WO2015019107A2 - Cooling of axial flux motors - centrifugal - Google Patents

Cooling of axial flux motors - centrifugal Download PDF

Info

Publication number
WO2015019107A2
WO2015019107A2 PCT/GB2014/052433 GB2014052433W WO2015019107A2 WO 2015019107 A2 WO2015019107 A2 WO 2015019107A2 GB 2014052433 W GB2014052433 W GB 2014052433W WO 2015019107 A2 WO2015019107 A2 WO 2015019107A2
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
flow
axial flux
flux motor
axially
Prior art date
Application number
PCT/GB2014/052433
Other languages
French (fr)
Other versions
WO2015019107A3 (en
Inventor
Tim Woolmer
Original Assignee
Yasa Motors Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yasa Motors Limited filed Critical Yasa Motors Limited
Priority to US14/910,849 priority Critical patent/US10224786B2/en
Publication of WO2015019107A2 publication Critical patent/WO2015019107A2/en
Publication of WO2015019107A3 publication Critical patent/WO2015019107A3/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/197Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil in which the rotor or stator space is fluid-tight, e.g. to provide for different cooling media for rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets

Definitions

  • the present invention relates to electric machines and relates particularly but not exclusively to electric motors or generators of the kind known generally as axial flux motors or generators and relates particularly but not exclusively to the cooling of the rotors provided therein.
  • GB 2468018A discloses a machine comprising a series of coils wound around pole pieces spaced circumferentially around the stator and disposed axially, (i.e. parallel the rotation axis of the rotor).
  • the rotor has two stages comprising discs provided with permanent magnets that face either end of each electromagnetic coil of the stator.
  • the rotor stages typically comprise a hub region and an annular ring, in which the annular ring is of soft magnetic material and used to convey magnetic flux between adjacent magnets.
  • the magnets are generally surface mounted and spaced circumferentially around the rotor stage annular ring and disposed axially, (i.e. parallel the rotation axis of the rotor).
  • the above machines are driven by supplying electricity to the coils such as to generate a magnetic force therein which is used to react against the magnetic forces present in the permanent magnets on the rotor such as to drive the rotor and, thus, produce the desired rotational output.
  • a significant amount of heat is generated during the operation of the machine and some of this is adsorbed and / or generated by the rotating disk.
  • the rotor operates in a closed environment and is difficult to cool adequately with conventional techniques as it is difficult to pass the heat from the rotor back across the air gap to cooling systems which are generally provided on the outer side of the casing in which the rotor operates.
  • an axial flux motor having: a rotor having a radially extending portion and an axially extending portion having a first side and a second side; a stator having an inner aperture, a front wall having a first side and a second side and being axially spaced from the first side of the rotor by a gap, a bearing member within the inner aperture of the stator and supporting the axially extending portion of the rotor; a casing having an axially and circumferentially extending outer portion surrounding said rotor and having an inner surface; a cover plate having an inner face confronting and being spaced from said second side of said rotor; a containment chamber including said second side, and said inner face of said cover plate and having a top portion; a sump within the containment chamber; one or more first flow diver
  • said one or more first flow diverters comprise axially extending portions extending towards one or other of inner side faces.
  • the arrangement includes a plurality of flow diverters and wherein said diverters are circumferentially spaced around said inner surface.
  • the arrangement includes a flow splitter radially outward of said rotor for splitting fluid flow between directions L&R.
  • the arrangement includes one or more flow interrupters circumferentially spaced around said inner surface which may restrict circumferential flow of liquid and for directing liquid to said one or more flow diverters.
  • the arrangement also includes a flow director on one or other of inner side faces, which may be used for directing fluid to said bearing.
  • said flow director comprises a plurality of grooves within the surface of one or other or both of said inner side faces.
  • said flow director comprises a wicking material.
  • said flow director extends radially inwardly towards said bearing member.
  • a second flow diverter extending axially from said cover plate inner face and towards said bearing member.
  • said rotor includes a hollow shaft portion and wherein said second flow diverter extends into said hollow shaft portion and terminates proximal to said bearing member.
  • the axially extending portion of rotor includes an inner surface and an outer surface and further includes one or more secondary flow directors comprising radially extending passageways extending therebetween, which may be used for receiving and delivering cooling / lubrication fluid to the bearing)
  • said bearing lies between said sump and said top portion of the containment chamber, so as to be in the flow-path of the returning fluid.
  • Figure 1 is a partial cross-sectional view of an axial flux motor / generator machine according to the present invention which illustrates a flow diverter system forming part of the present invention
  • Figure 2 is a first side cross-sectional view of the machine in figure 1 and illustrates in more detail the inter-relationship between the rotor and a first aspect of the cooling system associated therewith;
  • Figure 3 is a second side cross-sectional view of the machine in figure 1 and illustrates in more detail the inter-relationship between the rotor and a second aspect of the cooling system associated therewith;
  • Figure 4 is a diagrammatic representation of a portion of the sidewall of figure 1 ;
  • Figure 5 is a cross-sectional view of one form of flow diverter that may be applied to the sidewall;
  • Figure 6 is a further diagrammatic representation of a portion of the sidewall of figure 1 ;
  • Figure 7 is a cross-sectional view of a second form of flow diverter that may be applied to sidewall;
  • Figure 8 is an enlarged view of a top portion of figure 2;
  • Figure 9 is an enlarged view of a central portion of figure 2; and
  • Figure 10 is an enlarged view of a central portion of figure 3.
  • an axial flux machine (motor/generator) 10 comprises a rotor 20 and a stator portion 22 and a containment chamber 26 in which the rotor 20 rotates about longitudinal axis X.
  • the stator portion 22 includes an inner aperture 30 which houses a bearing member shown generally at 32 and which supports the rotor 20 for rotation.
  • the stator 22 includes a front wall 34 which defines a barrier between the electromagnets shown schematically at 36 and positioned on one side 34i thereof and within the stator portion 22 and a first side 20a of the rotor itself 20 which is spaced from a second side 34s of said front wall 34 such as to define a cavity 38 or gap G therebetween, best seen in figure 8.
  • the containment chamber 26 is formed partially by the second side 34s of the front wall 34 and partially by a casing 40 having an inner surface 43, a bottom portion 44, a top portion 45, an axially and circumferentially extending outer portion 48 surrounding said rotor 20 and a cover plate 42 having an inner face 42i confronting and being spaced from a second side 22b of said rotor 20.
  • the containment chamber 26 includes a sump portion 50 at the bottom thereof for receiving cooling fluid 52.
  • the rotor 20 has a plurality of magnets 20m provided thereon and arranged in a circumferentially spaced manner therearound and includes an axially extending portion 20c which extends towards and is mounted for rotation in bearing member 32.
  • One or more first flow diverters 60 are provided on or in association with the outer portion 48 and may be circumferentially spaced therearound, as best seen in figure 1 . Whilst the specific location and form of the first flow diverters 60 may vary, they preferably include one and possibly more axially extending portions 60a, 60b extending towards one and possibly both of said front wall 34 and said cover plate 42, the reasons for which will be described in detail later herein.
  • a flow splitter 70 best seen in figure 2 and 8 may be provided on outer portion 48 for splitting the flow of cooling fluid to either side A, B of the containment chamber 26 as it is centrifuged off the disk.
  • the specific form and location of the flow splitter may vary, it has been found that a circumferentially extending peaked arrangement having a tip 70t positioned on and extending circumferentially around outer portion 48 and being radially outwardly of a portion of the rotor 20 will act to split the flow of any centrifuged fluid such as to direct it in the directions of arrows A, B in figure 8.
  • the axial position of the peak may be varied such as to cause an even or an un-even split of fluid between directions A, B and this may have advantages as will be described later herein.
  • One or more flow interrupters 80 may also be provided around the circumference of the outer portion 48 and preferably extend across the entire gap between the front wall 34 of the stator 22 and the cover plate 42 and acts to interrupt the flow of any fluid around the circumference and cause it to be diverted towards the front wall 34 and / or the cover plate 42 itself.
  • One or more flow directors 90 may be provided on inwardly facing surfaces 34i and 42i of front wall 34 and cover plate 42. The flow directors 90 are generally radially extending in the direction of arrow Ro, Ri between the outer surface 42 and inner aperture 30 and act to direct fluid received thereby back towards the bearing 32 mounted within the aperture for lubrication and cooling purposes or downwardly (Ro) towards the sump 50.
  • FIG. 1 illustrates two preferred arrangements of flow director 90, each of which provide a wicking surface able to retain fluid on the surface whilst also directing it in a preferred direction.
  • the arrangement of figure 5 comprises a plurality of discrete grooves or channels 92 provided in one or other or both of inwardly facing surfaces 34i and 42i of front wall 34 and cover plate 42.
  • each groove or channel 92 provides a shelter for any fluid directed onto the surfaces and a capillary reaction effect is created which preferentially directs the fluid in the desired direction of towards the bearing 32 or towards the sump 50.
  • An alternative arrangement is shown in detail in figure 7 and comprises a wicking material having an open structure for receiving fluid directed thereto and a plurality of internal passageways 94 allowing fluid received therein to be channelled towards the bearing 32 or sump 50, as discussed above. Whilst a number of wicking materials are known, it is preferred that the arrangement in the present invention includes a plurality of directionally oriented internal passageways 94 within the wicking material itself which are directed towards the aperture 30 and bearing or the sump 50. Without these arrangements, fluid dissipated onto surfaces 34s and 42i may simply drain vertically downwardly towards the sump and little would find its way to the bearing which may be starved of cooling and lubrication fluid.
  • Figure 3 illustrates an alternative arrangement having many components the same as shown in figure 2 and not, therefore, repeated here.
  • the difference lies in the provision of additional component in the form of a second flow diverter 1 10 extending substantially axially along axis X from the inner surface 42i of the cover plate 42 and into a cavity 104 defined within the axially extending portion 20c.
  • the second flow diverter 1 10 may be provided in addition to any one or more of the above flow components and is employed to direct fluid on the inner surface 42i axially into the cavity 104 from which it may be directed to the bearing 32 in the manner discussed in detail below with reference to figure 10.
  • figures 9 and 10 illustrate in more detail the central portions of figures 2 and 3.
  • the axially extending portion 20a of the rotor 20 may be provided with one or more secondary flow directors 100 in the form of, for example, more radially extending holes 102 extending from an outer surface 20c to an inner surface 20d at a position between the radially extending portion 20r of the rotor 20 and the bearing aperture 30.
  • the holes are arranged such as to allow some, if not all, of any fluid entrapped within the hollow cavity 104 within axial portion 20a to be vented therefrom and, if desired, directed towards the bearing 32 as and when desired.
  • Flow in the opposite direction referenced by arrow Fo is also possible when the rotor 20 is stationary and may be used to return fluid collected to the sump 50 for subsequent use.
  • the flow director arrangement shown at 90 which, preferably, terminates proximate the bearing aperture 30 and bearing 32.
  • the close proximity will allow for fluid which passes downwardly or inwardly in the direction of arrow Ri to pass from the flow diverter and onto bearing 32 such as to lubricate and cool it.
  • direct transfer of fluid to the bearing may be possible if the bearing and flow director 90 are in immediate contact with each other, one may also space the bearing 32 from the flow director 90 and employ capillary reaction or the natural tendency of a fluid to adhere to a surface such as to cause the fluid to bridge any distance between the director 90 and the bearing 32.
  • Figure 10 illustrates in more detail the central portion of figure 3 and differs from figure 10 only in relation to the provision of a secondary flow diverter 1 10.
  • the secondary flow diverter 1 10 extends axially from the inner surface 42i of cover plate 42 and into the cavity 104 formed by the hollow inner portion 104. Fluid passing down surface 42i is diverted by diverter 1 10 such as to cause it to enter cavity 104 at which point it will drop off and attach to an inner surface 20d of the cavity axially extending portion 20c. It will be appreciated that the inner surface 20d will be rotating and any fluid deposited thereon will be centrifuged outwardly and pass into holes 102 forming the flow diverter 100 and then to the bearing 32, as illustrated by arrows L.
  • any fluid within cavity 104 will drain via holes 102 when the rotor 20 is stationary.
  • the position of holes 102 may be varied such as to optimise the distribution of fluid to the bearing.
  • a further hole or holes shown dotted at 102a, may be provided in a position aligned with the split in the bearing such as to provide lubrication directly to the inner portion of the bearing.
  • Hole or holes 102a may also be provided in replacement of hole or holes 102.
  • a cooling system shown schematically at 120 in figure 2, may also be provided to direct cooling fluid into and out of a second chamber 122 surrounding the electromagnets 36.
  • This cooling fluid is used to directly cool the electromagnets 36 and may also be used to indirectly cool the rotor 20 when used in cooperation with the cooling fluid within the rotor containment chamber 26, as will be described in detail below.
  • a current supply system 130 also shown schematically in figures 2, is provided for supplying electrical current to the electromagnets 36 in a manner well known in the art so not described herein.
  • the machine 10 is started by causing electrical current to be supplied from supply 130 to electromagnetic coils 36 to create an electro-magnetic force acting on magnet portions 22m on rotor 22 such as to turn the rotor as required.
  • the passage of the current through the coils 36 creates heat which saturates both the coils 36 and by direct and reactive losses the disk 20.
  • the cooling system 120 is able to directly cool the coils 36, cooling of the disk 20 has been found to be somewhat more problematic and the rotational speed is normally limited by the ability to cool the overall arrangement.
  • the air gap 38, G between the rotor 20 and the inner surface 34i is necessary to allow for free rotation of the rotor 20, it presents a significant obstacle for the passage of heat from the rotor 20 back to the stator 20 from where heat can be removed in a direct manner.
  • the present invention aims to exploit the gap 38, G and a corresponding gap 140 between the rotor 20 and the cover plate 42 together with other features of the design to facilitate the passage of heat from the rotor 20 either to atmosphere or to the stator 22 such as to allow for the more efficient cooling thereof.
  • the present arrangement is able to direct fluid to the bearing 36 such as to both lubricate and cool it.
  • the cooling / lubricating fluid 52 is provided in sump 50 and rotation of the rotor 20 through the fluid causes the fluid to be picked up by the disk 20 which tends to centrifuge it outwardly such that it sprays onto the inner surface 43 of the axially and circumferentially extending portion 48 surrounding the rotor 20.
  • portion 48 is provided with a number of features in the form of one or more of flow diverters 60, flow splitters 70 and flow interrupters 80 which act individually and / or in combination to cause the fluid to be transferred to one or other or both of mutually confronting surfaces 34i and / or 42i.
  • the flow diverters 60 are provided on one or more sides of the chamber and extend between portion 48 and one or other of the surfaces 34i and / or 42i such as to cause fluid to drain there across and onto the surfaces as required.
  • the flow splitter 70 itself is positioned radially outwardly of the rotor 20 and the axial position thereof is selected such as to split the centrifuged fluid as required between each of directions A and B of figures 2 and 3. Centrifuged fluid split by splitter 70 will contact diverters 60 and flow to surfaces 34i, 42i. It will be appreciated that a portion of the fluid 52 will be caused to drain circumferentially down and around the inner surface, as shown by arrow D in figurel and, uninterrupted, will provide little contribution to the cooling effect as it will not come into contact with the rotor surface.
  • interrupters 80 are provided (best seen in figure 1 ) then fluid draining in this manner will be caused to be re-directed radially inwardly as it meets the interrupter 80, such as to cause said fluid to pass onto diverters 60 and thence surfaces 34, 42i.
  • Such interrupters and the position thereof may be used to enhance the cooling effect or may be eliminated at certain positions if rapid draining back to sump 50 is required or desired.
  • Fluid directed on to surface 34i will be directed across, down or through the flow directors 90 shown in detail in figures 4 to 7 and discussed in detail above. The directors 90 on any upper portion of the surface 34i will act to direct fluid inwardly and towards bearing 32 such as to both cool it and lubricate it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

The present invention provides an axial flux motor (10) having: a rotor (20) having a radially extending portion (20r) and an axially extending portion (20c) having a first side (20a) and a second side (20b); a stator (22) having an inner aperture (30), a front wall (34) having a first side (34s) and a second side (34i) and being axially spaced from the first side (20a) of the rotor (20) by a gap (38), a bearing member (32) within the inner aperture (30) of the stator (22) and supporting the axially extending portion (20c) of the rotor (20); a casing (40) having an axially and circumferentially extending outer portion (48) surrounding said rotor (20) and having an inner surface (43); a cover plate (42) having an inner face (42i) confronting and being spaced from said second side (20b) of said rotor (20); a containment chamber (26) including said second side (34i), and said inner face (42i) of said cover plate (42) and having a top portion (45); a sump (50) within the containment chamber (26); and one or more first flow diverters (60) on the inner surface (43) of casing (40) to direct liquid towards said first and / or second inner side faces (34i, 42i).

Description

COOLING OF AXIAL FLUX MOTORS - CENTRIFUGAL
The present invention relates to electric machines and relates particularly but not exclusively to electric motors or generators of the kind known generally as axial flux motors or generators and relates particularly but not exclusively to the cooling of the rotors provided therein.
GB 2468018A discloses a machine comprising a series of coils wound around pole pieces spaced circumferentially around the stator and disposed axially, (i.e. parallel the rotation axis of the rotor). The rotor has two stages comprising discs provided with permanent magnets that face either end of each electromagnetic coil of the stator. The rotor stages typically comprise a hub region and an annular ring, in which the annular ring is of soft magnetic material and used to convey magnetic flux between adjacent magnets. The magnets are generally surface mounted and spaced circumferentially around the rotor stage annular ring and disposed axially, (i.e. parallel the rotation axis of the rotor). Also known are double and single stator, single rotor axial flux motors wherein said single rotor contains magnets disposed circumferentially with pole faces, facing across air gaps to stator electromagnetic coils similarly disposed. In each of these arrangements the rotor is enclosed within a casing and rotates at high speed therein.
The above machines are driven by supplying electricity to the coils such as to generate a magnetic force therein which is used to react against the magnetic forces present in the permanent magnets on the rotor such as to drive the rotor and, thus, produce the desired rotational output. A significant amount of heat is generated during the operation of the machine and some of this is adsorbed and / or generated by the rotating disk. In some instances the rotor operates in a closed environment and is difficult to cool adequately with conventional techniques as it is difficult to pass the heat from the rotor back across the air gap to cooling systems which are generally provided on the outer side of the casing in which the rotor operates.
In view of the above, it will be appreciated that the operational envelope of the machine is limited by the efficiency of the cooling arrangement employed and the problems associated with cooling the rotor have a significant impact on the ability of any cooling system to adequately cool the machine and allow it to operate in an efficient manner.
The present invention aims to provide an improved cooling system for an axial flux machine and aims in particular to provide an improved arrangement for cooling the rotor within the machine. According to a first aspect of the present invention there is provided an axial flux motor having: a rotor having a radially extending portion and an axially extending portion having a first side and a second side; a stator having an inner aperture, a front wall having a first side and a second side and being axially spaced from the first side of the rotor by a gap, a bearing member within the inner aperture of the stator and supporting the axially extending portion of the rotor; a casing having an axially and circumferentially extending outer portion surrounding said rotor and having an inner surface; a cover plate having an inner face confronting and being spaced from said second side of said rotor; a containment chamber including said second side, and said inner face of said cover plate and having a top portion; a sump within the containment chamber; one or more first flow diverters on the inner surface of casing, to direct liquid towards said first and / or second inner side faces.
Preferably, said one or more first flow diverters comprise axially extending portions extending towards one or other of inner side faces.
Advantageously, the arrangement includes a plurality of flow diverters and wherein said diverters are circumferentially spaced around said inner surface.
Preferably, the arrangement includes a flow splitter radially outward of said rotor for splitting fluid flow between directions L&R.
Advantageously, the arrangement includes one or more flow interrupters circumferentially spaced around said inner surface which may restrict circumferential flow of liquid and for directing liquid to said one or more flow diverters.
Preferably, the arrangement also includes a flow director on one or other of inner side faces, which may be used for directing fluid to said bearing.
Advantageously, said flow director comprises a plurality of grooves within the surface of one or other or both of said inner side faces. Preferably, said flow director comprises a wicking material.
Advantageously, said flow director extends radially inwardly towards said bearing member.
In a particularly advantageous arrangement there is provided a second flow diverter extending axially from said cover plate inner face and towards said bearing member.
In one arrangement said rotor includes a hollow shaft portion and wherein said second flow diverter extends into said hollow shaft portion and terminates proximal to said bearing member. Preferably, the axially extending portion of rotor includes an inner surface and an outer surface and further includes one or more secondary flow directors comprising radially extending passageways extending therebetween, which may be used for receiving and delivering cooling / lubrication fluid to the bearing) Preferably, said bearing lies between said sump and said top portion of the containment chamber, so as to be in the flow-path of the returning fluid.
The present invention will now be more particularly described by way of example only with reference to the following drawings, in which:
Figure 1 is a partial cross-sectional view of an axial flux motor / generator machine according to the present invention which illustrates a flow diverter system forming part of the present invention;
Figure 2 is a first side cross-sectional view of the machine in figure 1 and illustrates in more detail the inter-relationship between the rotor and a first aspect of the cooling system associated therewith; Figure 3 is a second side cross-sectional view of the machine in figure 1 and illustrates in more detail the inter-relationship between the rotor and a second aspect of the cooling system associated therewith;
Figure 4 is a diagrammatic representation of a portion of the sidewall of figure 1 ;
Figure 5 is a cross-sectional view of one form of flow diverter that may be applied to the sidewall;
Figure 6 is a further diagrammatic representation of a portion of the sidewall of figure 1 ;
Figure 7 is a cross-sectional view of a second form of flow diverter that may be applied to sidewall;
Figure 8 is an enlarged view of a top portion of figure 2; Figure 9 is an enlarged view of a central portion of figure 2; and Figure 10 is an enlarged view of a central portion of figure 3.
Referring now to the drawings in general but particularly to figures 1 and 2, an axial flux machine (motor/generator) 10 comprises a rotor 20 and a stator portion 22 and a containment chamber 26 in which the rotor 20 rotates about longitudinal axis X. The stator portion 22 includes an inner aperture 30 which houses a bearing member shown generally at 32 and which supports the rotor 20 for rotation. The stator 22 includes a front wall 34 which defines a barrier between the electromagnets shown schematically at 36 and positioned on one side 34i thereof and within the stator portion 22 and a first side 20a of the rotor itself 20 which is spaced from a second side 34s of said front wall 34 such as to define a cavity 38 or gap G therebetween, best seen in figure 8. The containment chamber 26 is formed partially by the second side 34s of the front wall 34 and partially by a casing 40 having an inner surface 43, a bottom portion 44, a top portion 45, an axially and circumferentially extending outer portion 48 surrounding said rotor 20 and a cover plate 42 having an inner face 42i confronting and being spaced from a second side 22b of said rotor 20. The containment chamber 26 includes a sump portion 50 at the bottom thereof for receiving cooling fluid 52. The rotor 20 has a plurality of magnets 20m provided thereon and arranged in a circumferentially spaced manner therearound and includes an axially extending portion 20c which extends towards and is mounted for rotation in bearing member 32.
One or more first flow diverters 60 are provided on or in association with the outer portion 48 and may be circumferentially spaced therearound, as best seen in figure 1 . Whilst the specific location and form of the first flow diverters 60 may vary, they preferably include one and possibly more axially extending portions 60a, 60b extending towards one and possibly both of said front wall 34 and said cover plate 42, the reasons for which will be described in detail later herein.
A flow splitter 70 best seen in figure 2 and 8 may be provided on outer portion 48 for splitting the flow of cooling fluid to either side A, B of the containment chamber 26 as it is centrifuged off the disk. Again, whilst the specific form and location of the flow splitter may vary, it has been found that a circumferentially extending peaked arrangement having a tip 70t positioned on and extending circumferentially around outer portion 48 and being radially outwardly of a portion of the rotor 20 will act to split the flow of any centrifuged fluid such as to direct it in the directions of arrows A, B in figure 8. The axial position of the peak may be varied such as to cause an even or an un-even split of fluid between directions A, B and this may have advantages as will be described later herein.
One or more flow interrupters 80 may also be provided around the circumference of the outer portion 48 and preferably extend across the entire gap between the front wall 34 of the stator 22 and the cover plate 42 and acts to interrupt the flow of any fluid around the circumference and cause it to be diverted towards the front wall 34 and / or the cover plate 42 itself. One or more flow directors 90, best seen schematically in figures 1 and in more detail in figures 4 to 7, may be provided on inwardly facing surfaces 34i and 42i of front wall 34 and cover plate 42. The flow directors 90 are generally radially extending in the direction of arrow Ro, Ri between the outer surface 42 and inner aperture 30 and act to direct fluid received thereby back towards the bearing 32 mounted within the aperture for lubrication and cooling purposes or downwardly (Ro) towards the sump 50. The reader will appreciate that the flow directors on an upper portion of the motor 10 will direct fluid back towards the bearing 32 whilst those on a lower portion will act to direct fluid back towards the sump 50 and that fluid directed to the bearing 32 may then be directed towards the sump 50. Reference is now made in particular to figures 4 to 7 which illustrate two preferred arrangements of flow director 90, each of which provide a wicking surface able to retain fluid on the surface whilst also directing it in a preferred direction. The arrangement of figure 5 comprises a plurality of discrete grooves or channels 92 provided in one or other or both of inwardly facing surfaces 34i and 42i of front wall 34 and cover plate 42. The depth and width of each groove or channel 92 provides a shelter for any fluid directed onto the surfaces and a capillary reaction effect is created which preferentially directs the fluid in the desired direction of towards the bearing 32 or towards the sump 50. An alternative arrangement is shown in detail in figure 7 and comprises a wicking material having an open structure for receiving fluid directed thereto and a plurality of internal passageways 94 allowing fluid received therein to be channelled towards the bearing 32 or sump 50, as discussed above. Whilst a number of wicking materials are known, it is preferred that the arrangement in the present invention includes a plurality of directionally oriented internal passageways 94 within the wicking material itself which are directed towards the aperture 30 and bearing or the sump 50. Without these arrangements, fluid dissipated onto surfaces 34s and 42i may simply drain vertically downwardly towards the sump and little would find its way to the bearing which may be starved of cooling and lubrication fluid.
Figure 3 illustrates an alternative arrangement having many components the same as shown in figure 2 and not, therefore, repeated here. The difference lies in the provision of additional component in the form of a second flow diverter 1 10 extending substantially axially along axis X from the inner surface 42i of the cover plate 42 and into a cavity 104 defined within the axially extending portion 20c. The second flow diverter 1 10 may be provided in addition to any one or more of the above flow components and is employed to direct fluid on the inner surface 42i axially into the cavity 104 from which it may be directed to the bearing 32 in the manner discussed in detail below with reference to figure 10. Reference is now made more particularly to figures 9 and 10 which illustrate in more detail the central portions of figures 2 and 3. From figure 9 it will be appreciated that the axially extending portion 20a of the rotor 20 may be provided with one or more secondary flow directors 100 in the form of, for example, more radially extending holes 102 extending from an outer surface 20c to an inner surface 20d at a position between the radially extending portion 20r of the rotor 20 and the bearing aperture 30. The holes are arranged such as to allow some, if not all, of any fluid entrapped within the hollow cavity 104 within axial portion 20a to be vented therefrom and, if desired, directed towards the bearing 32 as and when desired. Flow in the opposite direction referenced by arrow Fo is also possible when the rotor 20 is stationary and may be used to return fluid collected to the sump 50 for subsequent use.
Also shown in more detail in figure 9 and 10 is the flow director arrangement shown at 90 which, preferably, terminates proximate the bearing aperture 30 and bearing 32. The close proximity will allow for fluid which passes downwardly or inwardly in the direction of arrow Ri to pass from the flow diverter and onto bearing 32 such as to lubricate and cool it. Whilst it will be appreciated that direct transfer of fluid to the bearing may be possible if the bearing and flow director 90 are in immediate contact with each other, one may also space the bearing 32 from the flow director 90 and employ capillary reaction or the natural tendency of a fluid to adhere to a surface such as to cause the fluid to bridge any distance between the director 90 and the bearing 32.
Figure 10 illustrates in more detail the central portion of figure 3 and differs from figure 10 only in relation to the provision of a secondary flow diverter 1 10. The secondary flow diverter 1 10 extends axially from the inner surface 42i of cover plate 42 and into the cavity 104 formed by the hollow inner portion 104. Fluid passing down surface 42i is diverted by diverter 1 10 such as to cause it to enter cavity 104 at which point it will drop off and attach to an inner surface 20d of the cavity axially extending portion 20c. It will be appreciated that the inner surface 20d will be rotating and any fluid deposited thereon will be centrifuged outwardly and pass into holes 102 forming the flow diverter 100 and then to the bearing 32, as illustrated by arrows L. It will also be appreciated that any fluid within cavity 104 will drain via holes 102 when the rotor 20 is stationary. The position of holes 102 may be varied such as to optimise the distribution of fluid to the bearing. As most arrangements will employ a split inner bearing, a further hole or holes, shown dotted at 102a, may be provided in a position aligned with the split in the bearing such as to provide lubrication directly to the inner portion of the bearing. Hole or holes 102a may also be provided in replacement of hole or holes 102. A cooling system, shown schematically at 120 in figure 2, may also be provided to direct cooling fluid into and out of a second chamber 122 surrounding the electromagnets 36. This cooling fluid is used to directly cool the electromagnets 36 and may also be used to indirectly cool the rotor 20 when used in cooperation with the cooling fluid within the rotor containment chamber 26, as will be described in detail below. A current supply system 130, also shown schematically in figures 2, is provided for supplying electrical current to the electromagnets 36 in a manner well known in the art so not described herein.
In operation, the machine 10 is started by causing electrical current to be supplied from supply 130 to electromagnetic coils 36 to create an electro-magnetic force acting on magnet portions 22m on rotor 22 such as to turn the rotor as required. The passage of the current through the coils 36 creates heat which saturates both the coils 36 and by direct and reactive losses the disk 20. Whilst the cooling system 120 is able to directly cool the coils 36, cooling of the disk 20 has been found to be somewhat more problematic and the rotational speed is normally limited by the ability to cool the overall arrangement. Whilst the air gap 38, G between the rotor 20 and the inner surface 34i is necessary to allow for free rotation of the rotor 20, it presents a significant obstacle for the passage of heat from the rotor 20 back to the stator 20 from where heat can be removed in a direct manner. The present invention aims to exploit the gap 38, G and a corresponding gap 140 between the rotor 20 and the cover plate 42 together with other features of the design to facilitate the passage of heat from the rotor 20 either to atmosphere or to the stator 22 such as to allow for the more efficient cooling thereof. In addition, the present arrangement is able to direct fluid to the bearing 36 such as to both lubricate and cool it. The cooling / lubricating fluid 52 is provided in sump 50 and rotation of the rotor 20 through the fluid causes the fluid to be picked up by the disk 20 which tends to centrifuge it outwardly such that it sprays onto the inner surface 43 of the axially and circumferentially extending portion 48 surrounding the rotor 20. As discussed above, portion 48 is provided with a number of features in the form of one or more of flow diverters 60, flow splitters 70 and flow interrupters 80 which act individually and / or in combination to cause the fluid to be transferred to one or other or both of mutually confronting surfaces 34i and / or 42i. The flow diverters 60 are provided on one or more sides of the chamber and extend between portion 48 and one or other of the surfaces 34i and / or 42i such as to cause fluid to drain there across and onto the surfaces as required. The flow splitter 70 itself is positioned radially outwardly of the rotor 20 and the axial position thereof is selected such as to split the centrifuged fluid as required between each of directions A and B of figures 2 and 3. Centrifuged fluid split by splitter 70 will contact diverters 60 and flow to surfaces 34i, 42i. It will be appreciated that a portion of the fluid 52 will be caused to drain circumferentially down and around the inner surface, as shown by arrow D in figurel and, uninterrupted, will provide little contribution to the cooling effect as it will not come into contact with the rotor surface. However, if interrupters 80 are provided (best seen in figure 1 ) then fluid draining in this manner will be caused to be re-directed radially inwardly as it meets the interrupter 80, such as to cause said fluid to pass onto diverters 60 and thence surfaces 34, 42i. Such interrupters and the position thereof may be used to enhance the cooling effect or may be eliminated at certain positions if rapid draining back to sump 50 is required or desired. Fluid directed on to surface 34i will be directed across, down or through the flow directors 90 shown in detail in figures 4 to 7 and discussed in detail above. The directors 90 on any upper portion of the surface 34i will act to direct fluid inwardly and towards bearing 32 such as to both cool it and lubricate it. However, it will also be appreciated that the flow of fluid over surface 34i will allow for heat to be passed across to the stator 22 from which it can be removed by the direct cooling effect of cooling system 120. Fluid directed onto surface 42i will drain theredown as described above with reference to figure 10 and in doing so will cause heat to be transferred across the cover plate 42 and expelled to atmosphere in the direction of arrows R in figure 3. This cooling effect will be additional to that provided by cooling system 120 and the surface of the coverplate 42 may be further provided with cooling from cooling system 120 if so desired. Once fluid has reached axially extending portion 1 10, it is caused to move axially into cavity 104 and will drip off onto the inner surface of axially extending portion 20i such as to pass through holes 102 and then to the bearings 32 in the manner discussed in detail above with reference to figure 10.
It has been found that operation of the indirect cooling and / or lubricating system within containment chamber 26 can reduce the operating temperature of the rotor from 100°C to 80°C degrees C relative to an arrangement having just the conventional direct cooling of the magnets alone. It has also been found that bearing temperatures and operational life can be improved as fluid is supplied directly thereto rather than simply centrifuged outwardly therefrom. Still further, the extra cooling capacity provided by the addition of the indirect cooling arrangement will allow for an increase in the amount of current supplied to the coils which will allow for a greater rotational speed and torque output, thus improving still further the torque / kg and W / kg output of such machines.
It will be appreciated that individual items described above may be used on their own or in combination with other items shown in the drawings or described in the description and that items mentioned in the same passage as each other or the same drawing as each other need not be used in combination with each other. In addition, the expression "means" may be replaced by actuator or system or device as may be desirable. In addition, any reference to "comprising" or "consisting" is not intended to be limiting in any way whatsoever and the reader should interpret the description and claims accordingly. Furthermore, although the invention has been described in terms of preferred embodiments as set forth above, it should be understood that these embodiments are illustrative only. Those skilled in the art will be able to make modifications and alternatives in view of the disclosure which are contemplated as falling within the scope of the appended claims.

Claims

1 An axial flux motor (10) having: a rotor (20) having a radially extending portion (20r) and an axially extending portion (20c) having a first side (20a) and a second side (20b); a stator (22) having an inner aperture (30), a front wall (34) having a first side (34s) and a second side (34i) and being axially spaced from the first side (20a) of the rotor (20) by a gap (38), a bearing member (32) within the inner aperture (30) of the stator (22) and supporting the axially extending portion (20c) of the rotor (20); a casing (40) having an axially and circumferentially extending outer portion (48) surrounding said rotor (20) and having an inner surface (43); a cover plate (42) having an inner face (42i) confronting and being spaced from said second side (20b) of said rotor (20); a containment chamber (26) including said second side (34i), and said inner face (42i) of said cover plate (42) and having a top portion (45); a sump (50) within the containment chamber (26); one or more first flow diverters (60) on the inner surface (43) of casing (40) to direct liquid towards said first and / or second inner side faces (34i, 42i).
2. An axial flux motor (10) as claimed in claim 1 and wherein said one or more first flow diverters (60) comprise axially extending portions (60a, 60b) extending towards one or other of inner side faces (34i, 42i).
3. An axial flux motor (10) as claimed in claim 1 or claim 2 and including a plurality of flow diverters (60) and wherein said diverters (60) are circumferentially spaced around said inner surface (43).
4. An axial flux motor (10) as claimed in any one of claims 1 to 3 and including a flow splitter (70) radially outward of said rotor (20).
5. An axial flux motor (10) as claimed in any one of claims 2 to 4 and including one or more flow interrupters (80) circumferentially spaced around said inner surface (43).
6. An axial flux motor (10) as claimed in any one of claims 1 to 5 and including a flow director (90) on one or other or both of inner side faces (34i, 42i).
7. An axial flux motor (10) as claimed in claim 6 and wherein said flow director (90) comprises a plurality of grooves (92) within the surface of one or other or both of said inner side faces (34i, 42i).
8. An axial flux motor (10) as claimed in claim 5 wherein said flow director (90) comprises a wicking material.
9. An axial flux motor (10) as claimed in any one of claims 6 to 8 wherein said flow director (90) extends radially inwardly towards said bearing member (30).
10. An axial flux motor (10) as claimed in any one of claims 1 to 8 and including a second flow diverter (1 10) extending axially from said cover plate inner face (42i) and towards said bearing member (30).
1 1 . An axial flux motor (10) as claimed in claim 10 and wherein said rotor (20) includes a hollow shaft portion (22a) and wherein said second flow diverter (1 10) extends into said hollow shaft portion (22a) and terminates proximal to said bearing member (30).
12. An axial flux motor (10) as claimed in claim 1 1 and wherein the axially extending portion (20r) of rotor (20) includes an inner surface (20d) and an outer surface (20c) and further includes one or more secondary flow directors (100) comprising radially extending passageways (102) extending therebetween.
13. An axial flux motor (10) as claimed in claim 1 , wherein said bearing (30) lies between said sump (50) and said top portion (45) of the containment chamber (26)
PCT/GB2014/052433 2013-08-08 2014-08-08 Cooling of axial flux motors - centrifugal WO2015019107A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/910,849 US10224786B2 (en) 2013-08-08 2014-08-08 Cooling of axial flux motors—centrifugal

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB1314229.4A GB2519060B (en) 2013-08-08 2013-08-08 Cooling of axial flux motors - centrifugal
GB1314229.4 2013-08-08
EP14156176.1A EP2835895A3 (en) 2013-08-08 2014-02-21 Cooling of axial flux motors - centrifugal
EP14156176.1 2014-02-21

Publications (2)

Publication Number Publication Date
WO2015019107A2 true WO2015019107A2 (en) 2015-02-12
WO2015019107A3 WO2015019107A3 (en) 2015-06-11

Family

ID=49261898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2014/052433 WO2015019107A2 (en) 2013-08-08 2014-08-08 Cooling of axial flux motors - centrifugal

Country Status (4)

Country Link
US (1) US10224786B2 (en)
EP (1) EP2835895A3 (en)
GB (1) GB2519060B (en)
WO (1) WO2015019107A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9742226B2 (en) 2015-08-11 2017-08-22 Genesis Robotics Llp Electric machine
US11043885B2 (en) 2016-07-15 2021-06-22 Genesis Robotics And Motion Technologies Canada, Ulc Rotary actuator
US11139707B2 (en) 2015-08-11 2021-10-05 Genesis Robotics And Motion Technologies Canada, Ulc Axial gap electric machine with permanent magnets arranged between posts
DE102022002863A1 (en) 2022-08-08 2022-09-22 Mercedes-Benz Group AG Axial flow machine, in particular for a motor vehicle
EP4311078A1 (en) 2022-07-18 2024-01-24 Magnax Bv Axial flux machine with direct magnet cooling

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11258333B2 (en) 2019-07-29 2022-02-22 Aurora Flight Sciences Corporation Propulsor system with integrated passive cooling
US11799342B2 (en) 2020-02-20 2023-10-24 Kohler Co. Printed circuit board electrical machine
WO2023151754A1 (en) * 2022-02-14 2023-08-17 Schaeffler Technologies AG & Co. KG Axial flux machine, electric axle drivetrain, and motor vehicle

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1004275A (en) * 1974-04-04 1977-01-25 Eric Whiteley Permanent magnet synchronous dynamoelectric machine
CA1004274A (en) * 1974-04-04 1977-01-25 Canadian General Electric Company Limited Permanent magnet hermetic synchronous motor
DE2705623A1 (en) * 1977-02-10 1978-08-17 Nihon Radiator Co ENGINE WITH PRINTED WRAP
JPS5696198A (en) * 1979-12-27 1981-08-04 Matsushita Electric Ind Co Ltd Pump
US4958098A (en) * 1986-12-16 1990-09-18 Eastman Kodak Company Rotary device
JP2981862B2 (en) * 1997-02-27 1999-11-22 防衛庁技術研究本部長 Flat AC motor
JP2005318782A (en) * 2004-03-31 2005-11-10 Nissan Motor Co Ltd Cooling structure for axial gap electric motor
TWI260595B (en) * 2004-11-26 2006-08-21 Metal Ind Res & Dev Ct Low-eccentricity and thinning spindle motor structure
JP4816358B2 (en) * 2006-09-19 2011-11-16 ダイキン工業株式会社 Motor and compressor
GB0902394D0 (en) * 2009-02-13 2009-04-01 Isis Innovation Electric machine- cooling
GB0906284D0 (en) * 2009-04-14 2009-05-20 Isis Innovation Electric machine-evaporative cooling
JP5354793B2 (en) * 2009-12-15 2013-11-27 本田技研工業株式会社 Axial gap type motor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10075030B2 (en) 2015-08-11 2018-09-11 Genesis Robotics & Motion Technologies Canada, Ulc Electric machine
US11139707B2 (en) 2015-08-11 2021-10-05 Genesis Robotics And Motion Technologies Canada, Ulc Axial gap electric machine with permanent magnets arranged between posts
US9742225B2 (en) 2015-08-11 2017-08-22 Genesis Robotics Llp Electric machine
US9748803B2 (en) 2015-08-11 2017-08-29 Genesis Robotics LLC Electric machine
US9748804B2 (en) 2015-08-11 2017-08-29 Genesis Robotics Llp Electric machine
US9755463B2 (en) 2015-08-11 2017-09-05 Genesis Robotics Llp Electric machine
US9742227B2 (en) 2015-08-11 2017-08-22 Genesis Robotics Llp Electric machine
US10476323B2 (en) 2015-08-11 2019-11-12 Genesis Robotics & Motion Technologies Canada, Ulc Electric machine
US9742226B2 (en) 2015-08-11 2017-08-22 Genesis Robotics Llp Electric machine
US11043862B2 (en) 2015-08-11 2021-06-22 Genesis Robotics And Motion Technologies Canada, Ulc Electric machine
US11043885B2 (en) 2016-07-15 2021-06-22 Genesis Robotics And Motion Technologies Canada, Ulc Rotary actuator
EP4311078A1 (en) 2022-07-18 2024-01-24 Magnax Bv Axial flux machine with direct magnet cooling
WO2024017526A1 (en) 2022-07-18 2024-01-25 Magnax Axial flux machine with direct magnet cooling
DE102022002863A1 (en) 2022-08-08 2022-09-22 Mercedes-Benz Group AG Axial flow machine, in particular for a motor vehicle
WO2024033235A1 (en) 2022-08-08 2024-02-15 Mercedes-Benz Group AG Axial flow machine, in particular for a motor vehicle

Also Published As

Publication number Publication date
EP2835895A2 (en) 2015-02-11
GB201314229D0 (en) 2013-09-25
WO2015019107A3 (en) 2015-06-11
GB2519060A (en) 2015-04-15
EP2835895A3 (en) 2015-05-27
US20160204678A1 (en) 2016-07-14
GB2519060B (en) 2016-08-03
US10224786B2 (en) 2019-03-05

Similar Documents

Publication Publication Date Title
US10224786B2 (en) Cooling of axial flux motors—centrifugal
CN109997296B (en) Method for cooling an electric machine and electric machine using such a method
EP2667486B2 (en) Electric machine rotor cooling method
US7436096B2 (en) Rotor having permanent magnets and axialy-extending channels
CA2771922C (en) Turbomachine
US9869319B2 (en) Vacuum pump
EP2951907B1 (en) Pole shoe cooling gap for axial motor
JP5887870B2 (en) Rotating electric machine
US20040036367A1 (en) Rotor cooling apparatus
JP7135522B2 (en) Rotating electric machine
US9871426B1 (en) Electrical machine with reduced windage
EP2545637A1 (en) Electrical motor incorporating internal rotor cooling
EP2728715A2 (en) Rotating electrical machine
EP3375079A1 (en) Cooling means for direct drive generators
JP6284519B2 (en) Rotor device for vacuum pump and manufacturing method thereof
US9257881B2 (en) Rotating electric machine
EP1975376B1 (en) Expansion turbine
EP2861880B1 (en) Encapsulated magnet assembly, method of purging a gap, rotary machine and oil/gas plant.
JP6173064B2 (en) Turbocharger with built-in electric machine with permanent magnet
US7956565B2 (en) Variable field permanent magnet dynamoelectric machine
KR100902118B1 (en) Motor for high-speed ratiotion
JP2020108209A (en) Dynamo-electric machine
WO2017009001A1 (en) An electric machine
US11891981B2 (en) Generator/gearbox arrangement for a wind power installation with a brake
JP6298858B2 (en) Vacuum pump

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14910849

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14750623

Country of ref document: EP

Kind code of ref document: A2