WO2015032293A1 - 制冷、制热蓄液方法及制冷、制热防霜方法和空调系统 - Google Patents

制冷、制热蓄液方法及制冷、制热防霜方法和空调系统 Download PDF

Info

Publication number
WO2015032293A1
WO2015032293A1 PCT/CN2014/085557 CN2014085557W WO2015032293A1 WO 2015032293 A1 WO2015032293 A1 WO 2015032293A1 CN 2014085557 W CN2014085557 W CN 2014085557W WO 2015032293 A1 WO2015032293 A1 WO 2015032293A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
indoor heat
expansion valve
liquid
way valve
Prior art date
Application number
PCT/CN2014/085557
Other languages
English (en)
French (fr)
Inventor
何振健
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2015032293A1 publication Critical patent/WO2015032293A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/021Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
    • F25B2313/0211Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit the auxiliary heat exchanger being only used during defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures

Definitions

  • the present invention relates to the field of air-conditioning manufacturing technology, and more particularly to an air-conditioning system, a refrigeration storage method, a heating storage method, a refrigeration anti-frost method, and a heating and frost-proof method.
  • the first object of the present invention is to provide an air conditioning system, the structural design of which can effectively adjust the amount of refrigerant circulating in the air conditioning system according to the load condition of the air conditioner, and the present invention also provides The above-described air conditioning system refrigeration storage method, heating and storage method, refrigeration and frost prevention method, and heating and frost prevention method.
  • the present invention provides the following technical solutions:
  • An air conditioning system comprising:
  • An expansion valve connected in series to the first line
  • a four-way valve connected to the input end and the output end of the compressor, the indoor heat exchanger and the outdoor heat exchanger; further comprising:
  • phase change heat accumulator wrapped on an outer wall of the compressor, and the phase change regenerator has a first liquid passing port and a second liquid passing port;
  • One end is connected to the first liquid storage line between the expansion valve and the outdoor heat exchanger on the first pipeline, and the other end of the first liquid storage pipeline is connected to the first liquid outlet And the first two-way valve is serially connected to the first liquid storage pipeline;
  • the second liquid supply port is further provided with a pressure sensor for measuring the pressure in the phase change heat accumulator.
  • a bypass line having one end in communication with the output end of the compressor, the other end of the bypass line being connected to the expansion valve on the first line and the outdoor heat exchanger
  • the second two-way valve and the throttling capillary for throttling and depressurization are connected in series.
  • the step B further includes:
  • control four-way valve is switched to the input end of the compressor and connected to the indoor heat exchanger, the output end of the compressor is connected to the outdoor heat exchanger, the first two-way valve is closed, and the three-way valve is controlled to the expansion valve
  • the indoor heat exchanger is connected and the expansion valve and the indoor heat exchanger are not connected to the second liquid supply port.
  • step C is specifically:
  • C 2 The first two-way valve is controlled to be closed, and the opening of the expansion valve is restored to P 0 .
  • the method further comprises the steps of:
  • step C and D further comprise the step of maintaining the current state X 1 (min).
  • step F is further included: maintaining the current state X 1 (min).
  • the first low load state is specifically when the indoor temperature is lower than A 1 ° C and the outdoor temperature is lower than B 1 ° C, or the difference between the indoor temperature and the set temperature is lower than C 1 ° C and the operating frequency of the compressor When it is less than D 1 (H Z ).
  • the detection of the load state of the air conditioning system is not performed during the liquid storage or discharge process.
  • b detecting whether the air conditioning system is in the second low load state, if yes, performing liquid storage, that is, controlling the first two-way valve to open, controlling the three-way valve to the expansion valve to be connected with the indoor heat exchanger, and the expansion valve and the second liquid passing port Not connected, the indoor heat exchanger is connected to the second liquid passing port, and the refrigerant enters the phase change heat accumulator through the first liquid storage circuit and the second liquid storage circuit;
  • the step b further includes:
  • control four-way valve is switched to the input end of the compressor and connected to the outdoor heat exchanger, the compressor The output end is connected to the indoor heat exchanger, the first two-way valve is closed, and the three-way valve is controlled to the expansion valve and the indoor heat exchanger is connected, and the expansion valve and the indoor heat exchanger are not connected to the second liquid supply port.
  • the step c is specifically:
  • the method further comprises the steps of:
  • d detecting whether the air conditioning system is in a non-second low load state, if yes, discharging the liquid, that is, controlling the first two-way valve to open, controlling the three-way valve to the expansion valve and the indoor heat exchanger, and the expansion valve and the second liquid
  • the port is not connected, the indoor heat exchanger is not connected to the second liquid passing port, and the refrigerant enters the outdoor heat exchanger from the phase change heat accumulator through the first heat storage circuit
  • steps c and d maintaining the current state X 2 (min).
  • step f is further included: maintaining current state X 2 (min).
  • the second low load state is specifically when the indoor temperature is higher than A 2 ° C and the outdoor temperature is higher than B 2 ° C, or the difference between the indoor temperature and the set temperature is lower than C 2 ° C.
  • the detection of the load state of the air conditioning system is not performed during the liquid storage or discharge process.
  • the first frost-proof state is specifically: the temperature of the indoor heat exchanger is continuously X 4 (min) is not more than A 5 ° C, the temperature is recorded every X 5 (min) and the temperature recorded later is lower than the former. , or the temperature of the indoor heat exchanger is not more than A 6 °C and the temperature is reduced by more than A 7 °C during the X 5 (min) period.
  • the step S2 further includes: if not, controlling the first two-way valve to be closed, controlling the three-way valve to the expansion valve to be connected to the indoor heat exchanger, and the expansion valve is not connected to the second liquid supply port, the indoor heat exchanger Not connected to the second liquid port.
  • S2 Detect whether the air conditioning system is in the second state of anti-frost, and if so, perform anti-frost, that is, control the first two-way valve to open, control the three-way valve to the expansion valve and the indoor heat exchanger, and the expansion valve and the second liquid
  • the port is not connected, the indoor heat exchanger is connected to the second liquid passing port, and the refrigerant enters the outdoor heat exchanger through the first liquid storage circuit
  • the second frost-removing state is specifically: the temperature of the outdoor heat exchanger is continuously X 7 (min) is not more than A 10 ° C, the temperature is recorded every X 8 (min) and the recorded temperature is lower than the former. , or the temperature of the indoor heat exchanger is not more than A 11 °C and the temperature is reduced by more than A 12 °C during the X 9 (min) period.
  • the step s2 further includes: if not, controlling the first two-way valve to be closed, controlling the three-way valve to the expansion valve to be connected to the indoor heat exchanger, and the expansion valve and the second liquid supply port are not connected, the indoor heat exchanger Not connected to the second liquid port.
  • the air conditioning system comprises an indoor heat exchanger, an outdoor heat exchanger, a first pipeline connecting the indoor heat exchanger and the outdoor heat exchanger, an expansion valve serially connected to the first pipeline, and used for compressing the refrigerant vapor And a four-way valve connected to the input end and the output end of the compressor, the indoor heat exchanger and the outdoor heat exchanger; and the phase change heat accumulator, the first liquid storage line and the second liquid storage line
  • the phase change regenerator is wrapped on the outer wall of the compressor, and the phase change regenerator has a first liquid passing port and a second liquid passing port.
  • One end of the first liquid storage line is connected between the expansion valve on the first line and the outdoor heat exchanger, the other end is connected to the first liquid supply port, and the first two-way valve is connected in series with the first liquid storage line.
  • One end of the second liquid storage line is connected between the expansion valve on the first line and the indoor heat exchanger through a three-way valve, and the other end is connected to the second liquid supply port, and A pressure sensor for measuring the pressure in the phase change regenerator is also disposed on the second liquid storage line.
  • the first two-way valve can be opened, and the three-way valve is controlled to connect the expansion valve to the indoor heat exchanger, and the expansion valve and the second fluid are connected.
  • the port is not connected, and the indoor heat exchanger is connected to the second liquid passing port.
  • the pressure in the phase change heat accumulator is less than the pressure in the first pipe, so that the refrigerant enters through the first liquid storage circuit and the second liquid storage circuit.
  • the phase change heat accumulator performs liquid storage, that is, when the air conditioner is under low load operation, a part of the refrigerant is stored in the phase change heat accumulator, thereby avoiding the refrigerant evaporation not completely affecting the reliability operation of the compressor, and realizing the load according to the air conditioner. Adjust the amount of refrigerant circulating in the air conditioning system.
  • the low load state includes a first low load state when the air conditioner is in a cooling state and a second low load state when the air conditioner is in a heating state.
  • the present invention also provides a refrigeration liquid storage method for an air conditioning system as described above, comprising the steps of:
  • the first two-way valve is controlled to be opened, and the three-way valve is controlled to be connected to the indoor heat exchanger and The expansion valve is not connected to the second liquid passing port, and the indoor heat exchanger is connected to the second liquid passing port.
  • the pressure in the phase change heat accumulator is less than the pressure in the first pipe, so that the refrigerant passes through the first liquid storage circuit.
  • the second liquid storage circuit enters the phase change heat accumulator to store the liquid, and a part of the refrigerant is stored in the phase change heat accumulator, thereby avoiding the refrigerant evaporation not completely affecting the reliability operation of the compressor, and realizing the load according to the air conditioner Adjust the amount of refrigerant circulating in the air conditioning system.
  • the present invention also provides a heating storage method for an air conditioning system as described above, comprising the steps of:
  • b detecting whether the air conditioning system is in the second low load state, if yes, performing liquid storage, that is, controlling the first two-way valve to open, controlling the three-way valve to the expansion valve to be connected with the indoor heat exchanger, and the expansion valve and the second liquid passing port Not connected, the indoor heat exchanger is connected to the second liquid passing port, and the refrigerant enters the phase change heat accumulator through the first liquid storage circuit and the second liquid storage circuit;
  • the first two-way valve is controlled to open, and the three-way valve is controlled to be connected to the indoor heat exchanger.
  • the expansion valve is not connected to the second liquid passing port, and the indoor heat exchanger is connected to the second liquid passing port.
  • the pressure in the phase change heat accumulator is less than the pressure in the first pipe, so that the refrigerant passes through the first liquid storage.
  • the circuit and the second liquid storage circuit enter the phase change heat accumulator to store the liquid, and a part of the refrigerant is stored in the phase change heat accumulator, thereby avoiding the refrigerant evaporation not completely affecting the reliability operation of the compressor, and realizing the load according to the air conditioner.
  • the working condition adjusts the amount of refrigerant circulating in the air conditioning system.
  • the invention also provides a refrigeration and frost protection method for an air conditioning system as described above, comprising the steps of:
  • the first two-way valve is controlled to be opened, and the three-way valve is controlled to be connected to the indoor heat exchanger.
  • the expansion valve is not connected to the second liquid passing port, and the indoor heat exchanger is connected with the second liquid passing port.
  • the refrigerant in the first pipe enters the phase change heat accumulator through the first heat storage pipe, and pushes the phase change.
  • the refrigerant after the heat accumulator absorbs heat enters the indoor heat exchanger through the second liquid storage circuit.
  • the refrigerant Since the phase change heat accumulator is wrapped on the outer wall of the compressor, and the temperature of the compressor is high, the refrigerant enters the phase change heat accumulator. After the energy is absorbed and the evaporation temperature is increased, the refrigerant after the energy is absorbed into the indoor heat exchanger through the second liquid storage circuit, the evaporation temperature is increased, and the temperature of the corresponding indoor heat exchanger is increased to achieve frost protection. Further, when the temperature of the indoor heat exchanger is higher than A 3 ° C or the temperature of the indoor heat exchanger is continuously X 3 (min) is not less than A 4 ° C, the anti-frost is stopped, that is, the first two-way valve is closed, and the control is controlled. The valve to the expansion valve is connected to the indoor heat exchanger and the expansion valve is not connected to the second liquid port, and the indoor heat exchanger is not connected to the second liquid port.
  • the invention also provides a heating and frost protection method for an air conditioning system as described above, comprising the steps of:
  • S2 Detect whether the air conditioning system is in the second state of anti-frost, and if so, perform anti-frost, that is, control the first two-way valve to open, control the three-way valve to the expansion valve and the indoor heat exchanger, and the expansion valve and the second liquid
  • the port is not connected, the indoor heat exchanger is connected to the second liquid passing port, and the refrigerant enters the outdoor heat exchanger through the first liquid storage circuit
  • the first two-way valve is controlled to open, and the three-way valve is controlled to the expansion valve and the indoor heat exchanger.
  • the connecting and expanding valve are not connected to the second liquid passing port, and the indoor heat exchanger is connected with the second liquid passing port.
  • the refrigerant in the first pipe enters the phase change heat accumulator through the second heat storage circuit, and pushes the phase.
  • the refrigerant after the heat accumulator absorbs heat enters the outdoor heat exchanger through the first liquid storage circuit.
  • the refrigerant Since the phase change heat accumulator is wrapped on the outer wall of the compressor, and the temperature of the compressor is high, the refrigerant enters the phase change heat storage. After the device absorbs energy and the evaporation temperature increases, the refrigerant after the energy is absorbed into the outdoor heat exchanger through the second liquid storage circuit, the evaporation temperature is increased, and the temperature of the corresponding outdoor heat exchanger is increased to achieve frost protection. Further, when the temperature of the outdoor heat exchanger is higher than A 3 ° C or the temperature of the outdoor heat exchanger is continuously X 3 (min) is not less than A 4 ° C, the anti-frost is stopped, that is, the first two-way valve is closed, and the control is controlled. The valve to the expansion valve is connected to the indoor heat exchanger and the expansion valve is not connected to the second liquid port, and the indoor heat exchanger is not connected to the second liquid port.
  • FIG. 1 is a schematic structural diagram of an air conditioning system according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of an air conditioning system according to a first embodiment of the present invention.
  • FIG. 3 is a flowchart of a refrigeration liquid storage method according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an air conditioning system according to a second embodiment of the present invention.
  • FIG. 5 is a flowchart of a heating and liquid storage method according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an air conditioning system according to a third embodiment of the present invention.
  • FIG. 7 is a flowchart of a cooling and frost proofing method according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an air conditioning system according to a fourth embodiment of the present invention.
  • FIG. 9 is a flowchart of a heating and frost proofing method according to an embodiment of the present invention.
  • a first object of the present invention is to provide an air conditioning system, the structural design of which can effectively adjust the amount of refrigerant circulating in an air conditioning system according to load conditions of an air conditioner, and the present invention also provides an air conditioning system for use in the above air conditioning system.
  • the refrigeration liquid storage method, the heating liquid storage method, the refrigeration anti-frost method, and the heating and frost prevention method are provided.
  • an air conditioning system includes an indoor heat exchanger 11 , an outdoor heat exchanger 4 , a first pipeline connecting the indoor heat exchanger 11 and the outdoor heat exchanger 4 , and is connected in series
  • An expansion valve 6 on the pipeline a compressor 13 for compressing the refrigerant vapor, and a four-way valve 2 connected to the input end and the output end of the compressor 13, the indoor heat exchanger 11 and the outdoor heat exchanger 4;
  • One end of the first liquid storage line is connected between the expansion valve 6 on the first pipeline and the outdoor heat exchanger 4, the other end is connected to the first liquid passing port, and the first liquid connecting line is connected in series with the first two-way Valve 7.
  • One end of the second liquid storage line is connected between the expansion valve 6 on the first line and the indoor heat exchanger 11 through the three-way valve 8, and the other end is connected to the second liquid supply port, and A pressure sensor 9 for measuring the pressure in the phase change regenerator 12 is also disposed on the second liquid storage line.
  • the first two-way valve 7 can be opened, and the three-way valve 8 to the expansion valve 6 are connected to the indoor heat exchanger 11 and expanded.
  • the valve 6 is not connected to the second liquid passing port, and the indoor heat exchanger 11 is connected to the second liquid passing port.
  • the pressure in the phase change heat accumulator 12 is smaller than the pressure in the first pipe, so that the refrigerant passes through the first storage.
  • the liquid circuit and the second liquid storage circuit enter the phase change heat accumulator 12 to perform liquid storage, that is, when the air conditioner operates at a low load, a part of the refrigerant is stored in the phase change heat accumulator 12, thereby preventing the refrigerant evaporation from completely affecting the compressor 13
  • the reliability operation enables the amount of refrigerant circulating in the air conditioning system to be adjusted according to the load condition of the air conditioner.
  • the low load state includes a first low load state when the air conditioner is in a cooling state and a second low load state when the air conditioner is in a heating state.
  • the air conditioning system provided by the embodiment of the present invention can also be used for anti-frosting.
  • the air conditioning system When the air conditioning system is in an anti-frost state, part of the refrigerant can be absorbed into the first pipeline through the phase change accumulator 12 to increase evaporation. Temperature to achieve frost protection.
  • the anti-frosting state includes a first anti-frosting state and a second anti-frosting state.
  • a bypass line having one end communicating with the output end of the compressor 13 may be further included, and the other end of the bypass line is connected between the expansion valve 6 on the first line and the outdoor heat exchanger 4 And a second two-way valve 1 and a throttling capillary 3 for throttling and depressurization are connected in series on the bypass line. In this way, when the high-temperature and high-pressure refrigerant passes through the bypass line, the outdoor heat exchanger 4 can be heated.
  • the compressor 13 can be a multi-stage compressor.
  • the phase change regenerator 12 may include a lower die holder wrapped around the outer wall of the compressor 13, a heat accumulator housing disposed in the lower die holder, and a heat storage material filled in the heat accumulator housing.
  • the heat storage material is provided with a heat exchange copper tube, and an upper mold cover for fixing the heat exchange copper tube.
  • the heat exchange copper tube can store the refrigerant.
  • the expansion valve 6 can be an electronic expansion valve. Further, an outdoor fan 5 is further provided at the outdoor heat exchanger 4, and an indoor fan 10 is provided at the indoor heat exchanger 11.
  • an embodiment of the present invention further provides a refrigeration liquid storage method for an air conditioning system as described above, comprising the steps of:
  • the first two-way valve 7 is controlled to open, and the three-way valve 8 to the expansion valve 6 and the indoor are controlled.
  • the heat exchanger 11 is connected and the expansion valve 6 is not connected to the second liquid passing port, and the indoor heat exchanger 11 is connected to the second liquid passing port.
  • the pressure in the phase change heat accumulator 12 is smaller than the pressure in the first pipe.
  • the refrigerant enters the phase change regenerator 12 through the first liquid storage circuit and the second liquid storage circuit to perform liquid storage, and a part of the refrigerant is stored in the phase change heat accumulator 12, thereby preventing the refrigerant evaporation from completely affecting the compressor 13
  • the reliability operation enables the amount of refrigerant circulating in the air conditioning system to be adjusted according to the load condition of the air conditioner.
  • the above step B may specifically be: detecting whether the air conditioning system is in the first low load state, and if so, performing liquid storage, that is, controlling the first two-way valve 7 to open, and controlling the three-way valve 8 to the expansion valve 6 Connected to the indoor heat exchanger 11 and the expansion valve 6 is not connected to the second liquid passing port, the indoor heat exchanger 11 is connected to the second liquid passing port, and the refrigerant enters the phase change storage through the first liquid storage circuit and the second liquid storage circuit.
  • the heat exchanger 12 if not, the control four-way valve 2 is switched to the input end of the compressor 13 and connected to the indoor heat exchanger 11, the output end of the compressor 13 is connected to the outdoor heat exchanger 4, and the first two-way valve 7 is closed. And the control three-way valve 8 to the expansion valve 6 is connected to the indoor heat exchanger 11 and the expansion valve 6 and the indoor heat exchanger 11 are both not connected to the second liquid supply port. That is, when the air conditioning system is in the first low load state, the liquid storage system performs normal operation when the air conditioning system is not in the first low load state.
  • C 1 may be specifically included: when the value of the pressure sensor 9 reaches N 1 (KPa), after recording the opening degree P 0 of the current expansion valve 6, the opening degree of the expansion valve 6 is lowered to P 1 and controlled.
  • the three-way valve 8 to the expansion valve 6 are connected to the indoor heat exchanger 11 and the expansion valve 6 is not connected to the second liquid supply port, the indoor heat exchanger 11 is not connected to the second liquid supply port, and after t 1 (s) is maintained ;
  • the second liquid storage circuit is closed, so that the refrigerant enters the phase change heat accumulator 12 only through the first liquid storage circuit, and at the same time, the opening degree of the expansion valve 6 is lowered to P. 1 , in order to allow more refrigerant to enter the phase change regenerator 12 through the first liquid storage circuit, maintain t 1 (s), and then close the first liquid storage circuit by controlling the first two-way valve 7 to close Stop the liquid storage.
  • step C can also be specifically: after setting the time period, the three-way valve 8 is controlled to connect the expansion valve 6 to the indoor heat exchanger 11 and the expansion valve 6 is not connected to the second liquid supply port, and the indoor heat exchanger 11 and the first The two liquid passages are not connected, and the first two-way valve 7 is closed, that is, the first liquid storage circuit and the second liquid storage circuit are closed at the same time, which is not limited herein.
  • step C may further include the following steps:
  • the indoor heat exchanger 11 is connected to the second liquid supply port, and the phase change heat accumulator at this time
  • the pressure of 12 is greater than the pressure in the first line, so that the refrigerant enters the indoor heat exchanger 11 from the phase change heat accumulator 12 via the second heat storage circuit to effect liquid discharge.
  • step C and D further comprise the step of maintaining the current state X 1 (min).
  • the air conditioning system is operated for X 1 (min).
  • step F is further included: maintaining the current state X 1 (min). That is, after X 1 (min), the load state of the air conditioning system is detected.
  • the first low load state is specifically when the indoor temperature is lower than A 1 ° C and the outdoor temperature is lower than B 1 ° C, or the difference between the indoor temperature and the set temperature is lower than C 1 ° C and the operating frequency of the compressor 13 is less than D 1 (H Z ).
  • the indoor temperature is detected by setting a temperature detecting device, when the indoor temperature is lower than A 1 ° C and the outdoor temperature is lower than B 1 ° C, or the difference between the indoor temperature and the set temperature is lower than C 1 ° C and the operating frequency of the compressor 13 is less than When D 1 (H Z ), the air conditioning system is controlled to enter the liquid storage step.
  • the first low load state may also be that only the indoor temperature is lower than a certain temperature, and the temperature may be specifically set according to different seasons.
  • the detection of the load state of the air conditioning system is not performed during the liquid storage or discharge process.
  • an embodiment of the present invention further provides a heating and storage method for an air conditioning system as described above, including the steps of:
  • b detecting whether the air conditioning system is in the second low load state, if yes, performing liquid storage, that is, controlling the first two-way valve 7 to open, controlling the three-way valve 8 to the expansion valve 6 to be connected with the indoor heat exchanger 11 and the expansion valve 6 and The second liquid passing port is not connected, the indoor heat exchanger 11 is connected to the second liquid passing port, and the refrigerant enters the phase change heat accumulator 12 through the first liquid storage circuit and the second liquid storage circuit;
  • the first two-way valve 7 is controlled to open, and the three-way valve 8 to the expansion valve 6 are controlled.
  • the indoor heat exchanger 11 is connected and the expansion valve 6 is not connected to the second liquid passing port, and the indoor heat exchanger 11 is connected to the second liquid passing port.
  • the pressure in the phase change heat accumulator 12 is smaller than that in the first pipe.
  • the pressure causes the refrigerant to enter the phase change regenerator 12 through the first liquid storage circuit and the second liquid storage circuit to perform liquid storage, and a part of the refrigerant is stored in the phase change heat accumulator 12, thereby preventing the refrigerant evaporation from completely affecting the compressor.
  • the reliability operation of 13 realizes the adjustment of the amount of refrigerant circulating in the air conditioning system according to the load condition of the air conditioner.
  • the above step b may specifically be: detecting whether the air conditioning system is in the second low load state, and if so, performing liquid storage, that is, controlling the first two-way valve 7 to open, and controlling the three-way valve 8 to the expansion valve 6 Connected to the indoor heat exchanger 11 and the expansion valve 6 is not connected to the second liquid passing port, the indoor heat exchanger 11 is connected to the second liquid passing port, and the refrigerant enters the phase change storage through the first liquid storage circuit and the second liquid storage circuit.
  • the heat exchanger 12 if not, the control four-way valve 2 is switched to the input end of the compressor 13 and connected to the outdoor heat exchanger 4, the output end of the compressor 13 is connected to the indoor heat exchanger 11, and the first two-way valve 7 is closed. And the control three-way valve 8 to the expansion valve 6 is connected to the indoor heat exchanger 11 and the expansion valve 6 and the indoor heat exchanger 11 are both not connected to the second liquid supply port. That is, when the air conditioning system is in the second low load state, the liquid storage system is normally operated when the air conditioning system is not in the second low load state.
  • step c it may specifically include c1: when the value of the pressure sensor 9 reaches N 3 (KPa), after recording the opening degree P 3 of the current expansion valve 6, the opening degree of the expansion valve 6 is lowered to P 4 and the control is performed. a two-way valve 7 is closed and maintains t 3 (s);
  • the control three-way valve 8 to the expansion valve 6 is connected to the indoor heat exchanger 11 and the expansion valve 6 is not connected to the second liquid supply port, and the indoor heat exchanger 11 and the second liquid supply port are not connected, and the expansion valve is opened. The degree is restored to P 3 .
  • the first liquid storage circuit is closed, so that the refrigerant enters the phase change heat accumulator 12 only through the second liquid storage circuit, and the opening degree of the expansion valve 6 is lowered to P. 4 , so that more refrigerant enters the phase change regenerator 12 through the second liquid storage circuit, maintains t 3 (s), and then connects and expands with the indoor heat exchanger 11 through the control three-way valve 8 to the expansion valve 6.
  • the valve 6 is not connected to the second liquid passing port, and the indoor heat exchanger 11 and the second liquid passing port are not connected to close the second liquid storage circuit, thereby stopping the liquid storage.
  • step c can also be specifically: after the set period of time, the three-way valve 8 is controlled to connect the expansion valve to the indoor heat exchanger 11 and the expansion valve 6 is not connected to the second liquid supply port, and the indoor heat exchanger 11 and the second The liquid supply port is not connected, and the first two-way valve 7 is closed, that is, the first liquid storage circuit and the second liquid storage circuit are closed at the same time, which is not limited herein.
  • step c may further include the following steps:
  • d detecting whether the air conditioning system is in a non-second low load state, and if so, discharging the liquid, that is, controlling the first two-way valve 7 to open, controlling the three-way valve 8 to the expansion valve 6 to be connected with the indoor heat exchanger 11 and the expansion valve 6 Is not connected to the second liquid passing port, the indoor heat exchanger 11 and the second liquid passing port are not connected, the refrigerant from the phase change heat accumulator 12 through the first heat storage circuit into the outdoor heat exchanger 4;
  • the indoor heat exchanger 11 and the second liquid supply port are not connected, and the first two-way is controlled.
  • the valve 7 is opened, at which time the pressure of the phase change regenerator 12 is greater than the pressure in the first line, so that the refrigerant enters the outdoor heat exchanger 4 from the phase change accumulator 12 through the first heat storage circuit to achieve liquid discharge.
  • a step is further included between steps c and d: maintaining the current state X 2 (min).
  • steps c and d maintaining the current state X 2 (min).
  • step e further includes step f: maintaining the current state X 2 (min). That is, after X 2 (min), the load state of the air conditioning system is detected.
  • the second low load state is specifically when the indoor temperature is higher than A 2 ° C and the outdoor temperature is higher than B 2 ° C, or the difference between the indoor temperature and the set temperature is lower than C 2 ° C.
  • the indoor temperature is detected by setting a temperature detecting device.
  • the air conditioning system is controlled to enter the liquid storage. step.
  • the second low load state may also be that only the indoor temperature is higher than a certain temperature, and the temperature may be specifically set according to different seasons.
  • the detection of the load state of the air conditioning system is not performed during the liquid storage or discharge process.
  • an embodiment of the present invention further provides a cooling and frost proofing method for an air conditioning system as described above, including the steps of:
  • the first two-way valve 7 is controlled to open, and the three-way valve 8 to the expansion valve 6 are controlled.
  • the indoor heat exchanger 11 is connected and the expansion valve 6 is not connected to the second liquid passing port, and the indoor heat exchanger 11 is connected to the second liquid passing port. At this time, the refrigerant in the first pipe enters the phase change through the first heat storage pipe.
  • the regenerator 12 and the refrigerant that has absorbed the heat absorbed by the phase change regenerator 12 enters the indoor heat exchanger 11 through the second liquid storage circuit, and the phase change regenerator 12 is wrapped on the outer wall of the compressor 13, and the compressor
  • the temperature of 13 is relatively high, so the refrigerant enters the phase change regenerator 12 and absorbs energy and the evaporation temperature increases. After the absorption of the energy, the refrigerant enters the indoor heat exchanger 11 through the second liquid storage circuit, and the evaporation temperature is increased, and the corresponding indoor heat exchange is performed.
  • the temperature of the device 11 is raised to achieve frost protection.
  • the frost prevention is stopped, that is, the first two-way valve 7 is controlled to be closed.
  • the control three-way valve 8 to the expansion valve 6 is connected to the indoor heat exchanger 11 and the expansion valve 6 is not connected to the second liquid supply port, and the indoor heat exchanger 11 and the second liquid supply port are not connected.
  • the first required frost protection state is specifically: the temperature of the indoor heat exchanger 11 is continuously X 4 (min) is not more than A 5 ° C, and the temperature is recorded every X 5 (min) and the temperature recorded later is lower than the former. Or the temperature of the indoor heat exchanger 11 is not more than A 6 ° C and the temperature is lowered by more than A 7 ° C in the X 5 (min) period.
  • the first frost-proof state may be only the temperature of the indoor heat exchanger 11 continuously X 4 (min) is not more than A 5 ° C, which is not limited herein.
  • Step S2 may be specifically: detecting whether the air conditioning system is in the first required frostproof state, and if so, performing frost protection, that is, controlling the first two-way valve 7 to open, and controlling the three-way valve 8 to the expansion valve 6 to be connected to the indoor heat exchanger 11
  • the expansion valve 6 is not connected to the second liquid passing port, the indoor heat exchanger 11 is connected to the second liquid passing port, and the refrigerant enters the indoor heat exchanger 11 through the second liquid storage circuit; if not, the first two-way valve is controlled 7 is closed, the control three-way valve 8 to the expansion valve 6 is connected to the indoor heat exchanger 11 and the expansion valve 6 is not connected to the second liquid supply port, and the indoor heat exchanger 11 is not connected to the second liquid supply port.
  • an embodiment of the present invention further provides a heating and frost proofing method for the air conditioning system as described above, including the steps of:
  • the first two-way valve 7 is controlled to open, and the three-way valve 8 to the expansion valve 6 are controlled.
  • the indoor heat exchanger 11 Connected to the indoor heat exchanger 11 and the expansion valve 6 is not connected to the second liquid passing port, the indoor heat exchanger 11 is connected to the second liquid passing port, and the refrigerant in the first pipe enters the phase through the second heat storage circuit.
  • the heat accumulator 12 is driven, and the refrigerant that has absorbed the heat absorbed by the phase change heat accumulator 12 enters the outdoor heat exchanger 4 through the first liquid storage circuit, and the phase change heat accumulator 12 is wrapped on the outer wall of the compressor 13 to be compressed.
  • the temperature of the machine 13 is relatively high. Therefore, after the refrigerant enters the phase change regenerator 12, the energy is absorbed and the evaporation temperature is increased. After the absorption of the energy, the refrigerant enters the outdoor heat exchanger 4 through the second liquid storage circuit, and the evaporation temperature is increased, and the corresponding outdoor exchange is performed. The temperature of the heater 4 is raised to achieve frost protection.
  • the anti-frost is stopped, that is, the first two-way valve 7 is controlled to be closed.
  • the three-way valve 8 is controlled to be connected to the indoor heat exchanger 11 and the expansion valve 6 is not connected to the second liquid supply port, and the indoor heat exchanger 11 is not connected to the second liquid supply port.
  • the second anti-frost state is specifically: the temperature of the outdoor heat exchanger 4 is continuously X 7 (min) is not more than A 10 ° C, and the temperature is recorded every X 8 (min) and the temperature recorded later is lower than the former. Or the temperature of the indoor heat exchanger 11 is not more than A 11 ° C and the temperature is lowered by more than A 12 ° C in the X 9 (min) period.
  • the second anti-frosting state may be only the case where the temperature of the outdoor heat exchanger 4 is continuously X 7 (min) is not more than A 10 ° C, which is not limited herein.
  • the step s2 may be specifically: detecting whether the air conditioning system is in the second frostproof state, and if yes, performing frost protection, that is, controlling the first two-way valve 7 to open, and controlling the three-way valve 8 to the expansion valve 6 to be connected to the indoor heat exchanger 11
  • the expansion valve 6 is not connected to the second liquid passing port, the indoor heat exchanger 11 is connected to the second liquid passing port, and the refrigerant enters the outdoor heat exchanger 4 through the first liquid storage circuit; if not, the first two-way valve is controlled 7 is closed, the control three-way valve 8 to the expansion valve 6 is connected to the indoor heat exchanger 11 and the expansion valve 6 is not connected to the second liquid supply port, and the indoor heat exchanger 11 is not connected to the second liquid supply port.

Abstract

一种空调系统,包括包裹于压缩机(13)外壁上的相变蓄热器(12),相变蓄热器(12)具有第一过液口和第二过液口;一端连接于第一管路上的膨胀阀(6)与室外换热器(4)之间的第一蓄液管路,第一蓄液管路另一端连接于第一过液口,且第一蓄液管路上串接有第一二通阀(7);一端通过三通阀(8)连接于第一管路上的膨胀阀(6)与室内换热器(11)之间的第二蓄液管路,第二蓄液管路另一端连接于第二过液口,且第二蓄液管路上还设置有用于测量相变蓄热器(12)内压力的压力传感器(9)。该空调系统的结构设计可以有效地实现按空调的负荷工况调整空调系统中循环的冷媒量。还公开了用于该空调系统的制冷蓄液方法、制热蓄液方法、制冷防霜方以及制热防霜方法。

Description

制冷、制热蓄液方法及制冷、制热防霜方法和空调系统
本申请要求于2013年09月05日提交中国专利局、申请号为201310400653.4、发明名称为“制冷、制热蓄液方法及制冷、制热防霜方法和空调系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及空调制造技术领域,更具体地说,涉及一种空调系统及制冷蓄液方法、制热蓄液方法、制冷防霜方法以及制热防霜方法。
背景技术
现有技术中,通常向空调中灌注一定量的冷媒,该定量的冷媒均在空调系统中循环以实现制冷或者制热。然而,空调在实际运动过程中,其负荷程度不同,所需要的冷媒量也不相同。当空调低负荷运行时,其并不需要很多冷媒,造成了冷媒量的浪费。而且,当空调处于低负荷运行时,蒸发器的蒸发温度较低,极易出现冷媒蒸发不完全而以液态或者气液混合态进入压缩机,从而导致带液压缩,影响压缩机的可靠性运行。
另外,空调在进行制冷制热时,换热器往往会出现结霜的现象,现有技术中,在进行化霜时需要停止进行制冷制热过程,再进行化霜,如此则影响了制冷制热效果,相应的延长了制冷制热时间。
综上所述,如何实现按空调的负荷工况调整空调系统中循环的冷媒量,是目前本领域技术人员急需解决的问题。
发明内容
有鉴于此,本发明的第一个目的在于提供一种空调系统,该空调系统的结构设计可以有效地实现按空调的负荷工况调整空调系统中循环的冷媒量,本发明还提供了用于上述的空调系统的制冷蓄液方法、制热蓄液方法、制冷防霜方法以及制热防霜方法。
为了达到上述第一个目的,本发明提供如下技术方案:
一种空调系统,包括:
室内换热器;
室外换热器;
连接所述室内换热器与所述室外换热器的第一管路;
串连于所述第一管路上的膨胀阀;
用于压缩冷媒蒸汽的压缩机;
与所述压缩机的输入端和输出端、所述室内换热器及所述室外换热器连接的四通阀;还包括:
包裹于所述压缩机外壁上的相变蓄热器,且所述相变蓄热器具有第一过液口和第二过液口;
一端连接于所述第一管路上的所述膨胀阀与所述室外换热器之间的第一蓄液管路,所述第一蓄液管路另一端连接于所述第一过液口,且所述第一蓄液管路上串接有第一二通阀;
一端通过三通阀连接于所述第一管路上的所述膨胀阀与所述室内换热器之间的第二蓄液管路,所述第二蓄液管路另一端连接于所述第二过液口,且所述第二蓄液管路上还设置有用于测量所述相变蓄热器内压力的压力传感器。
优选地,还包括一端与所述压缩机的输出端连通的旁通管路,所述旁通管路的另一端连接于所述第一管路上的所述膨胀阀与所述室外换热器之间,且所述旁通管路上串接有第二二通阀和用于节流降压的节流毛细管。
一种用于如上述的空调系统的制冷蓄液方法,其特征在于,包括步骤:
A:启动空调系统;
B:检测空调系统是否处于第一低负荷状态,若是则进行蓄液,即控制第一二通阀打开,控制三通阀至膨胀阀与室内换热器连接且膨胀阀与第二过液口不连接,室内换热器与第二过液口连接,冷媒经第一蓄液回路和第二蓄液回路进入相变蓄热器;
C:停止蓄液。
优选地,所述步骤B中还包括:
若否,则控制四通阀切换至压缩机的输入端与室内换热器连接,压缩机的输出端与室外换热器连接,第一二通阀关闭,且控制三通阀至膨胀阀与室内换热器连接且膨胀阀和室内换热器均与第二过液口不连接。
优选地,所述步骤C具体为:
C1:当压力传感器的数值达到N1(KPa)时,记录当前膨胀阀的开度P0后,将膨胀阀的开度降至P1并控制三通阀至膨胀阀与室内换热器连接且膨胀阀与第二过液口不连接,室内换热器与第二过液口不连接,并维持t1(s)后;
C2:控制第一二通阀关闭,膨胀阀的开度恢复至P0
优选地,所述步骤C之后还包括步骤:
D:检测空调系统是否处于非第一低负荷状态,若是则进行放液,即控制第一二通阀关闭,控制三通阀至膨胀阀与室内换热器连接且膨胀阀与第二过液口不连接,室内换热器与第二过液口连接,冷媒从相变蓄热器经第二蓄热回路进入室内换热器;
E:当压力传感器的数值达到N2(KPa)时,记录当前膨胀阀的开度P2后,将膨胀阀的开度降至最低并维持t2(s)后,控制三通阀至膨胀阀与室内换热器连接且膨胀阀与第二过液口不连接,室内换热器与第二过液口不连接,将膨胀阀的开度恢复至P2
优选地,步骤C与D之间还包括步骤:维持当前状态X1(min)。
优选地,步骤E步骤之后还包括步骤F:维持当前状态X1(min)。
优选地,所述第一低负荷状态具体为当室内温度低于A1℃且室外温度低于B1℃,或者室内温度与设定温度的差值低于C1℃且压缩机的运行频率小于D1(HZ)时。
优选地,在进行蓄液或者放液过程中不进行空调系统负荷状态的检测。
一种用于如上述的空调系统的制热蓄液方法,包括步骤:
a:启动空调系统;
b:检测空调系统是否处于第二低负荷状态,若是则进行蓄液,即控制第一二通阀打开,控制三通阀至膨胀阀与室内换热器连接且膨胀阀与第二过液口不连接,室内换热器与第二过液口连接,冷媒经第一蓄液回路和第二蓄液回路进入相变蓄热器;
c:停止蓄液。
优选地,所述步骤b中还包括:
若否,则控制四通阀切换至压缩机的输入端与室外换热器连接,压缩机的 输出端与室内换热器连接,第一二通阀关闭,且控制三通阀至膨胀阀与室内换热器连接且膨胀阀和室内换热器均与第二过液口不连接。
优选地,所述步骤c具体为:
c1:当压力传感器的数值达到N3(KPa)时,记录当前膨胀阀的开度P3后,将膨胀阀的开度降至P4并控制第一二通阀关闭,并维持t3(s);
c2:控制三通阀至膨胀阀与室内换热器连接且膨胀阀与第二过液口不连接,室内换热器与第二过液口不连接,将膨胀阀的开度恢复至P3
优选地,所述步骤c之后还包括步骤:
d:检测空调系统是否处于非第二低负荷状态,若是则进行放液,即控制第一二通阀打开,控制三通阀至膨胀阀与室内换热器连接且膨胀阀与第二过液口不连接,室内换热器与第二过液口不连接,冷媒从相变蓄热器经第一蓄热回路进入室外换热器;
e:当压力传感器的数值达到N4(KPa)时,记录当前膨胀阀的开度P4后,将膨胀阀的开度降至最低并维持t4(s)后,控制第一二通阀关闭,将膨胀阀的开度恢复至P4
优选地,步骤c与d之间还包括步骤:维持当前状态X2(min)。
优选地,步骤e步骤之后还包括步骤f:维持当前状态X2(min)。
优选地,所述第二低负荷状态具体为当室内温度高于A2℃且室外温度高于B2℃,或者室内温度与设定温度的差值低于C2℃时。
优选地,在进行蓄液或者放液过程中不进行空调系统负荷状态的检测。
一种用于如上述的空调系统的制冷防霜方法,包括步骤:
S1:启动空调系统;
S2:检测空调系统是否处于第一需防霜状态,若是则进行防霜,即控制第一二通阀打开,控制三通阀至膨胀阀与室内换热器连接且膨胀阀与第二过液口不连接,室内换热器与第二过液口连接,冷媒经第二蓄液回路进入室内换热器;
S3:当室内换热器的温度高于A3℃或者室内换热器的温度连续X3(min)不小于A4℃时,停止防霜,即控制第一二通阀关闭,控制三通阀至膨胀阀与室内换热器连接且膨胀阀与第二过液口不连接,室内换热器与第二过液口不连接。
优选地,所述第一需防霜状态具体为:室内换热器的温度连续X4(min)不大于A5℃,每隔X5(min)记录一次温度且后记录的温度低于前者,或者室内换热器的温度不大于A6℃且X5(min)时间段内温度降低超过A7℃。
优选地,步骤S2中还包括:若否,则控制第一二通阀关闭,控制三通阀至膨胀阀与室内换热器连接且膨胀阀与第二过液口不连接,室内换热器与第二过液口不连接。
一种用于如上述的空调系统的制热防霜方法,包括步骤:
s1:启动空调系统;
s2:检测空调系统是否处于第二需防霜状态,若是则进行防霜,即控制第一二通阀打开,控制三通阀至膨胀阀与室内换热器连接且膨胀阀与第二过液口不连接,室内换热器与第二过液口连接,冷媒经第一蓄液回路进入室外换热器;
s3:当室外换热器的温度高于A8℃或者室内换热器的温度连续X6(min)不小于A9℃时,停止防霜,即控制第一二通阀关闭,控制三通阀至膨胀阀与室内换热器连接且膨胀阀与第二过液口不连接,室内换热器与第二过液口不连接。
优选地,所述第二需防霜状态具体为:室外换热器的温度连续X7(min)不大于A10℃,每隔X8(min)记录一次温度且后记录的温度低于前者,或者室内换热器的温度不大于A11℃且X9(min)时间段内温度降低超过A12℃。
优选地,步骤s2中还包括:若否,则控制第一二通阀关闭,控制三通阀至膨胀阀与室内换热器连接且膨胀阀与第二过液口不连接,室内换热器与第二过液口不连接。
本发明提供的空调系统,包括室内换热器、室外换热器、连接室内换热器与室外换热器的第一管路、串连于第一管路上的膨胀阀、用于压缩冷媒蒸汽的压缩机以及与压缩机的输入端和输出端、室内换热器及室外换热器连接的四通阀;还包括相变蓄热器、第一蓄液管路和第二蓄液管路,其中相变蓄热器包裹于压缩机外壁上,并且相变蓄热器具有第一过液口和第二过液口。第一蓄液管路一端连接于第一管路上的膨胀阀与室外换热器之间,另一端连接于第一过液口,并且第一蓄液管路上串接有第一二通阀。第二蓄液管路一端通过三通阀连接于第一管路上的膨胀阀与室内换热器之间,另一端连接于第二过液口,并且 第二蓄液管路上还设置有用于测量相变蓄热器内压力的压力传感器。
应用本发明提供的空调系统时,当空调系统处于低负荷状态运行时,可以将第一二通阀打开,并且控制三通阀至膨胀阀与室内换热器连接且膨胀阀与第二过液口不连接,室内换热器与第二过液口连接,此时相变蓄热器中的压力小于第一管路内的压力,使得冷媒经第一蓄液回路和第二蓄液回路进入相变蓄热器,进行蓄液,即空调低负荷运行时,将一部分冷媒存储在相变蓄热器中,避免了冷媒蒸发不完全影响压缩机的可靠性运行,实现了按照空调的负荷工况调整空调系统中循环的冷媒量。其中低负荷状态包括空调处于制冷状态时的第一低负荷状态和空调处于制热状态时的第二低负荷状态。
本发明还提供了一种用于如上述的空调系统的制冷蓄液方法,包括步骤:
A:启动空调系统;
B:检测空调系统是否处于第一低负荷状态,若是则进行蓄液,即控制第一二通阀打开,控制三通阀至膨胀阀与室内换热器连接且膨胀阀与第二过液口不连接,室内换热器与第二过液口连接,冷媒经第一蓄液回路和第二蓄液回路进入相变蓄热器;
C:停止蓄液。
该发明提供的制冷蓄液方法中,启动空调系统后,若检测到空调系统处于第一低负荷状态,则控制第一二通阀打开,控制三通阀至膨胀阀与室内换热器连接且膨胀阀与第二过液口不连接,室内换热器与第二过液口连接,此时相变蓄热器中的压力小于第一管路内的压力,使得冷媒经第一蓄液回路和第二蓄液回路进入相变蓄热器,进行蓄液,将一部分冷媒存储在相变蓄热器中,避免了冷媒蒸发不完全影响压缩机的可靠性运行,实现了按照空调的负荷工况调整空调系统中循环的冷媒量。
本发明还提供了一种用于如上述的空调系统的制热蓄液方法,包括步骤:
a:启动空调系统;
b:检测空调系统是否处于第二低负荷状态,若是则进行蓄液,即控制第一二通阀打开,控制三通阀至膨胀阀与室内换热器连接且膨胀阀与第二过液口不连接,室内换热器与第二过液口连接,冷媒经第一蓄液回路和第二蓄液回路进入相变蓄热器;
c:停止蓄液。
该发明提供的制热蓄液方法中,启动空调系统后,若检测到空调系统处于第二低负荷状态,则控制第一二通阀打开,控制三通阀至膨胀阀与室内换热器连接且膨胀阀与第二过液口不连接,室内换热器与第二过液口连接,此时相变蓄热器中的压力小于第一管路内的压力,使得冷媒经第一蓄液回路和第二蓄液回路进入相变蓄热器,进行蓄液,将一部分冷媒存储在相变蓄热器中,避免了冷媒蒸发不完全影响压缩机的可靠性运行,实现了按照空调的负荷工况调整空调系统中循环的冷媒量。
本发明还提供了一种用于如上述的空调系统的制冷防霜方法,包括步骤:
S1:启动空调系统;
S2:检测空调系统是否处于第一需防霜状态,若是则进行防霜,即控制第一二通阀打开,控制三通阀至膨胀阀与室内换热器连接且膨胀阀与第二过液口不连接,室内换热器与第二过液口连接,冷媒经第二蓄液回路进入室内换热器;
S3:当室内换热器的温度高于A3℃或者室内换热器的温度连续X3(min)不小于A4℃时,停止防霜,即控制第一二通阀关闭,控制三通阀至膨胀阀与室内换热器连接且膨胀阀与第二过液口不连接,室内换热器与第二过液口不连接。
该发明提供的制冷防霜方法中,启动空调系统后,若检测到空调系统处于第一需防霜状态,则控制第一二通阀打开,控制三通阀至膨胀阀与室内换热器连接且膨胀阀与第二过液口不连接,室内换热器与第二过液口连接,此时第一管路中的冷媒经第一蓄热管路进入相变蓄热器,并推动相变蓄热器吸收热量后的冷媒经第二蓄液回路进入室内换热器,由于相变蓄热器包裹于压缩机的外壁上,而压缩机的温度较高,因此冷媒进入相变蓄热器后吸收能量且蒸发温度提高,吸收能量后的冷媒经第二蓄液回路进入室内换热器,蒸发温度提高,相应的室内换热器的温度升高,实现防霜。进一步地,当室内换热器的温度高于A3℃或者室内换热器的温度连续X3(min)不小于A4℃时,停止防霜,即控制第一二通阀关闭,控制三通阀至膨胀阀与室内换热器连接且膨胀阀与第二过液口不连接,室内换热器与第二过液口不连接。
本发明还提供了一种用于如上述的空调系统的制热防霜方法,包括步骤:
s1:启动空调系统;
s2:检测空调系统是否处于第二需防霜状态,若是则进行防霜,即控制第一二通阀打开,控制三通阀至膨胀阀与室内换热器连接且膨胀阀与第二过液口不连接,室内换热器与第二过液口连接,冷媒经第一蓄液回路进入室外换热器;
s3:当室外换热器的温度高于A8℃或者室内换热器的温度连续X6(min)不小于A9℃时,停止防霜,即控制第一二通阀关闭,控制三通阀至膨胀阀与室内换热器连接且膨胀阀与第二过液口不连接,室内换热器与第二过液口不连接。
该发明提供的制热防霜方法中,启动空调系统后,若检测到空调系统处于第二需防霜状态,则控制第一二通阀打开,控制三通阀至膨胀阀与室内换热器连接且膨胀阀与第二过液口不连接,室内换热器与第二过液口连接,此时第一管路中的冷媒经第二蓄热回路进入相变蓄热器,并推动相变蓄热器吸收热量后的冷媒经第一蓄液回路进入室外换热器,由于相变蓄热器包裹于压缩机的外壁上,而压缩机的温度较高,因此冷媒进入相变蓄热器后吸收能量且蒸发温度提高,吸收能量后的冷媒经第二蓄液回路进入室外换热器,蒸发温度提高,相应的室外换热器的温度升高,实现防霜。进一步地,当室外换热器的温度高于A3℃或者室外换热器的温度连续X3(min)不小于A4℃时,停止防霜,即控制第一二通阀关闭,控制三通阀至膨胀阀与室内换热器连接且膨胀阀与第二过液口不连接,室内换热器与第二过液口不连接。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的空调系统的结构示意图;
图2为本发明实施例提供的第一种实施例的空调系统的结构示意图;
图3为本发明实施例提供的制冷蓄液方法的流程图;
图4为本发明实施例提供的第二种实施例的空调系统的结构示意图;
图5为本发明实施例提供的制热蓄液方法的流程图;
图6为本发明实施例提供的第三种实施例的空调系统的结构示意图;
图7为本发明实施例提供的制冷防霜方法的流程图;
图8为本发明实施例提供的第四种实施例的空调系统的结构示意图;
图9为本发明实施例提供的制热防霜方法的流程图;
附图中标记如下:
1-第二二通阀、2-四通阀、3-节流毛细管、4-室外换热器、5-室外风机、6-膨胀阀、7-第一二通阀、8-三通阀、9-压力传感器、10-室内风机、11-室内换热器、12-相变蓄热器、13-压缩机。
具体实施方式
本发明的第一个目的在于提供一种空调系统,该空调系统的结构设计可以有效地实现按空调的负荷工况调整空调系统中循环的冷媒量,本发明还提供了用于上述的空调系统的制冷蓄液方法、制热蓄液方法、制冷防霜方法以及制热防霜方法。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明实施例提供的空调系统,包括室内换热器11、室外换热器4、连接室内换热器11与室外换热器4的第一管路、串连于第一管路上的膨胀阀6、用于压缩冷媒蒸汽的压缩机13以及与压缩机13的输入端和输出端、室内换热器11及室外换热器4连接的四通阀2;还包括相变蓄热器12、第一蓄液管路和第二蓄液管路,其中相变蓄热器12包裹于压缩机13外壁上,并且相变蓄热器12具有第一过液口和第二过液口。第一蓄液管路一端连接于第一管路上的膨胀阀6与室外换热器4之间,另一端连接于第一过液口,并且第一蓄液管路上串接有第一二通阀7。第二蓄液管路一端通过三通阀8连接于第一管路上的膨胀阀6与室内换热器11之间,另一端连接于第二过液口,并 且第二蓄液管路上还设置有用于测量相变蓄热器12内压力的压力传感器9。
应用本发明实施例提供的空调系统时,当空调系统处于低负荷状态运行时,可以将第一二通阀7打开,并且控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6与第二过液口不连接,室内换热器11与第二过液口连接,此时相变蓄热器12中的压力小于第一管路内的压力,使得冷媒经第一蓄液回路和第二蓄液回路进入相变蓄热器12,进行蓄液,即空调低负荷运行时,将一部分冷媒存储在相变蓄热器12中,避免了冷媒蒸发不完全影响压缩机13的可靠性运行,实现了按照空调的负荷工况调整空调系统中循环的冷媒量。其中低负荷状态包括空调处于制冷状态时的第一低负荷状态和空调处于制热状态时的第二低负荷状态。
另外,还可以利用本发明实施例提供的空调系统进行防霜,当空调系统处于需防霜状态时,可以使部分冷媒经过相变蓄热器12吸收能量后再进入第一管路,提高蒸发温度,实现防霜。其中需防霜状态包括第一需防霜状态和第二需防霜状态。
为了进一步优化上述技术方案,还可以包括一端与压缩机13的输出端连通的旁通管路,旁通管路的另一端连接于第一管路上的膨胀阀6与室外换热器4之间,且旁通管路上串接有第二二通阀1和用于节流降压的节流毛细管3。如此设置,高温高压的冷媒经过旁通管路时,从而可以对室外换热器4进行加热。
其中,压缩机13可以为多级压缩机。相变蓄热器12可以包括包裹于压缩机13外壁上的下压模座,设置于下压模座中的蓄热器壳体,并且在蓄热器壳体中装填有蓄热材料,在蓄热材料上设置有换热铜管,还包括用于固定换热铜管的上压模盖。其中,换热铜管可以进行储存冷媒。膨胀阀6可以为电子膨胀阀。另外,在室外换热器4处还设置室外风机5,同时在室内换热器11出设置有室内风机10。
请参阅图2和图3,本发明实施例还提供了一种用于如上述的空调系统的制冷蓄液方法,包括步骤:
A:启动空调系统;
B:检测空调系统是否处于第一低负荷状态,若是则进行蓄液,即控制第 一二通阀7打开,控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6与第二过液口不连接,室内换热器11与第二过液口连接,冷媒经第一蓄液回路和第二蓄液回路进入相变蓄热器12;
C:停止蓄液。
该发明实施例提供的制冷蓄液方法中,启动空调系统后,若检测到空调系统处于第一低负荷状态,则控制第一二通阀7打开,控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6与第二过液口不连接,室内换热器11与第二过液口连接,此时相变蓄热器12中的压力小于第一管路内的压力,使得冷媒经第一蓄液回路和第二蓄液回路进入相变蓄热器12,进行蓄液,将一部分冷媒存储在相变蓄热器12中,避免了冷媒蒸发不完全影响压缩机13的可靠性运行,实现了按照空调的负荷工况调整空调系统中循环的冷媒量。
为了进一步优化上述技术方案,上述步骤B具体可以为:检测空调系统是否处于第一低负荷状态,若是则进行蓄液,即控制第一二通阀7打开,控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6与第二过液口不连接,室内换热器11与第二过液口连接,冷媒经第一蓄液回路和第二蓄液回路进入相变蓄热器12;若否,则控制四通阀2切换至压缩机13的输入端与室内换热器11连接,压缩机13的输出端与室外换热器4连接,第一二通阀7关闭,且控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6和室内换热器11均与第二过液口不连接。即当空调系统处于第一低负荷状态时进行蓄液,当空调系统没有处于第一低负荷状态时,则空调系统正常工作。
上述步骤C中,可以具体包括C1:当压力传感器9的数值达到N1(KPa)时,记录当前膨胀阀6的开度P0后,将膨胀阀6的开度降至P1并控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6与第二过液口不连接,室内换热器11与第二过液口不连接,并维持t1(s)后;
C2:控制第一二通阀7关闭,膨胀阀的开度恢复至P0
即当压力传感器9的数值达到N1(KPa)时,关闭第二蓄液回路,使冷媒仅通过第一蓄液回路进入相变蓄热器12,同时使膨胀阀6的开度降至P1,以使得更多的冷媒经第一蓄液回路进入相变蓄热器12,维持t1(s)后,再通过控制第一二通阀7关闭进而关闭第一蓄液回路,从而实现停止蓄液。
当然步骤C还可以具体为,设定时间段后,控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6与第二过液口不连接,室内换热器11与第二过液口不连接,同时控制第一二通阀7关闭,即同时关闭第一蓄液回路和第二蓄液回路,在此不作限定。
在本实施例中,上述步骤C之后还可以包括步骤:
D:检测空调系统是否处于非第一低负荷状态,若是则进行放液,即控制第一二通阀7关闭,控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6与第二过液口不连接,室内换热器11与第二过液口连接,冷媒从相变蓄热器12经第二蓄热回路进入室内换热器11;
通过控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6与第二过液口不连接,室内换热器11与第二过液口连接,此时相变蓄热器12的压力大于第一管路中的压力,使得冷媒从相变蓄热器12经第二蓄热回路进入室内换热器11,实现放液。
E:当压力传感器9的数值达到N2(KPa)时,记录当前膨胀阀6的开度P2后,将膨胀阀6的开度降至最低并维持t2(s)后,控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6与第二过液口不连接,室内换热器11与第二过液口不连接,将膨胀阀6的开度恢复至P2
通过将膨胀阀6的开度降至最低使得第一管路与第二蓄液回路之间的压力差加大,更加有利于相变蓄热器12中的冷媒经第二蓄液回路流回室内换热器11。
优选地,步骤C与D之间还包括步骤:维持当前状态X1(min)。如此则保持空调系统运行X1(min)后,再进行空调系统运行状态的检测。
同样的,步骤E步骤之后还包括步骤F:维持当前状态X1(min)。即X1(min)之后再进行检测空调系统的负荷状态。
另外,第一低负荷状态具体为当室内温度低于A1℃且室外温度低于B1℃,或者室内温度与设定温度的差值低于C1℃且压缩机13的运行频率小于D1(HZ)时。
通过设置温度检测装置检测室内温度,当室内温度温度低于A1℃且室外温度低于B1℃,或者室内温度与设定温度的差值低于C1℃且压缩机13的运行 频率小于D1(HZ)时,控制空调系统进入蓄液步骤。
当然第一低负荷状态还可以为仅室内温度低于某一温度,该温度可以根据不同季节具体设定。
需要说明的是,在进行蓄液或者放液过程中不进行空调系统负荷状态的检测。
请参阅图4和图5,本发明实施例还提供了一种用于如上述的空调系统的制热蓄液方法,包括步骤:
a:启动空调系统;
b:检测空调系统是否处于第二低负荷状态,若是则进行蓄液,即控制第一二通阀7打开,控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6与第二过液口不连接,室内换热器11与第二过液口连接,冷媒经第一蓄液回路和第二蓄液回路进入相变蓄热器12;
c:停止蓄液。
该发明实施例提供的制热蓄液方法中,启动空调系统后,若检测到空调系统处于第二低负荷状态,则控制第一二通阀7打开,控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6与第二过液口不连接,室内换热器11与第二过液口连接,此时相变蓄热器12中的压力小于第一管路内的压力,使得冷媒经第一蓄液回路和第二蓄液回路进入相变蓄热器12,进行蓄液,将一部分冷媒存储在相变蓄热器12中,避免了冷媒蒸发不完全影响压缩机13的可靠性运行,实现了按照空调的负荷工况调整空调系统中循环的冷媒量。
为了进一步优化上述技术方案,上述步骤b具体可以为:检测空调系统是否处于第二低负荷状态,若是则进行蓄液,即控制第一二通阀7打开,控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6与第二过液口不连接,室内换热器11与第二过液口连接,冷媒经第一蓄液回路和第二蓄液回路进入相变蓄热器12;若否,则控制四通阀2切换至压缩机13的输入端与室外换热器4连接,压缩机13的输出端与室内换热器11连接,第一二通阀7关闭,且控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6和室内换热器11均与第二过液口不连接。即当空调系统处于第二低负荷状态时进行蓄液,当空调系统没有处于第二低负荷状态时,则空调系统正常工作。
上述步骤c中,可以具体包括c1:当压力传感器9的数值达到N3(KPa)时,记录当前膨胀阀6的开度P3后,将膨胀阀6的开度降至P4并控制第一二通阀7关闭,并维持t3(s);
c2:控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6与第二过液口不连接,室内换热器11与第二过液口不连接,将膨胀阀的开度恢复至P3
即当压力传感器9的数值达到N3(KPa)时,关闭第一蓄液回路,使冷媒仅通过第二蓄液回路进入相变蓄热器12,并使膨胀阀6的开度降至P4,以使更多的冷媒经第二蓄液回路进入相变蓄热器12,维持t3(s)后,再通过控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6与第二过液口不连接,室内换热器11与第二过液口不连接进而关闭第二蓄液回路,从而实现停止蓄液。
当然步骤c还可以具体为,设定时间段后,控制三通阀8至膨胀阀与室内换热器11连接且膨胀阀6与第二过液口不连接,室内换热器11与第二过液口不连接,同时控制第一二通阀7关闭,即同时关闭第一蓄液回路和第二蓄液回路,在此不作限定。
在本实施例中,上述步骤c之后还可以包括步骤:
d:检测空调系统是否处于非第二低负荷状态,若是则进行放液,即控制第一二通阀7打开,控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6与第二过液口不连接,室内换热器11与第二过液口不连接,冷媒从相变蓄热器12经第一蓄热回路进入室外换热器4;
通过控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6与第二过液口不连接,室内换热器11与第二过液口不连接,同时控制第一二通阀7打开,此时相变蓄热器12的压力大于第一管路中的压力,使得冷媒从相变蓄热器12经第一蓄热回路进入室外换热器4,实现放液。
e:当压力传感器9的数值达到N4(KPa)时,记录当前膨胀阀6的开度P4后,将膨胀阀6的开度降至最低并维持t4(s)后,控制第一二通阀7关闭,将膨胀阀6的开度恢复至P4
通过将膨胀阀6的开度降至最低使得第一管路与第一蓄液回路之间的压力差加大,更加有利于相变蓄热器12中的冷媒经第一蓄液回路流回室外换热 器4。
优选地,步骤c与d之间还包括步骤:维持当前状态X2(min)。如此则保持空调系统运行X2(min)后,再进行空调系统运行状态的检测。
同样的,步骤e步骤之后还包括步骤f:维持当前状态X2(min)。即X2(min)之后再进行检测空调系统的负荷状态。
另外,第二低负荷状态具体为当室内温度高于A2℃且室外温度高于B2℃,或者室内温度与设定温度的差值低于C2℃时。
通过设置温度检测装置检测室内温度,当室内温度温度高于A2℃且室外温度高于B2℃,或者室内温度与设定温度的差值低于C2℃时,控制空调系统进入蓄液步骤。
当然第二低负荷状态还可以为仅室内温度高于某一温度,该温度可以根据不同季节具体设定。
需要说明的是,在进行蓄液或者放液过程中不进行空调系统负荷状态的检测。
请参阅图6和图7,本发明实施例还提供了一种用于如上述的空调系统的制冷防霜方法,包括步骤:
S1:启动空调系统;
S2:检测空调系统是否处于第一需防霜状态,若是则进行防霜,即控制第一二通阀7打开,控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6与第二过液口不连接,室内换热器11与第二过液口连接,冷媒经第二蓄液回路进入室内换热器11;
S3:当室内换热器11的温度高于A3℃或者室内换热器11的温度连续X3(min)不小于A4℃时,停止防霜,即控制第一二通阀7关闭,控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6与第二过液口不连接,室内换热器11与第二过液口不连接。
该发明实施例提供的制冷防霜方法中,启动空调系统后,若检测到空调系统处于第一需防霜状态,则控制第一二通阀7打开,控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6与第二过液口不连接,室内换热器11与第二过液口连接,此时第一管路中的冷媒经第一蓄热管路进入相变蓄热器12,并 推动相变蓄热器12吸收热量后的冷媒经第二蓄液回路进入室内换热器11,由于相变蓄热器12包裹于压缩机13的外壁上,而压缩机13的温度较高,因此冷媒进入相变蓄热器12后吸收能量且蒸发温度提高,吸收能量后的冷媒经第二蓄液回路进入室内换热器11,蒸发温度提高,相应的室内换热器11的温度升高,实现防霜。进一步地,当室内换热器11的温度高于A3℃或者室内换热器11的温度连续X3(min)不小于A4℃时,停止防霜,即控制第一二通阀7关闭,控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6与第二过液口不连接,室内换热器11与第二过液口不连接。
其中,第一需防霜状态具体为:室内换热器11的温度连续X4(min)不大于A5℃,并且每隔X5(min)记录一次温度且后记录的温度低于前者,或者室内换热器11的温度不大于A6℃且X5(min)时间段内温度降低超过A7℃。
当然,第一需防霜状态还可以仅为室内换热器11的温度连续X4(min)不大于A5℃,在此不作限定。
步骤S2可以具体为:检测空调系统是否处于第一需防霜状态,若是则进行防霜,即控制第一二通阀7打开,控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6与第二过液口不连接,室内换热器11与第二过液口连接,冷媒经第二蓄液回路进入室内换热器11;若否,则控制第一二通阀7关闭,控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6与第二过液口不连接,室内换热器11与第二过液口不连接。
即当空调系统处于第一需防霜状态时进行防霜,当空调系统没有处于第一需防霜状态时,则空调系统正常工作。
请参阅图8和图9,本发明实施例还提供了一种用于如上述的空调系统的制热防霜方法,包括步骤:
s1:启动空调系统;
s2:检测空调系统是否处于第二需防霜状态,若是则进行防霜,即控制第一二通阀7打开,控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6与第二过液口不连接,室内换热器11与第二过液口连接,冷媒经第一蓄液回路进入室外换热器4;
s3:当室外换热器4的温度高于A8℃或者室内换热器11的温度连续X6(min)不小于A9℃时,停止防霜,即控制第一二通阀7关闭,控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6与第二过液口不连接,室内换热器11与第二过液口不连接。
该发明实施例提供的制热防霜方法中,启动空调系统后,若检测到空调系统处于第二需防霜状态,则控制第一二通阀7打开,控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6与第二过液口不连接,室内换热器11与第二过液口连接,此时第一管路中的冷媒经第二蓄热回路进入相变蓄热器12,并推动相变蓄热器12吸收热量后的冷媒经第一蓄液回路进入室外换热器4,由于相变蓄热器12包裹于压缩机13的外壁上,而压缩机13的温度较高,因此冷媒进入相变蓄热器12后吸收能量且蒸发温度提高,吸收能量后的冷媒经第二蓄液回路进入室外换热器4,蒸发温度提高,相应的室外换热器4的温度升高,实现防霜。进一步地,当室外换热器4的温度高于A3℃或者室外换热器4的温度连续X3(min)不小于A4℃时,停止防霜,即控制第一二通阀7关闭,控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6与第二过液口不连接,室内换热器11与第二过液口不连接。
其中,第二需防霜状态具体为:室外换热器4的温度连续X7(min)不大于A10℃,并且每隔X8(min)记录一次温度且后记录的温度低于前者,或者室内换热器11的温度不大于A11℃且X9(min)时间段内温度降低超过A12℃。
当然,第二需防霜状态还可以仅为室外换热器4的温度连续X7(min)不大于A10℃的情况,在此不作限定。
步骤s2可以具体为:检测空调系统是否处于第二需防霜状态,若是则进行防霜,即控制第一二通阀7打开,控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6与第二过液口不连接,室内换热器11与第二过液口连接,冷媒经第一蓄液回路进入室外换热器4;若否,则控制第一二通阀7关闭,控制三通阀8至膨胀阀6与室内换热器11连接且膨胀阀6与第二过液口不连接,室内换热器11与第二过液口不连接。
即当空调系统处于第二需防霜状态时进行防霜,当空调系统没有处于第二需防霜状态时,则空调系统正常工作。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (24)

  1. 一种空调系统,包括:
    室内换热器(11);
    室外换热器(4);
    连接所述室内换热器(11)与所述室外换热器(4)的第一管路;
    串连于所述第一管路上的膨胀阀(6);
    用于压缩冷媒蒸汽的压缩机(13);
    与所述压缩机(13)的输入端和输出端、所述室内换热器(11)及所述室外换热器(4)连接的四通阀(2);其特征在于,还包括:
    包裹于所述压缩机(13)外壁上的相变蓄热器(12),且所述相变蓄热器(12)具有第一过液口和第二过液口;
    一端连接于所述第一管路上的所述膨胀阀(6)与所述室外换热器(4)之间的第一蓄液管路,所述第一蓄液管路另一端连接于所述第一过液口,且所述第一蓄液管路上串接有第一二通阀(7);
    一端通过三通阀(8)连接于所述第一管路上的所述膨胀阀(6)与所述室内换热器(11)之间的第二蓄液管路,所述第二蓄液管路另一端连接于所述第二过液口,且所述第二蓄液管路上还设置有用于测量所述相变蓄热器(12)内压力的压力传感器(9)。
  2. 根据权利要求1所述的空调系统,其特征在于,还包括一端与所述压缩机(13)的输出端连通的旁通管路,所述旁通管路的另一端连接于所述第一管路上的所述膨胀阀(6)与所述室外换热器(4)之间,且所述旁通管路上串接有第二二通阀(1)和用于节流降压的节流毛细管(3)。
  3. 一种用于如权利要求1-2中任一项所述的空调系统的制冷蓄液方法,其特征在于,包括步骤:
    A:启动空调系统;
    B:检测空调系统是否处于第一低负荷状态,若是则进行蓄液,即控制第一二通阀(7)打开,控制三通阀(8)至膨胀阀(6)与室内换热器(11)连 接且膨胀阀(6)与第二过液口不连接,室内换热器(11)与第二过液口连接,冷媒经第一蓄液回路和第二蓄液回路进入相变蓄热器(12);
    C:停止蓄液。
  4. 根据权利要求3所述的制冷蓄液方法,其特征在于,所述步骤B中还包括:
    若否,则控制四通阀(2)切换至压缩机(13)的输入端与室内换热器(11)连接,压缩机(13)的输出端与室外换热器(4)连接,第一二通阀(7)关闭,且控制三通阀(8)至膨胀阀(6)与室内换热器(11)连接且膨胀阀(6)和室内换热器(11)均与第二过液口不连接。
  5. 根据权利要求3所述的制冷蓄液方法,其特征在于,所述步骤C具体为:
    C1:当压力传感器(9)的数值达到N1(KPa)时,记录当前膨胀阀(6)的开度P0后,将膨胀阀(6)的开度降至P1并控制三通阀(8)至膨胀阀(6)与室内换热器(11)连接且膨胀阀(6)与第二过液口不连接,室内换热器(11)与第二过液口不连接,并维持t1(s)后;
    C2:控制第一二通阀(7)关闭,膨胀阀的开度恢复至P0
  6. 根据权利要求3所述的制冷蓄液方法,其特征在于,所述步骤C之后还包括步骤:
    D:检测空调系统是否处于非第一低负荷状态,若是则进行放液,即控制第一二通阀(7)关闭,控制三通阀(8)至膨胀阀(6)与室内换热器(11)连接且膨胀阀(6)与第二过液口不连接,室内换热器(11)与第二过液口连接,冷媒从相变蓄热器(12)经第二蓄热回路进入室内换热器(11);
    E:当压力传感器(9)的数值达到N2(KPa)时,记录当前膨胀阀(6)的开度P2后,将膨胀阀(6)的开度降至最低并维持t2(s)后,控制三通阀(8)至膨胀阀(6)与室内换热器(11)连接且膨胀阀(6)与第二过液口不连接,室内换热器(11)与第二过液口不连接,将膨胀阀(6)的开度恢复至P2
  7. 根据权利要求6所述的制冷蓄液方法,其特征在于,步骤C与D之间还包括步骤:维持当前状态X1(min)。
  8. 根据权利要求6所述的制冷蓄液方法,其特征在于,步骤E步骤之后 还包括步骤F:维持当前状态X1(min)。
  9. 根据权利要求3所述的制冷蓄液方法,其特征在于,所述第一低负荷状态具体为当室内温度低于A1℃且室外温度低于B1℃,或者室内温度与设定温度的差值低于C1℃且压缩机(13)的运行频率小于D1(HZ)时。
  10. 根据权利要求6所述的制冷蓄液方法,其特征在于,在进行蓄液或者放液过程中不进行空调系统负荷状态的检测。
  11. 一种用于如权利要求1-2中任一项所述的空调系统的制热蓄液方法,其特征在于,包括步骤:
    a:启动空调系统;
    b:检测空调系统是否处于第二低负荷状态,若是则进行蓄液,即控制第一二通阀(7)打开,控制三通阀(8)至膨胀阀(6)与室内换热器(11)连接且膨胀阀(6)与第二过液口不连接,室内换热器(11)与第二过液口连接,冷媒经第一蓄液回路和第二蓄液回路进入相变蓄热器(12);
    c:停止蓄液。
  12. 根据权利要求11所述的制热蓄液方法,其特征在于,所述步骤b中还包括:
    若否,则控制四通阀(2)切换至压缩机(13)的输入端与室外换热器(4)连接,压缩机(13)的输出端与室内换热器(11)连接,第一二通阀(7)关闭,且控制三通阀(8)至膨胀阀(6)与室内换热器(11)连接且膨胀阀(6)和室内换热器(11)均与第二过液口不连接。
  13. 根据权利要求11所述的制热蓄液方法,其特征在于,所述步骤c具体为:
    c1:当压力传感器(9)的数值达到N3(KPa)时,记录当前膨胀阀(6)的开度P3后,将膨胀阀(6)的开度降至P4并控制第一二通阀(7)关闭,并维持t3(s);
    c2:控制三通阀(8)至膨胀阀(6)与室内换热器(11)连接且膨胀阀(6)与第二过液口不连接,室内换热器(11)与第二过液口不连接,将膨胀阀的开度恢复至P3
  14. 根据权利要求11所述的制热蓄液方法,其特征在于,所述步骤c之 后还包括步骤:
    d:检测空调系统是否处于非第二低负荷状态,若是则进行放液,即控制第一二通阀(7)打开,控制三通阀(8)至膨胀阀(6)与室内换热器(11)连接且膨胀阀(6)与第二过液口不连接,室内换热器(11)与第二过液口不连接,冷媒从相变蓄热器(12)经第一蓄热回路进入室外换热器(4);
    e:当压力传感器(9)的数值达到N4(KPa)时,记录当前膨胀阀(6)的开度P4后,将膨胀阀(6)的开度降至最低并维持t4(s)后,控制第一二通阀(7)关闭,将膨胀阀(6)的开度恢复至P4
  15. 根据权利要求14所述的制热蓄液方法,其特征在于,步骤c与d之间还包括步骤:维持当前状态X2(min)。
  16. 根据权利要求14所述的制热蓄液方法,其特征在于,步骤e步骤之后还包括步骤f:维持当前状态X2(min)。
  17. 根据权利要求11所述的制热蓄液方法,其特征在于,所述第二低负荷状态具体为当室内温度高于A2℃且室外温度高于B2℃,或者室内温度与设定温度的差值低于C2℃时。
  18. 根据权利要求14所述的制热蓄液方法,其特征在于,在进行蓄液或者放液过程中不进行空调系统负荷状态的检测。
  19. 一种用于如权利要求1-2中任一项所述的空调系统的制冷防霜方法,其特征在于,包括步骤:
    S1:启动空调系统;
    S2:检测空调系统是否处于第一需防霜状态,若是则进行防霜,即控制第一二通阀(7)打开,控制三通阀(8)至膨胀阀(6)与室内换热器(11)连接且膨胀阀(6)与第二过液口不连接,室内换热器(11)与第二过液口连接,冷媒经第二蓄液回路进入室内换热器(11);
    S3:当室内换热器(11)的温度高于A3℃或者室内换热器(11)的温度连续X3(min)不小于A4℃时,停止防霜,即控制第一二通阀(7)关闭,控制三通阀(8)至膨胀阀(6)与室内换热器(11)连接且膨胀阀(6)与第二过液口不连接,室内换热器(11)与第二过液口不连接。
  20. 根据权利要求19所述的制冷防霜方法,其特征在于,所述第一需防 霜状态具体为:室内换热器(11)的温度连续X4(min)不大于A5℃,每隔X5(min)记录一次温度且后记录的温度低于前者,或者室内换热器(11)的温度不大于A6℃且X5(min)时间段内温度降低超过A7℃。
  21. 根据权利要求19所述的制冷防霜方法,其特征在于,步骤S2中还包括:若否,则控制第一二通阀(7)关闭,控制三通阀(8)至膨胀阀(6)与室内换热器(11)连接且膨胀阀(6)与第二过液口不连接,室内换热器(11)与第二过液口不连接。
  22. 一种用于如权利要求1-2中任一项所述的空调系统的制热防霜方法,其特征在于,包括步骤:
    s1:启动空调系统;
    s2:检测空调系统是否处于第二需防霜状态,若是则进行防霜,即控制第一二通阀(7)打开,控制三通阀(8)至膨胀阀(6)与室内换热器(11)连接且膨胀阀(6)与第二过液口不连接,室内换热器(11)与第二过液口连接,冷媒经第一蓄液回路进入室外换热器(4);
    s3:当室外换热器(4)的温度高于A8℃或者室内换热器(11)的温度连续X6(min)不小于A9℃时,停止防霜,即控制第一二通阀(7)关闭,控制三通阀(8)至膨胀阀(6)与室内换热器(11)连接且膨胀阀(6)与第二过液口不连接,室内换热器(11)与第二过液口不连接。
  23. 根据权利要求22所述的制冷防霜方法,其特征在于,所述第二需防霜状态具体为:室外换热器(4)的温度连续X7(min)不大于A10℃,每隔X8(min)记录一次温度且后记录的温度低于前者,或者室内换热器(11)的温度不大于A11℃且X9(min)时间段内温度降低超过A12℃。
  24. 根据权利要求22所述的制冷防霜方法,其特征在于,步骤s2中还包括:若否,则控制第一二通阀(7)关闭,控制三通阀(8)至膨胀阀(6)与室内换热器(11)连接且膨胀阀(6)与第二过液口不连接,室内换热器(11)与第二过液口不连接。
PCT/CN2014/085557 2013-09-05 2014-08-29 制冷、制热蓄液方法及制冷、制热防霜方法和空调系统 WO2015032293A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310400653.4A CN104422193B (zh) 2013-09-05 2013-09-05 制冷、制热蓄液方法及制冷、制热防霜方法和空调系统
CN201310400653.4 2013-09-05

Publications (1)

Publication Number Publication Date
WO2015032293A1 true WO2015032293A1 (zh) 2015-03-12

Family

ID=52627794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085557 WO2015032293A1 (zh) 2013-09-05 2014-08-29 制冷、制热蓄液方法及制冷、制热防霜方法和空调系统

Country Status (2)

Country Link
CN (1) CN104422193B (zh)
WO (1) WO2015032293A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106828027A (zh) * 2017-01-23 2017-06-13 郑州科林车用空调有限公司 一种采用压力传感器的车用热泵空调
EP3244141A1 (en) * 2016-05-09 2017-11-15 Vaillant GmbH Defrosting with heat generated by compressor driver
CN107449626A (zh) * 2017-08-31 2017-12-08 山东奇威特太阳能科技有限公司 蓄热器测试系统及基于该测试系统的蓄热器测试方法
CN115388573A (zh) * 2022-08-03 2022-11-25 浙江吉利控股集团有限公司 用于车辆的换热系统及具有其的车辆

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105352234B (zh) * 2015-11-02 2017-12-08 长沙理工大学 一种自适应相变冷凝空调系统及其实现方法
CN108317772B (zh) * 2017-01-17 2021-03-09 青岛海尔新能源电器有限公司 一种补气增焓系统及家用电器
CN106907825A (zh) * 2017-02-06 2017-06-30 美的集团股份有限公司 空调系统及空调器控制方法
CN110293817B (zh) * 2019-06-24 2021-05-11 珠海格力电器股份有限公司 一种电动车热泵空调系统及其除霜方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331666A (ja) * 1989-06-28 1991-02-12 Matsushita Electric Ind Co Ltd ヒートポンプ式空気調和機
CN202692529U (zh) * 2012-07-30 2013-01-23 珠海格力电器股份有限公司 热泵式空调系统
CN202692530U (zh) * 2012-07-30 2013-01-23 珠海格力电器股份有限公司 热泵式空调系统
CN203443192U (zh) * 2013-09-05 2014-02-19 珠海格力电器股份有限公司 空调系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387576A (ja) * 1989-08-30 1991-04-12 Mitsubishi Electric Corp 空気調和機
JP4947002B2 (ja) * 2008-07-28 2012-06-06 富士電機リテイルシステムズ株式会社 冷媒回路装置
CN202709311U (zh) * 2012-07-25 2013-01-30 珠海格力电器股份有限公司 空调器系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331666A (ja) * 1989-06-28 1991-02-12 Matsushita Electric Ind Co Ltd ヒートポンプ式空気調和機
CN202692529U (zh) * 2012-07-30 2013-01-23 珠海格力电器股份有限公司 热泵式空调系统
CN202692530U (zh) * 2012-07-30 2013-01-23 珠海格力电器股份有限公司 热泵式空调系统
CN203443192U (zh) * 2013-09-05 2014-02-19 珠海格力电器股份有限公司 空调系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3244141A1 (en) * 2016-05-09 2017-11-15 Vaillant GmbH Defrosting with heat generated by compressor driver
CN106828027A (zh) * 2017-01-23 2017-06-13 郑州科林车用空调有限公司 一种采用压力传感器的车用热泵空调
CN106828027B (zh) * 2017-01-23 2023-04-18 郑州科林车用空调有限公司 一种采用压力传感器的车用热泵空调
CN107449626A (zh) * 2017-08-31 2017-12-08 山东奇威特太阳能科技有限公司 蓄热器测试系统及基于该测试系统的蓄热器测试方法
CN107449626B (zh) * 2017-08-31 2023-08-04 山东奇威特太阳能科技有限公司 蓄热器测试系统及基于该测试系统的蓄热器测试方法
CN115388573A (zh) * 2022-08-03 2022-11-25 浙江吉利控股集团有限公司 用于车辆的换热系统及具有其的车辆
CN115388573B (zh) * 2022-08-03 2023-12-08 浙江吉利控股集团有限公司 用于车辆的换热系统及具有其的车辆

Also Published As

Publication number Publication date
CN104422193B (zh) 2016-08-31
CN104422193A (zh) 2015-03-18

Similar Documents

Publication Publication Date Title
WO2015032293A1 (zh) 制冷、制热蓄液方法及制冷、制热防霜方法和空调系统
EP3745052B1 (en) Heat pump air conditioning system and control method
JP4797727B2 (ja) 冷凍装置
JP5575191B2 (ja) 二元冷凍装置
US20110203299A1 (en) Heat pump system and method of operating
JP5375904B2 (ja) 空気調和機
JP2013119954A (ja) ヒートポンプ式温水暖房機
CN103097824A (zh) 空气调节机
CN104930770A (zh) 一种热泵空调器的化霜方法和装置
CN102967118A (zh) 电冰箱化霜控制方法及采用该方法的电冰箱
JP2003240391A (ja) 空気調和機
WO2022267886A1 (zh) 空调器的防结霜控制方法及空调器
WO2012121326A1 (ja) 2元冷凍サイクル装置
CN204665584U (zh) 一种热泵空调器化霜装置
TWI588424B (zh) 熱泵空調系統及其控制方法
TWI539120B (zh) 具除濕與除霜功能之裝置及其控制方法
KR101964946B1 (ko) 외기온도 보상형 고효율 냉각시스템
JPH09287847A (ja) 熱回収式空気調和装置
JP5973336B2 (ja) 空気調和機
JP3082560B2 (ja) 二元冷却装置
JP6203230B2 (ja) 空調装置、空調装置の制御方法
JP4774858B2 (ja) 空気調和装置
KR102422010B1 (ko) 냉난방 멀티 공기조화기
CN109959180B (zh) 空调系统及其除霜方法
JPH0765814B2 (ja) ヒ−トポンプ式冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14841814

Country of ref document: EP

Kind code of ref document: A1