WO2015016445A1 - 풍력 발전 타워 - Google Patents

풍력 발전 타워 Download PDF

Info

Publication number
WO2015016445A1
WO2015016445A1 PCT/KR2013/012379 KR2013012379W WO2015016445A1 WO 2015016445 A1 WO2015016445 A1 WO 2015016445A1 KR 2013012379 W KR2013012379 W KR 2013012379W WO 2015016445 A1 WO2015016445 A1 WO 2015016445A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
wind power
power generation
tower
inlet
Prior art date
Application number
PCT/KR2013/012379
Other languages
English (en)
French (fr)
Inventor
송수윤
Original Assignee
(주)미가람
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES13890649T priority Critical patent/ES2769853T3/es
Priority to EP13890649.0A priority patent/EP3029316B1/en
Priority to JP2016531504A priority patent/JP6407996B2/ja
Priority to DK13890649.0T priority patent/DK3029316T3/da
Application filed by (주)미가람 filed Critical (주)미가람
Priority to BR112016002309A priority patent/BR112016002309A2/pt
Priority to AU2013395802A priority patent/AU2013395802A1/en
Priority to MX2016001491A priority patent/MX2016001491A/es
Priority to CN201380078714.8A priority patent/CN105452649B/zh
Priority to US14/908,521 priority patent/US10550824B2/en
Priority to CA2919988A priority patent/CA2919988C/en
Priority to RU2016103275A priority patent/RU2642706C2/ru
Publication of WO2015016445A1 publication Critical patent/WO2015016445A1/ko
Priority to PH12016500228A priority patent/PH12016500228B1/en
Priority to AU2018201121A priority patent/AU2018201121A1/en
Priority to AU2019284010A priority patent/AU2019284010A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0409Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels surrounding the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/30Wind motors specially adapted for installation in particular locations
    • F03D9/34Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0427Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels with converging inlets, i.e. the guiding means intercepting an area greater than the effective rotor area
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/061Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/80Arrangement of components within nacelles or towers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • F05B2240/131Stators to collect or cause flow towards or away from turbines by means of vertical structures, i.e. chimneys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/214Rotors for wind turbines with vertical axis of the Musgrove or "H"-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a wind power tower, and more particularly, to a wind power tower having a vertical axis wind turbine installed therein.
  • the wind power generation system is a technology for producing electric power by converting the wind force into a rotational force is a system for converting the wind energy into mechanical energy and driving the generator to produce power.
  • Such a wind power generation system is generally divided into a horizontal axis wind power generation and a vertical axis wind power generation.
  • the horizontal axis wind power generation has a problem that high efficiency is greatly influenced by the direction of the wind, while the vertical axis wind power generation is not significantly affected by the wind direction, but there is a problem that the efficiency is not higher than the horizontal axis. Therefore, most of the major wind power companies are focusing on horizontal wind power generation, and in the case of vertical wind power generation, much research has been conducted on how to increase efficiency. However, there is still no way to find a suitable way to increase the efficiency of vertical wind power generation. On the other hand, in the case of the present invention, from the viewpoint of the vertical axis wind power generation, the following description will focus on the vertical axis wind power generation.
  • Korean Patent Publication No. 2009-0035884 (Acceleration Wind Turbine) has a drag wind turbine installed inside, and a wind collecting structure is installed around the wind turbine to make the wind direction constant and to increase the wind speed.
  • a technique for increasing the efficiency of a vertical axis wind turbine is disclosed.
  • Japanese Patent Application Laid-Open No. 2010-531594 (wind turbine having a vertical axis) includes a drag vertical shaft wind turbine inside the wind tower, and maintains a constant wind direction at the same time around the drag vertical shaft wind turbine. Disclosed is a technology in which a collecting pipe structure for increasing speed is installed.
  • the wind induced in the collecting tube is designed to directly contact the drag type wind blade to induce rotation of the wind blade.
  • the movement of the drag type blade is changed in the same manner, and thus there is a problem that it is difficult to maintain continuous wind power generation.
  • the wind passing through the guide wall is configured to directly contact the drag blade, so that a considerable resistance is generated, this configuration is advantageous for the initial start of the drag blade, but the wind speed is fast In this case, rather than act as a resistance, there is a problem that makes effective wind power generation difficult.
  • the applicant of the present invention has come up with a wind power generation tower having a vertical axis wind turbine to solve the above technical problems.
  • the wind power generation is possible at low speed, to provide a technology related to the wind power tower is formed to have the maximum wind power generation efficiency.
  • Wind power generation tower is a wind inlet is formed of a plurality of wind inlet through the wind, the wind is composed of a wind collecting part and the energy conversion unit discharged to the outside through the wind is introduced into the wind power tower
  • the wind collecting portion is a plurality of radially disposed along the center of the wind power tower is inclined at the same angle so that the wind flowing through the wind inlet flows in one radial direction through the wind outlet.
  • the energy conversion unit is installed in the vertical axis wind turbine including a vertical axis in the space formed in the center of each layer of the wind power tower, A distance of at least 1m to the space between the wind guide wall and the vertical blade A wind flow path having a wind flow path may be formed, and the wind flowing through the wind inlet and the wind outlet of the wind collecting part may flow along the wind flow path formed in one radial direction of the energy conversion unit and be discharged to the outside of the wind power generation tower.
  • the cross-sectional ratio of the wind inlet to the wind outlet may be 2.5: 1 or more.
  • the vertical axis wind turbine is formed to have a lifting blade
  • the vertical axis wind turbine may be formed as a gyro mill type wind turbine.
  • the wind flow path may be formed to 1.5 m.
  • Wind power generation tower even in the case of low-speed wind can implement the wind power by accelerating the wind speed and at the same time increase the efficiency of use of the wind to rotate the blade can improve the overall power generation efficiency.
  • the wind power tower according to an embodiment of the present invention to increase the strength of the wind by the Venturi effect, and at the same time to exit the wind power tower by using the vortex generated from the rear of the cylindrical wind power tower By making the pressure drop with the wind larger, the rotation of the blade installed inside the wind power tower can be improved more quickly.
  • FIG. 1 is a view showing a wind power generation tower according to an embodiment of the present invention.
  • FIG. 2 shows a sectional view of the wind power tower shown in FIG. 1.
  • FIG. 3 shows the power generation output relative to the cross-sectional area of the wind inlet and the wind outlet shown in FIG. 2.
  • Figure 4 shows an embodiment of a gyro mill-type wind turbine installed inside the wind power tower according to an embodiment of the present invention.
  • FIG. 5 is an enlarged view of the wind collecting part and the energy conversion part shown in FIG. 2.
  • 6a to 6d are the results showing the change in the speed of the wind discharged from the wind outlet according to the distance of the wind flow path in the wind power generation tower according to the present invention.
  • Applicant of the present invention is a method for more amplifying the wind intensity while more effectively focusing the direction of the wind in the atmosphere, while the wind direction control to amplify the intensity of the wind while controlling the direction of the wind is formed in a plurality of layers Suggest a wind tower.
  • the wind power generation tower 100 includes a wind collecting part 110 including a plurality of wind inlets 111 through which wind is introduced. ) Can be produced by forming a plurality of layers.
  • the wind blowing into the wind turbine tower 100 passes through the wind inlet 111 of the wind turbine tower 100, or as shown in the figure, both sides of the wind turbine tower 100 And it may be formed to flow along the top.
  • the wind power generation tower 100 may be formed in a cylindrical shape.
  • the wind power generation tower 100 includes a wind collecting part 110 and an energy conversion part ( 150).
  • the wind collecting unit 110 as described above, the wind inlet 111 and the wind outlet to amplify the direction control and intensity of the wind flowing into the wind inlet 111 of the wind power tower 100 from the outside ( 112 may be formed by arranging the plurality of wind guide walls 120 radially with respect to the center of the wind power generation tower 100 so that the cross-sectional area of the 112 may be more than a predetermined level.
  • the difference between the cross-sectional area of the wind inlet 111 and the wind outlet 112 is formed to have a cross-sectional area to bring an increase in the wind speed due to the Venturi effect at a low wind speed of 5 m / s or less.
  • FIG. 3 illustrates the power generation output compared to the cross-sectional area of the wind inlet 111 and the wind outlet 112 of the wind collecting part 110.
  • Figure 3 shows the results of the experiment through the empirical tower installed by the applicant of the present invention in Jeju Island, the experiment was performed for a wind power generator with a rated output of 6 Kw, the wind inlet 111 and the wind outlet 112 When the cross-sectional area ratio of) is changed to 1: 1 or more, the output power measured by the wind power generator installed in the demonstration tower is measured to find the cross-sectional ratio that can bring about an appropriate venturi effect.
  • the cross-sectional ratio of the wind inlet 111 and the wind outlet 112 ranges to about 2.5: 1 It can be seen that more than 5 Kw of output is recognized as commercial power. Therefore, by forming a cross-sectional ratio of the wind inlet 111 and the wind outlet 112 of the wind collecting part 110 installed in the wind power generation tower 100 according to the present invention to be at least about 2.5: 1 or more.
  • the wind collecting unit 110 of the wind power generation tower 100 to bring the effect of increasing the wind.
  • the wind guide wall 120 is preferably designed to have a suitable number of wind inlets 111 to effectively discharge the wind flowing into the wind power tower 100 to the outside. Therefore, the wind power generation tower 100 according to the present invention by installing the wind guide wall 110 between at least five to nine, to effectively prevent the wind flowing into the wind power generation tower 100 to the outside. It is possible to discharge.
  • a vertical axis wind turbine is installed in the energy conversion unit 150 formed in the central space of each floor of the wind power generation tower 100.
  • the vertical axis wind turbine installed in the wind power generation tower 100 according to the present invention may be installed both a drag type wind turbine or a lift type wind turbine.
  • a lift-type wind turbine as the vertical axis wind turbine, it will be described based on the embodiment to install a gyro mill-type wind turbine 130.
  • 4 shows an embodiment of the gyro mill-type wind turbine 130, the gyro mill-type wind turbine is a central axis 131, a gyro mill-type wind blade 133 is formed in a streamline to rotate by lifting force. And a support shaft 132 connecting the central shaft 131 and the gyro mill type wind blade 133.
  • the energy conversion unit 150 is a space for converting the wind energy into mechanical energy while the wind passing through the wind collecting unit 110 passes, and the gyro mill-type wind blade 133 of the gyro mill-type wind turbine 130.
  • the wind flow path 151 is defined as a space between the gyro mill-type wind blade 133 and the end of the wind guide wall 120, and in the central axis 131 of the gyro mill-type wind turbine 130
  • the gyro mill type wind blades 133 may be configured as an internal flow path 152 defined as a space between.
  • the gyromill type wind turbine 130 is technically similar in that it is driven by lift force like a Darius wind turbine, the gyromill type wind turbine 130 is formed such that the gyromill type wind blade 133 has a streamlined finite length.
  • solidity is higher than that of the Darius wind turbine, and the TSP (Tip Speed Ratio) is formed low.
  • solidity means the ratio of the length of the blade to the radius of rotation of the blade at any radial position of the blade
  • TSR means the ratio of the wind speed and the blade tip speed. In other words, if the wind speed is the same as the blade tip speed, the TSR becomes 1.
  • the solidity is different from Darius wind turbine gyro mill type wind turbine 130 according to an embodiment of the present invention because the solidity is considerably high, as the TSR increases as the gyro mill type wind blades 133 mutually and downstream There is a problem that the lift force is considerably reduced due to the reduction of the flow rate flowing into the blade located.
  • the applicant of the present invention was to improve the structure of the wind power generation tower 100 according to the present invention so as to overcome the disadvantages while maximizing the technical advantages of the gyromill wind turbine 130, in more detail,
  • the plurality of wind guide walls 120 to allow the wind flowing through the wind inlet 111 flows in one radial direction of the energy conversion unit 150.
  • To install radially along the center of the wind power tower 100 it is possible to form to have a constant angle.
  • the wind passing through the wind collecting unit 110 is formed to flow through the wind flow path 151 along one radial direction of the energy conversion unit 150.
  • the energy conversion unit 150 of the wind power generation tower 100 according to an embodiment of the present invention is designed to have a sufficient wind flow path 151 for smooth rotation of the gyro mill-type wind blade 133. Do.
  • the gyro mill type wind blade 133 is rotated by lift force, and thus requires a space where wind flows sufficiently based on the front and rear ends of the gyro mill type wind blade 133. Therefore, in the case of the present invention, the energy conversion unit 150 is defined as the internal flow path 152 a space formed between the central axis 133 of the gyro mill type wind turbine 130 and the gyro mill type wind blade 133 In addition, the space between the gyro mill-type wind blade 133 and the wind guide wall 120 of the wind collecting part 110 is defined as a wind flow path 151, and wind is sufficiently flowed through the wind flow path 151. It is a technical feature to design so that it may have space.
  • the wind passing through the wind collecting part 110 is a wind flow path 151 formed along one radial direction of the energy conversion part 150.
  • the wind may be formed to flow along.
  • the energy conversion unit 150 of the wind power generation tower 100 according to the present invention is that the flow of wind in the other radial direction hardly occurs, in the downstream portion of the flow in the existing gyro mill type wind turbine 130 It is possible to minimize the effect that the speed of the blade is reduced by the generated drag.
  • the wind power generation tower 100 in order to effectively increase the rotational efficiency of the gyro mill-type wind turbine 130 is installed in the energy conversion unit 150, to set the distance of the appropriate wind flow path 151 It is more important than anything.
  • the wind outlet 112 of the wind collecting part 110 contacts the gyro mill-type wind blade 133, the wind outlet 112 The change in the speed of the wind passing through) is investigated. The results are shown in FIGS. 6A to 6D.
  • FIG. 6A illustrates the distance of the wind flow path 151 measured at 0.3m
  • FIG. 6B at 0.7m
  • FIG. 6C at 1m
  • FIG. 6A illustrates the distance of the wind flow path 151 measured at 0.3m
  • FIG. 6B at 0.7m
  • FIG. 6C at 1m
  • the speed of the wind discharged through the wind outlet 112 changes according to the distance change of the wind flow path 151. More specifically, it can be seen that as the distance of the wind flow path 151 increases, the resistance of the flow path decreases, so that the speed of the wind discharged through the wind outlet 112 increases. According to the test result, it can be seen that if the distance of the wind flow path 151 is opened to about 1.0 m or more, the resistance of the flow path is considerably reduced, and the speed of the wind discharged through the wind outlet 112 at a distance of about 1.5 m. You can see that the maximum reaches. Therefore, according to the results as described above, the wind flow path 151 formed in the energy conversion unit 150 of the wind power generation tower 100 according to the present invention is designed to be formed at least 1.0 m or more.
  • the gyro mill-type wind turbine 130 installed in the energy conversion unit 150 is discharged through the wind outlet 112 of the wind collecting part 110.
  • the wind turbine is rotated while minimizing the resistance of the wind, and the lift blade has sufficient wind flow space to generate the rotational force. Setting the distance of 151 is most important.
  • FIG. 1 shows a flow of wind flowing in the wind power generation tower 100 according to the present invention, and the wind flowing through the wind power generation tower 100 is the wind collecting part 110 through the wind inlet 111.
  • the wind discharged in the opposite direction of the wind power tower 100 through the wind flow path 151 in the energy conversion unit 150 is the wind discharge space in the opposite direction of the wind power tower 100 Due to the vortex formed in the air, the pressure difference between the energy conversion unit 150 and the wind discharge space in which the vortex is formed is generated significantly, which is the wind passing through the wind flow path 151 of the energy conversion unit 150. This will bring the effect of making the strength of the faster. Therefore, the wind flowing along the wind flow path 151 of the energy conversion unit 150 is affected by the pressure difference generated by the vortex as described above, such an effect on the energy conversion unit 150 It will also have a significant effect on the rotational force of the gyro mill-type wind blade 133 is formed.
  • the energy conversion unit 150 in order to obtain the efficiency improvement effect of the vertical axis wind turbine installed in the energy conversion unit 150 due to the vortex generated by the flow of wind generated in the wind power generation tower 100, the energy conversion unit ( The wind flow path 151 needs to be installed in the 150. If the appropriate wind flow path 151 is not installed in the energy conversion unit 150, the energy conversion unit 150 generated by the pressure difference due to the flow of wind generated in the wind power generation tower 100 as described above. The speed increase effect of the strength of the wind flowing in the) does not significantly affect the rotational force of the vertical axis wind turbine installed in the energy conversion unit 150.
  • the wind flow path 151 formed in the energy conversion unit 150 of the wind power generation tower 100 according to the present invention to bring a smooth rotational force of the gyro mill type wind turbine 130, It is possible to bring about an effect of increasing the speed of the wind due to the pressure drop generated by the vortex generated by the flow of wind flowing through the wind power generation tower 100.
  • the wind power generation tower 100 having the gyro mill type wind turbine according to the present invention is installed therein the gyro mill type wind turbine 130 which is a vertical axis wind turbine, according to the present invention, the existing vertical axis wind turbine atmosphere It can be seen that the efficiency is increased by about 50% or more than the rotation in the state.
  • the flow rate of the wind flowing through the energy conversion unit 150 It can be achieved by forming the over-intensity in a constant direction to increase the energy applied to the gyro mill type wind turbine 130, and also to the flow of wind generated in the wind tower 100 itself By allowing the wind in the energy conversion unit 150 to flow faster by the pressure difference due to the eddy current generated by the vortex, it is possible to achieve the effects as described above.
  • the gyro mill-type wind turbine 130 as a vertical axis wind turbine installed in the wind power generation tower 100, but will be described based on the contents of the installation, the technical features of the present invention the gyro mill-type wind turbine ( It is not limited to 130), and it is possible to apply even in the case of installing a variety of vertical axis wind turbine in the wind power tower (100).

Abstract

본 발명은 풍력 발전 타워를 개시한다. 본 발명의 일 실시예에 따른 풍력 발전 타워는, 저속의 바람이라도 풍속을 가속화하여 풍력발전을 구현할 수 있음과 동시에 블레이드를 회전시키는 바람의 이용효율을 증대시킴으로써 전반적인 발전효율을 향상시킬 수 있다. 또한, 본 발명의 일 실시예에 따른 풍력 발전 타워는 벤츄리 효과에 의해 바람의 세기를 증강시키도록 하는 것과 동시에, 원기둥 형상의 풍력 발전 타워의 후면에서 발생하는 와류를 이용하여 풍력 발전 타워를 빠져나가는 바람과의 압력강하를 보다 크게 하는 것에 의해, 풍력 발전 타워의 내부에 설치되는 블레이드의 회전을 보다 빠르게 향상시킬 수 있다.

Description

풍력 발전 타워
본 발명은 풍력 발전 타워에 관한 것으로, 보다 상세하게는 내부에 수직축 풍력 터빈이 설치되는 풍력 발전 타워에 관한 기술이다.
일반적으로, 풍력발전시스템은 바람의 힘을 회전력으로 전환시켜 전력을 생산하는 기술로 바람에너지를 기계에너지로 변환하고 발전기를 구동하여 전력을 생산하는 시스템이다.
이러한, 풍력발전시스템은 일반적으로 수평축 풍력 발전과 수직축 풍력 발전으로 분리되고 있다. 수평축 풍력 발전은 효율이 높은 반면 바람의 방향에 영향을 크게 받는다는 문제가 있고, 수직축 풍력 발전은 바람의 방향에 영향을 크게 받지 않으나, 효율이 수평축에 비해 높지 않다는 문제가 있다. 따라서, 대부분의 풍력 발전과 관련된 주요 업체들은 수평축 풍력 발전에 집중하고 있으며, 수직축 풍력 발전의 경우, 효율을 높일 수 있는 방법에 관하여 상당히 많은 연구를 진행하고 있다. 그러나, 아직까지 수직축 풍력 발전의 효율을 높이기 위한 적절한 방법을 찾지 못하고 있는 실정이다. 한편, 본 발명의 경우, 수직축 풍력 발전에 관한 기술이라는 점에서, 이하에서는 수직축 풍력 발전을 중심으로 설명을 행하도록 한다.
수직축 풍력 발전의 경우, 전 방향으로 불어오는 바람을 활용할 수 있다는 기술적 장점이 있으나, 일반적으로 대기 상에서 부는 바람의 경우 바람의 방향 및 세기가 일정하지 않아 효율적인 풍력 발전이 어렵다는 문제가 있다. 따라서, 이와 같은 문제를 해결하기 위해 바람의 방향을 효과적으로 집중시키도록 하기 위한 다양한 방법이 시도되고 있는 바, 예시적으로, 바람의 방향을 일정하게 흐를 수 있도록 하는 것과 동시에 풍속을 증속시킬 수 있도록 수직축 풍력 터빈 주위에 가이드벽을 갖는 집풍관 구조를 추가적으로 설치하는 방안이 제시되고 있다.
한국특허공개 제2009-0035884호(가속형 풍력발전기)는 내부에 항력식 풍력 터빈이 설치되고, 그 주변에 바람의 방향을 일정하게 하는 것과 동시에 풍속을 증속할 수 있도록 하는 집풍관 구조가 설치되어, 수직축 풍력 터빈의 효율을 높이도록 한 기술이 개시되어 있다,
또한, 일본특허공개 제2010-531594호(수직축을 가지는 풍력 터빈)에는 풍력 타워 내부에 항력식 수직축 풍력 터빈을 구비하고, 상기 항력식 수직축 풍력 터빈 주변에 바람의 방향을 일정하게 하는 것과 동시에 풍속을 증속할 수 있도록 하는 집풍관 구조가 설치된 기술이 개시되어 있다.
그러나, 상기 특허에 개시되어 있는 집풍관의 경우, 집풍관으로 유도되는 바람이 직접 항력식 풍력 블레이드와 접촉하여 상기 풍력 블레이드의 회전을 유도하도록 설계되어 있는 바, 이와 같은 구성의 경우, 바람의 변화에 따라 상기 항력식 블레이드의 움직임도 동일하게 변화하게 되어 지속적인 풍력 발전이 유지되기 어렵다는 문제가 있다. 또한, 상기 가이드벽을 통과한 바람은 바로 항력식 블레이드에 접촉하도록 되어 있어, 상당한 저항이 발생하도록 구성되어 있는 바, 이러한 구성은 항력식 블레이드의 초기 시동에는 유리한 장점이 있으나, 바람의 속도가 빠른 경우에는 오히려 저항으로 작용하여, 효과적인 풍력 발전을 어렵게 한다는 문제가 있다.
따라서, 본 발명의 출원인은 상술한 바와 같은 기술적 문제를 해결하도록 한 수직축 풍력 터빈을 구비한 풍력 발전 타워를 강구하게 되었다.
본 발명의 실시예들은, 저속에서도 풍력 발전이 가능하며, 최대한의 풍력 발전 효율을 가질 수 있도록 형성된 풍력 발전 타워에 관한 기술을 제공하도록 한다.
본 발명의 일 실시예에 따른 풍력 발전 타워는 바람이 유입되는 윈드유입구가 복수층으로 형성되고, 상기 유입되는 바람이 풍력 발전 타워 내부를 통과하여 외부로 배출되는 집풍부와 에너지전환부로 구성되는 풍력 발전 타워에 있어서, 상기 집풍부는 상기 윈드유입구를 통과하여 들어온 바람이 윈드유출구를 통해 상기 에너지전환부의 일 반경방향으로 흐를 수 있도록 동일한 각도로 경사져 상기 풍력 발전 타워의 중심을 따라 방사상으로 배치되는 복수의 윈드가이드벽에 의해 형성되는 복수의 윈드유입구 및 윈드유출구로 구성되고, 상기 에너지전환부는 상기 풍력 발전 타워의 각 층의 중심에 형성되는 공간에 수직축 블레이드를 포함하는 수직축 풍력 터빈을 설치하고, 상기 윈드가이드벽과 상기 수직축 블레이드 사이의 공간에 1m 이상의 거리를 갖는 윈드유로를 형성하며, 상기 집풍부의 윈드유입구 및 윈드유출구를 통해 들어오는 바람은 상기 에너지전환부의 일 반경방향에 형성된 상기 윈드유로를 따라 흘러 상기 풍력 발전 타워의 외부로 배출되도록 구성될 수 있다.
또한, 상기 집풍부의 윈드유입구와 윈드유출구의 단면적 비는 2.5 : 1 이상으로 형성하는 것이 가능하다.
또한, 상기 수직축 풍력 터빈은 양력 블레이드를 갖도록 형성되며, 상기 수직축 풍력 터빈은 자이로밀형 풍력 터빈으로 형성될 수 있다. 또한, 상기 윈드유로는 1.5 m 로 형성될 수 있다.
본 발명의 일 실시예에 따른 풍력 발전 타워는, 저속의 바람이라도 풍속을 가속화하여 풍력발전을 구현할 수 있음과 동시에 블레이드를 회전시키는 바람의 이용효율을 증대시킴으로써 전반적인 발전효율을 향상시킬 수 있다.
또한, 본 발명의 일 실시예에 따른 풍력 발전 타워는 벤츄리 효과에 의해 바람의 세기를 증강시키도록 하는 것과 동시에, 원기둥 형상의 풍력 발전 타워의 후면에서 발생하는 와류를 이용하여 풍력 발전 타워를 빠져나가는 바람과의 압력강하를 보다 크게 하는 것에 의해, 풍력 발전 타워의 내부에 설치되는 블레이드의 회전을 보다 빠르게 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 풍력 발전 타워를 보여주는 도면이다.
도 2는 도 1에 도시된 풍력 발전 타워의 단면도를 도시한다.
도 3은 도 2에 도시된 윈드유입구와 윈드유출구의 단면적 대비 발전출력을 도시한다.
도 4는 본 발명의 일 실시예에 따른 풍력 발전 타워 내부에 설치되는 자이로밀형 풍력 터빈의 일 실시예를 도시한다.
도 5는 도 2에 도시된 집풍부와 에너지전환부의 확대도를 도시한다.
도 6a 내지 도 6d 는 본 발명에 따른 풍력 발전 타워에 있어서, 윈드유로의 거리변화에 따른 윈드유출구에서 배출되는 바람의 속도변화를 도시한 결과이다.
본 발명에 따른 풍력 발전 타워와 관련하여, 도면을 참고하여 이하에서 보다 구체적으로 설명하도록 한다.
본 발명의 출원인은 대기 중의 바람의 방향을 보다 효과적으로 집중시키도록 하면서 바람의 세기를 보다 증폭하기 위한 방법으로, 바람의 방향제어를 행하면서, 바람의 세기를 증폭하도록 하는 집풍부가 복수층으로 형성된 풍력 발전 타워를 제안하도록 한다. 이에 대한 도면이 도 1에 도시되어 있는 바, 상기 도면에 도시되어 있는 바와 같이, 본 발명에 따른 풍력 발전 타워(100)는 바람이 유입되는 복수개의 윈드유입구(111)를 포함하는 집풍부(110)가 복수층으로 형성하여 제작될 수 있다. 한편, 상기 풍력 발전 타워(100)로 불어오는 바람은 상기 풍력 발전 타워(100)의 윈드유입구(111)를 통과하거나, 또는 상기 도면에 도시되어 있는 바와 같이, 풍력 발전 타워(100)의 양 측면 및 상부를 타고 흘러가도록 형성될 수 있다. 이 경우, 상기 풍력 발전 타워(100)의 후면에는 와류가 발생할 수 있다. 상기 풍력 발전 타워(100)의 후면에 발생하는 와류는 상기 풍력 발전 타워(100)의 형상에 관계 없이 일정한 높이와 부피를 가지면 발생되어지나, 일반적으로 상기 풍력 발전 타워(100)의 단면이 원형 형상으로 형성되는 경우, 상기 풍력 발전 타워(100)로 유입되는 방향의 반대 방향에 와류가 발생되게 된다. 따라서, 본 발명에 따른 풍력 발전 타워(100)는 원기둥 형상으로 형성할 수 있다.
도 2에는 본 발명에 따른 풍력 발전 타워(100)의 한 층의 단면을 도시하고 있는 바, 도면을 참조하면, 본 발명에 따른 풍력 발전 타워(100)는 집풍부(110)와 에너지전환부(150)로 형성될 수 있다. 집풍부(110)는 상기 서술한 바와 같이, 외부에서 상기 풍력 발전 타워(100)의 윈드유입구(111)로 유입되는 바람의 방향제어 및 세기를 증폭할 수 있도록 윈드유입구(111)와 윈드유출구(112)의 단면적이 일정 수준 이상의 차이를 갖도록 복수개의 윈드가이드벽(120)을 상기 풍력 발전 타워(100)의 중심을 기준으로 방사상으로 배치하는 것에 의해 형성할 수 있다. 여기서, 상기 윈드유입구(111)와 윈드유출구(112)의 단면적의 차이는 5 m/s 이하의 낮은 풍속에서 벤츄리효과에 의한 풍속의 증가를 가져올 수 있도록 하는 단면적을 갖도록 형성한다.
도 3은 상기 집풍부(110)의 윈드유입구(111)와 윈드유출구(112)의 단면적 대비 발전 출력을 도시하고 있다. 도 3은 본 발명의 출원인이 제주도에 설치한 실증타워를 통해 실험한 결과를 도시하고 있는 바, 정격 출력이 6 Kw 인 풍력발전기를 대상으로 실험하였으며, 상기 윈드유입구(111)와 윈드유출구(112)의 단면적 비를 1 : 1 이상으로 변화시킨 경우, 실증타워에 설치된 풍력발전기에서 측정되는 출력을 측정하도록 하는 것에 의해, 적절한 벤츄리 효과를 가져올 수 있는 단면적 비를 찾도록 하였다. 상기 실험결과를 살펴보면, 상기 풍력 발전기의 경우 상용전력으로 인정되는 범위는 약 5 Kw가 되는 범위라는 점에서, 상기 윈드유입구(111)와 윈드유출구(112)의 단면적 비가 약 2.5 : 1 이 되는 범위에서 상용전력으로 인정되는 5 Kw 이상의 출력이 발생하는 것을 확인할 수 있다. 따라서, 본 발명에 따른 풍력 발전 타워(100)에 설치되는 집풍부(110)의 윈드유입구(111)와 윈드유출구(112)의 단면적 비를 최소 약 2.5 : 1 이상으로 형성하도록 하는 것에 의해, 상기 풍력 발전 타워(100)의 집풍부(110)에서 바람이 증속되는 효과를 가져올 수 있도록 한다.
상기 윈드가이드벽(120)은 상기 풍력 발전 타워(100)로 유입되는 바람을 효과적으로 외부로 배출할 수 있도록 적절한 수의 윈드유입구(111)를 갖도록 설계하는 것이 바람직하다. 따라서, 본 발명에 따른 풍력 발전 타워(100)는 적어도 5개 내지 9개 사이의 윈드가이드벽(110)을 설치하도록 하는 것에 의해, 상기 풍력 발전 타워(100) 내부로 유입되는 바람을 외부에 효과적으로 배출할 수 있도록 하고 있다.
상기 풍력 발전 타워(100)의 각 층의 중심공간에 형성되는 에너지전환부(150)에는 수직축 풍력 터빈을 설치하도록 한다. 본 발명에 따른 풍력 발전 타워(100)에 설치되는 수직축 풍력 터빈은 항력식 풍력 터빈 또는 양력식 풍력 터빈 등이 모두 설치될 수 있다. 한편, 본 발명의 일 실시예에서는 상기 수직축 풍력 터빈으로 양력식 풍력 터빈을 설치하도록 하되, 자이로밀형 풍력 터빈(130)을 설치하도록 한 실시예를 기초로 설명하도록 한다. 도 4에는 자이로밀형 풍력 터빈(130)의 일 실시예가 도시되어 있는 바, 상기 자이로밀형 풍력 터빈은 중심축(131)과, 유선형으로 형성되어 양력에 의해 회전하도록 형성되는 자이로밀형 풍력 블레이드(133) 및 상기 중심축(131)과 상기 자이로밀형 풍력 블레이드(133)를 연결하는 지지축(132)으로 구성될 수 있다.
상기 에너지전환부(150)는 상기 집풍부(110)를 통과한 바람이 통과하면서 바람에너지를 기계적 에너지로 전환하도록 하는 공간으로, 상기 자이로밀형 풍력 터빈(130)의 자이로밀형 풍력 블레이드(133)를 기준으로, 상기 자이로밀형 풍력 블레이드(133)와 상기 윈드가이드벽(120)의 끝단부 사이의 공간으로 정의되는 윈드유로(151)와, 상기 자이로밀형 풍력 터빈(130)의 중심축(131)에서 상기 자이로밀형 풍력 블레이드(133) 사이의 공간으로 정의되는 내부유로(152)로 구성할 수 있다.
자이로밀형 풍력 터빈(130)은 다리우스 풍력 터빈과 같이 양력에 의해 구동된다는 점에서, 기술적 유사성이 있으나, 자이로밀형 풍력 터빈(130)은 자이로밀형 풍력 블레이드(133)가 유선형으로 유한길이를 갖도록 형성된다는 점에서, 솔리디티(solidity)가 다리우스 풍력 터빈에 비해 높게 되고, 또한, TSR(Tip Speed Ratio)은 낮게 형성되고 있다. 여기서, 솔리디티는 블레이드의 임의의 반지름 위치에서 블레이드의 회전반경에 대해 블레이드가 차지하는 길이의 비를 의미하고, TSR은 바람의 속도와 블레이드 끝단 속도의 비를 의미한다. 즉, 바람의 속도와 블레이드 끝단의 속도가 같으면 TSR은 1이 된다.
한편, 솔리디티가 다리우스 풍력 터빈과 달리 본 발명의 일 실시예에 따른 자이로밀형 풍력 터빈(130)은 솔리디티가 상당히 높기 때문에 TSR이 증가함에 따라 자이로밀형 풍력 블레이드(133) 상호 간의 간섭과 하류에 위치하는 블레이드로 유입되는 유동속도의 감소로 인하여 양력이 상당히 감소하게 되는 문제점이 있다.
따라서, 본 발명의 출원인은 상기 자이로밀 풍력 터빈(130)의 기술적 장점을 살리면서, 단점을 최대한 극복할 수 있도록 본 발명에 따른 풍력 발전 타워(100)의 구조를 개선하도록 하였는 바, 보다 상세하게는 도 2 및 도 5에 도시되어 있는 바와 같이, 상기 윈드유입구(111)를 통해 유입되는 바람이 상기 에너지전환부(150)의 일 반경방향으로 흐를 수 있도록 복수의 윈드가이드벽(120)을 상기 풍력 발전 타워(100)의 중심을 따라 방사상으로 설치하도록 하되, 일정한 각도를 갖도록 형성하는 것이 가능하다. 이를 통해, 도면에 도시되어 있는 바와 같이, 집풍부(110)를 통과한 바람은 에너지전환부(150)의 일 반경방향을 따라 윈드유로(151)를 통해 흘러가도록 형성된다. 또한, 본 발명의 일 실시예에 따른 풍력 발전 타워(100)의 에너지전환부(150)는 상기 자이로밀형 풍력 블레이드(133)의 원활한 회전을 위해, 충분한 윈드유로(151)를 갖도록 설계하는 것이 중요하다.
자이로밀형 풍력 블레이드(133)는 기존의 항력식 수직축 터빈과 달리 양력에 의해 회전된다는 점에서, 상기 자이로밀형 풍력 블레이드(133)의 전후단을 기해 바람이 충분히 유동하는 공간을 필요로 하게 된다. 따라서, 본 발명의 경우, 상기 에너지전환부(150)를 자이로밀형 풍력 터빈(130)의 중심축(133)과 상기 자이로밀형 풍력 블레이드(133) 사이에 형성되는 공간을 내부유로(152)로 정하고, 상기 자이로밀형 풍력 블레이드(133)와 상기 집풍부(110)의 윈드가이드벽(120) 사이의 공간을 윈드유로(151)로 정하도록 하며, 상기 윈드유로(151)를 통해 충분히 바람이 유동될 수 있는 공간을 갖도록 설계하도록 하는 것을 기술적 특징으로 한다.
이에 따른 도면이 도 2 및 도 5에 도시되어 있는 바, 상기 도면에 따르면, 집풍부(110)를 통과한 바람은 에너지전환부(150)의 일 반경방향을 따라 형성되어 있는 윈드유로(151)를 따라 바람이 유동되도록 형성될 수 있다. 또한, 본 발명에 따른 풍력 발전 타워(100)의 에너지전환부(150)는 상기 타 반경방향에서는 바람의 유동이 거의 발생하지 않는다는 점에서, 기존 자이로밀형 풍력 터빈(130)에서 유동의 하류부분에서 발생하는 항력에 의해 블레이드의 속도가 저감되는 효과를 최소화할 수 있도록 한다.
또한, 본 발명에 따른 풍력 발전 타워(100)는 에너지전환부(150)에 설치되는 자이로밀형 풍력 터빈(130)의 회전 효율을 효과적으로 높이도록 하기 위해, 적절한 윈드유로(151)의 거리를 설정하는 것이 무엇보다 중요하다. 한편, 상기 윈드유로(151)의 적절한 거리 설정을 위해, 상기 집풍부(110)의 윈드유출구(112)를 통과하는 바람이 상기 자이로밀형 풍력 블레이드(133)에 접촉하는 경우, 상기 윈드유출구(112)를 통과하는 바람의 속도변화를 조사하도록 하였는 바, 이에 대한 결과가 도 6a 내지 도 6d에 도시되어 있다. 도 6a는 윈드유로(151)의 거리를 0.3m, 도 6b는 0.7m, 도 6c는 1m, 도 6d는 1.5m 거리에서 측정한 값을 도시한다. 상기 도면을 참고하면, 상기 윈드유로(151)의 거리 변화에 따라 상기 윈드유출구(112)를 통해 배출되는 바람의 속도가 변화함을 알 수 있다. 보다 상세하게는, 상기 윈드유로(151)의 거리가 증가할수록 유로의 저항이 감소하여 상기 윈드유출구(112)를 통해 배출되는 바람의 속도가 증가함을 알 수 있다. 상기 실험결과에 의하면, 윈드유로(151)의 거리가 약 1.0m 이상으로 벌어지면 유로의 저항이 상당히 감소됨을 확인할 수 있으며, 약 1.5m 거리에서 상기 윈드유출구(112)를 통해 배출되는 바람의 속도가 최대에 도달함을 확인할 수 있다. 따라서, 상술한 바와 같은 결과에 따라, 본 발명에 따른 풍력 발전 타워(100)의 에너지전환부(150) 내에 형성되는 윈드유로(151)는 최소 1.0 m 이상으로 형성하도록 설계된다.
상술한 바와 같이 윈드유로(151)의 거리를 적절히 설정하는 경우, 상기 에너지전환부(150) 내에 설치되는 자이로밀형 풍력 터빈(130)은 상기 집풍부(110)의 윈드유출구(112)를 통해 배출되는 바람의 저항을 최소화하면서 회전하게 되며, 또한, 상기 양력 블레이드가 회전력을 발생할 수 있는 충분한 바람의 유동공간을 갖게 된다는 점에서, 본 발명에 따른 풍력 발전 타워(100)의 경우, 적절한 윈드유로(151)의 거리를 설정하는 것은 무엇보다 중요하다.
한편, 본 발명에 따른 풍력 발전 타워(100)의 에너지전환부(150) 내에 형성되는 윈드유로(151)는 상기 서술한 바와 같이, 자이로밀형 풍력 터빈(130)의 풍력 블레이드(133)에 원활한 양력을 발생시키는 바람의 유동을 형성하기 위한 목적 외에도, 풍력 발전 타워(100)에서 발생하는 바람의 유동을 통해 풍력 발전 타워(100)의 에너지전환부(150) 내에서 바람의 세기를 보다 강화하기 위해서도 필요하다. 예시적으로, 도 1에는 본 발명에 따른 풍력 발전 타워(100)에 흐르는 바람의 유동이 도시되어 있는 바, 상기 풍력 발전 타워(100)를 흐르는 바람은 윈드유입구(111)를 통한 집풍부(110)를 통해 상기 풍력 발전 타워(100)의 내부를 통해 흐르는 바람 외에도 상기 풍력 발전 타워(100)의 양 측면 및 상부면을 통해 흐르는 바람이 존재하게 된다. 이 경우, 도 2에 도시되어 있는 바와 같이, 풍력 발전 타워(100)의 바람이 유입되는 방향과 반대방향에는 압력이 상당히 낮게 형성되는 와류가 발생하게 된다. 따라서, 상기 풍력 발전 타워(100)의 내부를 통과하여 외부로 배출되는 바람은 상기 와류에 의해 보다 큰 압력강하를 갖게 되며, 이로 인해, 상기 풍력 발전 타워(100)의 내부의 윈드유로(151)를 따라 흐르는 바람은 보다 빠른 속도로 풍력 발전 타워(100)의 외부로 배출될 수 있다.
보다 상세하게는, 상기 에너지전환부(150) 내의 윈드유로(151)를 통과하여 상기 풍력 발전 타워(100)의 반대방향으로 배출되는 바람은 상기 풍력 발전 타워(100)의 반대방향의 바람배출공간에 형성되는 와류에 의해, 상기 에너지전환부(150)와 상기 와류가 형성되는 바람배출공간의 압력차가 상당히 크게 발생하게 되고, 이는 상기 에너지전환부(150)의 윈드유로(151)를 통과하는 바람의 세기를 보다 빠르게 할 수 있는 효과를 가져오게 된다. 따라서, 상기 에너지전환부(150)의 윈드유로(151)를 따라 흐르는 바람은 상술한 바와 같은 와류에 의해 발생하는 압력차에 의한 영향을 받게 되며, 이와 같은 효과는 상기 에너지전환부(150)에 형성되는 자이로밀형 풍력 블레이드(133)의 회전력에도 상당한 영향을 주게 된다.
따라서, 상술한 바와 같이 풍력 발전 타워(100)에서 발생하는 바람의 유동에 따라 발생하는 와류에 의한 에너지전환부(150) 내에 설치되는 수직축 풍력 터빈의 효율 향상 효과를 가져오기 위해서는, 에너지전환부(150) 내에 윈드유로(151)가 설치될 필요가 있다. 만일, 상기 에너지전환부(150) 내에 적절한 윈드유로(151)가 설치되지 않는다면, 상술한 바와 같은 풍력 발전 타워(100)에서 발생하는 바람의 유동에 의한 압력차에 의해 발생하는 에너지전환부(150) 내에 흐르는 바람의 세기의 증속효과는 상기 에너지전환부(150) 내에 설치되는 수직축 풍력 터빈의 회전력에 큰 영향을 미치지 않게 된다.
따라서, 상술한 바와 같이, 본 발명에 따른 풍력 발전 타워(100)의 에너지전환부(150) 내에 형성되는 윈드유로(151)는 자이로밀형 풍력 터빈(130)의 원활한 회전력을 가져오도록 하는 것과 동시에, 풍력 발전 타워(100)를 타고 흐르는 바람의 유동에 의해 발생하는 와류에 의해 발생하는 압력강하에 의한 바람의 증속효과를 가져오는 것이 가능하다.
본 발명에 따른 자이로밀형 풍력 터빈을 구비하는 풍력 발전 타워(100)는 그 내부에 수직축 풍력 터빈인 자이로밀형 풍력 터빈(130)을 설치하고 있는 바, 본 발명에 따르면, 기존의 수직축 풍력 터빈을 대기상태에서 회전하는 것보다 약 50% 이상 효율이 증대되는 것을 확인할 수 있다. 이는, 집풍부(110)에서 벤츄리 효과에 의한 바람의 세기의 증속과 함께, 상기 집풍부(110)와 에너지전환부(150)의 구성을 통해, 상기 에너지전환부(150)를 흐르는 바람의 유량과 세기를 일정한 방향으로 증속하도록 형성하여 상기 자이로밀형 풍력 터빈(130)에 가하는 에너지를 크게 할 수 있게 하는 것에 의해 달성될 수 있으며, 또한, 풍력 발전 타워(100) 자체에서 발생하는 바람의 유동에 의해 발생하는 와류에 의한 압력차에 의해 상기 에너지전환부(150) 내에서의 바람을 보다 빠르게 유동하는 것을 가능하게 함으로써, 상술한 바와 같은 효과를 달성할 수 있도록 한다.
한편, 본 발명의 경우, 풍력 발전 타워(100) 내에 설치되는 수직축 풍력 터빈으로 자이로밀형 풍력 터빈(130)을 설치한 내용을 중심으로 설명하도록 하였으나, 본 발명의 기술적 특징이 상기 자이로밀형 풍력 터빈(130)으로 한정되는 것은 아니며, 상기 풍력 발전 타워(100) 내에 다양한 수직축 풍력 터빈을 설치하는 경우에도 적용하는 것이 가능하다.
이상, 본 발명의 일 실시예에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.

Claims (8)

  1. 바람이 유입되는 윈드유입구가 복수층으로 형성되고, 상기 유입되는 바람이 풍력 발전 타워 내부를 통과하여 외부로 배출되는 집풍부와 에너지전환부로 구성되는 풍력 발전 타워에 있어서,
    상기 집풍부는 상기 윈드유입구를 통과하여 들어온 바람이 윈드유출구를 통해 상기 에너지전환부의 일 반경방향으로 흐를 수 있도록 상기 풍력 발전 타워의 중심을 따라 방사상으로 배치되는 복수의 윈드가이드벽에 의해 형성되는 복수의 윈드유입구 및 윈드유출구로 구성되고,
    상기 에너지전환부는 상기 풍력 발전 타워의 각 층의 중심에 형성되는 공간에 수직축 블레이드를 포함하는 수직축 풍력 터빈을 설치하고, 상기 윈드가이드벽과 상기 수직축 블레이드 사이의 공간에 1m 이상의 거리를 갖는 윈드유로를 형성하며,
    상기 집풍부의 윈드유입구 및 윈드유출구를 통해 들어오는 바람은 상기 에너지전환부의 일 반경방향에 형성된 상기 윈드유로를 따라 흘러 상기 풍력 발전 타워의 외부로 배출되는 풍력 발전 타워.
  2. 제1항에 있어서,
    상기 집풍부의 윈드유입구와 윈드유출구의 단면적 비는 2.5 : 1 이상으로 형성하는 것을 특징으로 하는 풍력 발전 타워.
  3. 제1항에 있어서,
    상기 집풍부의 복수의 윈드가이드벽은 상기 윈드유입구를 통과하여 들어온 바람이 상기 에너지전환부의 일 반경방향으로 흐를 수 있도록 동일한 각도로 경사져 상기 풍력 발전 타워의 중심을 따라 방사상으로 배치되는 것을 특징으로 하는 풍력 발전 타워.
  4. 제1항에 있어서,
    상기 풍력 발전 타워는 바람이 유입되는 집풍부의 윈드유입구와 윈드유출구의 단면적 비에 의해 압력이 저하되어 속도의 증속을 가져오고,
    상기 풍력 발전 타워의 내부를 통과하는 바람은 상기 풍력 발전 타워의 외부배출공간 주변에 형성되는 와류와 상기 바람이 배출되는 집풍부 간의 압력차에 의해 속도가 증속되는 것을 특징으로 하는 풍력 발전 타워.
  5. 제1항에 있어서,
    상기 풍력 발전 타워는 원기둥 형상으로 형성하는 것을 특징으로 하는 풍력 발전 타워.
  6. 제1항에 있어서,
    상기 수직축 풍력 터빈은 양력 블레이드를 갖도록 형성되는 것을 특징으로 하는 풍력 발전 타워.
  7. 제1항에 있어서,
    상기 수직축 풍력 터빈은 자이로밀형 풍력 터빈인 것을 특징으로 하는 풍력 발전 타워.
  8. 제1항에 있어서,
    상기 윈드유로는 1.5m인 것을 특징으로 하는 풍력 발전 타워.
PCT/KR2013/012379 2013-08-02 2013-12-30 풍력 발전 타워 WO2015016445A1 (ko)

Priority Applications (14)

Application Number Priority Date Filing Date Title
AU2013395802A AU2013395802A1 (en) 2013-08-02 2013-12-30 Wind power generation tower
JP2016531504A JP6407996B2 (ja) 2013-08-02 2013-12-30 風力発電タワー
DK13890649.0T DK3029316T3 (da) 2013-08-02 2013-12-30 Vindkraftgenereringstårn
CN201380078714.8A CN105452649B (zh) 2013-08-02 2013-12-30 风力发电塔
BR112016002309A BR112016002309A2 (pt) 2013-08-02 2013-12-30 torre de geração de potência eólica
EP13890649.0A EP3029316B1 (en) 2013-08-02 2013-12-30 Wind power generation tower
MX2016001491A MX2016001491A (es) 2013-08-02 2013-12-30 Torre de generacion de energia eolica.
ES13890649T ES2769853T3 (es) 2013-08-02 2013-12-30 Torre de generación de energía eólica
US14/908,521 US10550824B2 (en) 2013-08-02 2013-12-30 Wind power generation tower
CA2919988A CA2919988C (en) 2013-08-02 2013-12-30 Wind power generation tower
RU2016103275A RU2642706C2 (ru) 2013-08-02 2013-12-30 Ветрогенераторная башня
PH12016500228A PH12016500228B1 (en) 2013-08-02 2016-02-02 Wind power generation tower
AU2018201121A AU2018201121A1 (en) 2013-08-02 2018-02-15 Wind power generation tower
AU2019284010A AU2019284010A1 (en) 2013-08-02 2019-12-20 Wind power generation tower

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130091876A KR101372248B1 (ko) 2013-08-02 2013-08-02 풍력 발전 타워
KR10-2013-0091876 2013-08-02

Publications (1)

Publication Number Publication Date
WO2015016445A1 true WO2015016445A1 (ko) 2015-02-05

Family

ID=50648096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/012379 WO2015016445A1 (ko) 2013-08-02 2013-12-30 풍력 발전 타워

Country Status (16)

Country Link
US (1) US10550824B2 (ko)
EP (1) EP3029316B1 (ko)
JP (1) JP6407996B2 (ko)
KR (1) KR101372248B1 (ko)
CN (1) CN105452649B (ko)
AU (3) AU2013395802A1 (ko)
BR (1) BR112016002309A2 (ko)
CA (1) CA2919988C (ko)
CL (1) CL2016000266A1 (ko)
DK (1) DK3029316T3 (ko)
ES (1) ES2769853T3 (ko)
MX (1) MX2016001491A (ko)
PH (1) PH12016500228B1 (ko)
PT (1) PT3029316T (ko)
RU (1) RU2642706C2 (ko)
WO (1) WO2015016445A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180266390A1 (en) * 2013-03-14 2018-09-20 Hover Energy, LLC Wind power generating rotor with diffuser or diverter system for a wind turbine
KR102107839B1 (ko) * 2018-07-11 2020-05-07 주식회사 선광코리아 수상 복합 발전시스템
GB2581411B (en) * 2019-10-11 2021-12-01 1Gen Ltd Shaftless wind turbine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282540A (ja) * 2004-03-30 2005-10-13 Daiwa House Ind Co Ltd 揚力型垂直軸風車を用いた風力発電機における回転数制御機構
KR200427322Y1 (ko) * 2006-07-13 2006-09-25 장형규 베큠 장치의 노즐
KR20090035884A (ko) 2007-10-08 2009-04-13 (주)녹주팬라이트 냉.난방 겸용 환기장치
JP2010196600A (ja) * 2009-02-25 2010-09-09 Energy Products Co Ltd 集風装置、及び風車装置
JP2010531594A (ja) 2007-06-28 2010-09-24 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 高速共用制御チャネルの信頼性のある復号化
KR101059160B1 (ko) * 2010-10-06 2011-08-25 제이케이이엔지(주) 풍력발전타워
KR20130055432A (ko) * 2011-11-18 2013-05-28 (주)설텍 과풍속 제어가 가능한 자이로밀 풍력발전기

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108145A (en) * 1978-02-15 1979-08-24 Ohbayashigumi Ltd Tower wind power equipment
US4269563A (en) * 1979-08-09 1981-05-26 Errol W. Sharak Wind turbine
GB8626347D0 (en) * 1986-11-04 1986-12-03 Bicc Plc Wind energy convertor
JPH05240141A (ja) * 1992-03-02 1993-09-17 Masahiko Akaha 案内羽根付貫流風車
WO1994004819A1 (en) * 1992-08-18 1994-03-03 Four Winds Energy Corporation Wind turbine particularly suited for high-wind conditions
RU2070661C1 (ru) * 1994-07-25 1996-12-20 Владимир Герасимович Мосолов Вихревая электростанция
US6935841B2 (en) * 2000-12-04 2005-08-30 Michael Mark Rainbow Fan assembly
US6870280B2 (en) * 2002-05-08 2005-03-22 Elcho R. Pechler Vertical-axis wind turbine
WO2004099605A2 (en) * 2003-04-30 2004-11-18 Taylor Ronald J Wind turbine having airfoils for blocking and directing wind and rotors with or without a central gap
BE1018135A3 (fr) * 2007-01-11 2010-06-01 Athanassiadis Antoine Nouveau systeme d'aerogenerateur a axe vertical.
US8087894B2 (en) * 2007-10-09 2012-01-03 Franklin Charles Brooks Aperture and flap vertical axis wind machine
HUP0700705A2 (en) 2007-10-30 2009-10-28 Viktor Dr Gyoergyi Vertical axis wind turbine and power station
GB2468881A (en) * 2009-03-25 2010-09-29 Wind Dam Ltd Vertical axis wind turbine
KR20100117240A (ko) 2009-04-24 2010-11-03 김팔만 가속형 풍력 발전기
CN201521400U (zh) * 2009-10-28 2010-07-07 河海大学 基于导叶和升力叶片的立轴风车装置
WO2011161821A1 (ja) * 2010-06-25 2011-12-29 エネルギープロダクト株式会社 集風装置、及び風車装置
DE202010016013U1 (de) * 2010-11-30 2011-02-17 Raatz, Erich Windrichtungsunabhängige Windturbine mit vertikalem Rotor, mehrreihiger Einleitflächenkonstruktion und tropfenförmig profilierten Rotorblättern
CN201934259U (zh) * 2011-03-07 2011-08-17 李承恩 风力发电塔的风向导流装置
EP2617991A1 (en) * 2012-01-18 2013-07-24 Jörg Walter Roth Vertical axis wind turbine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282540A (ja) * 2004-03-30 2005-10-13 Daiwa House Ind Co Ltd 揚力型垂直軸風車を用いた風力発電機における回転数制御機構
KR200427322Y1 (ko) * 2006-07-13 2006-09-25 장형규 베큠 장치의 노즐
JP2010531594A (ja) 2007-06-28 2010-09-24 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 高速共用制御チャネルの信頼性のある復号化
KR20090035884A (ko) 2007-10-08 2009-04-13 (주)녹주팬라이트 냉.난방 겸용 환기장치
JP2010196600A (ja) * 2009-02-25 2010-09-09 Energy Products Co Ltd 集風装置、及び風車装置
KR101059160B1 (ko) * 2010-10-06 2011-08-25 제이케이이엔지(주) 풍력발전타워
KR20130055432A (ko) * 2011-11-18 2013-05-28 (주)설텍 과풍속 제어가 가능한 자이로밀 풍력발전기

Also Published As

Publication number Publication date
ES2769853T3 (es) 2020-06-29
PH12016500228A1 (en) 2016-05-16
CA2919988C (en) 2021-02-23
BR112016002309A2 (pt) 2017-08-01
JP2016525187A (ja) 2016-08-22
CA2919988A1 (en) 2015-02-05
AU2018201121A1 (en) 2018-03-08
RU2016103275A (ru) 2017-09-07
AU2013395802A1 (en) 2016-02-25
PT3029316T (pt) 2020-02-14
DK3029316T3 (da) 2020-02-17
JP6407996B2 (ja) 2018-10-17
EP3029316A1 (en) 2016-06-08
CN105452649A (zh) 2016-03-30
PH12016500228B1 (en) 2016-05-16
KR101372248B1 (ko) 2014-03-10
CN105452649B (zh) 2018-07-13
EP3029316B1 (en) 2019-11-06
US10550824B2 (en) 2020-02-04
CL2016000266A1 (es) 2016-12-02
US20160208776A1 (en) 2016-07-21
RU2642706C2 (ru) 2018-01-25
AU2019284010A1 (en) 2020-01-23
MX2016001491A (es) 2016-09-14
EP3029316A4 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
WO2015016444A1 (ko) 자이로밀형 풍력 터빈을 구비한 풍력 발전 타워
WO2015016445A1 (ko) 풍력 발전 타워
CN106438191A (zh) 一种聚风式风力发电机组的聚风塔和一种风力发电机组
CN106194591B (zh) 捕能式风力发电机组
CN108953231A (zh) 一种离心风机的集流器进风口装置
KR102067026B1 (ko) 보조 블레이드가 형성된 수직축 풍력발전장치
WO2017110298A1 (ja) 風車システムまたはウィンドファーム
KR101207023B1 (ko) 풍력발전장치
RU2638120C1 (ru) Ветротурбинная установка
CN202690324U (zh) 一种用于烟囱类抽风设备的气道装置
KR101615599B1 (ko) 토네이도를 이용한 복합 발전장치
CN114645823B (zh) 基于微风聚能风力发电的一种引风导流室结构
KR101372251B1 (ko) 자이로밀형 풍력 터빈을 구비한 풍력 발전 타워
KR101372250B1 (ko) 자이로밀형 풍력 터빈을 구비한 풍력 발전 타워
KR101372253B1 (ko) 자이로밀형 풍력 터빈을 구비한 풍력 발전 타워
KR101374050B1 (ko) 자이로밀형 풍력 터빈을 구비한 풍력 발전 타워
WO2019103378A1 (ko) 풍력발전장치
JPH11343958A (ja) 風力発電用の垂直風洞装置および風力エネルギー誘導方法
WO2013024367A1 (en) Wind power generator
CN110219772A (zh) 一种垂直轴风力机
WO2018189347A1 (en) Vertical axis media-flow turbine
WO2016080851A1 (en) Drum vertical axis wind turbine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380078714.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890649

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531504

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016/01029

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: 139450140003012340

Country of ref document: IR

WWE Wipo information: entry into national phase

Ref document number: 14908521

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2919988

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: IDP00201600689

Country of ref document: ID

Ref document number: 2013890649

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12016500228

Country of ref document: PH

Ref document number: MX/A/2016/001491

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016002309

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2013395802

Country of ref document: AU

Date of ref document: 20131230

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016103275

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016002309

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160202