light color. 
The metallic compound may be obtained by sintering a mixture containing a Cu source, a Group IIA metal source and a phosphate.
The Cu source may be a CuO and/or a substance capable of forming CuO in a sintering condition. The substance capable of forming CuO in the sintering condition may be various copper salts, such as copper salts of inorganic acids and/or copper salts of organic acids. Specific examples of the substance capable of forming CuO in the sintering condition may include, but are not limited to, cupric oxalate and/or copper carbonate.
The Group IIA metal source may be a Group IIA metal oxide and/or a compound capable of forming a Group IIA metal oxide in a sintering condition. The compound capable of forming the Group IIA metal oxide in the sintering condition may be Group IIA metal salts of organic acids and/or Group IIA metal salts of inorganic acids, for example, Group IIA metal salts of carbonic acid and/or Group IIA metal salts of oxalic acid. Specific examples of the Group IIA metal source may include, but are not limited to, magnesium oxide, magnesium carbonate, magnesium oxalate, calcium oxide, calcium carbonate, calcium oxalate, strontium oxide, strontium carbonate, barium oxide, barium carbonate, barium oxalate and a combination thereof.
The phosphate may be various commonly used metal salts of phosphoric acid and/or ammonium salts of phosphoric acid. Specific examples of the phosphate may include, but are not limited to, diammonium hydrogen phosphate and/or ammonium dihydrogen phosphate.
The relative proportion among the Cu source, the Group IIA metal source and the phosphate is such that the content of various elements in the finally obtained metallic compound satisfies the above-described requirement.
The sintering may be performed using a single-stage sintering process or a two-stage sintering process. Specifically, the single-stage sintering process comprises sintering a mixture containing the Cu source, the Group IIA metal source and the phosphate at a temperature of 900℃to 1000℃ for 10h to 20h, and grinding the obtained sinter. The two-stage sintering process comprises: sintering a mixture of the Cu source, the Group IIA metal source and the phosphate at a temperature of 600℃ to 900℃ for 2h to 10h, then grinding the obtained solid substance, and then sintering the grinded substance at a temperature of 900℃ to 1000℃ for 10h to 20h. For the step of sintering at a temperature of 900℃ to 1000℃ for 10h to 20h, when the molar ratio of the Group IIA metal to Cu is less than 1, preferably, the sintering is performed at a temperature of 900℃ to 950℃ for 10h to 20h, whether the single-stage sintering process or the two-stage sintering process. 
The mixture containing the Cu source, the Group IIA metal source and the phosphate may be obtained by grinding the Cu source, the Group IIA metal source and the phosphate.
In the present disclosure, the grinding may be dry grinding, a wet grinding, or a semi-dry grinding, preferably wet grinding or semi-dry grinding, more preferably wet grinding. A dispersing agent for the wet grinding may be various commonly used dispersing agents which are suitable for metal oxides. Specifically, the dispersing agent may be water and/or anhydrous ethanol. There are no special limits on the amount of the dispersing agent.
According to the specific function of the metallic compound in the polymer article, the content of the metallic compound in the polymer article may be selected appropriately. Specifically, when the metallic compound in polymer article is used as a chemical plating accelerator selectively metalizing a surface of the polymer article, based on the total weight of the polymer article, the content of the metallic compound may be 1 wt%to 40 wt%, preferably 10 wt%to 40 wt%.
The polymer article may be prepared using a commonly used polymer molding method. In an embodiment, the polymer article may be obtained by mixing a polymer matrix component with a metallic compound uniformly, and molding the obtained mixture.
The polymer matrix component means a component for forming the polymer matrix, comprising a polymer and an optional aid.
The polymer may be selected appropriately according to the specific application occasions of the polymer article. Generally, the polymer article may be formed from a thermoplastic polymer, and may also be formed by a thermoset polymer. The polymer may be a plastic, may also be a rubber, and may also be a fiber. Specific examples of the polymer may include, but are not limited to, polyolefin, such as polystyrene, polypropylene, poly (methyl methacrylate) and poly (acrylonitrile-butadiene-styrene) ; polycarbonate; polyesters, such as poly (1, 4-cyclohexylenedimethylene terephthalate) , poly (diallyl isophthalate) , poly (dially terephthalate) , poly (butylene naphthalate) , poly (ethylene terephthalate) and poly (butylene terephthalate) ; polyamides, such as poly (hexamethylene adipamide) , poly (hexamethylene azelamide) , poly (hexamethylene succinamide) , poly (hexamethylene lauramide) , poly (hexamethylene sebacamide) , poly (decamethylene sebacamide) , poly (undecanoic amide) , poly (lauramide) , poly (octanamide) , poly (9-aminononanoic acid) , polycaprolactam, poly (phenylene terephthalamide) , poly (hexamethylene isophthalamide) , poly (hexamethylene  terephthalamide) and poly (nonamethylene terephthalamide) ; poly (aromatic ether) ; polyether imide; polycarbonate/ (acrylonitrile-butadiene-styrene) alloy; polyphenylene oxide; polyphenylene sulphide; polyimide; polysulfone; poly (ether-ether-ketone) ; polybenzimidazole; phenol formaldehyde resin; urea formaldehyde resin; melamine-formaldehyde resin; epoxy resin; alkyd resin; polyurethane; and a combination thereof.
The aid may be a substance which can improve the property of the polymer article or give the polymer article a new property, for example, a filler, an antioxidant and a light stabilizer. The content of the aid may be selected appropriately according to the type and the specific use requirements of the aid, without special limits. Generally, the content of the filler may be 1 weight part to 40 weight parts, the content of the antioxidant may be 0.01 weight parts to 1 weight part, the content of the light stabilizer may be 0.01 weight parts to 1 weight part, with respect to 100 weight parts of the polymer.
The filler may be a filler which is physically or chemically non-reactive under the action of laser, for example, talcum powder and calcium carbonate. Glass fiber is insensitive to laser, but adding glass fiber can greatly enlarge the recessed depth of the plastic matrix after laser activation, which benefits for copper deposition in the chemical copper plating. The filler may also be an inorganic filler which is reactive under the action of laser, for example, tin oxide, particularly, nano tin oxide, which can increase the energy usage ratio of infrared laser when stripping the plastic surface; a functional filler such as carbon black, which also can increase absorption of the infrared laser by the plastic and increase the stripping degree of the plastic. The filler may also be selected from a group consisting of glass microbeads, calcium sulfate, barium sulfate, titanium dioxide, pearl powder, wollastonite, siliceous earth, kaolin, coal powder, pot clay, mica, oil shale ash, aluminium silicate, aluminium oxide, carbon fiber, silicon dioxide, zinc oxide and a combination thereof.
The antioxidant can improve the antioxygenic property of the polymer article, thus improving the useful life of the article. The antioxidant may be various commonly used antioxidants in the polymer field, for example, may contain a primary antioxidant and a secondary antioxidant. The ratio between the primary antioxidant and the secondary antioxidant may be selected appropriately according to the type of the antioxidant. Generally, the weight ratio of the primary antioxidant to the secondary antioxidant may be 1:1 to 1:4. The primary antioxidant may be a hindered phenol type antioxidant. Specific examples of the primary antioxidant may include, but are not limited to,  antioxidant 1098 and antioxidant 1010, in which the main component of the antioxidant 1098 is 3,3'-bis (3, 5-di-tert-butyl-4-hydroxyphenyl) -N, N'-hexamethylenedipropionamide, and the main component of the antioxidant 1010 is pentaerythritol tetrakis (3- (3, 5-di-tert-butyl-4-hydroxyphenyl) propionate) . The secondary antioxidant may be a phosphite type antioxidant. Specific examples of the secondary antioxidant may include, but are not limited to, antioxidant 168, in which the main component of the antioxidant 168 is tris (2, 4-di-tert-butyl-pheny) phosphite.
The light stabilizer may be various well known light stabilizers, for example, a hindered amine type light stabilizer. Specific examples of the light stabilizer may include, but are not limited to, bis (2, 2, 6, 6-tetramethyl-4-piperidyl) sebacate.
The aid also may comprise various substances, such as a lubricant, which are able to improve the processability of the polymer matrix. The lubricant may be various substances, which can improve the flowability of the polymer melt. For example, the lubricant may be selected from a group consisting of ethylene/vinyl acetate copolymer (EVA wax) , polyethylene wax (PE wax) , stearate and a combination thereof. The content of the lubricant may be 0.01 weight parts to 1 weight part, with respect to 100 weight parts of the polymer.
The particle size of the metallic compound may be selected according to the molding method, such that a compact polymer article may be formed. Generally, the volume average particle size of the metallic compound may be 0.1 μm to 5 μm, preferably 0.4μm to 2 μm.
The molding method may be various commonly used molding methods in the polymer molding field, for example, injection molding, or extrusion molding.
According to the second aspect of the present disclosure, an ink composition is provided. The ink composition contains at least one metallic compound and at least one binder, in which the metallic compound is a compound represented by formula (I) ,
AxCuy (PO42   (I)
In formula (I) , A is at least one element selected from Group IIA of the periodic table of elements, x/y=0.1 to 20, x+y=3.
The metallic compound and the method for preparing the same have been described above in detail, so a detailed description thereof will be omitted here for the clarity purpose.
The particle size of the metallic compound is such that it is possible to ensure that the finally formed ink composition can form a uniform ink layer. Generally, the volume average particle size  of the metallic compound may be 20 nm to 500 nm.
Since the ink composition further contains at least one binder, when the ink composition is applied on the surface of the insulating substrate, the binder may perform the function of dispersing the metallic compound uniformly on the surface of the insulating substrate, and then forming a film having certain strength and having certain adhesion to the insulating substrate on the surface of the insulating substrate.
There are no particular limits on the type of the binder, as long as the selected binder can perform the above-mentioned function. Preferably, the binder is an organic adhesive. More preferably, the binder is selected from a group consisting of cellulose acetate, a polyacrylate resin, ethylene vinyl acetate copolymer, polyvinyl alcohol, polyvinyl acetal, polyvinyl acetate, polyvinylpyrrolidone, polyphosphonic acid and a combination thereof.
In the ink composition, the binder may be, for example, CAB series cellulose acetate butyrates (for example, cellulose acetate butyrates under the trade name of CAB381-0.5, CAB381-20, CAB551-0.2 and CAB381-2) , commercially available from Eastman Chemical Company of US; and Mowital series polyvinyl butyrals (for example, polyvinyl butyrals under the trade name of Mowital B 60T, Mowital B 75H and Mowital B 60H) , commercially available from Kuraray company of Japan.
In the ink composition, the relative proportion between the binder and the metallic compound is such that the metallic compound is uniformly dispersed on the surface of the insulating substrate, an ink layer having certain strength and having certain adhesion to the insulating substrate is formed, and the metal layer can be plated on the ink layer. Generally, in the ink composition, with respect to 100 weight parts of the metallic compound, the amount of the binder may be 1 weight part to 60 weight parts, preferably 15 weight parts to 30 weight parts.
In order to further improve the dispersible uniformity of the metallic compound in the binder and form a more uniform film on the surface of the insulating substrate, the ink composition preferably contains a solvent. There are no particular limits on the type of the solvent. Preferably, the solvent is selected from a group consisting of water, C1-C12 alcohols, C3-C12 ketones, C6-C12 aromatic hydrocarbons, C1-C12 haloalkanes and C2-C12 haloolefins and a combination thereof. Specifically, the solvent may be selected from a group consisting of methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, n-pentanol, n-hexanol, n-heptanol, n-octanol, acetone, 2-pentanone, 2-butanone, 3-methyl-2-pentanone, 2, 3-butanedione, 2, 3-pentanedione,  2,5-hexanedione, 1, 3-cyclohexanedione, toluene, xylene, trichloroethene and a combination thereof.
There are no special limits on the amount of the solvent. In the premise of ensuring that the metallic compound can be uniformly dispersed in the binder and a film is uniformly formed on the surface of the insulating substrate, in order to reduce the amount of the solvent, with respect to 100 weight parts of the metallic compound, the amount of the solvent may be 20 weight parts to 200 weight parts, preferably 20 weight parts to 100 weight parts.
According to the specific application occasions of the ink composition, the ink composition may further contain various commonly used aids in the ink field, to give the ink composition specific property or function. Preferably, the aid is selected from a group consisting of a dispersing agent, a defoamer, a leveling agent, a viscosity regulator and a combination thereof. There are no special limits on the amount of the aid. Preferably, with respect to 100 weight parts of the metallic compound, the total amount of the aid may be 0.1 weight parts to 20 weight parts, preferably 0.5 weight parts to 10 weight parts.
In the ink composition, the dispersing agent is used for shorting the time of dispersing the metallic compound in the binder and the optional solvent, and improving the dispersion stability of the metallic compound in the binder and the optional solvent. The dispersing agent may be various commonly used substances in the art, which can realize the above-mentioned function. For example, the dispersing agent may be an organic dispersing agent commonly used in the art, for example, an aliphatic amine dispersing agent, an alcohol amine dispersing agent, a cyclic unsaturated amine dispersing agent, a fatty acid dispersing agent, an aliphatic amide dispersing agent, an ester dispersing agent, a paraffin dispersing agent, a phosphate dispersing agent, a polymer dispersing agent (for example, a polyacrylate dispersing agent and a polyester dispersing agent) and an organic phosphine dispersing agent.
In the ink composition, the dispersing agent may be various commercially available dispersing agents commonly used in the art. Specifically, the dispersing agent may be selected from a group consisting of: dispersing agents under the trade name of ANTI-TERRA-U, ANTI-TERRA-U 80, ANTI-TERRA-U 100, DISPERBYK-101, DISPERBYK-130, BYK-220 S, LACTIMON, LACTIMON-WS, BYK-W 966, DISPERBYK, BYK-154, BYK-9076, DISPERBYK-108, DISPERBYK-109, DISPERBYK-110, DISPERBYK-102, DISPERBYK-111, DISPERBYK-180, DISPERBYK-106, DISPERBYK-187, DISPERBYK-181, DISPERBYK-140,  DISPERBYK-142, DISPERBYK-145, DISPERBYK-115, DISPERBYK-160, DISPERBYK-161, DISPERBYK-162, DISPERBYK-163, DISPERBYK-164, DISPERBYK-165, DISPERBYK-166, DISPERBYK-167, DISPERBYK-182, DISPERBYK-183, DISPERBYK-184, DISPERBYK-185, DISPERBYK-168, DISPERBYK-169, DISPERBYK-170, DISPERBYK-171, DISPERBYK-174, DISPERBYK-190, DISPERBYK-2150, BYK-9077, DISPERBYK-112, DISPERBYK-116, DISPERBYK-191, DISPERBYK-192, DISPERBYK-2000, DISPERBYK-2001, DISPERBYK-2010, DISPERBYK-2020, DISPERBYK-2025, DISPERBYK-2050 and DISPERBYK-2070, commercially available from BYK company of Germany; a dispersing agent under the trade name of PHOSPHOLAN PS-236 commercially available from Akzo Nobel company of Netherland; a dispersing agent under the trade name of PS-21A commercially available from Witco chemical company of US; the Hypermer KD series dispersing agent and the Zephrym PD series dispersing agent commercially available from Croda company of England; and a combination thereof.
There are no special limits on the amount of the dispersing agent. Generally, with respect to 100 weight parts of the metallic compound, the amount of the dispersing agent may be 0.1 weight parts to 4 weight parts.
In the ink composition, the defoamer may be various commonly used substances in the art, which can suppress the formation of foams, destroy the formed foams or discharge the formed foams from the system. For example, the defoamer may be an organic polysiloxane defoamer, a polyether defoamer and a higher alcohol defoamer. Preferably, the defoamer is an organic polysiloxane defoamer.
In the ink composition, the defoamer may be various commercially available defoamer commonly used in the art. Specifically, the defoamer may be selected from a group consisting of defoamers under the trade name of BYK-051, BYK-052, BYK-053, BYK-055, BYK-057, BYK-020, BYK-065, BYK-066N, BYK-067A, BYK-070, BYK-080A, BYK-088, BYK-141, BYK-019, BYK-021, BYK-022, BYK-023, BYK-024, BYK-025, BYK-028, BYK-011, BYK-031, BYK-032, BYK-033, BYK-034, BYK-035, BYK-036, BYK-037, BYK-038, BYK-045, BYK-A530, BYK-A555, BYK-071, BYK-060, BYK-018, BYK-044, BYK-094, and a combination thereof, commercially available from BYK company of Germany.
There are no special limits on the amount of the defoamer. Preferably, with respect to 100 weight parts of the metallic compound, the amount of the defoamer is 0.1 weight parts to 3 weight  parts.
In the ink composition, the leveling agent is used for enabling the ink composition to form a more flat, smooth and uniform film in the drying process. There are no special limits on the type of the leveling agent, and the leveling agent may be a commonly used substance that can realize the above-mentioned function in the art. For example, the leveling agent may be selected from a group consisting of a polyacrylate leveling agent, a polydimethylsiloxane leveling agent, a polymethyl phenyl siloxane leveling agent, a fluorine-containing surfactant and a combination thereof.
In the ink composition, the leveling agent may be various commercially available leveling agents commonly used in the art. For example, the leveling agent may be selected from a group consisting of leveling agents under the trade name of BYK-333, BYK-306, BYK-358N, BYK-310, BYK-354, BYK-356 and a combination thereof, commercially available from BYK company of Germany.
There are no special limits on the amount of the leveling agent. Preferably, with respect to 100 weight parts of the metallic compound, the amount of the leveling agent is 0.3 weight parts to 4 weight parts.
In the ink composition, the viscosity regulator is used for adjusting the viscosity of the ink composition. There are no special limits on the type of the viscosity regulator. For example, the viscosity regulator may be selected from a group consisting of fumed silica, polyamide wax, organic bentonite, hydrogenated castor oil, metallic soap, hydroxyalkyl celluloses and derivatives thereof, polyvinyl alcohol and polyacrylate and a combination thereof.
There are no special limits on the amount of the viscosity regulator. Preferably, with respect to 100 weight parts of the metallic compound, the amount of the viscosity regulator is 0.3 weight parts to 3 weight parts.
In one preferred embodiment, the ink composition contains the metallic compound, the binder, a solvent, a dispersing agent, a defoamer, a leveling agent and a viscosity regulator. With respect to 100 weight parts of the metallic compound, the amount of the binder is 1 weight part to 30 weight parts, the amount of the solvent is 20 weight parts to 200 weight parts, the amount of the dispersing agent is 0.4 weight parts to 4 weight parts, the amount of the defoamer is 0.1 weight parts to 3 weight parts, the amount of the leveling agent is 0.3 weight parts to 4 weight parts, and the amount of the viscosity regulator is 0.3 weight parts to 3 weight parts.
There are no special limits on the method for preparing the ink composition, as long as the  metallic compound and the binder as well as the optional solvent and aid may be mixed uniformly. For example, the ink composition may be obtained by mixing the metallic compound with the binder as well as the optional solvent and aid uniformly in a mixer such as a planet-type ball mill. In the mixer, the method and the conditions of mixing individual components uniformly are well known in the art, so a detailed description thereof will be omitted here for the clarity purpose.
The ink composition according to embodiments of the present disclosure can be applied on the surface of the insulating (i.e. nonconductive) substrate, and chemical plating may be performed on the surface of the insulating substrate, thus selectively metalizing the surface of the insulating substrate and consequently forming a signal transmission pathway on the surface of the nonconductive substrate.
According to a third aspect of the present disclosure, a method for selectively metalizing a polymer article is provided. The method comprises steps of:
irradiating a surface of the polymer article to be metalized with energy beam; and
performing chemical plating on the irradiated polymer article,
in which the polymer article is the abovementioned polymer article.
The polymer article and the method for preparing the same have been described above in detail, so a detailed description thereof will be omitted here for the clarity purpose.
The energy beam may be various energy beams, which can gasify the polymer, for example, laser, electron beam or ion beam, preferably laser.
The irradiating condition of the energy beam is such that the polymer on the surface of the polymer article is gasified to expose the metallic compound, and the irradiating condition of the energy beam may be selected according to the type of the polymer and the type of the energy beam. With the method according to embodiments of the present disclosure, when the surface of the polymer article is selectively irradiated with energy beam, without needing excessive energy to reduce the metallic compound into metal simple substances, it is only necessary to gasify the polymer to expose the metallic compound so as to perform chemical plating directly to selectively metalize the surface of the polymer article, so that the process is simple and the energy requirement is low.
Generally, when laser is used as the energy beam, the laser has a wavelength of 157nm to 10.6 μm, a scanning speed of 500 mm/s to 8000 mm/s, a step of 3μm to 9 μm, a delay time of 30 μs to 100 μs, a frequency of 30kHz to 40kHz, a power of 3kW to 4kW, and a filling gap of 10μm  to 50 μm. Generally, by irradiating the surface of the polymer article with the above laser, the thickness of the etched polymer is a few microns to tens of microns, thus exposing the catalyst component particles in the polymer article, and forming a crude surface structure having uneven pores on at least part of the surface of the polymer article. In the subsequent chemical plating, the metal particles will be embedded into the pores in the crude surface, thus forming very strong binding force with the plastic samples.
The method of performing chemical plating on the polymer article on which catalyst component particles are exposed is well known to a person skilled in the art. For example, when chemical copper plating is performed, the method may comprise contacting the etched polymer article with a copper plating solution. The copper plating solution contains a copper salt and a reducing agent. The pH value of the copper plating solution is 12 to 13. The reducing agent can reduce copper ions in the copper salt into copper simple substances. The reducing agent, for example, may be selected from a group consisting of glyoxylic acid, hydrazine, sodium hypophosphite, and a combination thereof.
After chemical plating is performed, electroplating may be performed or the chemical plating may be performed once or many times, in order to further increase the thickness of the plating layer or form other metal plating layers on the chemical plating layer. For example, after chemical copper plating is completed, one nickel layer may be formed by chemical plating to prevent the surface of the copper plating layer from being oxidized.
According to a fourth aspect of the present disclosure, a method for selectively metalizing an insulating substrate is provided. The method comprises steps of:
mixing at least one metallic compound and at least one binder to obtain an ink composition, applying the ink composition on a surface of the insulating substrate to be metalized to form an ink layer, in which the metallic compound is a compound represented by formula (I) ,
AxCuy (PO42   (I)
in which in formula (I) , A is at least one element selected from Group IIA of the periodic table of elements, x/y=0.1 to 20, x+y=3; and
performing chemical plating on the insulating substrate having the ink layer to plate at least one metal layer on the ink layer.
The ink composition and the method for preparing the same have been described above in detail, so a detailed description thereof will be omitted here for the clarity purpose. 
Various commonly used methods may be used for applying the ink composition on the surface of the insulating substrate. For example, the ink composition may be applied on the surface of the insulating substrate to be metalized by a method selected from a group consisting of screen printing, spray coating, laser printing, ink jet printing, pad printing, gravure printing, letterpress printing, and lithographic printing. Particular operating steps and conditions of screen printing, spray coating, laser printing, ink jet printing, pad printing, gravure printing, letterpress printing, and lithographic printing are well known in the art, so a detailed description thereof will be omitted here for the clarity purpose. In some embodiments, the ink composition is particularly applied on the surface of the insulating substrate to be metalized by ink jet printing or laser printing.
After applying the ink composition on the surface of the insulating substrate, the method according to embodiments of the present disclosure may further comprise the step of drying the substrate having the ink composition. There are no special limits on the drying method, and the drying method may be selected appropriately according to the type of the binder as well as the optional solvent in the ink composition. For example, the drying may be performed at a temperature of 40℃ to 150℃ for 0.5 h to 5 h. The drying may be performed under the normal pressure, and may also be performed under a reduced pressure.
The thickness of the ink layer may be selected appropriately according to the constituent of the ink composition, such that chemical plating may be performed on the surface of the insulating substrate to selectively metalize a surface of the insulating substrate. Preferably, the thickness of the ink layer is 8μm to 50 μm. More preferably, the thickness of the ink layer is 12μm to 40 μm. Further preferably, the thickness of the ink layer is 12μm to 25 μm.
The method of the chemical plating is also well known to a person skilled in the art. For example, when chemical copper plating is performed, the method may comprise contacting the insulating substrate having the ink layer with a copper plating solution. The copper plating solution contains a copper salt and a reducing agent. The pH value of the copper plating solution is 12 to 13. The reducing agent can reduce copper ions in the copper salt into copper simple substances. For example, the reducing agent may be selected from a group consisting of glyoxylic acid, hydrazine, sodium hypophosphite and a combination thereof.
After chemical plating is performed, electroplating may be performed or the chemical plating may be performed once or many times, in order to further increase the thickness of the plating  layer or form other metal plating layers on the chemical plating layer. For example, after chemical copper plating is completed, one nickel layer may be formed by chemical plating to prevent the surface of the copper plating layer from being oxidized.
In order to further improve the adhesion of the metal layer formed by chemical plating as well as the plating speed, before performing chemical plating on the insulating substrate having the ink layer, the method according to the fourth aspect of the present disclosure preferably further comprises irradiating the surface of the ink layer using energy beam, to gasify the surface of the ink layer.
The energy beam may be a laser, electron beam or ion beam, preferably laser. The irradiating condition of the energy beam is such that the surface of the ink layer may be gasified. Specifically, when the energy beam is laser, the laser has a wavelength of 157nm to 10.6 μm, a scanning speed of 500 mm/s to 8000 mm/s, a step of 3 μm to 9 μm, a delay time of 30 μs to 100 μs, a frequency of 30kHz to 40kHz, a power of 3kW to 4kW, and a filling gap of 10μm to 50 μm.
The method according to embodiments of the present disclosure can perform selectively metalizing on various insulating substrates. The insulating substrate, for example, may be a plastic substrate, a rubber substrate, a fiber substrate, a coating formed by a coating material, a ceramic substrate, a glass substrate, a wooden substrate, a cement substrate or paper. Preferably, the insulating substrate is a plastic substrate or a ceramic substrate. When the insulating substrate is a flexible plastic substrate (for example, polyethylene glycol terephthalate, polyimide, polycarbonate, polyether ketone, poly (ether ether ketone) or liquid crystal polymer) , the article obtained by applying the ink composition on the surface of the substrate and selectively metalizing the substrate is particularly suitable for preparing a flexible circuit board.
The present disclosure will be described in detail below.
In the following Examples and Comparative Examples, the composition of the metallic compound was measured by an inductively coupled plasma-atomic emission spectrometry (ICP-AES) .
In the following Examples and Comparative Examples, the volume average particle size was measured by a Laser Particle Sizer commercially available from Chengdu Jingxin Powder Analyse Instrument Co., Ltd., China.
In the following Examples and Comparative Examples, the adhesion of the metal layer formed on the surface of the substrate was measured by a cross-cut process.
Specifically, a surface of the sample to be measured was cut using a cross-cut knife to form 100 grids (1 mm×1 mm) . A gap between adjacent grids was formed to reach the bottom of the metal layer. Debris in the test region was cleaned using a brush, and then an adhesive tape (3M600 gummed paper) was sticked to grids in the test region. One end of the sticked adhesive paper was rapidly torn off in a vertical direction. Two identical tests were performed on the same grid region. The result of the adhesion was determined according to the following standard.
ISO Grade 0: the cut edge is smooth, and neither metal layers at the cut edge nor metal layers at the cut intersection of the grid peel off.
ISO Grade 1: the metal layers at the cut intersection partially peel off, but no more than 5% (area percent) of the metal layers peel off.
ISO Grade 2: the metal layers both at the cut edge and the cut intersection partially peel off, and 5%to 15% (area percent) of the metal layers peel off.
ISO Grade 3: the metal layers at both the cut edge and the cut intersection partially peel off, and 15%to 35% (area percent) of the metal layers peel off.
ISO Grade 4: the metal layers at both the cut edge and the cut intersection partially peel off, and 35%to 65% (area percent) of the metal layers peel off.
ISO Grade 5: the metal layers at both the cut edge and the cut intersection partially peel off, and more than 65% (area percent) of the metal layers peel off.
Examples 1 to 4 are used for describing the polymer article and the method for selectively metalizing the polymer article.
Example 1
(1) Preparation of metallic compound
CuO, MgCO3 and NH4H2PO4 were mixed uniformly, in which the molar ratio between the CuO, MgCO3 and NH4H2PO4 was 2.7:0.3:2. Then, wet grinding was performed for the obtained mixture on a grinding mill, in which the dispersing agent was anhydrous ethanol. With respect to 100 weight parts of the mixture, the amount of anhydrous ethanol was 150 weight parts. The grinding was performed at a rotating speed of 500 rpm for 5 hours.
The obtained powder was put in an oven, and the powder was dried in an air atmosphere at a temperature of 80℃ for 12 hours.
The dried powder was put in a muffle furnace and sintered in an air atmosphere at a  temperature of 900℃ for 2 hours. Then, dry grinding was performed for the sinter. Then, the obtained powder was put in the muffle furnace and sintered in an air atmosphere at a temperature of 950℃ for 10 hours again, and then dry grinding was performed for the sinter, thus obtaining a metallic compound having a volume average particle size of 2 μm. The detection result shows that the formula of the metallic compound is Cu2.7Mg0.3 (PO42. The metallic compound shows light sky blue with a hexadecimal color code (i.e. HEX format) of #87CEFA, and a RGB color model (i.e. RGB format) of (135, 206, 250) .
(2) Formation of polymer sheet
Polycarbonate, antioxidant 1098, PE wax as a lubricant and the metallic compound prepared in step (1) were mixed. With respect to 100 weight parts of the polycarbonate, the amount of the metallic compound was 10 weight parts, the amount of the antioxidant was 0.05 weight parts, and the amount of the lubricant was 0.04 weight parts. After the obtained mixture was pelleted, the pellets were fed into an injection molding machine to perform injection molding, thus obtaining a polymer sheet with a thickness of 2 mm.
(3) Irradiation and chemical plating
The polymer sheet obtained in step (2) was put on the sample stage of the laser device, then the laser was focused, the movement of the laser beam or the sample stage was controlled by a computer program. The laser device was Hans YLP-20 type laser device. The laser parameters were as follows: the wavelength was 1064nm, the scanning speed was 1000mm/s, the step was 6μm, the delay time was 50μs, the frequency was 30kHz, the power was 4kW, and the filling gap was 20μm. After laser etching, a decontamination processing on the sample was performed, and then the sample was put in a plating solution to perform chemical plating, thus obtaining a plating layer with a thickness of 12 μm. The plating solution comprised 5g/L copper sulfate pentahydrate, 25g/L potassium sodium tartrate, 7g/L sodium hydroxide, 10g/L formaldehyde, and 0.1g/L stabilizer.
The test result shows that the plating speed is 8 μm/h and the adhesion of the plating layer is ISO Grade 1.
Example 2
(1) Preparation of metallic compound
CuO, CaO and NH4H2PO4 were mixed uniformly, in which the molar ratio between the CuO,  CaO and NH4H2PO4 was 1.5:1.5:2. Then, wet grinding was performed for the obtained mixture on a grinding mill, in which the dispersing agent was anhydrous ethanol. With respect to 100 weight parts of the mixture, the amount of anhydrous ethanol was 150 weight parts. The grinding was performed at a rotating speed of 500 rpm for 5 hours.
The obtained powder was put in an oven, and the powder was dried in an air atmosphere at a temperature of 80℃ for 12 hours.
The dried powder was put in the muffle furnace and sintered in an air atmosphere at a temperature of 1000℃ for 20 hours. Then, dry grinding was performed for the sinter, thus obtaining a metallic compound having a volume average particle size of 1.5 μm. The detection result shows that the chemical formula of the metallic compound is Cu1.5Ca1.5 (PO42. The metallic compound shows light green with a hexadecimal color code (i.e. HEX format) of #90EE90 and a RGB color model (i.e. RGB format) of 144, 238, 144.
(2) Formation of polymer sheet
Polycarbonate, antioxidant 1098, PE wax as a lubricant and the metallic compound prepared in step (1) were mixed. With respect to 100 weight parts of the polycarbonate, the amount of the metallic compound was 20 weight parts, the amount of the antioxidant was 0.05 weight parts, and the amount of the lubricant was 0.04 weight parts. After the obtained mixture was pelleted, the pellets were fed into an injection molding machine to perform injection molding, thus obtaining a polymer sheet with a thickness of 4 mm.
(3) Irradiation and chemical plating
The polymer sheet obtained in step (2) was put on the sample stage of the laser device, then the laser was focused, the movement of the laser beam or the sample stage was controlled by a computer program. The laser device was Hans YLP-20 type laser device. The laser parameters were as follows: the wavelength was 1064nm, the scanning speed was 1000mm/s, the step was 6μm, the delay time was 50μs, the frequency was 30kHz, the power was 4kW, and the filling gap was 20μm. After laser etching, a decontamination processing was performed for the plastic sample, and then the plastic sample was put in a plating solution to perform chemical plating, thus obtaining a plating layer with a thickness of 10 μm. The plating solution comprised 5g/L copper sulfate pentahydrate, 25g/L potassium sodium tartrate, 7g/L sodium hydroxide, 10g/L formaldehyde, and 0.1g/L stabilizer.
The test result shows that the plating speed is 6 μm/h and the adhesion of the plating layer is  ISO Grade 1.
Example 3
(1) Preparation of metallic compound
CuO, BaCO3, SrCO3 and NH4H2PO4 were mixed uniformly, in which the molar ratio between the CuO, BaCO3, SrCO3 and NH4H2PO4 was 1.5:0.75:0.75:2. Then, wet grinding was performed for the obtained mixture on a grinding mill, in which the dispersing agent was anhydrous ethanol. With respect to 100 weight parts of the mixture, the amount of anhydrous ethanol was 150 weight parts. The grinding was performed at a rotating speed of 500 rpm for 5 hours.
The obtained powder was put in an oven, and the powder was dried in an air atmosphere at a temperature of 80℃ for 12 hours.
The dried powder was put in the muffle furnace and sintered in an air atmosphere at a temperature of 600℃ for 10 hours. Then, dry grinding was performed for the sinter, thus obtaining a metallic compound. Then, the obtained powder was put in the muffle furnace and sintered in an air atmosphere at a temperature of 1000℃ for 15 hours again, thus obtaining a metallic compound having a volume average particle size of 2 μm. The detection result shows that the chemical formula of the metallic compound is Cu1.5Ba0.75Sr0.75 (PO42. The metallic compound shows light green with a hexadecimal color code (i.e. HEX format) of #90EE90 and a RGB color model (i.e. RGB format) of 144, 238, 144.
(2) Formation of polymer sheet
Polycarbonate, antioxidant 1098, PE wax as a lubricant and the metallic compound prepared in step (1) were mixed. With respect to 100 weight parts of the polycarbonate, the amount of the metallic compound was 30 weight parts, the amount of the antioxidant was 0.05 weight parts, and the amount of the lubricant was 0.04 weight parts. After the obtained mixture was pelleted, the pellets were fed into an injection molding machine to perform injection molding, thus obtaining a polymer sheet with a thickness of 2 mm.
(3) Irradiation and chemical plating
The polymer sheet obtained in step (2) was put on the sample stage of the laser device, then the laser was focused, the movement of the laser beam or the sample stage was controlled by a computer program. The laser device was Hans YLP-20 type laser device. The laser parameters were as follows: the wavelength was 1064nm, the scanning speed was 1000mm/s, the step was  6μm, the delay time was 50μs, the frequency was 30kHz, the power was 4kW, and the filling gap was 20μm. After laser etching, a decontamination processing was performed for the plastic sample, and then the plastic sample was put in a plating solution to perform chemical plating, thus obtaining a plating layer with a thickness of 12 μm. The plating solution comprised 5g/L copper sulfate pentahydrate, 25g/L potassium sodium tartrate, 7g/L sodium hydroxide, 10g/L formaldehyde, and 0.1g/L stabilizer.
The test result shows that the plating speed is 9 μm/h and the adhesion of the plating layer is ISO Grade 1.
Example 4
(1) Preparation of metallic compound
CuO, calcium oxalate and NH4H2PO4 were mixed uniformly, in which the molar ratio between the CuO, calcium oxalate and NH4H2PO4 was 0.15:2.85:2. Then, wet grinding was performed for the obtained mixture on a grinding mill, in which the dispersing agent was anhydrous ethanol. With respect to 100 weight parts of the mixture, the amount of anhydrous ethanol was 150 weight parts. The grinding was performed at a rotating speed of 500 rpm for 5 hours.
The obtained powder was put in an oven, and the powder was dried in an air atmosphere at a temperature of 80℃ for 12 hours.
The dried powder was put in the muffle furnace and sintered in an air atmosphere at a temperature of 900℃ for 10 hours. Then, dry grinding was performed for the sinter. Then, the obtained powder was put in the muffle furnace and sintered in an air atmosphere at a temperature of 1000℃ for 20 hours again, thus obtaining a metallic compound having a volume average particle size of 2 μm. The detection result shows that the chemical formula of the metallic compound is Cu0.15Ca2.85 (PO42. The metallic compound shows light cyan with a hexadecimal color code (i.e. HEX format) of #E1FFFF and a RGB color model (i.e. RGB format) of 225, 255, 255.
(2) Formation of polymer sheet
Polycarbonate, antioxidant 1098, PE wax as a lubricant and the metallic compound prepared in step (1) were mixed. With respect to 100 weight parts of the polycarbonate, the amount of the metallic compound was 40 weight parts, the amount of the antioxidant was 0.05 weight parts, and the amount of the lubricant was 0.04 weight parts. After the obtained mixture was pelleted, the  pellets were fed into an injection molding machine to perform injection molding, thus obtaining a polymer sheet with a thickness of 2 mm.
(3) Irradiation and chemical plating
The polymer sheet obtained in step (2) was put on the sample stage of the laser device, then the laser was focused, the movement of the laser beam or the sample stage was controlled by a computer program. The laser device was Hans YLP-20 type laser device. The laser parameters were as follows: the wavelength was 1064nm, the scanning speed was 1000mm/s, the step was 6μm, the delay time was 50μs, the frequency was 30kHz, the power was 4kW, and the filling gap was 20μm. After laser etching, a decontamination processing was performed for the plastic sample, and then the plastic sample was put in a plating solution to perform chemical plating, thus obtaining a plating layer with a thickness of 12 μm. The plating solution comprised 5g/L copper sulfate pentahydrate, 25g/L potassium sodium tartrate, 7g/L sodium hydroxide, 10g/L formaldehyde, and 0.1g/L stabilizer.
The test result shows that the plating speed is 5 μm/h and the adhesion of the plating layer is ISO Grade 1.
Comparative Example 1
(1) Preparation of metallic compound
Cu2O, Cr2O3 and Al2O3 were mixed uniformly, in which the molar ratio between the Cu2O, Cr2O3 and Al2O3 was 1:0.3:0.7. Then, wet grinding was performed for the obtained mixture on a grinding mill, in which the dispersing agent was water. With respect to 100 weight parts of the mixture, the amount of the water was 150 weight parts. The grinding was performed at a rotating speed of 500 rpm for 5 hours.
The obtained powder was put in an oven, and the powder was dried in an air atmosphere at a temperature of 100℃ for 12 hours.
The dried powder was put in the muffle furnace and sintered in an air atmosphere at a temperature of 800℃ for 2 hours. Then, dry grinding was performed for the sinter, thus obtaining a metallic compound having a volume average particle size of 2 μm. The detection result shows that the chemical formula of the metallic compound is Cu2Cr0.6Al1.4O3.3. The metallic compound shows light sky blue with a hexadecimal color code (i.e. HEX format) of #87CEFA and a RGB color model (i.e. RGB format) of 135, 206, 250.
(2) Formation of polymer sheet
The polymer sheet was prepared using substantially the same method as step (2) of Example 1, except that the metallic compound was the metallic compound prepared in step (1) of Comparative Example 1.
(3) Irradiation and chemical plating
The laser etching and the chemical plating were performed using substantially the same method as step (3) in Example 1, except that the polymer sheet was a polymer sheet prepared in step (2) of Comparative Example 1.
The test result shows that the plating speed is 5 μm/h, and the adhesion of the plating layer is ISO Grade 1.
Comparative Example 2
(1) Preparation of metallic compound
The metallic compound was prepared using substantially the same method as step (1) of Comparative Example 1, except that CuO was used instead of Cu2O. The detection result shows that the chemical formula of the metallic compound was CuCrAlO4; based on the total amount of the metallic compound, the content of the CuO was 0.008mol%; the color of the metallic compound was black with a hexadecimal color code of #000000 and a RGB color model of 0, 0, 0.
(2) Formation of polymer sheet
The polymer sheet was prepared using substantially the same method as step (2) of Example 1, except that the metallic compound was a metallic compound prepared in step (1) of Comparative Example 2. The color of the polymer sheet was black with a hexadecimal color code of #000000 and a RGB color model of 0, 0, 0.
(3) Irradiation and chemical plating
The surface of the polymer sheet was metalized using substantially the same method as step (3) of Example 1, except that the polymer sheet was the polymer sheet obtained in step (3) of Comparative Example 2.
The chemical plating was performed using substantially the same method as step (3) in Example 1.
The test result shows that the plating speed is 2 μm/h, and the adhesion of the plating layer is ISO Grade 4.
Comparative Example 3
(1) Preparation of metallic compound
The metallic compound was prepared using substantially the same method as step (1) of Comparative Example 1, except that the sintering was performed in an air atmosphere. The detection result shows that chemical formula of the metallic compound is CuCr0.3Al0.7O4. The metallic compound shows black with a hexadecimal color code of #000000 and a RGB color model of 0, 0, 0.
(2) Formation of polymer sheet
The polymer sheet was prepared using substantially the same method as step (2) of the Example 1, except that the metallic compound was the metallic compound prepared in step (1) of Comparative Example 3. The color of the polymer sheet was black with a hexadecimal color code of #000000 and a RGB color model of 0, 0, 0.
(3) Irradiation and chemical plating
The surface of the polymer sheet was metalized using substantially the same method as step (3) of the Example 1, except that the polymer sheet was the polymer sheet obtained in step (2) of Comparative Example 3.
The chemical plating was performed using substantially the same method as step (3) in Example 1.
The test result shows that the plating speed is 2 μm/h, and the adhesion of the plating layer is ISO Grade 4.
By comparing Example 1 with Comparative Examples 1 to 3, it can be seen that the metallic compound in the polymer article can be prepared using the conventional raw materials in the conventional sintering condition, and the metallic compound is not only light-colored, but also has a higher activity of promoting chemical plating.
Examples 5 to 9 are used for describing the ink composition and the method for selectively metalizing an insulating substrate.
Example 5
(1) Preparation of metallic compound
The metallic compound was prepared using substantially the same method as step (1) of Example 1, except that the metallic compound was grinded into particles with a volume average  particle size of 80 nm.
(2) Formation of ink composition
100 g of the metallic compound prepared in step (1) , 20 g of a binder (under the trade name of CAB381-0.5 commercially available from Eastman Company, US) , 100 g of n-heptanol, 2 g of a dispersing agent (under the trade name of DISPERBYK-165 commercially available from BYK company, Germany) , 0.2 g of a defoamer (under the trade name of BYK-051 commercially available from BYK company, Germany) , 0.4 g of a leveling agent (under the trade name of BYK-333 commercially available from BYK company, Germany) and 0.5 g of hydrogenated castor oil (commercially available from Wuhan GPC-China Chemistry Co. , Ltd. , China) were mixed uniformly, thus obtaining an ink composition.
(3) Formation of ink layer
The ink composition prepared in step (2) was applied on a surface of an Al2O3 ceramic substrate by ink jet printing, and then dried at a temperature of 110℃ for 5 hours, thus forming an ink layer on the surface of the substrate.
(4) Chemical plating
The substrate obtained in step (3) was put in a plating solution to perform chemical plating, thus obtaining a plating layer with a thickness of 2 μm. The plating solution comprised 5g/L copper sulfate pentahydrate, 25g/L potassium sodium tartrate, 7g/L sodium hydroxide, 10g/L formaldehyde, 0.1g/L stabilizer.
The test result shows that the plating speed is 8 μm/h and the adhesion of the plating layer is ISO Grade 1.
Comparative Example 4
The ink composition was prepared and coated on the surface of the substrate and chemical plating was performed, using substantially the same method as Example 5, except that the metallic compound was prepared using substantially the same method as step (1) of Comparative Example 2.
As a result, a metal layer cannot be formed on the surface of the substrate.
Example 7
(1) Preparation of metallic compound
The metallic compound was prepared using substantially the same method as step (1) of Example 2, except that the sinter was grinded into particles with a volume average particle size of 100nm.
(2) Formation of ink composition
100 g of the metallic compound prepared in step (1) , 15 g of polyvinyl butyral (under the trade name of Mowital commercially available from Kuraray company, Japan) and 20 g of toluene were mixed uniformly, thus obtaining an ink composition.
(3) Formation of ink layer
The ink composition prepared in step (2) was applied on a surface of a poly (ether ether ketone) (PEEK) substrate by ink jet printing, and dried at a temperature of 150℃ for 4 hours, thus forming an ink layer with a thickness of 25 μm on the surface of the substrate.
(4) Chemical plating
The substrate obtained in step (3) was put in a plating solution to perform chemical plating, thus obtaining a plating layer with a thickness of 4 μm. The plating solution comprised 5g/L copper sulfate pentahydrate, 25g/L potassium sodium tartrate, 7g/L sodium hydroxide, 10g/L formaldehyde, and 0.1g/L stabilizer.
The test result shows that the plating speed is 5 μm/h and the adhesion of the plating layer is ISO Grade 1.
Example 8
(1) Preparation of metallic compound
The metallic compound was prepared using substantially the same method as step (1) of Example 3, except that the sinter was grinded into particles with a volume average particle size of 40nm.
(2) Formation of ink composition
100 g of the metallic compound prepared in step (1) , 30 g of an EVA binder (commercially available from Eastman Company, US) , 110 g of toluene, 3 g of a dispersing agent (under the trade name of ANTI-TERRA-U 80 commercially available from BYK company, Germany) , 0.5 g of a defoamer (under the trade name of BYK-065 commercially available from BYK company, Germany) , 0.5 g of a leveling agent (under the trade name of BYK-306 commercially available from BYK company, Germany) and 0.4 g of hydroxyethyl cellulose (commercially available from  Luzhou North Dadong Chemical Co. , Ltd. , China) were mixed uniformly, thus obtaining an ink composition.
(3) Formation of ink layer
The ink composition prepared in step (2) was applied on a surface of a polycarbonate substrate by ink jet printing, and dried at a temperature of 150℃ for 4 hours, thus forming an ink layer with a thickness of 15 μm on the surface of the substrate.
(4) Chemical plating
The substrate obtained in step (3) was put in a plating solution to perform chemical plating, thus obtaining a plating layer with a thickness of 3 μm. The plating solution comprised 5g/L copper sulfate pentahydrate, 25g/L potassium sodium tartrate, 7g/L sodium hydroxide, 10g/L formaldehyde, and 0.1g/L stabilizer.
The test result shows that the plating speed is 5 μm/h and the adhesion of the plating layer is ISO Grade 1.
Example 9
The ink composition was prepared, and a plating layer was formed on the surface of the substrate, using substantially the same method as Example 8, except that before the substrate obtained in step (3) was put in the plating solution to perform chemical plating, the ink layer formed in step (3) was irradiated using laser, then the irradiated substrate was put in a plating solution to perform chemical plating. The conditions of the laser irradiation are as follows: the laser wavelength was 1064nm, the power was 5W, the frequency was 20kHz, the line scan speed was 800mm/s, and the filling gap was 20 μm.
The test result shows that the plating speed is 9 μm/h and the adhesion of the plating layer is ISO Grade 1.
The results of Examples 5 to 8 indicate that the surface of the substrate having the ink layer formed by the ink composition according to embodiments of the present disclosure has a chemical plating activity, on which chemical plating can be directly performed. By comparing Example 9 with Example 8, it can be seen that before chemical plating is performed on the surface of the substrate having the ink layer formed by the ink composition according to embodiments of the present disclosure, the ink layer is irradiated using laser to gasify the surface of the ink layer, thus achieving a higher plating speed.

Claims (21)

  1. A polymer article comprising a polymer matrix and a metallic compound dispersed in the polymer matrix, wherein the metallic compound is a compound represented by formula (I) ,
    AxCuy (PO42   (I)
    wherein in formula (I) , A is at least one element selected from Group IIA of the periodic table of elements, x/y=0.1 to 20, x+y=3.
  2. The polymer article according to claim 1, wherein based on the total amount of the polymer article, the content of the metallic compound is 1 wt%to 40 wt%.
  3. The polymer article according to claim 1 or 2, wherein, in formula (I) , A is selected from a group consisting of Ca, Mg, Ba, Sr, or a combination thereof.
  4. The polymer article according to claim 3, wherein the metallic compound is selected from a group consisting of Cu2.7Mg0.3 (PO42, Cu1.5Mg1.5 (PO42, Cu1.5Ba0.75Sr0.75 (PO42, Cu0.15Mg2.85 (PO42, Cu1.5Ca1.5 (PO42, Cu0.15Ca2.85 (PO42, Cu2Ba (PO42, CuSr2 (PO42, Cu0.4Sr2.6 (PO42, or a combination thereof.
  5. An ink composition containing at least one metallic compound and at least one binder, wherein the metallic compound is a compound represented by formula (I) ,
    AxCuy (PO42   (I)
    wherein in formula (I) , A is at least one element selected from Group IIA of the periodic table of elements, x/y=0.1 to 20, x+y=3.
  6. The ink composition according to claim 5, wherein with respect to 100 weight parts of the metallic compound, the amount of the binder is 1 weight part to 60 weight parts.
  7. The ink composition according to claim 5 or 6, wherein, in formula (I) , A is selected from a group consisting of Ca, Mg, Ba, Sr, or a combination thereof. 
  8. The ink composition according to claim 7, wherein the metallic compound is selected form Cu2.7Mg0.3 (PO42, Cu1.5Mg1.5 (PO42, Cu1.5Ba0.75Sr0.75 (PO42, Cu0.15Mg2.85 (PO42, Cu1.5Ca1.5 (PO42, Cu0.15Ca2.85 (PO42, Cu2Ba (PO42, CuSr2 (PO42, Cu0.4Sr2.6 (PO42, or a combination thereof.
  9. A method for selectively metalizing a polymer article, comprising steps of:
    irradiating a surface of the polymer article to be metalized with energy beam; and
    performing chemical plating on the irradiated polymer article,
    wherein the polymer article comprises a polymer matrix and a metallic compound dispersed in the polymer matrix, wherein the metallic compound is a compound represented by formula (I) ,
    AxCuy (PO42   (I)
    wherein in formula (I) , A is at least one element selected from Group IIA of the periodic table of elements, x/y=0.1 to 20, x+y=3.
  10. The method according to claim 9, wherein based on the total amount of the polymer article, the content of the metallic compound is 1 wt%to 40 wt%.
  11. The method according to claim 9 or 10, wherein, in formula (I) , A is selected from a group consisting of Ca, Mg, Ba, Sr, or a combination thereof.
  12. The method according to claim 11, wherein the metallic compound is selected from a group consisting of Cu2.7Mg0.3 (PO42, Cu1.5Mg1.5 (PO42, Cu1.5Ba0.75Sr0.75 (PO42, Cu0.15Mg2.85 (PO42, Cu1.5Ca1.5 (PO42, Cu0.15Ca2.85 (PO42, Cu2Ba (PO42, CuSr2 (PO42, Cu0.4Sr2.6 (PO42, or a combination thereof.
  13. The method according to claim 9, wherein the energy beam is a laser.
  14. The method according to claim 13, wherein the laser has a wavelength of 157nm to 10.6 μm, a scanning speed of 500 mm/s to 8000 mm/s, a step of 3μm to 9 μm, a delay time of 30 μs to 100 μs, a frequency of 30kHz to 40kHz, a power of 3kW to 4kW, and a filling gap of 10μm to 50 μm.
  15. A method for selectively metalizing an insulating substrate, comprising steps of:
    mixing at least one metallic compound and at least one binder to obtain an ink composition, applying the ink composition on a surface of the insulating substrate to be metalized to form an ink layer, wherein the metallic compound is a compound represented by formula (I) ,
    AxCuy (PO42   (I)
    wherein in formula (I) , A is at least one element selected from Group IIA of the periodic table of elements, x/y=0.1 to 20, x+y=3; and
    performing chemical plating on the insulating substrate having the ink layer to plate at least one metal layer on the ink layer.
  16. The method according to claim 15, wherein with respect to 100 weight parts of the metallic compound, the amount of the binder is 1 weight part to 60 weight parts.
  17. The method according to claim 15 or 16, wherein, in formula (I) , A is selected from a group consisting of Ca, Mg, Ba, Sr, or a combination thereof.
  18. The method according to claim 17, wherein the metallic compound is selected form Cu2.7Mg0.3 (PO42, Cu1.5Mg1.5 (PO42, Cu1.5Ba0.75Sr0.75 (PO42, Cu0.15Mg2.85 (PO42, Cu1.5Ca1.5 (PO42, Cu0.15Ca2.85 (PO42, Cu2Ba (PO42, CuSr2 (PO42, Cu0.4Sr2.6 (PO42, or a combination thereof.
  19. The method according to claim 15, further comprising:
    irradiating a surface of the ink layer with energy beam, to gasify the surface of the ink layer.
  20. The method according to claim 15, wherein the energy beam is a laser.
  21. The method according to claim 20, wherein the laser has a wavelength of 157nm to 10.6μm, a scanning speed of 500 mm/s to 8000 mm/s, a step of 3 μm to 9 μm, a delay time of 30 μs to 100 μs, a frequency of 30kHz to 40kHz, a power of 3kW to 4kW, and a filling gap of 10μm to 50 μm.
PCT/CN2014/086022 2013-09-17 2014-09-05 Polymer article and ink compositon and methods for selectively metalizing polymer article and insulating substrate WO2015039572A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14845841.7A EP3046960B1 (en) 2013-09-17 2014-09-05 Polymer article and ink compositon and methods for selectively metalizing polymer article and insulating substrate
US15/064,477 US10017859B2 (en) 2013-09-17 2016-03-08 Polymer articles, ink compositions, and methods for selectively metalizing polymer articles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310425978.8A CN104448752B (en) 2013-09-17 2013-09-17 Polymer product, printing ink composition and surface selective metallization method
CN201310425978.8 2013-09-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/064,477 Continuation US10017859B2 (en) 2013-09-17 2016-03-08 Polymer articles, ink compositions, and methods for selectively metalizing polymer articles

Publications (1)

Publication Number Publication Date
WO2015039572A1 true WO2015039572A1 (en) 2015-03-26

Family

ID=52688229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086022 WO2015039572A1 (en) 2013-09-17 2014-09-05 Polymer article and ink compositon and methods for selectively metalizing polymer article and insulating substrate

Country Status (4)

Country Link
US (1) US10017859B2 (en)
EP (1) EP3046960B1 (en)
CN (2) CN104448752B (en)
WO (1) WO2015039572A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3139387A4 (en) * 2014-08-04 2017-12-06 LG Chem, Ltd. Composition for forming conductive pattern and resin structure having conductive pattern
US10017859B2 (en) 2013-09-17 2018-07-10 Byd Company Limited Polymer articles, ink compositions, and methods for selectively metalizing polymer articles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105462340B (en) * 2015-12-28 2018-12-11 广西师范学院 Gamma-cyclodextrin and ruthenium complex and its application in microcontact printing techniques
TWI669221B (en) * 2018-11-26 2019-08-21 宏碁股份有限公司 Transfer film and device having the same, and manufacturing method of decorated moding article

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04180984A (en) * 1990-11-15 1992-06-29 Hitachi Chem Co Ltd Adhesive composition for chemical plating, adhesive film for chemical plating, and manufacture of printed wiring board
US5489639A (en) 1994-08-18 1996-02-06 General Electric Company Copper salts for laser marking of thermoplastic compositions
US5702584A (en) * 1996-07-01 1997-12-30 Ford Motor Company Enhanced plating adhesion through the use of metallized fillers in plastic substrate
US20030031803A1 (en) * 2001-03-15 2003-02-13 Christian Belouet Method of metallizing a substrate part
US20040241422A1 (en) 2001-07-05 2004-12-02 Lpkf Laser & Electronics Ag Conductor track structures and method for production thereof
US20110281135A1 (en) 2009-12-17 2011-11-17 Byd Company Limited Surface metallizing method, method for preparing plastic article and plastic article made therefrom
CN102286209A (en) * 2009-12-17 2011-12-21 比亚迪股份有限公司 Plastic composition, application of plastic composition and method for selectively metallizing plastic surface
US20120065315A1 (en) 2010-07-02 2012-03-15 Bridgestone Corporation Elastomeric compounds having increased cold flow resistance and methods producing the same
CN103741125A (en) * 2014-01-27 2014-04-23 比亚迪股份有限公司 Selective surface metallization method of polymer base material and polymer base material with metallized pattern on surface obtained by method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817181A (en) * 1981-07-24 1983-02-01 Sony Corp Plating-resistant ink
CA2332811A1 (en) * 1998-05-19 1999-12-16 Corning Incorporated Negative thermal expansion materials including method of preparation and uses therefor
DE10149645C1 (en) 2001-10-09 2003-01-23 Thueringisches Inst Textil Making tough electrically-conducting polymer composites for electromagnetic screening, employs metal-coated textile in polymer matrix
DE10356334B4 (en) 2003-11-28 2016-02-11 Sachtleben Chemie Gmbh Use of thermoplastic, polymeric materials with high IR absorption
DK1790701T4 (en) * 2005-11-25 2012-04-02 Sicpa Holding Sa IR-absorbing deep-ink color
WO2008023566A1 (en) * 2006-08-21 2008-02-28 Panasonic Corporation Angular velocity sensor
JP5354873B2 (en) * 2007-05-30 2013-11-27 富士フイルム株式会社 Conductive film and method for producing conductive film
CN101633788B (en) 2008-07-22 2012-03-07 比亚迪股份有限公司 Polymer-matrix positive temperature coefficient thermistor composite material and preparation method thereof
CN101747650B (en) 2009-12-17 2012-01-04 比亚迪股份有限公司 Plastic compound, application thereof and method of selective metallization of plastic surface
CN102071424B (en) 2010-02-26 2012-05-09 比亚迪股份有限公司 Plastic product and preparation method thereof
CN102509798B (en) * 2011-10-26 2014-04-16 何丽萍 Preparation method of copper-barium-activated lithium iron phosphate anode material
CN102683676B (en) * 2011-12-12 2015-09-30 张雅静 Copper, barium doped iron lithium phosphate nano anode material and preparation method thereof
CN103183978B (en) * 2011-12-27 2016-03-30 比亚迪股份有限公司 Goods of ink composite and application and surface selective metallization and preparation method thereof
CN102633243A (en) * 2012-04-26 2012-08-15 张健 Barium iron phosphate product and preparation method and application of barium iron phosphate product
EP2703435B1 (en) * 2012-08-28 2014-09-24 Ems-Patent Ag Polyamide moulding material and its application
CN104448752B (en) 2013-09-17 2017-01-18 比亚迪股份有限公司 Polymer product, printing ink composition and surface selective metallization method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04180984A (en) * 1990-11-15 1992-06-29 Hitachi Chem Co Ltd Adhesive composition for chemical plating, adhesive film for chemical plating, and manufacture of printed wiring board
US5489639A (en) 1994-08-18 1996-02-06 General Electric Company Copper salts for laser marking of thermoplastic compositions
US5702584A (en) * 1996-07-01 1997-12-30 Ford Motor Company Enhanced plating adhesion through the use of metallized fillers in plastic substrate
US20030031803A1 (en) * 2001-03-15 2003-02-13 Christian Belouet Method of metallizing a substrate part
US20040241422A1 (en) 2001-07-05 2004-12-02 Lpkf Laser & Electronics Ag Conductor track structures and method for production thereof
US20110281135A1 (en) 2009-12-17 2011-11-17 Byd Company Limited Surface metallizing method, method for preparing plastic article and plastic article made therefrom
CN102286209A (en) * 2009-12-17 2011-12-21 比亚迪股份有限公司 Plastic composition, application of plastic composition and method for selectively metallizing plastic surface
US20120065315A1 (en) 2010-07-02 2012-03-15 Bridgestone Corporation Elastomeric compounds having increased cold flow resistance and methods producing the same
CN103741125A (en) * 2014-01-27 2014-04-23 比亚迪股份有限公司 Selective surface metallization method of polymer base material and polymer base material with metallized pattern on surface obtained by method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3046960A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10017859B2 (en) 2013-09-17 2018-07-10 Byd Company Limited Polymer articles, ink compositions, and methods for selectively metalizing polymer articles
EP3139387A4 (en) * 2014-08-04 2017-12-06 LG Chem, Ltd. Composition for forming conductive pattern and resin structure having conductive pattern
US10354774B2 (en) 2014-08-04 2019-07-16 Lg Chem, Ltd. Composition for forming conductive pattern and resin structure having conductive pattern

Also Published As

Publication number Publication date
US20160186322A1 (en) 2016-06-30
US10017859B2 (en) 2018-07-10
EP3046960B1 (en) 2018-07-18
CN104448752B (en) 2017-01-18
CN104448752A (en) 2015-03-25
CN106519801A (en) 2017-03-22
CN106519801B (en) 2019-10-11
EP3046960A1 (en) 2016-07-27
EP3046960A4 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
KR101862916B1 (en) Metal compound, method for preparing the same, selective metallization of surface of substrate with the metal compound
US10017859B2 (en) Polymer articles, ink compositions, and methods for selectively metalizing polymer articles
US9869025B2 (en) Doped tin oxide and method for selective metallization of insulating substrate
EP2912211A1 (en) Coating composition, composite prepared by using the coating composition and method for preparing the same
US9512522B2 (en) Method of metalizing surface and article obtainable
EP3189097B1 (en) Use of niobium doped tin oxide
CN104451615B (en) Chemical plating activator surface treatment method and chemical plating activator and application and polymer product and method for surface metallation
CN104311873B (en) The application of stannic oxide of doping and polymer composition and formed body and ink composite and method for surface metallation
CN104744909B (en) Polymer product and printing ink composition and surface selective metallization method
CN104176769B (en) The stannum oxide of doping and preparation method and polymer product and preparation method and ink composite and surface selective metallization method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845841

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014845841

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014845841

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE