WO2015029243A1 - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
WO2015029243A1
WO2015029243A1 PCT/JP2013/073486 JP2013073486W WO2015029243A1 WO 2015029243 A1 WO2015029243 A1 WO 2015029243A1 JP 2013073486 W JP2013073486 W JP 2013073486W WO 2015029243 A1 WO2015029243 A1 WO 2015029243A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
evaporator
flow path
compressor
storage tank
Prior art date
Application number
PCT/JP2013/073486
Other languages
French (fr)
Japanese (ja)
Inventor
達也 ▲雑▼賀
杉本 猛
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015533910A priority Critical patent/JPWO2015029243A1/en
Priority to PCT/JP2013/073486 priority patent/WO2015029243A1/en
Publication of WO2015029243A1 publication Critical patent/WO2015029243A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/111Fan speed control of condenser fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigeration apparatus.
  • the refrigeration apparatus includes, for example, a compressor, a condenser, a throttling device, an evaporator, and the like, and a refrigerant circuit configured by connecting them with a refrigerant pipe is provided.
  • a refrigeration apparatus has been proposed in which a heater is attached to the evaporator and the frost attached to the evaporator is melted by the heat of the heater (see, for example, Patent Document 1).
  • a defrosting heater is attached to the lower part of the evaporator, around the refrigerant pipe (hairpin) of the evaporator, and the like.
  • Patent Document 2 a refrigeration apparatus capable of supplying a gas refrigerant (hot gas) discharged from the compressor to the evaporator and flowing a hot gas through the evaporator to melt frost adhering to the evaporator.
  • a gas refrigerant hot gas
  • Patent Document 2 relates to a thermobank refrigeration apparatus including a heat storage tank that stores heat of refrigerant discharged from a compressor.
  • the refrigerant returning from the evaporator side to the compressor side may contain liquid refrigerant. Therefore, the technology described in Patent Document 2 suppresses the liquid refrigerant from being sucked into the compressor by transferring the heat from the heat storage tank to the refrigerant returning from the evaporator side to the compressor side to be gasified. .
  • Japanese Patent Laid-Open No. 9-250850 see, for example, FIG. 3
  • Japanese Patent Laid-Open No. 59-112161 see, for example, FIG. 1
  • R32 is characterized by not only low GWP but also high discharge gas temperature and slightly flammability compared to refrigerants such as R410A and R404A that are widely used at present.
  • a slightly flammable refrigerant comes into contact with an open flame or a metal heated to a high temperature of 300 to 400 ° C. or higher, it may be thermally decomposed to generate hydrogen fluoride.
  • the present invention was made to solve the above-described problems, and suppresses thermal decomposition of the refrigerant when there is refrigerant leakage, and realizes a compact heat storage tank. It is an object.
  • a refrigerating apparatus includes a compressor, a condenser, a throttling device, and an evaporator, and includes a refrigerant circuit configured by connecting these via a refrigerant pipe, and the refrigerant discharged from the compressor is evaporated to the evaporator.
  • the refrigerant circulating in the refrigerant circuit is a refrigerant containing 65% by weight or more of the R32 refrigerant, and is connected between the discharge side of the compressor and the condenser.
  • a heat storage tank in which a heat medium to be transmitted to the flowing refrigerant is stored is configured to return the refrigerant that has flowed out of the evaporator to the compressor via the second flow path during hot gas defrost operation. is there.
  • the refrigeration apparatus does not include a defrosting heater, performs defrosting operation to melt the frost of the evaporator, and suppresses thermal decomposition of the refrigerant when there is refrigerant leakage. be able to.
  • the refrigeration apparatus is of a thermo bank type having a heat storage tank, and the refrigerant circulating in the refrigerant circuit is a refrigerant containing 65% by weight or more of R32 refrigerant.
  • the refrigerant containing 65 wt% or more of the R32 refrigerant has a higher discharge refrigerant temperature than the R410A refrigerant and the R404A refrigerant.
  • the length of the piping (first flow path) in the heat storage tank is the same, the heat in the heat storage tank is higher than the heat storage tank of the refrigeration apparatus employing the R410A refrigerant, the R404A refrigerant, or the like.
  • the temperature of the medium can be increased.
  • the refrigeration apparatus according to the present invention shortens the length of the pipes (first flow path and second flow path) in the heat storage tank as compared with the refrigeration apparatus that employs the R410A refrigerant, the R404A refrigerant, or the like. It is possible to realize a compact heat storage tank.
  • FIG. 1 is a schematic configuration example of a refrigeration apparatus according to an embodiment of the present invention. It is explanatory drawing, such as a drain pan mounted in the refrigeration apparatus shown in FIG. It is explanatory drawing of the thermal storage tank of the freezing apparatus shown in FIG. It is explanatory drawing of the thermal storage tank different from the thermal storage tank shown in FIG.
  • FIG. 1 is a schematic configuration example diagram of a refrigeration apparatus 100 according to an embodiment.
  • FIG. 2 is an explanatory diagram of the drain pan 15 and the like mounted on the refrigeration apparatus 100 shown in FIG.
  • the refrigeration apparatus 100 is provided with improvements for suppressing thermal decomposition of the refrigerant when there is a refrigerant leak and for realizing a compact heat storage tank 11.
  • the refrigeration apparatus 100 includes a compressor 1, a condenser 2, a throttling device 7, an evaporator 8, and the like, and includes a refrigerant circuit configured by connecting them through a refrigerant pipe 70.
  • the refrigeration apparatus 100 is a thermobank refrigeration apparatus including a heat storage tank 11 that stores the heat of the refrigerant discharged from the compressor 1.
  • the evaporator 8 may be frosted. For this reason, the refrigeration apparatus 100 can perform a hot gas defrost operation in which hot gas discharged from the compressor 1 is supplied to the evaporator 8 to melt frost adhering to the evaporator 8.
  • the refrigeration apparatus 100 is provided with a mechanism for switching the flow path of the refrigerant circuit in order to switch between the operation of supplying the refrigerant to the evaporator 8 (cooling operation) and the hot gas defrost operation. That is, the refrigeration apparatus 100 includes a first bypass pipe 71, a second bypass pipe 72, and a refrigerant pipe 70 that connects the compressor 1, the heat storage tank 11, the condenser 2, the expansion device 7, and the evaporator 8.
  • the connecting pipe 73, the solenoid valve 3, the solenoid valve 4, the solenoid valve 5, the solenoid valve 6, the solenoid valve 9, and the pressure reducing valve 10 are provided.
  • the compressor 1 sucks a refrigerant, compresses the refrigerant, and discharges the refrigerant in a high temperature and high pressure state.
  • the refrigerant discharge side is connected to the first flow path 11 ⁇ / b> A of the heat storage tank 11, and the suction side is connected to the second flow path 11 ⁇ / b> B of the heat storage tank 11 and the electromagnetic valve 9.
  • the condenser 2 performs heat exchange between the air around the condenser 2 and the refrigerant supplied to the condenser 2 to condense and liquefy the refrigerant.
  • the condenser 2 is composed of, for example, a fin tube heat exchanger.
  • the condenser 2 has an upstream side connected to the heat storage tank 11 and the electromagnetic valve 3, and a downstream side connected to the electromagnetic valve 4.
  • the condenser 2 is provided with a blower fan 2A used to promote heat exchange between air and the refrigerant.
  • the expansion device 7 is for expanding the refrigerant.
  • an electronic expansion valve having a variable opening or a capillary tube may be used.
  • the expansion device 7 has an upstream side connected to the electromagnetic valve 5 and a downstream side connected to the evaporator 8.
  • the evaporator 8 performs heat exchange between the air around the evaporator 8 and the refrigerant supplied to the evaporator 8 to evaporate the refrigerant.
  • the evaporator 8 is comprised by a fin tube heat exchanger, for example.
  • the evaporator 8 has an upstream side connected to the expansion device 7 and the electromagnetic valve 6, and a downstream side connected to the electromagnetic valve 9 and the pressure reducing valve 10.
  • the evaporator 8 is provided with a blower fan 8A used to promote heat exchange between air and the refrigerant.
  • the refrigeration apparatus 100 includes a drain pan 15 that stores drain water generated by the evaporator 8 below the evaporator 8.
  • a second bypass pipe 72 or the like through which hot gas flows may be disposed below the drain pan 15.
  • the refrigeration apparatus 100 according to the present embodiment is not provided with a defrosting heater. However, there is a possibility that a heating element other than the defrosting heater is arranged, but even if hot gas leaks in the second bypass pipe 72, the heating element is provided above the drain pan 15. It can suppress that a hot gas thermally decomposes.
  • the refrigeration apparatus 100 may be configured by bringing the refrigerant pipe 70 connected to the evaporator 8 into contact with the drain pan 15, for example. Thereby, the heat of the hot gas flowing during the hot gas defrosting operation can be transmitted to the drain pan 15 and the drain water frozen in the drain pan 15 can be melted.
  • the heat storage tank 11 stores a heat medium 12, and heat is stored in the heat medium 12.
  • the heat medium 12 for example, water, antifreeze, or the like can be used.
  • the heat medium 12 is not limited to liquids such as water and antifreeze, and a solid heat storage material or the like may be used.
  • the heat storage tank 11 includes a first flow path 11A connected to the discharge side of the compressor 1 and a second flow path 11B connected to the pressure reducing valve 10.
  • the first channel 11 ⁇ / b> A has an upstream side connected to the discharge side of the compressor 1 and a downstream side connected to the condenser 2 and the electromagnetic valve 3.
  • the second channel 11 ⁇ / b> B has an upstream side connected to the pressure reducing valve 10 and a downstream side connected to the suction side of the compressor 1.
  • the first flow path 11A and the second flow path 11B correspond to, for example, a pipe through which a refrigerant can flow.
  • 1st flow path 11A is arrange
  • coolant can be transmitted to the heat medium 12 of the thermal storage tank 11, as shown in FIG. Since the gas refrigerant (hot gas) discharged from the compressor 1 flows through the first flow path 11A, heat is transferred from the first flow path 11A to the heat medium 12 in the heat storage tank 11.
  • the heat storage tank 11 can store the transmitted heat in the heat medium 12.
  • 11 A of 1st flow paths are arrange
  • the second flow path 11 ⁇ / b> B is also arranged in the tank of the heat storage tank 11 so that the heat of the refrigerant can be transmitted to the heat medium 12 of the heat storage tank 11, for example.
  • the pressure reducing valve 10 is closed and the electromagnetic valve 9 is opened, so that the refrigerant flowing out of the evaporator 8 is not supplied to the second flow path 11B.
  • the pressure reducing valve 10 is opened and the electromagnetic valve 9 is closed, so that the refrigerant flowing out of the evaporator 8 is supplied to the second flow path 11B.
  • the refrigerant flowing out of the evaporator 8 contains liquid refrigerant in order to supply the refrigerant (hot gas) to the evaporator 8 without passing through the condenser 2 and the expansion device 7. Yes.
  • the compressor 1 may break down. Therefore, during the hot gas defrost operation, the refrigerant flowing out of the evaporator 8 is depressurized by the pressure reducing valve 10 and then flows into the second flow path 11B of the heat storage tank 11.
  • the second channel 11B is disposed on the upper side of the first channel 11A. This is because the upper side of the heat medium 12 is hotter than the lower side, so that heat can be transferred to the refrigerant flowing through the second flow path 11B with high efficiency and gasified.
  • the first bypass pipe 71 is a pipe used for flowing the refrigerant flowing out of the heat storage tank 11 during the hot gas defrost operation to the downstream side of the condenser 2 so as not to pass through the condenser 2.
  • the first bypass pipe 71 is a pipe connected so as to bypass the condenser 2. That is, one of the first bypass pipes 71 is connected between the heat storage tank 11 and the condenser 2 in the refrigerant pipe 70, and the other is between the electromagnetic valve 4 and the electromagnetic valve 5 in the refrigerant pipe 70. Is connected to.
  • the second bypass pipe 72 is used to flow the refrigerant flowing out from the first bypass pipe 71 during the hot gas defrost operation to the evaporator 8 on the downstream side of the expansion device 7 so as not to pass through the expansion device 7. It is piping.
  • the second bypass pipe 72 is a pipe connected so as to bypass the expansion device 7. That is, one of the second bypass pipes 72 is connected between the connection position of the first bypass pipe 71 in the refrigerant pipe 70 and the solenoid valve 5, and the other is connected to the expansion device 7 in the refrigerant pipe 70. It is connected between the evaporator 8.
  • connection pipe 73 is a pipe through which the refrigerant flowing out of the evaporator 8 during the hot gas defrost operation passes through the heat storage tank 11.
  • One of the connection pipes 73 is connected to the upstream side of the electromagnetic valve 9 in the refrigerant pipe 70, and the other is connected to the downstream side of the electromagnetic valve 9 in the refrigerant pipe 70.
  • the connection pipe 73 communicates with the second flow path 11 ⁇ / b> B of the heat storage tank 11.
  • the solenoid valve 3 is provided in the first bypass pipe 71.
  • the solenoid valve 4 is provided in the refrigerant pipe 70 on the downstream side of the condenser 2 and on the upstream side of the connection position of the first bypass pipe 71.
  • the solenoid valve 5 is provided on the downstream side of the connection position of the second bypass pipe 72 in the refrigerant pipe 70 and on the upstream side of the expansion device 7.
  • the solenoid valve 6 is provided in the second bypass pipe 72.
  • the solenoid valve 9 is provided between one of the connection pipes 73 connected to the refrigerant pipe 70 and the other.
  • the pressure reducing valve 10 is provided on the upstream side of the heat storage tank 11 in the connection pipe 73.
  • the control device 50 includes the frequency of the compressor 1 (including operation / stop), the rotational speed of the blower fan 2A and the blower fan 8A (including operation / stop), the opening degree of the expansion device 7 and the pressure reducing valve 10, The opening / closing of the solenoid valve 4, the solenoid valve 5 and the solenoid valve 6 is controlled.
  • the control device 50 is constituted by, for example, a microcomputer.
  • the solenoid valve 4 the solenoid valve 5 and the solenoid valve 9 are open, and the solenoid valve 3 and the solenoid valve 6 are closed.
  • the pressure reducing valve 10 is closed.
  • the gas refrigerant compressed and discharged by the compressor 1 flows into the heat storage tank 11 and heats the heat medium 12 in the heat storage tank 11, then flows out of the heat storage tank 11 and flows into the condenser 2.
  • the gas refrigerant flowing into the condenser 2 condenses by exchanging heat with the air supplied from the blower fan 2 ⁇ / b> A and flows out of the condenser 2.
  • the refrigerant flowing out of the condenser 2 flows into the expansion device 7 and is expanded and depressurized by the expansion device 7.
  • the decompressed refrigerant flows into the evaporator 8, performs heat exchange with the air supplied from the blower fan 8 ⁇ / b> A, evaporates, and flows out of the evaporator 8.
  • the gas refrigerant that has flowed out of the evaporator 8 is sucked into the compressor 1.
  • the solenoid valve 4 the solenoid valve 5 and the solenoid valve 9 are closed, and the solenoid valve 3 and the solenoid valve 6 are open.
  • the pressure reducing valve 10 is opened at a preset opening degree.
  • the gas refrigerant (hot gas) compressed and discharged by the compressor 1 flows into the heat storage tank 11 and heats the heat medium 12 in the heat storage tank 11, then flows out of the heat storage tank 11, and the first bypass pipe 71. Flow into.
  • the gas refrigerant that has flowed into the first bypass pipe 71 flows into the evaporator 8 through the refrigerant pipe 70 and the second bypass pipe 72.
  • the hot gas that has flowed into the evaporator 8 dissolves frost adhering to the evaporator 8.
  • the refrigerant that has flowed out of the evaporator 8 contains liquid refrigerant.
  • the refrigerant that has flowed out of the evaporator 8 is depressurized by the pressure reducing valve 10, and then flows into the second flow path 11B of the heat storage tank 11 to receive heat from the heat medium 12 stored in the heat storage tank 11, and gas Turn into. Then, the refrigerant gasified in the second flow path 11 ⁇ / b> B is sucked into the compressor 1.
  • FIG. 3 is an explanatory diagram of the heat storage tank 11 of the refrigeration apparatus 100 shown in FIG.
  • FIG. 4 is an explanatory diagram of the heat storage tank 11 different from the heat storage tank 11 shown in FIG. 3. 4 shows that the second flow path 11B is shorter than the heat storage tank 11 shown in FIG. 3, and the tank of the heat storage tank 11 is miniaturized in accordance with the shortening of the second flow path 11B. Is shown.
  • coolant enclosed with the freezing apparatus 100 and the length of 11 A of 1st flow paths and the 2nd flow path 11B of the thermal storage tank 11 are demonstrated.
  • the refrigerating apparatus 100 employs R32 refrigerant having a higher discharge refrigerant temperature than the R410A refrigerant, R404A refrigerant, and the like. More specifically, the refrigerant circulating in the refrigerant circuit of the refrigeration apparatus 100 contains 65% by weight or more of R32 refrigerant. That is, all the refrigerants may be R32 refrigerants, or may be a mixed refrigerant in which 65% by weight or more of the refrigerant circulating in the refrigerant circuit of the refrigeration apparatus 100 is R32 refrigerant.
  • the refrigeration apparatus 100 includes a heat storage tank 11 and has a thermobank hot gas defrost system.
  • heat is stored by exchanging heat between the gas refrigerant discharged from the compressor 1 and the heat medium 12 inside the heat storage tank 11.
  • R32 refrigerant or the like is employed as the refrigerant
  • the temperature of the refrigerant discharged from the compressor 1 increases. Therefore, if the heat transfer area of the first flow path 11A is the same and the amount of the heat medium 12 stored in the tank is also the same, the direction when the R32 refrigerant or the like is adopted.
  • the temperature of the heat medium 12 in the heat storage tank 11 can be made higher than when R410A refrigerant or the like is employed.
  • R410A refrigerant or the like when R410A refrigerant or the like is caused to flow into the heat storage tank 11 shown in FIG. 3 and R410 refrigerant or the like can be gasified in the second flow path 11B, the R32 refrigerant is used as shown in FIG. That is, the length of the second flow path 11B of the heat storage tank 11 can be further shortened to make the tank of the heat storage tank 11 smaller, and the heat storage tank 11 as shown in FIG. 4 can be used.
  • the refrigeration apparatus 100 is a thermobank type refrigeration apparatus provided with a heat storage tank 11, and the refrigerant circulating in the refrigerant circuit is a refrigerant containing 65% by weight or more of R32 refrigerant. .
  • the refrigerant containing 65 wt% or more of the R32 refrigerant has a higher discharge refrigerant temperature than the R410A refrigerant and the R404A refrigerant.
  • the length of the piping (the first flow path 11A and the second flow path 11B) in the heat storage tank 11 is made shorter than the refrigeration apparatus employing the R410A refrigerant, the R404A refrigerant, and the like. Therefore, the heat storage tank 11 can be downsized.
  • the refrigeration apparatus 100 does not perform defrosting by providing a defrosting heater, but performs a defrosting operation by performing a hot gas defrosting operation using hot gas discharged from the compressor 1. It is something to do. For this reason, even if the refrigerant piping 70 is damaged and refrigerant leakage occurs, the R32 refrigerant does not touch the defrosting heater, and the R32 refrigerant can be prevented from being thermally decomposed.
  • the second bypass pipe 72 through which hot gas flows is connected to the drain pan 15 at the lower part of the evaporator 8 disposed in the indoor unit or in the unit cooler. It should be provided on the lower side. Since R32 refrigerant is heavier than air, it stays in the lower part of indoor units, unit coolers, etc., so that when high-temperature R32 refrigerant leaks, it prevents the refrigerant from touching the defrosting heater and thermally decomposing. Because it can.

Abstract

A refrigeration device (100) which has a compressor (1), a condenser (2), a throttle device (7), and an evaporator (8), and has a refrigerant circuit formed by connecting these by means of refrigerant piping (70), and which performs a hot gas defrost operation whereby a refrigerant discharged from the compressor (1) is supplied to the evaporator (8). The refrigerant circulating in the refrigeration circuit contains at least 65 wt% of R32 refrigerant. The refrigeration device is configured so as to have a heat storage vat (11), which has a first flow path (11A) connecting the discharge side of the compressor (1) and the condenser (2), and a second flow path (11B) connecting the evaporator (8) and the suction side of the compressor (1), and which stores the heat of the refrigerant flowing in the first flow path (11A) and transfers this heat to the refrigerant flowing in the second flow path (11B). During the hot gas defrost operation the refrigerant discharged from the evaporator (8) is returned to the compressor (1) through the second flow path (11B).

Description

冷凍装置Refrigeration equipment
 本発明は、冷凍装置に関するものである。 The present invention relates to a refrigeration apparatus.
 冷凍装置は、たとえば、圧縮機、凝縮器、絞り装置及び蒸発器などを有し、これらを冷媒配管で接続して構成した冷媒回路が設けられている。ここで、冷凍装置の使用を継続していると、蒸発器に霜が発生し、蒸発器の周囲の空気と蒸発器に供給される冷媒との熱交換効率が低減してしまう場合がある。そこで、蒸発器にヒーターを付設し、ヒーターの熱によって蒸発器に付着した霜を溶かす冷凍装置が提案されている(たとえば、特許文献1参照)。特許文献1などのように除霜用ヒーターを搭載した冷凍装置は、たとえば蒸発器の下部、蒸発器の冷媒配管(ヘアピン)の周囲などに除霜用ヒーターを付設している。 The refrigeration apparatus includes, for example, a compressor, a condenser, a throttling device, an evaporator, and the like, and a refrigerant circuit configured by connecting them with a refrigerant pipe is provided. Here, if the use of the refrigeration apparatus is continued, frost is generated in the evaporator, and the heat exchange efficiency between the air around the evaporator and the refrigerant supplied to the evaporator may be reduced. Therefore, a refrigeration apparatus has been proposed in which a heater is attached to the evaporator and the frost attached to the evaporator is melted by the heat of the heater (see, for example, Patent Document 1). In a refrigeration apparatus equipped with a defrosting heater as in Patent Document 1, for example, a defrosting heater is attached to the lower part of the evaporator, around the refrigerant pipe (hairpin) of the evaporator, and the like.
 また、その他に、圧縮機から吐出されたガス冷媒(ホットガス)を蒸発器に供給し、蒸発器にホットガスを流して蒸発器に付着した霜を溶かすデフロスト運転を実施することができる冷凍装置なども提案されている(たとえば、特許文献2参照)。特許文献2に記載の技術は、圧縮機から吐出された冷媒の熱を蓄熱する蓄熱槽を備えたサーモバンク式の冷凍装置に関するものである。デフロスト運転を実施したとき、蒸発器側から圧縮機側に戻ってくる冷媒には、液冷媒が含まれている場合がある。そこで、特許文献2に記載の技術は、蓄熱槽の熱を蒸発器側から圧縮機側に戻ってくる冷媒に伝達させてガス化させ、液冷媒が圧縮機に吸入されること抑制している。 In addition, a refrigeration apparatus capable of supplying a gas refrigerant (hot gas) discharged from the compressor to the evaporator and flowing a hot gas through the evaporator to melt frost adhering to the evaporator. Have also been proposed (see, for example, Patent Document 2). The technique described in Patent Document 2 relates to a thermobank refrigeration apparatus including a heat storage tank that stores heat of refrigerant discharged from a compressor. When the defrost operation is performed, the refrigerant returning from the evaporator side to the compressor side may contain liquid refrigerant. Therefore, the technology described in Patent Document 2 suppresses the liquid refrigerant from being sucked into the compressor by transferring the heat from the heat storage tank to the refrigerant returning from the evaporator side to the compressor side to be gasified. .
特開平9-250850号公報(たとえば、図3参照)Japanese Patent Laid-Open No. 9-250850 (see, for example, FIG. 3) 特開昭59-112161号公報(たとえば、図1参照)Japanese Patent Laid-Open No. 59-112161 (see, for example, FIG. 1)
 近年、R410A、R404Aに代わる代替冷媒として、温暖化係数(GWP)の値が小さいR32などの微燃性冷媒を用いた空気調和装置及び冷凍装置などが提案されている。R32の特徴としては、現状広く使われているR410A、R404Aといった冷媒と比較するとGWPが低いだけでなく、吐出ガス温度が高く、微燃性を有していることである。微燃性冷媒は、裸火や300~400℃以上の高温に加熱された金属などに接触すると、熱分解し、フッ化水素などが発生することがある。 Recently, as an alternative refrigerant to replace R410A and R404A, an air conditioner and a refrigeration apparatus using a slightly flammable refrigerant such as R32 having a low global warming potential (GWP) value have been proposed. R32 is characterized by not only low GWP but also high discharge gas temperature and slightly flammability compared to refrigerants such as R410A and R404A that are widely used at present. When a slightly flammable refrigerant comes into contact with an open flame or a metal heated to a high temperature of 300 to 400 ° C. or higher, it may be thermally decomposed to generate hydrogen fluoride.
 特許文献1に記載の冷凍装置においてR32冷媒を採用すると、蒸発器の冷媒配管(ヘアピン)、蒸発器につながる冷媒配管などから冷媒が漏れたとき、除霜用ヒーターにR32冷媒が触れて、R32冷媒が熱分解を起こし、フッ化水素などが発生する可能性があるという課題がある。 When the R32 refrigerant is employed in the refrigeration apparatus described in Patent Document 1, when the refrigerant leaks from the refrigerant pipe (hairpin) of the evaporator, the refrigerant pipe connected to the evaporator, etc., the R32 refrigerant touches the defrosting heater, and R32 There exists a subject that a refrigerant | coolant raise | generates thermal decomposition and hydrogen fluoride etc. may generate | occur | produce.
 特許文献2に記載の冷凍装置にR410冷媒、R404冷媒などを採用した場合には、圧縮機から吐出される冷媒の温度がR32冷媒よりも低くなり、その分、蓄熱槽内の熱媒体の温度を上昇させにくい。このように、圧縮機から吐出される冷媒の温度が低くなると、蓄熱槽内の熱媒体の温度の上昇を確保するにあたって、蓄熱槽内の配管長を長くする必要が生じる。
 すなわち、特許文献2に記載の冷凍装置にR410冷媒、R404冷媒などを採用した場合には、蓄熱槽内の熱媒体の温度の上昇を確保するために蓄熱槽内の配管長を長くすると、その分蓄熱槽の大型化してしまうという課題がある。
When R410 refrigerant, R404 refrigerant or the like is employed in the refrigeration apparatus described in Patent Document 2, the temperature of the refrigerant discharged from the compressor is lower than that of the R32 refrigerant, and accordingly, the temperature of the heat medium in the heat storage tank. Is difficult to raise. Thus, when the temperature of the refrigerant discharged from the compressor is lowered, it is necessary to lengthen the pipe length in the heat storage tank in order to ensure the increase in the temperature of the heat medium in the heat storage tank.
That is, when R410 refrigerant, R404 refrigerant or the like is employed in the refrigeration apparatus described in Patent Document 2, if the piping length in the heat storage tank is increased in order to ensure an increase in the temperature of the heat medium in the heat storage tank, There is a problem that the heat storage tank is enlarged.
 本発明は、以上のような課題を解決するためになされたもので、冷媒漏洩があった場合に冷媒を熱分解させてしまうことを抑制すること、及び、蓄熱槽のコンパクト化を実現することを目的としている。 The present invention was made to solve the above-described problems, and suppresses thermal decomposition of the refrigerant when there is refrigerant leakage, and realizes a compact heat storage tank. It is an object.
 本発明に係る冷凍装置は、圧縮機、凝縮器、絞り装置及び蒸発器を有し、これらが冷媒配管で接続されて構成された冷媒回路を有し、圧縮機から吐出された冷媒を蒸発器に供給するホットガスデフロスト運転を行う冷凍装置において、冷媒回路を循環する冷媒は、R32冷媒を65重量%以上含んだ冷媒であり、圧縮機の吐出側と凝縮器との間に接続される第1の流路と、蒸発器と圧縮機の吸入側との間に接続される第2の流路とを有し、第1の流路を流れる冷媒の熱を蓄えて第2の流路を流れる冷媒に伝達する熱媒体が貯留されている蓄熱槽を備え、ホットガスデフロスト運転時に、蒸発器から流出した冷媒を第2の流路を介して圧縮機に戻すように構成されているものである。 A refrigerating apparatus according to the present invention includes a compressor, a condenser, a throttling device, and an evaporator, and includes a refrigerant circuit configured by connecting these via a refrigerant pipe, and the refrigerant discharged from the compressor is evaporated to the evaporator. In the refrigeration apparatus performing the hot gas defrost operation to be supplied to the refrigerant, the refrigerant circulating in the refrigerant circuit is a refrigerant containing 65% by weight or more of the R32 refrigerant, and is connected between the discharge side of the compressor and the condenser. 1 and a second flow path connected between the evaporator and the suction side of the compressor, and stores the heat of the refrigerant flowing through the first flow path to store the second flow path. A heat storage tank in which a heat medium to be transmitted to the flowing refrigerant is stored is configured to return the refrigerant that has flowed out of the evaporator to the compressor via the second flow path during hot gas defrost operation. is there.
 本発明に係る冷凍装置は、除霜用ヒーターを設けず、デフロスト運転を実施して蒸発器の霜を溶かすものであり、冷媒漏洩があった場合に冷媒を熱分解させてしまうことを抑制することができる。 The refrigeration apparatus according to the present invention does not include a defrosting heater, performs defrosting operation to melt the frost of the evaporator, and suppresses thermal decomposition of the refrigerant when there is refrigerant leakage. be able to.
 また、本発明に係る冷凍装置は、蓄熱槽を有するサーモバンク式のものであり、冷媒回路を循環する冷媒は、R32冷媒を65重量%以上含んだ冷媒である。ここで、R32冷媒を65重量%以上含んだ冷媒は、R410A冷媒及びR404A冷媒などと比較すると吐出冷媒温度が高い。このため、蓄熱槽内の配管(第1の流路)の長さが同じである場合には、R410A冷媒及びR404A冷媒などを採用している冷凍装置の蓄熱槽よりも、蓄熱槽内の熱媒体の温度を高くすることができる。すなわち、本発明に係る冷凍装置は、R410A冷媒及びR404A冷媒などを採用している冷凍装置よりも、蓄熱槽内の配管(第1の流路及び第2の流路)の長さを短くすることができ、蓄熱槽のコンパクト化を実現することができる。 Further, the refrigeration apparatus according to the present invention is of a thermo bank type having a heat storage tank, and the refrigerant circulating in the refrigerant circuit is a refrigerant containing 65% by weight or more of R32 refrigerant. Here, the refrigerant containing 65 wt% or more of the R32 refrigerant has a higher discharge refrigerant temperature than the R410A refrigerant and the R404A refrigerant. For this reason, when the length of the piping (first flow path) in the heat storage tank is the same, the heat in the heat storage tank is higher than the heat storage tank of the refrigeration apparatus employing the R410A refrigerant, the R404A refrigerant, or the like. The temperature of the medium can be increased. That is, the refrigeration apparatus according to the present invention shortens the length of the pipes (first flow path and second flow path) in the heat storage tank as compared with the refrigeration apparatus that employs the R410A refrigerant, the R404A refrigerant, or the like. It is possible to realize a compact heat storage tank.
本発明の実施の形態に係る冷凍装置の概要構成例図である。1 is a schematic configuration example of a refrigeration apparatus according to an embodiment of the present invention. 図1に示す冷凍装置に搭載されているドレンパンなどの説明図である。It is explanatory drawing, such as a drain pan mounted in the refrigeration apparatus shown in FIG. 図1に示す冷凍装置の蓄熱槽の説明図である。It is explanatory drawing of the thermal storage tank of the freezing apparatus shown in FIG. 図3に示す蓄熱槽とは異なる蓄熱槽の説明図である。It is explanatory drawing of the thermal storage tank different from the thermal storage tank shown in FIG.
 以下、本発明の実施の形態を図面に基づいて説明する。
実施の形態. 
 図1は、実施の形態に係る冷凍装置100の概要構成例図である。図2は、図1に示す冷凍装置100に搭載されているドレンパン15などの説明図である。
 冷凍装置100は、冷媒漏洩があった場合に冷媒を熱分解させてしまうことを抑制すること、及び、蓄熱槽11のコンパクト化を実現する改良が加えられたものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment.
FIG. 1 is a schematic configuration example diagram of a refrigeration apparatus 100 according to an embodiment. FIG. 2 is an explanatory diagram of the drain pan 15 and the like mounted on the refrigeration apparatus 100 shown in FIG.
The refrigeration apparatus 100 is provided with improvements for suppressing thermal decomposition of the refrigerant when there is a refrigerant leak and for realizing a compact heat storage tank 11.
[構成説明]
 冷凍装置100は、圧縮機1、凝縮器2、絞り装置7及び蒸発器8などを有し、これらが冷媒配管70で接続されて構成された冷媒回路を有しているものである。また、冷凍装置100は、圧縮機1から吐出された冷媒の熱を蓄熱する蓄熱槽11を備えたサーモバンク式の冷凍装置である。なお、冷凍装置100は、冷媒を冷媒回路に循環させると蒸発器8が着霜する場合がある。このため、冷凍装置100は、圧縮機1から吐出されたホットガスを蒸発器8に供給して蒸発器8に付着している霜を溶かすホットガスデフロスト運転を実施することができるものである。
[Description of configuration]
The refrigeration apparatus 100 includes a compressor 1, a condenser 2, a throttling device 7, an evaporator 8, and the like, and includes a refrigerant circuit configured by connecting them through a refrigerant pipe 70. The refrigeration apparatus 100 is a thermobank refrigeration apparatus including a heat storage tank 11 that stores the heat of the refrigerant discharged from the compressor 1. In the refrigeration apparatus 100, when the refrigerant is circulated through the refrigerant circuit, the evaporator 8 may be frosted. For this reason, the refrigeration apparatus 100 can perform a hot gas defrost operation in which hot gas discharged from the compressor 1 is supplied to the evaporator 8 to melt frost adhering to the evaporator 8.
 なお、冷凍装置100は、蒸発器8に冷媒を供給する運転(冷却運転)と、ホットガスデフロスト運転とを切り替えるために、冷媒回路の流路を切り替える機構が設けられている。すなわち、冷凍装置100は、圧縮機1、蓄熱槽11、凝縮器2、絞り装置7及び蒸発器8を接続する冷媒配管70に加えて、第1のバイパス配管71、第2のバイパス配管72及び接続配管73と、電磁弁3、電磁弁4、電磁弁5、電磁弁6、電磁弁9及び減圧弁10とを有している。 Note that the refrigeration apparatus 100 is provided with a mechanism for switching the flow path of the refrigerant circuit in order to switch between the operation of supplying the refrigerant to the evaporator 8 (cooling operation) and the hot gas defrost operation. That is, the refrigeration apparatus 100 includes a first bypass pipe 71, a second bypass pipe 72, and a refrigerant pipe 70 that connects the compressor 1, the heat storage tank 11, the condenser 2, the expansion device 7, and the evaporator 8. The connecting pipe 73, the solenoid valve 3, the solenoid valve 4, the solenoid valve 5, the solenoid valve 6, the solenoid valve 9, and the pressure reducing valve 10 are provided.
(圧縮機1)
 圧縮機1は、冷媒を吸入し、その冷媒を圧縮して高温、高圧の状態にして吐出するものである。圧縮機1は、冷媒の吐出側が蓄熱槽11の第1の流路11Aに接続され、吸入側が蓄熱槽11の第2の流路11B及び電磁弁9に接続されている。
(Compressor 1)
The compressor 1 sucks a refrigerant, compresses the refrigerant, and discharges the refrigerant in a high temperature and high pressure state. In the compressor 1, the refrigerant discharge side is connected to the first flow path 11 </ b> A of the heat storage tank 11, and the suction side is connected to the second flow path 11 </ b> B of the heat storage tank 11 and the electromagnetic valve 9.
(凝縮器2)
 凝縮器2は、凝縮器2の周囲の空気と凝縮器2に供給される冷媒との間で熱交換を行い、冷媒を凝縮液化させるものである。凝縮器2は、たとえば、フィンチューブ熱交換器で構成されるものである。凝縮器2は、上流側が蓄熱槽11及び電磁弁3に接続され、下流側が電磁弁4に接続されているものである。なお、凝縮器2には、空気と冷媒との熱交換を促進するのに利用される送風ファン2Aが付設される。
(Condenser 2)
The condenser 2 performs heat exchange between the air around the condenser 2 and the refrigerant supplied to the condenser 2 to condense and liquefy the refrigerant. The condenser 2 is composed of, for example, a fin tube heat exchanger. The condenser 2 has an upstream side connected to the heat storage tank 11 and the electromagnetic valve 3, and a downstream side connected to the electromagnetic valve 4. The condenser 2 is provided with a blower fan 2A used to promote heat exchange between air and the refrigerant.
(絞り装置7)
 絞り装置7は、冷媒を膨張させるためのものである。絞り装置7には、たとえば開度が可変である電子膨張弁、又はキャピラリーチューブなどを用いるとよい。絞り装置7は、上流側が電磁弁5に接続され、下流側が蒸発器8に接続されている。
(Aperture device 7)
The expansion device 7 is for expanding the refrigerant. For the expansion device 7, for example, an electronic expansion valve having a variable opening or a capillary tube may be used. The expansion device 7 has an upstream side connected to the electromagnetic valve 5 and a downstream side connected to the evaporator 8.
(蒸発器8)
 蒸発器8は、蒸発器8の周囲の空気と蒸発器8に供給される冷媒との間で熱交換を行い、冷媒を蒸発させるものである。蒸発器8は、たとえば、フィンチューブ熱交換器で構成されるものである。蒸発器8は、上流側が絞り装置7及び電磁弁6に接続され、下流側が電磁弁9及び減圧弁10に接続されているものである。なお、蒸発器8には、空気と冷媒との熱交換を促進するのに利用される送風ファン8Aが付設される。
(Evaporator 8)
The evaporator 8 performs heat exchange between the air around the evaporator 8 and the refrigerant supplied to the evaporator 8 to evaporate the refrigerant. The evaporator 8 is comprised by a fin tube heat exchanger, for example. The evaporator 8 has an upstream side connected to the expansion device 7 and the electromagnetic valve 6, and a downstream side connected to the electromagnetic valve 9 and the pressure reducing valve 10. The evaporator 8 is provided with a blower fan 8A used to promote heat exchange between air and the refrigerant.
 なお、冷凍装置100には、図2に示すように、蒸発器8の下側に、蒸発器8で生成されたドレン水を貯留するドレンパン15が搭載されている。ドレンパン15の下側に、ホットガスが流れる第2のバイパス配管72などを配置するとよい。本実施の形態に係る冷凍装置100には、除霜用ヒーターが設けられていない。ただし、除霜用ヒーター以外の発熱体が配置される可能性があるが、仮に第2のバイパス配管72にてホットガスが漏洩したとしても、ドレンパン15よりも上側に設けられている発熱体によってホットガスが熱分解をしてしまうことを抑制することができる。R32冷媒は空気よりも重いため、第2のバイパス配管72からR32冷媒が漏洩しても、ドレンパン15などが設けられている上側に冷媒が漏洩せず、ドレンパン15の下側に滞留するからである。 In addition, as shown in FIG. 2, the refrigeration apparatus 100 includes a drain pan 15 that stores drain water generated by the evaporator 8 below the evaporator 8. A second bypass pipe 72 or the like through which hot gas flows may be disposed below the drain pan 15. The refrigeration apparatus 100 according to the present embodiment is not provided with a defrosting heater. However, there is a possibility that a heating element other than the defrosting heater is arranged, but even if hot gas leaks in the second bypass pipe 72, the heating element is provided above the drain pan 15. It can suppress that a hot gas thermally decomposes. Since the R32 refrigerant is heavier than air, even if the R32 refrigerant leaks from the second bypass pipe 72, the refrigerant does not leak to the upper side where the drain pan 15 or the like is provided and stays below the drain pan 15. is there.
 また、ドレンパン15は、蒸発器8に付設されるため、蒸発器8の冷気がドレンパン15に貯留されたドレン水も伝達され、ドレン水が凍ってしまい、排水不良などが生じる場合がある。そこで、冷凍装置100は、たとえば蒸発器8に接続されている冷媒配管70をドレンパン15に当接させて構成してもよい。これにより、ホットガスデフロスト運転時に流れるホットガスの熱をドレンパン15にも伝達することができ、ドレンパン15で凍結したドレン水を溶かすことができる。 Further, since the drain pan 15 is attached to the evaporator 8, the cool water of the evaporator 8 is also transmitted to the drain water stored in the drain pan 15, and the drain water freezes, resulting in poor drainage. Thus, the refrigeration apparatus 100 may be configured by bringing the refrigerant pipe 70 connected to the evaporator 8 into contact with the drain pan 15, for example. Thereby, the heat of the hot gas flowing during the hot gas defrosting operation can be transmitted to the drain pan 15 and the drain water frozen in the drain pan 15 can be melted.
(蓄熱槽11)
 蓄熱槽11には、熱媒体12が貯留されており、この熱媒体12に熱が蓄えられる。熱媒体12としては、たとえば、水、不凍液などを用いることができる。また、熱媒体12は、水、不凍液などといった液体に限定されるものではなく、固体の蓄熱材などを用いてもよい。蓄熱槽11は、圧縮機1の吐出側に接続される第1の流路11Aと、減圧弁10に接続される第2の流路11Bとを備えているものである。第1の流路11Aは、上流側が圧縮機1の吐出側に接続され、下流側が凝縮器2及び電磁弁3に接続されている。第2の流路11Bは、上流側が減圧弁10に接続され、下流側が圧縮機1の吸入側に接続されている。第1の流路11A及び第2の流路11Bは、たとえば、冷媒を流すことができる配管に相当するものである。
(Heat storage tank 11)
The heat storage tank 11 stores a heat medium 12, and heat is stored in the heat medium 12. As the heat medium 12, for example, water, antifreeze, or the like can be used. Moreover, the heat medium 12 is not limited to liquids such as water and antifreeze, and a solid heat storage material or the like may be used. The heat storage tank 11 includes a first flow path 11A connected to the discharge side of the compressor 1 and a second flow path 11B connected to the pressure reducing valve 10. The first channel 11 </ b> A has an upstream side connected to the discharge side of the compressor 1 and a downstream side connected to the condenser 2 and the electromagnetic valve 3. The second channel 11 </ b> B has an upstream side connected to the pressure reducing valve 10 and a downstream side connected to the suction side of the compressor 1. The first flow path 11A and the second flow path 11B correspond to, for example, a pipe through which a refrigerant can flow.
 第1の流路11Aは、図1に示すように、蓄熱槽11の熱媒体12に冷媒の熱を伝達できるように蓄熱槽11の槽内に配置されているものである。第1の流路11Aには、圧縮機1から吐出されたガス冷媒(ホットガス)が流れるため、第1の流路11Aから蓄熱槽11内の熱媒体12に熱が伝達される。蓄熱槽11は、この伝達された熱を熱媒体12にて蓄熱することができるようになっている。第1の流路11Aは、第2の流路11Bの下側に配置されている。 1st flow path 11A is arrange | positioned in the tank of the thermal storage tank 11 so that the heat | fever of a refrigerant | coolant can be transmitted to the heat medium 12 of the thermal storage tank 11, as shown in FIG. Since the gas refrigerant (hot gas) discharged from the compressor 1 flows through the first flow path 11A, heat is transferred from the first flow path 11A to the heat medium 12 in the heat storage tank 11. The heat storage tank 11 can store the transmitted heat in the heat medium 12. 11 A of 1st flow paths are arrange | positioned under the 2nd flow path 11B.
 第2の流路11Bも、図1に示すように、たとえば蓄熱槽11の熱媒体12に冷媒の熱を伝達できるように蓄熱槽11の槽内に配置されているものである。ホットガスデフロスト運転を実施していない場合には減圧弁10を閉とし、電磁弁9を開とするので、第2の流路11Bには、蒸発器8から流出した冷媒は供給されない。一方、ホットガスデフロスト運転を実施している場合には、減圧弁10を開とし、電磁弁9を閉とするので、第2の流路11Bには、蒸発器8から流出した冷媒が供給される。ホットガスデフロスト運転時には、凝縮器2及び絞り装置7を経ずに蒸発器8に冷媒(ホットガス)を蒸発器8に供給するために、蒸発器8から流出した冷媒に液冷媒が含まれている。このため、液冷媒のまま圧縮機1に冷媒を戻すと圧縮機1が故障してしまう可能性がある。そこで、ホットガスデフロスト運転時には、蒸発器8から流出した冷媒を、減圧弁10で減圧した後に、蓄熱槽11の第2の流路11Bに流すようにしている。これにより、蓄熱槽11内の熱媒体12が有している熱が、第2の流路11Bを流れる冷媒に伝達されて、第2の流路11Bを流れる冷媒のガス化が促される。第2の流路11Bは、第1の流路11Aの上側に配置されている。熱媒体12は、下側よりも上側の方が熱いので、高効率に第2の流路11Bを流れる冷媒に熱を伝達してガス化することができるからである。 As shown in FIG. 1, the second flow path 11 </ b> B is also arranged in the tank of the heat storage tank 11 so that the heat of the refrigerant can be transmitted to the heat medium 12 of the heat storage tank 11, for example. When the hot gas defrost operation is not performed, the pressure reducing valve 10 is closed and the electromagnetic valve 9 is opened, so that the refrigerant flowing out of the evaporator 8 is not supplied to the second flow path 11B. On the other hand, when the hot gas defrost operation is performed, the pressure reducing valve 10 is opened and the electromagnetic valve 9 is closed, so that the refrigerant flowing out of the evaporator 8 is supplied to the second flow path 11B. The During the hot gas defrost operation, the refrigerant flowing out of the evaporator 8 contains liquid refrigerant in order to supply the refrigerant (hot gas) to the evaporator 8 without passing through the condenser 2 and the expansion device 7. Yes. For this reason, if a refrigerant is returned to the compressor 1 with a liquid refrigerant, the compressor 1 may break down. Therefore, during the hot gas defrost operation, the refrigerant flowing out of the evaporator 8 is depressurized by the pressure reducing valve 10 and then flows into the second flow path 11B of the heat storage tank 11. Thereby, the heat which the heat carrier 12 in the heat storage tank 11 has is transmitted to the refrigerant flowing through the second flow path 11B, and gasification of the refrigerant flowing through the second flow path 11B is promoted. The second channel 11B is disposed on the upper side of the first channel 11A. This is because the upper side of the heat medium 12 is hotter than the lower side, so that heat can be transferred to the refrigerant flowing through the second flow path 11B with high efficiency and gasified.
(第1のバイパス配管71など)
 第1のバイパス配管71は、ホットガスデフロスト運転時に蓄熱槽11から流出した冷媒が凝縮器2を通らないようにして凝縮器2の下流側に流すのに利用される配管である。第1のバイパス配管71は、凝縮器2をバイパスするように接続されている配管である。すなわち、第1のバイパス配管71は、一方が冷媒配管70のうちの蓄熱槽11と凝縮器2との間に接続され、他方が冷媒配管70のうちの電磁弁4と電磁弁5との間に接続されているものである。第2のバイパス配管72は、ホットガスデフロスト運転時に第1のバイパス配管71から流出した冷媒が絞り装置7を通らないようにして絞り装置7の下流側の蒸発器8に流すのに利用される配管である。第2のバイパス配管72は、絞り装置7をバイパスするように接続されている配管である。すなわち、第2のバイパス配管72は、一方が冷媒配管70のうちの第1のバイパス配管71の接続位置と電磁弁5との間に接続され、他方が冷媒配管70のうちの絞り装置7と蒸発器8との間に接続されているものである。
(First bypass pipe 71 etc.)
The first bypass pipe 71 is a pipe used for flowing the refrigerant flowing out of the heat storage tank 11 during the hot gas defrost operation to the downstream side of the condenser 2 so as not to pass through the condenser 2. The first bypass pipe 71 is a pipe connected so as to bypass the condenser 2. That is, one of the first bypass pipes 71 is connected between the heat storage tank 11 and the condenser 2 in the refrigerant pipe 70, and the other is between the electromagnetic valve 4 and the electromagnetic valve 5 in the refrigerant pipe 70. Is connected to. The second bypass pipe 72 is used to flow the refrigerant flowing out from the first bypass pipe 71 during the hot gas defrost operation to the evaporator 8 on the downstream side of the expansion device 7 so as not to pass through the expansion device 7. It is piping. The second bypass pipe 72 is a pipe connected so as to bypass the expansion device 7. That is, one of the second bypass pipes 72 is connected between the connection position of the first bypass pipe 71 in the refrigerant pipe 70 and the solenoid valve 5, and the other is connected to the expansion device 7 in the refrigerant pipe 70. It is connected between the evaporator 8.
 接続配管73は、ホットガスデフロスト運転時に蒸発器8から流出した冷媒が蓄熱槽11を通るようにする配管である。接続配管73は、一方が冷媒配管70のうちの電磁弁9の上流側に接続され、他方が冷媒配管70のうちの電磁弁9の下流側に接続されているものである。接続配管73は、蓄熱槽11の第2の流路11Bと連通している。 The connection pipe 73 is a pipe through which the refrigerant flowing out of the evaporator 8 during the hot gas defrost operation passes through the heat storage tank 11. One of the connection pipes 73 is connected to the upstream side of the electromagnetic valve 9 in the refrigerant pipe 70, and the other is connected to the downstream side of the electromagnetic valve 9 in the refrigerant pipe 70. The connection pipe 73 communicates with the second flow path 11 </ b> B of the heat storage tank 11.
(電磁弁3~6、9及び減圧弁10)
 電磁弁3は、第1のバイパス配管71に設けられているものである。電磁弁4は、冷媒配管70のうち凝縮器2の下流側であって第1のバイパス配管71の接続位置の上流側に設けられているものである。電磁弁5は、冷媒配管70のうち第2のバイパス配管72の接続位置の下流側であって絞り装置7の上流側に設けられているものである。電磁弁6は、第2のバイパス配管72に設けられているものである。電磁弁9は、接続配管73のうち冷媒配管70に接続されている一方と他方との間に設けられているものである。減圧弁10は、接続配管73のうちの蓄熱槽11の上流側に設けられているものである。
(Solenoid valves 3-6, 9 and pressure reducing valve 10)
The solenoid valve 3 is provided in the first bypass pipe 71. The solenoid valve 4 is provided in the refrigerant pipe 70 on the downstream side of the condenser 2 and on the upstream side of the connection position of the first bypass pipe 71. The solenoid valve 5 is provided on the downstream side of the connection position of the second bypass pipe 72 in the refrigerant pipe 70 and on the upstream side of the expansion device 7. The solenoid valve 6 is provided in the second bypass pipe 72. The solenoid valve 9 is provided between one of the connection pipes 73 connected to the refrigerant pipe 70 and the other. The pressure reducing valve 10 is provided on the upstream side of the heat storage tank 11 in the connection pipe 73.
(制御装置50)
 制御装置50は、圧縮機1及の周波数(運転/停止含む)、送風ファン2A及び送風ファン8Aの回転数(運転/停止含む)、絞り装置7及び減圧弁10の開度、電磁弁3、電磁弁4、電磁弁5及び電磁弁6の開閉などを制御するものである。この制御装置50は、たとえばマイコンなどで構成されるものである。
(Control device 50)
The control device 50 includes the frequency of the compressor 1 (including operation / stop), the rotational speed of the blower fan 2A and the blower fan 8A (including operation / stop), the opening degree of the expansion device 7 and the pressure reducing valve 10, The opening / closing of the solenoid valve 4, the solenoid valve 5 and the solenoid valve 6 is controlled. The control device 50 is constituted by, for example, a microcomputer.
[冷凍装置100の冷媒の流れについて]
 図1を参照しながら、同図で示される冷媒回路を流れる冷媒について説明する。図1の実線の矢印は、冷却運転時の冷媒の流れを示しており、破線の矢印はホットガスデフロスト運転時の冷媒の流れを示している。
[Flow of refrigerant in refrigeration apparatus 100]
The refrigerant flowing through the refrigerant circuit shown in FIG. 1 will be described with reference to FIG. The solid arrows in FIG. 1 indicate the flow of the refrigerant during the cooling operation, and the broken arrows indicate the flow of the refrigerant during the hot gas defrost operation.
 まず、冷却運転時の冷媒の流れについて説明する。
 冷却運転時においては、電磁弁4、電磁弁5及び電磁弁9が開であり、電磁弁3、電磁弁6が閉である。なお、減圧弁10は、閉である。
 圧縮機1によって圧縮され吐出されたガス冷媒は、蓄熱槽11に流入して蓄熱槽11内の熱媒体12を加熱した後に、蓄熱槽11から流出して凝縮器2へ流入する。この凝縮器2に流入したガス冷媒は、送風ファン2Aから供給される空気と熱交換を実施して凝縮し、凝縮器2から流出する。この凝縮器2から流出した冷媒は、絞り装置7に流入し、この絞り装置7によって膨張され減圧される。減圧された冷媒は、蒸発器8に流入し、送風ファン8Aから供給される空気と熱交換を実施して蒸発し、蒸発器8から流出する。蒸発器8から流出したガス冷媒は、圧縮機1に吸入される。
First, the flow of the refrigerant during the cooling operation will be described.
During the cooling operation, the solenoid valve 4, the solenoid valve 5 and the solenoid valve 9 are open, and the solenoid valve 3 and the solenoid valve 6 are closed. The pressure reducing valve 10 is closed.
The gas refrigerant compressed and discharged by the compressor 1 flows into the heat storage tank 11 and heats the heat medium 12 in the heat storage tank 11, then flows out of the heat storage tank 11 and flows into the condenser 2. The gas refrigerant flowing into the condenser 2 condenses by exchanging heat with the air supplied from the blower fan 2 </ b> A and flows out of the condenser 2. The refrigerant flowing out of the condenser 2 flows into the expansion device 7 and is expanded and depressurized by the expansion device 7. The decompressed refrigerant flows into the evaporator 8, performs heat exchange with the air supplied from the blower fan 8 </ b> A, evaporates, and flows out of the evaporator 8. The gas refrigerant that has flowed out of the evaporator 8 is sucked into the compressor 1.
 次に、ホットガスデフロスト運転時の冷媒の流れについて説明する。
 ホットガスデフロスト運転時においては、電磁弁4、電磁弁5及び電磁弁9が閉であり、電磁弁3、電磁弁6が開である。なお、減圧弁10は、予め設定された開度で開いている。
 圧縮機1によって圧縮され吐出されたガス冷媒(ホットガス)は、蓄熱槽11に流入して蓄熱槽11内の熱媒体12を加熱した後に、蓄熱槽11から流出し、第1のバイパス配管71に流入する。この第1のバイパス配管71に流入したガス冷媒は、冷媒配管70及び第2のバイパス配管72を介して蒸発器8に流入する。蒸発器8に流入したホットガスは、蒸発器8に付着している霜を溶かす。蒸発器8から流出した冷媒は、液冷媒を含んでいる。蒸発器8から流出した冷媒は、減圧弁10にて減圧された後に、蓄熱槽11の第2の流路11Bに流入して蓄熱槽11に貯留されている熱媒体12から熱を受け取り、ガス化する。そして、第2の流路11Bにてガス化した冷媒は、圧縮機1に吸入される。
Next, the flow of the refrigerant during hot gas defrost operation will be described.
During hot gas defrost operation, the solenoid valve 4, the solenoid valve 5 and the solenoid valve 9 are closed, and the solenoid valve 3 and the solenoid valve 6 are open. The pressure reducing valve 10 is opened at a preset opening degree.
The gas refrigerant (hot gas) compressed and discharged by the compressor 1 flows into the heat storage tank 11 and heats the heat medium 12 in the heat storage tank 11, then flows out of the heat storage tank 11, and the first bypass pipe 71. Flow into. The gas refrigerant that has flowed into the first bypass pipe 71 flows into the evaporator 8 through the refrigerant pipe 70 and the second bypass pipe 72. The hot gas that has flowed into the evaporator 8 dissolves frost adhering to the evaporator 8. The refrigerant that has flowed out of the evaporator 8 contains liquid refrigerant. The refrigerant that has flowed out of the evaporator 8 is depressurized by the pressure reducing valve 10, and then flows into the second flow path 11B of the heat storage tank 11 to receive heat from the heat medium 12 stored in the heat storage tank 11, and gas Turn into. Then, the refrigerant gasified in the second flow path 11 </ b> B is sucked into the compressor 1.
[冷媒と蓄熱槽11の小型化について]
 図3は、図1に示す冷凍装置100の蓄熱槽11の説明図である。図4は、図3に示す蓄熱槽11とは異なる蓄熱槽11の説明図である。なお、図4は、図3に示す蓄熱槽11よりも第2の流路11Bを短くし、そして第2の流路11Bを短くしたことに合わせて蓄熱槽11の槽自体を小型化した様子を示している。図3及び図4を参照して、冷凍装置100に封入される冷媒の説明と、蓄熱槽11の第1の流路11A及び第2の流路11Bの長さとについて説明する。
[About miniaturization of refrigerant and heat storage tank 11]
FIG. 3 is an explanatory diagram of the heat storage tank 11 of the refrigeration apparatus 100 shown in FIG. FIG. 4 is an explanatory diagram of the heat storage tank 11 different from the heat storage tank 11 shown in FIG. 3. 4 shows that the second flow path 11B is shorter than the heat storage tank 11 shown in FIG. 3, and the tank of the heat storage tank 11 is miniaturized in accordance with the shortening of the second flow path 11B. Is shown. With reference to FIG.3 and FIG.4, description of the refrigerant | coolant enclosed with the freezing apparatus 100 and the length of 11 A of 1st flow paths and the 2nd flow path 11B of the thermal storage tank 11 are demonstrated.
 まず、冷凍装置100の冷媒について説明する。
 冷凍装置100には、R410A冷媒及びR404A冷媒などと比較すると吐出冷媒温度が高いR32冷媒が採用されている。より詳細には、冷凍装置100の冷媒回路を循環する冷媒は、R32冷媒を65重量%以上含んだものである。すなわち、全ての冷媒をR32冷媒としてもよいし、冷凍装置100の冷媒回路を循環する冷媒のうちの65重量%以上をR32冷媒とした混合冷媒としてもよい。
First, the refrigerant of the refrigeration apparatus 100 will be described.
The refrigerating apparatus 100 employs R32 refrigerant having a higher discharge refrigerant temperature than the R410A refrigerant, R404A refrigerant, and the like. More specifically, the refrigerant circulating in the refrigerant circuit of the refrigeration apparatus 100 contains 65% by weight or more of R32 refrigerant. That is, all the refrigerants may be R32 refrigerants, or may be a mixed refrigerant in which 65% by weight or more of the refrigerant circulating in the refrigerant circuit of the refrigeration apparatus 100 is R32 refrigerant.
 次に、冷凍装置100の蓄熱槽11の小型化について説明する。
 冷凍装置100は、蓄熱槽11を備え、サーモバンク式ホットガスデフロストシステムを有するものである。蓄熱槽11では、圧縮機1から吐出されるガス冷媒と蓄熱槽11の内部の熱媒体12とを熱交換させ、熱を蓄える。R32冷媒などが冷媒として採用されていると、圧縮機1から吐出される冷媒の温度が上昇する。このため、第1の流路11Aの伝熱面積が同じであって槽内に貯留されている熱媒体12の量も同じである条件であれば、R32冷媒などを採用している場合の方がR410A冷媒などを採用している場合よりも、蓄熱槽11内の熱媒体12の温度をより高くすることができる。このため、たとえば図3に示す蓄熱槽11にR410A冷媒などを流したとき、第2の流路11BでR410冷媒などをガス化できている場合においては、R32冷媒を用いれば、図3に示す蓄熱槽11の第2の流路11Bの長さをさらに短くして、蓄熱槽11の槽を小さくし、図4に示すような蓄熱槽11を用いることができるということである。
Next, the downsizing of the heat storage tank 11 of the refrigeration apparatus 100 will be described.
The refrigeration apparatus 100 includes a heat storage tank 11 and has a thermobank hot gas defrost system. In the heat storage tank 11, heat is stored by exchanging heat between the gas refrigerant discharged from the compressor 1 and the heat medium 12 inside the heat storage tank 11. When R32 refrigerant or the like is employed as the refrigerant, the temperature of the refrigerant discharged from the compressor 1 increases. Therefore, if the heat transfer area of the first flow path 11A is the same and the amount of the heat medium 12 stored in the tank is also the same, the direction when the R32 refrigerant or the like is adopted. However, the temperature of the heat medium 12 in the heat storage tank 11 can be made higher than when R410A refrigerant or the like is employed. For this reason, for example, when R410A refrigerant or the like is caused to flow into the heat storage tank 11 shown in FIG. 3 and R410 refrigerant or the like can be gasified in the second flow path 11B, the R32 refrigerant is used as shown in FIG. That is, the length of the second flow path 11B of the heat storage tank 11 can be further shortened to make the tank of the heat storage tank 11 smaller, and the heat storage tank 11 as shown in FIG. 4 can be used.
 なお、図3と図4とを比較すると第2の流路11Bのみを短くし、第1の流路11Aについては、短くしていないが、第1の流路11Aを短くすることもできる。これは、圧縮機1から吐出される冷媒の温度がR410A冷媒などと比較すると、R32冷媒の方が高いので、第1の流路11Aを短くしても、熱媒体12の温度上昇に必要な熱を賄うことができるからである。 3 and 4 are compared, only the second flow path 11B is shortened, and the first flow path 11A is not shortened, but the first flow path 11A can be shortened. This is because the temperature of the refrigerant discharged from the compressor 1 is higher in the R32 refrigerant than in the R410A refrigerant or the like, so that the temperature of the heat medium 12 is necessary even if the first flow path 11A is shortened. It is because it can cover the heat.
[実施の形態に係る冷凍装置100の有する効果]
 本実施の形態に係る冷凍装置100は、蓄熱槽11を備えたサーモバンク式の冷凍装置であるが、冷媒回路を循環する冷媒を、R32冷媒を65重量%以上含んだ冷媒としているものである。ここで、R32冷媒を65重量%以上含んだ冷媒は、R410A冷媒及びR404A冷媒などと比較すると吐出冷媒温度が高い。このため、既に説明した通り、R410A冷媒及びR404A冷媒などを採用している冷凍装置よりも、蓄熱槽11内の配管(第1の流路11A及び第2の流路11B)の長さを短くすることができ、蓄熱槽11の小型化を実現することができる。
[Effects of refrigeration apparatus 100 according to embodiment]
The refrigeration apparatus 100 according to the present embodiment is a thermobank type refrigeration apparatus provided with a heat storage tank 11, and the refrigerant circulating in the refrigerant circuit is a refrigerant containing 65% by weight or more of R32 refrigerant. . Here, the refrigerant containing 65 wt% or more of the R32 refrigerant has a higher discharge refrigerant temperature than the R410A refrigerant and the R404A refrigerant. For this reason, as already explained, the length of the piping (the first flow path 11A and the second flow path 11B) in the heat storage tank 11 is made shorter than the refrigeration apparatus employing the R410A refrigerant, the R404A refrigerant, and the like. Therefore, the heat storage tank 11 can be downsized.
 また、本実施の形態に係る冷凍装置100は、除霜用ヒーターを設けて除霜をするものではなく、圧縮機1から吐出されたホットガスを利用するホットガスデフロスト運転を実施して除霜をするものである。このため、仮に、冷媒配管70などが損傷して冷媒漏洩が発生したとしても、R32冷媒が除霜用ヒーターに触れることはなく、R32冷媒が熱分解してしまうことを抑制することができる。 In addition, the refrigeration apparatus 100 according to the present embodiment does not perform defrosting by providing a defrosting heater, but performs a defrosting operation by performing a hot gas defrosting operation using hot gas discharged from the compressor 1. It is something to do. For this reason, even if the refrigerant piping 70 is damaged and refrigerant leakage occurs, the R32 refrigerant does not touch the defrosting heater, and the R32 refrigerant can be prevented from being thermally decomposed.
 なお、もし除霜用ヒーターを蒸発器8に付設する場合には、ホットガスが流れる第2のバイパス配管72を室内機内、ユニットクーラー内などに配置された蒸発器8の下部にあるドレンパン15の下側に設けるとよい。R32冷媒は空気よりも重いため、室内機、ユニットクーラーなどの下部に滞留するので、高温のR32冷媒が漏洩した場合に、冷媒が除霜用ヒーターに触れて熱分解してしまうことを抑制することができるからである。 If a defrosting heater is attached to the evaporator 8, the second bypass pipe 72 through which hot gas flows is connected to the drain pan 15 at the lower part of the evaporator 8 disposed in the indoor unit or in the unit cooler. It should be provided on the lower side. Since R32 refrigerant is heavier than air, it stays in the lower part of indoor units, unit coolers, etc., so that when high-temperature R32 refrigerant leaks, it prevents the refrigerant from touching the defrosting heater and thermally decomposing. Because it can.
 1 圧縮機、2 凝縮器、2A 送風ファン、3 電磁弁、4 電磁弁、5 電磁弁、6 電磁弁、7 絞り装置、8 蒸発器、8A 送風ファン、9 電磁弁、10 減圧弁、11 蓄熱槽、11A 第1の流路、11B 第2の流路、12 熱媒体、15 ドレンパン、50 制御装置、70 冷媒配管、71 第1のバイパス配管、72 第2のバイパス配管、73 接続配管、100 冷凍装置。 1 compressor, 2 condenser, 2A blower fan, 3 solenoid valve, 4 solenoid valve, 5 solenoid valve, 6 solenoid valve, 7 throttle device, 8 evaporator, 8A blower fan, 9 solenoid valve, 10 pressure reducing valve, 11 heat storage Tank, 11A first flow path, 11B second flow path, 12 heat medium, 15 drain pan, 50 control device, 70 refrigerant pipe, 71 first bypass pipe, 72 second bypass pipe, 73 connection pipe, 100 Refrigeration equipment.

Claims (3)

  1.  圧縮機、凝縮器、絞り装置及び蒸発器を有し、これらが冷媒配管で接続されて構成された冷媒回路を有し、前記圧縮機から吐出された冷媒を前記蒸発器に供給するホットガスデフロスト運転を行う冷凍装置において、
     前記冷媒回路を循環する冷媒は、R32冷媒を65重量%以上含んだ冷媒であり、
     前記圧縮機の吐出側と前記凝縮器との間に接続される第1の流路と、前記蒸発器と前記圧縮機の吸入側との間に接続される第2の流路とを有し、第1の流路を流れる冷媒の熱を蓄えて第2の流路を流れる冷媒に伝達する熱媒体が貯留されている蓄熱槽を備え、
     前記ホットガスデフロスト運転時に、前記蒸発器から流出した冷媒を第2の流路を介して前記圧縮機に戻すように構成されている
     ことを特徴とする冷凍装置。
    A hot gas defrost having a compressor, a condenser, a throttling device, and an evaporator, each having a refrigerant circuit configured by being connected by refrigerant piping, and supplying refrigerant discharged from the compressor to the evaporator In the refrigeration apparatus that operates,
    The refrigerant circulating in the refrigerant circuit is a refrigerant containing 65% by weight or more of R32 refrigerant,
    A first flow path connected between the discharge side of the compressor and the condenser; and a second flow path connected between the evaporator and the suction side of the compressor. A heat storage tank storing a heat medium that stores heat of the refrigerant flowing through the first flow path and transmits the heat to the refrigerant flowing through the second flow path;
    A refrigerating apparatus configured to return the refrigerant flowing out of the evaporator to the compressor through a second flow path during the hot gas defrost operation.
  2.  前記蓄熱槽には、
     前記第1の流路よりも前記第2の流路の方が上側に配置されている
     ことを特徴とする請求項1に記載の冷凍装置。
    In the heat storage tank,
    The refrigeration apparatus according to claim 1, wherein the second flow path is disposed above the first flow path.
  3.  前記蒸発器の下側に設けられ、ドレン水を貯留するドレンパンを備え、
     前記ホットガスデフロスト運転時に、前記圧縮機から吐出されたホットガスを流して前記蒸発器の除霜に利用される配管が、前記ドレンパンの下側に配置されている
     ことを特徴とする請求項1又は2に記載の冷凍装置。
    Provided on the lower side of the evaporator, comprising a drain pan for storing drain water,
    The piping used for defrosting the evaporator by flowing hot gas discharged from the compressor during the hot gas defrosting operation is disposed below the drain pan. Or the refrigeration apparatus of 2.
PCT/JP2013/073486 2013-09-02 2013-09-02 Refrigeration device WO2015029243A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015533910A JPWO2015029243A1 (en) 2013-09-02 2013-09-02 Refrigeration equipment
PCT/JP2013/073486 WO2015029243A1 (en) 2013-09-02 2013-09-02 Refrigeration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/073486 WO2015029243A1 (en) 2013-09-02 2013-09-02 Refrigeration device

Publications (1)

Publication Number Publication Date
WO2015029243A1 true WO2015029243A1 (en) 2015-03-05

Family

ID=52585850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073486 WO2015029243A1 (en) 2013-09-02 2013-09-02 Refrigeration device

Country Status (2)

Country Link
JP (1) JPWO2015029243A1 (en)
WO (1) WO2015029243A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172791U (en) * 1982-05-11 1983-11-18 三菱電機株式会社 Cooling system
JPS59112161A (en) * 1982-12-17 1984-06-28 三菱電機株式会社 Refrigerator
JPH07146057A (en) * 1993-11-25 1995-06-06 Zexel Corp Deep freezer
JP2002098393A (en) * 2000-09-26 2002-04-05 Daikin Ind Ltd Air conditioner
JP2002228307A (en) * 2001-02-01 2002-08-14 Matsushita Electric Ind Co Ltd Mixed refrigerant filling method and apparatus filled with mixed refrigerant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172791U (en) * 1982-05-11 1983-11-18 三菱電機株式会社 Cooling system
JPS59112161A (en) * 1982-12-17 1984-06-28 三菱電機株式会社 Refrigerator
JPH07146057A (en) * 1993-11-25 1995-06-06 Zexel Corp Deep freezer
JP2002098393A (en) * 2000-09-26 2002-04-05 Daikin Ind Ltd Air conditioner
JP2002228307A (en) * 2001-02-01 2002-08-14 Matsushita Electric Ind Co Ltd Mixed refrigerant filling method and apparatus filled with mixed refrigerant

Also Published As

Publication number Publication date
JPWO2015029243A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
KR102471584B1 (en) Phase Change Material-Based Enhancement Method for Reverse-Cycle Defrosting of Vapor Compression Refrigeration Systems
JP5944057B2 (en) Refrigeration system defrost system and cooling unit
JP5327308B2 (en) Hot water supply air conditioning system
WO2012128229A1 (en) Binary refrigeration cycle device
KR101638675B1 (en) Combined binary refrigeration cycle apparatus
JP5842310B2 (en) Refrigeration apparatus and defrost method for load cooler
CN105940276A (en) Heat pump apparatus
JP2016044964A (en) Refrigeration cycle device
JP5904628B2 (en) Refrigeration cycle with refrigerant pipe for defrost operation
JP2012107836A (en) Binary refrigeration cycle apparatus
JP5769684B2 (en) Heat pump equipment
JP5677472B2 (en) Refrigeration equipment
JP2013083439A5 (en)
JP2017026171A (en) Air conditioner
JP2012117717A (en) Heat pump type heat storage water heater capable of reheating, and chiller
JP6072264B2 (en) Refrigeration equipment
JP2010014343A (en) Refrigerating device
WO2015029243A1 (en) Refrigeration device
JP2018080899A (en) Refrigeration unit
JP5068340B2 (en) Freezer refrigerator
JP6188932B2 (en) Refrigeration cycle apparatus and air conditioner equipped with the refrigeration cycle apparatus
JP2013092342A (en) Refrigerating device
KR101126675B1 (en) Heat pump system using secondary condensation heat
JP6119804B2 (en) Defrosting method of load cooler
JP2011169558A (en) Refrigerating machine for transportation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892313

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015533910

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13892313

Country of ref document: EP

Kind code of ref document: A1