WO2015034097A1 - Film formation mask, film formation device, film formation method, and touch panel substrate - Google Patents

Film formation mask, film formation device, film formation method, and touch panel substrate Download PDF

Info

Publication number
WO2015034097A1
WO2015034097A1 PCT/JP2014/073761 JP2014073761W WO2015034097A1 WO 2015034097 A1 WO2015034097 A1 WO 2015034097A1 JP 2014073761 W JP2014073761 W JP 2014073761W WO 2015034097 A1 WO2015034097 A1 WO 2015034097A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
film
substrate
opening
film forming
Prior art date
Application number
PCT/JP2014/073761
Other languages
French (fr)
Japanese (ja)
Inventor
重人 杉本
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Priority to CN201480049663.0A priority Critical patent/CN105531394B/en
Priority to KR1020167002711A priority patent/KR20160055126A/en
Publication of WO2015034097A1 publication Critical patent/WO2015034097A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a film formation mask, and in particular, film formation capable of improving the positional accuracy of a thin film pattern by suppressing the influence of mask deformation caused by a difference in linear expansion coefficient between the mask material and the thin film material by an inexpensive method.
  • the present invention relates to a mask, a film forming apparatus, a film forming method, and a touch panel substrate.
  • the conventional film-forming mask uses a film-forming mask that uses a flexible adhesive film made of a flexible film made of a flexible film that covers a portion that should be a non-deposition area and adheres closely to the substrate surface.
  • a film forming process in which the adhesive film is adhered to the entire surface of the base material on the film forming side, and then the flexible adhesive film covering a region where a desired deposited layer is to be formed is selectively removed and then the deposited layer is formed. Finally, the flexible adhesive film left on the substrate surface was removed (see, for example, Patent Document 1).
  • the mask material is a flexible resin film such as polyimide
  • a line between the film and a thin film material deposited on the film, for example, a transparent conductive film is used.
  • deformation of the film such as wrinkles and warpage occurred due to the difference in the expansion coefficient, and the position accuracy of the thin film pattern to be formed deteriorated.
  • a thin plate made of a magnetic metal material such as Invar or Invar alloy provided with a through-hole having a size including an opening pattern formed in a resin film is closely integrated with the film, and the back surface of the substrate. It is conceivable to form a film by attracting the magnetic thin plate with a magnet placed on the substrate and bringing the film into close contact with the film formation surface of the substrate. appear. Therefore, if the opening pattern is laser processed on the film after the film and the magnetic thin plate are fixed to the frame, the internal stress may be partially released and the opening pattern may be displaced. Therefore, it is difficult to improve the positional accuracy of the thin film pattern formed on the substrate.
  • the magnetic thin plate is deformed into a convex shape, so that a part of the film is lifted from the film-forming surface of the substrate.
  • the position of the opening pattern is shifted, and the thin film material is formed from the edge of the opening pattern to the gap between the film and the substrate, so that the edge of the thin film pattern is blurred. Therefore, in this case as well, it is difficult to improve the positional accuracy of the thin film pattern formed on the substrate.
  • the magnetic force acting on the magnetic thin plate is reduced due to the deformation of the magnetic thin plate, so that the position of the film forming mask may be shifted. This also improves the positional accuracy of the thin film pattern formed on the substrate. Have difficulty.
  • An object of the present invention is to provide a film formation mask, a film formation apparatus, a film formation method, and a touch panel substrate.
  • a film formation mask includes a first mask in which a plurality of first opening patterns having the same shape and dimension as a thin film pattern formed on a substrate are formed, and the plurality of first masks.
  • a second opening pattern having a size including at least one of the opening patterns is formed, and is placed on the first mask so as to be in an unconstrained state with respect to the first mask.
  • a second mask to be configured.
  • a film forming apparatus includes a first mask in which a plurality of first opening patterns having the same shape and dimensions as a thin film pattern formed on a substrate are formed in a vacuum chamber, and the plurality of first masks. And a second mask formed with a second opening pattern of a size that includes at least one of the opening patterns, and the first mask of the film formation mask provided in an unconstrained state therebetween.
  • the film forming method according to the present invention includes a first mask in which a plurality of first opening patterns having the same shape and dimensions as a thin film pattern formed on a substrate are formed, and the plurality of first opening patterns.
  • a third step of peeling the second mask from the first mask is performed.
  • substrate by this invention forms the electrode which consists of a transparent conductive film on the transparent glass substrate using the said film-forming method.
  • the deposition mask has a structure in which the second mask is overlaid on the first mask so as to be in an unrestrained state with respect to the first mask, and the first mask side is formed on the substrate. Since it is used in close contact with the film surface, the thin film material deposited on the mask is mainly on the second mask. Therefore, it is mainly the second mask that is deformed due to the difference in linear expansion coefficient between the mask material and the thin film material deposited thereon, and the deformation of the first mask that is the main mask is suppressed. be able to. Therefore, the positional accuracy of the thin film pattern to be formed can be improved.
  • the second mask can be peeled off and replaced with another second mask.
  • the formation accuracy of the second opening pattern of the second mask may be coarser than the formation accuracy of the first opening pattern of the first mask, the manufacturing cost of the second mask is low. Therefore, it is possible to suppress the influence on the positional deviation of the opening pattern due to the deformation of the mask by an inexpensive method, and to improve the positional accuracy of the thin film pattern to be formed.
  • FIG. 1A and 1B are diagrams showing an embodiment of a film formation mask according to the present invention, in which FIG. 1A is a plan view and FIG. It is a schematic block diagram which shows one Embodiment of the film-forming apparatus which uses the said film-forming mask. It is a follow chart explaining the film-forming method performed using the said film-forming apparatus. It is a top view which shows one structural example of the touchscreen board
  • FIG. 1A and 1B are diagrams showing an embodiment of a film forming mask according to the present invention, in which FIG. 1A is a plan view and FIG.
  • the film formation mask 1 is used for forming a film on a substrate through an opening pattern, and includes a first mask 2 and a second mask 3.
  • the first mask 2 is formed on the substrate through the first opening pattern 4 to form a thin film pattern.
  • the first mask 2 serves as a main mask, and is made of a resin film 5 and a metal.
  • the thin film 6 and the metal frame 7 are provided.
  • the 1st mask 2 may be comprised only with the film 5, in this embodiment, the case where the metal frame 7 is attached is demonstrated.
  • the film 5 is formed by forming a plurality of first opening patterns 4 penetrating in the same shape and dimensions as the thin film pattern corresponding to the plurality of thin film patterns formed on the substrate.
  • a resin film that transmits visible light such as polyimide or polyethylene terephthalate (PET) having a thickness of about 10 ⁇ m to 30 ⁇ m.
  • PET polyethylene terephthalate
  • polyimide having a linear expansion coefficient of approximately 3 ⁇ 10 ⁇ 6 to 5 ⁇ 10 ⁇ 6 / ° C., which approximates the linear expansion coefficient of glass as a film formation substrate will be described.
  • the film 5 is provided with an opening 8 that penetrates separately from the first opening pattern 4.
  • the opening 8 is for measuring a gap generated between the film 5 of the first mask 2 and a second mask 3 described later to estimate the deformation amount of the second mask 3.
  • the position of the surface 3a on the substrate side of the second mask 3 is measured through the opening 8 by the first sensor provided on the side opposite to the film forming surface of the transparent glass substrate, and the first sensor
  • the position of the surface 5a on the substrate side of the film 5 of the first mask 2 is measured by a second sensor provided adjacent to the first sensor, and the film 5 of the first mask 2 is measured based on both measured values.
  • a gap between the second mask 3 and the second mask 3 can be calculated.
  • a plurality of openings 8 may be formed in the film 5, and a plurality of sets of sensors each including a first sensor and a second sensor may be provided corresponding to each opening 8.
  • the gap between the film 5 of the first mask 2 and the second mask 3 is measured in a wide range, and the deformation amount of the second mask 3 is estimated more accurately by the maximum value or the average value. Can do.
  • a metal thin film 6 composed of a plurality of isolated patterns extends along the peripheral edge of the film 5 in the outer region of the effective region where the plurality of first opening patterns 4 are formed. Is provided.
  • This metal thin film 6 is spot welded to one end surface 7a of a metal frame 7 described later, and is used for fixing the film 5 to the metal frame 7, and is formed by plating, for example. Alternatively, it may be formed by sputtering or vapor deposition using a metal mask. After a metal thin film is formed on the entire surface 5a of the film 5, a pattern of a plurality of isolated metal thin films 6 is formed by etching. Also good.
  • a frame-shaped metal frame 7 having a size is provided.
  • the metal frame 7 supports the film 5 by spot welding the portion of the metal thin film 6 of the film 5 to the one end surface 7a in a state where the film 5 is stretched.
  • the thickness of the metal frame 7 is about 30 mm to 50 mm.
  • it is made of a magnetic metal material such as an Invar alloy.
  • the second mask 3 is installed so as to be peelable without being restrained in the horizontal direction with respect to the first mask 2.
  • the second mask 3 is used for preventing the thin film material from being deposited on the film 5 of the first mask 2 and the deformation of the film 5 based on the difference in linear expansion coefficient between the film 5 and the thin film material.
  • FIG. 2 is a schematic configuration diagram showing an embodiment of the film forming apparatus.
  • This film forming apparatus is for forming a plurality of thin film patterns on a substrate 11 using the film forming mask 1. For example, sputtering is performed by generating plasma between a target 12 and a substrate 11. Device.
  • the film forming apparatus is an RF sputtering apparatus.
  • the RF sputtering apparatus includes a target holder 14, a substrate holder 15, a shutter 16, a mask holder 17, and a mask loading mechanism 18 in a vacuum chamber 13.
  • the target holder 14 holds a target 12 obtained by shaping a film forming material into a plate shape.
  • the target holder 14 is electrically connected to a high-frequency power source 19 provided outside via a bypass capacitor 20 and has a high-frequency voltage of 13.56 MHz. Can be applied to form a cathode electrode.
  • a substrate holder 15 is provided below the target holder 14.
  • the substrate holder 15 holds a glass substrate 11 as a film formation substrate so as to face the target 12, and is grounded and serves as an anode electrode.
  • the substrate sensor 15 incorporates a first sensor 21 corresponding to the opening 8 of the first mask 2 of the film formation mask 1 held by the mask holder 17 described later.
  • a second sensor 22 is incorporated adjacent to (see FIG. 5).
  • the first sensor 21 is for measuring the relative position in the height direction of the surface 3 a of the second mask 3 on the substrate 11 side through the opening 8 of the first mask 2, and the second sensor 22. Is for measuring the relative position in the height direction of the surface 5a of the film 5 of the first mask 2 on the substrate 11 side, and includes both a light-emitting part and a light-receiving part, for example. It is a displacement sensor of a triangulation system that converts an imaging position into a distance.
  • a shutter 16 is provided between the target holder 14 and the substrate holder 15 so as to be able to advance and retreat.
  • This shutter 16 is for moving in the directions of arrows A and B in FIG. 2 to open and close the passage of the sputtered particles, and during the sputtering performed by generating plasma between the substrate 11 and the target 12, the arrow A
  • the film thickness of the thin film to be deposited can be controlled by controlling the time from moving in the direction to open the sputtered particle passage to moving in the arrow B direction to close the sputtered particle passage. ing.
  • a mask holder 17 is provided between the substrate holder 15 and the shutter 16.
  • the mask holder 17 holds the film formation mask 1 such that the first mask 2 side is on the substrate holder 15 side.
  • the mask holder 17 holds the edge of the film formation mask 1 with the first mask 2.
  • the second mask 3 is integrally held.
  • a mask loading mechanism 18 is provided so that the mask holder 17 can be driven.
  • the mask loading mechanism 18 moves the mask holder 17 forward and backward between, for example, the substrate holder 15 and the shutter 16 and further moves it up and down.
  • the mask loading mechanism 18 moves the film 5 of the first mask 2 to the substrate holder when the mask holder 17 is lowered. 15 can be brought into close contact with the film forming surface of the substrate 11 held by the substrate 15.
  • reference numeral 23 is an exhaust port for exhausting the gas in the vacuum chamber 13
  • reference numeral 24 is a gas introduction port for introducing an inert gas into the vacuum chamber 13.
  • Reference numeral 25 denotes a shield member for preventing the anode ions from colliding with, for example, a portion of the target holder 14 other than the portion of the target 12 facing the substrate 11, and corresponds to the central region of the target 12.
  • An opening 26 is provided.
  • the film forming apparatus is an in-line film forming apparatus provided with a front chamber that is partitioned by a gate valve and can be evacuated next to a vacuum chamber 13 as a film forming chamber.
  • a target 12 of indium tin oxide hereinafter referred to as “ITO (Indium Tin Oxide)” is attached to a target holder 14 in a vacuum chamber 13.
  • the film formation mask 1 which is superposed and integrated is held by the mask holder 17. At this time, the film formation mask 1 is held so that the first mask 2 is on the substrate holder 15 side (lower side in FIG. 2). Thereby, the film formation preparation is completed (step S1).
  • vacuuming is performed until the degree of vacuum in the vacuum chamber 13 reaches a predetermined value.
  • the exhaust valve provided in the exhaust port 23 is opened, and the inside of the vacuum chamber 13 is exhausted.
  • the gas introduction valve of the gas introduction port 24 is closed.
  • a plurality of transparent glass substrates 11 as film formation substrates are accommodated in a cassette (not shown), for example. Have been waiting.
  • a gate valve (not shown) that partitions the front chamber and the vacuum chamber 13 is opened, and a plurality of glass substrates 11 waiting in the front chamber are opened. One of them is transported by a substrate loading mechanism (not shown) and placed at the center of the substrate holder 15 in the vacuum chamber 13 (step S2). Thereafter, the gate valve is closed.
  • the mask loading mechanism 18 is activated to position the deposition mask 1 on the substrate 11, for example, an illustration provided in advance on the glass substrate 11 by an alignment camera (not shown) provided in the substrate holder 15.
  • An omitted alignment mark and an alignment mark (not shown) provided in advance on the first mask 2 of the film formation mask 1 are photographed, and the film formation mask 1 side, for example, is placed so that both alignment marks have a predetermined positional relationship. Move and align.
  • the deposition mask 1 is lowered by the mask loading mechanism 18, and the film 5 of the first mask 2 is brought into close contact with the deposition surface of the glass substrate 11 (step S3).
  • a magnet may be provided on the substrate holder 15 on the side of the peripheral edge of the glass substrate 11, and the metal frame 7 of the deposition mask 1 may be attracted by the magnet to fix the deposition mask 1 to the substrate holder 15.
  • the total height of the magnet and the metal frame 7 is the height of the glass substrate 11 so that the film 5 of the first mask 2 of the film formation mask 1 hangs down by its own weight and comes into close contact with the film formation surface of the glass substrate 11. It is desirable to set the height of the magnet and the metal frame 7 to be slightly higher than the dimensions.
  • the first and second sensors 21 and 22 measure the size of the gap between the film 5 of the first mask 2 and the second mask 3. Specifically, as shown in FIG. 5, first by the sensor 21 while irradiating through the first opening 8 of the mask 2, for example a laser beam L 1, the second surface 3a of the substrate 11 side of the mask 3 in position to be imaged on the light receiving element of the reflected laser beam L 1, and measuring the displacement amount with respect to a predetermined reference position, the triangular distance method by the second mask 3 of the substrate 11-side surface 3a measuring the position t 1 in the height direction.
  • a gas introduction valve (not shown) is opened, and an inert gas, for example, argon (Ar) gas at a constant flow rate is introduced from the gas introduction port 24. Further, an exhaust valve (not shown) of the exhaust port 23 is adjusted to adjust the exhaust flow rate, and the amount of Ar gas in the vacuum chamber 13 is set to a predetermined value.
  • an inert gas for example, argon (Ar) gas at a constant flow rate
  • the high frequency power supply 19 is activated, and a predetermined high frequency voltage is applied to the target holder 14 (cathode electrode).
  • the Ar gas is ionized and plasma is generated between the target 12 and the substrate 11.
  • the shutter 16 is closed.
  • step S5 After pre-sputtering is performed for a certain time with the shutter 16 closed, the shutter 16 is opened and main sputtering is started (step S5). Then, when a predetermined time elapses in this sputtering, the shutter 16 is closed and the film formation is completed. As a result, an ITO transparent conductive film 29 is formed on the glass substrate 11 through the first opening pattern 4 of the first mask 2 as shown in FIG. 6, and the transparent electrode 28 as shown in FIG. The touch panel substrate 27 on which is formed is manufactured.
  • the first sensor 21 causes the height position t 1 ′ of the surface 3a of the second mask 3 and the second sensor 22 as shown in FIG.
  • the height position t 2 ′ of the surface 5 a of the film 5 of the first mask 2 is measured, and (t 1 ′ ⁇ t 2 ′ ⁇ t 0 ) is calculated to calculate the distance between the first and second masks 2 and 3.
  • a gap dimension ⁇ t ′ is calculated.
  • the gap size ⁇ t between the first and second masks 2 and 3 before the start of film formation read from the memory of the control PC and the same gap size ⁇ t ′ after the film formation are subtracted to increase the gap.
  • ( ⁇ t′ ⁇ t) is calculated (step S6).
  • the film formation mask 1 When film formation is being performed, the film formation mask 1 is heated by plasma, and the temperature of the film formation mask 1 rises. Therefore, when an ITO film is deposited on the second mask 3 by film formation, the linear expansion coefficient of ITO is about 7.2 ⁇ 10 ⁇ 6 / ° C., whereas the second mask 3 Since the linear expansion coefficient of polyimide is about 3 ⁇ 10 ⁇ 6 / ° C., the second mask 3 has a convex shape as shown in FIG. 7 due to the difference in linear expansion coefficient with the transparent conductive film 29 made of ITO. Deform. The amount of deformation increases as the film thickness of the transparent conductive film 29 increases. That is, the gap between the first and second masks 2 and 3 is increased.
  • the deformation amount of the second mask 3 exceeds the allowable range based on the increase amount ( ⁇ t′ ⁇ t) of the gap dimension between the first and second masks 2 and 3 (step). S7).
  • the transparent conductive film 29 deposited on the edge of the first opening pattern 4 of the first mask 2 is separated from the transparent conductive film 29 deposited on the edge of the adjacent first opening pattern 4.
  • the deformation of the film 5 based on the difference in linear expansion coefficient between the film 5 of the first mask 2 and the transparent conductive film 29 deposited thereon is so small as to be negligible. Therefore, attention should be paid to the deformation amount of the second mask 3 here.
  • the calculated increase amount ( ⁇ t′ ⁇ t) of the gap is compared with a determination reference value (threshold value) of an allowable value stored in the memory. And then.
  • a determination reference value threshold value
  • the increase amount of the gap ( ⁇ t′ ⁇ t) is smaller than the threshold value, it is determined that the deformation amount of the second mask 3 is within the allowable range (“NO” determination in step S7).
  • the high frequency power source 19 is turned off, the gas introduction valve is closed, and the introduction of Ar gas is stopped. Further, the exhaust valve is opened, and the gas in the vacuum chamber 13 is exhausted.
  • step S7 when it is determined that the deformation amount of the second mask 3 is within the allowable range and the determination is “NO”, the mask loading mechanism 18 is activated and the film formation mask 1 is placed in the standby position. To move. Further, the gate valve is opened, the substrate loading mechanism is activated, and the touch panel substrate 27 is carried from the vacuum chamber 13 to the front chamber (step S8) and accommodated in the cassette. Then, another glass substrate 11 in the cassette is transferred into the vacuum chamber 13 by the substrate loading mechanism (step S9) and placed on the substrate holder 15 (step S2).
  • step S3 the gap dimension between the first and second masks 2 and 3 is measured. Note that the measurement of the gap dimension at this stage may be omitted.
  • step S5 Ar gas is introduced into the vacuum chamber 13 in the same manner as described above, and film formation is started (step S5).
  • the gap size between the first and second masks 2 and 3 is measured in the same manner as described above. Further, this measured value is subtracted from the gap size value ⁇ t initially stored in the memory of the control PC (step S6) and compared with a threshold value stored in the memory (step S7).
  • YES determination in step S7
  • the inside of the vacuum chamber 13 is evacuated and the touch panel substrate 27 is carried out (step S10). . Then, with the gate valve separating the vacuum chamber 13 and the front chamber closed, the vacuum in the vacuum chamber 13 is broken to atmospheric pressure, and the chamber is opened. Further, after peeling off and removing the second mask 3 of the film formation mask 1 held by the mask holder 17, another second mask 3 is attached (step S11). Then, after evacuating the vacuum chamber 13 in the same manner as described above, the new substrate 11 is transported (step S9), placed on the substrate holder 15 (step S2), and then onto the new glass substrate 11. The film formation is started.
  • the film forming material is mainly deposited on the second mask 3. Therefore, it is mainly the second mask 3 that is deformed by the deposition of the film forming material, and deformation of the film 5 of the first mask 2 can be suppressed. That is, the processing accuracy and position accuracy of the opening pattern 10 of the second mask 3 may be coarser than that of the opening pattern 4 of the first mask 2, and the first and second masks 2 and 3 are arranged in the horizontal direction. Therefore, even if the second mask 3 is slightly deformed, the influence on the positional accuracy of the opening pattern 4 of the first mask 2 is small.
  • the positional accuracy of the thin film pattern formed on the substrate 11 can be improved. Since the second mask 3 is detachably installed on the first mask 2, it can be replaced when the second mask 3 is deformed beyond a preset value. Therefore, the deposition mask 1 can be used for a long time while maintaining the positional accuracy of the first opening pattern 4 of the first mask 2 over a long period of time. Further, since the processing accuracy of the opening pattern 10 of the second mask 3 may be coarser than the processing accuracy of the opening pattern 4 of the first mask 2, the manufacturing cost of the second mask 3 is the same as that of the first mask 2. Lower than manufacturing cost. Therefore, the cost of the film formation mask 1 can be reduced.
  • the replacement time of the second mask 3 is determined when the deformation amount of the second mask 3 exceeds a predetermined threshold.
  • the replacement time may be determined based on the film formation time. In this case, the relationship between the number of times the film formation mask 1 is used or the film formation time and the deformation amount of the second mask 3 may be examined in advance through experiments.
  • the 2nd mask 3 is a magnetic or nonmagnetic metal film or metal sheet. It may be formed by. Further, similarly to the first mask 2, a frame-shaped metal frame having openings of a size that includes the plurality of second opening patterns 10 may be provided on the outer peripheral edge of the second mask 3. .
  • the present invention is not limited to this, and any thin film of an organic or inorganic material may be used.
  • the present invention may be a batch type film forming apparatus.
  • the film-forming apparatus may be a vapor deposition apparatus.

Abstract

The present invention comprises: a first mask (2) forming a plurality of first open patterns (4) having the same shape dimensions as a thin-film pattern formed upon a substrate; and a second mask (3) forming a second open pattern (10) being of a size that encompasses at least one of the plurality of first open patterns (4), and arranged overlapping the first mask (2) so as to not bind to the first mask (2).

Description

成膜マスク、成膜装置、成膜方法及びタッチパネル基板Film formation mask, film formation apparatus, film formation method, and touch panel substrate
 本発明は、成膜マスクに関し、特にマスク材料と薄膜材料との線膨張係数の差に起因するマスクの変形の影響を安価な方法で抑制して薄膜パターンの位置精度の向上を図り得る成膜マスク、成膜装置、成膜方法及びタッチパネル基板に係るものである。 The present invention relates to a film formation mask, and in particular, film formation capable of improving the positional accuracy of a thin film pattern by suppressing the influence of mask deformation caused by a difference in linear expansion coefficient between the mask material and the thin film material by an inexpensive method. The present invention relates to a mask, a film forming apparatus, a film forming method, and a touch panel substrate.
 従来の成膜マスクは、非堆積領域とすべき部分を被覆して基材表面と密着させる材料が可撓性フィルムからなる可撓性貼付フィルムを用いた成膜マスクを使用し、可撓性貼付フィルムを基材の成膜側全表面に密着させた後、所望の堆積層を形成すべき領域を覆う可撓性貼付フィルムを選択的に除去し、その後に堆積層を形成する成膜工程を実施し、最後に基材表面上に残された可撓性貼付フィルムを除去するものとなっていた(例えば、特許文献1参照)。 The conventional film-forming mask uses a film-forming mask that uses a flexible adhesive film made of a flexible film made of a flexible film that covers a portion that should be a non-deposition area and adheres closely to the substrate surface. A film forming process in which the adhesive film is adhered to the entire surface of the base material on the film forming side, and then the flexible adhesive film covering a region where a desired deposited layer is to be formed is selectively removed and then the deposited layer is formed. Finally, the flexible adhesive film left on the substrate surface was removed (see, for example, Patent Document 1).
特開2012-111985号公報JP 2012-111985 A
 しかし、このような従来の成膜マスクにおいては、マスク材料が例えばポリイミド等の可撓性の樹脂フィルムであるため、該フィルムとフィルム上に堆積される薄膜材料としての例えば透明導電膜との線膨張係数の差によりフィルムに皺や反り等の変形が生じて、成膜される薄膜パターンの位置精度が悪くなるという問題があった。 However, in such a conventional film formation mask, since the mask material is a flexible resin film such as polyimide, a line between the film and a thin film material deposited on the film, for example, a transparent conductive film is used. There was a problem that deformation of the film such as wrinkles and warpage occurred due to the difference in the expansion coefficient, and the position accuracy of the thin film pattern to be formed deteriorated.
 この場合、樹脂製のフィルムに形成された開口パターンを内包する大きさの貫通孔を設けた例えばインバー、又はインバー合金の磁性金属材料からなる薄板をフィルム上に密接して一体化し、基板の裏面に配置された磁石により磁性薄板を吸引してフィルムを基板の成膜面に密着させて成膜することも考えられるが、フィルムと磁性薄板との線膨張係数が異なるため、双方に内部応力が発生する。したがって、フィルムと磁性薄板とをフレームに固着した後、フィルムに開口パターンをレーザ加工すると、上記内部応力が一部解放されて開口パターンの位置ずれが生じるおそれがある。それ故、基板上に成膜される薄膜パターンの位置精度の向上を図ることが困難である。 In this case, a thin plate made of a magnetic metal material such as Invar or Invar alloy provided with a through-hole having a size including an opening pattern formed in a resin film is closely integrated with the film, and the back surface of the substrate It is conceivable to form a film by attracting the magnetic thin plate with a magnet placed on the substrate and bringing the film into close contact with the film formation surface of the substrate. appear. Therefore, if the opening pattern is laser processed on the film after the film and the magnetic thin plate are fixed to the frame, the internal stress may be partially released and the opening pattern may be displaced. Therefore, it is difficult to improve the positional accuracy of the thin film pattern formed on the substrate.
 さらに、磁性薄板と該磁性薄板上に堆積される薄膜との線膨張係数の差が大きいときには、磁性薄板が凸状に変形するため、フィルムの一部が基板の成膜面から浮き上がって第1の開口パターンの位置がずれたり、薄膜材料が開口パターンの縁部からフィルムと基板との隙間に回り込んで成膜されるため、薄膜パターンの縁部がぼやけたりする問題がある。したがって、この場合も基板上に成膜される薄膜パターンの位置精度の向上を図ることが困難である。 Further, when the difference in linear expansion coefficient between the magnetic thin plate and the thin film deposited on the magnetic thin plate is large, the magnetic thin plate is deformed into a convex shape, so that a part of the film is lifted from the film-forming surface of the substrate. There is a problem in that the position of the opening pattern is shifted, and the thin film material is formed from the edge of the opening pattern to the gap between the film and the substrate, so that the edge of the thin film pattern is blurred. Therefore, in this case as well, it is difficult to improve the positional accuracy of the thin film pattern formed on the substrate.
 同時に、磁性薄板の変形により磁性薄板に作用する磁力が低下するため、成膜マスクの位置がずれるおそれがあり、これによっても基板上に成膜される薄膜パターンの位置精度の向上を図ることが困難である。 At the same time, the magnetic force acting on the magnetic thin plate is reduced due to the deformation of the magnetic thin plate, so that the position of the film forming mask may be shifted. This also improves the positional accuracy of the thin film pattern formed on the substrate. Have difficulty.
 上記いずれの問題も同時に解決するためには、基板、フィルム及び磁性薄板の各材料、並びに成膜材料の線膨張係数が互いに近似したものを選定する必要がある。しかしながら、選定される各材料は限定されたものとなり、材料費が高くなるという問題がある。 In order to solve all of the above problems at the same time, it is necessary to select materials for the substrate, the film and the magnetic thin plate, and materials whose film expansion materials are close to each other. However, each material to be selected is limited, and there is a problem that the material cost becomes high.
 そこで、本発明は、このような問題点に対処し、マスク材料と薄膜材料との線膨張係数の差に起因するマスクの変形の影響を安価な方法で抑制して薄膜パターンの位置精度の向上を図り得る成膜マスク、成膜装置、成膜方法及びタッチパネル基板を提供することを目的とする。 Accordingly, the present invention addresses such problems and improves the positional accuracy of the thin film pattern by suppressing the influence of mask deformation caused by the difference in linear expansion coefficient between the mask material and the thin film material by an inexpensive method. An object of the present invention is to provide a film formation mask, a film formation apparatus, a film formation method, and a touch panel substrate.
 上記目的を達成するために、本発明による成膜マスクは、基板上に成膜される薄膜パターンと形状寸法の同じ複数の第1の開口パターンを形成した第1のマスクと、前記複数の第1の開口パターンのうち少なくとも一つを内包する大きさの第2の開口パターンを形成し、前記第1のマスク上に、該第1のマスクに対して非拘束状態となるように重ねて設置される第2のマスクと、を備えて構成したものである。 In order to achieve the above object, a film formation mask according to the present invention includes a first mask in which a plurality of first opening patterns having the same shape and dimension as a thin film pattern formed on a substrate are formed, and the plurality of first masks. A second opening pattern having a size including at least one of the opening patterns is formed, and is placed on the first mask so as to be in an unconstrained state with respect to the first mask. And a second mask to be configured.
 また、本発明による成膜装置は、真空チャンバー内に、基板上に成膜される薄膜パターンと形状寸法の同じ複数の第1の開口パターンを形成した第1のマスクと、前記複数の第1の開口パターンのうち少なくとも一つを内包する大きさの第2の開口パターンを形成した第2のマスクと、を両者間で非拘束状態となるように重ねて備えた成膜マスクの前記第1のマスクが前記基板側となるように保持するマスクホルダーと、前記マスクホルダーを移動させて基板ホルダーに保持された前記基板の成膜面に前記第1のマスクを密着させるマスクローディング機構と、を備えて構成したものである。 In addition, a film forming apparatus according to the present invention includes a first mask in which a plurality of first opening patterns having the same shape and dimensions as a thin film pattern formed on a substrate are formed in a vacuum chamber, and the plurality of first masks. And a second mask formed with a second opening pattern of a size that includes at least one of the opening patterns, and the first mask of the film formation mask provided in an unconstrained state therebetween. A mask holder for holding the mask on the substrate side, and a mask loading mechanism for moving the mask holder and bringing the first mask into close contact with the film forming surface of the substrate held on the substrate holder. It is prepared.
 さらに、本発明による成膜方法は、基板上に成膜される薄膜パターンと形状寸法の同じ複数の第1の開口パターンを形成した第1のマスクと、前記複数の第1の開口パターンのうち少なくとも一つを内包する大きさの第2の開口パターンを形成した第2のマスクと、を両者間で非拘束状態となるように重ねて備えた成膜マスクの前記第1のマスク側を前記基板の成膜面に密着させる第1ステップと、前記第1のマスクの前記第1の開口パターンを介して前記基板の成膜面に前記薄膜パターンを成膜する第2ステップと、複数枚の基板に対して前記第1及び第2ステップを実施した後、前記第1のマスクから前記第2のマスクを剥離する第3ステップと、を行うものである。 Furthermore, the film forming method according to the present invention includes a first mask in which a plurality of first opening patterns having the same shape and dimensions as a thin film pattern formed on a substrate are formed, and the plurality of first opening patterns. A first mask side of a film-forming mask provided with a second mask formed with a second opening pattern of a size including at least one so as to be in an unconstrained state between them; A first step of closely contacting the film forming surface of the substrate; a second step of forming the thin film pattern on the film forming surface of the substrate through the first opening pattern of the first mask; After the first and second steps are performed on the substrate, a third step of peeling the second mask from the first mask is performed.
 そして、本発明によるタッチパネル基板は、上記成膜方法を使用して、透明なガラス基板上に透明導電膜からなる電極を形成したものである。 And the touch-panel board | substrate by this invention forms the electrode which consists of a transparent conductive film on the transparent glass substrate using the said film-forming method.
 本発明によれば、成膜マスクを第1のマスク上に第2のマスクを、第1のマスクに対して非拘束状態となるように重ねた構造とし、第1のマスク側を基板の成膜面に密着させて使用されるため、マスク上に堆積する薄膜材料は、主に第2のマスク上である。したがって、マスク材料とその上に堆積される薄膜材料との線膨張係数の差に起因して変形するのは主に第2のマスクであり、メインマスクである第1のマスクの変形を抑制することができる。それ故、成膜される薄膜パターンの位置精度の向上を図ることができる。さらに、成膜マスクの使用回数が増えて第2のマスクの変形量が予め定められた変形の許容限界値を超えたときには、第2のマスクを剥がし別の第2のマスクに取り替えることができる。しかも、第2のマスクの第2の開口パターンの形成精度は、第1のマスクの第1の開口パターンの形成精度に比べて粗くてよいため、第2のマスクの製造コストは安価である。したがって、マスクの変形による開口パターンの位置ずれに対する影響を安価な方法で抑制して、成膜される薄膜パターンの位置精度の向上を図ることができる。 According to the present invention, the deposition mask has a structure in which the second mask is overlaid on the first mask so as to be in an unrestrained state with respect to the first mask, and the first mask side is formed on the substrate. Since it is used in close contact with the film surface, the thin film material deposited on the mask is mainly on the second mask. Therefore, it is mainly the second mask that is deformed due to the difference in linear expansion coefficient between the mask material and the thin film material deposited thereon, and the deformation of the first mask that is the main mask is suppressed. be able to. Therefore, the positional accuracy of the thin film pattern to be formed can be improved. Further, when the number of times the deposition mask is used increases and the amount of deformation of the second mask exceeds a predetermined allowable deformation limit, the second mask can be peeled off and replaced with another second mask. . In addition, since the formation accuracy of the second opening pattern of the second mask may be coarser than the formation accuracy of the first opening pattern of the first mask, the manufacturing cost of the second mask is low. Therefore, it is possible to suppress the influence on the positional deviation of the opening pattern due to the deformation of the mask by an inexpensive method, and to improve the positional accuracy of the thin film pattern to be formed.
本発明による成膜マスクの一実施形態を示す図であり、(a)は平面図、(b)は(a)のO-O線断面矢視図である。1A and 1B are diagrams showing an embodiment of a film formation mask according to the present invention, in which FIG. 1A is a plan view and FIG. 上記成膜マスクを使用する成膜装置の一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the film-forming apparatus which uses the said film-forming mask. 上記成膜装置を使用して行う成膜方法について説明するフォローチャートである。It is a follow chart explaining the film-forming method performed using the said film-forming apparatus. 上記成膜方法を使用して製造されるタッチパネル基板の一構成例を示す平面図である。It is a top view which shows one structural example of the touchscreen board | substrate manufactured using the said film-forming method. 上記成膜マスクの第2のマスクの変形量の計測について示す説明図であり、成膜前の状態を示す。It is explanatory drawing shown about the measurement of the deformation amount of the 2nd mask of the said film-forming mask, and shows the state before film-forming. 上記タッチパネル基板の透明電極の成膜について示す断面図である。It is sectional drawing shown about film-forming of the transparent electrode of the said touchscreen board | substrate. 上記成膜マスクを使用して繰り返し成膜が行われ、第2のマスクの変形が進んだ状態を示す説明図である。It is explanatory drawing which shows the state which repeated the film-forming using the said film-forming mask and the deformation | transformation of the 2nd mask advanced.
 以下、本発明の実施形態を添付図面に基づいて詳細に説明する。図1は本発明による成膜マスクの実施形態を示す図であり、(a)は平面図、(b)は(a)のO-O線断面矢視図である。この成膜マスク1は、基板上に開口パターンを介して成膜するためのものであり、第1のマスク2と、第2のマスク3と、を備えて構成されている。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. 1A and 1B are diagrams showing an embodiment of a film forming mask according to the present invention, in which FIG. 1A is a plan view and FIG. The film formation mask 1 is used for forming a film on a substrate through an opening pattern, and includes a first mask 2 and a second mask 3.
 上記第1のマスク2は、基板上に第1の開口パターン4を介して成膜し、薄膜パターンを形成するためのものであり、メインマスクとなるもので、樹脂製のフィルム5と、金属薄膜6と、金属フレーム7と、を備えて構成されている。なお、第1のマスク2はフィルム5のみで構成したものであってもよいが、本実施形態においては、金属フレーム7付きの場合について説明する。 The first mask 2 is formed on the substrate through the first opening pattern 4 to form a thin film pattern. The first mask 2 serves as a main mask, and is made of a resin film 5 and a metal. The thin film 6 and the metal frame 7 are provided. In addition, although the 1st mask 2 may be comprised only with the film 5, in this embodiment, the case where the metal frame 7 is attached is demonstrated.
 ここで、上記フィルム5は、基板上に成膜される複数の薄膜パターンに対応して該薄膜パターンと形状寸法の同じ貫通する複数の第1の開口パターン4を形成したものであり、例えば厚みが10μm~30μm程度のポリイミド又はポリエチレンテレフタレート(PET)等の可視光を透過する樹脂製フィルムである。なお、以下の説明においては、線膨張係数が被成膜基板としてのガラスの線膨張係数に近似した3×10-6~5×10-6/℃程度のポリイミドの場合について説明する。 Here, the film 5 is formed by forming a plurality of first opening patterns 4 penetrating in the same shape and dimensions as the thin film pattern corresponding to the plurality of thin film patterns formed on the substrate. Is a resin film that transmits visible light, such as polyimide or polyethylene terephthalate (PET) having a thickness of about 10 μm to 30 μm. In the following description, the case of polyimide having a linear expansion coefficient of approximately 3 × 10 −6 to 5 × 10 −6 / ° C., which approximates the linear expansion coefficient of glass as a film formation substrate will be described.
 さらに、上記フィルム5には、上記第1の開口パターン4とは別に貫通する開口部8が設けられている。この開口部8は、第1のマスク2のフィルム5と後述の第2のマスク3との間に生じる隙間を計測して第2のマスク3の変形量を見積もるためのものである。詳細には、透明なガラス基板の成膜面とは反対側に備えた第1のセンサにより、上記開口部8を通して第2のマスク3の上記基板側の面3aの位置を計測し、上記第1のセンサに隣接して備えた第2のセンサにより第1のマスク2の上記フィルム5の基板側の面5aの位置を計測し、両計測値に基づいて第1のマスク2のフィルム5と第2のマスク3との間の隙間を算出することができるようになっている。 Furthermore, the film 5 is provided with an opening 8 that penetrates separately from the first opening pattern 4. The opening 8 is for measuring a gap generated between the film 5 of the first mask 2 and a second mask 3 described later to estimate the deformation amount of the second mask 3. Specifically, the position of the surface 3a on the substrate side of the second mask 3 is measured through the opening 8 by the first sensor provided on the side opposite to the film forming surface of the transparent glass substrate, and the first sensor The position of the surface 5a on the substrate side of the film 5 of the first mask 2 is measured by a second sensor provided adjacent to the first sensor, and the film 5 of the first mask 2 is measured based on both measured values. A gap between the second mask 3 and the second mask 3 can be calculated.
 なお、フィルム5に図1に示すように複数の開口部8を形成し、各開口部8に対応させて第1及び第2のセンサを一組とする複数組のセンサを設けるとよい。これにより、広い範囲で第1のマスク2のフィルム5と第2のマスク3との間の隙間を計測し、その最大値又は平均値により第2のマスク3の変形量をより正確に見積もることができる。 In addition, as shown in FIG. 1, a plurality of openings 8 may be formed in the film 5, and a plurality of sets of sensors each including a first sensor and a second sensor may be provided corresponding to each opening 8. Thereby, the gap between the film 5 of the first mask 2 and the second mask 3 is measured in a wide range, and the deformation amount of the second mask 3 is estimated more accurately by the maximum value or the average value. Can do.
 また、上記フィルム5の面5aにて、上記複数の第1の開口パターン4が形成される有効領域の外側領域には、孤立した複数のパターンからなる金属薄膜6がフィルム5の周縁部に沿って設けられている。この金属薄膜6は、後述の金属フレーム7の一端面7aにスポット溶接されて、上記フィルム5を金属フレーム7に固定するためのものであり、例えばめっき形成される。又は、メタルマスクを使用してスパッタリング又は蒸着により形成してもよく、フィルム5の一面5aの全面に金属薄膜を成膜した後、エッチングして孤立した複数の金属薄膜6のパターンを形成してもよい。 In addition, on the surface 5 a of the film 5, a metal thin film 6 composed of a plurality of isolated patterns extends along the peripheral edge of the film 5 in the outer region of the effective region where the plurality of first opening patterns 4 are formed. Is provided. This metal thin film 6 is spot welded to one end surface 7a of a metal frame 7 described later, and is used for fixing the film 5 to the metal frame 7, and is formed by plating, for example. Alternatively, it may be formed by sputtering or vapor deposition using a metal mask. After a metal thin film is formed on the entire surface 5a of the film 5, a pattern of a plurality of isolated metal thin films 6 is formed by etching. Also good.
 さらに、上記フィルム5の面5a側には、上記フィルム5の複数の第1の開口パターン4及び開口部8を内包する大きさの開口9を有し、外形が上記フィルム5の外形に略等しい大きさの枠状の金属フレーム7が設けられている。この金属フレーム7は、上記フィルム5を架張した状態で、フィルム5の金属薄膜6の部分を一端面7aにスポット溶接してフィルム5を支持するもので、厚みが30mm~50mm程度の例えばインバー又はインバー合金等の磁性金属材料で形成されている。 Furthermore, on the surface 5 a side of the film 5, there is an opening 9 having a size that encloses the plurality of first opening patterns 4 and openings 8 of the film 5, and the outer shape is substantially equal to the outer shape of the film 5. A frame-shaped metal frame 7 having a size is provided. The metal frame 7 supports the film 5 by spot welding the portion of the metal thin film 6 of the film 5 to the one end surface 7a in a state where the film 5 is stretched. For example, the thickness of the metal frame 7 is about 30 mm to 50 mm. Alternatively, it is made of a magnetic metal material such as an Invar alloy.
 上記第1のマスク2の上記フィルム5の他面5bには、第2のマスク3が第1のマスク2に対して水平方向に拘束されることなく剥離自在に設置されている。この第2のマスク3は、第1のマスク2のフィルム5上に薄膜材料が堆積し、フィルム5と薄膜材料との線膨張係数の差に基づいてフィルム5が変形するのを防止するためのものであり、サブマスクとなるもので、複数の第1の開口パターン4のうち少なくとも一つを内包する大きさの第2の開口パターン10を形成した、第1のマスク2のフィルム5と同じ樹脂製のフィルム、例えばポリイミドで形成されている。 On the other surface 5 b of the film 5 of the first mask 2, the second mask 3 is installed so as to be peelable without being restrained in the horizontal direction with respect to the first mask 2. The second mask 3 is used for preventing the thin film material from being deposited on the film 5 of the first mask 2 and the deformation of the film 5 based on the difference in linear expansion coefficient between the film 5 and the thin film material. The same resin as the film 5 of the first mask 2, which is a sub-mask and has a second opening pattern 10 having a size including at least one of the plurality of first opening patterns 4. It is made of a film made of, for example, polyimide.
 次に、このように構成された成膜マスク1を使用する成膜装置について説明する。図2は、上記成膜装置の一実施形態を示す概略構成図である。
 この成膜装置は、上記成膜マスク1を使用して基板11上に複数の薄膜パターンを形成するためのもので、例えばターゲット12と基板11との間にプラズマを生成させて成膜するスパッタリング装置である。以下の説明においては、成膜装置がRFスパッタリング装置の場合について説明する。
Next, a film forming apparatus using the film forming mask 1 configured as described above will be described. FIG. 2 is a schematic configuration diagram showing an embodiment of the film forming apparatus.
This film forming apparatus is for forming a plurality of thin film patterns on a substrate 11 using the film forming mask 1. For example, sputtering is performed by generating plasma between a target 12 and a substrate 11. Device. In the following description, the case where the film forming apparatus is an RF sputtering apparatus will be described.
 上記RFスパッタリング装置は、真空チャンバー13内にターゲットホルダー14と、基板ホルダー15と、シャッター16と、マスクホルダー17と、マスクローディング機構18と、を備えて構成されている。 The RF sputtering apparatus includes a target holder 14, a substrate holder 15, a shutter 16, a mask holder 17, and a mask loading mechanism 18 in a vacuum chamber 13.
 上記ターゲットホルダー14は、成膜材料を板状に整形したターゲット12を保持するもので、外部に備えられた高周波電源19にバイパスコンデンサ20を介して電気的に接続され、13.56MHzの高周波電圧が印加可能となっており、カソード電極となるものである。 The target holder 14 holds a target 12 obtained by shaping a film forming material into a plate shape. The target holder 14 is electrically connected to a high-frequency power source 19 provided outside via a bypass capacitor 20 and has a high-frequency voltage of 13.56 MHz. Can be applied to form a cathode electrode.
 上記ターゲットホルダー14の下側には、基板ホルダー15が設けられている。この基板ホルダー15は、被成膜基板としてのガラス基板11を上記ターゲット12に対向させて保持するもので、接地されており、アノード電極となるものである。また、基板ホルダー15には、後述のマスクホルダー17に保持された成膜マスク1の第1のマスク2の開口部8に対応させて第1のセンサ21が内蔵され、該第1のセンサ21に隣接して第2のセンサ22が内蔵されている(図5参照)。 A substrate holder 15 is provided below the target holder 14. The substrate holder 15 holds a glass substrate 11 as a film formation substrate so as to face the target 12, and is grounded and serves as an anode electrode. Further, the substrate sensor 15 incorporates a first sensor 21 corresponding to the opening 8 of the first mask 2 of the film formation mask 1 held by the mask holder 17 described later. A second sensor 22 is incorporated adjacent to (see FIG. 5).
 上記第1のセンサ21は第1のマスク2の上記開口部8を通して第2のマスク3の基板11側の面3aの高さ方向の相対位置を計測するためのもので、第2のセンサ22は第1のマスク2のフィルム5の基板11側の面5aの高さ方向の相対位置を計測するためのものであり、共に、例えば発光部と受光部とを備え、距離変化による受光素子の結像位置を距離に換算する三角測距方式の変位センサである。 The first sensor 21 is for measuring the relative position in the height direction of the surface 3 a of the second mask 3 on the substrate 11 side through the opening 8 of the first mask 2, and the second sensor 22. Is for measuring the relative position in the height direction of the surface 5a of the film 5 of the first mask 2 on the substrate 11 side, and includes both a light-emitting part and a light-receiving part, for example. It is a displacement sensor of a triangulation system that converts an imaging position into a distance.
 上記ターゲットホルダー14と基板ホルダー15との間には、進退可能にシャッター16が設けられている。このシャッター16は、図2において矢印A,B方向に移動してスパッタ粒子の通路を開閉するためのもので、基板11とターゲット12との間にプラズマを生成して行うスパッタリング中に、矢印A方向に移動してスパッタ粒子の通路を開いた状態から矢印B方向に移動してスパッタ粒子の通路を閉じるまでの時間を制御することにより、成膜される薄膜の膜厚をコントロールできるようになっている。 A shutter 16 is provided between the target holder 14 and the substrate holder 15 so as to be able to advance and retreat. This shutter 16 is for moving in the directions of arrows A and B in FIG. 2 to open and close the passage of the sputtered particles, and during the sputtering performed by generating plasma between the substrate 11 and the target 12, the arrow A The film thickness of the thin film to be deposited can be controlled by controlling the time from moving in the direction to open the sputtered particle passage to moving in the arrow B direction to close the sputtered particle passage. ing.
 上記基板ホルダー15とシャッター16との間には、マスクホルダー17が設けられている。このマスクホルダー17は、上記成膜マスク1を、その第1のマスク2側が基板ホルダー15側となるようにして保持するもので、成膜マスク1の縁部を掴んで第1のマスク2と第2のマスク3とを一体的に保持するようになっている。 A mask holder 17 is provided between the substrate holder 15 and the shutter 16. The mask holder 17 holds the film formation mask 1 such that the first mask 2 side is on the substrate holder 15 side. The mask holder 17 holds the edge of the film formation mask 1 with the first mask 2. The second mask 3 is integrally held.
 上記マスクホルダー17を駆動可能にマスクローディング機構18が設けられている。このマスクローディング機構18は、マスクホルダー17を、例えば基板ホルダー15とシャッター16との間に進退させ、さらに上下動させるもので、マスクホルダー17の下降時に第1のマスク2のフィルム5を基板ホルダー15に保持された基板11の成膜面に密着させることができるようになっている。 A mask loading mechanism 18 is provided so that the mask holder 17 can be driven. The mask loading mechanism 18 moves the mask holder 17 forward and backward between, for example, the substrate holder 15 and the shutter 16 and further moves it up and down. The mask loading mechanism 18 moves the film 5 of the first mask 2 to the substrate holder when the mask holder 17 is lowered. 15 can be brought into close contact with the film forming surface of the substrate 11 held by the substrate 15.
 なお、図2において符号23は、真空チャンバー13内のガスを排気するための排気口であり、符号24は、真空チャンバー13内に不活性ガスを導入するためのガス導入口である。また、符号25は、陽極イオンが基板11に対向したターゲット12の部分以外の、例えばターゲットホルダー14の部分には衝突しないようにするためのシールド部材であり、ターゲット12の中央領域に対応して開口26が設けられている。 In FIG. 2, reference numeral 23 is an exhaust port for exhausting the gas in the vacuum chamber 13, and reference numeral 24 is a gas introduction port for introducing an inert gas into the vacuum chamber 13. Reference numeral 25 denotes a shield member for preventing the anode ions from colliding with, for example, a portion of the target holder 14 other than the portion of the target 12 facing the substrate 11, and corresponds to the central region of the target 12. An opening 26 is provided.
 次に、このように構成された成膜装置を使用する成膜について図3のフローチャートを参照して説明する。以下の説明においては、一例として図4に示すようなタッチパネル基板27の透明電極28の形成について述べる。また、ここでは、成膜装置が成膜室としての真空チャンバー13の隣にゲートバルブにより仕切られて真空引き可能な前室を備えたインライン式の成膜装置である場合について説明する。
 先ず、真空チャンバー13内のターゲットホルダー14に酸化インジウムスズ(以下「ITO(Indium Tin Oxide)」という)のターゲット12が取り付けられる。
Next, film formation using the film forming apparatus configured as described above will be described with reference to the flowchart of FIG. In the following description, the formation of the transparent electrode 28 of the touch panel substrate 27 as shown in FIG. 4 will be described as an example. Here, a case will be described in which the film forming apparatus is an in-line film forming apparatus provided with a front chamber that is partitioned by a gate valve and can be evacuated next to a vacuum chamber 13 as a film forming chamber.
First, a target 12 of indium tin oxide (hereinafter referred to as “ITO (Indium Tin Oxide)”) is attached to a target holder 14 in a vacuum chamber 13.
 さらに、第1のマスク2と第2のマスク3とをアライメントした後、重ね合わせて一体とした成膜マスク1がマスクホルダー17に保持される。このとき、成膜マスク1は、第1のマスク2が基板ホルダー15側(図2において下側)となるように保持される。これにより成膜準備が完了する(ステップS1)。 Further, after the first mask 2 and the second mask 3 are aligned, the film formation mask 1 which is superposed and integrated is held by the mask holder 17. At this time, the film formation mask 1 is held so that the first mask 2 is on the substrate holder 15 side (lower side in FIG. 2). Thereby, the film formation preparation is completed (step S1).
 続いて、真空チャンバー13内の真空度が予め定められた値に達するまで真空引きが行われる。詳細には、排気口23に設けられた排気バルブが開かれ真空チャンバー13内が排気される。このとき、ガス導入口24のガス導入バルブは閉じられている。 Subsequently, vacuuming is performed until the degree of vacuum in the vacuum chamber 13 reaches a predetermined value. In detail, the exhaust valve provided in the exhaust port 23 is opened, and the inside of the vacuum chamber 13 is exhausted. At this time, the gas introduction valve of the gas introduction port 24 is closed.
 一方、上記真空チャンバー13内の真空度と略同じ真空度まで真空引きされた図示省略の前室内には、被成膜基板としての例えば複数枚の透明ガラス基板11が例えば図示省略のカセットに収容されて待機している。 On the other hand, in the front chamber (not shown) that is evacuated to a vacuum level substantially equal to the vacuum level in the vacuum chamber 13, for example, a plurality of transparent glass substrates 11 as film formation substrates are accommodated in a cassette (not shown), for example. Have been waiting.
 真空チャンバー13内の真空度が予め定められた値に達すると、上記前室と真空チャンバー13とを仕切る図示省略のゲートバルブが開かれ、上記前室に待機中の複数枚のガラス基板11のうちの一枚が図示省略の基板ローディング機構により搬送されて真空チャンバー13内の基板ホルダー15の中央部に設置される(ステップS2)。その後、上記ゲートバルブが閉じられる。 When the degree of vacuum in the vacuum chamber 13 reaches a predetermined value, a gate valve (not shown) that partitions the front chamber and the vacuum chamber 13 is opened, and a plurality of glass substrates 11 waiting in the front chamber are opened. One of them is transported by a substrate loading mechanism (not shown) and placed at the center of the substrate holder 15 in the vacuum chamber 13 (step S2). Thereafter, the gate valve is closed.
 次に、マスクローディング機構18が起動して成膜マスク1を基板11上に位置づけた後、例えば基板ホルダー15に内蔵して備えた図示省略のアライメントカメラにより、ガラス基板11に予め設けられた図示省略のアライメントマークと成膜マスク1の第1のマスク2に予め設けられた図示省略のアライメントマークとを撮影し、両アライメントマークが所定の位置関係を成すように、例えば成膜マスク1側を移動してアライメントする。そして、アライメントが終わるとマスクローディング機構18により成膜マスク1が下降され、第1のマスク2のフィルム5がガラス基板11の成膜面に密着される(ステップS3)。 Next, after the mask loading mechanism 18 is activated to position the deposition mask 1 on the substrate 11, for example, an illustration provided in advance on the glass substrate 11 by an alignment camera (not shown) provided in the substrate holder 15. An omitted alignment mark and an alignment mark (not shown) provided in advance on the first mask 2 of the film formation mask 1 are photographed, and the film formation mask 1 side, for example, is placed so that both alignment marks have a predetermined positional relationship. Move and align. When the alignment is completed, the deposition mask 1 is lowered by the mask loading mechanism 18, and the film 5 of the first mask 2 is brought into close contact with the deposition surface of the glass substrate 11 (step S3).
 このとき、ガラス基板11の周縁部の側方の基板ホルダー15上に磁石を設け、該磁石により成膜マスク1の金属フレーム7を吸着して成膜マスク1を基板ホルダー15に固定するとよい。この場合、成膜マスク1の第1のマスク2のフィルム5が自重で垂れ下がりガラス基板11の成膜面に密着するように、磁石と金属フレーム7のトータル高さ寸法がガラス基板11の高さ寸法よりも若干高くなるように磁石と金属フレーム7の高さを設定するのが望ましい。 At this time, a magnet may be provided on the substrate holder 15 on the side of the peripheral edge of the glass substrate 11, and the metal frame 7 of the deposition mask 1 may be attracted by the magnet to fix the deposition mask 1 to the substrate holder 15. In this case, the total height of the magnet and the metal frame 7 is the height of the glass substrate 11 so that the film 5 of the first mask 2 of the film formation mask 1 hangs down by its own weight and comes into close contact with the film formation surface of the glass substrate 11. It is desirable to set the height of the magnet and the metal frame 7 to be slightly higher than the dimensions.
 成膜マスク1の設置が終わると、第1及び第2のセンサ21,22により第1のマスク2のフィルム5と第2のマスク3との間の隙間寸法が計測される。詳細には、図5に示すように、第1のセンサ21により第1のマスク2の開口部8を通して例えばレーザ光Lを照射する一方で、第2のマスク3の基板11側の面3aで反射されたレーザ光Lの受光素子上に結像される位置の、予め定められた基準位置に対する変位量を測定し、三角距離方式により第2のマスク3の基板11側の面3aの高さ方向の位置tを計測する。 When the deposition mask 1 is installed, the first and second sensors 21 and 22 measure the size of the gap between the film 5 of the first mask 2 and the second mask 3. Specifically, as shown in FIG. 5, first by the sensor 21 while irradiating through the first opening 8 of the mask 2, for example a laser beam L 1, the second surface 3a of the substrate 11 side of the mask 3 in position to be imaged on the light receiving element of the reflected laser beam L 1, and measuring the displacement amount with respect to a predetermined reference position, the triangular distance method by the second mask 3 of the substrate 11-side surface 3a measuring the position t 1 in the height direction.
 同時に、第2のセンサ22により例えばレーザ光Lを照射する一方で、第1のマスク2のフィルム5の基板11側の面5aで反射されたレーザ光Lの受光素子上に結像される位置の、予め定められた基準位置に対する変位量を測定し、三角距離方式により第1のマスク2のフィルム5の基板11側の面5aの高さ方向の位置tを計測する。そして、{t-t-t(フィルム5の厚み)}を図示省略の制御用パーソナルコンピュータ(PC)で演算し、第1のマスク2と第2のマスク3との間の隙間寸法Δtを算出する。さらに、その算出結果を制御用PCのメモリに記憶する(ステップS4)。 At the same time, while the second sensor 22 irradiates, for example, laser light L 2 , an image is formed on the light receiving element of the laser light L 2 reflected by the surface 5 a on the substrate 11 side of the film 5 of the first mask 2. position that measures the displacement amount with respect to a predetermined reference position, to measure the triangular distance method by the position t 2 in the height direction of the first substrate 11 side of the surface 5a of the film 5 mask 2. Then, {t 1 -t 2 -t 0 (thickness of the film 5)} is calculated by a control personal computer (PC) (not shown), and the gap size between the first mask 2 and the second mask 3 is calculated. Δt is calculated. Further, the calculation result is stored in the memory of the control PC (step S4).
 成膜開始前の上記隙間寸法Δtの計測が終わると、図示省略のガス導入バルブが開かれ、ガス導入口24から一定流量の不活性ガス、例えばアルゴン(Ar)ガスが導入される。さらに、排気口23の図示省略の排気バルブを調節して排気流量が調整され、真空チャンバー13内のArガスの量が予め定められた所定値に設定される。 When measurement of the gap dimension Δt before the start of film formation is completed, a gas introduction valve (not shown) is opened, and an inert gas, for example, argon (Ar) gas at a constant flow rate is introduced from the gas introduction port 24. Further, an exhaust valve (not shown) of the exhaust port 23 is adjusted to adjust the exhaust flow rate, and the amount of Ar gas in the vacuum chamber 13 is set to a predetermined value.
 続いて、高周波電源19が起動され、ターゲットホルダー14(カソード電極)に予め定められた所定値の高周波電圧が印加される。これにより、Arガスが電離してターゲット12と基板11との間にプラズマが生成する。なお、このとき、シャッター16は閉じられている。 Subsequently, the high frequency power supply 19 is activated, and a predetermined high frequency voltage is applied to the target holder 14 (cathode electrode). As a result, the Ar gas is ionized and plasma is generated between the target 12 and the substrate 11. At this time, the shutter 16 is closed.
 シャッター16が閉じられた状態で一定時間のプリスパッタリングが実行された後、シャッター16が開かれて本スパッタリングが開始される(ステップS5)。そして、本スパッタリングが予め定められた所定時間経過すると、シャッター16が閉じられて成膜が終了する。これにより、図6に示すように、第1のマスク2の第1の開口パターン4を介してガラス基板11上にITOの透明導電膜29が成膜され、図4に示すような透明電極28が形成されたタッチパネル基板27が製造される。 After pre-sputtering is performed for a certain time with the shutter 16 closed, the shutter 16 is opened and main sputtering is started (step S5). Then, when a predetermined time elapses in this sputtering, the shutter 16 is closed and the film formation is completed. As a result, an ITO transparent conductive film 29 is formed on the glass substrate 11 through the first opening pattern 4 of the first mask 2 as shown in FIG. 6, and the transparent electrode 28 as shown in FIG. The touch panel substrate 27 on which is formed is manufactured.
 上記ステップS5における成膜実行中に、前述と同様にして、図7に示すように第1のセンサ21により第2のマスク3の面3aの高さ位置t′及び第2のセンサ22により第1のマスク2のフィルム5の面5aの高さ位置t′が計測され、(t′-t′-t)を演算して第1及び第2のマスク2,3間の隙間寸法Δt′が算出される。そして、制御用PCのメモリから読み出した成膜開始前の第1及び第2のマスク2,3間の隙間寸法Δtと成膜後の同隙間寸法Δt′とを減算処理し、隙間の増加量(Δt′-Δt)を算出する(ステップS6)。 During film formation in step S5, in the same manner as described above, the first sensor 21 causes the height position t 1 ′ of the surface 3a of the second mask 3 and the second sensor 22 as shown in FIG. The height position t 2 ′ of the surface 5 a of the film 5 of the first mask 2 is measured, and (t 1 ′ −t 2 ′ −t 0 ) is calculated to calculate the distance between the first and second masks 2 and 3. A gap dimension Δt ′ is calculated. Then, the gap size Δt between the first and second masks 2 and 3 before the start of film formation read from the memory of the control PC and the same gap size Δt ′ after the film formation are subtracted to increase the gap. (Δt′−Δt) is calculated (step S6).
 なお、上記隙間の増加量(Δt′-Δt)の算出においては、第1のマスク2のフィルム5の厚みtは相殺されるため、第1及び第2のマスク2,3間の隙間寸法は、
  Δt=t-t
  Δt′=t′-t
と定めて処理しても計算上差支えない。
In the calculation of the increase amount of the gap (Δt′−Δt), the thickness t 0 of the film 5 of the first mask 2 is canceled out, so that the gap dimension between the first and second masks 2 and 3 is reduced. Is
Δt = t 1 -t 2
Δt ′ = t 1 ′ −t 2
Even if it is determined and processed, there is no difference in calculation.
 成膜が実行されているときには、プラズマにより成膜マスク1が加熱されて成膜マスク1の温度が上昇する。したがって、成膜により第2のマスク3上にITO膜が堆積していると、ITOの線膨張係数は約7.2×10-6/℃であるのに対して第2のマスク3としてのポリイミドの線膨張係数は約3×10-6/℃であるため、第2のマスク3は、ITOから成る透明導電膜29との線膨張係数の差から、図7に示すように凸状に変形する。そして、この変形量は、透明導電膜29の膜厚が増加するに連れて大きくなる。即ち、第1及び第2のマスク2,3間の隙間が大きくなることを意味する。そこで、第1及び第2のマスク2,3間の隙間寸法の増加量(Δt′-Δt)に基づいて第2のマスク3の変形量が許容範囲を超えたか否かが判定される(ステップS7)。なお、第1のマスク2の第1の開口パターン4の縁部に堆積した透明導電膜29は、隣接する第1の開口パターン4の縁部に堆積した透明導電膜29と分断されているため、第1のマスク2のフィルム5とその上に堆積した透明導電膜29との線膨張係数の差に基づく上記フィルム5の変形は無視できる程に小さい。したがって、ここでは、第2のマスク3の変形量について注目すればよい。 When film formation is being performed, the film formation mask 1 is heated by plasma, and the temperature of the film formation mask 1 rises. Therefore, when an ITO film is deposited on the second mask 3 by film formation, the linear expansion coefficient of ITO is about 7.2 × 10 −6 / ° C., whereas the second mask 3 Since the linear expansion coefficient of polyimide is about 3 × 10 −6 / ° C., the second mask 3 has a convex shape as shown in FIG. 7 due to the difference in linear expansion coefficient with the transparent conductive film 29 made of ITO. Deform. The amount of deformation increases as the film thickness of the transparent conductive film 29 increases. That is, the gap between the first and second masks 2 and 3 is increased. Therefore, it is determined whether or not the deformation amount of the second mask 3 exceeds the allowable range based on the increase amount (Δt′−Δt) of the gap dimension between the first and second masks 2 and 3 (step). S7). The transparent conductive film 29 deposited on the edge of the first opening pattern 4 of the first mask 2 is separated from the transparent conductive film 29 deposited on the edge of the adjacent first opening pattern 4. The deformation of the film 5 based on the difference in linear expansion coefficient between the film 5 of the first mask 2 and the transparent conductive film 29 deposited thereon is so small as to be negligible. Therefore, attention should be paid to the deformation amount of the second mask 3 here.
 詳細には、上記算出された上記隙間の増加量(Δt′-Δt)がメモリに記憶された許容値の判定基準値(閾値)と比較される。そして。隙間の増加量(Δt′-Δt)が閾値よりも小さいときには、第2のマスク3の変形量は許容範囲内であると判断される(ステップS7において“NO”判定)。 More specifically, the calculated increase amount (Δt′−Δt) of the gap is compared with a determination reference value (threshold value) of an allowable value stored in the memory. And then. When the increase amount of the gap (Δt′−Δt) is smaller than the threshold value, it is determined that the deformation amount of the second mask 3 is within the allowable range (“NO” determination in step S7).
 ガラス基板11への電極28の形成が終了すると、高周波電源19がOFFされ、前記ガス導入バルブが閉じられてArガスの導入が停止される。また、前記排気バルブが開かれて真空チャンバー13内のガスが排気される。 When the formation of the electrode 28 on the glass substrate 11 is completed, the high frequency power source 19 is turned off, the gas introduction valve is closed, and the introduction of Ar gas is stopped. Further, the exhaust valve is opened, and the gas in the vacuum chamber 13 is exhausted.
 そして、ステップS7において、第2のマスク3の変形量が許容範囲内であると判断され、“NO”判定となった場合には、マスクローディング機構18が起動されて成膜マスク1を待機位置まで移動させる。さらに、前記ゲートバルブが開かれ、基板ローディング機構が起動してタッチパネル基板27が真空チャンバー13内から前記前室まで運ばれ(ステップS8)、前記カセットに収容される。そして、カセット内の別のガラス基板11が基板ローディング機構によって真空チャンバー13内に搬送されて(ステップS9)、基板ホルダー15上に設置される(ステップS2)。 In step S7, when it is determined that the deformation amount of the second mask 3 is within the allowable range and the determination is “NO”, the mask loading mechanism 18 is activated and the film formation mask 1 is placed in the standby position. To move. Further, the gate valve is opened, the substrate loading mechanism is activated, and the touch panel substrate 27 is carried from the vacuum chamber 13 to the front chamber (step S8) and accommodated in the cassette. Then, another glass substrate 11 in the cassette is transferred into the vacuum chamber 13 by the substrate loading mechanism (step S9) and placed on the substrate holder 15 (step S2).
 そして、前述と同様にして、成膜マスク1がガラス基板11上に密着(ステップS3)された後、第1及び第2のマスク2,3間の隙間寸法が計測される。なお、この段階における隙間寸法の計測は省略してもよい。 Then, in the same manner as described above, after the deposition mask 1 is brought into close contact with the glass substrate 11 (step S3), the gap dimension between the first and second masks 2 and 3 is measured. Note that the measurement of the gap dimension at this stage may be omitted.
 次に、前述と同様にして真空チャンバー13内にArガスが導入され、成膜が開始される(ステップS5)。そして、成膜実行中に、前述と同様にして第1及び第2のマスク2,3の隙間寸法が計測される。さらに、この計測値は、制御用PCのメモリに最初に記憶された隙間寸法値Δtと減算処理(ステップS6)され、メモリに保存された閾値と比較される(ステップS7)。ここで、上記減算処理結果が閾値を超えているときには(ステップS7において“YES”判定)、第2のマスク3の変形量が許容値を超えていると判断される。 Next, Ar gas is introduced into the vacuum chamber 13 in the same manner as described above, and film formation is started (step S5). During film formation, the gap size between the first and second masks 2 and 3 is measured in the same manner as described above. Further, this measured value is subtracted from the gap size value Δt initially stored in the memory of the control PC (step S6) and compared with a threshold value stored in the memory (step S7). Here, when the result of the subtraction process exceeds the threshold value ("YES" determination in step S7), it is determined that the deformation amount of the second mask 3 exceeds the allowable value.
 このように、第2のマスク3の変形量が許容値を超えていると判断されたときには、成膜が終了すると、真空チャンバー13内を排気すると共に、タッチパネル基板27を搬出(ステップS10)する。そして、真空チャンバー13と前記前室を仕切る前記ゲートバルブを閉じた状態で真空チャンバー13内の真空を破って大気圧にし、チャンバーが開かれる。さらに、マスクホルダー17に保持された成膜マスク1の第2のマスク3を剥離して除いた後、別の第2のマスク3を取り付ける(ステップS11)。そして、前述と同様にして真空チャンバー13内の真空引きを行った後、新たな基板11を搬送して(ステップS9)、基板ホルダー15に設置し(ステップS2)、該新たなガラス基板11への成膜を開始する。 As described above, when it is determined that the deformation amount of the second mask 3 exceeds the allowable value, when the film formation is completed, the inside of the vacuum chamber 13 is evacuated and the touch panel substrate 27 is carried out (step S10). . Then, with the gate valve separating the vacuum chamber 13 and the front chamber closed, the vacuum in the vacuum chamber 13 is broken to atmospheric pressure, and the chamber is opened. Further, after peeling off and removing the second mask 3 of the film formation mask 1 held by the mask holder 17, another second mask 3 is attached (step S11). Then, after evacuating the vacuum chamber 13 in the same manner as described above, the new substrate 11 is transported (step S9), placed on the substrate holder 15 (step S2), and then onto the new glass substrate 11. The film formation is started.
 本発明によれば、メインマスクとしての第1のマスク2上にサブマスクとしての第2のマスク3を設置しているので、成膜材料は、主に第2のマスク3上に堆積する。したがって、成膜材料の堆積により変形するのは、主として第2のマスク3であり、第1のマスク2のフィルム5の変形を抑制することができる。即ち、第2のマスク3の開口パターン10の加工精度及び位置精度は、第1のマスク2の開口パターン4のそれよりも粗くてよく、また第1及び第2のマスク2,3が水平方向に互いに自由であるため、第2のマスク3が若干変形しても第1のマスク2の開口パターン4の位置精度に対する影響は少ない。それ故、基板11上に成膜される薄膜パターンの位置精度を向上することができる。なお、第2のマスク3は、第1のマスク2上に剥離自在に設置されているので、第2のマスク3が予め設定した値以上に変形したときには取り替えることができる。したがって、成膜マスク1は、第1のマスク2の第1の開口パターン4の位置精度を長期に亘って維持して長時間使用することができる。また、第2のマスク3の開口パターン10の加工精度は、第1のマスク2の開口パターン4の加工精度より粗くてもよいため、第2のマスク3の製造コストは第1のマスク2の製造コストよりも低い。したがって、成膜マスク1のコストを低減することができる。 According to the present invention, since the second mask 3 as the submask is provided on the first mask 2 as the main mask, the film forming material is mainly deposited on the second mask 3. Therefore, it is mainly the second mask 3 that is deformed by the deposition of the film forming material, and deformation of the film 5 of the first mask 2 can be suppressed. That is, the processing accuracy and position accuracy of the opening pattern 10 of the second mask 3 may be coarser than that of the opening pattern 4 of the first mask 2, and the first and second masks 2 and 3 are arranged in the horizontal direction. Therefore, even if the second mask 3 is slightly deformed, the influence on the positional accuracy of the opening pattern 4 of the first mask 2 is small. Therefore, the positional accuracy of the thin film pattern formed on the substrate 11 can be improved. Since the second mask 3 is detachably installed on the first mask 2, it can be replaced when the second mask 3 is deformed beyond a preset value. Therefore, the deposition mask 1 can be used for a long time while maintaining the positional accuracy of the first opening pattern 4 of the first mask 2 over a long period of time. Further, since the processing accuracy of the opening pattern 10 of the second mask 3 may be coarser than the processing accuracy of the opening pattern 4 of the first mask 2, the manufacturing cost of the second mask 3 is the same as that of the first mask 2. Lower than manufacturing cost. Therefore, the cost of the film formation mask 1 can be reduced.
 上記実施形態においては、第2のマスク3の変形量が予め定められた閾値を超えたときに、第2のマスク3の交換時期を判断する場合について説明したが、成膜マスク1の使用回数又は成膜時間により交換時期を判断してもよい。この場合、予め実験により、成膜マスク1の使用回数又は成膜時間と第2のマスク3の変形量との関係を調べておくとよい。 In the above embodiment, the case where the replacement time of the second mask 3 is determined when the deformation amount of the second mask 3 exceeds a predetermined threshold has been described. Alternatively, the replacement time may be determined based on the film formation time. In this case, the relationship between the number of times the film formation mask 1 is used or the film formation time and the deformation amount of the second mask 3 may be examined in advance through experiments.
 また、上記実施形態においては、第1及び第2のマスク2,3が共に樹脂製のフィルムである場合について説明したが、特に第2のマスク3は、磁性又は非磁性の金属フィルム又は金属シートで形成されたものであってもよい。更に、第2のマスク3の外周縁には、第1のマスク2と同様に、複数の第2の開口パターン10を内包する大きさの開口を有する枠状の金属フレームが設けられてもよい。 Moreover, in the said embodiment, although the case where both the 1st and 2nd masks 2 and 3 were resin-made films was demonstrated, especially the 2nd mask 3 is a magnetic or nonmagnetic metal film or metal sheet. It may be formed by. Further, similarly to the first mask 2, a frame-shaped metal frame having openings of a size that includes the plurality of second opening patterns 10 may be provided on the outer peripheral edge of the second mask 3. .
 さらに、上記実施形態においては、薄膜がITOの透明導電膜29である場合について説明したが、本発明はこれに限られず、有機又は無機材料のいずれの薄膜であってもよい。 Furthermore, although the case where the thin film is the ITO transparent conductive film 29 has been described in the above embodiment, the present invention is not limited to this, and any thin film of an organic or inorganic material may be used.
 さらに、上記実施形態においては、インライン式の成膜装置について説明したが、本発明はバッチ式の成膜装置であってもよい。 Furthermore, although the in-line type film forming apparatus has been described in the above embodiment, the present invention may be a batch type film forming apparatus.
 そして、以上の説明においては、成膜装置がスパッタリング装置である場合について述べたが、本発明はこれに限られず、成膜装置は蒸着装置であってもよい。 And in the above description, although the case where the film-forming apparatus was a sputtering apparatus was described, this invention is not limited to this, The film-forming apparatus may be a vapor deposition apparatus.
 1…成膜マスク
 2…第1のマスク
 3…第2のマスク
 4…第1の開口パターン
 5…フィルム
 8…開口部
 10…第2の開口パターン
 11…基板
 13…真空チャンバー
 15…基板ホルダー
 17…マスクホルダー
 18…マスクローディング機構
 21…第1のセンサ
 22…第2のセンサ
 27…タッチパネル基板
 28…透明電極
 29…透明導電膜
DESCRIPTION OF SYMBOLS 1 ... Film formation mask 2 ... 1st mask 3 ... 2nd mask 4 ... 1st opening pattern 5 ... Film 8 ... Opening part 10 ... 2nd opening pattern 11 ... Substrate 13 ... Vacuum chamber 15 ... Substrate holder 17 ... Mask holder 18 ... Mask loading mechanism 21 ... First sensor 22 ... Second sensor 27 ... Touch panel substrate 28 ... Transparent electrode 29 ... Transparent conductive film

Claims (12)

  1.  基板上に成膜される薄膜パターンと形状寸法の同じ複数の第1の開口パターンを形成した第1のマスクと、
     前記複数の第1の開口パターンのうち少なくとも一つを内包する大きさの第2の開口パターンを形成し、前記第1のマスク上に、該第1のマスクに対して非拘束状態となるように重ねて設置される第2のマスクと、
    を備えて構成した成膜マスク。
    A first mask formed with a plurality of first opening patterns having the same shape and dimension as a thin film pattern formed on a substrate;
    A second opening pattern having a size including at least one of the plurality of first opening patterns is formed, and the first mask is brought into an unrestrained state on the first mask. A second mask placed on top of
    A film-formation mask comprising:
  2.  前記第1のマスクに、前記第2のマスクの変形量を計測するための貫通する開口部を前記第1の開口パターンとは別に設けたことを特徴とする請求項1記載の成膜マスク。 2. The film forming mask according to claim 1, wherein an opening that penetrates the first mask for measuring the deformation amount of the second mask is provided separately from the first opening pattern.
  3.  少なくとも前記第1のマスクは、樹脂製フィルムであることを特徴とする請求項1又は2記載の成膜マスク。 3. The film-forming mask according to claim 1, wherein at least the first mask is a resin film.
  4.  真空チャンバー内に、
     基板上に成膜される薄膜パターンと形状寸法の同じ複数の第1の開口パターンを形成した第1のマスクと、前記複数の第1の開口パターンのうち少なくとも一つを内包する大きさの第2の開口パターンを形成した第2のマスクと、を両者間で非拘束状態となるように重ねて備えた成膜マスクの前記第1のマスクが前記基板側となるように保持するマスクホルダーと、
     前記マスクホルダーを移動させて基板ホルダーに保持された前記基板の成膜面に前記第1のマスクを密着させるマスクローディング機構と、
    を備えて構成した成膜装置。
    In the vacuum chamber,
    A first mask formed with a plurality of first opening patterns having the same shape and dimensions as a thin film pattern formed on a substrate; and a first mask having a size including at least one of the plurality of first opening patterns. A mask holder for holding the first mask of the film-formation mask provided so as to be in an unconstrained state between the second mask and the second mask on which the two opening patterns are formed so as to be on the substrate side; ,
    A mask loading mechanism for moving the mask holder to bring the first mask into close contact with the film forming surface of the substrate held by the substrate holder;
    A film forming apparatus configured to include:
  5.  前記基板は、透明基板であり、
     前記第1のマスクは、前記第2のマスクの変形量を計測するための貫通する開口部を前記第1の開口パターンとは別に設けており、
     前記基板ホルダーは、前記第1のマスクの前記開口部を通して前記第2のマスクの前記基板側の面の位置を計測するための第1のセンサと、前記第1のマスクの前記基板側の面の位置を計測するための第2のセンサとを内蔵している、
    ことを特徴とする請求項4記載の成膜装置。
    The substrate is a transparent substrate;
    The first mask is provided with a penetrating opening for measuring the deformation amount of the second mask separately from the first opening pattern,
    The substrate holder includes a first sensor for measuring the position of the substrate-side surface of the second mask through the opening of the first mask, and the substrate-side surface of the first mask. And a second sensor for measuring the position of
    The film forming apparatus according to claim 4.
  6.  前記成膜室とゲートバルブにより仕切って真空引き可能な前室を設けたことを特徴とする請求項4又は5記載の成膜装置。 6. A film forming apparatus according to claim 4, further comprising a front chamber that can be evacuated by being partitioned by the film forming chamber and a gate valve.
  7.  基板上に成膜される薄膜パターンと形状寸法の同じ複数の第1の開口パターンを形成した第1のマスクと、前記複数の第1の開口パターンのうち少なくとも一つを内包する大きさの第2の開口パターンを形成した第2のマスクと、を両者間で非拘束状態となるように重ねて備えた成膜マスクの前記第1のマスク側を前記基板の成膜面に密着させる第1ステップと、
     前記第1のマスクの前記第1の開口パターンを介して前記基板の成膜面に前記薄膜パターンを成膜する第2ステップと、
     複数枚の基板に対して前記第1及び第2ステップを実施した後、前記第1のマスクから前記第2のマスクを剥離する第3ステップと、
    を行うことを特徴とする成膜方法。
    A first mask formed with a plurality of first opening patterns having the same shape and dimensions as a thin film pattern formed on a substrate; and a first mask having a size including at least one of the plurality of first opening patterns. The first mask side of the film forming mask provided with the second mask formed with the two opening patterns so as to be in an unconstrained state between them is adhered to the film forming surface of the substrate. Steps,
    A second step of depositing the thin film pattern on the deposition surface of the substrate through the first opening pattern of the first mask;
    A third step of peeling the second mask from the first mask after performing the first and second steps on a plurality of substrates;
    A film forming method characterized in that:
  8.  前記第3ステップは、透明な前記基板の前記成膜面とは反対側に備えた第1のセンサにより、前記第1のマスクに前記第1の開口パターンとは別に形成した開口部を通して前記第2のマスクの前記基板側の面の位置を計測し、前記第1のセンサに隣接して備えた第2のセンサにより前記第1のマスクの前記基板側の面の位置を計測し、両計測値に基づいて算出した前記第2のマスクの変形量が予め定められた値を超えると前記第1のマスクから前記第2のマスクを剥離することを特徴とする請求項7記載の成膜方法。 In the third step, the first sensor provided on the side opposite to the film-forming surface of the transparent substrate passes through the opening formed in the first mask separately from the first opening pattern. The position of the substrate side surface of the second mask is measured, the position of the surface of the first mask on the substrate side is measured by a second sensor provided adjacent to the first sensor, and both measurements are performed. 8. The film forming method according to claim 7, wherein the second mask is peeled off from the first mask when the deformation amount of the second mask calculated based on the value exceeds a predetermined value. .
  9.  少なくとも前記第1のマスクは、樹脂製フィルムであることを特徴とする請求項7又は8記載の成膜方法。 9. The film forming method according to claim 7, wherein at least the first mask is a resin film.
  10.  前記薄膜パターンは、透明なガラス基板上に形成された透明導電膜であることを特徴とする請求項7又は8記載の成膜方法。 The film forming method according to claim 7 or 8, wherein the thin film pattern is a transparent conductive film formed on a transparent glass substrate.
  11.  前記薄膜パターンは、透明なガラス基板上に形成された透明導電膜であることを特徴とする請求項9記載の成膜方法。 10. The film forming method according to claim 9, wherein the thin film pattern is a transparent conductive film formed on a transparent glass substrate.
  12.  請求項7記載の成膜方法を使用して、透明なガラス基板上に透明導電膜からなる電極を形成したタッチパネル基板。
     
    A touch panel substrate in which an electrode made of a transparent conductive film is formed on a transparent glass substrate using the film forming method according to claim 7.
PCT/JP2014/073761 2013-09-09 2014-09-09 Film formation mask, film formation device, film formation method, and touch panel substrate WO2015034097A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480049663.0A CN105531394B (en) 2013-09-09 2014-09-09 Film formation mask, film formation device, film build method and touch panel substrate
KR1020167002711A KR20160055126A (en) 2013-09-09 2014-09-09 Film formation mask, film formation device, film formation method, and touch panel substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-186711 2013-09-09
JP2013186711A JP6142393B2 (en) 2013-09-09 2013-09-09 Film formation mask, film formation apparatus, film formation method, and touch panel substrate

Publications (1)

Publication Number Publication Date
WO2015034097A1 true WO2015034097A1 (en) 2015-03-12

Family

ID=52628554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073761 WO2015034097A1 (en) 2013-09-09 2014-09-09 Film formation mask, film formation device, film formation method, and touch panel substrate

Country Status (5)

Country Link
JP (1) JP6142393B2 (en)
KR (1) KR20160055126A (en)
CN (1) CN105531394B (en)
TW (1) TW201522677A (en)
WO (1) WO2015034097A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056656A1 (en) * 2015-09-30 2017-04-06 フォックスコン日本技研株式会社 Method for producing resin film having fine pattern, method for producing organic el display device, base film for forming fine pattern, and resin film provided with support member
WO2017119153A1 (en) * 2016-01-06 2017-07-13 鴻海精密工業股▲ふん▼有限公司 Vapor deposition mask and manufacturing method therefor, and method for manufacturing organic el display device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106367716B (en) * 2015-07-24 2020-01-07 上海和辉光电有限公司 Mask plate and manufacturing method of display panel
WO2017170854A1 (en) 2016-03-31 2017-10-05 大日本住友製薬株式会社 Film-coated tablet having high chemical stability of active ingredient
CN108461379A (en) * 2017-02-21 2018-08-28 上海和辉光电有限公司 The production method of mask set and display panel
JP6559905B2 (en) * 2017-05-23 2019-08-14 株式会社オプトニクス精密 Film forming method and film forming apparatus
CN108277455B (en) * 2018-04-25 2020-11-17 京东方科技集团股份有限公司 Mask plate assembly and preparation method thereof
KR102634162B1 (en) * 2018-10-30 2024-02-05 캐논 톡키 가부시키가이샤 Mask replacement timing determination apparatus, film forming apparatus, mask replacement timing determination method, film forming method, and manufacturing method of electronic device
KR20210017943A (en) * 2019-08-09 2021-02-17 캐논 톡키 가부시키가이샤 Film-forming system, method for locating error portion of film-forming system, computer readable recording medium, computer program recorded in recording medium
CN111636048B (en) * 2020-05-12 2021-05-07 清华大学 Mask and manufacturing method thereof, and manufacturing method of two-dimensional material film pattern
CN111769214B (en) * 2020-06-22 2022-10-04 武汉华星光电半导体显示技术有限公司 Mask plate and manufacturing method thereof
CN113093944A (en) * 2021-04-19 2021-07-09 江西展耀微电子有限公司 Circuit, preparation method thereof and touch screen

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143265U (en) * 1981-03-02 1982-09-08
JPS62295310A (en) * 1986-06-13 1987-12-22 松下電器産業株式会社 Making of transparent conducting film
JPS6445160U (en) * 1987-09-05 1989-03-17
JP2001135704A (en) * 1999-11-09 2001-05-18 Sharp Corp Substrate treatment apparatus and transfer control method for substrate transfer tray
JP2005163099A (en) * 2003-12-02 2005-06-23 Seiko Epson Corp Mask, method of producing mask, method of producing organic el apparatus, and organic el apparatus
JP2006063361A (en) * 2004-08-25 2006-03-09 Daishinku Corp Film deposition mask device
US20060110904A1 (en) * 2004-11-23 2006-05-25 Advantech Global, Ltd Multiple shadow mask structure for deposition shadow mask protection and method of making and using same
JP2012111985A (en) * 2010-11-22 2012-06-14 Toppan Printing Co Ltd Vapor deposition mask and thin film pattern-forming method using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100534580B1 (en) * 2003-03-27 2005-12-07 삼성에스디아이 주식회사 Deposition mask for display device and Method for fabricating the same
CN102945788B (en) * 2011-08-16 2015-04-15 北京北方微电子基地设备工艺研究中心有限责任公司 Shielding device and semiconductor processing equipment using same
JP5288074B2 (en) * 2012-01-12 2013-09-11 大日本印刷株式会社 Method for manufacturing multi-sided deposition mask, multi-sided deposition mask obtained thereby, and method for producing organic semiconductor element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143265U (en) * 1981-03-02 1982-09-08
JPS62295310A (en) * 1986-06-13 1987-12-22 松下電器産業株式会社 Making of transparent conducting film
JPS6445160U (en) * 1987-09-05 1989-03-17
JP2001135704A (en) * 1999-11-09 2001-05-18 Sharp Corp Substrate treatment apparatus and transfer control method for substrate transfer tray
JP2005163099A (en) * 2003-12-02 2005-06-23 Seiko Epson Corp Mask, method of producing mask, method of producing organic el apparatus, and organic el apparatus
JP2006063361A (en) * 2004-08-25 2006-03-09 Daishinku Corp Film deposition mask device
US20060110904A1 (en) * 2004-11-23 2006-05-25 Advantech Global, Ltd Multiple shadow mask structure for deposition shadow mask protection and method of making and using same
JP2012111985A (en) * 2010-11-22 2012-06-14 Toppan Printing Co Ltd Vapor deposition mask and thin film pattern-forming method using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056656A1 (en) * 2015-09-30 2017-04-06 フォックスコン日本技研株式会社 Method for producing resin film having fine pattern, method for producing organic el display device, base film for forming fine pattern, and resin film provided with support member
JPWO2017056656A1 (en) * 2015-09-30 2018-05-24 鴻海精密工業股▲ふん▼有限公司 Manufacturing method of resin film having fine pattern, manufacturing method of organic EL display device, substrate film for forming fine pattern and resin film with support member
CN108474100A (en) * 2015-09-30 2018-08-31 鸿海精密工业股份有限公司 The manufacturing method of resin film with fine pattern and the manufacturing method of organic EL display device and fine pattern formation base film and the resin film with support member
JP2019090115A (en) * 2015-09-30 2019-06-13 鴻海精密工業股▲ふん▼有限公司Hon Hai Precision Industry Co.,Ltd. Manufacturing method of resin film having fine pattern, manufacturing method of organic el display device, base material film for fine pattern formulation and resin film on support member
JP2019090114A (en) * 2015-09-30 2019-06-13 鴻海精密工業股▲ふん▼有限公司Hon Hai Precision Industry Co.,Ltd. Manufacturing method of resin film having fine pattern, manufacturing method of organic el display device, base material film for fine pattern formulation and resin film on support member
JP2019090116A (en) * 2015-09-30 2019-06-13 鴻海精密工業股▲ふん▼有限公司Hon Hai Precision Industry Co.,Ltd. Manufacturing method of resin film having fine pattern, manufacturing method of organic el display device, base material film for fine pattern formulation and resin film on support member
JP2020111832A (en) * 2015-09-30 2020-07-27 鴻海精密工業股▲ふん▼有限公司Hon Hai Precision Industry Co.,Ltd. Method of manufacturing resin film with fine pattern, and method of manufacturing organic el display device
US10840449B2 (en) 2015-09-30 2020-11-17 Hon Hai Precision Industry Co., Ltd. Method for producing resin film having fine pattern, method for producing organic el display device, base film for forming fine pattern, and resin film provided with supporting member
WO2017119153A1 (en) * 2016-01-06 2017-07-13 鴻海精密工業股▲ふん▼有限公司 Vapor deposition mask and manufacturing method therefor, and method for manufacturing organic el display device
JPWO2017119153A1 (en) * 2016-01-06 2018-05-24 鴻海精密工業股▲ふん▼有限公司 Vapor deposition mask, manufacturing method thereof, and manufacturing method of organic EL display device
US10580985B2 (en) 2016-01-06 2020-03-03 Hon Hai Precision Industry Co., Ltd. Deposition mask, method for manufacturing thereof, and method for manufacturing organic EL display device

Also Published As

Publication number Publication date
TW201522677A (en) 2015-06-16
KR20160055126A (en) 2016-05-17
CN105531394B (en) 2019-04-30
JP6142393B2 (en) 2017-06-07
CN105531394A (en) 2016-04-27
JP2015052162A (en) 2015-03-19

Similar Documents

Publication Publication Date Title
JP6142393B2 (en) Film formation mask, film formation apparatus, film formation method, and touch panel substrate
JP6168944B2 (en) Deposition mask
US9054147B2 (en) Alignment method, alignment apparatus, and organic electroluminescent (EL) element manufacturing apparatus
JP2008526026A5 (en)
JP2008526026A (en) Method and structure for reducing byproduct deposition in plasma processing systems
JP2004228355A (en) Insulating film substrate, method and apparatus for manufacturing the same, electro-optical device and method for manufacturing the same
KR20060084804A (en) Device and method of forming film
TW201602374A (en) Deposition mask, method for manufacturing deposition mask and method for manufacturing touch panel
JP7225275B2 (en) Deposition equipment
JP7069280B2 (en) Film forming equipment, film forming method, and manufacturing method of electronic devices
Decker et al. Novel low pressure sputtering source and improved vacuum deposition of small patterned features using precision shadow masks
KR101704164B1 (en) Up and down device, method and apparatus for forming an EMI-shielding layer using the same
TWI815945B (en) Multicathode deposition system
KR102217879B1 (en) Method for processing a substrate, apparatus for vacuum processing, and vacuum processing system
JP2006089793A (en) Film deposition system
JP5320552B2 (en) Proximity exposure apparatus, mask holding method of proximity exposure apparatus, and display panel substrate manufacturing method
JP5239218B2 (en) Manufacturing method of color filter
KR101293129B1 (en) Sputtering apparatus
JPH10265953A (en) Sputter film, liquid crystal element and their production
TWI632246B (en) Chamber pasting method in a pvd chamber for reactive re-sputtering dielectric material
JP7320034B2 (en) Substrate transfer device and film forming device
JP6956244B2 (en) Film formation equipment and film formation method
US20220195578A1 (en) Mask assembly and method of manufacturing the same
JP2003160854A (en) Method for preventing development of particles in sputtering apparatus, sputtering method, sputtering apparatus and member for coating
JP2020190455A (en) Detection device and vacuum processing apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480049663.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167002711

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14843130

Country of ref document: EP

Kind code of ref document: A1