WO2015029147A1 - Pump system - Google Patents

Pump system Download PDF

Info

Publication number
WO2015029147A1
WO2015029147A1 PCT/JP2013/072936 JP2013072936W WO2015029147A1 WO 2015029147 A1 WO2015029147 A1 WO 2015029147A1 JP 2013072936 W JP2013072936 W JP 2013072936W WO 2015029147 A1 WO2015029147 A1 WO 2015029147A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronous motor
restart
pump
pressure
pump system
Prior art date
Application number
PCT/JP2013/072936
Other languages
French (fr)
Japanese (ja)
Inventor
敏夫 富田
大久保 智文
佐野 正浩
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to JP2015533833A priority Critical patent/JP6134800B2/en
Priority to CN201380078587.1A priority patent/CN105452670B/en
Priority to PCT/JP2013/072936 priority patent/WO2015029147A1/en
Publication of WO2015029147A1 publication Critical patent/WO2015029147A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/02Stopping of pumps, or operating valves, on occurrence of unwanted conditions
    • F04D15/0209Stopping of pumps, or operating valves, on occurrence of unwanted conditions responsive to a condition of the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0066Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/85Starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting

Definitions

  • the present invention relates to a pump system using an inverter for controlling a synchronous motor.
  • induction motors have been mainly used as a drive source for pumps, but synchronous motors using permanent magnets are now being used from the viewpoint of energy saving and high efficiency.
  • the motor that does not include the magnetic pole position sensor has the advantage that the magnetic pole position sensor does not have a failure and can be reduced in price.
  • an abnormality in the rotation state of the electric motor can be detected by an estimation calculation of the shaft error of the electric motor.
  • the present invention has been made in view of the above circumstances, and in a pump system, it is possible to detect a step-out easily and restart the electric motor as necessary to stably drive the load and continue water supply. Objective.
  • a pump unit having an impeller provided in a pump casing, a synchronous motor that rotationally drives the impeller, an inverter that controls the synchronous motor
  • the inverter has a signal input unit for inputting a signal from a pressure detection means for detecting water pressure provided on the discharge side of the pump unit, and an operation for determining the rotational speed of the synchronous motor
  • a processing unit a storage unit that stores control parameters necessary for calculations performed by the calculation processing unit, and a power conversion unit that supplies a drive current to the synchronous motor, wherein the calculation processing unit includes the pressure
  • the synchronous motor is stopped and restarted, and the synchronous motor is restarted at the first restart. If the machine does not start normally, the second restart is performed at an increase rate different from the increase rate of the rotational speed of the synchronous motor at the first restart.
  • the motor can be restarted quickly, the load can be driven, and the work can be continued. Therefore, stable water supply can be performed.
  • an abnormality is detected by a change in the secondary pressure of the pump in a synchronous motor that is driving a pump.
  • FIG. 1 shows the overall configuration of the pump system of the present invention.
  • a pump 10 provided with an impeller in a pump casing is driven by an electric motor 20.
  • the electric motor 20 is a synchronous motor that does not include a magnetic pole position sensor.
  • an inverter 30 is connected to the electric motor 20, and the inverter 30 changes the frequency of the output current, thereby driving the electric motor 20 by changing the number of rotations.
  • the pressure detection means 11 is provided in the secondary side piping of the pump 10, and the pump discharge side pressure is detected.
  • FIG. 2 shows the internal configuration of the inverter 30.
  • An AC-DC converter 31 is connected to a power receiving unit that receives power supplied to the inverter 30, and the received AC power is converted into a DC voltage.
  • This DC voltage is converted again by the DC-AC converter 32 into an AC power source having a frequency designated by the arithmetic processing unit 34.
  • a signal is input to the signal input unit 33.
  • a frequency to be output by the arithmetic processing unit 34 is determined according to the input signal, and an instruction is issued to the DC-AC converter 32 to generate an AC power source of that frequency.
  • Control parameters necessary for the calculation performed by the calculation processing unit 34 are stored in the storage unit 35 in advance, and the calculation processing unit 34 reads and writes the memory contents of the storage unit 35 as necessary.
  • FIG. 3 shows the contents stored in the storage unit 35 composed of a volatile memory and a nonvolatile memory. It should be noted that the storage unit may not be provided inside the inverter 30, and a storage device may be attached outside the inverter and used instead.
  • the initial pump secondary pressure (discharge pressure) Hm is stored.
  • the address 1011 stores the frequency increase rate D1 when the pump is restarted (first time), and the addresses 1012 store the frequency increase rate D2 when the pump is restarted (after the second time).
  • the pressure reference value HDG on the pump secondary side used for determination in the abnormality determination process is stored in advance at address 2001 of the nonvolatile memory.
  • the control parameter at address 2002 is not used in the first embodiment of the present invention.
  • a cycle TM1 for performing abnormality determination processing is stored in advance at address 2008.
  • a timer set time TM2 for confirming the occurrence frequency of the abnormality is stored in advance.
  • a parameter SLD for selecting whether or not to execute the abnormality determination function is stored in advance at address 2010. If the user sets SLD to 0, the abnormality determination process is not performed. If the user sets SLD to 1, the abnormality determination process is executed when the condition is satisfied.
  • the control parameters from addresses 3100 to 3215 are not used in the first embodiment.
  • a parameter SLA for selecting whether or not to output a failure signal when the number of restart executions reaches the number of times ALE stored in advance at address 7002 is stored in advance.
  • a parameter SLR for selecting whether or not to allow the motor to be restarted when an abnormality is determined in the abnormality determination process is stored in advance.
  • the automatic restart permission upper limit number RSE is stored in advance at address 8002, and when the restart execution number CN exceeds the RSE, restart of the motor is not permitted and the motor is kept stopped.
  • the SLA at address 7001 to 1, the ALE at address 7002 to 2, the SLR at address 8001 to 1, and the RSE at address 8002 to 1.
  • the pressure drop occurs only once.
  • the pump can be restarted without issuing a failure signal, and water supply can be continued.
  • the discharge side pressure is reduced due to factors other than step-out, such as breakage of the discharge side piping, or when the pump is falling, the pressure drops multiple times. At this time, it is possible to protect the pump and related equipment by outputting a failure signal, notifying the abnormality, and stopping the pump without restarting it.
  • step-out due to foreign matter it may occur repeatedly even if step-out occurs. Even in such a case, as in the case of factors other than the above-described step-out, the pump and related equipment are stopped without restarting more than necessary in order to protect the pump and related equipment.
  • a target water supply pressure value HS is stored in advance and detected by the pressure detection means 11 provided on the secondary side pipe of the pump 10 The rotation speed is automatically controlled so that the value matches HS.
  • FIG. 4 shows a control flow of the first embodiment of the present invention when the pump is operated at a constant speed (a constant rotation speed and a constant frequency).
  • step 101 After the operation is started in step 101, the speed reaches the speed specified in step 102, and the discharge-side pressure value Hm at that time is stored in the volatile memory 1010. (103 step)
  • the step-out determination function selection confirmation process is performed in 104 step.
  • step 105 the set value of the abnormality determination cycle timer TM1 stored in advance in the nonvolatile memory 2008 is stored in the remaining time TN1 of the timer 1 in the volatile memory 1003, and the countdown of TN1 is started. If the count of the timer TN1 has not ended in 109 steps, the process waits for the timer TN1 to end, and returns to 109 steps.
  • step 140 it is determined whether the difference between Hm and HN is less than the HDG stored in advance in the nonvolatile memory address 2001.
  • Hm is unchanged in FIG. 4, it may be updated by copying the value of HN to the value of Hm at the time of step 181.
  • the pump when the discharge side pressure of the pump is greatly reduced, the pump is stopped and restarted. If the discharge-side pressure drops without returning to the normal state at the first restart, the second and subsequent restarts are performed.
  • the increasing rate of the command frequency indicating the rotation speed of the synchronous motor in the first restart is set smaller than the increasing rate of the command frequency in the second and subsequent restarts. This is because, when the abnormality that has occurred is an accidental step-out, it is easy to return to the normal state by gradually increasing the command frequency at the first restart.
  • the normal state is restored by the first restart, it can be determined that the cause of the large decrease in the discharge-side pressure was a step-out.
  • the increase rate of the command frequency is increased and restarted after the second restart. Foreign matter may be removed by repeating the start-up.
  • the increase rate of the command frequency at the first restart is made smaller than the increase rate of the command frequency at the second restart, but the frequency increase rate at the second restart is reduced. It is also possible to make it smaller than the frequency increase rate at the start. For example, even if accidental step-out occurs, the normal state can be quickly restored by restarting with a large frequency increase rate. In the second and subsequent times, it may be possible to set a moderate increase rate of the command frequency preliminarily for a case where the recovery to the normal state at the first restart fails due to the accidental step-out.
  • FIG. 5 shows details of 170-step abnormality processing.
  • the current number of restarts is updated in step 301, 1 is added to the stored value of the volatile memory 1005, and the pump is stopped in step 302.
  • a parameter SLA for selecting whether or not to output a failure signal stored in advance in the non-volatile memory 7001 is confirmed. If SLA is set to 0, no failure signal is output in step 306 and 306 is output. Proceed to step.
  • the abnormality detection count ALE that starts outputting the failure signal stored in advance in the nonvolatile memory 7002 in step 304, and the current stored in the volatile memory 1005
  • the restart execution times CN are compared, and if ALE is greater than or equal to CN, a failure signal is output in step 305. If ALE is less than CN, it is determined in step 306 that no failure signal is output, and the flow proceeds to step 307.
  • step 307. It is desirable to change the conditions for restart permission depending on the number and frequency of restarts, the characteristics of the equipment, and the intended use.
  • the parameter SLR for selecting the automatic restart permission stored in advance in the non-volatile memory 8001 is confirmed. If the restart is permitted, the process proceeds to step 308. If not permitted, the process proceeds to step 309. Wait for input. In step 308, if the number of detected abnormalities is 1 or less, the increase rate of the command frequency at restart stored in advance in the non-volatile memory 1011 in step 310 is set to D1. When the number of times of abnormality detection is two or more, the increase rate of the command frequency at restart stored in advance in the nonvolatile memory 1012 at step 311 is set to D2.
  • the upper limit number RSE of automatic restarts is compared with the current restart execution number CN stored in the volatile memory 1005, and when RSE exceeds CN, A reset instruction may be given manually.
  • the set value of the abnormality frequency confirmation timer TM2 stored in advance in the nonvolatile memory 2009 at the time of detecting the abnormality is set to the timer in the volatile memory 1004. 2 The remaining time is stored in TN2, and TN2 is counted down. If an abnormality is detected again before TN2 becomes 0, a condition that restart is not permitted may be added. For example, if TN2 is set to 1 hour, when an abnormality is detected twice within 1 hour, it can be estimated that the cause is not an accidental step-out, but an external factor.
  • FIG. 6 shows a control flow of the present invention when the automatic operation is performed so that the supply water pressure is constant by the automatic water supply device.
  • step 104 step-out determination function selection confirmation processing is performed. If the selection of the step-out determination function is confirmed, it is determined in step 130 whether the current discharge-side pressure is higher than the target pressure HS stored in advance in the nonvolatile memory 9001. If the current discharge-side pressure is higher than the target pressure HS, a deceleration instruction is issued in 131 steps. When an instruction for deceleration is given, the output frequency is changed in 132 steps. Conversely, if the current discharge-side pressure is lower than the target pressure HS, an acceleration instruction is given in step 133. When acceleration is instructed, the output frequency is changed in 135 steps.
  • the setting value of the step-out determination cycle timer TM1 stored in advance in the non-volatile memory 2008 at step 105 is stored in the timer 1 remaining time TN1 of the volatile memory 1003, and the countdown of TN1 is performed.
  • the current discharge side pressure HN is stored in step 134, and it is determined in step 142 whether the difference between HN and the target pressure HS is less than HDG.
  • step 130 If the difference between the discharge side pressure and HS is greater than or equal to HDG, it is determined that there is a possibility of a step-out, and the process at the time of abnormality in 170 steps is performed. And return to step 130.
  • a step-out is detected by a change in the pump secondary pressure and a change in the load current value.
  • FIG. 3 shows the contents of the volatile memory and the nonvolatile memory stored in the storage unit.
  • the contents of the memory are the same as in the first embodiment, but in this embodiment, the load current value AN on the secondary side of the pump when starting the step-out determination is recorded at address 1002.
  • FIG. 7 shows a control flow of this embodiment when the pump is operated at a constant speed (a constant rotation speed and a constant frequency).
  • step 101 After reaching the speed specified in step 102, the original discharge-side pressure Hm is stored in address 1010 of the volatile memory in step 103.
  • step 104 step-out determination function selection confirmation processing is performed.
  • the timer starts counting in 105 steps.
  • step 109 it is confirmed that the timer count has ended.
  • step 106 the current discharge-side pressure is stored as HN in the volatile memory 1001.
  • step 107 the current load current value is stored as AN in the volatile memory 1002.
  • Fig. 14 shows general pump characteristics.
  • the discharge-side pressure is Ha and the load current value is Aa at the discharge flow rate Qa.
  • the discharge side pressure decreases to Hb, and the load current value increases to Ab. It can be seen that the load current value increases as the discharge side pressure decreases.
  • step 143 If HN-Hm is greater than or equal to HDG in step 143, it is determined normal in step 160 and the process returns to step 105.
  • HN ⁇ Hm is less than HDG, it is determined whether the current load current value is greater than AN + ADG in 144 steps, and if it is greater than AN + ADG, it is determined normal in 161 steps, and the process returns to 105 steps.
  • FIG. 8 shows a control flow of the present invention in the case where automatic operation is performed so that the supply water pressure becomes constant by the automatic water supply apparatus.
  • step 100 When a decrease in discharge side pressure is detected in step 100, operation starts in step 101. After reaching the speed specified in step 103, step-out determination function selection confirmation processing is performed in step 104. After the step-out determination function selection confirmation process, the current load current value is stored as AN in the volatile memory 1002 at step 107.
  • step 130 it is determined whether the discharge side pressure is higher than the target pressure HS stored in advance in the nonvolatile memory 9001. When the discharge side pressure is higher than the target pressure HS, a deceleration instruction is issued in 131 steps. When an instruction for deceleration is given, the output frequency is changed in 132 steps. On the other hand, if the discharge side pressure is lower than the target pressure HS, the acceleration is instructed in step 133. When acceleration is instructed, the current discharge-side pressure is stored as HN in the volatile memory 1001 at 134 steps, and then the output frequency is changed at 135 steps.
  • Step 143 If the specified speed is reached, go to step 143.
  • the control flow is the same as that in the case of operating the pump at a constant speed (a constant rotation speed, a constant frequency) (FIG. 7) after Step 143, the description is omitted.
  • the step-out can be detected more accurately by combining the discharge side pressure and the load current value.
  • the pump characteristic data is stored in the storage unit, and the discharge side pressure or the load current value at the operation frequency (command frequency) during the pump operation matches the value calculated from the characteristic data.
  • a step-out is detected by comparing whether or not to do so.
  • FIG. 3 shows the contents of the volatile memory and the nonvolatile memory stored in the storage unit.
  • the calculated discharge side pressure HC obtained by the pump characteristic calculation process is stored at address 1006 of the volatile memory.
  • the calculated load current value AC obtained by the pump characteristic calculation process is stored at address 1007.
  • the calculated flow rate QC obtained by the pump characteristic calculation process is stored at address 1008.
  • it is determined whether or not the difference between the result obtained by the pump characteristic calculation process and the actual detection value is within the determination reference value, and the result is stored. If the calculated value and the detected value match, 0 is stored, and if the calculated value and the detected value do not match, 1 is stored.
  • the pump characteristic data is recorded at addresses 3100 to 3215 of the nonvolatile memory.
  • Pump at measurement point 1 (recorded at 3100), flow rate (recorded at 3101), current (recorded at 3102), head at measurement point 2 (recorded at 3101) in operation at an arbitrary frequency of the pump (recorded at 3115) 3120), flow rate (recorded at 3104 address), current (recorded at 3105 address), and lift at measurement point 3, measurement point 4, flow rate, current, lift at measurement point 5 (recorded at address 3112) ,
  • the flow rate (recorded at address 3113) and the current (recorded at address 3114) are stored in advance in a nonvolatile memory.
  • FIG. 15 shows the relationship between the pump characteristic data stored in addresses 3100 to 3215.
  • One set of pump characteristic data may be used, but since it is better that the current frequency and the frequency of the pump characteristic data recorded in advance are closer in the pump characteristic calculation process, measurement points 1 to 4 at other frequencies (recorded at 3215) It is better to store the head, flow rate, and current at 5. Needless to say, it is better to store three or more frequencies and corresponding data instead of two frequencies.
  • FIG. 9 shows a control flow of the present invention in the case where automatic operation is performed so that the supply water pressure becomes constant by the automatic water supply apparatus.
  • step 100 When a decrease in discharge side pressure is detected in step 100, operation starts in step 101. After reaching the speed specified in step 103, step-out determination function selection confirmation processing is performed in step 104. Thereafter, in step 130, it is determined whether the discharge side pressure is higher than the target pressure HS stored in advance in the nonvolatile memory 9001. When the discharge side pressure is higher than the target pressure HS, a deceleration instruction is issued in 131 steps. When an instruction for deceleration is given, the output frequency is changed in 132 steps. On the other hand, if the discharge side pressure is lower than the target pressure HS, the acceleration is instructed in step 133. When acceleration is instructed, the output frequency is changed in 135 steps.
  • step 151 the current discharge side pressure is stored as HN in the volatile memory 1001
  • step 152 the current load current value is stored as AN in the volatile memory 1002.
  • pump characteristic calculation processing is performed at step 154.
  • step 155 it is determined whether the current output (detected value) matches the calculation result (calculated value). If they match (when the value CS stored in the volatile memory 1009 is 0), it is determined to be normal in 160 steps, and the process returns to 103 steps. If the current output (detected value) and the calculation result (calculated value) do not match (when CS is 1), it is determined that the step is out, 170-step abnormality processing is performed, and restart processing is performed. Later, the pump is restarted in 180 steps and the process returns to 103 steps.
  • FIG. 10 shows details (example 1) of the pump characteristic calculation process of 154 steps.
  • HzN is read from the volatile memory address 1000
  • HN is read from the address 1001
  • AN is read from the address 1002.
  • step 401 the pump characteristic curve at the current command frequency HzN is calculated from HzN and the characteristic data recorded in advance at addresses 3100 to 3215 of the nonvolatile memory.
  • the current flow rate QC is calculated from the pump characteristic curve calculated in step 411 and the current discharge side pressure HN. From the flow rate QC calculated in step 412 and the current command frequency HzN, a calculated load current value AC at the flow rate QC is obtained. In step 413, it is confirmed whether the difference between the current load current value AN and the calculated load current value AC is smaller than the ADG stored in advance in the non-volatile memory 2002, and the difference between AN and AC is within ADG In step 431, the current output coincides with the calculation result, and 0 is stored in the comparison CS with the calculation result of the volatile memory 1009. If the difference between AN and AC exceeds ADG, the current output and the calculation result do not match at step 432, and 1 is stored in CS. Proceed to step 155 after the process is completed.
  • FIG. 11 shows another example (Example 2) of the pump characteristic calculation process of 154 steps.
  • the flow rate QC is calculated from the discharge side pressure in step 411
  • the load current value AC is calculated in step 412
  • the current load current value AN is calculated in step 413.
  • the flow rate QC is calculated from the load current value in step 421
  • the discharge side pressure HC is calculated in step 422
  • the current discharge side pressure HN is calculated in step 413
  • the calculated discharge side Compare the pressure HC.
  • the current pump operation state is calculated from the flow rate, discharge side pressure, load current value, current discharge side pressure HN or load current value AN at each frequency recorded in advance in the storage unit.
  • FC1 (F1 ⁇ FC) Equation 1
  • FC2 (F1 ⁇ FC) 2
  • FC3 (F1 ⁇ FC) 3 Equation 3 I ask.
  • the performance data H11, H12, H13, H14, H15 (3100, 3103,... (Recorded at address 3112) is multiplied by FC1 to obtain HC1, HC2, HC3, HC4, and HC5.
  • the flow rate performance data Q11, Q12, Q13, Q14, Q15 (recorded at addresses 3101, 3104,..., 3113) are respectively multiplied by FC2 to obtain QC1, QC2, QC3, QC4, and QC5.
  • the performance data A11, A12, A13, A14, A15 (recorded at addresses 3102, 3105,..., 3114) related to current are respectively multiplied by FC3 to be AC1, AC2, AC3, AC4, and AC5.
  • the flow rate QC when the load current value is AC at the command frequency HzN is obtained from Equation 5 (corresponding to step 421 in FIG. 11). From Equation 4, the discharge-side pressure HC when the flow rate is QC at the command frequency HzN can be obtained (corresponding to step 422 in FIG. 11).
  • the frequency of the pump characteristic data that is measured and stored in advance may be one.
  • a plurality of operating frequencies are used. Save the characteristic data in, select the data closest to the current operating frequency from the characteristic data, perform the above-mentioned characteristic data calculation process, more accurately determine the QH curve and QA curve, as a result It is possible to accurately grasp the pump operating state.
  • the step-out determination is performed based on the change during operation.
  • abnormalities can be accurately detected in a short time by comparing the actual measured operating state with the pump characteristic data measured and stored in advance as described above. Is superior in that it can be detected.

Abstract

 A pump system having a pump unit that has an impeller provided inside a pump casing, a synchronous motor for rotatably driving the impeller, and an inverter for controlling the synchronous motor, wherein the inverter has a signal input unit for inputting signals from a pressure detection means for detecting water pressure provided to a discharge side of the pump unit, a calculation processor for deciding the rotational speed of the synchronous motor, a storage unit for storing control parameters needed for the calculations performed by the calculation processor, and a power converter for supplying a drive current to the synchronous motor; and the calculation processor stops the synchronous motor and performs a restarting process when a pressure change of a prescribed value or greater is detected according to a signal from the pressure detection means, and performs a second restart using a rate of increase different from the rate of increase in rotational speed of the synchronous motor during the first restart in a case when the synchronous motor does not start up normally in the first restart.

Description

ポンプシステムPump system
 本発明は同期電動機を制御するインバータを使用するポンプシステムに関する。 The present invention relates to a pump system using an inverter for controlling a synchronous motor.
 従来、ポンプの駆動源として誘導電動機が主に使われていたが、現在では省エネ、高効率の観点から、永久磁石を用いた同期電動機が採用されるようになっている。同期電動機の中でも磁極位置センサを備えていない電動機は、磁極位置センサの故障の恐れがなく、また価格的にも安く抑えられるメリットがある。 Conventionally, induction motors have been mainly used as a drive source for pumps, but synchronous motors using permanent magnets are now being used from the viewpoint of energy saving and high efficiency. Among the synchronous motors, the motor that does not include the magnetic pole position sensor has the advantage that the magnetic pole position sensor does not have a failure and can be reduced in price.
 一方で、磁極位置センサなしの同期電動機の場合、電動機を制御するインバータが認識している回転数と、実際の電動機の回転数が一致しない脱調と呼ばれる現象が発生し、負荷が回転せず、仕事をしない状態となる恐れがある。ポンプの場合には、所望の給水を行なうことが出来ず、飲料水の断水や、設備の停止を発生させる恐れがある。 On the other hand, in the case of a synchronous motor without a magnetic pole position sensor, a phenomenon called out-of-step occurs in which the rotational speed recognized by the inverter that controls the motor does not match the actual rotational speed of the motor, and the load does not rotate. There is a risk of not working. In the case of a pump, the desired water supply cannot be performed, and there is a possibility that the drinking water may be stopped or the facility may be stopped.
 例えば、以下の特許文献1によれば、電動機の軸誤差の推定演算より、電動機の回転状態の異常検知が可能であるとしている。 For example, according to the following Patent Document 1, an abnormality in the rotation state of the electric motor can be detected by an estimation calculation of the shaft error of the electric motor.
特開2012-60781号公報JP 2012-60781 A
 しかしながら、脱調している状態においても電動機には誘起電圧分の電流が流れ、その電流値は正常回転状態での電流値とほぼ同等である。そのため特許文献1に記載の、電圧指令値と電流検出値から軸誤差を推定する方法では、電流値の変化が微小であるために脱調を検出することは難しい。 However, even in a step-out state, a current corresponding to the induced voltage flows through the motor, and the current value is almost equal to the current value in the normal rotation state. Therefore, in the method of estimating the axis error from the voltage command value and the current detection value described in Patent Document 1, it is difficult to detect the step-out because the change in the current value is minute.
 本発明は、上述の事情に鑑みなされたもので、ポンプシステムにおいて、脱調を簡単に検出し、必要に応じて電動機を再始動することで、負荷を安定駆動させ、給水を継続することを目的とする。 The present invention has been made in view of the above circumstances, and in a pump system, it is possible to detect a step-out easily and restart the electric motor as necessary to stably drive the load and continue water supply. Objective.
 上記の課題を解決するために本発明では、一例として、ポンプケーシング内に設けられた羽根車を有するポンプ部と、前記羽根車を回転駆動する同期電動機と、前記同期電動機を制御するインバータと、を有するポンプシステムであって、前記インバータは、前記ポンプ部の吐き出し側に設けられた水圧を検出する圧力検出手段からの信号を入力する信号入力部と、前記同期電動機の回転数を決定する演算処理部と、前記演算処理部で行なう演算に必要な制御パラメータを記憶する記憶部と、前記同期電動機に駆動電流を供給する電力変換装部と、を有し、前記演算処理部は、前記圧力検出手段からの信号により、所定値以上の圧力の変化を検出したときに、前記同期電動機を停止し、再始動する処理を行い、1回目の再始動で前記同期電動機が正常に起動しない場合は、前記1回目の再始動時の前記同期電動機の回転数の増加率とは異なる増加率により第2回目の再始動を行う。 In order to solve the above problems, in the present invention, as an example, a pump unit having an impeller provided in a pump casing, a synchronous motor that rotationally drives the impeller, an inverter that controls the synchronous motor, The inverter has a signal input unit for inputting a signal from a pressure detection means for detecting water pressure provided on the discharge side of the pump unit, and an operation for determining the rotational speed of the synchronous motor A processing unit, a storage unit that stores control parameters necessary for calculations performed by the calculation processing unit, and a power conversion unit that supplies a drive current to the synchronous motor, wherein the calculation processing unit includes the pressure When a change in pressure equal to or greater than a predetermined value is detected by a signal from the detection means, the synchronous motor is stopped and restarted, and the synchronous motor is restarted at the first restart. If the machine does not start normally, the second restart is performed at an increase rate different from the increase rate of the rotational speed of the synchronous motor at the first restart.
 本発明により、脱調が発生し、負荷が回転せず仕事をしない状態となった場合にも、速やかに電動機を再始動し、負荷を駆動させ、仕事を継続することができる。よって安定した給水を行なうことが出来る。 According to the present invention, even when a step-out occurs and the load does not rotate and does not work, the motor can be restarted quickly, the load can be driven, and the work can be continued. Therefore, stable water supply can be performed.
本発明の実施形態におけるポンプシステムの全体構成Overall configuration of a pump system in an embodiment of the present invention 本発明の実施形態におけるインバータ内部の構成Configuration of the inverter in the embodiment of the present invention 本発明の実施形態における記憶部のデータ内容Data contents of the storage unit in the embodiment of the present invention 本発明の第1の実施形態におけるポンプの一定速度運転における制御フローControl flow in constant speed operation of pump in the first embodiment of the present invention 本発明の第1~3の実施形態における異常時処理の制御フローControl flow of abnormality processing in the first to third embodiments of the present invention 本発明の第1の実施形態における自動給水装置の給水圧力一定自動運転における制御フローControl flow in automatic operation of constant water supply pressure of automatic water supply apparatus in first embodiment of the present invention 本発明の2の実施形態におけるポンプの一定速度運転における制御フローControl flow in constant speed operation of the pump in the second embodiment of the present invention 本発明の2の実施形態における自動給水装置の給水圧力一定自動運転における制御フローControl flow in automatic operation of constant water supply pressure of automatic water supply apparatus in the second embodiment of the present invention 本発明の第3の実施形態における自動給水装置の給水圧力一定自動運転の制御フローControl flow of automatic operation of constant water supply pressure of automatic water supply apparatus in third embodiment of the present invention 本発明の第3の実施形態におけるポンプ特性計算処理の制御フロー(例1)Control flow (example 1) of pump characteristic calculation processing in the third embodiment of the present invention 本発明の第3の実施形態におけるポンプ特性計算処理の制御フロー(例2)Control flow of pump characteristic calculation processing in the third embodiment of the present invention (example 2) 本発明の第1の実施形態における脱調による圧力変化の説明図Explanatory drawing of the pressure change by the step-out in the 1st Embodiment of this invention 本発明の第2の実施形態においける脱調による圧力変化と負荷電流値変化の説明図Explanatory drawing of the pressure change and load current value change by the step-out in the 2nd Embodiment of this invention 本発明の第2の実施形態におけるポンプ特性の説明図Explanatory drawing of the pump characteristic in the 2nd Embodiment of this invention 本発明の第3の実施形態におけるポンプ特性の説明図1FIG. 1 is an explanatory diagram of pump characteristics in the third embodiment of the present invention. 本発明の第3の実施形態におけるポンプ特性の説明図2FIG. 2 is an explanatory diagram of pump characteristics according to the third embodiment of the present invention.
 本発明の第1の実施形態は、ポンプ駆動中の同期電動機において、ポンプ2次側圧力の変化により異常(脱調)を検出するものである。 In the first embodiment of the present invention, an abnormality (step-out) is detected by a change in the secondary pressure of the pump in a synchronous motor that is driving a pump.
 ポンプ2次側圧力を確認し、その変化量が所定値を超えた場合には一度ポンプを停止させ、再起動した後、再度ポンプ2次側圧力を確認し、2次側圧力が所定値に達した場合には脱調していたと判断する。 Check the secondary pressure of the pump, and if the amount of change exceeds a predetermined value, stop the pump once, restart it, check the secondary pressure of the pump again, and set the secondary pressure to the predetermined value. If it has reached, it is judged that it was out of step.
 まず、図1には本発明のポンプシステムの全体構成が示されている。図1においてポンプケーシング内に羽根車が設けられたポンプ10は電動機20で駆動されている。電動機20は磁極位置センサを備えない同期電動機である。さらに電動機20にはインバータ30が接続されていて、インバータ30が出力電流の周波数を変化させることで、電動機20の回転数を変化させ駆動する。ポンプ10の二次側配管に圧力検出手段11を設け、ポンプ吐出側圧力を検出する。 First, FIG. 1 shows the overall configuration of the pump system of the present invention. In FIG. 1, a pump 10 provided with an impeller in a pump casing is driven by an electric motor 20. The electric motor 20 is a synchronous motor that does not include a magnetic pole position sensor. Further, an inverter 30 is connected to the electric motor 20, and the inverter 30 changes the frequency of the output current, thereby driving the electric motor 20 by changing the number of rotations. The pressure detection means 11 is provided in the secondary side piping of the pump 10, and the pump discharge side pressure is detected.
 図2にはインバータ30の内部構成が示されている。インバータ30に供給される電源を受ける受電部に交流-直流変換部31が接続され、受電した交流電源は直流電圧に変換される。この直流電圧を直流-交流変換部32で、演算処理部34により指示された周波数の交流電源に再変換する。負荷の回転数を変更する場合には信号入力部33に信号を入力する。入力した信号に応じて演算処理部34で出力する周波数を決定し、直流-交流変換部32にその周波数の交流電源を生成するよう指示を出す。演算処理部34で行なう演算に必要な制御パラメータを記憶部35に予め記憶しておき、演算処理部34は必要に応じて記憶部35のメモリ内容の読み出し、書き込みを行なう。 FIG. 2 shows the internal configuration of the inverter 30. An AC-DC converter 31 is connected to a power receiving unit that receives power supplied to the inverter 30, and the received AC power is converted into a DC voltage. This DC voltage is converted again by the DC-AC converter 32 into an AC power source having a frequency designated by the arithmetic processing unit 34. When changing the rotation speed of the load, a signal is input to the signal input unit 33. A frequency to be output by the arithmetic processing unit 34 is determined according to the input signal, and an instruction is issued to the DC-AC converter 32 to generate an AC power source of that frequency. Control parameters necessary for the calculation performed by the calculation processing unit 34 are stored in the storage unit 35 in advance, and the calculation processing unit 34 reads and writes the memory contents of the storage unit 35 as necessary.
 図3には揮発性メモリと不揮発性メモリで構成される記憶部35に記憶される内容を示す。尚、インバータ30の内部に記憶部を持たず、インバータ外部に記憶装置を取り付けて代用しても差し支えない。 FIG. 3 shows the contents stored in the storage unit 35 composed of a volatile memory and a nonvolatile memory. It should be noted that the storage unit may not be provided inside the inverter 30, and a storage device may be attached outside the inverter and used instead.
 揮発性メモリの1000番地には異常判定を開始する際の回転数(電動機への指令周波数)HzNを記録する。1001番地には異常判定を開始する際のポンプ2次側の圧力(吐出側圧力)HNを記録する。1002番地の制御パラメータは第1の実施形態では使用しない。1003番地には異常判定処理を行なう周期を設定するタイマの残り時間TN1を記憶し、1004番地には異常の発生頻度を確認するためのタイマの残り時間TN2を記憶する。1005番地には異常判定を行なった結果、再始動を実施した回数CNを記憶する。1006番地から1009番地の制御パラメータは本発明の第1の実施形態では使用しない。1010番地には、当初のポンプ2次側の圧力(吐出側圧力)Hmを記憶する。1011番地には、ポンプの再始動時(1回目)の周波数の増加率D1、1012番地には、ポンプの再始動時(2回目以降)の周波数の増加率D2を記憶する。 Record the rotation speed (command frequency to the motor) HzN when starting the abnormality determination at address 1000 of the volatile memory. At the address 1001, the pressure (discharge side pressure) HN on the secondary side of the pump when the abnormality determination is started is recorded. The control parameter at address 1002 is not used in the first embodiment. The remaining time TN1 of the timer for setting the cycle for performing the abnormality determination process is stored at address 1003, and the remaining time TN2 of the timer for checking the occurrence frequency of the abnormality is stored at address 1004. As a result of the abnormality determination, the number CN of restarts is stored at address 1005. The control parameters from addresses 1006 to 1009 are not used in the first embodiment of the present invention. At address 1010, the initial pump secondary pressure (discharge pressure) Hm is stored. The address 1011 stores the frequency increase rate D1 when the pump is restarted (first time), and the addresses 1012 store the frequency increase rate D2 when the pump is restarted (after the second time).
 不揮発性メモリの2001番地には異常判定処理において判定に使用するポンプ2次側の圧力基準値HDGを予め記憶しておく。2002番地の制御パラメータは本発明の第1の実施形態では使用しない。2008番地には異常判定処理を行なう周期TM1を予め記憶しておく。2009番地には異常の発生頻度を確認するためのタイマの設定時間TM2を予め記憶しておく。 The pressure reference value HDG on the pump secondary side used for determination in the abnormality determination process is stored in advance at address 2001 of the nonvolatile memory. The control parameter at address 2002 is not used in the first embodiment of the present invention. A cycle TM1 for performing abnormality determination processing is stored in advance at address 2008. In the address 2009, a timer set time TM2 for confirming the occurrence frequency of the abnormality is stored in advance.
 2010番地には異常判定機能の実行有無を選択するパラメータSLDを予め記憶しておく。ユーザがSLDを0に設定した場合には異常判定処理を行なわず、ユーザがSLDを1に設定した場合には条件が成立した時点で異常判定処理を実行する。3100番地から3215番地の制御パラメータは第1の実施形態では使用しない。 A parameter SLD for selecting whether or not to execute the abnormality determination function is stored in advance at address 2010. If the user sets SLD to 0, the abnormality determination process is not performed. If the user sets SLD to 1, the abnormality determination process is executed when the condition is satisfied. The control parameters from addresses 3100 to 3215 are not used in the first embodiment.
 7001番地には、再始動実施回数が、予め7002番地に記憶された回数ALEに達した場合に故障信号を出力するか否かを選択するパラメータSLAを予め記憶しておく。8001番地には、異常判定処理にて異常と判断された場合に電動機の再始動を許可するか否かを選択するパラメータSLRを予め記憶しておく。8002番地には自動再始動の許可上限回数RSEを予め記憶しておき、再始動実施回数CNがRSEを超える場合には電動機の再始動を許可せず、電動機を停止させたままとする。 At address 7001, a parameter SLA for selecting whether or not to output a failure signal when the number of restart executions reaches the number of times ALE stored in advance at address 7002 is stored in advance. At address 8001, a parameter SLR for selecting whether or not to allow the motor to be restarted when an abnormality is determined in the abnormality determination process is stored in advance. The automatic restart permission upper limit number RSE is stored in advance at address 8002, and when the restart execution number CN exceeds the RSE, restart of the motor is not permitted and the motor is kept stopped.
 本実施形態の場合、7001番地のSLAを1に、7002番地のALEを2に、8001番地のSLRを1に、8002番地のRSEを1に設定するのが良い。偶発的な脱調による羽根車の回転停止に起因する圧力低下の際には、圧力低下が1回だけ起きる。この時は故障信号を発することなくポンプを再始動させ、給水を継続することが出来る。脱調以外の要因、例えば吐出側配管の破損などで吐出側圧力が低下している場合や、ポンプが落水している場合には複数回の圧力低下が起きる。この時は故障信号を出力し、異常を知らせ、ポンプを再始動させることなく停止させることで、ポンプや関連設備の保護を行なうことができる。 In the present embodiment, it is preferable to set the SLA at address 7001 to 1, the ALE at address 7002 to 2, the SLR at address 8001 to 1, and the RSE at address 8002 to 1. In the case of a pressure drop due to the impeller stoppage due to accidental step-out, the pressure drop occurs only once. At this time, the pump can be restarted without issuing a failure signal, and water supply can be continued. When the discharge side pressure is reduced due to factors other than step-out, such as breakage of the discharge side piping, or when the pump is falling, the pressure drops multiple times. At this time, it is possible to protect the pump and related equipment by outputting a failure signal, notifying the abnormality, and stopping the pump without restarting it.
 但し、例えば、異物による脱調等の場合は、脱調であっても繰り返し起こることがある。このような場合も、上記の脱調以外の要因の場合と同様に、ポンプや関連設備の保護を行うために、必要以上にポンプを再始動させることなく停止させる。 However, for example, in the case of step-out due to foreign matter, it may occur repeatedly even if step-out occurs. Even in such a case, as in the case of factors other than the above-described step-out, the pump and related equipment are stopped without restarting more than necessary in order to protect the pump and related equipment.
 9001番地には自動給水装置で給水圧力一定となるよう自動運転する場合において、目標とする給水圧力値HSを予め記憶しておき、ポンプ10の二次側配管に設けた圧力検出手段11の検出値がHSと一致するよう回転数を自動制御する。 When automatic operation is performed so that the supply water pressure is constant by an automatic water supply device at address 9001, a target water supply pressure value HS is stored in advance and detected by the pressure detection means 11 provided on the secondary side pipe of the pump 10 The rotation speed is automatically controlled so that the value matches HS.
 図4にはポンプを一定の速度(一定の回転数、一定周波数)で運転する場合の本発明の第1の実施形態の制御フローが示されている。 FIG. 4 shows a control flow of the first embodiment of the present invention when the pump is operated at a constant speed (a constant rotation speed and a constant frequency).
 101ステップにおいて運転を開始した後、102ステップで指定した速度に到達した速度に到達し、その時点の吐出側圧力値Hmを揮発性メモリ1010番地に記憶する。(103ステップ)104ステップで脱調判定機能の選択確認処理を行なう。脱調判定機能が選択されている場合は以下のステップを行う。105ステップで不揮発性メモリ2008番地に予め記憶しておいた異常判定の周期用タイマTM1の設定値を、揮発性メモリ1003番地のタイマ1の残り時間TN1に記憶し、TN1のカウントダウンを開始する。109ステップでタイマTN1のカウントが終了していない場合はタイマTN1のカウント終了を待ち109ステップに戻り、タイマTN1のカウントが終了している場合は、134ステップで現在の吐出側圧力を揮発性メモリ1001番地にHNとして記憶する。140ステップでHmとHNの差が不揮発性メモリ2001番地に予め記憶しておいたHDG未満であるか否か判断する。 After the operation is started in step 101, the speed reaches the speed specified in step 102, and the discharge-side pressure value Hm at that time is stored in the volatile memory 1010. (103 step) The step-out determination function selection confirmation process is performed in 104 step. When the step-out determination function is selected, the following steps are performed. In step 105, the set value of the abnormality determination cycle timer TM1 stored in advance in the nonvolatile memory 2008 is stored in the remaining time TN1 of the timer 1 in the volatile memory 1003, and the countdown of TN1 is started. If the count of the timer TN1 has not ended in 109 steps, the process waits for the timer TN1 to end, and returns to 109 steps. If the count of the timer TN1 has ended, the current discharge side pressure is stored in the volatile memory in 134 steps. Store as HN at address 1001. In step 140, it is determined whether the difference between Hm and HN is less than the HDG stored in advance in the nonvolatile memory address 2001.
 HmとHNの差がHDG未満である場合は、160ステップで正常と判断して、165ステップで揮発性メモリ1005番地の再始動実施回数CNを0にする。181ステップでタイマのカウントを再開して、109ステップに戻る。 If the difference between Hm and HN is less than HDG, it is determined as normal in 160 steps, and the number of restarts CN of the volatile memory 1005 is set to 0 in 165 steps. The timer count is restarted in step 181 and the process returns to step 109.
 HmとHNの差が、HDG以上の場合には脱調の可能性があるので異常と判断し、170ステップの異常時処理を行ない、再始動処理が行なわれた後に、180ステップでポンプを再始動させ、181ステップでタイマのカウントを再開して、109ステップに戻る。図4ではHmは不変としているが、ステップ181の時点で、Hmの値にHNの値をコピーすることで更新してもよい。 If the difference between Hm and HN is greater than or equal to HDG, there is a possibility of step-out, so it is determined that there is an abnormality. After 170 steps of abnormal processing, restart processing is performed and then the pump is restarted in 180 steps. The timer is started, the timer count is restarted in step 181 and the process returns to step 109. Although Hm is unchanged in FIG. 4, it may be updated by copying the value of HN to the value of Hm at the time of step 181.
 図12の通り、ポンプがある一定の回転数で運転している状態で脱調が発生すると、ポンプが揚水する能力が失われるため、ポンプの吐出側圧力は大きく低下する。圧力がどの程度まで低下するかはポンプの吸い込み条件(1次側の状態)によって変化するため、吸い込み条件を考慮して吐出側圧力の判断基準値HDGを決めると良い。 As shown in FIG. 12, when a step-out occurs while the pump is operating at a certain rotation speed, the pump's ability to pump water is lost, so the discharge pressure on the pump is greatly reduced. How much the pressure decreases depends on the suction conditions (primary side state) of the pump. Therefore, it is preferable to determine the determination reference value HDG for the discharge side pressure in consideration of the suction conditions.
 本発明では、ポンプの吐出側圧力が大きく低下した場合に、ポンプを停止させ再始動を行う。1回目の再始動で正常な状態とならずに吐出側圧力が低下する場合は2回目以降の再始動を行う。ここで、1回目の再始動における同期電動機の回転数を示す指令周波数の増加率は、2回目以降の再始動における指令周波数の増加率よりも小さく設定している。これは、発生した異常が偶発的な脱調である場合は、1回目の再始動で緩やかに指令周波数を増加させることで正常な状態に復帰させることが容易であるからである。1回目の再始動で正常状態に戻った場合は、吐出側圧力は大きく低下した原因は脱調であったと判断できる。図示はしないが、圧力の変化の原因は脱調であるとして、その情報を外部へ出力或いは表示してもよい。 In the present invention, when the discharge side pressure of the pump is greatly reduced, the pump is stopped and restarted. If the discharge-side pressure drops without returning to the normal state at the first restart, the second and subsequent restarts are performed. Here, the increasing rate of the command frequency indicating the rotation speed of the synchronous motor in the first restart is set smaller than the increasing rate of the command frequency in the second and subsequent restarts. This is because, when the abnormality that has occurred is an accidental step-out, it is easy to return to the normal state by gradually increasing the command frequency at the first restart. When the normal state is restored by the first restart, it can be determined that the cause of the large decrease in the discharge-side pressure was a step-out. Although not shown, it is possible to output or display the information to the outside, assuming that the cause of the pressure change is step-out.
 一方、1回目の再始動で正常状態に戻らない場合は、空気溜り等が原因の異常である場合があり、この場合は、2回目以降の再始動で指令周波数の増加率を大きくし、再始動を繰り返すことで異物を除くことができる場合がある。 On the other hand, if it does not return to the normal state after the first restart, there may be an abnormality caused by air accumulation, etc. In this case, the increase rate of the command frequency is increased and restarted after the second restart. Foreign matter may be removed by repeating the start-up.
 図12の例では、1回目の再始動における指令周波数の増加率を2回目の再始動における指令周波数の増加率よりも小さくしたが、2回目の再始動における周波数の増加率を1回目の再始動における周波数の増加率よりも小さくすることも可能である。例えば、偶発的な脱調が原因であっても、周波数の増加率が大きい再始動とすることで、早く正常状態に戻すことができる。2回目以降は、偶発的な脱調について1回目の再始動での正常状態への復帰が失敗したときのために、予備的に緩やかな指令周波数の増加率としておくことも考えられる。 In the example of FIG. 12, the increase rate of the command frequency at the first restart is made smaller than the increase rate of the command frequency at the second restart, but the frequency increase rate at the second restart is reduced. It is also possible to make it smaller than the frequency increase rate at the start. For example, even if accidental step-out occurs, the normal state can be quickly restored by restarting with a large frequency increase rate. In the second and subsequent times, it may be possible to set a moderate increase rate of the command frequency preliminarily for a case where the recovery to the normal state at the first restart fails due to the accidental step-out.
 図5には170ステップの異常時処理の詳細が示されている。300ステップで異常と判断した後、301ステップで現在の再始動実施回数を更新し、揮発性メモリ1005番地の記憶値に1を加え、302ステップでポンプを停止させる。303ステップで不揮発性メモリ7001番地に予め記憶しておいた故障信号の出力有無を選択するパラメータSLAを確認し、SLAが0に設定されている場合には306ステップで故障信号の出力なしとして306ステップに進む。SLAが1に設定されている場合には、304ステップで不揮発性メモリ7002番地に予め記憶しておいた故障信号を出力開始する異常検出回数ALEと、揮発性メモリ1005番地に記憶されている現在の再始動実施回数CNを比較し、ALEがCN以上である場合には305ステップで故障信号を出力する。ALEがCN未満である場合には306ステップで故障信号の出力なしとして307ステップに進む。 FIG. 5 shows details of 170-step abnormality processing. After determining the abnormality in step 300, the current number of restarts is updated in step 301, 1 is added to the stored value of the volatile memory 1005, and the pump is stopped in step 302. In step 303, a parameter SLA for selecting whether or not to output a failure signal stored in advance in the non-volatile memory 7001 is confirmed. If SLA is set to 0, no failure signal is output in step 306 and 306 is output. Proceed to step. If the SLA is set to 1, the abnormality detection count ALE that starts outputting the failure signal stored in advance in the nonvolatile memory 7002 in step 304, and the current stored in the volatile memory 1005 The restart execution times CN are compared, and if ALE is greater than or equal to CN, a failure signal is output in step 305. If ALE is less than CN, it is determined in step 306 that no failure signal is output, and the flow proceeds to step 307.
 307ステップで再始動の許可を確認する。再始動許可の条件は再始動実施回数や頻度、或いは機器の特性や使用用途によって変えるのが望ましい。不揮発性メモリ8001番地に予め記憶しておいた自動再始動の許可を選択するパラメータSLRを確認し、再始動を許可する場合は308ステップに進み、許可しない場合には309ステップに進みリセット指示の入力を待つ。308ステップで、異常の検出回数が1回以下の場合は、310ステップで不揮発性メモリ1011番地に予め記憶しておいた再始動時の指令周波数の増加率をD1に設定する。異常の検出回数が2回以上の場合は、311ステップで不揮発性メモリ1012番地に予め記憶しておいた再始動時の指令周波数の増加率をD2に設定する。 Confirm the restart permission in step 307. It is desirable to change the conditions for restart permission depending on the number and frequency of restarts, the characteristics of the equipment, and the intended use. The parameter SLR for selecting the automatic restart permission stored in advance in the non-volatile memory 8001 is confirmed. If the restart is permitted, the process proceeds to step 308. If not permitted, the process proceeds to step 309. Wait for input. In step 308, if the number of detected abnormalities is 1 or less, the increase rate of the command frequency at restart stored in advance in the non-volatile memory 1011 in step 310 is set to D1. When the number of times of abnormality detection is two or more, the increase rate of the command frequency at restart stored in advance in the nonvolatile memory 1012 at step 311 is set to D2.
 また、図5には記載しないが、自動再始動の許可上限回数RSEと、揮発性メモリ1005番地に記憶されている現在の再始動実施回数CNを比較し、RSEがCNを超過する場合には手動操作にてリセット指示してもよい。 Although not shown in FIG. 5, the upper limit number RSE of automatic restarts is compared with the current restart execution number CN stored in the volatile memory 1005, and when RSE exceeds CN, A reset instruction may be given manually.
 再始動許可の条件に頻度を加える場合には、異常を検出した時点で不揮発性メモリ2009番地に予め記憶しておいた異常頻度の確認用タイマTM2の設定値を、揮発性メモリ1004番地のタイマ2残り時間TN2に記憶し、TN2をカウントダウンする。TN2が0になる前に、再び異常を検出した場合には再起動を許可しないという条件を加えれば良い。例えばTN2を1時間と設定すれば、1時間以内に2回異常を検出した場合は、その原因は、偶発的な脱調ではなく、外部要因によるものと推定することができる。 When adding a frequency to the restart permission condition, the set value of the abnormality frequency confirmation timer TM2 stored in advance in the nonvolatile memory 2009 at the time of detecting the abnormality is set to the timer in the volatile memory 1004. 2 The remaining time is stored in TN2, and TN2 is counted down. If an abnormality is detected again before TN2 becomes 0, a condition that restart is not permitted may be added. For example, if TN2 is set to 1 hour, when an abnormality is detected twice within 1 hour, it can be estimated that the cause is not an accidental step-out, but an external factor.
 図6には自動給水装置で給水圧力一定となるよう自動運転する場合の本発明の制御フローが示されている。 FIG. 6 shows a control flow of the present invention when the automatic operation is performed so that the supply water pressure is constant by the automatic water supply device.
 100ステップにおいて吐出側圧力の低下を検出すると101ステップにおいて運転を開始した後、102ステップで指定した速度に到達する。104ステップで脱調判定機能の選択確認処理を行なう。脱調判定機能の選択が確認された場合は、130ステップで現在の吐出側圧力が不揮発性メモリ9001番地に予め記憶しておいた目標圧力HSより高いか判断する。現在の吐出側圧力が目標圧力HSより高い場合には131ステップで減速の指示を行なう。減速の指示が行なわれると132ステップで出力周波数を変更する。逆に現在の吐出側圧力が目標圧力HSより低い場合には133ステップで加速の指示を行なう。加速の指示が行なわれると、135ステップで出力周波数を変更する。 When a decrease in the discharge side pressure is detected in step 100, operation starts in step 101, and then the speed specified in step 102 is reached. In step 104, step-out determination function selection confirmation processing is performed. If the selection of the step-out determination function is confirmed, it is determined in step 130 whether the current discharge-side pressure is higher than the target pressure HS stored in advance in the nonvolatile memory 9001. If the current discharge-side pressure is higher than the target pressure HS, a deceleration instruction is issued in 131 steps. When an instruction for deceleration is given, the output frequency is changed in 132 steps. Conversely, if the current discharge-side pressure is lower than the target pressure HS, an acceleration instruction is given in step 133. When acceleration is instructed, the output frequency is changed in 135 steps.
 次に、105ステップで不揮発性メモリ2008番地に予め記憶しておいた脱調判定の周期用タイマTM1の設定値を、揮発性メモリ1003番地のタイマ1残り時間TN1に記憶し、TN1のカウントダウンを開始する。109ステップでTN1のカウントダウンの終了を確認した後に、134ステップで現在の吐出側圧力HNを保存し、142ステップでHNと目標圧力HSの差がHDG未満であるか否か判断する。 Next, the setting value of the step-out determination cycle timer TM1 stored in advance in the non-volatile memory 2008 at step 105 is stored in the timer 1 remaining time TN1 of the volatile memory 1003, and the countdown of TN1 is performed. Start. After confirming the end of the countdown of TN1 in step 109, the current discharge side pressure HN is stored in step 134, and it is determined in step 142 whether the difference between HN and the target pressure HS is less than HDG.
 吐出側圧力HNとHSの差がHDG未満である場合は、160ステップで正常と判断して、165ステップで揮発性メモリ1005番地の再起動実施回数CNを0にする。そして130ステップに戻る。 When the difference between the discharge side pressures HN and HS is less than HDG, it is judged normal at 160 steps, and the restart execution count CN of the volatile memory 1005 is set to 0 at 165 steps. Then, the process returns to step 130.
 吐出側圧力とHSの差が、HDG以上の場合には脱調の可能性ありと判断し、170ステップの異常時処理を行ない、再始動処理が行なわれた後に、180ステップでポンプを再始動させ、130ステップに戻る。 If the difference between the discharge side pressure and HS is greater than or equal to HDG, it is determined that there is a possibility of a step-out, and the process at the time of abnormality in 170 steps is performed. And return to step 130.
 170ステップの異常時処理はポンプを一定の速度(一定の回転数、一定周波数)で運転する場合と同様の制御フロー(図5)となるため、説明を割愛する。 Since the process at the time of abnormality in 170 steps is the same control flow (FIG. 5) as when the pump is operated at a constant speed (a constant rotation speed and a constant frequency), the description is omitted.
 本発明の第2の実施形態は、ポンプ駆動中の同期電動機において、ポンプ2次側圧力の変化と負荷電流値の変化により脱調を検出するものである。 In the second embodiment of the present invention, in a synchronous motor that is driving a pump, a step-out is detected by a change in the pump secondary pressure and a change in the load current value.
 ポンプ2次側圧力が低下した場合に、ポンプ負荷電流値が一定値を超えない場合には脱調している可能性があると判断し、電動機を再起動することで再び正常な運転を開始する。構造は第1の実施形態と同じく図1、図2の構成となる。 When the pump secondary pressure drops, if the pump load current value does not exceed a certain value, it is judged that there is a possibility of step-out, and normal operation is resumed by restarting the motor. To do. The structure is the same as that of the first embodiment shown in FIGS.
 図3には記憶部に記憶する、揮発性メモリの内容と不揮発性メモリの内容を示す。 メモリの内容は第1の実施形態と同様であるが、本実施形態においては、1002番地には脱調判定を開始する際のポンプ2次側の負荷電流値ANを記録する。 FIG. 3 shows the contents of the volatile memory and the nonvolatile memory stored in the storage unit. The contents of the memory are the same as in the first embodiment, but in this embodiment, the load current value AN on the secondary side of the pump when starting the step-out determination is recorded at address 1002.
 図7にはポンプを一定の速度(一定の回転数、一定周波数)で運転する場合の本実施形態の制御フローが示されている。 FIG. 7 shows a control flow of this embodiment when the pump is operated at a constant speed (a constant rotation speed and a constant frequency).
 101ステップにおいて運転を開始する。102ステップで指定した速度に到達した後、103ステップで当初の吐出側圧力Hmを揮発性メモリの1010番地に保存する。104ステップで脱調判定機能の選択確認処理を行なう。脱調判定機能が選択されている場合は、105ステップでタイマのカウントを開始する。109ステップでタイマカウントが終了したことを確認し、ステップ106で現在の吐出側圧力を揮発性メモリ1001番地にHNとして記憶する。さらに107ステップで現在の負荷電流値を揮発性メモリ1002番地にANとして記憶する。 Start operation in step 101. After reaching the speed specified in step 102, the original discharge-side pressure Hm is stored in address 1010 of the volatile memory in step 103. In step 104, step-out determination function selection confirmation processing is performed. When the step-out determination function is selected, the timer starts counting in 105 steps. In step 109, it is confirmed that the timer count has ended. In step 106, the current discharge-side pressure is stored as HN in the volatile memory 1001. In step 107, the current load current value is stored as AN in the volatile memory 1002.
 図13に示すように、脱調している状態においても電動機には誘起電圧分の電流が流れ、正常回転状態での値とほぼ同等の電流が流れる。脱調が発生すると、ポンプが揚水する能力が失われるため、ポンプの吐出側圧力は大きく低下するが、負荷電流値は大きく変わらない。 As shown in FIG. 13, even in a step-out state, a current corresponding to the induced voltage flows through the motor, and a current substantially equal to the value in the normal rotation state flows. When step-out occurs, the pump's ability to pump water is lost, so that the discharge side pressure of the pump greatly decreases, but the load current value does not change significantly.
 図14に一般的なポンプ特性が示されている。ある任意の周波数HzNで運転している場合、吐き出し流量Qaにおいて吐出側圧力はHaとなり、負荷電流値はAaとなる。ここで、吐き出し流量がQaからQbに増加した場合、吐出側圧力はHbに減り、負荷電流値はAbに増加する。吐出側圧力が減少すると、負荷電流値は増加するという関係が読み取れる。 Fig. 14 shows general pump characteristics. When operating at an arbitrary frequency HzN, the discharge-side pressure is Ha and the load current value is Aa at the discharge flow rate Qa. Here, when the discharge flow rate increases from Qa to Qb, the discharge side pressure decreases to Hb, and the load current value increases to Ab. It can be seen that the load current value increases as the discharge side pressure decreases.
 よって、143ステップでHN-HmがHDG以上である場合、160ステップで正常と判断して、105ステップに戻る。 Therefore, if HN-Hm is greater than or equal to HDG in step 143, it is determined normal in step 160 and the process returns to step 105.
 HN-HmがHDG未満である場合は、144ステップで現在の負荷電流値がAN+ADG以上であるか判断し、AN+ADG以上である場合には161ステップで正常と判断して、105ステップに戻る。 If HN−Hm is less than HDG, it is determined whether the current load current value is greater than AN + ADG in 144 steps, and if it is greater than AN + ADG, it is determined normal in 161 steps, and the process returns to 105 steps.
 AN+ADG未満である場合には脱調と判断し、170ステップの異常時処理を行ない、再始動処理が行なわれた後に、180ステップでポンプを再始動させ、105ステップに戻る。図13の状態において、脱調であることを早く検出し、再始動を早く行うことで、圧力が大きく低下する前に、正常な状態へ復帰することができる。これにより、脱調による給水への影響を最小限にすることができる。170ステップの異常時処理は、第1の実施形態と同様であり図5に示される。 If it is less than AN + ADG, it is determined that the step is out of step, the process at the time of abnormality of 170 steps is performed, the restart process is performed, the pump is restarted at 180 steps, and the process returns to 105 steps. In the state of FIG. 13, it is possible to return to a normal state before the pressure is greatly reduced by detecting that it is out of step and performing the restart earlier. Thereby, the influence on water supply by step-out can be minimized. The abnormality process in 170 steps is the same as that in the first embodiment and is shown in FIG.
 図8には自動給水装置で給水圧力一定となるよう自動運転する場合の本発明の制御フローが示されている。 FIG. 8 shows a control flow of the present invention in the case where automatic operation is performed so that the supply water pressure becomes constant by the automatic water supply apparatus.
 100ステップにおいて吐出側圧力の低下を検出すると101ステップにおいて運転を開始する。103ステップで指定した速度に到達した後、104ステップで脱調判定機能の選択確認処理を行なう。脱調判定機能の選択確認処理の後、107ステップで現在の負荷電流値を揮発性メモリ1002番地にANとして記憶する。130ステップで吐出側圧力が不揮発性メモリ9001番地に予め記憶しておいた目標圧力HSより高いか判断する。吐出側圧力が目標圧力HSより高い場合には131ステップで減速の指示を行なう。減速の指示が行なわれると132ステップで出力周波数を変更する。逆に吐出側圧力が目標圧力HSより低い場合には133ステップで加速の指示を行なう。加速の指示が行なわれると、134ステップで現在の吐出側圧力を揮発性メモリ1001番地にHNとして記憶した後、135ステップで出力周波数を変更する。 When a decrease in discharge side pressure is detected in step 100, operation starts in step 101. After reaching the speed specified in step 103, step-out determination function selection confirmation processing is performed in step 104. After the step-out determination function selection confirmation process, the current load current value is stored as AN in the volatile memory 1002 at step 107. In step 130, it is determined whether the discharge side pressure is higher than the target pressure HS stored in advance in the nonvolatile memory 9001. When the discharge side pressure is higher than the target pressure HS, a deceleration instruction is issued in 131 steps. When an instruction for deceleration is given, the output frequency is changed in 132 steps. On the other hand, if the discharge side pressure is lower than the target pressure HS, the acceleration is instructed in step 133. When acceleration is instructed, the current discharge-side pressure is stored as HN in the volatile memory 1001 at 134 steps, and then the output frequency is changed at 135 steps.
 指示した速度に到達した場合は、143ステップに進む。以下、143ステップ以降は、ポンプを一定の速度(一定の回転数、一定周波数)で運転する場合(図7)と同様の制御フローとなるため、説明を割愛する。 If the specified speed is reached, go to step 143. Hereinafter, since the control flow is the same as that in the case of operating the pump at a constant speed (a constant rotation speed, a constant frequency) (FIG. 7) after Step 143, the description is omitted.
 第2の実施形態では、吐出側圧力と負荷電流値を組み合せることによって、より正確に脱調の検出が可能となる。 In the second embodiment, the step-out can be detected more accurately by combining the discharge side pressure and the load current value.
 次に本発明の第3の実施形態について説明する。第3の実施形態では、ポンプの特性データを記憶部に記憶しておき、ポンプ運転中の運転周波数(指令周波数)における吐出側圧力、または負荷電流値が、特性データより算出された値と一致するか否かを比較することにより脱調を検出するものである。 Next, a third embodiment of the present invention will be described. In the third embodiment, the pump characteristic data is stored in the storage unit, and the discharge side pressure or the load current value at the operation frequency (command frequency) during the pump operation matches the value calculated from the characteristic data. A step-out is detected by comparing whether or not to do so.
 ポンプの特性データより算出された吐出側圧力と検出された吐出側圧力、またはポンプの特性データより算出された負荷電流値と検出された負荷電流値の差が判定基準値を超過する場合には異常と判断し、電動機を再始動することで再び正常な運転を開始する。 When the discharge side pressure calculated from the pump characteristic data and the detected discharge side pressure, or the difference between the load current value calculated from the pump characteristic data and the detected load current value exceeds the criterion value It is determined that there is an abnormality, and normal operation is started again by restarting the motor.
 まず、構造は第1の実施形態と同じく図1、図2の構成となる。図3には記憶部に記憶する、揮発性メモリの内容と不揮発性メモリの内容を示す。 First, the structure is the same as that of the first embodiment shown in FIGS. FIG. 3 shows the contents of the volatile memory and the nonvolatile memory stored in the storage unit.
 揮発性メモリの1006番地にはポンプ特性計算処理によって求めた計算上の吐出側圧力HCを記憶する。同じように1007番地にはポンプ特性計算処理によって求めた計算上の負荷電流値ACを記憶する。1008番地にはポンプ特性計算処理によって求めた計算上の流量QCを記憶する。1009番地にはポンプ特性計算処理で求めた結果と実際の検出値の差が判定基準値以内であるか否かを判断して結果を記憶する。算出値と検出値が一致する場合は0を記憶し、算出値と検出値が一致しない場合には1を記憶する。 The calculated discharge side pressure HC obtained by the pump characteristic calculation process is stored at address 1006 of the volatile memory. Similarly, the calculated load current value AC obtained by the pump characteristic calculation process is stored at address 1007. The calculated flow rate QC obtained by the pump characteristic calculation process is stored at address 1008. At address 1009, it is determined whether or not the difference between the result obtained by the pump characteristic calculation process and the actual detection value is within the determination reference value, and the result is stored. If the calculated value and the detected value match, 0 is stored, and if the calculated value and the detected value do not match, 1 is stored.
 不揮発性メモリの3100番地から3215番地にはポンプ特性データを記録する。ポンプのある任意の周波数(3115番地に記録)での運転における測定点1における揚程(3100番地に記録)、流量(3101番地に記録)、電流(3102番地に記録)、測定点2における揚程(3103番地に記録)、流量(3104番地に記録)、電流(3105番地に記録)、と同様に測定点3、測定点4における揚程、流量、電流、測定点5における揚程(3112番地に記録)、流量(3113番地に記録)、電流(3114番地に記録)、を予め不揮発性メモリに記憶する。3100番地から3215番地に記憶するポンプ特性データの関係を図に示すと図15の通りとなる。 The pump characteristic data is recorded at addresses 3100 to 3215 of the nonvolatile memory. Pump at measurement point 1 (recorded at 3100), flow rate (recorded at 3101), current (recorded at 3102), head at measurement point 2 (recorded at 3101) in operation at an arbitrary frequency of the pump (recorded at 3115) 3120), flow rate (recorded at 3104 address), current (recorded at 3105 address), and lift at measurement point 3, measurement point 4, flow rate, current, lift at measurement point 5 (recorded at address 3112) , The flow rate (recorded at address 3113) and the current (recorded at address 3114) are stored in advance in a nonvolatile memory. FIG. 15 shows the relationship between the pump characteristic data stored in addresses 3100 to 3215.
 ポンプ特性データは1組でも良いが、ポンプ特性計算処理において現在の周波数と予め記録されたポンプ特性データの周波数は近い方が良いため、他の周波数(3215番地に記録)での測定点1~5における揚程、流量、電流を記憶するとより良い。周波数は2つではなく、3つ以上の周波数とそれに対応するデータを保存するとさらに良いことは言うまでもない。 One set of pump characteristic data may be used, but since it is better that the current frequency and the frequency of the pump characteristic data recorded in advance are closer in the pump characteristic calculation process, measurement points 1 to 4 at other frequencies (recorded at 3215) It is better to store the head, flow rate, and current at 5. Needless to say, it is better to store three or more frequencies and corresponding data instead of two frequencies.
 その他の使用する揮発性メモリ、不揮発性メモリの内容は第1、第2の実施形態と同様であるため、説明を割愛する。 Other contents of the volatile memory and the non-volatile memory to be used are the same as those in the first and second embodiments, and the description thereof will be omitted.
 図9には自動給水装置で給水圧力一定となるよう自動運転する場合の本発明の制御フローが示されている。 FIG. 9 shows a control flow of the present invention in the case where automatic operation is performed so that the supply water pressure becomes constant by the automatic water supply apparatus.
 100ステップにおいて吐出側圧力の低下を検出すると101ステップにおいて運転を開始する。103ステップで指定した速度に到達した後、104ステップで脱調判定機能の選択確認処理を行なう。その後、130ステップで吐出側圧力が不揮発性メモリ9001番地に予め記憶しておいた目標圧力HSより高いか判断する。吐出側圧力が目標圧力HSより高い場合には131ステップで減速の指示を行なう。減速の指示が行なわれると132ステップで出力周波数を変更する。逆に吐出側圧力が目標圧力HSより低い場合には133ステップで加速の指示を行なう。加速の指示が行なわれると135ステップで出力周波数を変更する。 When a decrease in discharge side pressure is detected in step 100, operation starts in step 101. After reaching the speed specified in step 103, step-out determination function selection confirmation processing is performed in step 104. Thereafter, in step 130, it is determined whether the discharge side pressure is higher than the target pressure HS stored in advance in the nonvolatile memory 9001. When the discharge side pressure is higher than the target pressure HS, a deceleration instruction is issued in 131 steps. When an instruction for deceleration is given, the output frequency is changed in 132 steps. On the other hand, if the discharge side pressure is lower than the target pressure HS, the acceleration is instructed in step 133. When acceleration is instructed, the output frequency is changed in 135 steps.
 151ステップで現在の吐出側圧力を揮発性メモリ1001番地にHNとして記憶した後、152ステップで現在の負荷電流値を揮発性メモリ1002番地にANとして記憶する。153ステップで現在の指令周波数を揮発性メモリ1000番地にHzNとして記憶した後、154ステップでポンプ特性計算処理を行なう。 In step 151, the current discharge side pressure is stored as HN in the volatile memory 1001, and in step 152, the current load current value is stored as AN in the volatile memory 1002. After the current command frequency is stored as HzN in the volatile memory 1000 at step 153, pump characteristic calculation processing is performed at step 154.
 155ステップで現在の出力(検出値)と計算結果(算出値)が一致するか判断する。一致する場合(揮発性メモリ1009番地に記憶された値CSが0である場合)は160ステップで正常と判断して、103ステップに戻る。現在の出力(検出値)と計算結果(算出値)が一致しない場合(CSが1である場合)は、脱調と判断し、170ステップの異常時処理を行ない、再始動処理が行なわれた後に、180ステップでポンプを再始動させ、103ステップに戻る。 In step 155, it is determined whether the current output (detected value) matches the calculation result (calculated value). If they match (when the value CS stored in the volatile memory 1009 is 0), it is determined to be normal in 160 steps, and the process returns to 103 steps. If the current output (detected value) and the calculation result (calculated value) do not match (when CS is 1), it is determined that the step is out, 170-step abnormality processing is performed, and restart processing is performed. Later, the pump is restarted in 180 steps and the process returns to 103 steps.
 170ステップの異常時処理はこれまでと同様であるため、説明を割愛する。 Since the processing at the time of abnormality in 170 steps is the same as before, the explanation is omitted.
 図10には154ステップのポンプ特性計算処理の詳細(例1)が示されている。 FIG. 10 shows details (example 1) of the pump characteristic calculation process of 154 steps.
 400ステップで揮発性メモリ1000番地からHzNを、1001番地からHNを、1002番地からANを読み出す。 In 400 steps, HzN is read from the volatile memory address 1000, HN is read from the address 1001, and AN is read from the address 1002.
 詳細は後に記述するが、401ステップでHzNと不揮発性メモリ3100番地から3215番地に予め記録されている特性データから、現在の指令周波数HzNにおけるポンプ特性カーブを算出する。 Although details will be described later, in step 401, the pump characteristic curve at the current command frequency HzN is calculated from HzN and the characteristic data recorded in advance at addresses 3100 to 3215 of the nonvolatile memory.
 411ステップで算出したポンプ特性カーブと現在の吐出側圧力HNから、現在の流量QCを算出する。412ステップで算出した流量QCと現在の指令周波数HzNから、その流量QCにおける計算上の負荷電流値ACを求める。413ステップで、現在の負荷電流値ANと、計算上の負荷電流値ACの差が、不揮発性メモリ2002番地に予め保存したADGより小さいか確認し、ANとACの差がADG以内である場合には431ステップで現在の出力は計算結果と一致しているとし、揮発性メモリ1009番地の計算結果との比較CSに0を記憶する。ANとACの差がADGを超える場合には、432ステップで現在の出力と計算結果は不一致であるとし、CSに1を記憶する。処理終了後に155ステップに進む。 The current flow rate QC is calculated from the pump characteristic curve calculated in step 411 and the current discharge side pressure HN. From the flow rate QC calculated in step 412 and the current command frequency HzN, a calculated load current value AC at the flow rate QC is obtained. In step 413, it is confirmed whether the difference between the current load current value AN and the calculated load current value AC is smaller than the ADG stored in advance in the non-volatile memory 2002, and the difference between AN and AC is within ADG In step 431, the current output coincides with the calculation result, and 0 is stored in the comparison CS with the calculation result of the volatile memory 1009. If the difference between AN and AC exceeds ADG, the current output and the calculation result do not match at step 432, and 1 is stored in CS. Proceed to step 155 after the process is completed.
 図11には154ステップのポンプ特性計算処理の他の例(例2)が示されている。
図10(例1)では411ステップで吐出側圧力から流量QCを算出し、412ステップで負荷電流値ACを算出し、413ステップで現在の負荷電流値ANと、計算上の負荷電流値ACを比較する。
それに対し、図11(例2)では421ステップで負荷電流値から流量QCを算出し、422ステップで吐出側圧力HCを算出し、413ステップで現在の吐出側圧力HNと、計算上の吐出側圧力HCを比較する。
FIG. 11 shows another example (Example 2) of the pump characteristic calculation process of 154 steps.
In FIG. 10 (example 1), the flow rate QC is calculated from the discharge side pressure in step 411, the load current value AC is calculated in step 412, the current load current value AN and the calculated load current value AC are calculated in step 413. Compare.
In contrast, in FIG. 11 (example 2), the flow rate QC is calculated from the load current value in step 421, the discharge side pressure HC is calculated in step 422, the current discharge side pressure HN in step 413, and the calculated discharge side. Compare the pressure HC.
 ポンプ特性計算処理について、さらに詳しく説明する。記憶部に予め記録された各々の周波数における流量と吐出側圧力、負荷電流値と現在の吐出側圧力HNまたは負荷電流値ANから現在のポンプ運転状態を計算する。 The pump characteristic calculation process will be described in more detail. The current pump operation state is calculated from the flow rate, discharge side pressure, load current value, current discharge side pressure HN or load current value AN at each frequency recorded in advance in the storage unit.
 まず、現在の指令周波数HzNと一致する周波数のポンプ特性データが存在するか確認する。存在しない場合には指令周波数HzNに最も近い周波数における性能データよりポンプ性能の近似計算を行なう(図10または図11の400ステップに該当)。ポンプ性能は周波数に対して流量は1次関数で比例し、吐出側圧力は2次関数で比例し、電流値は3次関数で比例する。これより指令周波数HzNに近い予め記憶された周波数のポンプ特性の各データより相似則で現在の指令周波数HzNにおける運転時のポンプ特性データを算出する。 First, check whether there is pump characteristic data with a frequency that matches the current command frequency HzN. If it does not exist, an approximate calculation of the pump performance is performed from the performance data at the frequency closest to the command frequency HzN (corresponding to step 400 in FIG. 10 or FIG. 11). In the pump performance, the flow rate is proportional to the frequency by a linear function, the discharge side pressure is proportional to the quadratic function, and the current value is proportional to the cubic function. From this, pump characteristic data during operation at the current command frequency HzN is calculated from the data of the pump characteristics having a frequency stored in advance close to the command frequency HzN according to a similarity rule.
 まず式1、式2、式3より相似則計算に用いる係数FC1、FC2、FC3を
  FC1=(F1÷FC)      ・・・式1
  FC2=(F1÷FC)     ・・・式2
  FC3=(F1÷FC)     ・・・式3
と求める。
First, the coefficients FC1, FC2, and FC3 used in the similarity law calculation from Equation 1, Equation 2, and Equation 3 are as follows: FC1 = (F1 ÷ FC) Equation 1
FC2 = (F1 ÷ FC) 2 Formula 2
FC3 = (F1 ÷ FC) 3 Equation 3
I ask.
 例えば現在の指令周波数HzNに対して最も近い周波数データが3115番地に記録されたHz1であれば、周波数Hz1で測定した揚程に関する性能データH11、H12、H13、H14、H15(3100、3103、…、3112番地に記録されている)に、それぞれFC1を乗じてHC1、HC2、HC3、HC4、HC5とする。同様に、流量に関する性能データQ11、Q12、Q13、Q14、Q15(3101、3104、…、3113番地に記録されている)に、それぞれFC2を乗じてQC1、QC2、QC3、QC4、QC5とする。さらに、電流に関する性能データA11、A12、A13、A14、A15(3102、3105、…、3114番地に記録されている)に、それぞれFC3を乗じてAC1、AC2、AC3、AC4、AC5とする。 For example, if the frequency data closest to the current command frequency HzN is Hz1 recorded at address 3115, the performance data H11, H12, H13, H14, H15 (3100, 3103,... (Recorded at address 3112) is multiplied by FC1 to obtain HC1, HC2, HC3, HC4, and HC5. Similarly, the flow rate performance data Q11, Q12, Q13, Q14, Q15 (recorded at addresses 3101, 3104,..., 3113) are respectively multiplied by FC2 to obtain QC1, QC2, QC3, QC4, and QC5. Further, the performance data A11, A12, A13, A14, A15 (recorded at addresses 3102, 3105,..., 3114) related to current are respectively multiplied by FC3 to be AC1, AC2, AC3, AC4, and AC5.
 近似は、例えばニュートンの補完法や、ラグランジュの補完多項式より求められる。ニュートンの補間法を用いた場合、吐き出し流量に対する吐出側圧力の特性曲線:QHカーブ(Hi(Qi))は、
C0  = HC1
C1  =(HC2 - HC1)÷(QC2-QC1)
C2’ =(HC3 - HC1)÷(QC3-QC1)
C2  =(C2’ - HC2)÷(QC3-QC2)
C3’’ =(HC4 - HC1)÷(QC4-QC1)
C3’ =(C3’’- HC2)÷(QC4-QC2)
C3  =(C3’ - HC3)÷(QC4-QC3)
C4’’’=(HC5 - HC1)÷(QC5-QC1)
C4’’ =(C4’’’-HC2)÷(QC5-QC2)
C4’ =(C4’’- HC3)÷(QC5-QC3)
C4  =(C4’ - HC4)÷(QC5-QC4)
とすると、
  Hi(Qi)
  =C0
  +C1×(Qi-QC1)
  +C2×(Qi-QC1)×(Qi-QN2)
  +C3×(Qi-QC1)×(Qi-QN2)×(Qi-QC3)
  +C4×(Qi-QC1)×(Qi-QC2)×(Qi-QC3)×(Qi-QC4)
                       ・・・式4
と求められる。
The approximation is obtained, for example, from Newton's interpolation method or Lagrange's interpolation polynomial. When Newton's interpolation method is used, the characteristic curve of the discharge side pressure with respect to the discharge flow rate: QH curve (Hi (Qi))
C0 = HC1
C1 = (HC2-HC1) ÷ (QC2-QC1)
C2 '= (HC3-HC1) / (QC3-QC1)
C2 = (C2′−HC2) ÷ (QC3-QC2)
C3 ″ = (HC4−HC1) ÷ (QC4-QC1)
C3 ′ = (C3 ″ −HC2) ÷ (QC4-QC2)
C3 = (C3′−HC3) ÷ (QC4-QC3)
C4 ′ ″ = (HC5−HC1) ÷ (QC5-QC1)
C4 ″ = (C4 ′ ″ − HC2) ÷ (QC5-QC2)
C4 ′ = (C4 ″ −HC3) ÷ (QC5-QC3)
C4 = (C4′−HC4) ÷ (QC5-QC4)
Then,
Hi (Qi)
= C0
+ C1 x (Qi-QC1)
+ C2 × (Qi−QC1) × (Qi−QN2)
+ C3 × (Qi−QC1) × (Qi−QN2) × (Qi−QC3)
+ C4 × (Qi−QC1) × (Qi−QC2) × (Qi−QC3) × (Qi−QC4)
... Formula 4
Is required.
 同様に吐き出し流量に対する負荷電流値の特性曲線:QAカーブ(Ai(Qi))は、
C5  = AC1
C6  =(AC2 - AC1)÷(QC2-QC1)
C7’ =(AC3 - AC1)÷(QC3-QC1)
C7  =(C7’ - AC2)÷(QC3-QC2)
C8’’ =(AC4 - AC1)÷(QC4-QC1)
C8’ =(C8’’- AC2)÷(QC4-QC2)
C8  =(C8’ - AC3)÷(QC4-QC3)
C9’’’=(AC5 - AC1)÷(QC5-QC1)
C9’’ =(C9’’’-AC2)÷(QC5-QC2)
C9’ =(C9’’- AC3)÷(QC5-QC3)
C9  =(C9’ - AC4)÷(QC5-QC4)
とすると、
  Ai(Qi)
  =C5
  +C6×(Qi-QC1)
  +C7×(Qi-QC1)×(Qi-QN2)
  +C8×(Qi-QC1)×(Qi-QN2)×(Qi-QC3)
  +C9×(Qi-QC1)×(Qi-QC2)×(Qi-QC3)×(Qi-QC4)
                       ・・・式5
と求められる(式4が図10の401ステップ、式5が図11の401ステップに該当する)。QHカーブ(Hi(Qi))と、QAカーブ(Ai(Qi))を図に示すと図16のようになる。
Similarly, the characteristic curve of the load current value with respect to the discharge flow rate: QA curve (Ai (Qi))
C5 = AC1
C6 = (AC2-AC1) / (QC2-QC1)
C7 '= (AC3-AC1) / (QC3-QC1)
C7 = (C7′−AC2) ÷ (QC3-QC2)
C8 ″ = (AC4−AC1) ÷ (QC4-QC1)
C8 ′ = (C8 ″ −AC2) ÷ (QC4-QC2)
C8 = (C8′−AC3) ÷ (QC4-QC3)
C9 ′ ″ = (AC5-AC1) ÷ (QC5-QC1)
C9 ″ = (C9 ′ ″ − AC2) ÷ (QC5-QC2)
C9 ′ = (C9 ″ −AC3) ÷ (QC5-QC3)
C9 = (C9′−AC4) ÷ (QC5-QC4)
Then,
Ai (Qi)
= C5
+ C6 x (Qi-QC1)
+ C7 × (Qi−QC1) × (Qi−QN2)
+ C8 × (Qi−QC1) × (Qi−QN2) × (Qi−QC3)
+ C9 × (Qi−QC1) × (Qi−QC2) × (Qi−QC3) × (Qi−QC4)
... Formula 5
(Equation 4 corresponds to step 401 in FIG. 10 and equation 5 corresponds to step 401 in FIG. 11). FIG. 16 shows the QH curve (Hi (Qi)) and the QA curve (Ai (Qi)).
 4次式の解法は困難である為、例えば代入法を用い、式5より指令周波数HzNにおいて負荷電流値がACである場合の流量QCが求められ(図11の421ステップに該当する)、また、式4より指令周波数HzNにおいて流量がQCである場合の吐出側圧力HCを得られる(図11の422ステップに該当する)。 Since the solution of the quartic equation is difficult, for example, using the substitution method, the flow rate QC when the load current value is AC at the command frequency HzN is obtained from Equation 5 (corresponding to step 421 in FIG. 11). From Equation 4, the discharge-side pressure HC when the flow rate is QC at the command frequency HzN can be obtained (corresponding to step 422 in FIG. 11).
 このように指令周波数HzNに最も近いポンプ特性データよりQHカーブ、QAカーブを近似で求めることから、予め測定し、記憶しておくポンプ特性データは周波数毎に5点ほどある事が望ましい。 Thus, since the QH curve and QA curve are obtained by approximation from the pump characteristic data closest to the command frequency HzN, it is desirable that there are about five pump characteristic data to be measured and stored in advance for each frequency.
 前述の通り、予め測定し、記憶しておくポンプ特性データの周波数は1つであっても構わないが、QHカーブ、QAカーブはポンプの相似則に完全には一致しないため、複数の運転周波数における特性データを保存し、その特性データの中から現在の運転周波数に最も近いデータを選択し、前述の特性データ計算処理を行なうことで、QHカーブ、QAカーブをより正確に求め、結果として現在のポンプ運転状態を正確に把握することができる。 As described above, the frequency of the pump characteristic data that is measured and stored in advance may be one. However, since the QH curve and the QA curve do not completely match the pump similarity law, a plurality of operating frequencies are used. Save the characteristic data in, select the data closest to the current operating frequency from the characteristic data, perform the above-mentioned characteristic data calculation process, more accurately determine the QH curve and QA curve, as a result It is possible to accurately grasp the pump operating state.
 第1及び第2の実施形態では、予めポンプ特性データを記憶する必要がないため簡易であり、運転中での変化に基づいて脱調判定を行なうため、経年劣化によるポンプの特性の変化にも影響されることがない点で優れているが、第3の実施形態では、上記のように予め測定し、記憶したポンプ特性データと実際の運転状態を比較することにより、正確に短時間で異常を検出することができる点で優れている。 In the first and second embodiments, since it is not necessary to store pump characteristic data in advance, it is simple, and the step-out determination is performed based on the change during operation. Although superior in that it is not affected, in the third embodiment, abnormalities can be accurately detected in a short time by comparing the actual measured operating state with the pump characteristic data measured and stored in advance as described above. Is superior in that it can be detected.

Claims (8)

  1. ポンプケーシング内に設けられた羽根車を有するポンプ部と、
    前記羽根車を回転駆動する同期電動機と、
    前記同期電動機を制御するインバータと、を有するポンプシステムであって、
    前記インバータは、
    前記ポンプ部の吐き出し側に設けられた水圧を検出する圧力検出手段からの信号を入力する信号入力部と、
    前記同期電動機の回転数を決定する演算処理部と、
    前記演算処理部で行なう演算に必要な制御パラメータを記憶する記憶部と、
    前記同期電動機に駆動電流を供給する電力変換装部と、
    を有し、
    前記演算処理部は、前記圧力検出手段からの信号により、所定値以上の圧力の変化を検出したときに、前記同期電動機を停止し、再始動する処理を行い、1回目の再始動で前記同期電動機が正常に起動しない場合は、前記1回目の再始動時の前記同期電動機の回転数の増加率とは異なる増加率により第2回目の再始動を行うことを特徴とするポンプシステム。
    A pump unit having an impeller provided in the pump casing;
    A synchronous motor for rotationally driving the impeller;
    An inverter that controls the synchronous motor, and a pump system comprising:
    The inverter is
    A signal input unit for inputting a signal from a pressure detection means for detecting a water pressure provided on the discharge side of the pump unit;
    An arithmetic processing unit for determining the rotational speed of the synchronous motor;
    A storage unit for storing control parameters necessary for the calculation performed by the calculation processing unit;
    A power converter that supplies a driving current to the synchronous motor;
    Have
    The arithmetic processing unit performs a process of stopping and restarting the synchronous motor when a change in pressure of a predetermined value or more is detected by a signal from the pressure detection unit, and the synchronization is performed at a first restart. A pump system characterized in that, when the electric motor does not start normally, the second restart is performed at an increase rate different from the increase rate of the rotational speed of the synchronous motor at the first restart.
  2. 請求項1記載のポンプシステムにおいて、
    前記演算処理部において、所定値以上の圧力の変化を検出し、前記同期電動機を再起動した後、第1回目の再始動において、圧力検出手段の検出値が正常範囲に戻った場合に、圧力の変化の原因を脱調と判断し脱調を示す信号を外部に出力することを特徴とするポンプシステム。
    The pump system according to claim 1, wherein
    In the arithmetic processing unit, after detecting a change in pressure of a predetermined value or more and restarting the synchronous motor, in the first restart, when the detection value of the pressure detection means returns to the normal range, the pressure A pump system characterized in that the cause of the change is a step-out and a signal indicating the step-out is output to the outside.
  3. 請求項1記載のポンプシステムにおいて、
    前記演算処理部は、前記圧力検出手段からの信号により、所定値以上の圧力の低下を検出し、かつ負荷電流値が所定値以下であるときに、前記同期電動機を停止し、再始動する処理を行い、1回目の再始動で前記同期電動機が正常に起動しない場合は、前記1回目の再始動時の前記同期電動機の回転数の増加率とは異なる増加率により第2回目の再始動を行うことを特徴とするポンプシステム。
    The pump system according to claim 1, wherein
    The arithmetic processing unit detects a pressure drop equal to or greater than a predetermined value based on a signal from the pressure detection means, and stops and restarts the synchronous motor when the load current value is equal to or less than a predetermined value. If the synchronous motor does not start normally after the first restart, the second restart is performed at an increase rate different from the increase rate of the synchronous motor speed at the first restart. A pump system characterized by performing.
  4. 請求項1記載のポンプシステムにおいて、
    前記演算処理部は、再始動した回数が所定回数を超えた場合に、故障信号を出力すること
    を特徴とするポンプシステム。
    The pump system according to claim 1, wherein
    The arithmetic processing unit outputs a failure signal when the number of restarts exceeds a predetermined number.
  5. 請求項1記載のポンプシステムにおいて、
    前記1回目の再始動時の前記同期電動機の回転数の増加率は、第2回目の再始動時の前記同期電動機の回転数の増加率より小さいことを特徴とする。
    The pump system according to claim 1, wherein
    The increase rate of the rotation speed of the synchronous motor at the first restart is smaller than the increase rate of the rotation speed of the synchronous motor at the second restart.
  6. ポンプケーシング内に設けられた羽根車を有するポンプ部と、
    前記羽根車を回転駆動する同期電動機と、
    前記同期電動機を制御するインバータと、を有するポンプシステムであって、
    前記インバータは、
    前記ポンプ部の吐き出し側に設けられた水圧を検出する圧力検出手段からの信号を入力する信号入力部と、
    前記同期電動機の回転数を決定する演算処理部と、
    前記演算処理部で行なう演算に必要な制御パラメータを記憶する記憶部と、
    前記同期電動機に駆動電流を供給する電力変換装部と、
    を有し、
    前記記憶部に、予め複数の前記同期電動機の回転数と、その回転数における吐き出し流量に対する吐出側圧力特性と、吐き出し流量に対する負荷電流値特性を記憶しておき、
    前記演算処理部において、実際の回転数と吐出側圧力と負荷電流値の関係が前記記憶部に記憶された特性から逸脱した場合に、前記同期電動機を停止し、再始動する処理を行い、1回目の再始動で前記同期電動機が正常に起動しない場合は、前記1回目の再始動時の前記同期電動機の回転数の増加率とは異なる増加率により第2回目の再始動を行うことを特徴とするポンプシステム。
    A pump unit having an impeller provided in the pump casing;
    A synchronous motor for rotationally driving the impeller;
    An inverter that controls the synchronous motor, and a pump system comprising:
    The inverter is
    A signal input unit for inputting a signal from a pressure detection means for detecting a water pressure provided on the discharge side of the pump unit;
    An arithmetic processing unit for determining the rotational speed of the synchronous motor;
    A storage unit for storing control parameters necessary for the calculation performed by the calculation processing unit;
    A power converter that supplies a driving current to the synchronous motor;
    Have
    In the storage unit, the number of rotations of the plurality of synchronous motors, the discharge-side pressure characteristic with respect to the discharge flow rate at the rotation number, and the load current value characteristic with respect to the discharge flow rate are stored in advance.
    In the arithmetic processing unit, when the relationship between the actual rotational speed, the discharge side pressure, and the load current value deviates from the characteristics stored in the storage unit, the synchronous motor is stopped and restarted. When the synchronous motor does not start normally at the second restart, the second restart is performed at an increase rate different from the increase rate of the rotation speed of the synchronous motor at the first restart. And pump system.
  7. 請求項6記載のポンプシステムにおいて、
    前記演算処理部は、再始動した回数が所定回数を超えた場合に、故障信号を出力すること
    を特徴とするポンプシステム。
    The pump system according to claim 6, wherein
    The arithmetic processing unit outputs a failure signal when the number of restarts exceeds a predetermined number.
  8. 請求項6記載のポンプシステムにおいて、
    前記1回目の再始動時の前記同期電動機の回転数の増加率は、第2回目の再始動時の前記同期電動機の回転数の増加率より小さいことを特徴とするポンプシステム。
    The pump system according to claim 6, wherein
    The pump system according to claim 1, wherein an increase rate of the rotation speed of the synchronous motor at the first restart is smaller than an increase rate of the rotation speed of the synchronous motor at the second restart.
PCT/JP2013/072936 2013-08-28 2013-08-28 Pump system WO2015029147A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015533833A JP6134800B2 (en) 2013-08-28 2013-08-28 Pump system
CN201380078587.1A CN105452670B (en) 2013-08-28 2013-08-28 Pump system
PCT/JP2013/072936 WO2015029147A1 (en) 2013-08-28 2013-08-28 Pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/072936 WO2015029147A1 (en) 2013-08-28 2013-08-28 Pump system

Publications (1)

Publication Number Publication Date
WO2015029147A1 true WO2015029147A1 (en) 2015-03-05

Family

ID=52585766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072936 WO2015029147A1 (en) 2013-08-28 2013-08-28 Pump system

Country Status (3)

Country Link
JP (1) JP6134800B2 (en)
CN (1) CN105452670B (en)
WO (1) WO2015029147A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017096201A (en) * 2015-11-26 2017-06-01 株式会社荏原製作所 pump
JP2017161119A (en) * 2016-03-08 2017-09-14 株式会社ディスコ Constant hot water supply method and constant hot water supply device
JP2019127845A (en) * 2018-01-22 2019-08-01 株式会社荏原製作所 Pump unit
JP2019127847A (en) * 2018-01-22 2019-08-01 株式会社荏原製作所 Pump unit
JP2020127275A (en) * 2019-02-04 2020-08-20 株式会社日立産機システム Power converter and step-out determination method therefor
CN114376411A (en) * 2022-02-15 2022-04-22 佛山市顺德区美的饮水机制造有限公司 Control method and device for water treatment device, storage medium and water treatment device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041455A (en) * 2018-09-07 2020-03-19 株式会社島津製作所 Pump monitoring device and vacuum pump
CN112519594B (en) * 2020-12-11 2022-06-14 长沙中联重科环境产业有限公司 Control system and method of transmission system and electric washing and sweeping vehicle
CN113446236B (en) * 2021-07-08 2022-11-29 上海威派格智慧水务股份有限公司 Centrifugal pump idle protection method and device and edge gateway

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138183A (en) * 1984-07-27 1986-02-24 Ebara Corp Variable speed water supply device
JP2000125580A (en) * 1998-06-12 2000-04-28 Fumito Komatsu Synchronous motor
JP2006262581A (en) * 2005-03-16 2006-09-28 Matsushita Electric Ind Co Ltd Motor drive device
JP2008220078A (en) * 2007-03-06 2008-09-18 Matsushita Electric Ind Co Ltd Controller for brushless dc motor and ventilating air-blower
JP2012060781A (en) * 2010-09-09 2012-03-22 Hitachi Car Eng Co Ltd Brushless motor controller and brushless motor system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3680016B2 (en) * 2001-09-03 2005-08-10 三菱電機株式会社 Synchronous motor step-out detection device
CN201142568Y (en) * 2007-08-01 2008-10-29 薛黎明 Intelligent out-of-step protection device for synchronization motor
EP2068436B1 (en) * 2007-12-03 2013-07-17 Roche Diagnostics GmbH Method and device for identifying step loss in a stepper motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138183A (en) * 1984-07-27 1986-02-24 Ebara Corp Variable speed water supply device
JP2000125580A (en) * 1998-06-12 2000-04-28 Fumito Komatsu Synchronous motor
JP2006262581A (en) * 2005-03-16 2006-09-28 Matsushita Electric Ind Co Ltd Motor drive device
JP2008220078A (en) * 2007-03-06 2008-09-18 Matsushita Electric Ind Co Ltd Controller for brushless dc motor and ventilating air-blower
JP2012060781A (en) * 2010-09-09 2012-03-22 Hitachi Car Eng Co Ltd Brushless motor controller and brushless motor system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017096201A (en) * 2015-11-26 2017-06-01 株式会社荏原製作所 pump
TWI708655B (en) * 2016-03-08 2020-11-01 日商迪思科股份有限公司 Constant temperature water supply method
JP2017161119A (en) * 2016-03-08 2017-09-14 株式会社ディスコ Constant hot water supply method and constant hot water supply device
CN107166734A (en) * 2016-03-08 2017-09-15 株式会社迪思科 Thermostatted water provides method and thermostatted water provides device
KR20170104939A (en) * 2016-03-08 2017-09-18 가부시기가이샤 디스코 Fixed temperature water supplying method and fixed temperature water supplying device
KR102224606B1 (en) * 2016-03-08 2021-03-05 가부시기가이샤 디스코 Fixed temperature water supplying method and fixed temperature water supplying device
JP7057142B2 (en) 2018-01-22 2022-04-19 株式会社荏原製作所 Pump device
JP2019127847A (en) * 2018-01-22 2019-08-01 株式会社荏原製作所 Pump unit
JP2019127845A (en) * 2018-01-22 2019-08-01 株式会社荏原製作所 Pump unit
JP7060385B2 (en) 2018-01-22 2022-04-26 株式会社荏原製作所 Pump device
JP2020127275A (en) * 2019-02-04 2020-08-20 株式会社日立産機システム Power converter and step-out determination method therefor
JP7194033B2 (en) 2019-02-04 2022-12-21 株式会社日立産機システム Power conversion device and its step-out determination method
CN114376411A (en) * 2022-02-15 2022-04-22 佛山市顺德区美的饮水机制造有限公司 Control method and device for water treatment device, storage medium and water treatment device
CN114376411B (en) * 2022-02-15 2024-01-12 佛山市顺德区美的饮水机制造有限公司 Control method and device for water treatment device, storage medium and water treatment device

Also Published As

Publication number Publication date
JPWO2015029147A1 (en) 2017-03-02
CN105452670B (en) 2017-05-10
CN105452670A (en) 2016-03-30
JP6134800B2 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
JP6134800B2 (en) Pump system
WO2013191183A1 (en) Motor control device
CN107120842B (en) Supply control method for heat, for heat control device, for thermal control system and heating plant
JP6545900B2 (en) Motor system
US10738784B2 (en) Power-loss ridethrough system and method
JP7194033B2 (en) Power conversion device and its step-out determination method
JP2015100996A (en) Injection molding machine having operation-continuing-function in event of power outage
JP6365066B2 (en) Air conditioning system
JP2012082980A (en) Heat pump water heater
JP5396713B2 (en) Air compressor
JP7436180B2 (en) fuel cell system
JP2016073157A (en) Motor with position sensor and gas compression device using the same
JP4130749B2 (en) Variable speed water supply device
JP2012097822A (en) Hydraulic unit
JP4601561B2 (en) Cooling system
JP2003343476A (en) Variable speed water supply device
JP6581801B2 (en) Water supply equipment
JP7319173B2 (en) Control system and pumping equipment
JP7450374B2 (en) Pump device, inverter and control method
JP2012255399A (en) Automatic water feed device and control method of automatic water feed device
JP6535756B2 (en) Power converter
JP6339509B2 (en) Heat pump water heater and operation method
KR920003338B1 (en) Fan motor control method
JP2009180390A (en) Ice making machine
JP2011145009A (en) Water heater

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380078587.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892601

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015533833

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13892601

Country of ref document: EP

Kind code of ref document: A1