WO2015018140A1 - 升压控制电路及其控制方法、升压电路、显示装置 - Google Patents

升压控制电路及其控制方法、升压电路、显示装置 Download PDF

Info

Publication number
WO2015018140A1
WO2015018140A1 PCT/CN2013/087211 CN2013087211W WO2015018140A1 WO 2015018140 A1 WO2015018140 A1 WO 2015018140A1 CN 2013087211 W CN2013087211 W CN 2013087211W WO 2015018140 A1 WO2015018140 A1 WO 2015018140A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
boost
boost control
circuit
triode
Prior art date
Application number
PCT/CN2013/087211
Other languages
English (en)
French (fr)
Inventor
王立岩
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2015018140A1 publication Critical patent/WO2015018140A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/2885Static converters especially adapted therefor; Control thereof
    • H05B41/2886Static converters especially adapted therefor; Control thereof comprising a controllable preconditioner, e.g. a booster
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/12Modifications for increasing the maximum permissible switched current
    • H03K17/122Modifications for increasing the maximum permissible switched current in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6877Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the control circuit comprising active elements different from those used in the output circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to the field of display technologies, and in particular to a boost control circuit for driving a backlight module of a large-sized liquid crystal panel and a control method thereof, and a booster circuit and a display device provided with the boost control circuit.
  • MOS high-voltage, high-power switching transistor
  • control pin of the boost control chip directly outputs a voltage signal to the gate (G pole) of the main control switch MOS, and the signal driving capability of the direct output of the boost control chip is limited (ie, the current is small), resulting in It is impossible to drive the high-power switch MOS to work normally, thereby affecting the display quality of the liquid crystal panel.
  • the invention provides a boost control circuit and a control method thereof, a boost circuit and a display device, thereby enhancing the driving capability of the boost control chip to the switching transistor (MOS) and ensuring the display quality of the liquid crystal panel.
  • MOS switching transistor
  • the invention provides the following solutions:
  • the embodiment of the present invention provides a boost control circuit, including a boost control chip and at least one transistor, and the boost control circuit further includes:
  • the bases of the first triode and the second triode are connected to a driving voltage output pin of the boost control chip;
  • the emitters of the first triode and the second triode are connected to the gate of the at least one transistor;
  • the collector of the first transistor is connected to the first input power source
  • the collector of the second transistor is connected to the second input power source.
  • the type of the first triode is NPN type, and the type of the second triode is PNP type; or
  • the type of the first triode is PNP type, and the type of the second triode is NPN type.
  • a source of the at least one transistor is connected to a boosting module in the boosting circuit; and a drain of the at least one transistor is connected to the second input power source.
  • the boost control circuit includes a first transistor and a second transistor;
  • a resistor is disposed between a gate of the first transistor and a gate of the second transistor.
  • one of the first input power source and the second input power source is ground.
  • the embodiment of the invention further provides a boost circuit control method, including:
  • the boost control chip When the boost control chip outputs the first control signal, the first transistor is turned on, the second transistor is turned off, and the first transistor amplifies the signal intensity of the first control signal and outputs the signal to at least one transistor.
  • the boost control chip When the boost control chip outputs the second control signal, the first triode is turned off, the second triode is turned on, and the second triode amplifies the signal intensity of the second control signal and outputs the signal to at least one transistor.
  • the gate When the boost control chip outputs the second control signal, the first triode is turned off, the second triode is turned on, and the second triode amplifies the signal intensity of the second control signal and outputs the signal to at least one transistor. The gate.
  • the first control signal is different from the potential of the second control signal.
  • the embodiment of the present invention further provides a boosting circuit, which may specifically include the boosting control circuit provided by the embodiment of the present invention.
  • the boosting circuit may further include:
  • a boosting module for boosting a voltage input by the third input power source, wherein the boosting module is connected to a source of the at least one transistor and an output end of the boosting circuit;
  • An auxiliary module for implementing normal operation of the boost control chip, wherein the auxiliary module is connected to the output of the boost control chip and the booster circuit;
  • a power supply module for providing a driving power to the boost control chip, wherein the power supply module is connected to the boost control chip.
  • the embodiment of the present invention further provides a display device, and the display device may specifically include the driving circuit of the boosting circuit provided by the embodiment of the present invention as a backlight.
  • the boost control circuit and the control method thereof, the boosting circuit and the display device provided by the present invention are provided with a control signal for alternately amplifying the output of the boost control chip in the boost control circuit. Intensity, and outputting the amplified control signal to the first triode and the second triode of the at least one transistor gate; the bases of the first triode and the second triode Connected to a driving voltage output pin of the boost control chip; an emitter of the first triode and the second triode is connected to a gate of the at least one transistor; the first triode The collector is connected to the first input power source; the collector of the second transistor is connected to the second input power source.
  • the current intensity of the control signal outputted by the boost control chip can be amplified, and the driving capability of the boosting control chip to the switching transistor (MOS) can be enhanced to realize a boost control chip with a large driving capability in a large-sized backlight scanning driving circuit.
  • the power switch MOS is driven to ensure the display quality of the LCD panel.
  • FIG. 1 is a schematic structural diagram 1 of a boost control circuit according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a boost control circuit according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method for controlling a booster circuit according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram 1 of a booster circuit according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram 2 of a boosting circuit according to an embodiment of the present invention. Concrete implementation
  • the embodiment of the present invention provides a boost control circuit, as shown in FIG. 1, specifically including a boost control chip 1 and at least one transistor.
  • the boost control circuit may specifically include:
  • the bases of the transistor T1 and the transistor T2 are connected to the driving voltage output pin of the boost control chip 1;
  • the emitter of the transistor T1 and the transistor T2 is connected to the gate of at least one transistor; the collector of the transistor T1 is connected to the first input power source;
  • the collector of the transistor T2 is connected to the second input power source.
  • the boost control circuit provided by the embodiment of the invention can realize the function of current amplification by using a triode, amplifying the current intensity of the control signal outputted by the boost control chip 1, and enhancing the driving capability of the boost control chip to the switching transistor (MOS).
  • MOS switching transistor
  • the transistor T1 and the transistor T2 may be two types of transistors of different types.
  • the type of the transistor T1 It can be of the NPN type, and the type of the transistor T2 can be a PNP type; or, the type of the transistor T1 can be a PNP type, and the type of the triode T2 can be an NPN type.
  • the embodiment of the present invention regardless of the level of the potential (for example, the high level or the low level) outputted by the pin of the boost control chip 1 (for example, the DC driving voltage output pin, that is, the DR pin), the embodiment of the present invention
  • the boost control circuit provided, there is always a transistor in an on state for amplifying the current intensity of the control signal outputted by the boost control chip 1, and outputting the amplified control signal to the gate of the switch MOS (ie, G pole), thereby driving the switch MOS to be in a desired on or off state.
  • the embodiment of the present invention as shown in FIG.
  • the source of at least one transistor may be connected to the boost module 2 provided in the booster circuit according to the embodiment of the present invention, and the drain of at least one transistor. Can be connected to the second input power source.
  • one of the first input power source and the second input power source is ground.
  • the first input power source may be a power supply that inputs a +12V voltage
  • the second input power source may specifically be a ground or other input low voltage power supply.
  • the boost control circuit provided by the embodiment of the present invention may specifically include a transistor T3 and a transistor T4, and the gates of the transistors ⁇ 3 and ⁇ 4 are both The emitters of one transistor T1 and the second transistor ⁇ 2 are connected.
  • a plurality of resistors may be disposed to perform filtering, blocking, and the like.
  • the boost control circuit provided by the embodiment of the present invention may specifically include a resistor R32 disposed between the gate of the transistor T3 and the gate of the transistor T4, and other FIG. The resistors shown, etc.
  • the boost control circuit provided by the embodiment of the invention can set a corresponding resistor based on the need.
  • the embodiment of the present invention further provides a method for controlling a booster circuit. As shown in FIG. 3, the method may specifically include:
  • Step 31 when the boost control chip outputs the first control signal, the transistor T1 is turned on, the transistor T2 is turned off, the transistor T1 amplifies the signal intensity of the first control signal, and outputs the signal to the gate of at least one transistor;
  • Step 32 When the boost control chip outputs the second control signal, the transistor T1 is turned off, the transistor T2 is turned on, and the transistor T2 amplifies the signal intensity of the second control signal and outputs the signal to the gate of at least one transistor.
  • the first control signal is different from the potential of the second control signal.
  • the transistor T1 for example, PNP type
  • the transistor T2 for The combination of the NPN type is always in a conducting state and a cut-off state.
  • the transistor T1 When the pin outputs a high level, the transistor T1 is in an on state, and the transistor T2 is in an off state; when the DR pin outputs a low level, the transistor T1 is in an off state, and the transistor T2 is in an on state. That is, transistor T1 and transistor T2 are respectively controlled by two complementary signals.
  • the transistor T1 and the transistor T2 work alternately, and the common emitters of the transistor T1 and the transistor T2 combine two signals into one, thereby driving the main control switches MOS T3 and T4, thereby reducing power consumption.
  • the boost control circuit provided by the embodiment of the invention not only improves the load capacity of the boost control circuit, but also increases the switching speed.
  • the embodiment of the present invention may further provide a boosting circuit, and the boosting circuit may specifically include the boosting control circuit provided by the embodiment of the present invention.
  • the boosting circuit may further include:
  • a boosting module 2 for boosting a voltage input by a third input power source, the boosting module 2 being connected to a source of at least one transistor (ie, a switching MOS) and an output end of the boosting circuit;
  • a specific embodiment of the booster circuit provided by the embodiment of the present invention can be as shown in FIG. 5.
  • the resistors and capacitors involved in the booster circuit can be selected based on needs.
  • the specific operation process of the booster circuit provided by the embodiment of the present invention can be the same as that of the prior art. Therefore, the specific implementation process of the booster circuit will not be described again.
  • the embodiment of the present invention may further provide a display device, where the display device may specifically include the boost provided by the embodiment of the present invention.
  • the circuit acts as a drive circuit for the backlight.
  • the display device may be: a liquid crystal panel, a liquid crystal television, a liquid crystal display, a digital photo frame, a mobile phone, a tablet computer, and the like, or any product or component having a display function.
  • the boost control circuit and the control method thereof, the boosting circuit and the display device provided by the present invention are provided with a control signal for alternately amplifying the output of the boost control chip in the boost control circuit.
  • the amplified control signal Intensity, and outputting the amplified control signal to the first triode and the second triode of the at least one transistor gate; the bases of the first triode and the second triode Connected to a driving voltage output pin of the boost control chip; an emitter of the first transistor and the second transistor is connected to a gate of the at least one transistor; the first transistor The collector is connected to the first input power source; the collector of the second transistor is connected to the second input power source. Therefore, the current intensity of the control signal outputted by the boost control chip can be amplified, and the driving capability of the boosting control chip to the switching transistor (MOS) can be enhanced to realize a boost control chip with a limited driving capability in a large-sized backlight scanning driving circuit.
  • the power switch MOS is driven to ensure the display quality of the LCD panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明提供了一种升压控制电路及其控制方法、升压电路、显示装置,通过在升压控制电路中设置类型不同的第一三极管与第二三极管,所述第一三极管和第二三极管的基极,与所述升压控制芯片的驱动电压输出脚,连接于第一节点;所述第一三极管和第二三极管的发射极,与所述至少一个晶体管的栅极,连接于第二节点;所述第一三极管的集电极连接第一输入电源;所述第二三极管的集电极连接第二输入电源。从而可将升压控制芯片输出的控制信号的强度放大,增强升压控制芯片对开关晶体管(MOS)的驱动能力,以实现大尺寸背光扫描驱动电路中驱动能力有限的升压控制芯片对大功率开关MOS的驱动,确保液晶面板的显示质量。

Description

升压控制电路及其控制方法、 升压电路、 显示装置 技术领域
本发明涉及显示技术领域, 具体可以涉及一种用于实现大尺寸液晶面板 的背光模组驱动的升压控制电路及其控制方法, 以及设置有该升压控制电路 的升压电路及显示装置。 背景技术
随着液晶面板的发展, 大尺寸液晶面板逐渐成为发展的前沿。
由于液晶面板的尺寸增大, 因此需要背光模组中设置更多的灯条作为背 光源, 以实现大尺寸液晶面板的正常显示亮度。
由于灯条的增多, 因此需要更高的工作电压来驱动灯条发光, 这需要在 升压电路设置耐压高、 功率大的开关晶体管 (MOS) 以用于升压。
现有技术中, 升压控制芯片的控制管脚直接输出电压信号给主控开关 MOS 的栅极 (G极), 由于升压控制芯片直接输出的信号驱动能力有限 (即 电流较小), 导致无法驱动大功率开关 MOS正常工作, 从而影响液晶面板的 显示质量。 发明内容
本发明提供一种升压控制电路及其控制方法、 升压电路、 显示装置, 从 而可增强升压控制芯片对开关晶体管 (MOS) 的驱动能力, 确保液晶面板的 显示质量。
本发明提供方案如下:
本发明实施例提供了一种升压控制电路, 包括升压控制芯片以及至少一 个晶体管, 所述升压控制电路还包括:
用于交替放大所述升压控制芯片输出的控制信号强度, 并将放大后的控 制信号输出至所述至少一个晶体管栅极的第一三极管和第二三极管;
所述第一三极管和第二三极管的基极, 与所述升压控制芯片的驱动电压 输出脚连接; 所述第一三极管和第二三极管的发射极, 与所述至少一个晶体管的栅极 连接;
所述第一三极管的集电极连接第一输入电源;
所述第二三极管的集电极连接第二输入电源。
优选的, 所述第一三极管的类型为 NPN型, 所述第二三极管的类型为 PNP型; 或者,
所述第一三极管的类型为 PNP型, 所述第二三极管的类型为 NPN型。 优选的, 所述至少一个晶体管的源极与升压电路中的升压模块连接; 所述至少一个晶体管的漏极与所述第二输入电源连接。
优选的, 所述升压控制电路中包括第一晶体管和第二晶体管;
所述第一晶体管的栅极与所述第二晶体管的栅极之间设置有电阻。
优选的, 所述第一输入电源与所述第二输入电源之一为地。
本发明实施例还提供了一种升压电路控制方法, 包括:
当升压控制芯片输出第一控制信号时, 第一三极管导通, 第二三极管截 止, 第一三极管将所述第一控制信号的信号强度放大后, 输出至至少一个晶 体管的栅极;
当升压控制芯片输出第二控制信号时, 第一三极管截止, 第二三极管导 通, 第二三极管将所述第二控制信号的信号强度放大后, 输出至至少一个晶 体管的栅极。
优选的, 所述第一控制信号与所述第二控制信号的电位不同。
本发明实施例还提供了一种升压电路, 该升压电路具体可以包括上述本 发明实施例提供的升压控制电路。
优选的, 所述升压电路还可以包括:
用于对第第三输入电源输入的电压进行升压处理的升压模块, 所述升压 模块与所述至少一个晶体管的源极以及升压电路的输出端连接;
用于实现升压控制芯片正常工作的辅助模块, 所述辅助模块与所述升压 控制芯片以及升压电路的输出端连接;
用于为升压控制芯片提供驱动电源的供电模块, 所述供电模块与所述升 压控制芯片连接。 本发明实施例还提供了一种显示装置, 所述显示装置具体可以包括上述 本发明实施例提供的升压电路作为背光源的驱动电路。
从以上所述可以看出, 本发明提供的升压控制电路及其控制方法、 升压 电路、 显示装置, 通过在升压控制电路中设置用于交替放大所述升压控制芯 片输出的控制信号的强度, 并将放大后的所述控制信号输出至所述至少一个 晶体管栅极的第一三极管和第二三极管; 所述第一三极管和第二三极管的基 极与所述升压控制芯片的驱动电压输出脚连接; 所述第一三极管和第二三极 管的发射极, 与所述至少一个晶体管的栅极连接; 所述第一三极管的集电极 连接第一输入电源; 所述第二三极管的集电极连接第二输入电源。 从而可将 升压控制芯片输出的控制信号的电流强度放大, 增强升压控制芯片对开关晶 体管 (MOS ) 的驱动能力, 以实现大尺寸背光扫描驱动电路中驱动能力有限 的升压控制芯片对大功率开关 MOS的驱动, 确保液晶面板的显示质量。 附图说明
图 1为本发明实施例提供的升压控制电路结构示意图一
图 2为本发明实施例提供的升压控制电路结构示意图二
图 3本发明实施例提供的升压电路控制方法流程示意图
图 4为本发明实施例提供的升压电路结构示意图一;
图 5为本发明实施例提供的升压电路结构示意图二。 具体实舫式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图, 对本发明实施例的技术方案进行清楚、 完整地描述。 显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员所获得的所有其他实施例, 都属 于本发明保护的范围。
除非另作定义, 此处使用的技术术语或者科学术语应当为本发明所属领 域内具有一般技能的人士所理解的通常意义。 本发明专利申请说明书以及权 利要求书中使用的 "第一"、 "第二" 以及类似的词语并不表示任何顺序、 数 量或者重要性, 而只是用来区分不同的组成部分。 同样, "一个"或者 "一" 等类似词语也不表示数量限制, 而是表示存在至少一个。 "连接"或者"相连" 等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接, 不管是直接的还是间接的。 "上"、 "下"、 "左"、 "右"等仅用于表示相对位置 关系, 当被描述对象的绝对位置改变后, 则该相对位置关系也相应地改变。
本发明实施例提供了一种升压控制电路, 如附图 1所示, 具体可以包括 升压控制芯片 1以及至少一个晶体管等。
该升压控制电路具体还可以包括:
用于交替放大升压控制芯片 1输出的控制信号的强度, 并将放大后的控 制信号输出至所述至少一个晶体管栅极的三极管 T1和三极管 T2;
其中, 三极管 T1和三极管 T2的基极, 与升压控制芯片 1的驱动电压输 出脚连接;
三极管 T1和三极管 T2的发射极, 与至少一个晶体管的栅极连接; 三极管 T1的集电极连接第一输入电源;
三极管 T2的集电极连接第二输入电源。
本发明实施例提供的升压控制电路,利用三极管可实现电流放大的功能, 将升压控制芯片 1输出的控制信号的电流强度放大, 增强升压控制芯片对开 关晶体管 (MOS ) 的驱动能力, 以实现大尺寸背光扫描驱动电路中驱动能力 有限的升压控制芯片对大功率开关 MOS的驱动, 确保液晶面板的显示质量。
为了实现交替放大升压控制芯片 1输出的控制信号的电流强度的目的, 本发明实施例中, 三极管 T1和三极管 T2可为类型不同的两种三极管, 在一 具体实施例中, 三极管 T1的类型可为 NPN型, 三极管 T2的类型可为 PNP 型; 或者, 三极管 T1的类型可为 PNP型, 三极管 T2的类型可为 NPN型。
即本发明实施例中, 无论升压控制芯片 1 的管脚 (例如直流驱动电压输 出脚即 DR脚)输出何种电位的电平 (例如高电平或低电平), 本发明实施例 所提供的升压控制电路中, 总有一个三极管处于导通状态, 以用于实现将升 压控制芯片 1输出的控制信号的电流强度放大, 并将放大后的控制信号输出 至开关 MOS的栅极 (即 G极), 从而驱动开关 MOS处于所期望的导通或者 截止状态。 本发明实施例中,如附图 2所示,至少一个晶体管即开关 MOS的源极可 与本发明实施例所涉及的升压电路中设置的升压模块 2连接, 而至少一个晶 体管的漏极可与第二输入电源连接。 这样, 当第一三极管 T1 或第二三极管 T2输出的高电流可使至少一个晶体管驱动导通状态,使升压模块 2 与第二输 入电源之间的电路连通, 从而拉低升压控制电路输出的电压。
本发明实施例中, 所述第一输入电源与所述第二输入电源之一为地。 在 一具体实施例中, 第一输入电源具体可为输入 +12V电压的电源, 而第二输入 电源具体可为地或者其他输入低电压的电源。
在本发明一可选实施例中, 如附图 2所示, 本发明实施例所提供的升压 控制电路中, 具体可以包括晶体管 T3和晶体管 T4, 且晶体管 Τ3和 Τ4的栅 极均与第一三极管 T1和第二三极管 Τ2的发射极连接。
另外, 在本发明一可选实施例中, 为了确保升压电路的正常工作, 还可 设置有多个电阻, 以起到滤波、 阻隔等作用。
具体的, 如附图 2所示, 本发明实施例所提供的升压控制电路中, 具体 可以包括设置于晶体管 Τ3的栅极与晶体管 Τ4的栅极之间的电阻 R32, 以及 其他附图 2所示的电阻等。
本发明实施例所提供的升压控制电路, 可基于需要设置相应的电阻。 本发明实施例还提供了一种升压电路控制方法, 如附图 3所示, 该方法 具体可以包括:
步骤 31, 当升压控制芯片输出第一控制信号时, 三极管 T1导通, 三极 管 T2截止, 三极管 T1将所述第一控制信号的信号强度放大后, 输出至至少 一个晶体管的栅极;
步骤 32, 当升压控制芯片输出第二控制信号时, 三极管 T1截止, 三极 管 T2导通, 三极管 T2将所述第二控制信号的信号强度放大后, 输出至至少 一个晶体管的栅极。
优选的, 所述第一控制信号与所述第二控制信号的电位不同。
在一具体实施例中, 以附图 2所示的升压控制电路为例, 当升压控制芯 片 1的 DR管脚输出控制信号时, 三极管 T1 (以 PNP型为例) 和三极管 T2 (以 NPN型为例) 的组合, 始终处于一个导通、 一个截止的状态。 当 DR管 脚输出高电平时,三极管 T1处于导通状态,三极管 T2处于截止状态; 当 DR 管脚输出低电平时, 三极管 T1处于截止状态, 三极管 T2处于导通状态。 即 晶体管 T1和晶体管 T2分别受两个互补信号控制。 这样一来, 输出高低电平 时, 三极管 T1和三极管 T2交替工作, 三极管 T1和三极管 T2的公共发射极 又将两个信号合二为一, 进而驱动主控开关 MOS T3和 T4, 减低了功耗。
又由于不论升压控制芯片输出的控制信号是通过三极管 T1 放大后输出 至开关 MOS, 还是通过三极管 T2放大后输出至开关 MOS, 由于三极管 T1 和三极管 T2的导通电阻都很小, 使开关 MOS的 RC常数很小, 转变速度很 快。 因此, 本发明实施例提供的升压控制电路既提高升压控制电路的负载能 力, 又提高开关速度。
基于以上本发明实施例的升压控制电路, 本发明实施例还可以提供一种 升压电路, 该升压电路内具体可以包括上述本发明实施例提供的升压控制电 路。
另外, 如附图 4所示, 该升压电路具体还可以包括:
用于对第三输入电源输入的电压进行升压处理的升压模块 2, 所述升压 模块 2与至少一个晶体管(即开关 MOS)的源极以及升压电路的输出端连接; 用于实现升压控制芯片 1正常工作的辅助模块 3, 所述辅助模块 3与升 压控制芯片 1以及升压电路的输出端连接;
用于为升压控制芯片 1提供驱动电源的供电模块 4, 所述供电模块 4与 升压控制芯片 1连接。
本发明实施例所提供的升压电路的一个具体实施例可如附图 5所示, 该 升压电路中所涉及的电阻、 电容可基于需要进行选择。
由于本发明实施例所提供的升压电路的具体操作过程可与现有技术相 同, 因此, 不再赘述该升压电路的具体实现过程。
在本发明一可选实施例中,基于以上本发明实施例提供的升压控制电路, 本发明实施例还可以提供一种显示装置, 该显示装置具体可以包括上述本发 明实施例提供的升压电路作为背光源的驱动电路。
所述显示装置可以为: 液晶面板、 液晶电视、 液晶显示器、 数码相框、 手机、 平板电脑等任何具有显示功能的产品或部件。 从以上所述可以看出, 本发明提供的升压控制电路及其控制方法、 升压 电路、 显示装置, 通过在升压控制电路中设置用于交替放大所述升压控制芯 片输出的控制信号的强度, 并将放大后的所述控制信号输出至所述至少一个 晶体管栅极的第一三极管和第二三极管; 所述第一三极管和第二三极管的基 极, 与所述升压控制芯片的驱动电压输出脚连接; 所述第一三极管和第二三 极管的发射极, 与所述至少一个晶体管的栅极连接; 所述第一三极管的集电 极连接第一输入电源; 所述第二三极管的集电极连接第二输入电源。 从而可 将升压控制芯片输出的控制信号的电流强度放大, 增强升压控制芯片对开关 晶体管 (MOS) 的驱动能力, 以实现大尺寸背光扫描驱动电路中驱动能力有 限的升压控制芯片对大功率开关 MOS的驱动, 确保液晶面板的显示质量。
以上所述仅是本发明的实施方式, 应当指出, 对于本技术领域的普通技 术人员来说, 在不脱离本发明原理的前提下, 还可以作出若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权利要求书
1、 一种升压控制电路, 包括升压控制芯片以及至少一个晶体管, 其特征 在于, 所述升压控制电路还包括:
用于交替放大所述升压控制芯片输出的控制信号的强度, 并将放大后的 控制信号输出至所述至少一个晶体管栅极的第一三极管和第二三极管;
所述第一三极管和第二三极管的基极, 与所述升压控制芯片的驱动电压 输出脚连接;
所述第一三极管和第二三极管的发射极, 与所述至少一个晶体管的栅极 连接;
所述第一三极管的集电极连接第一输入电源;
所述第二三极管的集电极连接第二输入电源。
2、 如权利要求 1所述的升压控制电路, 其特征在于, 所述第一三极管的 类型为 NPN型, 所述第二三极管的类型为 PNP型; 或者,
所述第一三极管的类型为 PNP型, 所述第二三极管的类型为 NPN型。
3、 如权利要求 1或 2所述的升压控制电路, 其特征在于, 所述至少一个 晶体管的源极与升压电路中的升压模块连接;
所述至少一个晶体管的漏极与所述第二输入电源连接。
4、 如权利要求 1至 3中任意一项所述的升压控制电路, 其特征在于, 所 述升压控制电路中包括第一晶体管和第二晶体管;
所述第一晶体管的栅极与所述第二晶体管的栅极之间设置有电阻。
5、 如权利要求 1至 4中任意一项所述的升压控制电路, 其特征在于, 所 述第一输入电源与所述第二输入电源之一为地。
6、 一种升压电路控制方法, 其特征在于, 包括:
当升压控制芯片输出第一控制信号时, 第一三极管导通, 第二三极管截 止, 第一三极管将所述第一控制信号的信号强度放大后, 输出至至少一个晶 体管的栅极;
当升压控制芯片输出第二控制信号时, 第一三极管截止, 第二三极管导 通, 第二三极管将所述第二控制信号的信号强度放大后, 输出至至少一个晶 体管的栅极。
7、 如权利要求 6所述的方法, 其特征在于, 所述第一控制信号与所述第 二控制信号的电位不同。
8、 一种升压电路, 其特征在于, 包括如权利要求 1至 5任一项所述的升 压控制电路。
9、 如权利要求 8所述的升压电路, 其特征在于, 还包括:
用于对第三输入电源输入的电压进行升压处理的升压模块, 所述升压模 块与所述至少一个晶体管的源极以及升压电路的输出端连接;
用于实现升压控制芯片正常工作的辅助模块, 所述辅助模块与所述升压 控制芯片以及升压电路的输出端连接;
用于为升压控制芯片提供驱动电源的供电模块, 所述供电模块与所述升 压控制芯片连接。
10、 一种显示装置, 其特征在于, 所述显示装置包括所述权利要求 8或 9所述的升压电路作为背光源的驱动电路。
PCT/CN2013/087211 2013-08-09 2013-11-15 升压控制电路及其控制方法、升压电路、显示装置 WO2015018140A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310346969.XA CN103474033B (zh) 2013-08-09 2013-08-09 升压控制电路及其控制方法、升压电路、显示装置
CN201310346969.X 2013-08-09

Publications (1)

Publication Number Publication Date
WO2015018140A1 true WO2015018140A1 (zh) 2015-02-12

Family

ID=49798857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087211 WO2015018140A1 (zh) 2013-08-09 2013-11-15 升压控制电路及其控制方法、升压电路、显示装置

Country Status (2)

Country Link
CN (1) CN103474033B (zh)
WO (1) WO2015018140A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105797258A (zh) * 2016-05-30 2016-07-27 宋丹丁 电脉冲醒神理疗仪
CN106354075B (zh) * 2016-11-25 2020-01-21 北京意同创科技有限公司 一种具有背光屏的遥控器控制电路
CN209015702U (zh) * 2018-10-25 2019-06-21 惠科股份有限公司 显示面板的电源电压补偿电路及显示装置
CN109617544B (zh) * 2018-12-04 2023-06-13 凌云光技术股份有限公司 一种上电时序控制设备、系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1520529A (zh) * 2001-06-25 2004-08-11 Gld ��ʽ���� 外电极荧光灯,使用该外电极荧光灯的背光单元,使用该背光单元的lcd背光装置和其驱动装置
CN101256740A (zh) * 2007-02-26 2008-09-03 镇江汉邦科技有限公司 背光电源
CN102290030A (zh) * 2011-07-01 2011-12-21 深圳市华星光电技术有限公司 Led背光驱动电路
CN202189537U (zh) * 2011-06-16 2012-04-11 深圳市华星光电技术有限公司 用于LED背光驱动电路的Boost升压电路
US20120146531A1 (en) * 2010-12-09 2012-06-14 Rohm Co., Ltd. Driving circuit of light emitting element, light emitting device using the same, and electronic device
US20120313669A1 (en) * 2011-06-09 2012-12-13 Mstar Semiconductor, Inc. Level Shifter and Boost Driving Circuit
CN103354086A (zh) * 2013-08-06 2013-10-16 深圳市华星光电技术有限公司 Led背光源及液晶显示器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100669205B1 (ko) * 2005-06-17 2007-01-16 엘지전자 주식회사 듀얼 평판 표시장치의 구동장치
CN201655252U (zh) * 2010-02-25 2010-11-24 青岛海信电器股份有限公司 Led移相电路、显示装置及大屏幕led
CN201904072U (zh) * 2010-12-01 2011-07-20 福建捷联电子有限公司 利用显示器Scaler芯片驱动控制LED背光源电路
CN103166458B (zh) * 2013-02-06 2014-12-10 京东方科技集团股份有限公司 一种升压电路、背光驱动电路及背光模组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1520529A (zh) * 2001-06-25 2004-08-11 Gld ��ʽ���� 外电极荧光灯,使用该外电极荧光灯的背光单元,使用该背光单元的lcd背光装置和其驱动装置
CN101256740A (zh) * 2007-02-26 2008-09-03 镇江汉邦科技有限公司 背光电源
US20120146531A1 (en) * 2010-12-09 2012-06-14 Rohm Co., Ltd. Driving circuit of light emitting element, light emitting device using the same, and electronic device
US20120313669A1 (en) * 2011-06-09 2012-12-13 Mstar Semiconductor, Inc. Level Shifter and Boost Driving Circuit
CN202189537U (zh) * 2011-06-16 2012-04-11 深圳市华星光电技术有限公司 用于LED背光驱动电路的Boost升压电路
CN102290030A (zh) * 2011-07-01 2011-12-21 深圳市华星光电技术有限公司 Led背光驱动电路
CN103354086A (zh) * 2013-08-06 2013-10-16 深圳市华星光电技术有限公司 Led背光源及液晶显示器

Also Published As

Publication number Publication date
CN103474033A (zh) 2013-12-25
CN103474033B (zh) 2016-06-22

Similar Documents

Publication Publication Date Title
WO2019148970A1 (zh) 移位寄存器单元、驱动移位寄存器单元的方法、栅极驱动电路和触控显示装置
WO2015018140A1 (zh) 升压控制电路及其控制方法、升压电路、显示装置
WO2017121105A1 (zh) 一种像素电路、驱动方法、显示面板及显示装置
WO2020207136A1 (zh) 栅极驱动单元、栅极驱动方法、栅极驱动电路和显示装置
JP2019501409A (ja) 液晶表示装置及びgoa回路
US8890787B2 (en) Panel driving device having a source driving circuit, and liquid crystal display apparatus having the same
KR102063642B1 (ko) 표시 패널 및 이를 구비한 표시 장치
TWI681380B (zh) 閘極驅動器及具有閘極驅動器的顯示裝置
WO2017117986A1 (zh) 电压转换电路、电压转换方法、栅极驱动电路、显示面板及显示装置
KR101746634B1 (ko) 시프트 레지스터 유닛, 시프트 레지스터, 게이트 구동 회로 및 디스플레이 장치
CN107564488B (zh) 一种显示面板及显示装置
CN105427818A (zh) 栅极驱动电路及其阵列基板
WO2017012139A1 (zh) 一种多时序生成电路及液晶显示器
CN107707245B (zh) 电平转移电路、显示装置驱动电路及显示装置
CN103927993A (zh) 显示屏背光控制电路、方法及显示设备
WO2017120994A1 (zh) 电压产生电路及液晶电视
US20110181341A1 (en) Push-pull driver circuit
CN102075002A (zh) 双电源供电电路
US7474281B2 (en) Multi-mode switch for plasma display panel
CN103985359A (zh) 一种背光源驱动电路和显示装置
US11929022B2 (en) Multiplexing circuitry, multiplexing method, multiplexing module, and display device
TW201113862A (en) Output amplifier of source driver
CN108320713A (zh) 背光驱动电路及其驱动方法、背光模组及显示装置
JP2006227603A5 (zh)
JP2007213042A5 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/06/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13890970

Country of ref document: EP

Kind code of ref document: A1