WO2015027306A1 - A process for microbial fermentation of sugary substrates and use of the hydrogen in atomic, ionic or gaseous state in said process - Google Patents
A process for microbial fermentation of sugary substrates and use of the hydrogen in atomic, ionic or gaseous state in said process Download PDFInfo
- Publication number
- WO2015027306A1 WO2015027306A1 PCT/BR2014/000300 BR2014000300W WO2015027306A1 WO 2015027306 A1 WO2015027306 A1 WO 2015027306A1 BR 2014000300 W BR2014000300 W BR 2014000300W WO 2015027306 A1 WO2015027306 A1 WO 2015027306A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fermentation
- hydrogen
- process according
- electrolysis
- microorganisms
- Prior art date
Links
- 230000004151 fermentation Effects 0.000 title claims abstract description 136
- 238000000855 fermentation Methods 0.000 title claims abstract description 136
- 238000000034 method Methods 0.000 title claims abstract description 118
- 230000008569 process Effects 0.000 title claims abstract description 114
- 239000001257 hydrogen Substances 0.000 title claims abstract description 63
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 63
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 239000000758 substrate Substances 0.000 title claims abstract description 26
- 230000000813 microbial effect Effects 0.000 title claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 172
- 244000005700 microbiome Species 0.000 claims abstract description 66
- 238000004519 manufacturing process Methods 0.000 claims abstract description 48
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 40
- 241000233866 Fungi Species 0.000 claims abstract description 20
- 241000894006 Bacteria Species 0.000 claims abstract description 17
- 238000011081 inoculation Methods 0.000 claims abstract description 9
- 235000000346 sugar Nutrition 0.000 claims description 62
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 61
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 39
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 33
- 150000008163 sugars Chemical class 0.000 claims description 33
- 239000001569 carbon dioxide Substances 0.000 claims description 30
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 claims description 28
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 20
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 20
- 239000008103 glucose Substances 0.000 claims description 20
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 19
- 229930006000 Sucrose Natural products 0.000 claims description 19
- 239000005720 sucrose Substances 0.000 claims description 19
- 229910001868 water Inorganic materials 0.000 claims description 19
- 150000002431 hydrogen Chemical class 0.000 claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 239000011785 micronutrient Substances 0.000 claims description 13
- 235000013369 micronutrients Nutrition 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 claims description 12
- 150000002402 hexoses Chemical class 0.000 claims description 9
- 150000002972 pentoses Chemical class 0.000 claims description 8
- 229930091371 Fructose Natural products 0.000 claims description 7
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 claims description 7
- 239000005715 Fructose Substances 0.000 claims description 7
- 230000003311 flocculating effect Effects 0.000 claims description 7
- 150000002772 monosaccharides Chemical class 0.000 claims description 7
- 239000000725 suspension Substances 0.000 claims description 7
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 6
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 claims description 6
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 claims description 6
- 239000003792 electrolyte Substances 0.000 claims description 6
- 150000004676 glycans Chemical class 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 229920001282 polysaccharide Polymers 0.000 claims description 6
- 239000005017 polysaccharide Substances 0.000 claims description 6
- 239000011593 sulfur Substances 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 150000003538 tetroses Chemical class 0.000 claims description 6
- 150000003641 trioses Chemical class 0.000 claims description 6
- 239000012528 membrane Substances 0.000 claims description 5
- YZCKVEUIGOORGS-UHFFFAOYSA-N Hydrogen atom Chemical compound [H] YZCKVEUIGOORGS-UHFFFAOYSA-N 0.000 claims description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 4
- 239000011574 phosphorus Substances 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 239000000376 reactant Substances 0.000 claims description 4
- 241000894007 species Species 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- 241000588902 Zymomonas mobilis Species 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 3
- 239000011591 potassium Substances 0.000 claims description 3
- 229910052700 potassium Inorganic materials 0.000 claims description 3
- 239000011780 sodium chloride Substances 0.000 claims description 3
- 239000011701 zinc Substances 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- 241000193403 Clostridium Species 0.000 claims description 2
- 241000588724 Escherichia coli Species 0.000 claims description 2
- 241000235648 Pichia Species 0.000 claims description 2
- 241000235070 Saccharomyces Species 0.000 claims description 2
- 241000006364 Torula Species 0.000 claims description 2
- 238000010923 batch production Methods 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 239000011630 iodine Substances 0.000 claims description 2
- 229910052740 iodine Inorganic materials 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 241000222120 Candida <Saccharomycetales> Species 0.000 claims 1
- 241000235346 Schizosaccharomyces Species 0.000 claims 1
- 238000012512 characterization method Methods 0.000 claims 1
- 230000003851 biochemical process Effects 0.000 abstract description 7
- 235000015097 nutrients Nutrition 0.000 abstract description 2
- 235000019441 ethanol Nutrition 0.000 description 80
- 230000001476 alcoholic effect Effects 0.000 description 30
- 238000006243 chemical reaction Methods 0.000 description 30
- 230000009467 reduction Effects 0.000 description 26
- 229960004793 sucrose Drugs 0.000 description 19
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 14
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 229940076788 pyruvate Drugs 0.000 description 11
- 238000006911 enzymatic reaction Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 7
- 230000009471 action Effects 0.000 description 7
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 108010011939 Pyruvate Decarboxylase Proteins 0.000 description 6
- 150000001298 alcohols Chemical class 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 238000004821 distillation Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 230000034659 glycolysis Effects 0.000 description 6
- 230000037361 pathway Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000001603 reducing effect Effects 0.000 description 6
- 240000000111 Saccharum officinarum Species 0.000 description 5
- 235000007201 Saccharum officinarum Nutrition 0.000 description 5
- 238000006114 decarboxylation reaction Methods 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 5
- 230000036961 partial effect Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 101710088194 Dehydrogenase Proteins 0.000 description 4
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- 239000005515 coenzyme Substances 0.000 description 4
- 210000000805 cytoplasm Anatomy 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 230000002255 enzymatic effect Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000003834 intracellular effect Effects 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 235000014101 wine Nutrition 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 108010067035 Pancrelipase Proteins 0.000 description 3
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 230000002503 metabolic effect Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000010200 validation analysis Methods 0.000 description 3
- GHOKWGTUZJEAQD-ZETCQYMHSA-N (D)-(+)-Pantothenic acid Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-ZETCQYMHSA-N 0.000 description 2
- ZKHQWZAMYRWXGA-KQYNXXCUSA-J ATP(4-) Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-J 0.000 description 2
- ROWKJAVDOGWPAT-UHFFFAOYSA-N Acetoin Chemical compound CC(O)C(C)=O ROWKJAVDOGWPAT-UHFFFAOYSA-N 0.000 description 2
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 2
- YPZRHBJKEMOYQH-UYBVJOGSSA-L FADH2(2-) Chemical compound C1=NC2=C(N)N=CN=C2N1[C@@H]([C@H](O)[C@@H]1O)O[C@@H]1COP([O-])(=O)OP([O-])(=O)OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C(NC(=O)NC2=O)=C2NC2=C1C=C(C)C(C)=C2 YPZRHBJKEMOYQH-UYBVJOGSSA-L 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 230000019522 cellular metabolic process Effects 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000002054 inoculum Substances 0.000 description 2
- 239000001573 invertase Substances 0.000 description 2
- 235000011073 invertase Nutrition 0.000 description 2
- -1 isobutyl alcohols Chemical class 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 2
- 210000003470 mitochondria Anatomy 0.000 description 2
- 235000013379 molasses Nutrition 0.000 description 2
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 2
- 210000001236 prokaryotic cell Anatomy 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 229940107700 pyruvic acid Drugs 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011946 reduction process Methods 0.000 description 2
- 230000000241 respiratory effect Effects 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 210000005253 yeast cell Anatomy 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- ABEXEQSGABRUHS-UHFFFAOYSA-N 16-methylheptadecyl 16-methylheptadecanoate Chemical compound CC(C)CCCCCCCCCCCCCCCOC(=O)CCCCCCCCCCCCCCC(C)C ABEXEQSGABRUHS-UHFFFAOYSA-N 0.000 description 1
- KKAJSJJFBSOMGS-UHFFFAOYSA-N 3,6-diamino-10-methylacridinium chloride Chemical compound [Cl-].C1=C(N)C=C2[N+](C)=C(C=C(N)C=C3)C3=CC2=C1 KKAJSJJFBSOMGS-UHFFFAOYSA-N 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 1
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 1
- 241000609240 Ambelania acida Species 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- GHOKWGTUZJEAQD-UHFFFAOYSA-N Chick antidermatitis factor Natural products OCC(C)(C)C(O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-UHFFFAOYSA-N 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 108091006149 Electron carriers Proteins 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 101710195789 Invertase 4 Proteins 0.000 description 1
- 241000764238 Isis Species 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- BAWFJGJZGIEFAR-NNYOXOHSSA-N NAD zwitterion Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-N 0.000 description 1
- BAWFJGJZGIEFAR-NNYOXOHSSA-O NAD(+) Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-O 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 241000192263 Scheffersomyces shehatae Species 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- JZRWCGZRTZMZEH-UHFFFAOYSA-N Thiamine Natural products CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N JZRWCGZRTZMZEH-UHFFFAOYSA-N 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 239000005862 Whey Substances 0.000 description 1
- 102000007544 Whey Proteins Human genes 0.000 description 1
- 108010046377 Whey Proteins Proteins 0.000 description 1
- OHVGNSMTLSKTGN-BTVCFUMJSA-N [C].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O Chemical compound [C].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O OHVGNSMTLSKTGN-BTVCFUMJSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- DSUJHXYAWUOXCC-UHFFFAOYSA-N acetaldehyde;ethanol Chemical compound CCO.CC=O DSUJHXYAWUOXCC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- TTWYZDPBDWHJOR-IDIVVRGQSA-L adenosine triphosphate disodium Chemical compound [Na+].[Na+].C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O TTWYZDPBDWHJOR-IDIVVRGQSA-L 0.000 description 1
- 235000013334 alcoholic beverage Nutrition 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 238000004500 asepsis Methods 0.000 description 1
- 239000010905 bagasse Substances 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- OSQPUMRCKZAIOZ-UHFFFAOYSA-N carbon dioxide;ethanol Chemical compound CCO.O=C=O OSQPUMRCKZAIOZ-UHFFFAOYSA-N 0.000 description 1
- FKJVDTYXFXYMBO-FAOVPRGRSA-N carbon dioxide;ethanol;(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanal Chemical compound CCO.O=C=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O FKJVDTYXFXYMBO-FAOVPRGRSA-N 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- GFAZHVHNLUBROE-UHFFFAOYSA-N hydroxymethyl propionaldehyde Natural products CCC(=O)CO GFAZHVHNLUBROE-UHFFFAOYSA-N 0.000 description 1
- 238000005417 image-selected in vivo spectroscopy Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000012739 integrated shape imaging system Methods 0.000 description 1
- 210000005061 intracellular organelle Anatomy 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229950006238 nadide Drugs 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229940055726 pantothenic acid Drugs 0.000 description 1
- 235000019161 pantothenic acid Nutrition 0.000 description 1
- 239000011713 pantothenic acid Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000004717 pyruvic acids Chemical class 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 235000020374 simple syrup Nutrition 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- DHCDFWKWKRSZHF-UHFFFAOYSA-N sulfurothioic S-acid Chemical compound OS(O)(=O)=S DHCDFWKWKRSZHF-UHFFFAOYSA-N 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- KYMBYSLLVAOCFI-UHFFFAOYSA-N thiamine Chemical compound CC1=C(CCO)SCN1CC1=CN=C(C)N=C1N KYMBYSLLVAOCFI-UHFFFAOYSA-N 0.000 description 1
- 235000019157 thiamine Nutrition 0.000 description 1
- 229960003495 thiamine Drugs 0.000 description 1
- 239000011721 thiamine Substances 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/06—Ethanol, i.e. non-beverage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Definitions
- the present invention relates to a biochemical process for selectively increasing the production of alcohol through microbial fermentation of sugars.
- suitable concentrations of hydrogen are inoculated into the microorganisms in process, and this can take place in a continuous, semicontinuous or batch production regime, said process comprising sugary wort, microorganisms of the genus fungus or bacterium, with naturally occurring or especially selected or adapted characteristics, or characteristics of recombinant, flocculating lines, in suspension in the wort under fermentation or in an immobilized bed and in micronutrients.
- Alcohols are organic compounds having the functional hydroxyl group (-OH) attached to one or more saturated carbons, containing one or more carbon atoms.
- the best known compound of this class is ethanol or ethyl alcohol. The latter can be found in alcoholic beverages, in cleaning products, in pharmaceutical products, such as chemical solvent and also in its most voluminous application as fuel for internal combustion engine.
- More than 90% of ethanol is produced worldwide from fermentation of sugars coming from direct sources such as sugar-cane, molasses and fruit pulps, or obtained directly by hydrolysis of starch and cellulose.
- sugars coming from direct sources such as sugar-cane, molasses and fruit pulps, or obtained directly by hydrolysis of starch and cellulose.
- amylaceous, feculent and cellulosic groups a wide variety of grains stand out, such as com, manioc, other tubercles, sorgo, wheat, barley, sugar-cane bagasse, potato, whey, etc.
- the manufacture of ethanol by fermentation and distillation is basically divided into 4 phases: preparation of the raw material or saccharification, liquefaction, fermentation and distillation.
- preparation of the raw material such as grinding, crushing and leaching, comprises passing the source of sugar, starch or cellulose through processors.
- processors In the second phase, one obtains diluted substrates that can either be processed in the fermentation or passed through other intermediate processing of breaking the amylaceous or ellulosic chains into sugar molecules by effect of hydrolysis.
- the sugary juice or wort obtained is led to fermentation.
- the fermentation phase comprises adding microorganisms, fungi or bacteria, which transform the sugars into alcohol by a number of enzymatic reactions. After this process, on industrial scales, which are characterized by periods of fermentation as shown in Table 1 , the fermented wort or wine is obtained.
- the wine then follows to the fourth and last step, the fractionated distillation, giving rise to hydrated or anhydrous alcohol, depending on the desired and employed characteristics of distillation process and dehydration.
- the step that affects the result of the production of alcohol more directly and, therefore, one of the most studied is fermentation, called also alcoholic or ethylic fermentation, in the case of the "rota etilica” (ethylic pathway), which is the biochemical process of transforming sugars such as polysaccharides and monosaccharides such as trioses, tetroses, pentoses and hexoses, among which sucrose, glucose, fructose and xylose stand out, into alcohol.
- rota etilica ethylic pathway
- microorganisms that are responsible for conversion of sugars into molecules of pyruvic acid or pyruvate participate, in a number of intracellular enzymatic reactions, usually called glycolytic pathway.
- the first reaction decarboxylation of the pyruvate
- the enzyme pyruvate decarboxylase by means of which the carboxyl group is eliminated from the pyruvate molecule, converting it to acetaldehyde molecule, with release of carbon dioxide.
- the second reaction is the reduction of the ethanol acetaldehyde, performed by the enzyme alcoholic dehydrogenase, completing the fermentative reaction proper.
- the fermentative processes are characterized in that they combine substrates, types and strains of microorganisms and especially adequate operational conditions, with a view to maximize the process yield and special characteristics to be transferred to the wort under fermentation, since it is subject to various conditions, both fermentation activating and inhibiting conditions, with the consequent interference in the efficiency and in the quality of the process itself.
- alcoholic fermentation has undergone experimental evaluations and theoretic considerations, being regarded as one of the most successful processes by the prior art. Coupled to the cellular nature of the microorganisms, chiefly of fungi, as eukaryotic single-celled organisms, like cells of animal nature, the study and understanding thereof have been privileged as a means of easy experimental access, in the aerobic and anaerobic respiratory processes, the latter being known also as alcoholic and lactic fermentation, and develop freely.
- Zymase refers to an enzymatic complex that catalyzes the fermentation of sugar to ethanol and carbon dioxide.
- sucrose disaccharide
- Invertase refers to an enzyme that catalysis the hydrolysis of sucrose in hexose, fructose and glucose, the mixture of which is also called inverted sugar syrup.
- the pursuit of greater process yields is a constant, involving complete and complex studies and experiments in the physicochemical and biological domains.
- microorganism natures may contribute to the consumption of sugar, such as yeast, other than fungi and bacteria. These microorganisms consume the sugary substrate for cellular growth of the species and also in the production of by-products such as acids and higher alcohols, turning to parasitic processes and causing reductions in the fermentation yield.
- Carbon dioxide as the products released in the decarboxylation of pyruvate is considered as a parallel product of the fermentative process.
- other products are generated during the alcoholic fermentation, such as: glycerol, organic acids (succinic, acetic, pyruvic acids, and others) and higher alcohols, acetaldehyde, acetoin, butyleneglycol and other compounds. It is estimated that from 3% to 5% (three to five percent) of the sugar available in the process are consumed in these conversions.
- the yeast in aerobiosis conditions, particularly in the cellular multiplication phase, the yeast carries out respiration. Unlike the fermentation that takes place in its cytoplasm, the respiration, which takes place in the mitochondria, leads to the formation of an amount of ATP (Adenosine Triphosphate) (the energetic exchange means) nineteen times as big as that obtained in the alcoholic fermentation, as illustrated below:
- ATP Addenosine Triphosphate
- Control of Ph and temperature of the wort under fermentation are variables that assume important positions in the process and can stimulate or inhibit the biochemical dynamics.
- the low pH of the medium (pH ⁇ 4.0), particularly associated to high operation temperatures (Top>38°C), proves to be the factor of greatest physiological interest for the yeast obtained and used at units of industrial production of ethanol, when compared with other inhibitors such as sulfite, lactic acid, alcoholic contents and high concentrations of sugars).
- the pH 4.5 of the wort with temperature ranging from 20°C to 37°C, enables protection against stress factors, and one obtains a higher viability of cell, sprouting, alcoholic yield, regular morphology of the yeasts, decrease in residual sugar and lower release of amino acids in the medium, providing better alcoholic efficiency and stability of the process.
- the yeast is a heterotrophic microorganism, which feed by absorption.
- the main nutrients, necessary to the development of the yeasts, so that a satisfactory fermentation can take place, are: (i) nitrogen, a plastic transformation element, important to the growth of the yeast; (ii) phosphorus, energy translocation element - in the absence thereof no fermentation will take place; (iii) potassium, (iv) magnesium; (v) zinc; (vi) manganese, all of which are important in enzymatic reactions; vitamins of the B complex, which are fermentation accelerators, besides the presence of other salts, such as cobalt, copper, sulfur, boron, which are referred-to as micronutrients.
- Yeast is also a saprophytic microorganism, which requires an elaborate source of carbon - glucose or another sugar, which supplies chemical energy and the carbonic skeleton of its cellular structures, constituted predominantly by carbon, oxygen and hydrogen. Some vitamins, such as thiamine and pantothenic acid, are also demanded.
- the yeast uses this element in the ammoniacal (NH4+), amidic (urea) or aminic (in the form of amino acids) forms, with no metabolic capability to make use of nitrate and little or no capability of using proteins from the medium.
- ammoniacal form is the main one, in the absence thereof the yeast looks for other forms, such as amino acids, thereby causing an increase in the production of secondary components, such as isoamyl, amyl, propyl, isopropyl, butyl, isobutyl alcohols.
- Phosphorus is absorbed in the form of ion H2P04-, the predominant form at pH 4.5, whereas sulfur can be assimilated from sulfate, sulfite or thiosulfate.
- Patent application WO 2007/064546 describes a process for improving the yield of ethanol, decreasing the fermentation time and reducing the formation of by-product by monitoring and controlling the oxy-reducing potential of the fermenter. However, this process requires very specific and difficult-to- maintain monitoring due to the high costs involved, impairing the industrial application of this solution.
- Patent document WO 2008/024331 describes a method for magnetic fermentation that includes subjecting a biological material to a static magnetic field for carrying out fermentation of the biologic material in a fermented product.
- the fermentation reaction may occur in an alkaline or acidic medium, and the magnetic field may be positive or negative.
- the present document makes use of the static magnetic field to provide an environment more suitable for cell reproduction of the microorganisms.
- this process needs constant monitoring and total control over the reaction, which makes it excessively expensive and, therefore, economically unfeasible for industrial application.
- the present invention has the objective of providing a process for microbial fermentation of sugary substrates, which comprises inoculating hydrogen into the microorganisms of the genera fungus or bacterium, with naturally occurring characteristics, or especially selected or adapted, or of recombinant, flocculating lines, or in suspension in the wort under fermentation or in an immobilized bed.
- a second objective of the invention consists in using hydrogen in the ionic, atomic or gaseous state, or a mixture thereof, for inoculation into the microorganisms of the genera fungus or bacterium, with naturally occurring characteristics, or especially selected or adapted, or of recombinant, flocculating lines, or in suspension in the wort, or in immobilized bed, for the selective production of alcohol.
- a third objective of the invention consists in establishing an innovative biochemical process for the selective production of alcohol through fermentation of sugars such as polysaccharides and monosaccharides such as trioses, tetroses, pentoses and hexoses, wherein sucrose, glucose, fructose and xylose stand out, with greater utilization of carbon and the consequent increase in the selective production of alcohol, exceeding the theoretic yield of G-L, and reduction in the emission of carbon dioxide in the fermentation.
- sugars such as polysaccharides and monosaccharides such as trioses, tetroses, pentoses and hexoses, wherein sucrose, glucose, fructose and xylose stand out, with greater utilization of carbon and the consequent increase in the selective production of alcohol, exceeding the theoretic yield of G-L, and reduction in the emission of carbon dioxide in the fermentation.
- a fourth objective of the invention consists in establishing an effective and environmentally justifiable process, with greater utilization of the carbon in the conversion of sugars in fermentation in alcohol, besides reducing the emission of carbon dioxide into the environment.
- a fifth objective of the invention consists in removing the limit of efficiency for higher levels, altering the cellular metabolism of the microorganisms, without altering them genetically.
- the process of the present invention can be applied in new industrial units of production, or implemented at already installed structures and units.
- the present invention relates to a process for microbial fermentation of sugary substrates, which comprises inoculating hydrogen into the microorganisms of the genera fungus or bacterium present in suspension in the wort under fermentation or in immobilized bed, said wort under fermentation or immobilized bed containing sugary substrates and micronutrients.
- the inoculation of hydrogen in atomic, ionic or gaseous state into the microorganisms present in the fermentation takes place by means of at least two electrodes applied directly to the wort under fermentation or immobilized bed with application of voltage in pre-electrolysis regime or in full electrolysis.
- This hydrogen gas is also produced out of the bioreactor, via electrolysis of water, and in this case the inoculation of the microorganisms takes place via direct gushing into said bioreactor.
- the control over hydrogen in atomic, ionic or gaseous state takes place by means of the voltage applied to the electrodes actuating on the wort under fermentation or in immobilized bed, the pre-electrolysis regime voltage ranging from 0.1V to 1.24V, and the full-electrolysis regime voltage ranging from 1.24V to 30V, either in direct current or in alternating current, this latter comprising cycles of 50Hz to 100Hz, from 100Hz to 500Ha, and from 500Ha to 1000Hz.
- the present invention also relates to the use of hydrogen in atomic, ionic or gaseous state or mixtures thereof, characterized in that it is for inoculation in the microorganisms present in a fermentative medium containing sugary substrates, such as polysaccharides and monosaccharides like trioses, tetroses, pentoses and hexoses, sucrose, glucose, fructose and xylose standing out, for the selective production of alcohol.
- sugary substrates such as polysaccharides and monosaccharides like trioses, tetroses, pentoses and hexoses, sucrose, glucose, fructose and xylose standing out, for the selective production of alcohol.
- the process described in the present invention consists, therefore, in modifying the massic efficiency limit of production of alcohol to higher parameters, altering the cellular metabolism of the microorganisms without altering them genetically.
- the hydrogen reducing action coupled to its ease of permeating the cell membranes of the microorganisms, accessing their internal compartments, cytoplasm, mitochondria and intracellular organelles provide an innovative biochemical process for the selective production of alcohol through fermentation of sugars, bringing about better use of the carbon, with the consequent increase in the alcoholic yield in the fermentation reaction and reduction in the contents of emission of carbon dioxide.
- Figure 1 refers to refers to the glycolytic pathway (glycolysis) of the prior art, which takes place in the cytoplasm of a microorganism or eukaryotic or prokaryotic cell, in the processing of glucose, comprising the lasts steps of this sequence, the production of pyruvate;
- Figure 2 schematizes the alcoholic fermentation reactions involved in a prior- art fermentation process where each pyruvate molecule, through the pyruvate decarboxylase, undergoes release of the carboxyl and the consequent release of a carbon dioxide molecule and an acetaldehyde molecule, the latter being transformed to ethanol by the action of the enzyme alcoholic dehydrogenase;
- Figure 3 schematizes the fermentation reactions involved in the process described by the present invention, where the reduction of the carboxyl group with the hydroxyl group, derived by decarboxylation of the two pyruvate molecules, by the enzyme pyruvate decarboxylase, in addition to Equivalent Reducers, preferably reduced by raising the availability of hydrogen, bring about the formation of an acetaldehyde molecule synthesized through the double carboxyl group as the product of a new alcoholic fermentation pathway;
- Figure 4 refers to a graph containing the operation ranges based on Molar Equivalents of the present invention, containing the curve limits for sucrose, hydrogen, ethanol, carbon dioxide, massic (m/m) yield and increase in massic yield with respect to the G-L (%) maximum massic theoretical yield for sucrose, according to equation (3);
- Figure 5 refers to a graph containing the logarithmic measurements of the massic yield curves, percentage increase in the massic yield and in the concentrations in Molar Equivalents for [H], [Ethanol] and [C02] in the present invention.
- glycolysis is the sequence of enzymatic reactions that takes place in the cell cytoplasm of the microorganism, which may be an eukaryotic or prokaryotic single-celled one, in the processing of glucose (sugar with six carbon atoms in the molecule), in the last steps of this sequence there is production of pyruvate:
- the present invention enables one to obtain generic and simplified equations, such as equation (7) below, for the typical concentrations of sugars, hydrogen, microorganism and products obtained in
- this type of fermentation such as concentration of ethanol, carbon dioxide and water:
- This inventive principle is also applied in fermentations that involve bacteria, prokaryotic cells, with processing of carbohydrates, such as polysaccharides and monosaccharides like trioses, tetroses, pentoses and hexoses, wherein sucrose, glucose, fructose and xylose stand out, with selective production of ethanol or higher alcohols.
- carbohydrates such as polysaccharides and monosaccharides like trioses, tetroses, pentoses and hexoses, wherein sucrose, glucose, fructose and xylose stand out, with selective production of ethanol or higher alcohols.
- this invention can be either applied at new production units, or implemented at already installed structures and units.
- the present invention relates, therefore, to a biochemical process for increasing selectively the yield of the production of alcohol through modifications and improvements in the step of fermenting the solutions containing sugars, employing fermentative microorganisms of the group fungi or bacteria.
- These improvements consist in inoculating hydrogen in atomic, ionic or aqueous state of mixtures thereof into the microorganisms that participate in the fermentative reaction of the sugary wort.
- the present process comprises adding 5% - 30% (mass/volume) of sugary substrates, between 5% and 25% (mass/volume) of microorganism.
- the microorganisms are completed in an automatic and controlled manner as a function of the necessary contents and those available in the wort under fermentation.
- a system for generating such hydrogen comprising: (i) supplying a fermentative medium with a pre-electrolysis voltage by means of electrodes, said voltage comprising values lower than the voltage required for occurrence of electrolysis of water in the medium, characterized by the ionic conditions of the wort under fermentation, preferably between 0.1 V and 1.124 V, or]
- the electrodes applied to the fermentative medium comprise at least one cathode and one anode, the cathode and the anode acting preferably directly on the wort under fermentation.
- the electrodes, anode and cathode are applied directly onto the microorganisms, in the phase of feeding them to the bioreactor.
- the electrodes used in the fermentative medium comprise at least one cathode and one anode, the cathode preferably acting directly on the wort under fermentation, while the anode may be applied on another electrolyte, the latter being alternatively saline, as two electrolytes, with media separated by an ion-permeable separating membrane.
- the sugary wort comprises sugars such as polysaccharides and monosaccharides like trioses, tetroses, pentoses and hexoses, wherein sucrose, glucose, fructose and xylose stand out, or mixtures thereof.
- the fermentative microorganisms of the invention are selected from yeasts of the group of fungus, as of the genus Saccharomyces and more specifically the Saccharomyces cerevisiae strain and the species of the genus
- Schizosaccharomyces pombe Pichia stipites, Torula, Candida shehatae, of naturally occurring lines, or especially selected or adapted, or recombinant, flocculating lines, in suspension in the wort under fermentation or in immobilized bed.
- the fermentative microorganisms are selected from the group of bacteria, more especially like species of the genera Zymomonas mobilis, Escherichia coli and Clostridium, of naturally occurring lines, or especially selected or adapted, or of recombinant, flocculating lines, in suspension in the wort under fermentation or in immobilized bed.
- the fermentative microorganism selected comprises the fungus of the species Saccharomyces cerevisiae.
- the fermentative microorganism selected comprises the bacterium of the species Zymomonas mobilis.
- the fermentation wort also admits the addition of micronutrients such as nitrogen, phosphorus, potassium, magnesium, calcium, zinc, manganese, copper, iron, sulfur, cobalt, iodine or mixtures thereof.
- micronutrients such as nitrogen, phosphorus, potassium, magnesium, calcium, zinc, manganese, copper, iron, sulfur, cobalt, iodine or mixtures thereof.
- microorganisms are added at contents as variables and should be controlled during the process under demand.
- the process of the invention consists in inoculating adequate concentrations of atomic, ionic or molecular hydrogen, said hydrogen having been produced in the pre-electrolysis or full-electrolysis condition in the microorganisms under process, in a controlled manner according to equation (7), Table 2 and Figure 4.
- the batch-regime, continuous and semicontinuous fermentation processes are contemplated by the present invention, and one may adopt arrangements of bioreactors, in number and volumes, either in similar or different functions in their operational conditions of concentrations of substrates, microorganisms and availability of the hydrogen inoculum in the ionic or molecular phase.
- the hydrogen present in the fermentation medium may be in atomic, ionic or gaseous states or a mixture thereof.
- a hydrogen- generating system is required, and said system may comprise: (i) subjecting the fermentative medium to a pre-electrolysis electric voltage (voltage below the voltage required for electrolysis of water to occur, characterized by the ionic conditions of the wort under fermentation) or (ii) subjecting the fermentative medium to full-electrolysis voltage equal to or higher than the water-electrolysis voltage, characterized by the ionic conditions of the wort under fermentation.
- ionic and atomic hydrogen In the pre-electrolysis regime, there is formation of ionic and atomic hydrogen, without gaseous hydrogen.
- the formation of such ionic and atomic hydrogen requires only electric voltage lower than that necessary for the occurrence of electrolysis of water, which is characterized by the ionic conditions of the wort under fermentation. This electric voltage ranges from 0.1 V to 1.24 V, preferably from 0.7 V to 1.1 V.
- the systems for generation of pre-electrolysis and full-electrolysis hydrogen may occur in such a way that the voltage will be either direct or alternating, wherein the latter there may be cycles ranging from 50 to 2,000Hz, preferably from 50Hz to 150Hz, or from 100Hz to 500Hz or from 400Hz to 1 ,000Hz.
- the system comprises direct current ion the full-electrolysis condition, avoiding the addition of oxygen to the wort under fermentation, in order to favor anaerobic conditions.
- the cathode acts directly on the wort under fermentation, while the anode will be applied on another electrolyte, the latter being saline, according to two electrolytes, with media separated by ion-permeable separating membrane, the membrane being porous and made preferably from a porous material.
- hydrogen in the gaseous phase may be introduced directly into the bioreactor in fermentation, by direct gushing into the wort under fermentation in the bioreactor, or through lines for feeding or circulating wort in the bioreactor.
- This hydrogen gas may be produced via bacterial fermentation or by algae in other parallel fermentative process, characterized by the production of hydrogen, or via electrolysis of water, outside the reactor, or it may be industrial hydrogen.
- the hydrogen may be inoculated either immediately at the start of the fermentative process or before this step, that is, during the preparation of the microorganism.
- the process described in the present invention reflects a behavior differentiated from the prior-art fermentative processes, since:
- the high dosage of hydrogen acts as a powerful reducing agent; it provides better yields in the concentration of alcohol; - there is no genetic modification of the microorganism;
- the process of the invention provides the following advantages over a conventional fermentation process:
- the fermentative process will now provide and demand operational control over the process variables.
- the fermentative process now provides and demands operational control of the process variables.
- the list of variables is composed by those comprised by the prior art, intended to maintain the process within the physical, chemical process standards typically used in the fermentative processes embraced by the prior art, such as pH and temperature, controls of levels, feeding and discharging, innovatively added to the controls and to the concentrations of reactants and products, including micronutrients. This control actuates during the whole production process, enabling one to guide said process within the adequate and intended operational conditions.
- the control over concentrations differs from controls of concentrations of soluble solids and sugars, as in the cases of VHG (Very High Gravity) fermentations, by which one obtains a concentration of alcohol of over 12% by volume, from the fermentative processing of worts with a high content of sugars, preventing damage to the microorganism or stuck and sluggish fermentation, as well as over processes where one aims at controlling or limiting the fermentation period, as a tool for productive control.
- VHG Very High Gravity
- Very High Gravity Fermentation is fermentation starting from high concentrations of substrates with a view to produce wines with high alcoholic contends, with typical concentration higher than 12% by volume.
- Stuck and sluggish fermentation takes place when the fermentation process is interrupted, or when it reduces its kinetics dramatically, even with the existence of a substrate, as a result of stressing factors, such as excess alcoholic content or lack of structural micronutrients to the microorganism.
- the control over the concentrations go beyond the above-mentioned limits, being a control of biochemical, aiming at productive yield within the concepts involved by the generic equation (7).
- the schematic balance of the generic and simplified equation (7) is directly linked to the limits of productive yield, considering the concentrations of substrates, sugars, live microorganism and inoculum [H], with a view to the selective production of alcohol and the consequent reduction in the production of carbon dioxide.
- Figure 4 shows the operation ranges based on moles of sucrose, the threshold values of the raised curves are transcribed in Table 2 below.
- Figure 5 shows the logarithmic measurements of the massic yield curves, percentage increase in the massic yield and in the concentrations in molar equivalent for [H], [Ethanol] and [CO2].
- Example 1 Comparison between a conventional fermentation with the fermentation according to the invention in a pre-electrolysis regime
- Two bioreactors were constructed, one as a base or conventional, and the other assembled with a hydrogen generation system (using voltage with direct current of 0.95V), to produce ionic and atomic hydrogen, during the fermentation process.
- the substrate and the fungus were dissolved and prepared before being mixed in the bioreactors, under stirring with a flat-blade stirrer at 60 - 90 rpm.
- Samples were collected from the reactors immediately after mixing the two ingredients, and the initial parameters were measured, such as soluble solids [Brix], temperature [°C] and acidity [pH].
- Measurements for Brix, temperature and pH were carried out every hour, by using a distiller and digital densimiter, adopting standard laboratory standards of this kind. No micronutrient was added to the process, with a view to isolating variables.
- Table 3 specifies the ingredients used in the experiments and conditions of pre-electrolysis test. Two essays were made in two simultaneous reactors.
- Table 4 specifies the equipment employed for controlling the parameters of pH, temperature, °Brix and concentration of ethanol. In the tests one observed the variations in the parameters for the control of the fermentation.
- the yield in the production of ethanol increased by 6.8% and 8.3% as compared with the traditional theoretic value expected (Gay-Lussac yield) having the same experimental criteria and yield calculations.
- the increase in the concentration of ethanol and the reduction observed in the release of carbon dioxide were accompanied by alterations in the chemical kinetics, which shows that the simplified biochemical model can be applied.
- Example 2 Comparison between a conventional fermentation and the fermentation according to the invention in full-electrolysis regime
- the tow bioreactors were used in example 1 , one as a base or conventional reactor and the other equipped with a hydrogen generation system, were the same as employed in example 2.
- Table 6 specifies the ingredients used in the experiments and conditions of the test for full electrolysis.
- Reactor volume 100 liters -100 liters
- the yield in the production of ethanol in the bioreactor of the present invention was of 17% to 20% above the maximum traditional theoretic value expected (Gay-Lussac yield), as can be observed more clearly in Table 1 .
- 4- process equipment does not require adjustments as to the volume of production, as well as the bioreactors and the distillation equipment;
- the ethanol is completed as a green fuel and greater economic feasibility.
Landscapes
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016104799A RU2670014C2 (en) | 2013-09-02 | 2014-08-29 | Method for microbial fermentation of sugary substrates and use of hydrogen in atomic, ionic or gaseous state in such method |
JP2016539367A JP6445018B2 (en) | 2013-09-02 | 2014-08-29 | Microbial fermentation processes using sugar as a substrate and the use of atomic, ionic and gaseous hydrogen in the process |
EP14761782.3A EP3041943B1 (en) | 2013-09-02 | 2014-08-29 | A process for microbial fermentation of sugary substrates (wort) by using hydrogen |
CN201480048258.7A CN105722988B (en) | 2013-09-02 | 2014-08-29 | Process for microbial fermentation of sugar-containing substrates and use of hydrogen in atomic, ionic or gaseous state in such process |
ES14761782T ES2745642T3 (en) | 2013-09-02 | 2014-08-29 | Procedure for microbial fermentation of sugary substrates (must) using hydrogen |
US14/916,110 US9783830B2 (en) | 2013-09-02 | 2014-08-29 | Process for microbial fermentation of sugary substrates and use of the hydrogen in atomic, ionic or gaseous state in said process |
AU2014311204A AU2014311204B2 (en) | 2013-09-02 | 2014-08-29 | A process for microbial fermentation of sugary substrates and use of the hydrogen in atomic, ionic or gaseous state in said process |
ZA2016/01427A ZA201601427B (en) | 2013-09-02 | 2016-03-02 | A process for microbial fermentation of sugary substrates and use of the hydrogen in atomic, ionic or gaseous state in said process |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRBR1020130224340 | 2013-09-02 | ||
BR102013022434A BR102013022434B8 (en) | 2013-09-02 | 2013-09-02 | Process for microbial fermentation of sugary substrates |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015027306A1 true WO2015027306A1 (en) | 2015-03-05 |
Family
ID=51518494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/BR2014/000300 WO2015027306A1 (en) | 2013-09-02 | 2014-08-29 | A process for microbial fermentation of sugary substrates and use of the hydrogen in atomic, ionic or gaseous state in said process |
Country Status (10)
Country | Link |
---|---|
US (1) | US9783830B2 (en) |
EP (1) | EP3041943B1 (en) |
JP (1) | JP6445018B2 (en) |
CN (1) | CN105722988B (en) |
AU (1) | AU2014311204B2 (en) |
BR (1) | BR102013022434B8 (en) |
ES (1) | ES2745642T3 (en) |
RU (1) | RU2670014C2 (en) |
WO (1) | WO2015027306A1 (en) |
ZA (1) | ZA201601427B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016034249A (en) * | 2014-08-03 | 2016-03-17 | 国立大学法人 奈良先端科学技術大学院大学 | Yeast culture method |
WO2017108957A1 (en) * | 2015-12-22 | 2017-06-29 | Mahle Metal Leve S/A | Hydrogen generating electrolytic cell in alcoholic fermentation medium |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7112082B2 (en) | 2018-09-27 | 2022-08-03 | 北川工業株式会社 | Fixture |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR830006419A (en) * | 1980-05-30 | 1983-09-24 | 로오스 엠 페코라 | Fermentation method by high frequency electric signal |
JPS60105495A (en) * | 1983-11-11 | 1985-06-10 | Shinryo Air Conditioning Co Ltd | Method for promoting bioreaction of microorganism |
SU1465458A1 (en) * | 1987-07-23 | 1989-03-15 | Московский технологический институт пищевой промышленности | Method of producing alcohol |
ES2400285T3 (en) * | 1999-03-11 | 2013-04-08 | Zeachem, Inc. | Process to produce ethanol |
KR100879577B1 (en) * | 2000-07-25 | 2009-01-22 | 엠마우스 파운데이션 인코퍼레이티드 | Methods for increasing the production of ethanol from microbial fermentation |
JP4488778B2 (en) | 2003-07-25 | 2010-06-23 | 株式会社東芝 | Thermoelectric converter |
SE526429C2 (en) * | 2003-10-24 | 2005-09-13 | Swedish Biofuels Ab | Intensifying fermentation of carbohydrate substrate for, e.g. producing one to five carbon alcohols, involves using amino acid leucine, isoleucine, and/or valine as source of nitrogen |
US20060005873A1 (en) | 2004-07-06 | 2006-01-12 | Mitsuru Kambe | Thermoelectric conversion module |
KR20090008807A (en) * | 2007-07-19 | 2009-01-22 | 삼성전자주식회사 | Method and apparatus for accelerating growth of yeasts by applying electric field |
EP2017346A1 (en) * | 2007-07-19 | 2009-01-21 | Ineos Europe Limited | Process for the production of alcohols |
AU2009212131A1 (en) * | 2008-02-07 | 2009-08-13 | Zeachem Inc. | Indirect production of butanol and hexanol |
GB2462642A (en) * | 2008-08-14 | 2010-02-17 | Statoilhydro Asa | Production of alcohol from a cellulosic material |
DE102009058550A1 (en) | 2009-07-21 | 2011-01-27 | Emcon Technologies Germany (Augsburg) Gmbh | Thermoelectric module for use in thermoelectric generator unit for coupling to exhaust gas line device of vehicle, has compensating element exerting force on thermoelectric elements and extended from inner side to other inner side of plates |
ES2578229T3 (en) | 2010-01-14 | 2016-07-21 | Lanzatech New Zealand Limited | CO fermentation through the use of an electrical potential |
GB201011079D0 (en) * | 2010-07-01 | 2010-08-18 | Court Of Edinburgh Napier Univ | Process for the manufacture of biofuels |
DE102012208295A1 (en) | 2011-05-16 | 2012-12-27 | Behr Gmbh & Co. Kg | Method for manufacturing thermoelectric module for manufacture of thermoelectric generator utilized in vehicle, involves sintering or pressing joining material to form joining seam region between thermoelectric and housing elements |
CA2860463A1 (en) | 2012-02-17 | 2013-08-22 | Greenfield Specialty Alcohols Inc. | Method and system for electro-assisted hydrogen production from organic material |
DE102012210627B4 (en) | 2012-06-22 | 2016-12-15 | Eberspächer Exhaust Technology GmbH & Co. KG | Thermoelectric module, heat exchanger, exhaust system and internal combustion engine |
WO2014015405A1 (en) * | 2012-07-26 | 2014-01-30 | Advel Tecnologia E Comércia Ltda. | Process for producing alcohol by fermentation of sugars |
TW201422903A (en) | 2012-12-10 | 2014-06-16 | Ind Tech Res Inst | Thermoelectric generatorand thermoelectric generating system |
-
2013
- 2013-09-02 BR BR102013022434A patent/BR102013022434B8/en active IP Right Grant
-
2014
- 2014-08-29 JP JP2016539367A patent/JP6445018B2/en not_active Expired - Fee Related
- 2014-08-29 CN CN201480048258.7A patent/CN105722988B/en not_active Expired - Fee Related
- 2014-08-29 US US14/916,110 patent/US9783830B2/en active Active
- 2014-08-29 WO PCT/BR2014/000300 patent/WO2015027306A1/en active Application Filing
- 2014-08-29 RU RU2016104799A patent/RU2670014C2/en not_active IP Right Cessation
- 2014-08-29 ES ES14761782T patent/ES2745642T3/en active Active
- 2014-08-29 EP EP14761782.3A patent/EP3041943B1/en active Active
- 2014-08-29 AU AU2014311204A patent/AU2014311204B2/en active Active
-
2016
- 2016-03-02 ZA ZA2016/01427A patent/ZA201601427B/en unknown
Non-Patent Citations (3)
Title |
---|
CASTRO ET AL: "The effect of the electric field on lag-phase, ethanol and beta-galactosidase production of a recombinant S. cerevisiae growing on lactose", 2ND MERCOSUR CONGRESS ON CHEMICAL ENGINEERING & 4TH MERCOSUR CONGRESS ON PROCESS SYSTEMS ENGINEERING; RIO DE JANEIRO, BRAZIL, 2005, 2005, pages 1 - 10, XP002731360, Retrieved from the Internet <URL:https://repositorium.sdum.uminho.pt/bitstream/1822/3476/1/ENPROMER_0130%5B1%5D.pdf> [retrieved on 20141017] * |
JEON ET AL: "Improvement of ethanol production by electrochemical redox combination of Zymomonas mobilis and Saccharomyces cerevisiae", JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, vol. 20, 2010, pages 94 - 100, XP002731352 * |
STEINBUSCH ET AL: "Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures", ENVIRONMENTAL SCIENCE AND TECHNOLOGY, vol. 44, 2010, pages 513 - 517, XP002731351 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016034249A (en) * | 2014-08-03 | 2016-03-17 | 国立大学法人 奈良先端科学技術大学院大学 | Yeast culture method |
WO2017108957A1 (en) * | 2015-12-22 | 2017-06-29 | Mahle Metal Leve S/A | Hydrogen generating electrolytic cell in alcoholic fermentation medium |
Also Published As
Publication number | Publication date |
---|---|
RU2016104799A (en) | 2017-10-09 |
BR102013022434A2 (en) | 2015-08-11 |
AU2014311204B2 (en) | 2017-08-10 |
JP2016528924A (en) | 2016-09-23 |
CN105722988A (en) | 2016-06-29 |
JP6445018B2 (en) | 2018-12-26 |
EP3041943B1 (en) | 2019-06-19 |
BR102013022434B1 (en) | 2017-03-28 |
US20160201090A1 (en) | 2016-07-14 |
ES2745642T3 (en) | 2020-03-03 |
EP3041943A1 (en) | 2016-07-13 |
BR102013022434B8 (en) | 2022-06-21 |
CN105722988B (en) | 2019-12-06 |
ZA201601427B (en) | 2018-11-28 |
RU2670014C2 (en) | 2018-10-17 |
US9783830B2 (en) | 2017-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Brethauer et al. | Continuous hydrolysis and fermentation for cellulosic ethanol production | |
KR101643429B1 (en) | Production of butanediol by anaerobic microbial fermentation | |
US8377665B2 (en) | Alcohol production process | |
JP6813354B2 (en) | Systems and methods for controlling metabolite production in microbial fermentation | |
US20090226993A1 (en) | Novel strain and a novel process for ethanol production from lignocellulosic biomass at high temperature | |
Tang et al. | Continuous ethanol fermentation from non-sulfuric acid-washed molasses using traditional stirred tank reactors and the flocculating yeast strain KF-7 | |
US20110250629A1 (en) | Alcohol production process | |
Elena et al. | Current approaches to efficient biotechnological production of ethanol | |
Teramoto et al. | Effects of potential inhibitors present in dilute acid-pretreated corn stover on fermentative hydrogen production by Escherichia coli | |
AU2014311204B2 (en) | A process for microbial fermentation of sugary substrates and use of the hydrogen in atomic, ionic or gaseous state in said process | |
AU2014311204A1 (en) | A process for microbial fermentation of sugary substrates and use of the hydrogen in atomic, ionic or gaseous state in said process | |
CN103184243A (en) | Fermentation production method for xylitol | |
Ma et al. | Alleviation of harmful effect in stillage reflux in food waste ethanol fermentation based on metabolic and side-product accumulation regulation | |
JP2005211042A (en) | Method for producing fumaric acid | |
Kersey et al. | Continuous Fermentation of Xylose to Ethanol by Clostridium thermosaccharolyticum With and Without Ethanol Removal | |
MANCILHA | SILVIO S. SILVA,* MARIA GA FELIPE, AND |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14761782 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2014761782 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014761782 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2016539367 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14916110 Country of ref document: US Ref document number: 16053967 Country of ref document: CO Ref document number: IDP00201601412 Country of ref document: ID |
|
ENP | Entry into the national phase |
Ref document number: 2014311204 Country of ref document: AU Date of ref document: 20140829 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2016104799 Country of ref document: RU Kind code of ref document: A |