WO2015034732A1 - Torque split gearbox for rotary wing aircraft - Google Patents

Torque split gearbox for rotary wing aircraft Download PDF

Info

Publication number
WO2015034732A1
WO2015034732A1 PCT/US2014/053058 US2014053058W WO2015034732A1 WO 2015034732 A1 WO2015034732 A1 WO 2015034732A1 US 2014053058 W US2014053058 W US 2014053058W WO 2015034732 A1 WO2015034732 A1 WO 2015034732A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
gear
torque
rotor
transfer
Prior art date
Application number
PCT/US2014/053058
Other languages
French (fr)
Inventor
Todd A. Garcia
Original Assignee
Sikorsky Aircraft Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sikorsky Aircraft Corporation filed Critical Sikorsky Aircraft Corporation
Priority to EP14842066.4A priority Critical patent/EP3041737B1/en
Publication of WO2015034732A1 publication Critical patent/WO2015034732A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D35/00Transmitting power from power plants to propellers or rotors; Arrangements of transmissions
    • B64D35/04Transmitting power from power plants to propellers or rotors; Arrangements of transmissions characterised by the transmission driving a plurality of propellers or rotors
    • B64D35/06Transmitting power from power plants to propellers or rotors; Arrangements of transmissions characterised by the transmission driving a plurality of propellers or rotors the propellers or rotors being counter-rotating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • B64C27/10Helicopters with two or more rotors arranged coaxially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/12Rotor drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/065Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with a plurality of driving or driven shafts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19023Plural power paths to and/or from gearing
    • Y10T74/19074Single drive plural driven
    • Y10T74/19121Concentric

Definitions

  • the subject matter disclosed herein relates to the art of rotary wing aircraft and, more specifically, to gearbox systems for rotary wing aircraft.
  • a gearbox system of a rotary wing aircraft transfers power from an engine, or multiple engines, for example, a turbine engine, to the rotor system.
  • a typical system directs power from the engine to a single rotor system including a plurality of rotor blades. Since rotational velocity of the rotor is typically lower than the rotational velocity of the engine, the gearbox is used to reduce the rotational velocity of the turbine engine. Torque is subsequently increased through a series of intermediate gear stages and shafts, with an output velocity provided to the rotor system.
  • gearbox In other rotary wing aircraft with more complex rotor systems, the complexity of the gearbox typically also increases.
  • some rotary wing aircraft such as the X2® helicopter produced by Sikorsky Aircraft Corporation, have two coaxial counter rotating main rotor assemblies.
  • the gearbox must be configured to transfer engine power to both rotor assemblies at the required directions of rotation, requiring two large final reduction stages.
  • the gearbox is further utilized to transfer power to a propeller assembly, typically located at a tail of the aircraft, to provide additional forward thrust. Consequently, the typical gearbox for such an aircraft is large and heavy.
  • a gearbox system is connectable to an exterior shaft which relays a first torque with respect to the gearbox.
  • the gearbox system includes an input bevel shaft operably connectable to the exterior shaft to transfer the first torque therethrough and two gear sets operably connected to the input bevel shaft.
  • Each gear set includes a first output pinion to transfer a second torque acting in a first direction to a first gear and a second output pinion to transfer the second torque acting in a second direction opposite the first direction to a second output pinion coaxial with the first output pinion.
  • the second torque transferred by each gear set of the two gear sets is substantially equal.
  • a drive system for a dual coaxial counter rotating assembly includes an engine outputting a first torque via an input shaft and a gearbox assembly to reduce the first torque to a second torque and transfer the second torque to the dual coaxial counter rotating assembly.
  • the gearbox assembly includes an input bevel shaft operably connected to the input shaft to transfer the first torque therethrough and two gear sets operably connected to the input bevel shaft.
  • Each gear set includes a first output pinion to transfer a second torque acting in a first direction to a first rotating element of the dual coaxial counter rotating assembly and a second output pinion to transfer the second torque acting in a second direction opposite the first direction to a second rotating element of the dual coaxial counter rotating assembly.
  • the second torque transferred by each gear set of the two gear sets is substantially equal.
  • a rotary wing aircraft in yet another embodiment, includes an airframe and a rotor assembly.
  • the rotor assembly includes a first rotor rotatable about a rotor axis in a first direction and a second rotor coaxial with the first rotor and rotatable about the rotor axis in a second direction opposite the first direction.
  • a drive system includes an engine outputting a first torque and a gearbox assembly to reduce the first torque to a second torque and transfer the second torque to the rotor assembly.
  • the gearbox assembly includes an input shaft to input the first torque into the gearbox assembly, an input bevel shaft operably connected to the input shaft to transfer the first torque therethrough and two gear sets operably connected to the transfer shaft.
  • Each gear set includes a first output pinion to transfer a second torque acting in the first direction to the first rotor and a second output pinion to transfer the second torque acting in the second direction to the second rotor.
  • FIG. 1 is a schematic view of an embodiment of a rotary wing aircraft
  • FIG. 2 is a perspective view of an embodiment of a main gearbox assembly for a rotary wing aircraft
  • FIG. 3 is a perspective view of an embodiment of a gear train for a rotary wing aircraft
  • FIG. 4 is a plan view looking upward of an embodiment of a gear box assembly for a rotary wing aircraft; and [0013] FIG. 5 is another plan view of an embodiment of a gear box assembly for a rotary wing aircraft.
  • FIG. 1 Shown in FIG. 1 is schematic view of an embodiment of a rotary wing aircraft, in this embodiment a helicopter 10.
  • the helicopter 10 includes an airframe 12 with an extending tail 14.
  • a dual, counter rotating coaxial main rotor assembly 18 is located at the airframe 12 and rotates about a main rotor axis 20.
  • the main rotor assembly 18 is driven by a power source, for example, an engine 24 via a gearbox 26.
  • the main rotor assembly 18 includes an upper rotor assembly 28 driven in a first direction 30 about the main rotor axis 20, and a lower rotor assembly 32 driven in a second direction 34 about the main rotor axis 20, opposite to the first direction 30. While, in FIG.
  • the first direction 30 is illustrated as counter-clockwise and the second direction 34 is illustrated as counter clockwise, it is to be appreciated that in some embodiments the directions of rotation of the upper rotor assembly 28 and lower rotor assembly 32 may be reversed.
  • Each of the upper rotor assembly 28 and the lower rotor assembly 32 include a plurality of rotor blades 36 secured to a rotor hub 38.
  • the helicopter 10 further includes a translational thrust system 40 located at the extending tail 14 to provide translational thrust for the helicopter 10.
  • the translational thrust system 40 includes a propeller rotor 42 connected to and driven by the engine 24 via the gearbox 26. While shown in the context of a pusher-prop configuration, it is understood that the propeller rotor 42 could also be more conventional puller prop or could be variably facing so as to provide torque in addition to or instead of translational thrust.
  • FIG. 2 Shown in FIG. 2 is a perspective view of are embodiments of a main rotor assembly 18 and a gearbox 26.
  • the gearbox 26 includes an upper bull gear 44 located at the main rotor axis 20 and connected to the lower rotor assembly 32 via a lower rotor shaft 46 extending along the main rotor axis 20.
  • a lower bull gear 48 is located at the main rotor axis 20 and is connected to the upper rotor assembly 28 via an upper rotor shaft 50 extending along the main rotor axis 20, and through an interior of the lower rotor shaft 46.
  • Torque and rotational speed are provided to the gearbox 26 via input shaft 52 that transmits the torque and rotational speed from the engine 24 to an input bevel gear 54 disposed at an input bevel shaft 56 of the gearbox 26 via an input bevel pinion 104.
  • the input bevel shaft 56 rotates about an input bevel shaft axis 58 parallel to the main rotor axis 20.
  • the propeller rotor 42 is driven by a propeller output shaft 106 driven by a propeller output gear 62 disposed at a quill shaft 102, or an extension of input bevel shaft 56. Transfer from the propeller output gear 62 is achieved via connection with a propeller output pinion 60 at the propeller output shaft 106.
  • the gearbox 26 includes a torque split gear reduction stage 64. While shown with the propeller output shaft 106 driven by the propeller output gear 62, it is understood that such elements could be removed where the propeller rotor 42 is not used or is separately driven.
  • a pinion, transfer gear 66 is located at the input bevel shaft 56 and is meshed with two intermediate gear sets 68 to split the torque of the input bevel shaft 56.
  • Each intermediate gear set 68 is substantially the same, so the structure and operation of one gear set 68 will now be described with the understanding that the other gear set 68 is similarly constructed.
  • the gear set 68 includes an inner shaft 70 and an outer shaft 72, with axes 74, 76 of the inner shaft 70 and outer shaft 72, respectively, each parallel to the input bevel shaft axis 58. While shown two intermediate gear sets 68, it is understood that other numbers of intermediate gear sets 68 could be used in other aspects such as where additional engines are used, and/or additional torque splitting is required, as compared to the shown embodiment.
  • the inner shaft 70 located closest to transfer shaft 56, includes an inner spur idler 78, which is meshed with the transfer gear 66.
  • the outer shaft 72 includes an outer spur gear 80, which is meshed with the inner spur idler78.
  • a gear ratio between the inner spur idler 78 and the outer spur gear 80 is 1:1, however it is understood that the gear ratio of the inner spur idler 78 and the outer spur gear 80 could be other than 1 :1, such as where the bull gears 44, 48 are being driven at different rates or where additional gears (not shown), or ratios, are used which have a like effect to a 1:1 gear ratio.
  • gear sets 68 are described herein as having an inner spur idler 78 and an outer spur gear 80, it is to be appreciated that other embodiments may include one or more intermediate idlers (not shown) between the inner spur idler 78 and the outer spur gear 80 to achieve a desired gear reduction at the upper bull gear 44 and/or the lower bull gear 48.
  • spur idlers and pinions are described and shown herein, it is to be appreciated that other configurations including helical mesh or any other parallel axis gear mesh may be utilized.
  • clockwise and counterclockwise rotations it is understood that the specific rotational direction is not restricted so long as the opposite direction rotations occur for the shafts 56, 70, and 72.
  • the inner shaft 70 and outer shaft 72 at least partially comprise a compliant shaft member 90.
  • the complaint shaft member 90 acts like a torsional spring, and ensures that the torque split between the respective upper output pinions 82 remains a 50 -50 split, and the torque split between the respective lower output gears 84 also remains a 50-50 split. Utilizing two gear sets 68 to split the torque supplied by the transfer shaft 56 allows the upper output pinion 82 and lower output pinion84 to be smaller thus allowing for a greater reduction at the upper bull gear 44 and the lower bull gear 48.
  • upper output pinion 82 and lower output pinion 84 are identical.
  • each output pinion 82, 84 can be reduced, thus reducing weight and envelope required to house the gear sets 68. While described as transferring torque from the transfer shaft 56 to the two gear sets 68, it is understood that, in other aspects, the input bevel shaft56 could receive transferred torque from the two gear sets 68 such as might occur when the rotor assemblies 28, 32 provide the input torque as in the case of a wind or water turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gear Transmission (AREA)

Abstract

A gearbox system for a dual coaxial counter rotating rotor assembly includes an input shaft to input a first torque into the gearbox system and a transfer shaft operably connected to the input shaft to transfer the first torque therethrough. Two gear sets are operably connected to the transfer shaft. Each gear set includes a first output gear to transfer a second torque acting in a first direction to a first rotor of a rotor assembly and a second output gear to transfer the second torque acting in a second direction opposite the first direction to a second rotor of the rotor assembly. The second torque transferred by each gear set of the two gear sets is substantially equal.

Description

TORQUE SPLIT GEARBOX FOR ROTARY WING AIRCRAFT
BACKGROUND
[0001] The subject matter disclosed herein relates to the art of rotary wing aircraft and, more specifically, to gearbox systems for rotary wing aircraft.
[0002] A gearbox system of a rotary wing aircraft transfers power from an engine, or multiple engines, for example, a turbine engine, to the rotor system. A typical system directs power from the engine to a single rotor system including a plurality of rotor blades. Since rotational velocity of the rotor is typically lower than the rotational velocity of the engine, the gearbox is used to reduce the rotational velocity of the turbine engine. Torque is subsequently increased through a series of intermediate gear stages and shafts, with an output velocity provided to the rotor system.
[0003] In other rotary wing aircraft with more complex rotor systems, the complexity of the gearbox typically also increases. For example, some rotary wing aircraft, such as the X2® helicopter produced by Sikorsky Aircraft Corporation, have two coaxial counter rotating main rotor assemblies. As such, the gearbox must be configured to transfer engine power to both rotor assemblies at the required directions of rotation, requiring two large final reduction stages. Further in X2® - type aircraft, the gearbox is further utilized to transfer power to a propeller assembly, typically located at a tail of the aircraft, to provide additional forward thrust. Consequently, the typical gearbox for such an aircraft is large and heavy.
BRIEF DESCRIPTION
[0004] In one embodiment, a gearbox system is connectable to an exterior shaft which relays a first torque with respect to the gearbox. The gearbox system includes an input bevel shaft operably connectable to the exterior shaft to transfer the first torque therethrough and two gear sets operably connected to the input bevel shaft. Each gear set includes a first output pinion to transfer a second torque acting in a first direction to a first gear and a second output pinion to transfer the second torque acting in a second direction opposite the first direction to a second output pinion coaxial with the first output pinion. The second torque transferred by each gear set of the two gear sets is substantially equal.
[0005] In another embodiment, a drive system for a dual coaxial counter rotating assembly includes an engine outputting a first torque via an input shaft and a gearbox assembly to reduce the first torque to a second torque and transfer the second torque to the dual coaxial counter rotating assembly. The gearbox assembly includes an input bevel shaft operably connected to the input shaft to transfer the first torque therethrough and two gear sets operably connected to the input bevel shaft. Each gear set includes a first output pinion to transfer a second torque acting in a first direction to a first rotating element of the dual coaxial counter rotating assembly and a second output pinion to transfer the second torque acting in a second direction opposite the first direction to a second rotating element of the dual coaxial counter rotating assembly. The second torque transferred by each gear set of the two gear sets is substantially equal.
[0006] In yet another embodiment, a rotary wing aircraft includes an airframe and a rotor assembly. The rotor assembly includes a first rotor rotatable about a rotor axis in a first direction and a second rotor coaxial with the first rotor and rotatable about the rotor axis in a second direction opposite the first direction. A drive system includes an engine outputting a first torque and a gearbox assembly to reduce the first torque to a second torque and transfer the second torque to the rotor assembly. The gearbox assembly includes an input shaft to input the first torque into the gearbox assembly, an input bevel shaft operably connected to the input shaft to transfer the first torque therethrough and two gear sets operably connected to the transfer shaft. Each gear set includes a first output pinion to transfer a second torque acting in the first direction to the first rotor and a second output pinion to transfer the second torque acting in the second direction to the second rotor.
[0007] These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0008] The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
[0009] FIG. 1 is a schematic view of an embodiment of a rotary wing aircraft;
[0010] FIG. 2 is a perspective view of an embodiment of a main gearbox assembly for a rotary wing aircraft;
[0011] FIG. 3 is a perspective view of an embodiment of a gear train for a rotary wing aircraft;
[0012] FIG. 4 is a plan view looking upward of an embodiment of a gear box assembly for a rotary wing aircraft; and [0013] FIG. 5 is another plan view of an embodiment of a gear box assembly for a rotary wing aircraft.
[0014] The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
DETAILED DESCRIPTION
[0015] Shown in FIG. 1 is schematic view of an embodiment of a rotary wing aircraft, in this embodiment a helicopter 10. The helicopter 10 includes an airframe 12 with an extending tail 14. A dual, counter rotating coaxial main rotor assembly 18 is located at the airframe 12 and rotates about a main rotor axis 20. The main rotor assembly 18 is driven by a power source, for example, an engine 24 via a gearbox 26. The main rotor assembly 18 includes an upper rotor assembly 28 driven in a first direction 30 about the main rotor axis 20, and a lower rotor assembly 32 driven in a second direction 34 about the main rotor axis 20, opposite to the first direction 30. While, in FIG. 1, the first direction 30 is illustrated as counter-clockwise and the second direction 34 is illustrated as counter clockwise, it is to be appreciated that in some embodiments the directions of rotation of the upper rotor assembly 28 and lower rotor assembly 32 may be reversed. Each of the upper rotor assembly 28 and the lower rotor assembly 32 include a plurality of rotor blades 36 secured to a rotor hub 38. In some embodiments, the helicopter 10 further includes a translational thrust system 40 located at the extending tail 14 to provide translational thrust for the helicopter 10. The translational thrust system 40 includes a propeller rotor 42 connected to and driven by the engine 24 via the gearbox 26. While shown in the context of a pusher-prop configuration, it is understood that the propeller rotor 42 could also be more conventional puller prop or could be variably facing so as to provide torque in addition to or instead of translational thrust.
[0016] Shown in FIG. 2 is a perspective view of are embodiments of a main rotor assembly 18 and a gearbox 26. The gearbox 26 includes an upper bull gear 44 located at the main rotor axis 20 and connected to the lower rotor assembly 32 via a lower rotor shaft 46 extending along the main rotor axis 20. A lower bull gear 48 is located at the main rotor axis 20 and is connected to the upper rotor assembly 28 via an upper rotor shaft 50 extending along the main rotor axis 20, and through an interior of the lower rotor shaft 46. Torque and rotational speed are provided to the gearbox 26 via input shaft 52 that transmits the torque and rotational speed from the engine 24 to an input bevel gear 54 disposed at an input bevel shaft 56 of the gearbox 26 via an input bevel pinion 104. In some embodiments, the input bevel shaft 56 rotates about an input bevel shaft axis 58 parallel to the main rotor axis 20. The propeller rotor 42 is driven by a propeller output shaft 106 driven by a propeller output gear 62 disposed at a quill shaft 102, or an extension of input bevel shaft 56. Transfer from the propeller output gear 62 is achieved via connection with a propeller output pinion 60 at the propeller output shaft 106. To transfer torque from the input bevel shaft 56 to the lower rotor assembly 32 and the upper rotor assembly 30, the gearbox 26 includes a torque split gear reduction stage 64. While shown with the propeller output shaft 106 driven by the propeller output gear 62, it is understood that such elements could be removed where the propeller rotor 42 is not used or is separately driven.
[0017] Referring to FIGs. 3 and 4, the torque split gear reduction stage 64 will now be described in greater detail. A pinion, transfer gear 66 is located at the input bevel shaft 56 and is meshed with two intermediate gear sets 68 to split the torque of the input bevel shaft 56. Each intermediate gear set 68 is substantially the same, so the structure and operation of one gear set 68 will now be described with the understanding that the other gear set 68 is similarly constructed. The gear set 68 includes an inner shaft 70 and an outer shaft 72, with axes 74, 76 of the inner shaft 70 and outer shaft 72, respectively, each parallel to the input bevel shaft axis 58. While shown two intermediate gear sets 68, it is understood that other numbers of intermediate gear sets 68 could be used in other aspects such as where additional engines are used, and/or additional torque splitting is required, as compared to the shown embodiment.
[0018] Referring to FIG. 4, the inner shaft 70, located closest to transfer shaft 56, includes an inner spur idler 78, which is meshed with the transfer gear 66. Likewise, the outer shaft 72 includes an outer spur gear 80, which is meshed with the inner spur idler78. In some embodiments, a gear ratio between the inner spur idler 78 and the outer spur gear 80 is 1:1, however it is understood that the gear ratio of the inner spur idler 78 and the outer spur gear 80 could be other than 1 :1, such as where the bull gears 44, 48 are being driven at different rates or where additional gears (not shown), or ratios, are used which have a like effect to a 1:1 gear ratio.
[0019] As shown in FIG. 4, in this view looking upward, counterclockwise rotation of the input bevel gear 54 urges clockwise rotation of the inner shaft 70 and clockwise rotation of the outer shaft 72. Referring again to FIG. 3, torque is transmitted from the gear set 68 to the upper bull gear 44 via an upper output pinion 82 at the inner shaft 70, thus urging clockwise rotation of the upper bull gear 44 and the lower rotor assembly 32. A lower output pinion 84 at the outer shaft 72 transfers torque from the gear set 68 to the lower bull gear 48. While the gear sets 68 are described herein as having an inner spur idler 78 and an outer spur gear 80, it is to be appreciated that other embodiments may include one or more intermediate idlers (not shown) between the inner spur idler 78 and the outer spur gear 80 to achieve a desired gear reduction at the upper bull gear 44 and/or the lower bull gear 48. Further, while spur idlers and pinions are described and shown herein, it is to be appreciated that other configurations including helical mesh or any other parallel axis gear mesh may be utilized. Lastly, while described in terms of clockwise and counterclockwise rotations, it is understood that the specific rotational direction is not restricted so long as the opposite direction rotations occur for the shafts 56, 70, and 72.
[0020] Referring to FIG. 5, in some embodiments, the inner shaft 70 and outer shaft 72 at least partially comprise a compliant shaft member 90. The complaint shaft member 90 acts like a torsional spring, and ensures that the torque split between the respective upper output pinions 82 remains a 50 -50 split, and the torque split between the respective lower output gears 84 also remains a 50-50 split. Utilizing two gear sets 68 to split the torque supplied by the transfer shaft 56 allows the upper output pinion 82 and lower output pinion84 to be smaller thus allowing for a greater reduction at the upper bull gear 44 and the lower bull gear 48. In some embodiments, upper output pinion 82 and lower output pinion 84 are identical. Further, because the torque is split between the two gear sets 68, the face width, or thickness of each output pinion 82, 84 can be reduced, thus reducing weight and envelope required to house the gear sets 68. While described as transferring torque from the transfer shaft 56 to the two gear sets 68, it is understood that, in other aspects, the input bevel shaft56 could receive transferred torque from the two gear sets 68 such as might occur when the rotor assemblies 28, 32 provide the input torque as in the case of a wind or water turbine.
[0021] While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. For instance, aspects can be used with propeller assemblies, turbines, and/or fans where blade pitch control and compactness of design may be useful. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.

Claims

CLAIMS: What is claimed is:
1. A gearbox system connectable to an exterior shaft which relays a first torque with respect to the gearbox , the gearbox system comprising:
an input bevel shaft operably connectable to the exterior shaft to transfer the first torque therethrough; and
two gear sets operably connected to the input bevel shaft, each gear set including: a first output pinion to transfer a second torque acting in a first direction to a first gear; and
a second output pinion to transfer the second torque acting in a second direction opposite the first direction to a second output pinion coaxial with the first output pinion;
wherein the second torque transferred by each gear set of the two gear sets is substantially equal.
2. The gearbox system of Claim 1, wherein the first output pinion and the second output pinion have axes of revolution parallel to an input bevel shaft axis.
3. The gearbox system of Claim 1, wherein each gear set further includes:
a first intermediate idler operably connected to the input bevel shaft, the first intermediate idler and the first output pinion disposed at a first intermediate shaft; and a first intermediate gear meshed with the first intermediate idler, the first intermediate gear and the second output pinion disposed at a second intermediate shaft.
4. The gearbox system of Claim 3, wherein the first intermediate shaft and the second intermediate shaft at least partially comprise a compliant member which ensures a substantially equal torque split between the first and second output pinions.
5. The gearbox system of Claim 3, wherein the first intermediate idler is meshed with a transfer gear disposed at the input bevel shaft.
6. The gearbox system of Claim 1, further comprising a propeller output gear disposed at the input bevel shaft to drive a propeller output shaft.
7. A drive system for a dual coaxial counter rotating assembly, the drive system comprising:
an engine outputting a first torque via an input shaft; a gearbox assembly to reduce the first torque to a second torque and transfer the second torque to the dual coaxial counter rotating assembly, the gearbox assembly including:
an input bevel shaft operably connected to the input shaft to transfer the first torque therethrough; and
two gear sets operably connected to the input bevel shaft, each gear set including:
a first output pinion to transfer a second torque acting in a first direction to a first rotating element of the dual coaxial counter rotating assembly; and
a second output pinion to transfer the second torque acting in a second direction opposite the first direction to a second rotating element of the dual coaxial counter rotating assembly;
wherein the second torque transferred by each gear set of the two gear sets is substantially equal.
8. The drive system of Claim 7, wherein the first output pinion and the second output pinion have axes of revolution parallel to an input bevel shaft axis.
9. The drive system of Claim 7, wherein each gear set further includes:
a first intermediate idler operably connected to the input bevel shaft, the first intermediate idler and the first output pinion disposed at a first intermediate shaft; and a first intermediate gear meshed with the first intermediate idler, the first intermediate gear and the second output gear disposed at a second intermediate shaft.
10. The drive system of Claim 9, wherein the first intermediate shaft and the second intermediate shaft at least partially comprise a compliant member which ensures a substantially equal torque split between the first and second output pinions.
11. The drive system of Claim 9, wherein the first intermediate idler is meshed with a transfer gear disposed at the input bevel shaft.
12. The drive system of Claim 7, further comprising a propeller output gear disposed at the input bevel shaft to drive a propeller output shaft.
13. A rotary wing aircraft comprising:
an airframe;
a rotor assembly including:
a first rotor rotatable about a rotor axis in a first direction; and a second rotor coaxial with the first rotor and rotatable about the rotor axis in a second direction opposite the first direction; and
a drive system including: an engine outputting a first torque;
a gearbox assembly to reduce the first torque to a second torque and transfer the second torque to the rotor assembly, the gearbox assembly including:
an input shaft to input the first torque into the gearbox assembly;
an input bevel shaft operably connected to the input shaft to transfer the first torque therethrough; and
two gear sets operably connected to the transfer shaft, each gear set including:
a first output pinion to transfer a second torque acting in the first direction to the first rotor; and
a second output pinion to transfer the second torque acting in the second direction to the second rotor.
14. The aircraft of Claim 13, wherein the first output pinion and the second output pinion have axes of revolution parallel to an input bevel shaft axis.
15. The aircraft of Claim 13, wherein each gear set further includes:
a first intermediate idler operably connected to the input bevel shaft, the first intermediate idler and the first output gear disposed at a first intermediate shaft; and a first intermediate gear meshed with the first intermediate idler, the first intermediate gear and the second output gear disposed at a second intermediate shaft.
16. The aircraft of Claim 13, wherein the first intermediate idler is meshed with a transfer gear disposed at the input bevel shaft.
17. The aircraft of Claim 13, wherein the rotor assembly further comprises:
a first bull gear operably connected to the first rotor via a first rotor shaft; and a second bull gear operably connected to the second rotor via a second rotor shaft coaxial with the first rotor shaft.
18. The aircraft of Claim 17, wherein the first output pinion is meshed with the first bull gear and the second output pinion is meshed with the second bull gear.
19. The aircraft of Claim 17, wherein the second rotor shaft is disposed inside of the first rotor shaft.
20. The aircraft of Claim 13, further comprising a propeller assembly including: a propeller output gear disposed at the input bevel shaft to drive a propeller output shaft; and
a propeller operably connected to the propeller output shaft to provide translational thrust for the aircraft.
PCT/US2014/053058 2013-09-04 2014-08-28 Torque split gearbox for rotary wing aircraft WO2015034732A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14842066.4A EP3041737B1 (en) 2013-09-04 2014-08-28 Rotary wing aircraft with a torque split gearbox

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/017,674 2013-09-04
US14/017,674 US9278760B2 (en) 2013-09-04 2013-09-04 Torque split gearbox for rotary wing aircraft

Publications (1)

Publication Number Publication Date
WO2015034732A1 true WO2015034732A1 (en) 2015-03-12

Family

ID=52581767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/053058 WO2015034732A1 (en) 2013-09-04 2014-08-28 Torque split gearbox for rotary wing aircraft

Country Status (3)

Country Link
US (2) US9278760B2 (en)
EP (1) EP3041737B1 (en)
WO (1) WO2015034732A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3047786A1 (en) * 2016-02-16 2017-08-18 Hispano - Suiza INVERSION SPEED REDUCER OF DIRECTION OF ROTATION INPUT / OUTPUT
US11702197B2 (en) 2020-03-19 2023-07-18 Lockheed Martin Corporation Coaxial split torque gearbox with sequential load distribution

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016057255A1 (en) * 2014-09-29 2016-04-14 Sikorsky Aircraft Corporation Integrated main rotor hub and shaft
WO2016053408A1 (en) 2014-10-01 2016-04-07 Sikorsky Aircraft Corporation Acoustic signature variation of aircraft utilizing a clutch
WO2017069830A2 (en) * 2015-08-04 2017-04-27 Sikorsky Aircraft Corporation Coaxial split torque gear box
CN105947207B (en) * 2016-04-29 2018-10-12 易瓦特科技股份公司 Unmanned plane with coaxial double-oar structure
RU2662382C1 (en) * 2017-06-19 2018-07-25 Акционерное общество "Московский вертолетный завод им. М.Л. Миля" Multi-threaded main reducer of the helicopter (options)
CN107900675B (en) * 2017-11-01 2019-07-12 中国航发南方工业有限公司 A kind of aeroengine rotor assembly method
US10831193B2 (en) * 2017-11-14 2020-11-10 Sikorsky Aircraft Corporation Enhanced taxi control for rigid rotors
US10648551B2 (en) 2017-12-05 2020-05-12 Bell Helicopter Textron Inc. Gearbox split torque equalization system
FR3085349B1 (en) * 2018-09-03 2021-04-09 Safran Trans Systems MAIN TRANSMISSION BOX FOR CONTRAROTARY HELICOPTER
FR3085348B1 (en) * 2018-09-03 2021-04-09 Safran Trans Systems MAIN TRANSMISSION BOX FOR CONTRAROTARY HELICOPTER
CN110015436A (en) * 2019-04-07 2019-07-16 罗灿 Contrarotation circumferential direction propeller
CN110844113B (en) * 2019-10-12 2022-06-03 中国直升机设计研究所 Rigid coaxial dual-rotor test bed capable of simultaneously measuring upper rotor load and lower rotor load
CN111301669A (en) * 2020-03-19 2020-06-19 常州华创航空科技有限公司 Double-input coaxial double-rotor main speed reducer and aircraft
CN111301670B (en) * 2020-03-19 2023-06-16 常州华创航空科技有限公司 Main reducer of coaxial double-rotor helicopter and helicopter
CN112141326A (en) * 2020-08-21 2020-12-29 中电科芜湖钻石飞机制造有限公司 Coaxial double-oar flying device
FR3116511B1 (en) * 2020-11-25 2024-07-12 Safran Propulsion assembly comprising two counter-rotating propellers
CN113483059A (en) * 2021-07-07 2021-10-08 重庆大学 Torque-dividing transmission speed reducing device for coaxial helicopter
WO2023164862A1 (en) * 2022-03-03 2023-09-07 罗灿 Dual-propeller universal transmission device
CN115123519B (en) * 2022-08-30 2022-11-22 沃飞长空科技(成都)有限公司 Variable-pitch rotor wing device and aircraft
CN116588329A (en) * 2023-06-28 2023-08-15 浙江都尔特轮车业有限公司 Purely-driven multi-paddle power glider

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3824875A (en) 1973-05-21 1974-07-23 Egan Machinery Co Drive for twin screw extruder
US4489625A (en) * 1982-11-23 1984-12-25 Transmission Research, Inc. Split torque transmission
US20060266883A1 (en) 2005-05-31 2006-11-30 Sikorsky Aircraft Corporation Split torque gearbox for rotary wing aircraft with translational thrust system
US20090084891A1 (en) 2005-05-26 2009-04-02 Darrow Jr David A De-rotation system suitable for use with a shaft fairing system
US20110194935A1 (en) 2010-02-05 2011-08-11 Sikorsky Aircraft Corporation Counter rotating facegear gearbox
US8397603B2 (en) 2003-07-16 2013-03-19 Sikorsky Aircraft Corporation Split-torque gear box

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2823558A (en) * 1955-03-04 1958-02-18 Westinghouse Electric Corp Gearing apparatus
US4682510A (en) * 1984-04-11 1987-07-28 Bausano & Figli S.P.A. High torque drive means for two closely spaced shafts which are also subjected to strong axial thrusts and application thereof to a double screw extruder
FR2620106B1 (en) * 1987-09-07 1991-05-17 Bourquardez Gaston LIGHT HELICOPTER WITH 2 CONTRAROTATIVE ROTORS
US5113713A (en) * 1991-02-11 1992-05-19 United Technologies Corporation Elastomeric load sharing device
US5813292A (en) 1995-12-15 1998-09-29 Sikorsky Aircraft Corporation Method for fabricating a split path transmission system providing equal torque splitting between the split load paths of each gear train thereof at a predefined operating point
US5802918A (en) 1996-10-16 1998-09-08 Mcdonnell Douglas Helicopter Co. Concentric face gear transmission assembly
US6467726B1 (en) * 1999-06-29 2002-10-22 Rokuro Hosoda Aircraft and torque transmission
IT1310132B1 (en) * 1999-07-20 2002-02-11 Fiatavio Spa PROPULSION GROUP FOR PROPELLER VEHICLES.
US7100468B2 (en) * 2003-12-18 2006-09-05 Sikorsky Aircraft Corporation Split torque gearbox
US7434764B2 (en) * 2005-12-02 2008-10-14 Sikorsky Aircraft Corporation Variable speed gearbox with an independently variable speed tail rotor system for a rotary wing aircraft
US7918146B2 (en) * 2006-04-04 2011-04-05 Sikorsky Aircraft Corporation Multi-path rotary wing aircraft gearbox
DE06851758T1 (en) 2006-11-14 2009-12-03 Bell Helicopter Textron, Inc., Fort Worth TRANSMISSION WITH SEVERAL DRIVES AND WITH TORQUE DISTRIBUTION DIFFERENTIAL MECHANISM
US9097317B2 (en) * 2010-02-12 2015-08-04 The Timken Company Epicyclical gear transmission with improved load carrying capability

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3824875A (en) 1973-05-21 1974-07-23 Egan Machinery Co Drive for twin screw extruder
US4489625A (en) * 1982-11-23 1984-12-25 Transmission Research, Inc. Split torque transmission
US8397603B2 (en) 2003-07-16 2013-03-19 Sikorsky Aircraft Corporation Split-torque gear box
US20090084891A1 (en) 2005-05-26 2009-04-02 Darrow Jr David A De-rotation system suitable for use with a shaft fairing system
US20060266883A1 (en) 2005-05-31 2006-11-30 Sikorsky Aircraft Corporation Split torque gearbox for rotary wing aircraft with translational thrust system
US20110194935A1 (en) 2010-02-05 2011-08-11 Sikorsky Aircraft Corporation Counter rotating facegear gearbox

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3041737A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3047786A1 (en) * 2016-02-16 2017-08-18 Hispano - Suiza INVERSION SPEED REDUCER OF DIRECTION OF ROTATION INPUT / OUTPUT
WO2017140981A1 (en) 2016-02-16 2017-08-24 Safran Transmission Systems Reduction gear with input/output rotation reversal
CN108698689A (en) * 2016-02-16 2018-10-23 赛峰传动系统公司 Deceleration device with input/output rotation commutation
US10816060B2 (en) 2016-02-16 2020-10-27 Safran Transmission Systems Reduction gear with input/output rotation reversal
CN108698689B (en) * 2016-02-16 2021-06-22 赛峰传动系统公司 Reduction gear with input/output rotation commutation
US11702197B2 (en) 2020-03-19 2023-07-18 Lockheed Martin Corporation Coaxial split torque gearbox with sequential load distribution

Also Published As

Publication number Publication date
US20160152342A1 (en) 2016-06-02
EP3041737A1 (en) 2016-07-13
US20150060596A1 (en) 2015-03-05
US9278760B2 (en) 2016-03-08
US9637242B2 (en) 2017-05-02
EP3041737B1 (en) 2019-06-26
EP3041737A4 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
US9637242B2 (en) Torque split gearbox for rotary wing aircraft
EP2357131B1 (en) Counter rotating facegear gearbox
US20050011307A1 (en) Split-torque gear box
US10053212B2 (en) Transmission for coaxial multi-rotor system
CA2609921A1 (en) Split torque gearbox for rotary wing aircraft with translational thrust system
EP3038906B1 (en) Light weight propulsor gearbox
EP3040548B1 (en) Aircraft with counter-rotating turbofan engines
US10047827B2 (en) Low-profile, rotating-shaft transmission device, and associated method
CA2954108C (en) Planetary gear assembly
US11498670B2 (en) Coaxial split torque gear box
US10618642B2 (en) Power transmission system and an aircraft having a rotary wing
EP3882138B1 (en) Coaxial split torque gearbox with sequential load distribution
KR20130124233A (en) Single-stage large-ratio reducer gearbox for aero engine
US7100468B2 (en) Split torque gearbox
US10184545B2 (en) Power drive unit with dual gear ratio mechanism
US20180283499A1 (en) Rotorcraft internal transfer member transmission
CA3141393A1 (en) Thin wing multi slice rga on leading edge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014842066

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014842066

Country of ref document: EP