WO2015020966A1 - Cooperative multiple beam transmission - Google Patents

Cooperative multiple beam transmission Download PDF

Info

Publication number
WO2015020966A1
WO2015020966A1 PCT/US2014/049621 US2014049621W WO2015020966A1 WO 2015020966 A1 WO2015020966 A1 WO 2015020966A1 US 2014049621 W US2014049621 W US 2014049621W WO 2015020966 A1 WO2015020966 A1 WO 2015020966A1
Authority
WO
WIPO (PCT)
Prior art keywords
beams
channel
enb
processor
antennas
Prior art date
Application number
PCT/US2014/049621
Other languages
French (fr)
Inventor
Masoud Sajadieh
Hooman Shirani-Mehr
Debdeep CHATTERJEE
Apostolos Papathanassiou
Jong-Kae Fwu
Original Assignee
Intel IP Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US14/142,293 priority Critical patent/US9473276B2/en
Application filed by Intel IP Corporation filed Critical Intel IP Corporation
Priority to PCT/US2014/049621 priority patent/WO2015020966A1/en
Priority to CN201480039138.0A priority patent/CN105432027B/en
Priority to EP14833704.1A priority patent/EP3031145B1/en
Priority to HUE14833704A priority patent/HUE038671T2/en
Priority to ES14833704.1T priority patent/ES2681829T3/en
Publication of WO2015020966A1 publication Critical patent/WO2015020966A1/en
Priority to HK16110189.2A priority patent/HK1222051A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/025Structures with concrete columns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00692Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using simultaneous multiple data streams, e.g. cooperative multipoint [CoMP], carrier aggregation [CA] or multiple input multiple output [MIMO]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • H04W36/085Reselecting an access point involving beams of access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/26Reselection being triggered by specific parameters by agreed or negotiated communication parameters
    • H04W36/28Reselection being triggered by specific parameters by agreed or negotiated communication parameters involving a plurality of connections, e.g. multi-call or multi-bearer connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Massive multiple-input and multiple-output Massive multiple-input and multiple-output
  • FD-MIMO Full Dimension MIMO
  • Such large antenna arrays are capable of achieving higher spectral efficiencies by serving a greater number of users simultaneously.
  • large antenna arrays are being considered as a promising new technology to deliver capacity enhancement in the future releases of 3GPP Long-Term Evolution (LTE) and LTE- Advanced (LTE-A) cellular systems.
  • LTE Long-Term Evolution
  • LTE-A LTE- Advanced
  • Interference is a major source of performance degradation in cellular systems.
  • Massive MIMO using very large antenna arrays can substantially reduce interference and increase throughput.
  • Higher number of antenna elements in a closely spaced antenna configuration enhances angular and spatial resolution by producing narrow and directive beams, thereby mitigating the interference.
  • Coordinated Multi-Point is another technique to combat interference particularly for cell-edge cellular users wherein interfering transmitting points cooperate to boost average and cell-edge throughputs.
  • FIG. 1 is a diagram of a large antenna array having multiple directive beams as transmission points suitable for cooperative multiple beam transmission in accordance with one or more embodiments;
  • FIG. 2A, FIG. 2B and FIG. 2C are diagrams illustrating typical scenarios of cooperative multiple beam transmission is in accordance with one or more embodiments
  • FIG. 3 is a diagram of two-dimensional sub-sampling of an antenna array in accordance with one or more embodiments
  • FIG. 4A and FIG. 4B are diagrams of a horizontal training phase and a vertical training phase, respectively, in accordance with one or more embodiments;
  • FIG. 5 is a diagram of horizontal and vertical channel state information acquisition staggered in time and stacked in frequency domains in accordance with one or more embodiments
  • FIG. 6 is a diagram of a channel state information (CSI) process in accordance with one or more embodiments
  • FIG. 7 is a diagram of beam cooperation modes for multiple beams in accordance with one or more embodiments.
  • FIG. 8 is a block diagram of an information handling system capable of cooperative multiple beam transmission in accordance with one or more embodiments.
  • FIG. 9 is an isometric view of an information handling system of FIG. 8 that optionally may include a touch screen in accordance with one or more embodiments.
  • Coupled may mean that two or more elements are in direct physical and/or electrical contact.
  • coupled may also mean that two or more elements may not be in direct contact with each other, but yet may still cooperate and/or interact with each other.
  • “coupled” may mean that two or more elements do not contact each other but are indirectly joined together via another element or intermediate elements.
  • “On,” “overlying,” and “over” may be used to indicate that two or more elements are in direct physical contact with each other. However, “over” may also mean that two or more elements are not in direct contact with each other. For example, “over” may mean that one element is above another element but not contact each other and may have another element or elements in between the two elements.
  • the term “and/or” may mean “and”, it may mean “or”, it may mean “exclusive-or”, it may mean “one”, it may mean “some, but not all”, it may mean “neither", and/or it may mean “both”, although the scope of claimed subject matter is not limited in this respect.
  • the terms “comprise” and “include,” along with their derivatives, may be used and are intended as synonyms for each other.
  • a massive multiple-input, multiple-output (Massive MIMO) system 100 may comprise a large antenna array 110 having a large number of antenna elements 112 that are driven coherently to create individual directive beams 114.
  • Large antenna array 100 may be coupled to an enhanced Node B (eNB) 120, for example where massive MIMO system 100 is in compliance with a Third Generation Partnership Project (3GPP) standard as one example.
  • eNB enhanced Node B
  • 3GPP Third Generation Partnership Project
  • Antenna array 110 may be located within a given cell 116 of a cellular network or wideband wide area network (WW AN), or alternatively may be physically located at a vertex of cell 116, and the scope of the claimed subject matter is not limited in this respect.
  • a multiple beam transmission scheme as shown in FIG. 1 may be considered as analogous to a Coordinated Multi-Point (CoMP) system as follows.
  • Each of the beams 114 may be considered as a transmission point (TP) having the same physical identification (ID) similar to CoMP Scenario 4.
  • TP transmission point
  • ID physical identification
  • a multiple beam 114 scheme can be analogized to a co-located CoMP scenario to feature almost zero-latency cooperation among the transmission points.
  • a measurement set and/or coordinating set 118 may comprise all of the beams 114 or a group of the beams.
  • a transmitting set may be a subset of the beams 114 to reduce cross-beam interference. Scenarios for cooperative multiple beam transmission are shown in and described with respect to FIG. 2A, FIG. 2B and FIG. 2C, below.
  • FIG. 2A illustrates cross-beam interference as result of one or more side-lobes 212 of one beam 214 interfering with another beam 216 such that a side-lobe 212 may interfere with transmission via beam 216 to user equipment (UE) 210.
  • FIG. 2B illustrates interference as a result of UE 210 being situated at or near an overlapping region between beam 218 and beam 220.
  • 2C illustrates extension of coverage to UE 210 being outside a main direction of any beam, for example where UE 210 is located between beam 222 and beam 224.
  • identification of a subset of the beams 114 may be performed in a first phase, and a cooperation mechanism may be performed in a second phase.
  • a cooperation mechanism may be performed in a second phase.
  • For the first phase there is a likelihood that two or more beams may create mutual interference, especially for closely-spaced beam formations.
  • eNB 120 may determine which beam 114 is the strongest beam for transmission to selected UE 210, and further may determine which of the beams 114 potentially may be an interfering beam for the selected UE 210.
  • large antenna array 110 may comprise an array of 64 antenna elements 112 that radiate in both a horizontal plane and a vertical plane. It should be noted that the large antenna array 110 may comprise various other configurations of antenna elements 112, and the scope of the claimed subject matter is not limited in this respect.
  • the beams 114 to be identified may be identified based at least in part on a coarse representation of a channel of UE 210 via a limited set of antenna elements 112 instead of obtaining channel measurements for all of the antenna elements 112 of large antenna array 110.
  • a two-dimensional approach is shown in described with respect to FIG. 3, below, and a one- dimensional approach is shown in and described with respect to FIG. 4A and FIG. 4B, below.
  • two-dimensional (2D) sub-sampling of the array of antenna elements 112 may be performed to arrive at an estimate of the channel for user equipment (UE) 210.
  • large antenna array 110 may comprise an array of 64 antenna elements 112, even though all 64 antenna elements 112 may not be shown in FIG. 3.
  • eNB enhanced node B
  • a subset of antenna elements 112 may be chosen for transmission and mapped to the CSI-RS ports.
  • the maximum number of antenna elements in the subset may be set to eight to conform to Release 10 of the 3GPP specification for Transmission Mode 9 (TM-9).
  • the training phase may start with the transmission of CSI-RS as prescribed by Transmission Mode 9 to create a non-directive wide channel toward a k-th user wherein the channel is denoted by // (Wlde) ⁇ 6 training signals are received at antenna 310 of UE 210 which processes the CSI information and feeds the CSI information back to eNB 120.
  • the channel estimate may be processed as follows.
  • the received precoding matrix indicator (PMI), denoted by w ⁇ lde ⁇ forms an approximation of w ⁇ lde ⁇ .
  • the indexes of the first and second dominant interfering beams m 1 , m 2 may be determined to identify the next two strongest beams 114. If the interpolation turns out to be too coarse, the process may be repeated with a new subset of antenna elements 120 spaced apart properly to obtain additional PMI samples and increasing the precision of beam identification.
  • FIG. 4 A and FIG. 4B diagrams of a horizontal training phase and a vertical training phase, respectively, in accordance with one or more embodiments will be discussed.
  • horizontal and vertical wide channels may be formed and utilized to arrive at a compound channel for the overall large antenna array 110 as outlined, below.
  • FIG. 4A at eNB 210 transmission of 8 CSI-RS ports are mapped from 8 horizontal antenna elements
  • FIG. 4B at eNB 210, another transmission of 8 CSI-RS ports are mapped from 8 vertical antenna elements 112 at 412 to result in H ⁇ k lde ⁇ at the same UE 210.
  • the horizontal and vertical mappings can be performed in either consecutive subframes in the time domain or in different sub-bands in the frequency domain as shown in and described with respect to FIG. 5, below.
  • FIG. 5 a diagram of horizontal and vertical CSI acquisition staggered in time and stacked in frequency domains in accordance with one or more embodiments will be discussed.
  • two horizontal and vertical mappings may be done in either consecutive subframes in the time domain or in different sub- bands in the frequency domain.
  • a horizontal CSI mapping (H-CSI) 510 may be performed in a first subframe 514
  • a vertical CSI mapping (V-CSI) 512 may be performed in a second subframe 516 in a given CSI period.
  • a horizontal CSI mapping (H-CSI) 518 may be performed in the same subframe 522 as a vertical CSI mapping (V-CSI) 520 but in different frequency sub-bands within a given CSI period.
  • H-CSI and V-CSI codewords may be fed back to eNB 120.
  • the best beam index, m 0 is identified by the best, or nearly best, alignment between ⁇ ⁇ and This operation is substantially identical to the 2D sub-array training case as shown in and described with respect to FIG. 3, above. Similarly, the first and second dominant interfering beams m 1 , m 2 may be identified.
  • the 2D sub-array scheme may follow a procedure for transmission mode 9 for Release 10 of the 3GPP specification.
  • the ID time domain horizontal/vertical CSI approach the CSI process 600 may involve two separate CSI processes, a horizontal CSI process (H-CSI) 610 and a vertical CSI process (V-CSI) 612 as shown in FIG. 6.
  • the time domain two- process CSI arrangement of FIG. 6 may be implemented in multiple ways as follows.
  • the facility of "resource-restricted CSI" in the form of configuring a UE 210 with separate subframe sets C CSI Q and C CSI 1 may be reused.
  • these two-subframe sets may correspond to H-CSI and V-CSI, configured through higher layers.
  • CSI subframe sets C CSIfi and C CSI>1 are configured by higher layers, each CSI reference resource belongs to either sets C CSI Q or C CSI 1 but not to both.
  • the UE 210 in transmission mode 10, the UE 210 may be configured with multiple CSI processes with the description of Section 7.2 in TS 26.213 of the 3GPP specification.
  • a UE 210 in transmission mode 10 may be configured with one or more CSI processes per serving cell by higher layers.
  • Each CSI process may be associated with a CSI-RS resourced defined in Section 7.2.5 and a CSI-interference measurement (CSI-IM) resource defined in Section 7.2.6.
  • CSI-IM CSI-interference measurement
  • a CSI reported by the UE 210 corresponds to a CSI process configured by higher layers.
  • Each CSI process can be configured with or without PMI/RI reporting by higher layer signaling.
  • the CSI process may utilize a signal only structure unlike that of transmission mode 10 with signal and interference hypotheses.
  • the UE 210 may be configured with only two signal only alternating CSI processes in each CSI-RS period wherein the UE 210 is expected to use common interference measurements as part of a common interference hypothesis, which may be a modification to the behavior of the UE 210 relative to transmission mode 9.
  • one or more beam cooperation mechanisms may be implemented to address the interference. Based at least in part on the outcome of beam identification, the following modes may be distinguished with reference to the notation as illustrated in FIG. 7 where y 1( y 2 , ⁇ , y 4 are pre-set system thresholds, ⁇ t>k > ⁇ > ⁇ are bases corresponding to the strongest and two dominant interfering beams, and q k denotes the message intended for the desired UE 210, user k.
  • the first mode is interference coordination wherein all identified beams may be valid carriers. Scheduling on the 0 m , ⁇ ⁇ beams may be delayed so that the beams may be reused for user k which is assumed to be selected by the scheduler function as the pending service target.
  • DM-RS precoded demodulation reference signal
  • the UE 210 should have access to the precoded demodulation reference signal (DM-RS) of each beam (3 ⁇ 4 ⁇ 3 ⁇ 4 ., a3 ⁇ 40 m , ?3 ⁇ 40 n ) in order to coherently combine the signals received from all three beams in a manner similar to Joint Transmission (JT) mode of Coordinated Multipoint (CoMP).
  • JT Joint Transmission
  • CoMP Coordinated Multipoint
  • the second mode is interference avoidance which may be achieved by muting the 0 m , ⁇ ⁇ beams and delaying scheduling on them.
  • the received signal may have the same form as that of a no- collision case, above, similar to the Dynamic Point Blanking (DPB) of the CS/CB mode of CoMP.
  • DPB Dynamic Point Blanking
  • cooperation may take on the following form. If two beams such as the 0 fe , ⁇ ⁇ beams are almost equally strong, that is if
  • the UE 210 in the white space may be served after a basis update so it may receive a direct beam.
  • both spatial multiplexing and beam diversity modes may be supported. To support either mode, the UE 210 should be provided with precoded DM-RS of each beam (3 ⁇ 4. ⁇ 3 ⁇ 4 ., ⁇ ) so as to enable demodulation of the symbols.
  • the same symbol or codeword on different beams results in the following received signal and corresponding signal-to-interference ration for the user k.
  • the received signal and SINRs per stream are given by the following (assuming perfect cancellation of cross-stream interference).
  • /; nter refers to the out-of-cell interference and not inter-beam interference.
  • each beam will transmit its own DM-RS, coordinated by the eNB 120, and the UE 210 should recognize per beam DM-RS in order to coherently combine multiple beams in the case of Interference Coordination or Beam Diversity modes of operation as described herein, above.
  • This will impact the behavior of the UE 210 as codeword-to-layer mapping with multiple layers, hence DM-RS ports, may not be supported during initial transmissions when only one codeword is enabled.
  • the antenna port, number of layer indication for one codeword in format 2C is tabulated in the left half of Table 5.3.3.1.5C-1 in TS 26.212 of the 3GPP specification as reproduced, below.
  • the UE 210 monitors the strength of the beams in the cooperation set for radio resource management operations such as link adaptation in the case of spatial multiplexing. This can be achieved by separate CSI-RS process corresponding to each beam.
  • Information handling system 800 of FIG. 8 may tangibly embody any one or more of the elements described herein, above, including for example enhanced Node B 120 and/or user equipment 210, with greater or fewer components depending on the hardware specifications of the particular device.
  • information handling system 800 represents one example of several types of computing platforms, information handling system 800 may include more or fewer elements and/or different arrangements of elements than shown in FIG. 8, and the scope of the claimed subject matter is not limited in these respects.
  • information handling system 800 may include an applications processor 810 and a baseband processor 812.
  • Applications processor 810 may be utilized as a general-purpose processor to run applications and the various subsystems for information handling system 800.
  • Applications processor 810 may include a single core or alternatively may include multiple processing cores wherein one or more of the cores may comprise a digital signal processor or digital signal processing (DSP) core.
  • applications processor 810 may include a graphics processor or coprocessor disposed on the same chip, or alternatively a graphics processor coupled to applications processor 810 may comprise a separate, discrete graphics chip.
  • Applications processor 810 may include on board memory such as cache memory, and further may be coupled to external memory devices such as synchronous dynamic random access memory (SDRAM) 814 for storing and/or executing applications during operation, and NAND flash 816 for storing applications and/or data even when information handling system 800 is powered off.
  • SDRAM synchronous dynamic random access memory
  • NAND flash 816 for storing applications and/or data even when information handling system 800 is powered off.
  • instructions to operate or configure the information handling system 800 and/or any of its components or subsystems to operate in a manner as described herein may be stored on a article of manufacture comprising a non-transitory storage medium.
  • the storage medium may comprise any of the memory devices shown in and described herein, although the scope of the claimed subject matter is not limited in this respect.
  • Baseband processor 812 may control the broadband radio functions for information handling system 800.
  • Baseband processor 812 may store code for controlling such broadband radio functions in a NOR flash 818.
  • Baseband processor 812 controls a wireless wide area network (WW AN) transceiver 820 which is used for modulating and/or demodulating broadband network signals, for example for communicating via a 3 GPP LTE or LTE- Advanced network or the like.
  • WW AN wireless wide area network
  • WW AN transceiver 820 may operate according to any one or more of the following radio communication technologies and/or standards including but not limited to: a Global System for Mobile Communications (GSM) radio communication technology, a General Packet Radio Service (GPRS) radio communication technology, an Enhanced Data Rates for GSM Evolution (EDGE) radio communication technology, and/or a Third Generation Partnership Project (3GPP) radio communication technology, for example Universal Mobile Telecommunications System (UMTS), Freedom of Multimedia Access (FOMA), 3GPP Long Term Evolution (LTE), 3GPP Long Term Evolution Advanced (LTE Advanced), Code division multiple access 2000 (CDMA2000), Cellular Digital Packet Data (CDPD), Mobitex, Third Generation (3G), Circuit Switched Data (CSD), High-Speed Circuit-Switched Data (HSCSD), Universal Mobile Telecommunications System (Third Generation) (UMTS (3G)), Wideband Code Division Multiple Access (Universal Mobile Telecommunications System) (W-CDMA (UMTS)), High Speed Packet Access (HSPA), High Speed Pack
  • Pre-4G UMTS Terrestrial Radio Access
  • UTRA Evolved UMTS Terrestrial Radio Access
  • LTE Advanced (4G) Long Term Evolution Advanced (4G)
  • cdmaOne 2G
  • CDMA2000 (3G) Code division multiple access 2000
  • AMPS Advanced Mobile Phone System
  • TACS/ETACS Total Access Communication System
  • D-AMPS Digital AMPS
  • PTT Push-to-talk
  • MTS Mobile Telephone System
  • IMTS Improved Mobile Telephone System
  • AMTS Advanced Mobile Telephone System
  • OLT Neorwegian for Offentlig Landmobil kgi, Public Land Mobile Telephony
  • MTD Mobile telephony
  • ARP Public Automated Land Mobile
  • the WW AN transceiver 820 couples to one or more power amps 822 respectively coupled to one or more antennas 824 for sending and receiving radio-frequency signals via the WW AN broadband network.
  • the baseband processor 812 also may control a wireless local area network (WLAN) transceiver 826 coupled to one or more suitable antennas 828 and which may be capable of communicating via a Wi-Fi, Bluetooth®, and/or an amplitude modulation (AM) or frequency modulation (FM) radio standard including an IEEE 802.11 a/b/g/n standard or the like.
  • WLAN wireless local area network
  • AM amplitude modulation
  • FM frequency modulation
  • any one or more of SDRAM 814, NAND flash 816 and/or NOR flash 818 may comprise other types of memory technology such as magnetic memory, chalcogenide memory, phase change memory, or ovonic memory, and the scope of the claimed subject matter is not limited in this respect.
  • applications processor 810 may drive a display 830 for displaying various information or data, and may further receive touch input from a user via a touch screen 832 for example via a finger or a stylus.
  • An ambient light sensor 834 may be utilized to detect an amount of ambient light in which information handling system 800 is operating, for example to control a brightness or contrast value for display 830 as a function of the intensity of ambient light detected by ambient light sensor 834.
  • One or more cameras 836 may be utilized to capture images that are processed by applications processor 810 and/or at least temporarily stored in NAND flash 816.
  • applications processor may couple to a gyroscope 838, accelerometer 840, magnetometer 842, audio coder/decoder (CODEC) 844, and/or global positioning system (GPS) controller 846 coupled to an appropriate GPS antenna 848, for detection of various environmental properties including location, movement, and/or orientation of information handling system 800.
  • controller 846 may comprise a Global Navigation Satellite System (GNSS) controller.
  • Audio CODEC 844 may be coupled to one or more audio ports 850 to provide microphone input and speaker outputs either via internal devices and/or via external devices coupled to information handling system via the audio ports 850, for example via a headphone and microphone jack.
  • applications processor 810 may couple to one or more input/output (I/O) transceivers 852 to couple to one or more I/O ports 854 such as a universal serial bus (USB) port, a high-definition multimedia interface (HDMI) port, a serial port, and so on.
  • I/O transceivers 852 may couple to one or more memory slots 856 for optional removable memory such as secure digital (SD) card or a subscriber identity module (SIM) card, although the scope of the claimed subject matter is not limited in these respects.
  • SD secure digital
  • SIM subscriber identity module
  • FIG. 9 shows an example implementation of information handling system 800 of FIG. 8 tangibly embodied as a cellular telephone, smartphone, or tablet type device or the like.
  • the information handling system 800 may comprise a housing 910 having a display 930 which may include a touch screen 932 for receiving tactile input control and commands via a finger 916 of a user and/or a via stylus 918 to control one or more applications processors 810.
  • the housing 910 may house one or more components of information handling system 800, for example one or more applications processors 810, one or more of SDRAM 814, NAND flash 816, NOR flash 818, baseband processor 812, and/or WW AN transceiver 820.
  • the information handling system 800 further may optionally include a physical actuator area 920 which may comprise a keyboard or buttons for controlling information handling system via one or more buttons or switches.
  • the information handling system 800 may also include a memory port or slot 856 for receiving nonvolatile memory such as flash memory, for example in the form of a secure digital (SD) card or a subscriber identity module (SIM) card.
  • SD secure digital
  • SIM subscriber identity module
  • the information handling system 800 may further include one or more speakers and/or microphones 924 and a connection port 854 for connecting the information handling system 800 to another electronic device, dock, display, battery charger, and so on.
  • information handling system 800 may include a headphone or speaker jack 928 and one or more cameras 836 on one or more sides of the housing 910. It should be noted that the information handling system 800 of FTG. 9 may include more or fewer elements than shown, in various arrangements, and the scope of the claimed subject matter is not limited in this respect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Quality & Reliability (AREA)
  • Environmental & Geological Engineering (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Briefly, in accordance with one or more embodiments, cooperation of multiple beams for transmission is provided by identifying at least two beams among multiple beams that are dominant for a user, determining if there is any beam collision between the at least two beams, and, if there is beam collision between the at least two beams, delaying scheduling on one or more weaker ones of the at least two beams for other users and combining the two or more beams for transmission to the user. Alternatively, cooperation of multiple beams for transmission is provided by, if there is beam collision between the at least two beams, muting one or more weaker ones of the at least two beams and transmitting to the user with a stronger one of the at least two beams.

Description

COOPERATIVE MULTIPLE BEAM TRANSMISSION
CROSS-REFERENCE TO RELATED APPLICATIONS The present application claims the benefit of U.S. Provisional Application No. 61/863,902 (Attorney Docket No. P60233Z) filed Aug. 8, 2013. Said Application No. 61/863,902 is hereby incorporated herein in its entirety.
BACKGROUND
Demand for cellular data capacity has grown exponentially. In order to meet this growth, interest has turned to cellular systems having large antenna arrays that are referred to as Massive multiple-input and multiple-output (Massive MIMO) or Full Dimension MIMO (FD-MIMO). Such large antenna arrays are capable of achieving higher spectral efficiencies by serving a greater number of users simultaneously. As a result, large antenna arrays are being considered as a promising new technology to deliver capacity enhancement in the future releases of 3GPP Long-Term Evolution (LTE) and LTE- Advanced (LTE-A) cellular systems.
Interference is a major source of performance degradation in cellular systems. Massive MIMO using very large antenna arrays can substantially reduce interference and increase throughput. Higher number of antenna elements in a closely spaced antenna configuration enhances angular and spatial resolution by producing narrow and directive beams, thereby mitigating the interference. Coordinated Multi-Point (CoMP) is another technique to combat interference particularly for cell-edge cellular users wherein interfering transmitting points cooperate to boost average and cell-edge throughputs.
DESCRIPTION OF THE DRAWING FIGURES
Claimed subject matter is particularly pointed out and distinctly claimed in the concluding portion of the specification. However, such subject matter may be understood by reference to the following detailed description when read with the accompanying drawings in which:
FIG. 1 is a diagram of a large antenna array having multiple directive beams as transmission points suitable for cooperative multiple beam transmission in accordance with one or more embodiments;
FIG. 2A, FIG. 2B and FIG. 2C are diagrams illustrating typical scenarios of cooperative multiple beam transmission is in accordance with one or more embodiments;
FIG. 3 is a diagram of two-dimensional sub-sampling of an antenna array in accordance with one or more embodiments; FIG. 4A and FIG. 4B are diagrams of a horizontal training phase and a vertical training phase, respectively, in accordance with one or more embodiments;
FIG. 5 is a diagram of horizontal and vertical channel state information acquisition staggered in time and stacked in frequency domains in accordance with one or more embodiments;
FIG. 6 is a diagram of a channel state information (CSI) process in accordance with one or more embodiments;
FIG. 7 is a diagram of beam cooperation modes for multiple beams in accordance with one or more embodiments;
FIG. 8 is a block diagram of an information handling system capable of cooperative multiple beam transmission in accordance with one or more embodiments; and
FIG. 9 is an isometric view of an information handling system of FIG. 8 that optionally may include a touch screen in accordance with one or more embodiments.
It will be appreciated that for simplicity and/or clarity of illustration, elements illustrated in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, if considered appropriate, reference numerals have been repeated among the figures to indicate corresponding and/or analogous elements.
DETAILED DESCRIPTION
In the following detailed description, numerous specific details are set forth to provide a thorough understanding of claimed subject matter. However, it will be understood by those skilled in the art that claimed subject matter may be practiced without these specific details. In other instances, well-known methods, procedures, components and/or circuits have not been described in detail.
In the following description and/or claims, the terms coupled and/or connected, along with their derivatives, may be used. In particular embodiments, connected may be used to indicate that two or more elements are in direct physical and/or electrical contact with each other. Coupled may mean that two or more elements are in direct physical and/or electrical contact. However, coupled may also mean that two or more elements may not be in direct contact with each other, but yet may still cooperate and/or interact with each other. For example, "coupled" may mean that two or more elements do not contact each other but are indirectly joined together via another element or intermediate elements. Finally, the terms "on," "overlying," and "over" may be used in the following description and claims. "On," "overlying," and "over" may be used to indicate that two or more elements are in direct physical contact with each other. However, "over" may also mean that two or more elements are not in direct contact with each other. For example, "over" may mean that one element is above another element but not contact each other and may have another element or elements in between the two elements. Furthermore, the term "and/or" may mean "and", it may mean "or", it may mean "exclusive-or", it may mean "one", it may mean "some, but not all", it may mean "neither", and/or it may mean "both", although the scope of claimed subject matter is not limited in this respect. In the following description and/or claims, the terms "comprise" and "include," along with their derivatives, may be used and are intended as synonyms for each other.
Referring now to FIG. 1, a diagram of a large antenna array having multiple directive beams as transmission points suitable for cooperative multiple beam transmission in accordance with one or more embodiments will be discussed. As shown in FIG. 1, a massive multiple-input, multiple-output (Massive MIMO) system 100 may comprise a large antenna array 110 having a large number of antenna elements 112 that are driven coherently to create individual directive beams 114. Large antenna array 100 may be coupled to an enhanced Node B (eNB) 120, for example where massive MIMO system 100 is in compliance with a Third Generation Partnership Project (3GPP) standard as one example. In one or more embodiments, the greater the number of antenna elements 112 in the large antenna array 110, the smaller the widths of the beams 114 so that narrower beams may be provided. Antenna array 110 may be located within a given cell 116 of a cellular network or wideband wide area network (WW AN), or alternatively may be physically located at a vertex of cell 116, and the scope of the claimed subject matter is not limited in this respect. A multiple beam transmission scheme as shown in FIG. 1 may be considered as analogous to a Coordinated Multi-Point (CoMP) system as follows. Each of the beams 114 may be considered as a transmission point (TP) having the same physical identification (ID) similar to CoMP Scenario 4. In a single cell 116, a multiple beam 114 scheme can be analogized to a co-located CoMP scenario to feature almost zero-latency cooperation among the transmission points. As the beams 114 are generated locally within the cell 116, no backhaul mechanism is required. Full scope of cooperation may be provided as data, allocation decisions, and beam feedback may be fully available to all the transmission points. As shown in FIG. 1, a measurement set and/or coordinating set 118 may comprise all of the beams 114 or a group of the beams. A transmitting set may be a subset of the beams 114 to reduce cross-beam interference. Scenarios for cooperative multiple beam transmission are shown in and described with respect to FIG. 2A, FIG. 2B and FIG. 2C, below.
Referring now to FIG. 2A, FIG. 2B and FIG. 2C, diagrams illustrating typical scenarios of cooperative multiple beam transmission is in accordance with one or more embodiments will be discussed. Cooperation among the beams 114 of large antenna array 110 may arise in several scenarios in order to achieve increased performance. FIG. 2A illustrates cross-beam interference as result of one or more side-lobes 212 of one beam 214 interfering with another beam 216 such that a side-lobe 212 may interfere with transmission via beam 216 to user equipment (UE) 210. FIG. 2B illustrates interference as a result of UE 210 being situated at or near an overlapping region between beam 218 and beam 220. FIG. 2C illustrates extension of coverage to UE 210 being outside a main direction of any beam, for example where UE 210 is located between beam 222 and beam 224. In order to implement cooperative multiple beam transmission in the above described scenarios, identification of a subset of the beams 114 may be performed in a first phase, and a cooperation mechanism may be performed in a second phase. For the first phase, there is a likelihood that two or more beams may create mutual interference, especially for closely-spaced beam formations. As a result, in one or more embodiments, eNB 120 may determine which beam 114 is the strongest beam for transmission to selected UE 210, and further may determine which of the beams 114 potentially may be an interfering beam for the selected UE 210. In one example embodiment, large antenna array 110 may comprise an array of 64 antenna elements 112 that radiate in both a horizontal plane and a vertical plane. It should be noted that the large antenna array 110 may comprise various other configurations of antenna elements 112, and the scope of the claimed subject matter is not limited in this respect. In one or more embodiments, the beams 114 to be identified may be identified based at least in part on a coarse representation of a channel of UE 210 via a limited set of antenna elements 112 instead of obtaining channel measurements for all of the antenna elements 112 of large antenna array 110. A two-dimensional approach is shown in described with respect to FIG. 3, below, and a one- dimensional approach is shown in and described with respect to FIG. 4A and FIG. 4B, below.
Referring now to FIG. 3, a diagram of two-dimensional sub-sampling of an antenna array in accordance with one or more embodiments will be discussed. As shown in FIG. 3, two- dimensional (2D) sub-sampling of the array of antenna elements 112 may be performed to arrive at an estimate of the channel for user equipment (UE) 210. For the example discussed, large antenna array 110 may comprise an array of 64 antenna elements 112, even though all 64 antenna elements 112 may not be shown in FIG. 3. At enhanced node B (eNB) 120, a subset of antenna elements 112 may be chosen for transmission and mapped to the CSI-RS ports. The maximum number of antenna elements in the subset may be set to eight to conform to Release 10 of the 3GPP specification for Transmission Mode 9 (TM-9). In the example shown in FIG. 3, four antenna elements 112 are selected as the subset for training. The training phase may start with the transmission of CSI-RS as prescribed by Transmission Mode 9 to create a non-directive wide channel toward a k-th user wherein the channel is denoted by //(Wlde) ^6 training signals are received at antenna 310 of UE 210 which processes the CSI information and feeds the CSI information back to eNB 120. At eNB 120, the channel estimate may be processed as follows.
Let denote the channel direction of the transmitting antennas to UE 210.
Figure imgf000007_0001
The received precoding matrix indicator (PMI), denoted by w^lde^ forms an approximation of w^lde^ . The received PMI w^lde^ may be interpolated to arrive at an approximation to the precoding weights over all of the antenna elements 112, that is wk, to be derived based at least in part on 2D interpolation, that is wk =
Figure imgf000007_0002
Given a fixed basis function to generate beams 114 such as 0m : 64 x \, m = 0, ... , , the best beam index, m0, for the best and/or strongest beam 114 may be determined by the extent of alignment between wk and each 0m for M active beams. One possible measure, but not the only measure, is maxm\(wk >m ) \ . In addition, the indexes of the first and second dominant interfering beams m1, m2 may be determined to identify the next two strongest beams 114. If the interpolation turns out to be too coarse, the process may be repeated with a new subset of antenna elements 120 spaced apart properly to obtain additional PMI samples and increasing the precision of beam identification.
Referring now to FIG. 4 A and FIG. 4B, diagrams of a horizontal training phase and a vertical training phase, respectively, in accordance with one or more embodiments will be discussed. In one or more alternative embodiments, in order to identify a best beam for a given user equipment (UE) 210, horizontal and vertical wide channels may be formed and utilized to arrive at a compound channel for the overall large antenna array 110 as outlined, below. In FIG. 4A at eNB 210, transmission of 8 CSI-RS ports are mapped from 8 horizontal antenna elements
112 at 410 to result in H^k ide) at the k-th UE 210. In FIG. 4B, at eNB 210, another transmission of 8 CSI-RS ports are mapped from 8 vertical antenna elements 112 at 412 to result in H^k lde^ at the same UE 210. The horizontal and vertical mappings can be performed in either consecutive subframes in the time domain or in different sub-bands in the frequency domain as shown in and described with respect to FIG. 5, below.
Referring now to FIG. 5, a diagram of horizontal and vertical CSI acquisition staggered in time and stacked in frequency domains in accordance with one or more embodiments will be discussed. As discussed with respect to FIG. 4A and FIG. 4B, above, two horizontal and vertical mappings may be done in either consecutive subframes in the time domain or in different sub- bands in the frequency domain. As shown in FIG. 5, a horizontal CSI mapping (H-CSI) 510 may be performed in a first subframe 514, and a vertical CSI mapping (V-CSI) 512 may be performed in a second subframe 516 in a given CSI period. Alternatively, a horizontal CSI mapping (H-CSI) 518 may be performed in the same subframe 522 as a vertical CSI mapping (V-CSI) 520 but in different frequency sub-bands within a given CSI period.
In one or more embodiments, at UE 210, H-CSI and V-CSI codewords may be fed back to eNB 120. After receiving the horizontal and vertical codewords, a compound 3D codeword for Rank 1 maybe approximated as a Kronecker product of separable horizontal and vertical codewords, that is wk = wh k®w k: 8 x 8 and w^D^ = col(wk): 64 x 1. Given 0m: 64 x l, m = 0, ... , M, the best beam index, m0, is identified by the best, or nearly best, alignment between φτη and
Figure imgf000008_0001
This operation is substantially identical to the 2D sub-array training case as shown in and described with respect to FIG. 3, above. Similarly, the first and second dominant interfering beams m1, m2 may be identified.
Referring now to FIG. 6, a diagram of a channel state information (CSI) process in accordance with one or more embodiments will be discussed. In the two CSI acquisition techniques outlined, above, for either a 2D sub-array scheme or a compound ID vertical and horizontal sub-array scheme, the 2D sub-array scheme may follow a procedure for transmission mode 9 for Release 10 of the 3GPP specification. The ID time domain horizontal/vertical CSI approach, the CSI process 600 may involve two separate CSI processes, a horizontal CSI process (H-CSI) 610 and a vertical CSI process (V-CSI) 612 as shown in FIG. 6. The time domain two- process CSI arrangement of FIG. 6 may be implemented in multiple ways as follows. In one embodiment, if a legacy transmission mode 9 is utilized to enable beam cooperation, the facility of "resource-restricted CSI" in the form of configuring a UE 210 with separate subframe sets CCSI Q and CCSI 1 may be reused. According to Section 7.2.3 in TS 36.213 of the 3GPP specification, these two-subframe sets may correspond to H-CSI and V-CSI, configured through higher layers. If CSI subframe sets CCSIfi and CCSI>1 are configured by higher layers, each CSI reference resource belongs to either sets CCSI Q or CCSI 1 but not to both. In another embodiment, in transmission mode 10, the UE 210 may be configured with multiple CSI processes with the description of Section 7.2 in TS 26.213 of the 3GPP specification. A UE 210 in transmission mode 10 may be configured with one or more CSI processes per serving cell by higher layers. Each CSI process may be associated with a CSI-RS resourced defined in Section 7.2.5 and a CSI-interference measurement (CSI-IM) resource defined in Section 7.2.6. A CSI reported by the UE 210 corresponds to a CSI process configured by higher layers. Each CSI process can be configured with or without PMI/RI reporting by higher layer signaling. In yet another embodiment, the CSI process may utilize a signal only structure unlike that of transmission mode 10 with signal and interference hypotheses. In such an arrangement, the UE 210 may be configured with only two signal only alternating CSI processes in each CSI-RS period wherein the UE 210 is expected to use common interference measurements as part of a common interference hypothesis, which may be a modification to the behavior of the UE 210 relative to transmission mode 9.
Referring now to FIG. 7, a diagram of beam cooperation modes for multiple beams in accordance with one or more embodiments will be discussed. In one or more embodiments, once the strongest beam the next two dominant interfering beams are identified, one or more beam cooperation mechanisms may be implemented to address the interference. Based at least in part on the outcome of beam identification, the following modes may be distinguished with reference to the notation as illustrated in FIG. 7 where y1( y2, γ^, y4 are pre-set system thresholds, <t>k> τη> Φη are bases corresponding to the strongest and two dominant interfering beams, and qk denotes the message intended for the desired UE 210, user k. For dynamic beam selection, if \ (Wk> 0¾)l > Yi » wfe, φί )\, i = πι, η, then no beam collision occurs and beam 0fe is selected to carry the data similar to the Dynamic Point Selection (DPS) mode of Coordinated Multipoint (CoMP). The received signal contaminated with out-of-cell interference (7inter) and white noise can therefore be written as xk = Hk(pkqk + linter + nk.
In one or more embodiments, if \ {wk, (f)k)\— |(ίϊ¾, 0;)| < y2 and \{wk, 0;)| > y3, i = m, n, then beam collision occurs and one of the following two modes may be adopted. The first mode is interference coordination wherein all identified beams may be valid carriers. Scheduling on the 0m, φη beams may be delayed so that the beams may be reused for user k which is assumed to be selected by the scheduler function as the pending service target. The received signal is then given by the following equation (where a, β are the attenuating factors for the interfering beams relative to the strongest beams): xk = //¾¾ + φνι + βφn)qk + Iinter + nk. Where the UE 210 should have access to the precoded demodulation reference signal (DM-RS) of each beam (¾ø¾., a¾0m, ?¾0n) in order to coherently combine the signals received from all three beams in a manner similar to Joint Transmission (JT) mode of Coordinated Multipoint (CoMP). The second mode is interference avoidance which may be achieved by muting the 0m, φη beams and delaying scheduling on them. The received signal may have the same form as that of a no- collision case, above, similar to the Dynamic Point Blanking (DPB) of the CS/CB mode of CoMP.
For the case of a user falling in the white space between two beams, for example as shown in FIG. 2C, cooperation may take on the following form. If two beams such as the 0fe, φη beams are almost equally strong, that is if |<wk, 0k)|≤ |<wk, 0n)| > y4 and |<wk, 0k)| » |<wk< 0m)|, then coordination mode through joint transmission may be applied. Scheduling may be delayed on the 0m, φη beams so that they may be reused for user k. This may occur when no immediate scheduling on the (pm, φη beams exists and the white space UE 210 is the scheduling target by the scheduler. If there are pending allocations on the 0m, φη beams, the UE 210 in the white space may be served after a basis update so it may receive a direct beam. In the Joint Beam Transmission scheme, both spatial multiplexing and beam diversity modes may be supported. To support either mode, the UE 210 should be provided with precoded DM-RS of each beam (¾.ø¾., βΗκφη) so as to enable demodulation of the symbols.
For beam diversity, the same symbol or codeword on different beams results in the following received signal and corresponding signal-to-interference ration for the user k.
½ = Hfc (0fc + /?0n)<7fc + hnter + ¾
SNR _ (Φk+βΦn)HkHk (Φk+βΦn)
nter~*~nk
For spatial multiplexing, with different codewords per UE 210 on different beams, the received signal and SINRs per stream are given by the following (assuming perfect cancellation of cross-stream interference).
½ = Hfc (0fc<7fc,l + /?0n¾,2)<7fc + hnter + ¾
SNR 1 = nter+nk
In all of the above cases, /;nter refers to the out-of-cell interference and not inter-beam interference. Given coherent combining of the beams through individual DM-RS references, there is no inter-beam interference, that is, interference has been taken advantage of by cooperation among beams.
In general, there are two enhancements to enable cooperative multibeam transmission. In joint transmission mode, each beam will transmit its own DM-RS, coordinated by the eNB 120, and the UE 210 should recognize per beam DM-RS in order to coherently combine multiple beams in the case of Interference Coordination or Beam Diversity modes of operation as described herein, above. This will impact the behavior of the UE 210 as codeword-to-layer mapping with multiple layers, hence DM-RS ports, may not be supported during initial transmissions when only one codeword is enabled. The antenna port, number of layer indication for one codeword in format 2C is tabulated in the left half of Table 5.3.3.1.5C-1 in TS 26.212 of the 3GPP specification as reproduced, below. It is also stated in Section 5.3.3.1.5C of TS 36.212 that for the single enabled codeword, Value = 4, 5, 6 in Table 5.3.3.1.5C-1 are only supported for the retransmission of the corresponding transport block if that transport block has previously been transmitted using two, three or four layers, respectively. In support of coordinated beam transmission with a single codeword and multiple DM-RS ports, the current operation should be extended to allow mapping of a single codeword to multiple layers for initial transmissions as well, that is messages in the left column corresponding to values 4, 5, and 6 for the antenna ports, scrambling identity and number of layers indication parameter in DCI formats 2C and 2D also may be applicable for initial transmission.
Table S,3.3,1.SC-1 ; Antenna orifs), scrsmbfeg k!ent% a d r^mfeer of layers Indication
Figure imgf000011_0001
In any of the coordination modes, the UE 210 monitors the strength of the beams in the cooperation set for radio resource management operations such as link adaptation in the case of spatial multiplexing. This can be achieved by separate CSI-RS process corresponding to each beam.
Referring now to FIG. 8, a block diagram of an information handling system capable of cooperative multiple beam transmission in accordance with one or more embodiments in accordance with one or more embodiments will be discussed. Information handling system 800 of FIG. 8 may tangibly embody any one or more of the elements described herein, above, including for example enhanced Node B 120 and/or user equipment 210, with greater or fewer components depending on the hardware specifications of the particular device. Although information handling system 800 represents one example of several types of computing platforms, information handling system 800 may include more or fewer elements and/or different arrangements of elements than shown in FIG. 8, and the scope of the claimed subject matter is not limited in these respects.
In one or more embodiments, information handling system 800 may include an applications processor 810 and a baseband processor 812. Applications processor 810 may be utilized as a general-purpose processor to run applications and the various subsystems for information handling system 800. Applications processor 810 may include a single core or alternatively may include multiple processing cores wherein one or more of the cores may comprise a digital signal processor or digital signal processing (DSP) core. Furthermore, applications processor 810 may include a graphics processor or coprocessor disposed on the same chip, or alternatively a graphics processor coupled to applications processor 810 may comprise a separate, discrete graphics chip. Applications processor 810 may include on board memory such as cache memory, and further may be coupled to external memory devices such as synchronous dynamic random access memory (SDRAM) 814 for storing and/or executing applications during operation, and NAND flash 816 for storing applications and/or data even when information handling system 800 is powered off. In one or more embodiments, instructions to operate or configure the information handling system 800 and/or any of its components or subsystems to operate in a manner as described herein may be stored on a article of manufacture comprising a non-transitory storage medium. In one or more embodiments, the storage medium may comprise any of the memory devices shown in and described herein, although the scope of the claimed subject matter is not limited in this respect. Baseband processor 812 may control the broadband radio functions for information handling system 800. Baseband processor 812 may store code for controlling such broadband radio functions in a NOR flash 818. Baseband processor 812 controls a wireless wide area network (WW AN) transceiver 820 which is used for modulating and/or demodulating broadband network signals, for example for communicating via a 3 GPP LTE or LTE- Advanced network or the like.
In general, WW AN transceiver 820 may operate according to any one or more of the following radio communication technologies and/or standards including but not limited to: a Global System for Mobile Communications (GSM) radio communication technology, a General Packet Radio Service (GPRS) radio communication technology, an Enhanced Data Rates for GSM Evolution (EDGE) radio communication technology, and/or a Third Generation Partnership Project (3GPP) radio communication technology, for example Universal Mobile Telecommunications System (UMTS), Freedom of Multimedia Access (FOMA), 3GPP Long Term Evolution (LTE), 3GPP Long Term Evolution Advanced (LTE Advanced), Code division multiple access 2000 (CDMA2000), Cellular Digital Packet Data (CDPD), Mobitex, Third Generation (3G), Circuit Switched Data (CSD), High-Speed Circuit-Switched Data (HSCSD), Universal Mobile Telecommunications System (Third Generation) (UMTS (3G)), Wideband Code Division Multiple Access (Universal Mobile Telecommunications System) (W-CDMA (UMTS)), High Speed Packet Access (HSPA), High-Speed Downlink Packet Access (HSDPA), High-Speed Uplink Packet Access (HSUPA), High Speed Packet Access Plus (HSPA+), Universal Mobile Telecommunications System- Time-Division Duplex (UMTS-TDD), Time Division-Code Division Multiple Access (TD-CDMA), Time Division-Synchronous Code Division Multiple Access (TD-CDMA), 3rd Generation Partnership Project Release 8 (Pre-4th Generation) (3GPP Rel. 8 (Pre-4G)), UMTS Terrestrial Radio Access (UTRA), Evolved UMTS Terrestrial Radio Access (E-UTRA), Long Term Evolution Advanced (4th Generation) (LTE Advanced (4G)), cdmaOne (2G), Code division multiple access 2000 (Third generation) (CDMA2000 (3G)), Evolution-Data Optimized or Evolution-Data Only (EV-DO), Advanced Mobile Phone System (1st Generation) (AMPS (1G)), Total Access Communication System/Extended Total Access Communication System (TACS/ETACS), Digital AMPS (2nd Generation) (D-AMPS (2G)), Push-to-talk (PTT), Mobile Telephone System (MTS), Improved Mobile Telephone System (IMTS), Advanced Mobile Telephone System (AMTS), OLT (Norwegian for Offentlig Landmobil Telefoni, Public Land Mobile Telephony), MTD (Swedish abbreviation for Mobiltelefonisystem D, or Mobile telephony system D), Public Automated Land Mobile (Autotel/PALM), ARP (Finnish for Autoradiopuhelin, "car radio phone"), NMT (Nordic Mobile Telephony), High capacity version of NTT (Nippon Telegraph and Telephone) (Hicap), Cellular Digital Packet Data (CDPD), Mobitex, DataTAC, Integrated Digital Enhanced Network (iDEN), Personal Digital Cellular (PDC), Circuit Switched Data (CSD), Personal Handy-phone System (PHS), Wideband Integrated Digital Enhanced Network (WiDEN), iBurst, Unlicensed Mobile Access (UMA), also referred to as also referred to as 3 GPP Generic Access Network, or GAN standard), Zigbee, Bluetooth®, and/or general telemetry transceivers, and in general any type of RF circuit or RFI sensitive circuit. It should be noted that such standards may evolve over time, and/or new standards may be promulgated, and the scope of the claimed subject matter is not limited in this respect.
The WW AN transceiver 820 couples to one or more power amps 822 respectively coupled to one or more antennas 824 for sending and receiving radio-frequency signals via the WW AN broadband network. The baseband processor 812 also may control a wireless local area network (WLAN) transceiver 826 coupled to one or more suitable antennas 828 and which may be capable of communicating via a Wi-Fi, Bluetooth®, and/or an amplitude modulation (AM) or frequency modulation (FM) radio standard including an IEEE 802.11 a/b/g/n standard or the like. It should be noted that these are merely example implementations for applications processor 810 and baseband processor 812, and the scope of the claimed subject matter is not limited in these respects. For example, any one or more of SDRAM 814, NAND flash 816 and/or NOR flash 818 may comprise other types of memory technology such as magnetic memory, chalcogenide memory, phase change memory, or ovonic memory, and the scope of the claimed subject matter is not limited in this respect.
In one or more embodiments, applications processor 810 may drive a display 830 for displaying various information or data, and may further receive touch input from a user via a touch screen 832 for example via a finger or a stylus. An ambient light sensor 834 may be utilized to detect an amount of ambient light in which information handling system 800 is operating, for example to control a brightness or contrast value for display 830 as a function of the intensity of ambient light detected by ambient light sensor 834. One or more cameras 836 may be utilized to capture images that are processed by applications processor 810 and/or at least temporarily stored in NAND flash 816. Furthermore, applications processor may couple to a gyroscope 838, accelerometer 840, magnetometer 842, audio coder/decoder (CODEC) 844, and/or global positioning system (GPS) controller 846 coupled to an appropriate GPS antenna 848, for detection of various environmental properties including location, movement, and/or orientation of information handling system 800. Alternatively, controller 846 may comprise a Global Navigation Satellite System (GNSS) controller. Audio CODEC 844 may be coupled to one or more audio ports 850 to provide microphone input and speaker outputs either via internal devices and/or via external devices coupled to information handling system via the audio ports 850, for example via a headphone and microphone jack. In addition, applications processor 810 may couple to one or more input/output (I/O) transceivers 852 to couple to one or more I/O ports 854 such as a universal serial bus (USB) port, a high-definition multimedia interface (HDMI) port, a serial port, and so on. Furthermore, one or more of the I/O transceivers 852 may couple to one or more memory slots 856 for optional removable memory such as secure digital (SD) card or a subscriber identity module (SIM) card, although the scope of the claimed subject matter is not limited in these respects.
Referring now to FIG. 9, an isometric view of an information handling system of FIG. 8 that optionally may include a touch screen in accordance with one or more embodiments will be discussed. FIG. 9 shows an example implementation of information handling system 800 of FIG. 8 tangibly embodied as a cellular telephone, smartphone, or tablet type device or the like. The information handling system 800 may comprise a housing 910 having a display 930 which may include a touch screen 932 for receiving tactile input control and commands via a finger 916 of a user and/or a via stylus 918 to control one or more applications processors 810. The housing 910 may house one or more components of information handling system 800, for example one or more applications processors 810, one or more of SDRAM 814, NAND flash 816, NOR flash 818, baseband processor 812, and/or WW AN transceiver 820. The information handling system 800 further may optionally include a physical actuator area 920 which may comprise a keyboard or buttons for controlling information handling system via one or more buttons or switches. The information handling system 800 may also include a memory port or slot 856 for receiving nonvolatile memory such as flash memory, for example in the form of a secure digital (SD) card or a subscriber identity module (SIM) card. Optionally, the information handling system 800 may further include one or more speakers and/or microphones 924 and a connection port 854 for connecting the information handling system 800 to another electronic device, dock, display, battery charger, and so on. In addition, information handling system 800 may include a headphone or speaker jack 928 and one or more cameras 836 on one or more sides of the housing 910. It should be noted that the information handling system 800 of FTG. 9 may include more or fewer elements than shown, in various arrangements, and the scope of the claimed subject matter is not limited in this respect.
Although the claimed subject matter has been described with a certain degree of particularity, it should be recognized that elements thereof may be altered by persons skilled in the art without departing from the spirit and/or scope of claimed subject matter. It is believed that the subject matter pertaining to cooperative multiple beam transmission and/or many of its attendant utilities will be understood by the forgoing description, and it will be apparent that various changes may be made in the form, construction and/or arrangement of the components thereof without departing from the scope and/or spirit of the claimed subject matter or without sacrificing all of its material advantages, the form herein before described being merely an explanatory embodiment thereof, and/or further without providing substantial change thereto. It is the intention of the claims to encompass and/or include such changes.

Claims

What is claimed is: 1. An enhanced Node B (eNB) to provide cooperation of multiple beams for transmission, comprising:
a transceiver to transmit multiple beams to serve one or more user equipment (UE); and a processor coupled to the transceiver, the processor being configurable to: identify at least two beams among multiple beams that are dominant for a user;
determine if there is any beam collision between the at least two beams; and
if there is beam collision between the at least two beams, delay scheduling on one or more weaker ones of the at least two beams for other users and combine the two or more beams for transmission to the user.
2. An eNB as claimed in claim 1, wherein the processor is further configurable to:
if there is no beam collision between the at least two beams, transmit to the user with a stronger one of the at least two beams.
3. An eNB as claimed in claim 1, wherein the processor is further configurable to:
perform two-dimensional (2D) subsampling of a subset of a total number of antennas available for transmission for training to approximate a channel, and interpolate the approximate channel to arrive at an estimate of the channel for the total number of antennas.
4. An eNB as claimed in claim 3, wherein the processor is further configurable to repeat the 2D subsampling with a new subset of the total number of antennas if said interpolating is too coarse.
5. An eNB as claimed in claim 3, wherein the processor is further configurable to identify the at least two or more beams based at least in part on an extent of alignment between the estimate of the channel and a fixed basis function to generate the at least two or more beams.
6. An eNB as claimed in claim 1, wherein the processor is further configurable to identify the at least two or more beams by performing a horizontal channel mapping and a vertical channel mapping and combining the horizontal and vertical channel mappings to arrive at a compound channel for an entirety of an array of antennas.
7. An eNB as claimed in claim 6, wherein the horizontal channel mapping and the vertical channel mapping occur in consecutive subframes.
8. An eNB as claimed in claim 6, wherein the horizontal channel mapping and the vertical channel mapping occur in different frequency bands in a same subframe.
9. An eNB as claimed in claim 6, wherein the processor is further configurable to identify the at least two or more beams based at least in part on an extent of alignment between the compound channel and a fixed basis function to generate the at least two or more beams.
10. An enhanced Node B (eNB) to provide cooperation of multiple beams for transmission, comprising:
a transceiver to transmit multiple beams to serve one or more user equipment (UE); and a processor coupled to the transceiver, the processor being configurable to:
identify at least two beams among multiple beams that are dominant for a user;
determine if there is any beam collision between the at least two beams; and
if there is beam collision between the at least two beams, mute one or more weaker ones of the at least two beams and transmit to the user with a stronger one of the at least two beams.
11. An eNB as claimed in claim 10, wherein the processor is further configurable to transmit to the user with a stronger one of the at least two beams if there is no beam collision between the at least two beams.
12. An eNB as claimed in claim 10, wherein the processor is further configurable to identify the at least two or more beams by performing two-dimensional (2D) subsampling of a subset of a total number of antennas available for transmission for training to approximate a channel, and interpolating the approximate channel to arrive at an estimate of the channel for the total number of antennas.
13. An eNB as claimed in claim 12, wherein the processor is further configurable to repeating the subsampling with a new subset of the total number of antennas if the interpolation is too coarse.
14. An eNB as claimed in claim 12, wherein the processor is further configurable to identify the at least two or more beams based at least in part on an extent of alignment between the estimate of the channel and a fixed basis function to generate the at least two or more beams.
15. An eNB as claimed in claim 10, wherein the processor is further configurable to identify the at least two or more beams by performing a horizontal channel mapping and a vertical channel mapping and combining the horizontal and vertical channel mappings to arrive at a compound channel for an entirety of an array of antennas.
16. An eNB as claimed in claim 15, wherein the horizontal channel mapping and the vertical channel mapping occur in consecutive subframes.
17. An eNB as claimed in claim 15, wherein the horizontal channel mapping and the vertical channel mapping occur in different frequency bands in a same subframe.
18. An eNB as claimed in claim 15, wherein the processor is further configurable to identify the at least two or more beams based at least in part on an extent of alignment between the compound channel and a fixed basis function to generate the at least two or more beams.
19. A machine-readable medium having instructions stored thereon that, if executed, provide cooperation of multiple beams for transmission, by:
identifying at least two beams among multiple beams that are dominant for a user;
determining if there is any beam collision between the at least two beams;
if there is beam collision between the at least two beams, delaying scheduling on one or more weaker ones of the at least two beams for other users and combining the two or more beams for transmission to the user.
20. A machine-readable medium as claimed in claim 19, wherein the instructions, if executed, further result in:
if there is no beam collision between the at least two beams, transmitting to the user with a stronger one of the at least two beams.
21. A machine-readable medium as claimed in claim 19, wherein said identifying comprises performing two-dimensional (2D) subsampling of a subset of a total number of antennas available for transmission for training to approximate a channel, and interpolating the approximate channel to arrive at an estimate of the channel for the total number of antennas.
22. A machine-readable medium as claimed in claim 21, wherein the instructions, if executed, further result in, if said interpolating is too coarse, repeating said performing of a new subset of the total number of antennas.
23. A machine -readable medium as claimed in claim 21, wherein said identifying is based at least in part on an extent of alignment between the estimate of the channel and a fixed basis function to generate the at least two or more beams.
24. A machine-readable medium as claimed in claim 19, wherein said identifying comprises performing a horizontal channel mapping and a vertical channel mapping and combining the horizontal and vertical channel mappings to arrive at a compound channel for an entirety of an array of antennas.
25. A machine-readable medium as claimed in claim 24, wherein the horizontal channel mapping and the vertical channel mapping occur in consecutive subframes.
PCT/US2014/049621 2013-08-08 2014-08-04 Cooperative multiple beam transmission WO2015020966A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/142,293 US9473276B2 (en) 2013-08-08 2013-12-27 Cooperative multiple beam transmission
PCT/US2014/049621 WO2015020966A1 (en) 2013-08-08 2014-08-04 Cooperative multiple beam transmission
CN201480039138.0A CN105432027B (en) 2013-08-08 2014-08-04 Cooperate multi-beam transmission
EP14833704.1A EP3031145B1 (en) 2013-08-08 2014-08-04 Cooperative multiple beam transmission
HUE14833704A HUE038671T2 (en) 2013-08-08 2014-08-04 Cooperative multiple beam transmission
ES14833704.1T ES2681829T3 (en) 2013-08-08 2014-08-04 Transmission of multiple cooperative beams
HK16110189.2A HK1222051A1 (en) 2013-08-08 2016-08-26 Cooperative multiple beam transmission

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361863902P 2013-08-08 2013-08-08
US61/863,902 2013-08-08
US14/142,293 US9473276B2 (en) 2013-08-08 2013-12-27 Cooperative multiple beam transmission
US14/142,293 2013-12-27
PCT/US2014/049621 WO2015020966A1 (en) 2013-08-08 2014-08-04 Cooperative multiple beam transmission

Publications (1)

Publication Number Publication Date
WO2015020966A1 true WO2015020966A1 (en) 2015-02-12

Family

ID=65999789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/049621 WO2015020966A1 (en) 2013-08-08 2014-08-04 Cooperative multiple beam transmission

Country Status (7)

Country Link
US (1) US9473276B2 (en)
EP (1) EP3031145B1 (en)
CN (1) CN105432027B (en)
ES (1) ES2681829T3 (en)
HK (1) HK1222051A1 (en)
HU (1) HUE038671T2 (en)
WO (1) WO2015020966A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018017840A1 (en) * 2016-07-20 2018-01-25 Convida Wireless, Llc Mobility for radio devices using beamforming and selection

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105393467B (en) * 2013-06-28 2019-04-02 财团法人中央大学校产学协力团 Wave beam training device
US9948378B2 (en) * 2014-03-12 2018-04-17 Lg Electronics Inc. Method and device for transmitting reference signal in multi-antenna supporting wireless communication system
US10367625B2 (en) * 2014-07-03 2019-07-30 Lg Electronics Inc. Hybrid beamforming method and apparatus for multi-rank support in wireless access system
WO2016076657A1 (en) * 2014-11-13 2016-05-19 엘지전자 주식회사 Method for transmitting reference signal in multi-antenna wireless communication system and device for same
US10368354B2 (en) * 2015-03-25 2019-07-30 Lg Electronics Inc. Channel state information feedback method in multi-antenna wireless communication system and apparatus therefor
CN106470065B (en) 2015-08-14 2020-01-21 财团法人工业技术研究院 Method for transmitting and receiving channel state information reference signal, and base station and device thereof
US10205491B2 (en) * 2015-09-28 2019-02-12 Futurewei Technologies, Inc. System and method for large scale multiple input multiple output communications
US10305584B2 (en) * 2015-10-20 2019-05-28 Samsung Electronics Co., Ltd. Apparatus and method for performing beamforming operation in communication system supporting frequency division-multiple input multiple output scheme
KR102425095B1 (en) * 2015-10-20 2022-07-27 삼성전자주식회사 Apparatus and method for performing beam forming operation in communication system supporting frequency division-multiple input multiple output scheme
EP3391697B1 (en) 2015-12-17 2022-02-23 Sony Group Corporation Tracking area identifiers for relays
US10615862B2 (en) 2016-04-13 2020-04-07 Qualcomm Incorporated System and method for beam adjustment request
US10425200B2 (en) 2016-04-13 2019-09-24 Qualcomm Incorporated System and method for beam adjustment request
US10069555B2 (en) 2016-04-13 2018-09-04 Qualcomm Incorporated System and method for beam management
EP3476154A4 (en) * 2016-06-23 2020-01-15 Nokia Technologies Oy Beam change
US10154496B2 (en) * 2016-11-10 2018-12-11 Futurewei Technologies, Inc. System and method for beamformed reference signals in three dimensional multiple input multiple output communications systems
US10862646B2 (en) 2017-07-11 2020-12-08 Nokia Technologies Oy Polar coded broadcast channel
AU2017430821B2 (en) 2017-09-07 2023-04-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Discontinuous reception method, network device and terminal device
WO2019136645A1 (en) 2018-01-10 2019-07-18 Oppo广东移动通信有限公司 Method for determining state of a terminal device, terminal device, and access network device
CN115002911A (en) * 2018-06-15 2022-09-02 成都华为技术有限公司 Repeat transmission method and communication device
WO2020036807A1 (en) * 2018-08-17 2020-02-20 Blue Danube Systems, Inc. Channel sounding in hybrid massive mimo arrays
US10886991B2 (en) * 2019-05-22 2021-01-05 At&T Intellectual Property I, L.P. Facilitating sparsity adaptive feedback in the delay doppler domain in advanced networks
US11824637B2 (en) 2019-05-22 2023-11-21 At&T Intellectual Property I, L.P. Generating wireless reference signals in a different domain for transmission
US10979151B2 (en) * 2019-05-22 2021-04-13 At&T Intellectual Property I, L.P. Multidimensional grid sampling for radio frequency power feedback
US11050530B2 (en) 2019-06-27 2021-06-29 At&T Intellectual Property I, L.P. Generating wireless reference signals in a different domain for transmission with a collapsed time-frequency grid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100007573A1 (en) * 2007-04-10 2010-01-14 Akio Kuramoto Multibeam antenna
US20100056171A1 (en) * 2008-08-28 2010-03-04 Ramprashad Sean A Inter-cell approach to operating wireless beam-forming and user selection/scheduling in multi-cell environments based on limited signaling between patterns of subsets of cells
US20110065448A1 (en) * 2008-05-09 2011-03-17 Nortel Networks Limited System and Method for Supporting Antenna Beamforming in a Cellular Network
US20120202431A1 (en) * 2010-06-15 2012-08-09 Futurewei Technologies, Inc. System and Method for Transparent Coordinated Beam-Forming
US20130114451A1 (en) 2011-11-03 2013-05-09 Xw, Llc D/B/A Xtendwave Intra-cell and inter-cell interference mitigation methods for orthogonal frequency-division multiple access cellular networks

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130051321A1 (en) * 2011-08-24 2013-02-28 Qualcomm Incorporated Multiple description coding (mdc) for channel state information reference signals (csi-rs)
WO2013058612A1 (en) * 2011-10-19 2013-04-25 Samsung Electronics Co., Ltd. Uplink control method and apparatus in wireless communication system
US8976884B2 (en) * 2012-12-20 2015-03-10 Google Technology Holdings LLC Method and apparatus for antenna array channel feedback

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100007573A1 (en) * 2007-04-10 2010-01-14 Akio Kuramoto Multibeam antenna
US20110065448A1 (en) * 2008-05-09 2011-03-17 Nortel Networks Limited System and Method for Supporting Antenna Beamforming in a Cellular Network
US20100056171A1 (en) * 2008-08-28 2010-03-04 Ramprashad Sean A Inter-cell approach to operating wireless beam-forming and user selection/scheduling in multi-cell environments based on limited signaling between patterns of subsets of cells
US20120202431A1 (en) * 2010-06-15 2012-08-09 Futurewei Technologies, Inc. System and Method for Transparent Coordinated Beam-Forming
US20130114451A1 (en) 2011-11-03 2013-05-09 Xw, Llc D/B/A Xtendwave Intra-cell and inter-cell interference mitigation methods for orthogonal frequency-division multiple access cellular networks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3031145A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018017840A1 (en) * 2016-07-20 2018-01-25 Convida Wireless, Llc Mobility for radio devices using beamforming and selection
US10804989B2 (en) 2016-07-20 2020-10-13 Convida Wireless, Llc Mobility for radio devices using beamforming and selection
US10924171B2 (en) 2016-07-20 2021-02-16 Convida Wireless, Llc Distributed mobility for radio devices
EP3823391A1 (en) * 2016-07-20 2021-05-19 Convida Wireless, LLC Mobility for radio devices using beamforming
CN114641010A (en) * 2016-07-20 2022-06-17 艾普拉控股有限公司 Mobility of radio devices using beamforming and selection
US11616545B2 (en) 2016-07-20 2023-03-28 Ipla Holdings Inc. Distributed mobility for radio devices
US11923939B2 (en) 2016-07-20 2024-03-05 Ipla Holdings Inc. Distributed mobility for radio devices
CN114641010B (en) * 2016-07-20 2024-04-26 艾普拉控股有限公司 Mobility of radio devices using beamforming and selection

Also Published As

Publication number Publication date
CN105432027B (en) 2018-12-04
US9473276B2 (en) 2016-10-18
EP3031145A1 (en) 2016-06-15
ES2681829T3 (en) 2018-09-17
EP3031145A4 (en) 2017-03-29
CN105432027A (en) 2016-03-23
EP3031145B1 (en) 2018-05-30
HK1222051A1 (en) 2017-06-16
US20150043439A1 (en) 2015-02-12
HUE038671T2 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
EP3031145B1 (en) Cooperative multiple beam transmission
CN110999103B (en) Electronic device, method, and medium for wireless communication
US10574313B2 (en) Technique for full-duplex transmission in many-antenna MU-MIMO systems
WO2019029675A9 (en) Techniques for non-zero-power beams in wireless systems
US9300509B2 (en) Wireless communication system with common cell ID
US20140247860A1 (en) Codebook and codebook search
EP3110033B1 (en) Dual-stream beamforming method and device
US10797841B2 (en) Electronic device, wireless communication method and medium
WO2017080132A1 (en) System and method for channel quality measurement in single user super imposed transmission
US20220166486A1 (en) Type II CSI Port Selection Codebook Enhancement with Partial Reciprocity
US11038578B2 (en) Method and device for directional reciprocity in uplink and downlink communication
EP2643988A1 (en) Multi-layer beamforming with partial channel state information
WO2017148429A1 (en) Data transmission method and apparatus
CN114342283A (en) Transmit limited transmission of reference signals
CN110870212A (en) Electronic device, wireless communication method, and computer-readable medium
CN107534453B (en) Wireless node, radio node and method for transmitting and receiving reference signals
US11888564B2 (en) Method for quantization of combination coefficients associated with frequency domain compression
US20190036574A1 (en) Csi feedback for open loop fd-mimo transmission
CN115733523A (en) Transmission method, device, equipment and computer storage medium
CN109413666B (en) Data monitoring method of sniffer, storage medium and terminal
US20230076789A1 (en) System and Method for Phase Noise Reduction in Very High Frequency Spectrum
EP3382968B1 (en) Communication device and method for radio communication
KR102270667B1 (en) Receiver with receiver antenna diversity scheme which combines equalizer and matched filter and method thereof
WO2022060825A1 (en) Device and method for performing beamforming in angle-delay domains
CN115606106A (en) Electronic device and method for wireless communication, computer-readable storage medium

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480039138.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14833704

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014833704

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE