WO2015018428A1 - Biodegradable polymer composition for the manufacture of articles having a high heat deflection temperature - Google Patents
Biodegradable polymer composition for the manufacture of articles having a high heat deflection temperature Download PDFInfo
- Publication number
- WO2015018428A1 WO2015018428A1 PCT/EP2013/066372 EP2013066372W WO2015018428A1 WO 2015018428 A1 WO2015018428 A1 WO 2015018428A1 EP 2013066372 W EP2013066372 W EP 2013066372W WO 2015018428 A1 WO2015018428 A1 WO 2015018428A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acid
- composition according
- biodegradable
- mixtures
- weight
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
- C08L1/02—Cellulose; Modified cellulose
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
Definitions
- This invention relates to a biodegradable polymer composition which is particularly suitable for use for the manufacture of articles having a high heat deflection temperature (HDT) by injection moulding and thermoforming.
- HDT heat deflection temperature
- This invention also relates to the process of producing the said composition and articles obtained therewith.
- Polylactic acid is a biodegradable thermoplastic polyester originating from a renewal source. Its mechanical properties make it an ideal candidate for the replacement of conventional thermoplastic polymers, especially in the case of applications where high rigidity is required, such as for example in the manufacture of throwaway cutlery, rigid containers or caps for drinks containers.
- polylactic acid can be used in standard machinery with minimum modifications, some of its properties nevertheless have not hitherto let it be utilised widely and extensively as a replacement for conventional thermoplastic materials.
- this invention relates to a biodegradable polymer composition for the production of articles having a high heat deflection temperature comprising:
- AAPE aromatic aliphatic polyester
- the diol component comprises a— O— (Rn)— O— and
- R i « is selected from the group comprising C0-C20 alkyienes and their mixtures and the molar percentage of the units derived from the aromatic diacids is more than 50% and less than or equal to 70 moi% of the dicarboxyl component;
- a nucleating agent selected from polyesters comprising repeating units of 1 ,4-butylene succinate, talc and mixtures thereof.
- this is advantageously selected from poiy-L-iactic acid, poly-D-lactic acid and the stereo complex of poly-D-L-iactic acid or mixtures thereof.
- the lactic acid polyester comprises 98% by weight of units deriving from L-iactic acid, 2% of repeated units deriving from D-lactic acid, has a melting point in the range 160- 170°C, a glass transition temperature (Tg) in the range 55- 65°C and an MF (measured according to standard ASTM-D 1238 at 190°C and 2.16 kg) within the range 10-60 g/10 min, preferably 1 5-40 g/10 min.
- the process for production of the lactic acid polyester may take place according to any one of the known processes in the state of the art.
- this polyester may advantageously be obtained through a polymerisation reaction by opening the ring from the iactide.
- the dicarboxyl component comprises units deriving from aliphatic diacids and aromatic diacids of the type described above.
- succinic acid succinic acid, adipic acid, suberic acid, azeiaic acid, sebacic acid, undecandioic acid, dodecandioic acid, brassylic acid, hexadecandioic acid and octadecandioic acid are particularly preferred. Mixtures of these diacids are also particularly useful.
- Diacids having unsaturations within the chain such as for example itaconic acid and maleic acid, are also included.
- the aromatic diacids are concerned, in the aliphatic-aromatic polyester AAPE these are advantageously selected from dicarboxylic aromatic compounds of the phthalic acid type and their esters and heterocyclic dicarboxylic aromatic compounds and their esters and their mixtures.
- the said mixtures comprise up to 30% in moles of dicarboxylic aromatic diacids of the phthal ic acid type.
- heterocyclic dicarboxylic aromatic compounds are advantageously of renewable origin, this term meaning those products obtained from sources which because of their intrinsic characteristics are regenerated in nature or are not exhaustible on the scale of a human lifetime and, by extension, whose use will not prejudice natural resources for future generations.
- the use of products of renewable origin also helps to reduce C0 2 in the atmosphere and reduce the use of non-renewable resources.
- a typical example of a renewable source is that of plant crops.
- terephthalic acid is particularly preferred, while with regard to the heterocyclic dicarboxylic aromatic compounds 2.5-furand i carboxy I i c acid is particularly preferred.
- the content of units deriving from aromatic diacids in the aliphatic-aromatic polyester AAPE is 40-70%, preferably higher than 50 % and more preferably between 55-60% in moles with respect to the total diacids content in moles.
- dioi component of the aliphatic-aromatic polyester AAPE this derives from diois preferably selected from 1 ,2-ethandiol, 1 ,2-propandiol, 1 ,3-propandiol, 1 ,4-butandioI, 1 .5-pentandiol, 1 ,6-hexandiol, 1 .7-heptandiol.
- the aliphatic-aromatic polyester AAPE may contain at least one hydroxy acid in a quantity of between 0-49%>, preferably between 0-30% in moles with respect to the moles of aliphatic dicarboxyl ic acid, in addition to the base monomers.
- Examples of convenient hydroxy acids are glycol ic acid, hydroxybutyric acid, hydroxycaproic ac id, hydroxyvaleric acid, 7-hydroxyheptanoic acid, 8 -hydroxycaproic acid, 9-hydroxynonanoic acid, lactic acid or lactides.
- the hydroxy acids may be inserted into the chain as such or may be first caused to react with diacids or diois.
- Long molecules with two functional groups may also be added in quantities not exceeding 10%.
- Examples are dimer acids, ricinoleic acid and acids incorporating epoxy functional groups and also polyoxyethylenes having a molecular weight of between 200 and 10,000.
- Amines, amino acids and amino alcohols may also be present in percentages up to 30%> in moles in relation to ail the other components.
- one or more molecules having multiple functional groups may advantageously be added in quantities between 0.1 and 3% in moles with respect to the quantity of dicarboxylic acids (and any hydroxy acids) in order to obtain branched products.
- these molecules are glycerol, pentaerythritol, trimethylol propane, citric acid, dipentaerythritol, monoanhydrosorbitol, monohydromannitoi, acid triglycerides, polyglycerols, etc.
- the aliphatic-aromatic polyester AAPE is biodegradable in the meaning of standard E 1 3432.
- the molecular weight VI neighbor of the aliphatic-aromatic polyester AAPE is preferably greater than 30,000.
- the polydispersity index of the molecular weights Mw / Mn is concerned, this on the other hand is preferably between 1.5 and 10.
- the molecular weights M comfort and M w may be measured by Gel Permeation Chromatography (GPC). The determination may be performed with the chromatography system held at 40°C, using a set of three columns in series (particle diameter 5 ⁇ and respective porosities of 500 A, 1000 A and 10,000 A), a refractive index detector, chloroform as eluent (flow 1 ml/min) and using polystyrene as the reference standard.
- GPC Gel Permeation Chromatography
- the Melt Flow Rate (MFR) of the aliphatic-aromatic polyester AAPE is preferably between 500 and 1 g/10 min, more preferably between 100 and 5 g/10 min, even more preferably between 50 and 6 g/10 min (measurement made at 190°C/2.16 kg according to standard ASTM D1238-89 "Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer").
- the aliphatic-aromatic polyester AAPE has an inherent viscosity (measured using an Ubbelohde viscosi meter for solutions of concentration 0.2 g/dl in (TICK at 25°C) of more than 0.4, preferably between 0.4 and 2, more preferably between 0.7 and 1 .5 dl/g.
- the al iphatic-aromatic polyester AA PE may be a block copolymer or a random copolymer, the latter being preferred.
- the process for production of the aliphatic-aromatic polyester AAPE may take place according to any of the known processes in the state of the art.
- this polyester may advantageously be obtained by means of a poiycondensation reaction.
- the process of polymerising the polyester may be performed in the presence of a suitable catalyst.
- suitable catalysts mention may be made by way of example of organometaliic compounds of tin, for example stannoic acid derivatives, titanium compounds, for example orthobutyltitanate, aluminium compounds, for example Al-triisopropyl, and compounds of antimony and zinc.
- the aliphatic-aromatic polyester AAPE may also be obtained by a process of reactive extrusion from a precursor polyester (PP) comprising units deriving from at least one diacid and at least one substantially linear diol with a MFI o 5-30 dl/g at 190°C and 2.16 kg, hav ing a mean weighted molecular weight M w measured by GPC of between 60,000-120,000 and an content of active sites such as unsaturations in an amount of 0.1 -1 % in moles and/or terminal acid groups in a quantity of 10-200 meq of KOH, the said reactive extrusion process being performed through the addition o a compound selected from peroxides, epoxides or carbodiimides, such as those mentioned above. If the said reactive extrusion process is carried out using peroxides, these are used in quantities of 0.001 -0.2% and preferably 0.01 -0.1 % by weight with respect to the sum of the polymers fed to the reactive extrusion process.
- epoxides are preferably used in a quantity of 0.1-2%, more preferably 0.2- 1 % by weight with respect to the sum of the polymers fed to the reactive extrusion process.
- carbodiimides are used, these are preferably used in a quantity of 0.05-2%, more preferably 0.1-1% by weight with respect to the sum of the polymers fed to the reactive extrusion process.
- the said precursor polyester PP has an MFI of 5-30 and more preferably 7-20 g/10 min at 190°C and 2.16 kg, a shear viscosity of 400-900 Pas and a weighted mean molecular weight Mw of preferably between 100,000-130,000.
- the said precursor polyester PP has an unsaturations content of 0.1-0.8% and more preferably 0.2-0.7% in moles.
- the unsaturations may be generated in situ during the polymerisation stage or processing o the precursor polyester PP or through the insertion of suitable unsaturated monomers or unsaturated chain endings.
- Precursor polyesters PP with terminal unsaturations are particularly preferred.
- T is a group capable of reacting with carboxyi and/or hydroxyl groups, for example a hydroxyl, carboxyi, amine, amide or stereo group, and "n" is a whole number between 0 and 13.
- the said unsaturated chain terminators may also be used as a mixture.
- T this is preferably a hydroxy! or carboxyi group.
- n preferably lies between 1 and 13, more preferably between 3 and 13 and even more preferably 8 or 9.
- Particularly preferred unsaturated chain terminators include omcga-undecenoic acid, omega- undeceny! alcohol and their mixtures.
- the presence of unsaturations and/or adducts deriving from the reaction of these following reactive extrusion may be determined by different methods which are well known to those skilled in the art, such as MR spectroscopy or methanoiysis reactions of the polymer chain coupled with chromatographic methods combined with mass spectrometry.
- this may be performed by 300 MHz HI NMR using a pulse-acquisition sequence characterised by a pulse phase of 30°, a spectral amplitude - 4 kHz, a delay of 5 seconds and performing 6000 scans.
- the aliphatic-aromatic polyester AAPE can be obtained by a reactive extrusion process from a precursor polyester PP having a terminal acid groups content of 35-150 meq of
- the terminal acid groups content may be measured as follows: 1.5-3 g of the polyester are placed in a 100 ml flask together with 60 ml of chloroform. After the polyester has completely dissolved 25 mi of 2-propanoi are added, and immediately before analysis 1 ml of deionised water. The solution so obtained is titrated against a previously standardised solution of KOH in ethanol . An appropriate indicator, such as for example a glass electrode for acid-base titrations in non-aqueous solvents, is used to determine the end point of the titration.
- the terminal acid groups content is calculated on the basis of the consumption of KOH solution in ethanol using the following equation:
- T concentration of the KOH solution in ethanol expressed in moles/l itre;
- the process of producing the precursor polyester PP may take place according to any of the processes known in the state of the art described above.
- nucleating agents of the biodegradable polymeric composition are selected from polyesters comprising repeating units of 1 ,4-butylene succinate, talc and mixtures thereof.
- polyesters comprising repeating units of 1 ,4-butylene succinate
- poly( 1 ,4- butylene succinate) and poiy( 1 ,4-butylene succinate-co- 1 ,4-butylene alkylate) copolymers are preferred, poiy( 1 ,4-butylene succinate) being more preferred.
- poly( 1 ,4-butylene succinate-co- 1 ,4-butylene alkylate) copolymers are concerned, they advantageously shows a crystallization temperature higher than 80°C, more preferably higher than 90°C still more preferably higher than 100°.
- the 1 ,4-butylene-aikyiate repeating units advantageously comprise C2-C20 aliphatic diacids residues and, among C2-C20 aliphatic diacids, adipic acid, sebacic acid and azelaic acid and mixtures thereof are preferred.
- the polyesters comprising repeating units of 1 ,4-butylene succinate have a MFR (determined according to ASTM 1238 - 1 0 at 190 °C and 2, 16 kg) higher than lOg/10 min, more preferably 20 g/10 minutes, more preferably higher than 30 g/10 minutes.
- the nucleating agents of the biodegradable polymeric composition comprises a mixture of polyesters comprising repeating units of 1 ,4-butylene succinate and talc, wherein said mixture comprises 10-95 wt % and more preferably 30-85 wt % of said polyesters.
- the polyester of said mixture is poly(l ,-4 butyiene succinate).
- the polymer composition according to this invention may also contain one or more other additives, for example fillers, anti-caking agents, cross-linking agents, compatibilizing agents, plasticisers, pigments and dyes.
- additives for example fillers, anti-caking agents, cross-linking agents, compatibilizing agents, plasticisers, pigments and dyes.
- fillers may be inorganic and/or organic.
- inorganic fillers are: sepiolite, montmori llonite, calcium carbonate, silica, mica, kaolin, titanium dioxide and woiiastonite.
- the process of producing the polymer composition according to this invention may take place according to any of the processes known in the state of the art.
- the polymer composition according to this invention is produced by means of extrusion processes in which the components are mixed in the fused state.
- the components may be fed altogether or one or more of these may be fed separately along the extruder.
- the components i) -iv) are fed altogether to the extruder.
- the biodegradable polymer composition according to this invention is particularly suitable for use in injection moulding and thermoforming, and in spinning.
- HDT heat deflection temperature
- Products showing such range of HDT are particularly suitable to be transformed in injection moulded or thermoformed articles without occurrence of deformations if subjected to high loads at high temperatures. This renders said compositions particularly suitable for the production of throwaway cutlery, cups, rigid containers, caps for the dispensing of drinks, preferably hot drinks, lids and covers, and packaging for food which can be reheated in conventional ovens and microwaves.
- biodegradable polymer composition according to the invention is therefore particularly suitabl e for the manufacture of throwaway cutlery, cups, rigid containers, lids and covers, and packaging for food.
- the biodegradable polymeric composition according to the invention is particularly suitable for the manufacture of capsules for dispensing drinks, preferably hot drinks such as coffee and tea.
- the biodegradable polymeric composition according to the invention shows a co-continuous morphology allowing the capsules to keep suitable tensile properties, particularly breaking at load and elongation at break, as well as dynamic modulus even at high temperatures (i .e. a dynamic modulus in the range of 450- 1 50 Pa and preferably between 350 and 180MPa at 80°C). This allows the capsules to show sufficient dimensional stability and integrity rendering them usable with the conventional capsule coffee and tea makers currently available in the market.
- the amount of polyester of lactic acid has to be 40-70 % by weight, preferably 45-65% by weight, with respect to the sum of components i and ii.
- the present invention refers to a capsule for the dispensing of drinks, such as coffee and tea, comprising the biodegradable polymeric composition according to the present invention.
- the capsules for dispensing of drinks according to the present invention are free of cellulose fibers (i.e. do not contain cellulose fibers). This has the advantage of further improving their performance in use with respect to the preservation of the capsule's integrity, particularly when the dispensation of hot drinks occurs using machines working at elevated pressure.
- the biodegradable polymer composition according to the present inv ention has the further advantage that it can be fed to conventional machinery without requiring substantial changes to normal operating conditions in comparison with other conventional polymers such as for example polyethylene, polypropylene, polystyrene and ABS.
- other conventional polymers such as for example polyethylene, polypropylene, polystyrene and ABS.
- these may be moulded using a fusion temperature of 2 I O C, an oleodynamic pressure of 80 bar, a cooling time of 4 sec and a cycle time of 12 sec.
- injection moulded articles comprising the composition according to this invention are subjected to hot annealing treatments at temperatures between 70 and 150°C.
- This invention also relates to articles obtained by means of the said annealing treatments (known as annealed products).
- annealing treatments may advantageously be performed in an uncon lined environment at constant temperature, for example within a stove.
- the annealing treatments are preferably carried out at temperatures between 80- 150°C and with residence times of 1 5 sec- 60 min, preferably 30 sec-30 min and even more preferably 40 sec-5 min, with this being particularly advantageous from the production point of view.
- the specific conditions which have to be used will vary depending on the dimensions of the object which has to be subjected to annealing treatment and the degree of heat resistance required by the application. In general in the case of thick objects it is preferable to use higher temperatures and/or longer residence times.
- the said annealing treatments may also be performed in a confined environment, for example within preheated moulds at constant temperature, preferably between 80-100°C, for 0,5- 5 minutes.
- the specific conditions which have to be used will vary depending upon the size of the object being subjected to annealing treatment. In general, in the case of thick objects it is preferable to use longer residence times.
- Heat deflection temperature was measured according to standard ASTM-D648 using two different loads, 0.455 MPa and 1.82 MPa, on moulded test specimens of the "bar" type (length 127 mm, width 12.7 mm, thickness 3.2 mm) using Ceast 6510 Test-A- Matic model equipment. HDT values were determined in triplicate for each composition. The value stated corresponds to the arithmetic mean of the measured values.
- PLA polylactic acid containing 98% of L-Lactic and 2% of D-Lactic, melting point
- Tm 165°C
- weighted mean molecular weight Mw 166000
- intrinsic viscosity 0.97 dl/g
- shear rate 1000 s "1
- Anti-caking agent oleamide of plant origin
- PBS poiy(l ,4-butylene succinate) MF 46 g/10' (measured according to ASTM 1238 - 1 0 at 190 °C/2, 16 kg)
- Inorganic filler Titanium dioxide
- the granules were then injection moulded in a Sandretto S7/60 model press in a mould to produce dumbbell and "bar" specimens using in both cases the following injection moulding operating conditions:
- dumbbell specimens obtained were examined to determine their properties.
- the results of the characterisations are shown in Table 2 and 3.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Biological Depolymerization Polymers (AREA)
Abstract
Description
Claims
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2917983A CA2917983C (en) | 2013-08-05 | 2013-08-05 | Biodegradable polymer composition for the manufacture of articles having a high heat deflection temperature |
PT137528618T PT3030616T (en) | 2013-08-05 | 2013-08-05 | Biodegradable polymer composition for the manufacture of articles having a high heat deflection temperature |
CN201380078522.7A CN105452375B (en) | 2013-08-05 | 2013-08-05 | Biodegradable polymer composition for manufacturing the product with high heat distortion temperature |
DK13752861.8T DK3030616T3 (en) | 2013-08-05 | 2013-08-05 | BIODEGRADABLE POLYMER COMPOSITION FOR THE MANUFACTURING OF ARTICLES THAT HAVE A HIGH HEAT DEFENDING TEMPERATURE |
NO13752861A NO3030616T3 (en) | 2013-08-05 | 2013-08-05 | |
AU2013397550A AU2013397550B2 (en) | 2013-08-05 | 2013-08-05 | Biodegradable polymer composition for the manufacture of articles having a high heat deflection temperature |
ES13752861.8T ES2648220T3 (en) | 2013-08-05 | 2013-08-05 | Composition of biodegradable polymer for the manufacture of articles that have a high temperature of thermal deflection |
EP13752861.8A EP3030616B1 (en) | 2013-08-05 | 2013-08-05 | Biodegradable polymer composition for the manufacture of articles having a high heat deflection temperature |
US14/909,536 US9914833B2 (en) | 2013-08-05 | 2013-08-05 | Biodegradable polymer composition for the manufacture of articles having a high heat deflection temperature |
PCT/EP2013/066372 WO2015018428A1 (en) | 2013-08-05 | 2013-08-05 | Biodegradable polymer composition for the manufacture of articles having a high heat deflection temperature |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2013/066372 WO2015018428A1 (en) | 2013-08-05 | 2013-08-05 | Biodegradable polymer composition for the manufacture of articles having a high heat deflection temperature |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015018428A1 true WO2015018428A1 (en) | 2015-02-12 |
Family
ID=49034063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2013/066372 WO2015018428A1 (en) | 2013-08-05 | 2013-08-05 | Biodegradable polymer composition for the manufacture of articles having a high heat deflection temperature |
Country Status (10)
Country | Link |
---|---|
US (1) | US9914833B2 (en) |
EP (1) | EP3030616B1 (en) |
CN (1) | CN105452375B (en) |
AU (1) | AU2013397550B2 (en) |
CA (1) | CA2917983C (en) |
DK (1) | DK3030616T3 (en) |
ES (1) | ES2648220T3 (en) |
NO (1) | NO3030616T3 (en) |
PT (1) | PT3030616T (en) |
WO (1) | WO2015018428A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014115029A2 (en) * | 2013-01-22 | 2014-07-31 | University Of Guelph | Poly (lactic actd)-based biocomposite materials having improved toughness and heat distortion temperature and methods of making and using thereof |
US11279823B2 (en) | 2017-12-15 | 2022-03-22 | University Of Guelph | Biodegradable nanostructured composites |
WO2019180074A1 (en) * | 2018-03-21 | 2019-09-26 | Ercros, S.A. | Poly(lactic acid) composition comprising dipentaerythritol |
CA3106448C (en) * | 2018-08-07 | 2023-03-28 | Northern Technologies International Corporation | Biobased polyester blends with enhanced performance properties |
US11905407B2 (en) * | 2019-05-17 | 2024-02-20 | Northern Technologies International Corporation | Polylactide-based masterbatch, for a commercially viable single-step in-mold annealing injection molding process |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202006001693U1 (en) * | 2006-02-01 | 2006-03-30 | Logo tape Gesellschaft für Selbstklebebänder GmbH Co. KG | Biodegradable adhesive tape based on renewable raw materials |
WO2006097353A1 (en) * | 2005-03-18 | 2006-09-21 | Novamont S.P.A. | Biodegradable aliphatic -aromatic polyesters |
US20070259195A1 (en) * | 2006-05-08 | 2007-11-08 | Far Eastern Textile Ltd. | Polylactic acid composition, transparent heat resistant biodegradable molded article made of the same, and method for making the article |
WO2008098889A1 (en) * | 2007-02-15 | 2008-08-21 | Basf Se | Closed-cell polylactide-based foam layer |
EP2583994A1 (en) * | 2010-06-21 | 2013-04-24 | Toray Industries, Inc. | Polylactic acid film |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7368511B2 (en) * | 2003-12-22 | 2008-05-06 | Eastman Chemical Company | Polymer blends with improved rheology and improved unnotched impact strength |
TWI418575B (en) * | 2010-11-01 | 2013-12-11 | Far Eastern New Century Corp | Production method of heat-resistant polylactic acid element |
ITMI20120250A1 (en) * | 2012-02-20 | 2013-08-21 | Novamont Spa | BIODEGRADABLE POLYMER COMPOSITION FOR THE MANUFACTURE OF ARTICLES WITH HIGH INFLESSION TEMPERATURE UNDER LOAD. |
-
2013
- 2013-08-05 CN CN201380078522.7A patent/CN105452375B/en active Active
- 2013-08-05 US US14/909,536 patent/US9914833B2/en active Active
- 2013-08-05 NO NO13752861A patent/NO3030616T3/no unknown
- 2013-08-05 WO PCT/EP2013/066372 patent/WO2015018428A1/en active Application Filing
- 2013-08-05 ES ES13752861.8T patent/ES2648220T3/en active Active
- 2013-08-05 AU AU2013397550A patent/AU2013397550B2/en active Active
- 2013-08-05 EP EP13752861.8A patent/EP3030616B1/en active Active
- 2013-08-05 DK DK13752861.8T patent/DK3030616T3/en active
- 2013-08-05 CA CA2917983A patent/CA2917983C/en active Active
- 2013-08-05 PT PT137528618T patent/PT3030616T/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006097353A1 (en) * | 2005-03-18 | 2006-09-21 | Novamont S.P.A. | Biodegradable aliphatic -aromatic polyesters |
DE202006001693U1 (en) * | 2006-02-01 | 2006-03-30 | Logo tape Gesellschaft für Selbstklebebänder GmbH Co. KG | Biodegradable adhesive tape based on renewable raw materials |
US20070259195A1 (en) * | 2006-05-08 | 2007-11-08 | Far Eastern Textile Ltd. | Polylactic acid composition, transparent heat resistant biodegradable molded article made of the same, and method for making the article |
WO2008098889A1 (en) * | 2007-02-15 | 2008-08-21 | Basf Se | Closed-cell polylactide-based foam layer |
EP2583994A1 (en) * | 2010-06-21 | 2013-04-24 | Toray Industries, Inc. | Polylactic acid film |
Also Published As
Publication number | Publication date |
---|---|
CN105452375B (en) | 2017-07-21 |
PT3030616T (en) | 2017-11-17 |
ES2648220T3 (en) | 2017-12-29 |
US20160177086A1 (en) | 2016-06-23 |
AU2013397550B2 (en) | 2018-04-19 |
CA2917983A1 (en) | 2015-02-12 |
CN105452375A (en) | 2016-03-30 |
NO3030616T3 (en) | 2018-02-10 |
AU2013397550A1 (en) | 2016-02-04 |
US9914833B2 (en) | 2018-03-13 |
CA2917983C (en) | 2020-07-14 |
DK3030616T3 (en) | 2017-12-04 |
EP3030616B1 (en) | 2017-09-13 |
EP3030616A1 (en) | 2016-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11518878B2 (en) | Biodegradable polymer composition for the manufacture of articles having a high heat deflection temperature | |
CA2797945C (en) | Aliphatic-aromatic copolyesters and their mixtures | |
CA3020635C (en) | Compositions containing new polyester | |
AU2013397550B2 (en) | Biodegradable polymer composition for the manufacture of articles having a high heat deflection temperature | |
EP3328939A1 (en) | Polymer composition for the manufacture of injection moulded articles | |
EP1652874A1 (en) | Injection-molded object, process for producing the same, and pellet for use for injection-molded object | |
CA3179713A1 (en) | Biodegradable polymer composition for the production of molded items | |
US10519275B2 (en) | Polyesters comprising 2-methylglutaric acid, process for production of the said polyesters and products obtained therewith | |
KR20230161428A (en) | Methods and related products for branched polyester for foaming | |
JP2007070412A (en) | Polylactic acid composition and method for producing the same | |
Pasee et al. | Synthesis and stereocomplexation of polylactide-b-poly (ethylene glycol)-b-polylactide triblock copolymers for potential use as bioplastic films | |
KR101586412B1 (en) | Resine blend including copolymerized polyester and polylactic acid and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380078522.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13752861 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2917983 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14909536 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2013397550 Country of ref document: AU Date of ref document: 20130805 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2013752861 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013752861 Country of ref document: EP |