WO2015018428A1 - Biodegradable polymer composition for the manufacture of articles having a high heat deflection temperature - Google Patents

Biodegradable polymer composition for the manufacture of articles having a high heat deflection temperature Download PDF

Info

Publication number
WO2015018428A1
WO2015018428A1 PCT/EP2013/066372 EP2013066372W WO2015018428A1 WO 2015018428 A1 WO2015018428 A1 WO 2015018428A1 EP 2013066372 W EP2013066372 W EP 2013066372W WO 2015018428 A1 WO2015018428 A1 WO 2015018428A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
composition according
biodegradable
mixtures
weight
Prior art date
Application number
PCT/EP2013/066372
Other languages
French (fr)
Inventor
Nicola MARINI
Angelos Rallis
Original Assignee
Novamont S.P.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novamont S.P.A. filed Critical Novamont S.P.A.
Priority to CA2917983A priority Critical patent/CA2917983C/en
Priority to PT137528618T priority patent/PT3030616T/en
Priority to CN201380078522.7A priority patent/CN105452375B/en
Priority to DK13752861.8T priority patent/DK3030616T3/en
Priority to NO13752861A priority patent/NO3030616T3/no
Priority to AU2013397550A priority patent/AU2013397550B2/en
Priority to ES13752861.8T priority patent/ES2648220T3/en
Priority to EP13752861.8A priority patent/EP3030616B1/en
Priority to US14/909,536 priority patent/US9914833B2/en
Priority to PCT/EP2013/066372 priority patent/WO2015018428A1/en
Publication of WO2015018428A1 publication Critical patent/WO2015018428A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • This invention relates to a biodegradable polymer composition which is particularly suitable for use for the manufacture of articles having a high heat deflection temperature (HDT) by injection moulding and thermoforming.
  • HDT heat deflection temperature
  • This invention also relates to the process of producing the said composition and articles obtained therewith.
  • Polylactic acid is a biodegradable thermoplastic polyester originating from a renewal source. Its mechanical properties make it an ideal candidate for the replacement of conventional thermoplastic polymers, especially in the case of applications where high rigidity is required, such as for example in the manufacture of throwaway cutlery, rigid containers or caps for drinks containers.
  • polylactic acid can be used in standard machinery with minimum modifications, some of its properties nevertheless have not hitherto let it be utilised widely and extensively as a replacement for conventional thermoplastic materials.
  • this invention relates to a biodegradable polymer composition for the production of articles having a high heat deflection temperature comprising:
  • AAPE aromatic aliphatic polyester
  • the diol component comprises a— O— (Rn)— O— and
  • R i « is selected from the group comprising C0-C20 alkyienes and their mixtures and the molar percentage of the units derived from the aromatic diacids is more than 50% and less than or equal to 70 moi% of the dicarboxyl component;
  • a nucleating agent selected from polyesters comprising repeating units of 1 ,4-butylene succinate, talc and mixtures thereof.
  • this is advantageously selected from poiy-L-iactic acid, poly-D-lactic acid and the stereo complex of poly-D-L-iactic acid or mixtures thereof.
  • the lactic acid polyester comprises 98% by weight of units deriving from L-iactic acid, 2% of repeated units deriving from D-lactic acid, has a melting point in the range 160- 170°C, a glass transition temperature (Tg) in the range 55- 65°C and an MF (measured according to standard ASTM-D 1238 at 190°C and 2.16 kg) within the range 10-60 g/10 min, preferably 1 5-40 g/10 min.
  • the process for production of the lactic acid polyester may take place according to any one of the known processes in the state of the art.
  • this polyester may advantageously be obtained through a polymerisation reaction by opening the ring from the iactide.
  • the dicarboxyl component comprises units deriving from aliphatic diacids and aromatic diacids of the type described above.
  • succinic acid succinic acid, adipic acid, suberic acid, azeiaic acid, sebacic acid, undecandioic acid, dodecandioic acid, brassylic acid, hexadecandioic acid and octadecandioic acid are particularly preferred. Mixtures of these diacids are also particularly useful.
  • Diacids having unsaturations within the chain such as for example itaconic acid and maleic acid, are also included.
  • the aromatic diacids are concerned, in the aliphatic-aromatic polyester AAPE these are advantageously selected from dicarboxylic aromatic compounds of the phthalic acid type and their esters and heterocyclic dicarboxylic aromatic compounds and their esters and their mixtures.
  • the said mixtures comprise up to 30% in moles of dicarboxylic aromatic diacids of the phthal ic acid type.
  • heterocyclic dicarboxylic aromatic compounds are advantageously of renewable origin, this term meaning those products obtained from sources which because of their intrinsic characteristics are regenerated in nature or are not exhaustible on the scale of a human lifetime and, by extension, whose use will not prejudice natural resources for future generations.
  • the use of products of renewable origin also helps to reduce C0 2 in the atmosphere and reduce the use of non-renewable resources.
  • a typical example of a renewable source is that of plant crops.
  • terephthalic acid is particularly preferred, while with regard to the heterocyclic dicarboxylic aromatic compounds 2.5-furand i carboxy I i c acid is particularly preferred.
  • the content of units deriving from aromatic diacids in the aliphatic-aromatic polyester AAPE is 40-70%, preferably higher than 50 % and more preferably between 55-60% in moles with respect to the total diacids content in moles.
  • dioi component of the aliphatic-aromatic polyester AAPE this derives from diois preferably selected from 1 ,2-ethandiol, 1 ,2-propandiol, 1 ,3-propandiol, 1 ,4-butandioI, 1 .5-pentandiol, 1 ,6-hexandiol, 1 .7-heptandiol.
  • the aliphatic-aromatic polyester AAPE may contain at least one hydroxy acid in a quantity of between 0-49%>, preferably between 0-30% in moles with respect to the moles of aliphatic dicarboxyl ic acid, in addition to the base monomers.
  • Examples of convenient hydroxy acids are glycol ic acid, hydroxybutyric acid, hydroxycaproic ac id, hydroxyvaleric acid, 7-hydroxyheptanoic acid, 8 -hydroxycaproic acid, 9-hydroxynonanoic acid, lactic acid or lactides.
  • the hydroxy acids may be inserted into the chain as such or may be first caused to react with diacids or diois.
  • Long molecules with two functional groups may also be added in quantities not exceeding 10%.
  • Examples are dimer acids, ricinoleic acid and acids incorporating epoxy functional groups and also polyoxyethylenes having a molecular weight of between 200 and 10,000.
  • Amines, amino acids and amino alcohols may also be present in percentages up to 30%> in moles in relation to ail the other components.
  • one or more molecules having multiple functional groups may advantageously be added in quantities between 0.1 and 3% in moles with respect to the quantity of dicarboxylic acids (and any hydroxy acids) in order to obtain branched products.
  • these molecules are glycerol, pentaerythritol, trimethylol propane, citric acid, dipentaerythritol, monoanhydrosorbitol, monohydromannitoi, acid triglycerides, polyglycerols, etc.
  • the aliphatic-aromatic polyester AAPE is biodegradable in the meaning of standard E 1 3432.
  • the molecular weight VI neighbor of the aliphatic-aromatic polyester AAPE is preferably greater than 30,000.
  • the polydispersity index of the molecular weights Mw / Mn is concerned, this on the other hand is preferably between 1.5 and 10.
  • the molecular weights M comfort and M w may be measured by Gel Permeation Chromatography (GPC). The determination may be performed with the chromatography system held at 40°C, using a set of three columns in series (particle diameter 5 ⁇ and respective porosities of 500 A, 1000 A and 10,000 A), a refractive index detector, chloroform as eluent (flow 1 ml/min) and using polystyrene as the reference standard.
  • GPC Gel Permeation Chromatography
  • the Melt Flow Rate (MFR) of the aliphatic-aromatic polyester AAPE is preferably between 500 and 1 g/10 min, more preferably between 100 and 5 g/10 min, even more preferably between 50 and 6 g/10 min (measurement made at 190°C/2.16 kg according to standard ASTM D1238-89 "Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer").
  • the aliphatic-aromatic polyester AAPE has an inherent viscosity (measured using an Ubbelohde viscosi meter for solutions of concentration 0.2 g/dl in (TICK at 25°C) of more than 0.4, preferably between 0.4 and 2, more preferably between 0.7 and 1 .5 dl/g.
  • the al iphatic-aromatic polyester AA PE may be a block copolymer or a random copolymer, the latter being preferred.
  • the process for production of the aliphatic-aromatic polyester AAPE may take place according to any of the known processes in the state of the art.
  • this polyester may advantageously be obtained by means of a poiycondensation reaction.
  • the process of polymerising the polyester may be performed in the presence of a suitable catalyst.
  • suitable catalysts mention may be made by way of example of organometaliic compounds of tin, for example stannoic acid derivatives, titanium compounds, for example orthobutyltitanate, aluminium compounds, for example Al-triisopropyl, and compounds of antimony and zinc.
  • the aliphatic-aromatic polyester AAPE may also be obtained by a process of reactive extrusion from a precursor polyester (PP) comprising units deriving from at least one diacid and at least one substantially linear diol with a MFI o 5-30 dl/g at 190°C and 2.16 kg, hav ing a mean weighted molecular weight M w measured by GPC of between 60,000-120,000 and an content of active sites such as unsaturations in an amount of 0.1 -1 % in moles and/or terminal acid groups in a quantity of 10-200 meq of KOH, the said reactive extrusion process being performed through the addition o a compound selected from peroxides, epoxides or carbodiimides, such as those mentioned above. If the said reactive extrusion process is carried out using peroxides, these are used in quantities of 0.001 -0.2% and preferably 0.01 -0.1 % by weight with respect to the sum of the polymers fed to the reactive extrusion process.
  • epoxides are preferably used in a quantity of 0.1-2%, more preferably 0.2- 1 % by weight with respect to the sum of the polymers fed to the reactive extrusion process.
  • carbodiimides are used, these are preferably used in a quantity of 0.05-2%, more preferably 0.1-1% by weight with respect to the sum of the polymers fed to the reactive extrusion process.
  • the said precursor polyester PP has an MFI of 5-30 and more preferably 7-20 g/10 min at 190°C and 2.16 kg, a shear viscosity of 400-900 Pas and a weighted mean molecular weight Mw of preferably between 100,000-130,000.
  • the said precursor polyester PP has an unsaturations content of 0.1-0.8% and more preferably 0.2-0.7% in moles.
  • the unsaturations may be generated in situ during the polymerisation stage or processing o the precursor polyester PP or through the insertion of suitable unsaturated monomers or unsaturated chain endings.
  • Precursor polyesters PP with terminal unsaturations are particularly preferred.
  • T is a group capable of reacting with carboxyi and/or hydroxyl groups, for example a hydroxyl, carboxyi, amine, amide or stereo group, and "n" is a whole number between 0 and 13.
  • the said unsaturated chain terminators may also be used as a mixture.
  • T this is preferably a hydroxy! or carboxyi group.
  • n preferably lies between 1 and 13, more preferably between 3 and 13 and even more preferably 8 or 9.
  • Particularly preferred unsaturated chain terminators include omcga-undecenoic acid, omega- undeceny! alcohol and their mixtures.
  • the presence of unsaturations and/or adducts deriving from the reaction of these following reactive extrusion may be determined by different methods which are well known to those skilled in the art, such as MR spectroscopy or methanoiysis reactions of the polymer chain coupled with chromatographic methods combined with mass spectrometry.
  • this may be performed by 300 MHz HI NMR using a pulse-acquisition sequence characterised by a pulse phase of 30°, a spectral amplitude - 4 kHz, a delay of 5 seconds and performing 6000 scans.
  • the aliphatic-aromatic polyester AAPE can be obtained by a reactive extrusion process from a precursor polyester PP having a terminal acid groups content of 35-150 meq of
  • the terminal acid groups content may be measured as follows: 1.5-3 g of the polyester are placed in a 100 ml flask together with 60 ml of chloroform. After the polyester has completely dissolved 25 mi of 2-propanoi are added, and immediately before analysis 1 ml of deionised water. The solution so obtained is titrated against a previously standardised solution of KOH in ethanol . An appropriate indicator, such as for example a glass electrode for acid-base titrations in non-aqueous solvents, is used to determine the end point of the titration.
  • the terminal acid groups content is calculated on the basis of the consumption of KOH solution in ethanol using the following equation:
  • T concentration of the KOH solution in ethanol expressed in moles/l itre;
  • the process of producing the precursor polyester PP may take place according to any of the processes known in the state of the art described above.
  • nucleating agents of the biodegradable polymeric composition are selected from polyesters comprising repeating units of 1 ,4-butylene succinate, talc and mixtures thereof.
  • polyesters comprising repeating units of 1 ,4-butylene succinate
  • poly( 1 ,4- butylene succinate) and poiy( 1 ,4-butylene succinate-co- 1 ,4-butylene alkylate) copolymers are preferred, poiy( 1 ,4-butylene succinate) being more preferred.
  • poly( 1 ,4-butylene succinate-co- 1 ,4-butylene alkylate) copolymers are concerned, they advantageously shows a crystallization temperature higher than 80°C, more preferably higher than 90°C still more preferably higher than 100°.
  • the 1 ,4-butylene-aikyiate repeating units advantageously comprise C2-C20 aliphatic diacids residues and, among C2-C20 aliphatic diacids, adipic acid, sebacic acid and azelaic acid and mixtures thereof are preferred.
  • the polyesters comprising repeating units of 1 ,4-butylene succinate have a MFR (determined according to ASTM 1238 - 1 0 at 190 °C and 2, 16 kg) higher than lOg/10 min, more preferably 20 g/10 minutes, more preferably higher than 30 g/10 minutes.
  • the nucleating agents of the biodegradable polymeric composition comprises a mixture of polyesters comprising repeating units of 1 ,4-butylene succinate and talc, wherein said mixture comprises 10-95 wt % and more preferably 30-85 wt % of said polyesters.
  • the polyester of said mixture is poly(l ,-4 butyiene succinate).
  • the polymer composition according to this invention may also contain one or more other additives, for example fillers, anti-caking agents, cross-linking agents, compatibilizing agents, plasticisers, pigments and dyes.
  • additives for example fillers, anti-caking agents, cross-linking agents, compatibilizing agents, plasticisers, pigments and dyes.
  • fillers may be inorganic and/or organic.
  • inorganic fillers are: sepiolite, montmori llonite, calcium carbonate, silica, mica, kaolin, titanium dioxide and woiiastonite.
  • the process of producing the polymer composition according to this invention may take place according to any of the processes known in the state of the art.
  • the polymer composition according to this invention is produced by means of extrusion processes in which the components are mixed in the fused state.
  • the components may be fed altogether or one or more of these may be fed separately along the extruder.
  • the components i) -iv) are fed altogether to the extruder.
  • the biodegradable polymer composition according to this invention is particularly suitable for use in injection moulding and thermoforming, and in spinning.
  • HDT heat deflection temperature
  • Products showing such range of HDT are particularly suitable to be transformed in injection moulded or thermoformed articles without occurrence of deformations if subjected to high loads at high temperatures. This renders said compositions particularly suitable for the production of throwaway cutlery, cups, rigid containers, caps for the dispensing of drinks, preferably hot drinks, lids and covers, and packaging for food which can be reheated in conventional ovens and microwaves.
  • biodegradable polymer composition according to the invention is therefore particularly suitabl e for the manufacture of throwaway cutlery, cups, rigid containers, lids and covers, and packaging for food.
  • the biodegradable polymeric composition according to the invention is particularly suitable for the manufacture of capsules for dispensing drinks, preferably hot drinks such as coffee and tea.
  • the biodegradable polymeric composition according to the invention shows a co-continuous morphology allowing the capsules to keep suitable tensile properties, particularly breaking at load and elongation at break, as well as dynamic modulus even at high temperatures (i .e. a dynamic modulus in the range of 450- 1 50 Pa and preferably between 350 and 180MPa at 80°C). This allows the capsules to show sufficient dimensional stability and integrity rendering them usable with the conventional capsule coffee and tea makers currently available in the market.
  • the amount of polyester of lactic acid has to be 40-70 % by weight, preferably 45-65% by weight, with respect to the sum of components i and ii.
  • the present invention refers to a capsule for the dispensing of drinks, such as coffee and tea, comprising the biodegradable polymeric composition according to the present invention.
  • the capsules for dispensing of drinks according to the present invention are free of cellulose fibers (i.e. do not contain cellulose fibers). This has the advantage of further improving their performance in use with respect to the preservation of the capsule's integrity, particularly when the dispensation of hot drinks occurs using machines working at elevated pressure.
  • the biodegradable polymer composition according to the present inv ention has the further advantage that it can be fed to conventional machinery without requiring substantial changes to normal operating conditions in comparison with other conventional polymers such as for example polyethylene, polypropylene, polystyrene and ABS.
  • other conventional polymers such as for example polyethylene, polypropylene, polystyrene and ABS.
  • these may be moulded using a fusion temperature of 2 I O C, an oleodynamic pressure of 80 bar, a cooling time of 4 sec and a cycle time of 12 sec.
  • injection moulded articles comprising the composition according to this invention are subjected to hot annealing treatments at temperatures between 70 and 150°C.
  • This invention also relates to articles obtained by means of the said annealing treatments (known as annealed products).
  • annealing treatments may advantageously be performed in an uncon lined environment at constant temperature, for example within a stove.
  • the annealing treatments are preferably carried out at temperatures between 80- 150°C and with residence times of 1 5 sec- 60 min, preferably 30 sec-30 min and even more preferably 40 sec-5 min, with this being particularly advantageous from the production point of view.
  • the specific conditions which have to be used will vary depending on the dimensions of the object which has to be subjected to annealing treatment and the degree of heat resistance required by the application. In general in the case of thick objects it is preferable to use higher temperatures and/or longer residence times.
  • the said annealing treatments may also be performed in a confined environment, for example within preheated moulds at constant temperature, preferably between 80-100°C, for 0,5- 5 minutes.
  • the specific conditions which have to be used will vary depending upon the size of the object being subjected to annealing treatment. In general, in the case of thick objects it is preferable to use longer residence times.
  • Heat deflection temperature was measured according to standard ASTM-D648 using two different loads, 0.455 MPa and 1.82 MPa, on moulded test specimens of the "bar" type (length 127 mm, width 12.7 mm, thickness 3.2 mm) using Ceast 6510 Test-A- Matic model equipment. HDT values were determined in triplicate for each composition. The value stated corresponds to the arithmetic mean of the measured values.
  • PLA polylactic acid containing 98% of L-Lactic and 2% of D-Lactic, melting point
  • Tm 165°C
  • weighted mean molecular weight Mw 166000
  • intrinsic viscosity 0.97 dl/g
  • shear rate 1000 s "1
  • Anti-caking agent oleamide of plant origin
  • PBS poiy(l ,4-butylene succinate) MF 46 g/10' (measured according to ASTM 1238 - 1 0 at 190 °C/2, 16 kg)
  • Inorganic filler Titanium dioxide
  • the granules were then injection moulded in a Sandretto S7/60 model press in a mould to produce dumbbell and "bar" specimens using in both cases the following injection moulding operating conditions:
  • dumbbell specimens obtained were examined to determine their properties.
  • the results of the characterisations are shown in Table 2 and 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

This invention relates to a biodegradable polymer composition which is particularly suitable for use in the manufacture of articles having a high heat deflection temperature (HDT) by injection moulding and thermoforming.

Description

BIODEGRADABLE POLYMER COMPOSITION FOR THE MANUFACTURE OF ARTICLES HAVING A HIGH HEAT DEFLECTION TEMPERATURE
DESCRIPTION
This invention relates to a biodegradable polymer composition which is particularly suitable for use for the manufacture of articles having a high heat deflection temperature (HDT) by injection moulding and thermoforming.
This invention also relates to the process of producing the said composition and articles obtained therewith.
Polylactic acid is a biodegradable thermoplastic polyester originating from a renewal source. Its mechanical properties make it an ideal candidate for the replacement of conventional thermoplastic polymers, especially in the case of applications where high rigidity is required, such as for example in the manufacture of throwaway cutlery, rigid containers or caps for drinks containers.
Despite the fact that polylactic acid can be used in standard machinery with minimum modifications, some of its properties nevertheless have not hitherto let it be utilised widely and extensively as a replacement for conventional thermoplastic materials.
In the injection moulding sector, for example, one of the greatest difficulties associated with the use of polylactic acid and its compositions with other biodegradable polymers lies in the high tendency for articles made therewith to deform if subjected to high loads at temperatures above ambient temperature. This is because in the manufactures obtained using normal injection moulding production processes polylactic acid is mainly present as an amorphous polymer, which is therefore only rigid well below its glass transition temperature, of approximately 60 C. Typically this tendency is mitigated by increasing the percentage crystallinity of polylactic acid, for example by subjecting articles to annealing heat treatments. Nevertheless, even though this technique brings about a substantial increase in an article's heat deflection temperature, it also results in its deformation. Consequently special precautions have to be taken during the stages of designing and producing the said articles, which has an adverse effect on their industrial processability.
In consideration of the above it would therefore be desirable to have a biodegradable composition containing polylactic acid which is capable of being transformed economically and productively into articles having a high heat deflection temperature without compromising their dimensional stability. In particular, this invention relates to a biodegradable polymer composition for the production of articles having a high heat deflection temperature comprising:
i) 40-70 % by weight, preferably 45-65% by weight, with respect to the sum of components i and ii, of a polyester of lactic acid;
ii) 30-60% by weight, preferably 35-55% by weight, with respect to the sum of components i and ii, of at least one aromatic aliphatic polyester (AAPE) comprising a dicarboxyl component and a diol component comprising the following structural units:
t O ( R„) O C(0> < R„> C< 0 > ]
— [— O— (Ri2)— O— C(O)— (R14)— C(O)— ]—
in which the diol component comprises a— O— (Rn)— O— and
— O— (R )— O— units derived from diols, in which Rn and Rt . are the same or different and are selected from the group comprising C2-C 14 alkyienes, C5-C10 cycloalkyienes, C2-C 12 oxyalkylenes, heterocyclic groups and their mixtures, in which the dicarboxyl ic component comprises— C(O)— (Ro)— C(O)— units deriving from aliphatic diacid.s and— C(O)— (RH)— C(O)— units deriving from aromatic diacids, in which R i « is selected from the group comprising C0-C20 alkyienes and their mixtures and the molar percentage of the units derived from the aromatic diacids is more than 50% and less than or equal to 70 moi% of the dicarboxyl component;
iii) 0 to less than 1 % by weight, with respect to the total weight of the biodegradable polymer composition, of cellulose fibres;
iv) 1 - 10 % by weight, preferably 2-6 % by weight, with respect to the total weight of the biodegradable polymer composition, of a nucleating agent selected from polyesters comprising repeating units of 1 ,4-butylene succinate, talc and mixtures thereof.
As far as the lactic acid polyester is concerned (component i), this is advantageously selected from poiy-L-iactic acid, poly-D-lactic acid and the stereo complex of poly-D-L-iactic acid or mixtures thereof.
Polymers or copolymers of polylactic acid containing at least 95% by weight of repeating units derived from L-lactic acid or D-lactic acid or their combinations having a molecular weight Mw of more than 50,000 and a shear viscosity of between 50-500 Pas, preferably between 100-300 Pas (measured according to standard ASTM D3835 at T = 190°C, shear rate = 1000 s"1, D = 1 mm, L/D = 10) are particularly preferred.
In a particularly preferred embodiment the lactic acid polyester comprises 98% by weight of units deriving from L-iactic acid, 2% of repeated units deriving from D-lactic acid, has a melting point in the range 160- 170°C, a glass transition temperature (Tg) in the range 55- 65°C and an MF (measured according to standard ASTM-D 1238 at 190°C and 2.16 kg) within the range 10-60 g/10 min, preferably 1 5-40 g/10 min.
The process for production of the lactic acid polyester may take place according to any one of the known processes in the state of the art. In particular, this polyester may advantageously be obtained through a polymerisation reaction by opening the ring from the iactide.
As far as the aliphatic-aromatic polyester A APE is concerned (component ii), the dicarboxyl component comprises units deriving from aliphatic diacids and aromatic diacids of the type described above.
Of the aliphatic diacids, succinic acid, adipic acid, suberic acid, azeiaic acid, sebacic acid, undecandioic acid, dodecandioic acid, brassylic acid, hexadecandioic acid and octadecandioic acid are particularly preferred. Mixtures of these diacids are also particularly useful.
Diacids having unsaturations within the chain, such as for example itaconic acid and maleic acid, are also included.
As far as the aromatic diacids are concerned, in the aliphatic-aromatic polyester AAPE these are advantageously selected from dicarboxylic aromatic compounds of the phthalic acid type and their esters and heterocyclic dicarboxylic aromatic compounds and their esters and their mixtures. Preferably the said mixtures comprise up to 30% in moles of dicarboxylic aromatic diacids of the phthal ic acid type.
As far as the heterocyclic dicarboxylic aromatic compounds are concerned, these are advantageously of renewable origin, this term meaning those products obtained from sources which because of their intrinsic characteristics are regenerated in nature or are not exhaustible on the scale of a human lifetime and, by extension, whose use will not prejudice natural resources for future generations. The use of products of renewable origin also helps to reduce C02 in the atmosphere and reduce the use of non-renewable resources. A typical example of a renewable source is that of plant crops.
As far as dicarboxylic aromatic diacids of the phthalic acid type are concerned, terephthalic acid is particularly preferred, while with regard to the heterocyclic dicarboxylic aromatic compounds 2.5-furand i carboxy I i c acid is particularly preferred. The content of units deriving from aromatic diacids in the aliphatic-aromatic polyester AAPE is 40-70%, preferably higher than 50 % and more preferably between 55-60% in moles with respect to the total diacids content in moles.
As regards the dioi component of the aliphatic-aromatic polyester AAPE, this derives from diois preferably selected from 1 ,2-ethandiol, 1 ,2-propandiol, 1 ,3-propandiol, 1 ,4-butandioI, 1 .5-pentandiol, 1 ,6-hexandiol, 1 .7-heptandiol. 1 ,8-octandiol, 1 ,9-nonandioi, 1 , 10-decandioi, 1 , 1 1-undecandiol, 1 ,12-dodecandiol, 1 ,13-tridecandiol, 1 ,4-cyclohexanedimethanol, propylene glycol , n co-pen ty I glycol, 2-methyl- 1 ,3-propandiol, dianhydrosorbitol, dianhydromannitol, dianhydroinitol, cyciohexandioi, cyclohexanmethandiol and their mixtures. Among the diois, 1 ,2-ethandiol, 1 ,3 propandiol, 1 ,4-butandiol and their mixtures are particularly preferred.
The aliphatic-aromatic polyester AAPE may contain at least one hydroxy acid in a quantity of between 0-49%>, preferably between 0-30% in moles with respect to the moles of aliphatic dicarboxyl ic acid, in addition to the base monomers. Examples of convenient hydroxy acids are glycol ic acid, hydroxybutyric acid, hydroxycaproic ac id, hydroxyvaleric acid, 7-hydroxyheptanoic acid, 8 -hydroxycaproic acid, 9-hydroxynonanoic acid, lactic acid or lactides. The hydroxy acids may be inserted into the chain as such or may be first caused to react with diacids or diois.
Long molecules with two functional groups, including those with a functional group which is not in a terminal position, may also be added in quantities not exceeding 10%. Examples are dimer acids, ricinoleic acid and acids incorporating epoxy functional groups and also polyoxyethylenes having a molecular weight of between 200 and 10,000.
Amines, amino acids and amino alcohols may also be present in percentages up to 30%> in moles in relation to ail the other components.
In the process for preparation of the aliphatic-aromatic polyester AAPE one or more molecules having multiple functional groups may advantageously be added in quantities between 0.1 and 3% in moles with respect to the quantity of dicarboxylic acids (and any hydroxy acids) in order to obtain branched products. Examples of these molecules are glycerol, pentaerythritol, trimethylol propane, citric acid, dipentaerythritol, monoanhydrosorbitol, monohydromannitoi, acid triglycerides, polyglycerols, etc.
In a particularly preferred embodiment the aliphatic-aromatic polyester AAPE is biodegradable in the meaning of standard E 1 3432. The molecular weight VI„ of the aliphatic-aromatic polyester AAPE is preferably greater than 30,000. As far as the polydispersity index of the molecular weights Mw / Mn is concerned, this on the other hand is preferably between 1.5 and 10.
The molecular weights M„ and Mw may be measured by Gel Permeation Chromatography (GPC). The determination may be performed with the chromatography system held at 40°C, using a set of three columns in series (particle diameter 5 μ and respective porosities of 500 A, 1000 A and 10,000 A), a refractive index detector, chloroform as eluent (flow 1 ml/min) and using polystyrene as the reference standard.
The Melt Flow Rate (MFR) of the aliphatic-aromatic polyester AAPE is preferably between 500 and 1 g/10 min, more preferably between 100 and 5 g/10 min, even more preferably between 50 and 6 g/10 min (measurement made at 190°C/2.16 kg according to standard ASTM D1238-89 "Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer").
Preferably the aliphatic-aromatic polyester AAPE has an inherent viscosity (measured using an Ubbelohde viscosi meter for solutions of concentration 0.2 g/dl in (TICK at 25°C) of more than 0.4, preferably between 0.4 and 2, more preferably between 0.7 and 1 .5 dl/g.
The al iphatic-aromatic polyester AA PE may be a block copolymer or a random copolymer, the latter being preferred.
The process for production of the aliphatic-aromatic polyester AAPE may take place according to any of the known processes in the state of the art. In particular this polyester may advantageously be obtained by means of a poiycondensation reaction. Advantageously the process of polymerising the polyester may be performed in the presence of a suitable catalyst. Among such suitable catalysts mention may be made by way of example of organometaliic compounds of tin, for example stannoic acid derivatives, titanium compounds, for example orthobutyltitanate, aluminium compounds, for example Al-triisopropyl, and compounds of antimony and zinc.
The aliphatic-aromatic polyester AAPE may also be obtained by a process of reactive extrusion from a precursor polyester (PP) comprising units deriving from at least one diacid and at least one substantially linear diol with a MFI o 5-30 dl/g at 190°C and 2.16 kg, hav ing a mean weighted molecular weight Mw measured by GPC of between 60,000-120,000 and an content of active sites such as unsaturations in an amount of 0.1 -1 % in moles and/or terminal acid groups in a quantity of 10-200 meq of KOH, the said reactive extrusion process being performed through the addition o a compound selected from peroxides, epoxides or carbodiimides, such as those mentioned above. If the said reactive extrusion process is carried out using peroxides, these are used in quantities of 0.001 -0.2% and preferably 0.01 -0.1 % by weight with respect to the sum of the polymers fed to the reactive extrusion process.
As far as the addition of epoxides is concerned, these are preferably used in a quantity of 0.1-2%, more preferably 0.2- 1 % by weight with respect to the sum of the polymers fed to the reactive extrusion process.
If carbodiimides are used, these are preferably used in a quantity of 0.05-2%, more preferably 0.1-1% by weight with respect to the sum of the polymers fed to the reactive extrusion process.
Mixtures of the said peroxides, epoxides and carbodiimides may also be used.
Preferably the said precursor polyester PP has an MFI of 5-30 and more preferably 7-20 g/10 min at 190°C and 2.16 kg, a shear viscosity of 400-900 Pas and a weighted mean molecular weight Mw of preferably between 100,000-130,000.
Preferably the said precursor polyester PP has an unsaturations content of 0.1-0.8% and more preferably 0.2-0.7% in moles.
The unsaturations may be generated in situ during the polymerisation stage or processing o the precursor polyester PP or through the insertion of suitable unsaturated monomers or unsaturated chain endings.
Precursor polyesters PP with terminal unsaturations are particularly preferred.
Among unsaturated chain terminations those preferred are those having the following structure:
T-(CH2)n-CH=CH2
in which "T" is a group capable of reacting with carboxyi and/or hydroxyl groups, for example a hydroxyl, carboxyi, amine, amide or stereo group, and "n" is a whole number between 0 and 13.
The said unsaturated chain terminators may also be used as a mixture.
As far as "T" is concerned, this is preferably a hydroxy! or carboxyi group.
The whole number "n" preferably lies between 1 and 13, more preferably between 3 and 13 and even more preferably 8 or 9.
Particularly preferred unsaturated chain terminators include omcga-undecenoic acid, omega- undeceny! alcohol and their mixtures.
The presence of unsaturations and/or adducts deriving from the reaction of these following reactive extrusion may be determined by different methods which are well known to those skilled in the art, such as MR spectroscopy or methanoiysis reactions of the polymer chain coupled with chromatographic methods combined with mass spectrometry.
Those skilled in the art will easily be able to identify the structures relating to unsaturations as such or adducts deriving from their reaction following reactive extrusion.
As far as measurement of the unsaturations content by NMR is concerned, this may be performed by 300 MHz HI NMR using a pulse-acquisition sequence characterised by a pulse phase of 30°, a spectral amplitude - 4 kHz, a delay of 5 seconds and performing 6000 scans.
Preferably the aliphatic-aromatic polyester AAPE can be obtained by a reactive extrusion process from a precursor polyester PP having a terminal acid groups content of 35-150 meq of
KOH/kg of polyester.
The terminal acid groups content may be measured as follows: 1.5-3 g of the polyester are placed in a 100 ml flask together with 60 ml of chloroform. After the polyester has completely dissolved 25 mi of 2-propanoi are added, and immediately before analysis 1 ml of deionised water. The solution so obtained is titrated against a previously standardised solution of KOH in ethanol . An appropriate indicator, such as for example a glass electrode for acid-base titrations in non-aqueous solvents, is used to determine the end point of the titration. The terminal acid groups content is calculated on the basis of the consumption of KOH solution in ethanol using the following equation:
Terminal acid groups content (meq KOH/kg polymer) =
Figure imgf000008_0001
in which: Veq = ml of KOH solution in ethanol at the end point of the titration of the sample;
Vb = ml of KOH solution in ethanol required to achieve a pH = 9.5 in titration;
T = concentration of the KOH solution in ethanol expressed in moles/l itre;
P = weight of the sample in grams.
The process of producing the precursor polyester PP may take place according to any of the processes known in the state of the art described above.
Concerning the nucleating agents of the biodegradable polymeric composition, they are selected from polyesters comprising repeating units of 1 ,4-butylene succinate, talc and mixtures thereof.
With regard to the polyesters comprising repeating units of 1 ,4-butylene succinate, poly( 1 ,4- butylene succinate) and poiy( 1 ,4-butylene succinate-co- 1 ,4-butylene alkylate) copolymers are preferred, poiy( 1 ,4-butylene succinate) being more preferred. As far as poly( 1 ,4-butylene succinate-co- 1 ,4-butylene alkylate) copolymers are concerned, they advantageously shows a crystallization temperature higher than 80°C, more preferably higher than 90°C still more preferably higher than 100°. The 1 ,4-butylene-aikyiate repeating units advantageously comprise C2-C20 aliphatic diacids residues and, among C2-C20 aliphatic diacids, adipic acid, sebacic acid and azelaic acid and mixtures thereof are preferred. Preferably, the polyesters comprising repeating units of 1 ,4-butylene succinate have a MFR (determined according to ASTM 1238 - 1 0 at 190 °C and 2, 16 kg) higher than lOg/10 min, more preferably 20 g/10 minutes, more preferably higher than 30 g/10 minutes.
In a preferred embodiment of the present invention, the nucleating agents of the biodegradable polymeric composition comprises a mixture of polyesters comprising repeating units of 1 ,4-butylene succinate and talc, wherein said mixture comprises 10-95 wt % and more preferably 30-85 wt % of said polyesters. In a particularly preferred embodiment the polyester of said mixture is poly(l ,-4 butyiene succinate).
The polymer composition according to this invention may also contain one or more other additives, for example fillers, anti-caking agents, cross-linking agents, compatibilizing agents, plasticisers, pigments and dyes.
As far as fillers are concerned, these may be inorganic and/or organic. Examples of particularly preferred inorganic fillers are: sepiolite, montmori llonite, calcium carbonate, silica, mica, kaolin, titanium dioxide and woiiastonite.
The process of producing the polymer composition according to this invention may take place according to any of the processes known in the state of the art. Advantageously the polymer composition according to this invention is produced by means of extrusion processes in which the components are mixed in the fused state. When extruding the composition the components may be fed altogether or one or more of these may be fed separately along the extruder. In a particularly preferred embodiment of the process for producing the biodegradable polymer composition according to the invention the components i) -iv) are fed altogether to the extruder.
The biodegradable polymer composition according to this invention is particularly suitable for use in injection moulding and thermoforming, and in spinning.
Its properties may in fact allow it to be used to manufacture injection moulded or thermoformed articles having a heat deflection temperature (HDT) comprised between 85 °C and 65 °C when measured according to standard ASTM-D648 using a load of 0.455 MPa or comprised between 70 and 50 °C when measured according to standard ASTM-D648 using a load of 1 ,82 MPa. Products showing such range of HDT are particularly suitable to be transformed in injection moulded or thermoformed articles without occurrence of deformations if subjected to high loads at high temperatures. This renders said compositions particularly suitable for the production of throwaway cutlery, cups, rigid containers, caps for the dispensing of drinks, preferably hot drinks, lids and covers, and packaging for food which can be reheated in conventional ovens and microwaves.
The biodegradable polymer composition according to the invention is therefore particularly suitabl e for the manufacture of throwaway cutlery, cups, rigid containers, lids and covers, and packaging for food.
Moreover, it has been discovered that the biodegradable polymeric composition according to the invention is particularly suitable for the manufacture of capsules for dispensing drinks, preferably hot drinks such as coffee and tea. Without willing to be bound to any specific theory, it has been observed that the biodegradable polymeric composition according to the invention shows a co-continuous morphology allowing the capsules to keep suitable tensile properties, particularly breaking at load and elongation at break, as well as dynamic modulus even at high temperatures ( i .e. a dynamic modulus in the range of 450- 1 50 Pa and preferably between 350 and 180MPa at 80°C). This allows the capsules to show sufficient dimensional stability and integrity rendering them usable with the conventional capsule coffee and tea makers currently available in the market. In this regard, in order to achieve the best results in terms of dimensional stability and to preserve the integrity of the capsules while dispensing the hot drinks, the amount of polyester of lactic acid has to be 40-70 % by weight, preferably 45-65% by weight, with respect to the sum of components i and ii.
In a particularly preferred embodiment, the present invention refers to a capsule for the dispensing of drinks, such as coffee and tea, comprising the biodegradable polymeric composition according to the present invention.
In a preferred embodiment of the present invention, the capsules for dispensing of drinks according to the present invention are free of cellulose fibers (i.e. do not contain cellulose fibers). This has the advantage of further improving their performance in use with respect to the preservation of the capsule's integrity, particularly when the dispensation of hot drinks occurs using machines working at elevated pressure.
As far as injection moulding is concerned, the biodegradable polymer composition according to the present inv ention has the further advantage that it can be fed to conventional machinery without requiring substantial changes to normal operating conditions in comparison with other conventional polymers such as for example polyethylene, polypropylene, polystyrene and ABS. Preferably, in the case of objects having a maximum thickness of the order of 1 millimetre, these may be moulded using a fusion temperature of 2 I O C, an oleodynamic pressure of 80 bar, a cooling time of 4 sec and a cycle time of 12 sec.
In a particularly preferred embodiment, injection moulded articles comprising the composition according to this invention are subjected to hot annealing treatments at temperatures between 70 and 150°C. This invention also relates to articles obtained by means of the said annealing treatments (known as annealed products).
These annealing treatments may advantageously be performed in an uncon lined environment at constant temperature, for example within a stove. In this case the annealing treatments are preferably carried out at temperatures between 80- 150°C and with residence times of 1 5 sec- 60 min, preferably 30 sec-30 min and even more preferably 40 sec-5 min, with this being particularly advantageous from the production point of view. The specific conditions which have to be used will vary depending on the dimensions of the object which has to be subjected to annealing treatment and the degree of heat resistance required by the application. In general in the case of thick objects it is preferable to use higher temperatures and/or longer residence times.
The said annealing treatments may also be performed in a confined environment, for example within preheated moulds at constant temperature, preferably between 80-100°C, for 0,5- 5 minutes. The specific conditions which have to be used will vary depending upon the size of the object being subjected to annealing treatment. In general, in the case of thick objects it is preferable to use longer residence times.
The invention will now be illustrated by a number of embodiments which are to be regarded by way of example and not restrictive of the scope of the protection of this patent application. EXAMPLES
In the examples described below:
Shear viscosity was measured using a Goettfert Rlicotcster 2000 model rheometer according to standard ASTM-D3835 at a temperature of 190°C using a capillary with D = 1 mm and L/D = 1 0 flat entry.
Mechanical properties were measured according to standard ASTM D638 Vo = 50 mm min on standard test specimens of the dumbbell type using an Instron 4301 model dynamometer. The following were determined: Elastic Modulus (in MPa), deformation on failure (as %) and ultimate tensile strength (in MPa).
Heat deflection temperature (HDT) was measured according to standard ASTM-D648 using two different loads, 0.455 MPa and 1.82 MPa, on moulded test specimens of the "bar" type (length 127 mm, width 12.7 mm, thickness 3.2 mm) using Ceast 6510 Test-A- Matic model equipment. HDT values were determined in triplicate for each composition. The value stated corresponds to the arithmetic mean of the measured values.
EXAM PLE 1
Table 1 - Composition in Example 1
Figure imgf000012_0001
Where not explicitly indicated the figures are expressed in parts.
PLA = polylactic acid containing 98% of L-Lactic and 2% of D-Lactic, melting point
Tm = 165°C, weighted mean molecular weight Mw = 166000, intrinsic viscosity = 0.97 dl/g and shear viscosity = 120 Pas measured according to standard ASTM-D3835 at T = 190°C, shear rate = 1000 s"1, and capillary D = 1 mm with L/D = 10.
AAPE = poly(butylenesebacate-co-butyieneterephlate) (PBST) having 56% in moles of terephthalic acid with respect to the sum of the aliphatic diacids and aromatic diacids, and having MFI = 14 g/10 min (at 190°C and 2.16 kg), and shear viscosity η = 570 Pas measured according to standard ASTM-D3835 at T = 180°C, shear rate = 104 s"1, and capillary D =1 mm with L/D = 30.
Anti-caking agent = oleamide of plant origin
Nucleating agent = talc = micronised talc (particle size 2- 10 microns)
PBS = poiy(l ,4-butylene succinate) MF 46 g/10' (measured according to ASTM 1238 - 1 0 at 190 °C/2, 16 kg)
Inorganic filler = Titanium dioxide
Hydrolysis stabiliser - styrene-glycidyl ether-methylmethacrylate copolymer having Mw = 7300, Mn = 2750, Tg = 54°C, equivalent weight of epoxide = 285 g/mol, number of epoxides per molecule = 10.
The composition in Table 1 was fed to a model APV2030 co-rotating twin-screw extruder under the following conditions: D = 30 mm; L/D = 40; R PM = 1 70; thermal profile = 30 C- 90°C-140oC-150oC-9x200oC-3xl 50°C. The granules were then injection moulded in a Sandretto S7/60 model press in a mould to produce dumbbell and "bar" specimens using in both cases the following injection moulding operating conditions:
injection T = 200°C;
Injection pressure = 1250 bar;
Injection time = 0.7 sec;
Injection flowrate - 25 cm3/sec;
Holding pressure = 200 bar;
Holding time = 1 1 sec;
Cooling time = 25 sec;
Mould temperature = 20°C;
Screw rotation = 80 rpm.
The dumbbell specimens obtained were examined to determine their properties. The results of the characterisations are shown in Table 2 and 3.
Table 2 - Mechanical characterisation according to ASTM-D638
Figure imgf000013_0001
Table 3 - HDT according to ASTM-D648
Figure imgf000013_0002

Claims

Biodegradable polymeric composition for preparing articles having high heat deflection temperature comprising:
i) 40-70 % by weight, with respect to the sum of components i and ii, of a polyester of lactic acid;
ii) 30-60% by weight, with respect to the sum of components i and ii, of at least one aromatic aliphatic polyester (AAPE) comprising a dicarboxyl component and a dioi component comprising the following structural units:
[ O ( R u ) O C(0> (R, < ) C'( 0 ) ]
— [— O— (R12)— O— C(O)— (R14)— C(O)— ]— in which the diol component comprises a— O— (Ru)— O— and
— O— (R!2)— O— units derived from diols, in which Ru and Ri > are the same or different and are selected from the group comprising C2-C 14 aikyienes, C5-C10 cycloalkyienes, C2-C 12 oxyalkylenes, heterocyclic groups and their mixtures, in which the dicarboxylic component comprises— C(O)— (R )— C(O)— units deriving from aliphatic diacids and— C(O)— (RH)— C(O)— units deriving from aromatic diacids, in which R ] « is selected from the group comprising C0-C20 aikyienes and their mixtures and the molar percentage of the units derived from the aromatic diacids is more than 50% and less than or equal to 70 mol% of the dicarboxyl component;
iii) 0 to less than 1 % by weight, with respect to the total weight of the biodegradable polymer composition, of cellulose fibres;
iv) 1 -10 % by weight with respect to the total weight of the biodegradable polymer composition, of a nucleating agent selected from polyesters comprising repeating units of 1 ,4-butylene succinate, talc and mixtures thereof.
Biodegradable composition according to Claim 1 , wherein the polyester of lactic acid is selected from the group consisting of poly-L-lactic acid, poly-D-iactic acid and stereocompiex of the poly-L-iactic acid, poly-D-lactic acid or mixtures thereof.
Biodegradable composition according to Claim 1 , wherein the aliphatic diacid of the AAPE are succinic acid, adipic acid, suberic acid, azelaic acid, sebacic acid, undecandioic acid, dodecandioic acid, brassylic acid, hexadecandioic acid and octadecandioic acid and mixtures thereof.
4. Biodegradable composition according to Claim 1, wherein the aromatic diacid are selected from dicarboxylic aromatic compounds of the phthaiic acid type and their esters and heterocyclic aromatic compounds and their esters and mixtures thereof.
5. Biodegradable composition according to Claim 4, wherein the heterocyclic aromatic compound is 2,5-furandicarbossylic acid.
6. Biodegradable composition according to Claim 4, wherein the dicarboxylic aromatic compound of the phthaiic acid type is terephthaiic acid.
7. Biodegradable composition according to any of claims 1-6, wherein the AAPE is biodegradable according to the EN 13432 norm.
8. Biodegradable composition according to any of claims 1-7, wherein the nucleating agent comprises a mixture of polyesters comprising repeating units of 1,4-butyiene succinate and talc, said mixture comprising 10-95 % by weight of said polyesters.
9. Biodegradable composition according to any of claims 1-8, wherein the polyester comprising repeating units of 1 ,4-butylene succinate is poly( 1 ,4-butylenc succinate).
10. Injection molded articles comprising the biodegradable composition according to any of claims 1-9.
11. Capsule for dispensing drinks comprising the biodegradable composition according to any of claims 1-9.
12. Capsule according to Claim 11, wherein said capsule is free of cellulose fibers.
PCT/EP2013/066372 2013-08-05 2013-08-05 Biodegradable polymer composition for the manufacture of articles having a high heat deflection temperature WO2015018428A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CA2917983A CA2917983C (en) 2013-08-05 2013-08-05 Biodegradable polymer composition for the manufacture of articles having a high heat deflection temperature
PT137528618T PT3030616T (en) 2013-08-05 2013-08-05 Biodegradable polymer composition for the manufacture of articles having a high heat deflection temperature
CN201380078522.7A CN105452375B (en) 2013-08-05 2013-08-05 Biodegradable polymer composition for manufacturing the product with high heat distortion temperature
DK13752861.8T DK3030616T3 (en) 2013-08-05 2013-08-05 BIODEGRADABLE POLYMER COMPOSITION FOR THE MANUFACTURING OF ARTICLES THAT HAVE A HIGH HEAT DEFENDING TEMPERATURE
NO13752861A NO3030616T3 (en) 2013-08-05 2013-08-05
AU2013397550A AU2013397550B2 (en) 2013-08-05 2013-08-05 Biodegradable polymer composition for the manufacture of articles having a high heat deflection temperature
ES13752861.8T ES2648220T3 (en) 2013-08-05 2013-08-05 Composition of biodegradable polymer for the manufacture of articles that have a high temperature of thermal deflection
EP13752861.8A EP3030616B1 (en) 2013-08-05 2013-08-05 Biodegradable polymer composition for the manufacture of articles having a high heat deflection temperature
US14/909,536 US9914833B2 (en) 2013-08-05 2013-08-05 Biodegradable polymer composition for the manufacture of articles having a high heat deflection temperature
PCT/EP2013/066372 WO2015018428A1 (en) 2013-08-05 2013-08-05 Biodegradable polymer composition for the manufacture of articles having a high heat deflection temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2013/066372 WO2015018428A1 (en) 2013-08-05 2013-08-05 Biodegradable polymer composition for the manufacture of articles having a high heat deflection temperature

Publications (1)

Publication Number Publication Date
WO2015018428A1 true WO2015018428A1 (en) 2015-02-12

Family

ID=49034063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/066372 WO2015018428A1 (en) 2013-08-05 2013-08-05 Biodegradable polymer composition for the manufacture of articles having a high heat deflection temperature

Country Status (10)

Country Link
US (1) US9914833B2 (en)
EP (1) EP3030616B1 (en)
CN (1) CN105452375B (en)
AU (1) AU2013397550B2 (en)
CA (1) CA2917983C (en)
DK (1) DK3030616T3 (en)
ES (1) ES2648220T3 (en)
NO (1) NO3030616T3 (en)
PT (1) PT3030616T (en)
WO (1) WO2015018428A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115029A2 (en) * 2013-01-22 2014-07-31 University Of Guelph Poly (lactic actd)-based biocomposite materials having improved toughness and heat distortion temperature and methods of making and using thereof
US11279823B2 (en) 2017-12-15 2022-03-22 University Of Guelph Biodegradable nanostructured composites
WO2019180074A1 (en) * 2018-03-21 2019-09-26 Ercros, S.A. Poly(lactic acid) composition comprising dipentaerythritol
CA3106448C (en) * 2018-08-07 2023-03-28 Northern Technologies International Corporation Biobased polyester blends with enhanced performance properties
US11905407B2 (en) * 2019-05-17 2024-02-20 Northern Technologies International Corporation Polylactide-based masterbatch, for a commercially viable single-step in-mold annealing injection molding process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202006001693U1 (en) * 2006-02-01 2006-03-30 Logo tape Gesellschaft für Selbstklebebänder GmbH Co. KG Biodegradable adhesive tape based on renewable raw materials
WO2006097353A1 (en) * 2005-03-18 2006-09-21 Novamont S.P.A. Biodegradable aliphatic -aromatic polyesters
US20070259195A1 (en) * 2006-05-08 2007-11-08 Far Eastern Textile Ltd. Polylactic acid composition, transparent heat resistant biodegradable molded article made of the same, and method for making the article
WO2008098889A1 (en) * 2007-02-15 2008-08-21 Basf Se Closed-cell polylactide-based foam layer
EP2583994A1 (en) * 2010-06-21 2013-04-24 Toray Industries, Inc. Polylactic acid film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7368511B2 (en) * 2003-12-22 2008-05-06 Eastman Chemical Company Polymer blends with improved rheology and improved unnotched impact strength
TWI418575B (en) * 2010-11-01 2013-12-11 Far Eastern New Century Corp Production method of heat-resistant polylactic acid element
ITMI20120250A1 (en) * 2012-02-20 2013-08-21 Novamont Spa BIODEGRADABLE POLYMER COMPOSITION FOR THE MANUFACTURE OF ARTICLES WITH HIGH INFLESSION TEMPERATURE UNDER LOAD.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006097353A1 (en) * 2005-03-18 2006-09-21 Novamont S.P.A. Biodegradable aliphatic -aromatic polyesters
DE202006001693U1 (en) * 2006-02-01 2006-03-30 Logo tape Gesellschaft für Selbstklebebänder GmbH Co. KG Biodegradable adhesive tape based on renewable raw materials
US20070259195A1 (en) * 2006-05-08 2007-11-08 Far Eastern Textile Ltd. Polylactic acid composition, transparent heat resistant biodegradable molded article made of the same, and method for making the article
WO2008098889A1 (en) * 2007-02-15 2008-08-21 Basf Se Closed-cell polylactide-based foam layer
EP2583994A1 (en) * 2010-06-21 2013-04-24 Toray Industries, Inc. Polylactic acid film

Also Published As

Publication number Publication date
CN105452375B (en) 2017-07-21
PT3030616T (en) 2017-11-17
ES2648220T3 (en) 2017-12-29
US20160177086A1 (en) 2016-06-23
AU2013397550B2 (en) 2018-04-19
CA2917983A1 (en) 2015-02-12
CN105452375A (en) 2016-03-30
NO3030616T3 (en) 2018-02-10
AU2013397550A1 (en) 2016-02-04
US9914833B2 (en) 2018-03-13
CA2917983C (en) 2020-07-14
DK3030616T3 (en) 2017-12-04
EP3030616B1 (en) 2017-09-13
EP3030616A1 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
US11518878B2 (en) Biodegradable polymer composition for the manufacture of articles having a high heat deflection temperature
CA2797945C (en) Aliphatic-aromatic copolyesters and their mixtures
CA3020635C (en) Compositions containing new polyester
AU2013397550B2 (en) Biodegradable polymer composition for the manufacture of articles having a high heat deflection temperature
EP3328939A1 (en) Polymer composition for the manufacture of injection moulded articles
EP1652874A1 (en) Injection-molded object, process for producing the same, and pellet for use for injection-molded object
CA3179713A1 (en) Biodegradable polymer composition for the production of molded items
US10519275B2 (en) Polyesters comprising 2-methylglutaric acid, process for production of the said polyesters and products obtained therewith
KR20230161428A (en) Methods and related products for branched polyester for foaming
JP2007070412A (en) Polylactic acid composition and method for producing the same
Pasee et al. Synthesis and stereocomplexation of polylactide-b-poly (ethylene glycol)-b-polylactide triblock copolymers for potential use as bioplastic films
KR101586412B1 (en) Resine blend including copolymerized polyester and polylactic acid and manufacturing method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380078522.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13752861

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2917983

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14909536

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013397550

Country of ref document: AU

Date of ref document: 20130805

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013752861

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013752861

Country of ref document: EP