WO2015016031A1 - Zoom lens, optical device, and method for producing zoom lens - Google Patents

Zoom lens, optical device, and method for producing zoom lens Download PDF

Info

Publication number
WO2015016031A1
WO2015016031A1 PCT/JP2014/068447 JP2014068447W WO2015016031A1 WO 2015016031 A1 WO2015016031 A1 WO 2015016031A1 JP 2014068447 W JP2014068447 W JP 2014068447W WO 2015016031 A1 WO2015016031 A1 WO 2015016031A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
group
end state
refractive power
Prior art date
Application number
PCT/JP2014/068447
Other languages
French (fr)
Japanese (ja)
Inventor
武 梅田
誠 藤本
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013161486A external-priority patent/JP6268792B2/en
Priority claimed from JP2014047611A external-priority patent/JP5839062B2/en
Priority claimed from JP2014048997A external-priority patent/JP6349801B2/en
Priority claimed from JP2014048994A external-priority patent/JP6354222B2/en
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to CN201480051255.9A priority Critical patent/CN105556368B/en
Priority to US14/909,139 priority patent/US9939621B2/en
Publication of WO2015016031A1 publication Critical patent/WO2015016031A1/en
Priority to US15/916,186 priority patent/US10670847B2/en
Priority to US16/879,739 priority patent/US11428913B2/en
Priority to US17/886,406 priority patent/US20230027556A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1445Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative
    • G02B15/144511Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative arranged -+-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1455Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being negative
    • G02B15/145527Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being negative arranged -+-++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to a zoom lens, an optical device, and a zoom lens manufacturing method suitable for an imaging device such as a digital camera, a video camera, and a silver salt film camera.
  • a zoom lens which includes a fourth lens group having power and performs zooming by changing the interval between adjacent lens groups. For example, see Japanese Patent Laid-Open No. 2001-343584.
  • the conventional zoom lens as described above does not have sufficient optical performance.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a zoom lens having high optical performance, an optical device having the zoom lens, and a method for manufacturing the zoom lens.
  • the first aspect of the present invention is: In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power And having a group At the time of zooming, there are an interval between the first lens group and the second lens group, an interval between the second lens group and the third lens group, and an interval between the third lens group and the fourth lens group.
  • the second lens group includes, in order from the object side, a front lens group, an aperture stop, and a rear lens group.
  • the front lens group and the rear lens group each have at least one negative lens;
  • the zoom lens is characterized in that at least a part of the second lens group moves as a movable group so as to include a component in a direction orthogonal to the optical axis.
  • the second aspect of the present invention is In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power And having a group At the time of zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, and the third lens group The distance from the fourth lens group changes,
  • the second lens group includes, in order from the object side, a front lens group, an aperture stop, and a rear lens group.
  • the front lens group and the rear lens group each have at least one negative lens;
  • a zoom lens is provided in which at least a part of the lenses in the rear lens group moves so as to include a component in a direction orthogonal to the optical axis.
  • the third aspect of the present invention is: In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power And having a group
  • the third lens group moves along the optical axis, the distance between the first lens group and the second lens group, the second lens group and the second lens group.
  • the distance between the three lens groups and the distance between the third lens group and the fourth lens group change, Provided is a zoom lens that satisfies the following conditional expression. 0.50 ⁇ m3 / fw ⁇ 0.80
  • m3 amount of movement of the third lens group during zooming from the wide-angle end state to the telephoto end state
  • fw focal length of the zoom lens in the wide-angle end state
  • the fourth aspect of the present invention is In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power And having a group
  • the second lens group includes, in order from the object side, a first partial group having a positive refractive power, a second partial group having a negative refractive power, an aperture stop, and a third partial group.
  • the first lens group, the second lens group, and the third lens group move along the optical axis, and the position of the fourth lens group is fixed, At the time of focusing, at least a part of the third lens group moves along the optical axis,
  • the first partial group or the second partial group in the second lens group moves as a movable group so as to include a component in a direction orthogonal to the optical axis,
  • a zoom lens that satisfies the following conditional expression. 0.15 ⁇
  • fw focal length of the zoom lens in the wide-angle end state
  • fvr focal length of the movable group
  • the fifth aspect of the present invention is An optical apparatus having the zoom lens according to the first aspect of the present invention is provided.
  • the sixth aspect of the present invention is An optical apparatus having the zoom lens according to the second aspect of the present invention is provided.
  • the seventh aspect of the present invention is An optical apparatus having the zoom lens according to the third aspect of the present invention is provided.
  • the eighth aspect of the present invention provides An optical apparatus having the zoom lens according to the fourth aspect of the present invention is provided.
  • the ninth aspect of the present invention In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power
  • a zoom lens manufacturing method comprising:
  • the second lens group includes, in order from the object side, a front lens group, an aperture stop, and a rear lens group.
  • the front lens group and the rear lens group each have at least one negative lens;
  • At the time of zooming there are an interval between the first lens group and the second lens group, an interval between the second lens group and the third lens group, and an interval between the third lens group and the fourth lens group.
  • the zoom lens manufacturing method is characterized in that at least a part of the second lens group moves as a movable group so as to include a component in a direction orthogonal to the optical axis.
  • the tenth aspect of the present invention provides In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power
  • a zoom lens manufacturing method comprising: The second lens group includes, in order from the object side, a front lens group, an aperture stop, and a rear lens group.
  • the front lens group and the rear lens group each have at least one negative lens; At the time of zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, and the third lens group The distance from the fourth lens group is changed, A zoom lens manufacturing method is provided, wherein at least some of the lenses in the rear lens group are moved so as to include a component in a direction orthogonal to the optical axis.
  • the eleventh aspect of the present invention provides In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power
  • a zoom lens manufacturing method comprising: At the time of zooming from the wide-angle end state to the telephoto end state, the third lens group moves along the optical axis, the distance between the first lens group and the second lens group, the second lens group and the second lens group. The distance between the three lens groups and the distance between the third lens group and the fourth lens group are changed, A zoom lens manufacturing method is provided in which the third lens group satisfies the following conditional expression. 0.50 ⁇ m3 / fw ⁇ 0.80 However, m3: amount of movement of the third lens group during zooming from the wide-angle end state to the telephoto end state fw: focal length of the zoom lens in the wide-angle end state
  • the twelfth aspect of the present invention provides In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power
  • a zoom lens manufacturing method comprising: The second lens group includes, in order from the object side, a first partial group having a positive refractive power, a second partial group having a negative refractive power, an aperture stop, and a third partial group.
  • the position of the fourth lens group is fixed, and the first lens group, the second lens group, and the third lens group move along the optical axis, At the time of focusing, at least a part of the third lens group moves along the optical axis,
  • the first partial group or the second partial group in the second lens group moves as a movable group so as to include a component in a direction orthogonal to the optical axis,
  • a zoom lens manufacturing method is provided in which the movable group satisfies the following conditional expression. 0.15 ⁇
  • fw focal length of the zoom lens in the wide-angle end state
  • fvr focal length of the movable group
  • the zoom lens that corrects chromatic aberration satisfactorily and has high optical performance
  • an optical device having the zoom lens and a method for manufacturing the zoom lens. it can.
  • a zoom lens that satisfactorily corrects chromatic aberration both at the time of anti-vibration and at the time of non-vibration and has high optical performance, an optical device having the zoom lens, A method for manufacturing the zoom lens can be provided.
  • the zoom lens having a short overall length and a small size and high optical performance, an optical device having the zoom lens, and a method for manufacturing the zoom lens.
  • FIGS. 3A and 3B are coma aberration diagrams when the image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to the first example of the present application, respectively.
  • FIGS. 4A and 4B are sectional views of the zoom lens according to a second example common to the first and second embodiments of the present application in the wide-angle end state and the telephoto end state, respectively.
  • FIGS. 5A and 5B are graphs showing various aberrations at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to Example 2 of the present application.
  • FIGS. 6A and 6B are coma aberration diagrams obtained when image stabilization is performed when an infinite object is focused in the wide-angle end state and the telephoto end state of the zoom lens according to Example 2 of the present application.
  • FIGS. 9A and 9B are coma aberration diagrams obtained when image stabilization is performed when an infinite object is focused in the wide-angle end state and the telephoto end state of the zoom lens according to Example 3 of the present application.
  • FIGS. 11A and 11B are graphs showing various aberrations during focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to Example 4 of the present application, respectively.
  • 12A and 12B are coma aberration diagrams when the image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to Example 4 of the present application, respectively.
  • FIGS. 13A and 13B are cross-sectional views of a zoom lens according to a fifth example common to the first and second embodiments of the present application in the wide-angle end state and the telephoto end state, respectively.
  • FIGS. 14A and 14B are graphs showing various aberrations when the zoom lens according to Example 5 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
  • FIGS. 15A and 15B are coma aberration diagrams when the image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to Example 5 of the present application, respectively.
  • FIGS. 17A and 17B are graphs showing various aberrations when the zoom lens according to Example 6 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
  • 18A and 18B are coma aberration diagrams when the image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to Example 6 of the present application, respectively.
  • 19A and 19B are cross-sectional views of the zoom lens according to a seventh example common to the first and second embodiments of the present application in the wide-angle end state and the telephoto end state, respectively.
  • 20A and 20B are graphs showing various aberrations when the zoom lens according to Example 7 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
  • FIGS. 21A and 21B are coma aberration diagrams obtained when image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to Example 7 of the present application, respectively.
  • FIGS. 22A and 22B are cross-sectional views of the zoom lens according to Example 8 of the first embodiment of the present application in the wide-angle end state and the telephoto end state, respectively.
  • FIGS. 23A and 23B are graphs showing various aberrations when the zoom lens according to the eighth example of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
  • FIGS. 24A and 24B are coma aberration diagrams obtained when image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to Example 8 of the present application.
  • FIGS. 25A and 25B are cross-sectional views of the zoom lens according to Example 9 of the first embodiment of the present application in the wide-angle end state and the telephoto end state, respectively.
  • FIGS. 26A and 26B are graphs showing various aberrations when the zoom lens according to Example 9 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
  • FIGS. 27A and 27B are coma aberration diagrams when the image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to Example 9 of the present application, respectively.
  • FIGS. 28A and 28B are cross-sectional views of the zoom lens according to the tenth example of the third embodiment of the present application in the wide-angle end state and the telephoto end state, respectively.
  • FIGS. 29A and 29B are graphs showing various aberrations when the zoom lens according to Example 10 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
  • 30A and 30B are cross-sectional views of the zoom lens according to Example 11 of the third embodiment of the present application in the wide-angle end state and the telephoto end state, respectively.
  • 31A and 31B are graphs showing various aberrations when the zoom lens according to Example 11 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
  • 32A and 32B are cross-sectional views of the zoom lens according to Example 12 of the third embodiment of the present application in the wide-angle end state and the telephoto end state, respectively.
  • FIGS. 33A and 33B are graphs showing various aberrations when the zoom lens according to Example 12 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
  • 34A and 34B are cross-sectional views of the zoom lens according to Example 13 of the third embodiment of the present application in the wide-angle end state and the telephoto end state, respectively.
  • FIGS. 35A and 35B are graphs showing various aberrations at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to Example 13 of the present application, respectively.
  • 36A and 36B are cross-sectional views of the zoom lens according to Example 14 of the fourth embodiment of the present application in the wide-angle end state and the telephoto end state, respectively.
  • 37A and 37B are graphs showing various aberrations when the zoom lens according to Example 14 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
  • FIGS. 38A and 38B are coma aberration diagrams obtained when image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to Example 14 of the present application, respectively.
  • FIGS. 39A and 39B are graphs showing various aberrations when focusing on a short-distance object in the wide-angle end state and the telephoto end state of the zoom lens according to Example 14 of the present application, respectively.
  • 40A and 40B are cross-sectional views of the zoom lens according to Example 15 of the fourth embodiment of the present application in the wide-angle end state and the telephoto end state, respectively.
  • 41A and 41B are graphs showing various aberrations when the zoom lens according to Example 15 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
  • 42A and 42B are coma aberration diagrams when the image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to Example 15 of the present application, respectively.
  • FIGS. 43A and 43B are graphs showing various aberrations when focusing on a short-distance object in the wide-angle end state and the telephoto end state of the zoom lens according to Example 15 of the present application, respectively.
  • FIG. 44 is a diagram showing a configuration of a camera including a zoom lens according to the first to fourth embodiments of the present application.
  • FIG. 45 is a diagram showing an outline of the zoom lens manufacturing method according to the first embodiment of the present application.
  • FIG. 46 is a diagram showing an outline of a zoom lens manufacturing method according to the second embodiment of the present application.
  • FIG. 47 is a diagram showing an outline of a zoom lens manufacturing method according to the third embodiment of the present application.
  • FIG. 48 is a diagram showing an outline of a zoom lens manufacturing method according to the fourth embodiment of the present application.
  • the zoom lens according to the first embodiment of the present application includes, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens having a negative refractive power. And a fourth lens group having a positive refractive power, and at the time of zooming, an interval between the first lens group and the second lens group, and between the second lens group and the third lens group.
  • the distance and the distance between the third lens group and the fourth lens group change, and the second lens group includes, in order from the object side, a front lens group, an aperture stop, and a rear lens group.
  • the front lens group and the rear lens group each have at least one negative lens, and at least some of the lenses in the second lens group include a component in a direction perpendicular to the optical axis as a movable group. It is characterized by moving.
  • the front lens group refers to a lens group including optical elements arranged on the object side of the aperture stop in the second lens group.
  • the rear lens group refers to a lens group including optical elements arranged on the image side from the aperture stop in the second lens group.
  • the zoom lens according to the first embodiment of the present application moves so that at least a part of the lenses in the second lens group includes a component in a direction orthogonal to the optical axis as a movable group. Accordingly, it is possible to correct image blur due to camera shake, vibration, or the like, that is, to perform image stabilization.
  • the second lens group includes, in order from the object side, the front lens group, the aperture stop, and the rear lens group, and the front lens group and the rear lens group.
  • the side lens groups each have at least one negative lens.
  • the front lens group has a positive refractive power.
  • the second lens group can have a positive refractive power, and a wide angle can be achieved as a zoom lens having a four-group configuration of negative, positive, negative, and positive.
  • the rear lens group has a positive refractive power.
  • the second lens group can have a positive refractive power, and a wide angle can be achieved as a zoom lens having a four-group configuration of negative, positive, negative, and positive.
  • the second lens group includes, in order from the object side, a front lens group having a positive refractive power, an aperture stop, and a rear lens having a positive refractive power. It is desirable to have a group. With this configuration, it is easy to maintain the symmetry by sharing the refractive power back and forth within the second lens group with the aperture stop as the center, and it is possible to make a good correction by balancing the correction of spherical aberration and coma.
  • the zoom lens according to the first embodiment of the present application desirably includes at least one positive lens and one negative lens in the front lens group and the rear lens group in the second lens group.
  • the degree of freedom of chromatic aberration correction can be secured as compared with a single lens, and therefore the refractive index and Abbe number of each lens constituting the front lens group and the rear lens group can be set appropriately.
  • the rear lens group since the rear lens group includes at least one positive lens and one negative lens, the correction of axial chromatic aberration and lateral chromatic aberration during non-vibration correction and vibration correction while increasing the refractive power of the movable group It is possible to more preferably achieve both axial chromatic aberration and lateral chromatic aberration correction.
  • the front lens group and the rear lens group include one positive lens and one negative lens. Further, it is desirable that each of the front lens group and the rear lens group is composed of one cemented lens. Further, the second lens group is arranged in order from the object side, positive lens, negative lens, aperture stop, negative lens, positive lens, or in order from the object side, negative lens, positive lens, aperture stop, positive lens, It is desirable to arrange a negative lens from the viewpoint of symmetry.
  • the zoom lens according to the first embodiment of the present application satisfies the following conditional expression (1-1).
  • (1-1) 1.00 ⁇
  • f2vr focal length of the movable group
  • fw focal length of the zoom lens in the wide-angle end state
  • Conditional expression (1-1) is a conditional expression that defines the focal length of the movable group in the second lens group.
  • the zoom lens according to the first embodiment of the present application can satisfactorily correct coma and spherical aberration by satisfying conditional expression (1-1).
  • the corresponding value of the conditional expression (1-1) of the zoom lens according to the first embodiment of the present application exceeds the upper limit value, the moving amount of the movable group during vibration isolation increases. This makes it difficult to reduce the outer diameter and the overall length of the zoom lens according to the first embodiment of the present application.
  • the refractive power of the movable group is reduced. Therefore, if the refractive power of the lens other than the movable group in the second lens group is increased in order to ensure the refractive power of the second lens group, the spherical aberration and the coma aberration will be deteriorated.
  • the zoom lens according to the first embodiment of the present application satisfies the following conditional expression (1-2).
  • (1-2) 0.50 ⁇
  • f2vr focal length of the movable group
  • f2 focal length of the second lens group
  • Conditional expression (1-2) is a conditional expression that defines the focal length of the movable group in the second lens group.
  • the zoom lens according to the first embodiment of the present application can satisfactorily correct coma and spherical aberration by satisfying conditional expression (1-2).
  • conditional expression (1-2) of the zoom lens according to the first embodiment of the present application When the corresponding value of the conditional expression (1-2) of the zoom lens according to the first embodiment of the present application is below the lower limit value, the refractive power of the movable group increases and the refraction of lenses other than the movable group in the second lens group increases. The force is reduced, leading to deterioration of spherical aberration and coma.
  • the refractive power of the movable group becomes small and the lenses other than the movable group in the second lens group. Increases the refractive power of the lens, leading to deterioration of coma aberration.
  • the zoom lens according to the first embodiment of the present application satisfies the following conditional expression (1-3).
  • (1-3) 1.00 ⁇ m12 / fw ⁇ 2.00
  • m12 the distance on the optical axis from the most image side lens surface in the first lens group to the most object side lens surface in the second lens group at the time of zooming from the wide-angle end state to the telephoto end state
  • Change amount fw focal length of the zoom lens in the wide-angle end state
  • Conditional expression (1-3) is a conditional expression that defines the amount of change in the air gap between the first lens group and the second lens group during zooming from the wide-angle end state to the telephoto end state.
  • the zoom lens according to the first embodiment of the present application satisfies the conditional expression (1-3), thereby preventing an increase in the overall length of the zoom lens according to the first embodiment of the present application. Chromatic aberration and field curvature can be corrected satisfactorily.
  • the refractive power of each lens group increases or the amount of movement of each lens group at the time of zooming varies. Increase. For this reason, an increase in the eccentric sensitivity and an increase in the overall length of the zoom lens according to the first embodiment of the present application are caused. Further, the optical performance is deteriorated, specifically, the spherical aberration, the coma aberration, and the chromatic aberration are deteriorated. In particular, when the refractive power of the third lens group increases, the field curvature is deteriorated.
  • the corresponding value of the conditional expression (1-3) of the zoom lens according to the first embodiment of the present application exceeds the upper limit value, the total length of the zoom lens according to the first embodiment of the present application increases. This makes it difficult to shorten the overall length of the zoom lens according to the first embodiment of the present application and to reduce the outer diameter.
  • the distance between the lens group (the third lens group or the fourth lens group) disposed on the image side from the second lens group and the aperture stop increases, and thus the lens group (third lens group).
  • the sensitivity of the decentered field curvature of the fourth lens group) increases.
  • the first lens group, the second lens group, and the third lens move along the optical axis at the time of zooming from the wide-angle end state to the telephoto end state.
  • the front lens group has at least two lenses and has at least one aspherical surface.
  • Chromatic aberration can be favorably corrected by combining at least two lenses, particularly a positive lens and a negative lens.
  • spherical aberration and coma can be favorably corrected by having at least two lenses and having at least one aspherical surface.
  • the front lens group can be configured to have a minimum number of lenses by configuring the front lens group with two lenses.
  • the optical device of the present application is characterized by having the zoom lens according to the first embodiment having the above-described configuration. As a result, it is possible to realize an optical device having high optical performance by correcting chromatic aberration well both in the case of anti-vibration and in the case of non-vibration.
  • the zoom lens manufacturing method has, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a negative refractive power.
  • a side lens group, and the front lens group and the rear lens group each have at least one negative lens, and at the time of zooming, an interval between the first lens group and the second lens group, The distance between the second lens group and the third lens group and the distance between the third lens group and the fourth lens group are changed, and at least some of the lenses in the second lens group are movable.
  • formation in a direction perpendicular to the optical axis It is characterized in that so as to move to contain.
  • the zoom lens according to the second embodiment of the present application includes, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens having a negative refractive power.
  • the distance between the lens group and the third lens group, and the distance between the third lens group and the fourth lens group are changed, and the second lens group, in order from the object side, includes a front lens group, an aperture stop, A rear lens group, the front lens group and the rear lens group each have at least one negative lens, and at least a part of the lenses in the rear lens group is orthogonal to the optical axis. It moves so that the component of this may be included.
  • the front lens group refers to a lens group including optical elements arranged on the object side of the aperture stop in the second lens group.
  • the rear lens group refers to a lens group including optical elements arranged on the image side from the aperture stop in the second lens group.
  • the zoom lens according to the second embodiment of the present application moves so that at least a part of the lenses in the rear lens group includes a component in a direction orthogonal to the optical axis as a vibration-proof lens group. Accordingly, it is possible to correct image blur due to camera shake, vibration, or the like, that is, to perform image stabilization.
  • the second lens group includes, in order from the object side, the front lens group, the aperture stop, and the rear lens group, and the front lens group and the rear lens group.
  • the side lens groups each have at least one negative lens.
  • the front lens group has a positive refractive power.
  • the second lens group can have a positive refractive power.
  • the rear lens group has a positive refractive power. With this configuration, the second lens group can have a positive refractive power.
  • the second lens group includes, in order from the object side, a front lens group having a positive refractive power, an aperture stop, and a rear lens having a positive refractive power. It is desirable to have a group. With this configuration, it is easy to maintain the symmetry by sharing the refractive power back and forth within the second lens group with the aperture stop as the center, and it is possible to make a good correction by balancing the correction of spherical aberration and coma.
  • the zoom lens according to the second embodiment of the present application preferably includes at least one positive lens and one negative lens in the front lens group and the rear lens group in the second lens group.
  • the degree of freedom of chromatic aberration correction can be secured as compared with a single lens, and therefore the refractive index and Abbe number of each lens constituting the front lens group and the rear lens group can be set appropriately.
  • the rear lens group since the rear lens group has at least one positive lens and one negative lens, the correction of axial chromatic aberration and lateral chromatic aberration at the time of non-vibration is prevented while increasing the refractive power of the anti-vibration lens group.
  • the front lens group and the rear lens group include one positive lens and one negative lens. Further, it is desirable that each of the front lens group and the rear lens group is composed of one cemented lens. Further, the second lens group is arranged in order from the object side, positive lens, negative lens, aperture stop, negative lens, positive lens, or in order from the object side, negative lens, positive lens, aperture stop, positive lens, It is desirable to arrange a negative lens from the viewpoint of symmetry.
  • the zoom lens according to the second embodiment of the present application satisfies the following conditional expression (2-1).
  • (2-1) 1.00 ⁇
  • f2i focal length of the rear lens group
  • fw focal length of the zoom lens in the wide-angle end state
  • Conditional expression (2-1) is a conditional expression that defines the focal length of the rear lens group in the second lens group.
  • the zoom lens according to the second embodiment of the present application can satisfactorily correct coma and spherical aberration by satisfying conditional expression (2-1).
  • conditional expression (2-1) of the zoom lens according to the second embodiment of the present application is less than the lower limit value, the decentering sensitivity of the rear lens group increases, that is, due to manufacturing errors or the like, When the eccentricity occurs, various aberrations are likely to occur. As a result, coma is deteriorated.
  • the image stabilization of the image stabilization lens group which is at least a part of the lenses in the rear lens group.
  • the amount of movement at the time increases. This makes it difficult to reduce the outer diameter and the overall length of the zoom lens according to the second embodiment of the present application.
  • the refractive power of the rear lens group becomes small. Therefore, if the refractive power of the front lens group is increased in order to secure the refractive power of the second lens group, the spherical aberration and the coma aberration will be deteriorated.
  • the zoom lens according to the second embodiment of the present application satisfies the following conditional expression (2-2).
  • (2-2) 0.50 ⁇
  • f2i focal length of the rear lens group
  • f2 focal length of the second lens group
  • Conditional expression (2-2) is a conditional expression that defines the focal length of the rear lens group in the second lens group.
  • the zoom lens according to the second embodiment of the present application can satisfactorily correct coma and spherical aberration by satisfying conditional expression (2-2).
  • conditional expression (2-2) of the zoom lens according to the second embodiment of the present application When the corresponding value of the conditional expression (2-2) of the zoom lens according to the second embodiment of the present application is less than the lower limit value, the refractive power of the rear lens unit is increased and the refractive power of the front lens unit is decreased. Aberration and coma will be worsened.
  • conditional expression (2-2) of the zoom lens according to the second embodiment of the present application exceeds the upper limit value, the refractive power of the rear lens group decreases and the refractive power of the front lens group increases. As a result, coma aberration is worsened.
  • the zoom lens according to the second embodiment of the present application satisfies the following conditional expression (2-3).
  • (2-3) 1.00 ⁇ m12 / fw ⁇ 2.00
  • m12 Amount of change fw from the wide-angle end state to the telephoto end state of the distance on the optical axis from the most image side lens surface in the first lens group to the most object side lens surface in the second lens group: The focal length of the zoom lens in the wide-angle end state
  • Conditional expression (2-3) is a conditional expression that regulates the amount of change in the air gap between the first lens group and the second lens group during zooming from the wide-angle end state to the telephoto end state.
  • the zoom lens according to the second embodiment of the present application satisfies the conditional expression (2-3), thereby preventing an increase in the total length of the zoom lens according to the second embodiment of the present application, while preventing spherical aberration, coma aberration, Chromatic aberration and field curvature can be corrected satisfactorily.
  • the refractive power of each lens group increases or the amount of movement of each lens group at the time of zooming varies. Increase. For this reason, an increase in the eccentric sensitivity and an increase in the overall length of the zoom lens according to the second embodiment of the present application are caused. Further, the optical performance is deteriorated, specifically, the spherical aberration, the coma aberration, and the chromatic aberration are deteriorated. In particular, when the refractive power of the third lens group increases, the field curvature is deteriorated.
  • the corresponding value of the conditional expression (2-3) of the zoom lens according to the second embodiment of the present application exceeds the upper limit value, the total length of the zoom lens according to the second embodiment of the present application increases. For this reason, it becomes difficult to shorten the overall length of the zoom lens according to the second embodiment of the present application and to reduce the outer diameter.
  • the distance between the lens group (the third lens group or the fourth lens group) disposed on the image side from the second lens group and the aperture stop increases, and thus the lens group (third lens group).
  • the sensitivity of the decentered field curvature of the fourth lens group) increases.
  • the first lens group, the second lens group, and the third lens move along the optical axis when zooming from the wide-angle end state to the telephoto end state.
  • the front lens group has at least two lenses and has at least one aspherical surface.
  • Chromatic aberration can be favorably corrected by combining at least two lenses, particularly a positive lens and a negative lens.
  • spherical aberration and coma can be favorably corrected by having at least two lenses and having at least one aspherical surface.
  • the front lens group can be configured to have a minimum number of lenses by configuring the front lens group with two lenses.
  • the optical apparatus of the present application is characterized by having the zoom lens according to the second embodiment having the above-described configuration. As a result, it is possible to realize an optical device having high optical performance by correcting chromatic aberration well both in the case of anti-vibration and in the case of non-vibration.
  • the zoom lens manufacturing method has, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a negative refractive power.
  • a front lens group, and the front lens group and the rear lens group each have at least one negative lens, and at the time of zooming from the wide-angle end state to the telephoto end state,
  • the rear lens group is configured such that an interval between the second lens group, an interval between the second lens group and the third lens group, and an interval between the third lens group and the fourth lens group are changed.
  • At least some of the lenses in the optical axis It is characterized in that so as to move to contain the direction orthogonal component.
  • the zoom lens according to the third embodiment of the present application includes, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens having a negative refractive power.
  • a fourth lens group having a positive refractive power and the third lens group moves along the optical axis during zooming from the wide-angle end state to the telephoto end state, and the first lens group And the distance between the second lens group, the distance between the second lens group and the third lens group, and the distance between the third lens group and the fourth lens group change, and the following conditional expression (3 -1) is satisfied.
  • (3-1) 0.50 ⁇ m3 / fw ⁇ 0.80
  • m3 amount of movement of the third lens group during zooming from the wide-angle end state to the telephoto end state
  • fw focal length of the zoom lens in the wide-angle end state
  • Conditional expression (3-1) is a conditional expression that regulates the amount of movement of the third lens unit during zooming from the wide-angle end state to the telephoto end state.
  • the zoom lens according to the third embodiment of the present application satisfies the conditional expression (3-1), thereby reducing the size of the zoom lens according to the third embodiment of the present application, and reducing spherical aberration, chromatic aberration, coma aberration, and image. Surface curvature can be corrected satisfactorily.
  • the amount of movement at the time of zooming which has conventionally been imposed on the first lens group and the second lens group, is arranged closer to the image side than the second lens group.
  • the three lens groups can also be burdened, and the total length of the lens can be shortened by shortening the constituent members (cam barrel, etc.) used for moving the optical elements in the lens barrel.
  • conditional expression (3-1) of the zoom lens according to the third embodiment of the present application is less than the lower limit value, the burden of zooming of the lens units other than the third lens unit increases. For this reason, the amount of movement of the lens units other than the third lens unit at the time of zooming increases and the refractive power of each lens unit increases. As a result, the overall length of the zoom lens according to the third embodiment of the present application is increased. Further, the optical performance is deteriorated, specifically, the spherical aberration, the chromatic aberration and the coma aberration are deteriorated, and the chromatic aberration is changed during focusing.
  • the corresponding value of the conditional expression (3-1) of the zoom lens according to the third embodiment of the present application exceeds the upper limit value, the total length of the zoom lens according to the third embodiment of the present application is increased.
  • the optical performance is deteriorated, particularly, the curvature of field is deteriorated.
  • the fourth lens group includes a meniscus lens having a convex surface directed toward the image side.
  • the fourth lens group may further include a lens component on the object side or the image side of the meniscus lens.
  • the meniscus lens may be bonded to another lens to form a cemented lens.
  • the zoom lens according to the third embodiment of the present application satisfies the following conditional expression (3-2). (3-2) -5.00 ⁇ (r42 + r41) / (r42-r41) ⁇ -1.30
  • r41 radius of curvature of the object side lens surface of the meniscus lens in the fourth lens group
  • r42 radius of curvature of the image side lens surface of the meniscus lens in the fourth lens group
  • Conditional expression (3-2) is a conditional expression that defines the shape factor of the meniscus lens in the fourth lens group.
  • conditional expression (3-2) of the zoom lens according to the third embodiment of the present application is below the lower limit value, the radius of curvature of the object side lens surface of the meniscus lens in the fourth lens group and the lens on the image side The curvature radii of the surfaces are too small. This leads to deterioration of spherical aberration and coma aberration.
  • conditional expression (3-2) of the zoom lens according to the third embodiment of the present application exceeds the upper limit value, the curvature of field cannot be corrected sufficiently.
  • the distance between the first lens group and the second lens group is reduced during zooming from the wide-angle end state to the telephoto end state, and the second lens group It is preferable that the distance between the third lens group and the third lens group changes, and the distance between the third lens group and the fourth lens group increases. With this configuration, it is possible to shorten the overall lens length.
  • the third lens unit moves toward the object side along the optical axis at the time of zooming from the wide-angle end state to the telephoto end state. It is desirable that the third lens group moves toward the image side along the optical axis when focusing on the object. In the zoom lens according to the third embodiment of the present application, the third lens group moves toward the object side along the optical axis during zooming, and the third lens group moves along the optical axis at the image side during focusing. It is preferable that the following conditional expression (3-3) is satisfied.
  • fst amount of movement of the third lens group when focusing from an object at infinity to a close object in the telephoto end state
  • m3 amount of movement of the third lens group during zooming from the wide-angle end state to the telephoto end state
  • the third lens unit moves toward the object side along the optical axis at the time of zooming from the wide-angle end state to the telephoto end state as described above.
  • the third lens group moves toward the image side along the optical axis, so that the third lens group moves toward the object side during zooming from the wide-angle end state to the telephoto end state.
  • the third lens group can move to the image side in the telephoto end state by the stroke (including the change in the distance between the third lens group and the fourth lens group).
  • Conditional expression (3-3) shows the relationship between the amount of movement of the third lens unit when focusing from an object at infinity to a close object in the telephoto end state and the amount of movement of the third lens unit during zooming. It is a conditional expression to prescribe.
  • Conditional expression (3-3) indicates that the third lens unit uses the distance generated by moving toward the object side during zooming to move toward the image side during focusing. .
  • the zoom lens according to the third embodiment of the present application can efficiently arrange the zooming stroke and the focusing stroke of the third lens group by satisfying conditional expression (3-3). The overall length can be shortened.
  • conditional expression (3-3) of the zoom lens according to the third embodiment of the present application When the corresponding value of the conditional expression (3-3) of the zoom lens according to the third embodiment of the present application is below the lower limit value, the amount of movement of the third lens unit at the time of zooming increases, leading to an increase in the total length and the optical length. Deterioration of performance, especially deterioration of curvature of field will be caused.
  • the third lens group satisfies the following conditional expression (3-4).
  • (3-4) 1.50 ⁇ ( ⁇ f3) / fw ⁇ 4.00
  • f3 focal length of the third lens group
  • fw focal length of the zoom lens in the wide-angle end state
  • Conditional expression (3-4) is a conditional expression that defines the refractive power of the third lens group.
  • the zoom lens according to the third embodiment of the present application satisfies the conditional expression (3-4), thereby reducing the size of the zoom lens according to the third embodiment of the present application, while reducing spherical aberration, chromatic aberration, coma aberration, and image. Surface curvature can be corrected satisfactorily.
  • conditional expression (3-4) of the zoom lens according to the third embodiment of the present application is lower than the lower limit value, the refractive power of the third lens group becomes too large, leading to deterioration of coma aberration.
  • the corresponding value of the conditional expression (3-4) of the zoom lens according to the third embodiment of the present application exceeds the upper limit value, the refractive power of the third lens group becomes too small, and lenses other than the third lens group The burden of zooming on the group increases. For this reason, an increase in the amount of movement of the second lens group at the time of zooming and an increase in the refractive power of each lens group are caused. As a result, the overall length of the zoom lens according to the third embodiment of the present application is increased. Further, the optical performance is deteriorated, specifically, the spherical aberration, the chromatic aberration and the coma aberration are deteriorated, and the chromatic aberration is changed during focusing.
  • the eccentric sensitivity increases.
  • the fourth lens group is composed of a positive meniscus lens having a convex surface facing the image side.
  • the first lens group and the second lens group move along the optical axis at the time of zooming from the wide-angle end state to the telephoto end state. It is desirable that the position of the lens group is fixed. With this configuration, it is possible to suppress the occurrence of aberration due to the decentration error of the fourth lens group having high decentering sensitivity.
  • the fourth lens group has at least one aspheric surface. With this configuration, the flatness of the image surface can be ensured better.
  • the optical apparatus of the present application is characterized by having the zoom lens according to the third embodiment having the above-described configuration. Thereby, it is possible to realize a small optical device having high optical performance.
  • the zoom lens manufacturing method has, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a negative refractive power.
  • a zoom lens manufacturing method having a third lens group and a fourth lens group having a positive refractive power, wherein the third lens group is placed on the optical axis at the time of zooming from the wide-angle end state to the telephoto end state.
  • the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, and the distance between the third lens group and the fourth lens group. Is changed so that the third lens group satisfies the following conditional expression (3-1).
  • a zoom lens having a short overall length and a small size and high optical performance can be manufactured.
  • m3 amount of movement of the third lens group during zooming from the wide-angle end state to the telephoto end state
  • fw focal length of the zoom lens in the wide-angle end state
  • the zoom lens according to the fourth embodiment of the present application includes, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens having a negative refractive power. And a fourth lens group having a positive refractive power.
  • the second lens group in order from the object side, a first partial group having a positive refractive power and a second lens group having a negative refractive power.
  • the zoom lens has a partial group, an aperture stop, and a third partial group.
  • the first lens group, the second lens group, and the third lens group move along the optical axis
  • the fourth lens group moves.
  • the position of the lens group is fixed, and at the time of focusing, at least a part of the third lens group moves along the optical axis, and the first partial group or the second partial group in the second lens group is movable.
  • fw focal length of the zoom lens in the wide-angle end state
  • fvr focal length of the movable group
  • the zoom lens according to the fourth embodiment of the present application has, in order from the object side, the first lens group having negative refractive power, the second lens group having positive refractive power, and the negative refractive power.
  • the second lens group in order from the object side has a first partial group having a positive refractive power and a negative refractive power.
  • a second partial group, an aperture stop, and a third partial group can achieve good optical performance while having a high zoom ratio and a long focal length.
  • the zoom lens according to the fourth embodiment of the present application moves so that the first partial group or the second partial group in the second lens group includes a component in a direction orthogonal to the optical axis as a movable group. . Accordingly, it is possible to correct image blur due to camera shake or the like, that is, to perform image stabilization.
  • Conditional expression (4-1) defines the refractive power of the movable group.
  • the zoom lens according to the fourth embodiment of the present application is less than the lower limit value, the moving amount of the movable group at the time of image stabilization becomes too large. For this reason, the zoom lens according to the fourth embodiment of the present application is undesirably enlarged. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (4-1) to 0.20.
  • conditional expression (4-1) of the zoom lens according to the fourth embodiment of the present application exceeds the upper limit value
  • the refractive power of the movable group becomes too large.
  • the eccentric coma, the lateral chromatic aberration, and the curvature of field are deteriorated at the time of image stabilization, which is not preferable.
  • the third partial group has a positive refractive power.
  • Conditional expression (4-2) defines the refractive power of the second lens group.
  • the zoom lens according to the fourth embodiment of the present application can achieve satisfactory aberration correction and size reduction by satisfying conditional expression (4-2).
  • conditional expression (4-2) of the zoom lens according to the fourth embodiment of the present application is less than the lower limit value, the refractive power of the second lens unit becomes too small, and the movement for performing desired zooming is performed. The amount increases, leading to an increase in size.
  • conditional expression (4-2) of the zoom lens according to the fourth embodiment of the present application exceeds the upper limit value, the refractive power of the second lens group becomes too large, which is advantageous for downsizing.
  • this increases the sensitivity due to the occurrence of spherical aberration and eccentricity.
  • it is more preferable to set the upper limit value of conditional expression (4-2) to 0.80.
  • Conditional expression (4-3) defines the ratio between the refractive power of the second lens group and the refractive power of the movable group.
  • the zoom lens according to the fourth embodiment of the present application is lower than the lower limit value, the moving amount of the movable group at the time of image stabilization becomes too large. For this reason, the zoom lens according to the fourth embodiment of the present application is undesirably enlarged. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (4-3) to 0.30.
  • conditional expression (4-3) of the zoom lens according to the fourth embodiment of the present application exceeds the upper limit value
  • the refractive power of the movable group becomes too large.
  • the eccentric coma, the lateral chromatic aberration, and the curvature of field are deteriorated at the time of image stabilization, which is not preferable.
  • the first lens group, the second lens group, the third lens group, and the fourth lens group each include at least one aspheric surface. desirable. With this configuration, spherical aberration and field curvature can be favorably corrected.
  • the optical device of the present application is characterized by including the zoom lens according to the fourth embodiment having the above-described configuration. As a result, it is possible to realize an optical device that is small and has good optical performance during vibration isolation.
  • the zoom lens manufacturing method has, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a negative refractive power.
  • a zoom lens manufacturing method having a third lens group and a fourth lens group having a positive refractive power, wherein the second lens group has a positive refractive power in order from the object side.
  • a second partial group having a negative refractive power, an aperture stop, and a third partial group and at the time of zooming, the position of the fourth lens group is fixed, and the first lens group, The second lens group and the third lens group are moved along the optical axis, and at the time of focusing, at least a part of the third lens group is moved along the optical axis, and the second lens group is moved.
  • the first partial group or the second partial group in the optical axis as a movable group Orthogonal to move in a direction including a component, the movable group is characterized in that so as to satisfy the following condition (4-1). Thereby, it is possible to manufacture a zoom lens that is small and has good optical performance during image stabilization. (4-1) 0.15 ⁇
  • fw focal length of the zoom lens in the wide-angle end state
  • fvr focal length of the movable group
  • the first to seventh examples are examples common to the first and second embodiments
  • the eighth and ninth examples are examples of the first embodiment.
  • (First embodiment) 1A and 1B are sectional views of a zoom lens according to a first example common to the first and second embodiments of the present application in a wide-angle end state and a telephoto end state, respectively.
  • the arrows in FIG. 1 and FIGS. 4, 7, 10, 13, 16, 19, 22, 25, 28, 30, 32, 34, 36, and 40 described later change from the wide-angle end state to the telephoto end state.
  • the movement locus of each lens group at the time of magnification is shown.
  • the zoom lens according to the present embodiment includes a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a negative refractive power, and a positive It is composed of a fourth lens group G4 having refractive power.
  • the first lens group G1 in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of.
  • the negative meniscus lens L12 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the second lens group G2 includes, in order from the object side, a front lens group G2F having a positive refractive power, an aperture stop S, and a rear lens group G2R having a positive refractive power.
  • the front lens group G2F includes, in order from the object side, a cemented lens of a biconvex positive lens L21 and a negative meniscus lens L22 having a concave surface facing the object side.
  • the positive lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
  • the rear lens group G2R includes, in order from the object side, a cemented lens of a negative meniscus lens L23 having a convex surface facing the object side and a biconvex positive lens L24.
  • the third lens group G3 includes a negative meniscus lens L31 having a convex surface directed toward the object side.
  • the negative meniscus lens L31 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the fourth lens group G4 includes a positive meniscus lens L41 having a convex surface directed toward the image side.
  • the positive meniscus lens L41 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens
  • the first lens group G1 moves along the optical axis so that the air gap between the group G2 and the third lens group G3 increases and the air gap between the third lens group G3 and the fourth lens group G4 increases.
  • the second lens group G2 and the third lens group G3 move toward the object side along the optical axis.
  • the position of the fourth lens group G4 is fixed at the time of zooming.
  • the front lens group G2F, the aperture stop S, and the rear lens group G2R of the second lens group G2 move together during zooming.
  • the third lens group G3 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
  • the zoom lens according to the present embodiment performs image stabilization by moving the rear lens group G2R in the second lens group G2 as a movable group so as to include a component in a direction orthogonal to the optical axis.
  • Table 1 below lists values of specifications of the zoom lens according to the present example.
  • f indicates the focal length
  • BF indicates the back focus, that is, the distance on the optical axis between the lens surface closest to the image side and the image surface I.
  • m is the order of the optical surfaces counted from the object side
  • r is the radius of curvature
  • d is the surface spacing (the space between the nth surface (n is an integer) and the (n + 1) th surface)
  • nd is d.
  • the refractive index for the line (wavelength 587.6 nm) and ⁇ d indicate the Abbe number for the d line (wavelength 587.6 nm), respectively.
  • OP represents the object plane
  • variable represents the variable surface spacing
  • S represents the aperture stop S
  • I represents the image plane.
  • the radius of curvature r ⁇ indicates a plane.
  • * is added to the surface number, and the value of the paraxial radius of curvature is indicated in the column of the radius of curvature r.
  • the description of the refractive index of air nd 1.000 is omitted.
  • [Aspherical data] shows an aspherical coefficient and a conic constant when the shape of the aspherical surface shown in [Surface data] is expressed by the following equation.
  • x (h 2 / r) / [1+ ⁇ 1- ⁇ (h / r) 2 ⁇ 1/2 ] + A4h 4 + A6h 6 + A8h 8 + A10h 10
  • h is the height in the direction perpendicular to the optical axis
  • x is the distance along the optical axis direction from the tangent plane of the apex of the aspheric surface at the height h to the aspheric surface
  • is the conic constant.
  • A4, A6, A8, and A10 are aspherical coefficients, and r is a paraxial radius of curvature which is the radius of curvature of the reference spherical surface.
  • E ⁇ n (n is an integer) indicates “ ⁇ 10 ⁇ n ”, for example “1.234E-05” indicates “1.234 ⁇ 10 ⁇ 5 ”.
  • the secondary aspherical coefficient A2 is 0 and is not shown.
  • FNO is the F number
  • 2 ⁇ is the angle of view (unit is “°”)
  • Y is the image height
  • TL is the total length of the zoom lens according to the present embodiment, that is, from the first surface to the image surface I.
  • a distance on the optical axis, dn indicates a variable distance between the nth surface and the (n + 1) th surface.
  • W represents the wide-angle end state
  • M represents the intermediate focal length state
  • T represents the telephoto end state.
  • D represents the distance from the object to the first surface.
  • [Lens Group Data] indicates the start surface ST and focal length f of each lens group.
  • Z is the amount of shift of the movable group, that is, the amount of movement in the direction perpendicular to the optical axis
  • is the rotation blur angle (tilt angle, unit is “°”) of the zoom lens according to the present embodiment.
  • K represents a vibration isolation coefficient.
  • [Conditional Expression Corresponding Value] indicates the corresponding value of each conditional expression of the zoom lens according to the present embodiment.
  • the focal length f, the radius of curvature r, and other length units listed in Table 1 are generally “mm”.
  • the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.
  • symbol of Table 1 described above shall be similarly used also in the table
  • FIGS. 3A and 3B are coma aberration diagrams when anti-vibration is performed for 0.624 ° rotational blur when an object at infinity is in focus at the wide-angle end state of the zoom lens according to Example 1 of the present application.
  • FIG. 6B is a coma aberration diagram when anti-vibration is performed for a rotational shake of 0.500 ° when an object at infinity is in focus in the telephoto end state.
  • FNO represents the F number
  • Y represents the image height
  • d indicates the aberration at the d-line (wavelength 587.6 nm)
  • g indicates the aberration at the g-line (wavelength 435.8 nm)
  • those without d and g indicate the aberration at the d-line.
  • the solid line indicates the sagittal image plane
  • the broken line indicates the meridional image plane.
  • the coma aberration diagram shows coma aberration at each image height Y. Note that the same reference numerals as in this embodiment are used in the aberration diagrams of each embodiment described later.
  • the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state, and also has high optical performance even during image stabilization. I understand that.
  • (Second embodiment) 4A and 4B are sectional views of the zoom lens according to a second example common to the first and second embodiments of the present application in the wide-angle end state and the telephoto end state, respectively.
  • the zoom lens according to the present embodiment includes a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a negative refractive power, and a positive It is composed of a fourth lens group G4 having refractive power.
  • the first lens group G1 in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of.
  • the negative meniscus lens L12 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the second lens group G2 includes, in order from the object side, a front lens group G2F having a positive refractive power, an aperture stop S, and a rear lens group G2R having a positive refractive power.
  • the front lens group G2F includes, in order from the object side, a cemented lens of a biconvex positive lens L21 and a negative meniscus lens L22 having a concave surface facing the object side.
  • the positive lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
  • the rear lens group G2R includes, in order from the object side, a cemented lens of a biconvex positive lens L23 and a negative meniscus lens L24 having a concave surface facing the object side.
  • the third lens group G3 includes a negative meniscus lens L31 having a convex surface directed toward the object side.
  • the negative meniscus lens L31 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the fourth lens group G4 includes a positive meniscus lens L41 having a convex surface directed toward the image side.
  • the positive meniscus lens L41 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens
  • the first lens group G1 moves along the optical axis so that the air gap between the group G2 and the third lens group G3 increases and the air gap between the third lens group G3 and the fourth lens group G4 increases.
  • the second lens group G2 and the third lens group G3 move toward the object side along the optical axis.
  • the position of the fourth lens group G4 is fixed at the time of zooming.
  • the front lens group G2F, the aperture stop S, and the rear lens group G2R of the second lens group G2 move together during zooming.
  • the third lens group G3 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
  • the zoom lens according to the present embodiment performs image stabilization by moving the rear lens group G2R in the second lens group G2 as a movable group so as to include a component in a direction orthogonal to the optical axis.
  • Table 2 below lists values of specifications of the zoom lens according to the present example.
  • FIGS. 5A and 5B are graphs showing various aberrations at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to Example 2 of the present application.
  • FIG. 6A and FIG. 6B are coma aberration diagrams when anti-vibration is performed for 0.624 ° rotational blur when an object at infinity is in focus at the wide-angle end state of the zoom lens according to Example 2 of the present application.
  • FIG. 6B is a coma aberration diagram when anti-vibration is performed for a rotational shake of 0.500 ° when an object at infinity is in focus in the telephoto end state.
  • the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state, and also has high optical performance even during image stabilization. I understand that.
  • FIGS. 7A and 7B are cross-sectional views of the zoom lens according to a third example common to the first and second embodiments of the present application in the wide-angle end state and the telephoto end state, respectively.
  • the zoom lens according to the present embodiment includes a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a negative refractive power, and a positive It is composed of a fourth lens group G4 having refractive power.
  • the first lens group G1 in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of.
  • the negative meniscus lens L12 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the second lens group G2 includes, in order from the object side, a front lens group G2F having a positive refractive power, an aperture stop S, and a rear lens group G2R having a positive refractive power.
  • the front lens group G2F is composed of, in order from the object side, a biconvex positive lens L21 and a negative meniscus lens L22 with a concave surface facing the object side.
  • the positive lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
  • the rear lens group G2R includes, in order from the object side, a cemented lens of a negative meniscus lens L23 having a convex surface facing the object side and a biconvex positive lens L24.
  • the third lens group G3 includes a negative meniscus lens L31 having a convex surface directed toward the object side.
  • the negative meniscus lens L31 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the fourth lens group G4 includes a positive meniscus lens L41 having a convex surface directed toward the image side.
  • the positive meniscus lens L41 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens
  • the first lens group G1 moves along the optical axis so that the air gap between the group G2 and the third lens group G3 increases and the air gap between the third lens group G3 and the fourth lens group G4 increases.
  • the second lens group G2 and the third lens group G3 move toward the object side along the optical axis.
  • the position of the fourth lens group G4 is fixed at the time of zooming.
  • the front lens group G2F, the aperture stop S, and the rear lens group G2R of the second lens group G2 move together during zooming.
  • the third lens group G3 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
  • the zoom lens according to the present embodiment performs image stabilization by moving the rear lens group G2R in the second lens group G2 as a movable group so as to include a component in a direction orthogonal to the optical axis.
  • Table 3 below provides values of specifications of the zoom lens according to the present example.
  • FIGS. 9A and 9B are coma aberration diagrams obtained when image stabilization is performed for a rotational shake of 0.624 ° during focusing on an object at infinity in the wide-angle end state of the zoom lens according to the third example of the present application.
  • FIG. 6B is a coma aberration diagram when anti-vibration is performed for a rotational shake of 0.500 ° when an object at infinity is in focus in the telephoto end state.
  • the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state, and also has high optical performance even during image stabilization. I understand that.
  • FIGS. 10A and 10B are cross-sectional views of the zoom lens according to a fourth example common to the first and second embodiments of the present application in the wide-angle end state and the telephoto end state, respectively.
  • the zoom lens according to the present embodiment includes a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a negative refractive power, and a positive It is composed of a fourth lens group G4 having refractive power.
  • the first lens group G1 in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of.
  • the negative meniscus lens L12 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the second lens group G2 includes, in order from the object side, a front lens group G2F having a positive refractive power, an aperture stop S, and a rear lens group G2R having a positive refractive power.
  • the front lens group G2F is composed of a cemented lens of a negative meniscus lens L21 having a convex surface directed toward the object side and a biconvex positive lens L22 in order from the object side.
  • the negative meniscus lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
  • the rear lens group G2R includes, in order from the object side, a cemented lens of a negative meniscus lens L23 having a convex surface facing the object side and a biconvex positive lens L24.
  • the third lens group G3 includes a negative meniscus lens L31 having a convex surface directed toward the object side.
  • the negative meniscus lens L31 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the fourth lens group G4 includes a positive meniscus lens L41 having a convex surface directed toward the image side.
  • the positive meniscus lens L41 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens
  • the first lens group G1 moves along the optical axis so that the air gap between the group G2 and the third lens group G3 increases and the air gap between the third lens group G3 and the fourth lens group G4 increases.
  • the second lens group G2 and the third lens group G3 move toward the object side along the optical axis.
  • the position of the fourth lens group G4 is fixed at the time of zooming.
  • the front lens group G2F, the aperture stop S, and the rear lens group G2R of the second lens group G2 move together during zooming.
  • the third lens group G3 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
  • the zoom lens according to the present embodiment performs image stabilization by moving the rear lens group G2R in the second lens group G2 as a movable group so as to include a component in a direction orthogonal to the optical axis.
  • Table 4 below lists values of specifications of the zoom lens according to the present example.
  • FIGS. 11A and 11B are graphs showing various aberrations during focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to Example 4 of the present application, respectively.
  • FIGS. 12A and 12B are coma aberration diagrams when anti-vibration is performed for 0.624 ° rotational blur when an object at infinity is in focus at the wide-angle end state of the zoom lens according to Example 4 of the present application.
  • FIG. 6B is a coma aberration diagram when anti-vibration is performed for a rotational shake of 0.500 ° when an object at infinity is in focus in the telephoto end state.
  • the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state, and also has high optical performance even during image stabilization. I understand that.
  • the zoom lens according to the present embodiment includes a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a negative refractive power, and a positive It is composed of a fourth lens group G4 having refractive power.
  • the first lens group G1 in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of.
  • the negative meniscus lens L12 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the second lens group G2 includes, in order from the object side, a front lens group G2F having a positive refractive power, an aperture stop S, and a rear lens group G2R having a positive refractive power.
  • the front lens group G2F is composed of a cemented lens of a negative meniscus lens L21 having a convex surface directed toward the object side and a biconvex positive lens L22 in order from the object side.
  • the negative meniscus lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
  • the rear lens group G2R includes, in order from the object side, a cemented lens of a biconvex positive lens L23 and a negative meniscus lens L24 having a concave surface facing the object side.
  • the third lens group G3 includes a negative meniscus lens L31 having a convex surface directed toward the object side.
  • the negative meniscus lens L31 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the fourth lens group G4 includes a positive meniscus lens L41 having a convex surface directed toward the image side.
  • the positive meniscus lens L41 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens
  • the first lens group G1 moves along the optical axis so that the air gap between the group G2 and the third lens group G3 increases and the air gap between the third lens group G3 and the fourth lens group G4 increases.
  • the second lens group G2 and the third lens group G3 move toward the object side along the optical axis.
  • the position of the fourth lens group G4 is fixed at the time of zooming.
  • the front lens group G2F, the aperture stop S, and the rear lens group G2R of the second lens group G2 move together during zooming.
  • the third lens group G3 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
  • the zoom lens according to the present embodiment performs image stabilization by moving the rear lens group G2R in the second lens group G2 as a movable group so as to include a component in a direction orthogonal to the optical axis.
  • Table 5 below provides values of specifications of the zoom lens according to the present example.
  • FIGS. 14A and 14B are graphs showing various aberrations when the zoom lens according to Example 5 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
  • FIGS. 15A and 15B are coma aberration diagrams obtained when anti-vibration is performed for 0.624 ° rotational blur when an object at infinity is in focus at the wide-angle end state of the zoom lens according to Example 5 of the present application.
  • FIG. 6B is a coma aberration diagram when anti-vibration is performed against rotational shake of 0.500 ° when an object at infinity is in focus in the telephoto end state.
  • the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state, and also has high optical performance even during image stabilization. I understand that.
  • FIGSixth embodiment 16A and 16B are cross-sectional views of the zoom lens according to a sixth example common to the first and second embodiments of the present application in the wide-angle end state and the telephoto end state, respectively.
  • the zoom lens according to the present embodiment includes a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a negative refractive power, and a positive It is composed of a fourth lens group G4 having refractive power.
  • the first lens group G1 in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of.
  • the negative meniscus lens L12 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the second lens group G2 includes, in order from the object side, a front lens group G2F having a positive refractive power, an aperture stop S, and a rear lens group G2R having a positive refractive power.
  • the front lens group G2F includes, in order from the object side, a cemented lens of a biconvex positive lens L21 and a negative meniscus lens L22 having a concave surface facing the object side.
  • the positive lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
  • the rear lens group G2R includes, in order from the object side, a cemented lens of a negative meniscus lens L23 having a convex surface facing the object side and a biconvex positive lens L24, and a biconvex positive lens L25.
  • the third lens group G3 includes a negative meniscus lens L31 having a convex surface directed toward the object side.
  • the negative meniscus lens L31 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the fourth lens group G4 includes a positive meniscus lens L41 having a convex surface directed toward the image side.
  • the positive meniscus lens L41 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens
  • the first lens group G1 moves along the optical axis so that the air gap between the group G2 and the third lens group G3 increases and the air gap between the third lens group G3 and the fourth lens group G4 increases.
  • the second lens group G2 and the third lens group G3 move toward the object side along the optical axis.
  • the position of the fourth lens group G4 is fixed at the time of zooming.
  • the front lens group G2F, the aperture stop S, and the rear lens group G2R of the second lens group G2 move together during zooming.
  • the third lens group G3 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
  • the cemented lens of the negative meniscus lens L23 and the positive lens L24 in the rear lens group G2R is moved as a movable group so as to include a component in a direction orthogonal to the optical axis.
  • Table 6 below provides values of specifications of the zoom lens according to the present example.
  • FIGS. 17A and 17B are graphs showing various aberrations when the zoom lens according to Example 6 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
  • 18A and 18B are coma aberration diagrams obtained when image stabilization is performed for 0.624 ° rotational blur when an infinite object is focused in the wide-angle end state of the zoom lens according to Example 6 of the present application.
  • FIG. 6B is a coma aberration diagram when anti-vibration is performed against rotational shake of 0.500 ° when an object at infinity is in focus in the telephoto end state.
  • the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state, and also has high optical performance even during image stabilization. I understand that.
  • FIGS. 19A and 19B are cross-sectional views of the zoom lens according to a seventh example common to the first and second embodiments of the present application in the wide-angle end state and the telephoto end state, respectively.
  • the zoom lens according to the present embodiment includes a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a negative refractive power, and a positive It is composed of a fourth lens group G4 having refractive power.
  • the first lens group G1 in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of.
  • the negative meniscus lens L12 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the second lens group G2 includes, in order from the object side, a front lens group G2F having a positive refractive power, an aperture stop S, and a rear lens group G2R having a positive refractive power.
  • the front lens group G2F includes, in order from the object side, a cemented lens of a biconvex positive lens L21 and a negative meniscus lens L22 having a concave surface facing the object side.
  • the positive lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
  • the rear lens group G2R includes, in order from the object side, a cemented lens of a negative meniscus lens L23 having a convex surface facing the object side and a biconvex positive lens L24.
  • the third lens group G3 includes a negative meniscus lens L31 having a convex surface directed toward the object side.
  • the fourth lens group G4 is composed of a positive meniscus lens L41 having a convex surface directed toward the image side and a biconvex positive lens L42 in order from the object side.
  • the positive meniscus lens L41 and the positive lens L42 are glass mold aspherical lenses in which the object-side and image-side lens surfaces are aspherical, respectively.
  • the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens
  • the first lens group G1 moves along the optical axis so that the air gap between the group G2 and the third lens group G3 increases and the air gap between the third lens group G3 and the fourth lens group G4 increases.
  • the second lens group G2 and the third lens group G3 move toward the object side along the optical axis.
  • the position of the fourth lens group G4 is fixed at the time of zooming.
  • the front lens group G2F, the aperture stop S, and the rear lens group G2R of the second lens group G2 move together during zooming.
  • the third lens group G3 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
  • the zoom lens according to the present embodiment performs image stabilization by moving the rear lens group G2R in the second lens group G2 as a movable group so as to include a component in a direction orthogonal to the optical axis.
  • Table 7 lists values of specifications of the zoom lens according to the present example.
  • FIGS. 21A and 21B are graphs showing various aberrations when the zoom lens according to Example 7 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
  • FIGS. 21A and 21B are coma aberration diagrams when anti-vibration is performed for 0.624 ° rotational blur when an object at infinity is in focus in the wide-angle end state of the zoom lens according to Example 7 of the present application.
  • FIG. 6B is a coma aberration diagram when anti-vibration is performed for a rotational shake of 0.500 ° when an object at infinity is in focus in the telephoto end state.
  • the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state, and also has high optical performance even during image stabilization. I understand that.
  • the zoom lens according to Example 8 is sectional views of the zoom lens according to Example 8 of the first embodiment of the present application in the wide-angle end state and the telephoto end state, respectively.
  • the zoom lens according to the present embodiment includes a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a negative refractive power, and a positive It is composed of a fourth lens group G4 having refractive power.
  • the first lens group G1 in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of.
  • the negative meniscus lenses L11 and L12 are glass mold aspherical lenses in which the object-side and image-side lens surfaces are aspherical.
  • the second lens group G2 includes, in order from the object side, a front lens group G2F having a positive refractive power, an aperture stop S, and a rear lens group G2R having a positive refractive power.
  • the front lens group G2F includes, in order from the object side, a cemented lens of a biconvex positive lens L21 and a negative meniscus lens L22 having a concave surface facing the object side.
  • the positive lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
  • the rear lens group G2R includes, in order from the object side, a cemented lens of a negative meniscus lens L23 having a convex surface facing the object side and a biconvex positive lens L24.
  • the third lens group G3 includes, in order from the object side, a cemented lens of a biconcave negative lens L31 and a positive meniscus lens L32 having a convex surface directed toward the object side.
  • the positive meniscus lens L32 is a glass mold aspheric lens having an aspheric lens surface on the image side.
  • the fourth lens group G4 includes a positive meniscus lens L41 having a convex surface directed toward the image side.
  • the positive meniscus lens L41 is a glass mold aspheric lens having an aspheric lens surface on the image side.
  • the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens
  • the first lens group G1 moves along the optical axis so that the air gap between the group G2 and the third lens group G3 increases and the air gap between the third lens group G3 and the fourth lens group G4 increases.
  • the second lens group G2 and the third lens group G3 move toward the object side along the optical axis.
  • the position of the fourth lens group G4 is fixed at the time of zooming.
  • the front lens group G2F, the aperture stop S, and the rear lens group G2R of the second lens group G2 move together during zooming.
  • the third lens group G3 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
  • the zoom lens according to the present embodiment performs image stabilization by moving the front lens group G2F in the second lens group G2 as a movable group so as to include a component in a direction orthogonal to the optical axis.
  • Table 8 below provides values of specifications of the zoom lens according to the present example.
  • FIGS. 23A and 23B are graphs showing various aberrations when the zoom lens according to the eighth example of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
  • FIGS. 24A and 24B are coma aberration diagrams obtained when anti-vibration is performed for 0.624 ° rotational blur when an object at infinity is in focus at the wide-angle end state of the zoom lens according to Example 8 of the present application.
  • FIG. 6B is a coma aberration diagram when anti-vibration is performed for a rotational shake of 0.500 ° when an object at infinity is in focus in the telephoto end state.
  • the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state, and also has high optical performance even during image stabilization. I understand that.
  • (Ninth embodiment) 25A and 25B are cross-sectional views of the zoom lens according to Example 9 of the first embodiment of the present application in the wide-angle end state and the telephoto end state, respectively.
  • the zoom lens according to the present embodiment includes a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a negative refractive power, and a positive
  • the lens unit includes a fourth lens group G4 having a refractive power and a fifth lens group G5 having a positive refractive power.
  • the first lens group G1 in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of.
  • the negative meniscus lens L12 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the second lens group G2 includes, in order from the object side, a front lens group G2F having a positive refractive power, an aperture stop S, and a rear lens group G2R having a positive refractive power.
  • the front lens group G2F includes, in order from the object side, a cemented lens of a biconvex positive lens L21 and a negative meniscus lens L22 having a concave surface facing the object side.
  • the positive lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
  • the rear lens group G2R includes, in order from the object side, a cemented lens of a negative meniscus lens L23 having a convex surface facing the object side and a biconvex positive lens L24.
  • the third lens group G3 includes a negative meniscus lens L31 having a convex surface directed toward the object side.
  • the negative meniscus lens L31 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the fourth lens group G4 includes a positive meniscus lens L41 having a convex surface directed toward the image side.
  • the positive meniscus lens L41 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the fifth lens group G5 is composed of a biconvex positive lens L51.
  • the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens
  • the air gap between the group G2 and the third lens group G3 increases, the air gap between the third lens group G3 and the fourth lens group G4 increases, and the air gap between the fourth lens group G4 and the fifth lens group G5.
  • the first lens group G1 and the fourth lens group G4 move along the optical axis
  • the second lens group G2 and the third lens group G3 move toward the object side along the optical axis.
  • the position of the fifth lens group G5 is fixed at the time of zooming.
  • the front lens group G2F, the aperture stop S, and the rear lens group G2R of the second lens group G2 move together during zooming.
  • the third lens group G3 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
  • the zoom lens according to the present embodiment performs image stabilization by moving the rear lens group G2R in the second lens group G2 as a movable group so as to include a component in a direction orthogonal to the optical axis.
  • Table 9 below provides values of specifications of the zoom lens according to the present example.
  • FIGS. 26A and 26B are graphs showing various aberrations when the zoom lens according to Example 9 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
  • FIGS. 27A and 27B are coma aberration diagrams obtained when image stabilization is performed for a rotational shake of 0.624 ° during focusing on an object at infinity in the wide-angle end state of the zoom lens according to Example 9 of the present application.
  • FIG. 6B is a coma aberration diagram when anti-vibration is performed for a rotational shake of 0.500 ° when an object at infinity is in focus in the telephoto end state.
  • the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state, and also has high optical performance even during image stabilization. I understand that.
  • the zoom lens having a short overall length, a small size and a light weight, which can correct chromatic aberration satisfactorily both in anti-vibration and non-anti-vibration and has high optical performance. it can.
  • (Tenth embodiment) 28A and 28B are cross-sectional views of the zoom lens according to the tenth example of the third embodiment of the present application in the wide-angle end state and the telephoto end state, respectively.
  • the zoom lens according to the present example includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a negative refractive power. G3 and a fourth lens group G4 having a positive refractive power.
  • the first lens group G1 in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of.
  • the negative meniscus lens L12 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the second lens group G2 includes, in order from the object side, a cemented lens of a biconvex positive lens L21 and a negative meniscus lens L22 having a concave surface facing the object side, an aperture stop S, and a negative lens having a convex surface facing the object side. It consists of a cemented lens of a meniscus lens L23 and a biconvex positive lens L24.
  • the positive lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
  • the third lens group G3 includes a negative meniscus lens L31 having a convex surface directed toward the object side.
  • the negative meniscus lens L31 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the fourth lens group G4 includes a positive meniscus lens L41 having a convex surface directed toward the image side.
  • the positive meniscus lens L41 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens
  • the first lens group G1 moves along the optical axis so that the air gap between the group G2 and the third lens group G3 increases and the air gap between the third lens group G3 and the fourth lens group G4 increases.
  • the second lens group G2 and the third lens group G3 move toward the object side along the optical axis.
  • the position of the fourth lens group G4 is fixed at the time of zooming.
  • the third lens group G3 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
  • Table 10 lists the values of the specifications of the zoom lens according to the present example.
  • FIGS. 29A and 29B are graphs showing various aberrations when the zoom lens according to Example 10 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
  • the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.
  • FIGS. 30A and 30B are cross-sectional views of the zoom lens according to Example 11 of the third embodiment of the present application in the wide-angle end state and the telephoto end state, respectively.
  • the zoom lens according to the present example includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a negative refractive power. G3 and a fourth lens group G4 having a positive refractive power.
  • the first lens group G1 in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of.
  • the negative meniscus lens L12 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the second lens group G2 includes, in order from the object side, a cemented lens of a biconvex positive lens L21 and a negative meniscus lens L22 having a concave surface facing the object side, an aperture stop S, and a negative lens having a convex surface facing the object side. It consists of a cemented lens of a meniscus lens L23 and a biconvex positive lens L24.
  • the positive lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
  • the third lens group G3 includes a negative meniscus lens L31 having a convex surface directed toward the object side.
  • the negative meniscus lens L31 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the fourth lens group G4 includes a positive meniscus lens L41 having a convex surface directed toward the image side.
  • the positive meniscus lens L41 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens
  • the first lens group G1 moves along the optical axis so that the air gap between the group G2 and the third lens group G3 increases and the air gap between the third lens group G3 and the fourth lens group G4 increases.
  • the second lens group G2 and the third lens group G3 move toward the object side along the optical axis.
  • the position of the fourth lens group G4 is fixed at the time of zooming.
  • the third lens group G3 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
  • Table 11 lists values of specifications of the zoom lens according to the present example.
  • FIGS. 31A and 31B are graphs showing various aberrations during focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to Example 11 of the present application, respectively.
  • the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.
  • FIG. 32A and 32B are cross-sectional views of the zoom lens according to Example 12 of the third embodiment of the present application in the wide-angle end state and the telephoto end state, respectively.
  • the zoom lens according to the present example includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a negative refractive power. G3 and a fourth lens group G4 having a positive refractive power.
  • the first lens group G1 in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of.
  • the negative meniscus lens L12 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the second lens group G2 includes, in order from the object side, a cemented lens of a biconvex positive lens L21 and a negative meniscus lens L22 having a concave surface facing the object side, an aperture stop S, and a negative lens having a convex surface facing the object side. It consists of a cemented lens of a meniscus lens L23 and a biconvex positive lens L24.
  • the positive lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
  • the third lens group G3 includes a negative meniscus lens L31 having a convex surface directed toward the object side.
  • the negative meniscus lens L31 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the fourth lens group G4 includes a positive meniscus lens L41 having a convex surface directed toward the image side.
  • the positive meniscus lens L41 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens
  • the first lens group G1 moves along the optical axis so that the air gap between the group G2 and the third lens group G3 increases and the air gap between the third lens group G3 and the fourth lens group G4 increases.
  • the second lens group G2 and the third lens group G3 move toward the object side along the optical axis.
  • the position of the fourth lens group G4 is fixed at the time of zooming.
  • the third lens group G3 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
  • Table 12 below provides values of specifications of the zoom lens according to the present example.
  • 33A and 33B are graphs showing various aberrations when the zoom lens according to Example 12 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
  • the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.
  • FIG. 34A and 34B are cross-sectional views of the zoom lens according to Example 13 of the third embodiment of the present application in the wide-angle end state and the telephoto end state, respectively.
  • the zoom lens according to the present example includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a negative refractive power. G3 and a fourth lens group G4 having a positive refractive power.
  • the first lens group G1 in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of.
  • the negative meniscus lens L12 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
  • the second lens group G2 includes, in order from the object side, a cemented lens of a biconvex positive lens L21 and a negative meniscus lens L22 having a concave surface facing the object side, an aperture stop S, and a negative lens having a convex surface facing the object side. It consists of a cemented lens of a meniscus lens L23 and a biconvex positive lens L24.
  • the positive lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
  • the third lens group G3 includes a negative meniscus lens L31 having a convex surface directed toward the object side.
  • the fourth lens group G4 is composed of a positive meniscus lens L41 having a convex surface directed toward the image side and a biconvex positive lens L42 in order from the object side.
  • the positive meniscus lens L41 and the positive lens L42 are glass mold aspherical lenses in which the object-side and image-side lens surfaces are aspherical, respectively.
  • the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens
  • the first lens group G1 moves along the optical axis so that the air gap between the group G2 and the third lens group G3 increases and the air gap between the third lens group G3 and the fourth lens group G4 increases.
  • the second lens group G2 and the third lens group G3 move toward the object side along the optical axis.
  • the position of the fourth lens group G4 is fixed at the time of zooming.
  • the third lens group G3 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
  • Table 13 below provides values of specifications of the zoom lens according to the present example.
  • FIGS. 35A and 35B are graphs showing various aberrations when the zoom lens according to Example 13 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
  • the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.
  • the tenth to thirteenth embodiments it is possible to realize a zoom lens having a short overall length, a small size and a light weight, which can be held by a small lens barrel, and having high optical performance.
  • (14th embodiment) 36A and 36B are cross-sectional views of the zoom lens according to Example 14 of the fourth embodiment of the present application in the wide-angle end state and the telephoto end state, respectively.
  • the zoom lens according to the present example includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a negative refractive power. G3 and a fourth lens group G4 having a positive refractive power.
  • the first lens group G1 in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of.
  • the negative meniscus lens L12 has an aspheric lens surface on the object side and the image side.
  • the second lens group G2 includes, in order from the object side, a first partial group G2a having a positive refractive power, a second partial group G2b having a negative refractive power, an aperture stop S, and a first partial group having a positive refractive power. 3 subgroups G2c.
  • the first partial group G2a is composed of a biconvex positive lens L21.
  • the second partial group G2b includes a negative meniscus lens L22 having a concave surface directed toward the object side.
  • the negative meniscus lens L22 has an aspheric lens surface on the object side.
  • the third partial group G2c is composed of a cemented lens of a negative meniscus lens L23 having a convex surface directed toward the object side and a biconvex positive lens L24 in order from the object side.
  • the third lens group G3 includes a negative meniscus lens L31 having a convex surface directed toward the object side.
  • the negative meniscus lens L31 has aspherical object-side and image-side lens surfaces.
  • the fourth lens group G4 includes a positive meniscus lens L41 having a concave surface directed toward the object side.
  • the positive meniscus lens L41 has an aspheric lens surface on the image side.
  • the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens
  • the first lens group G1 moves along the optical axis so that the air gap between the group G2 and the third lens group G3 increases and the air gap between the third lens group G3 and the fourth lens group G4 increases.
  • the second lens group G2 and the third lens group G3 move toward the object side along the optical axis.
  • the position of the fourth lens group G4 is fixed at the time of zooming.
  • the first partial group G2a, the second partial group G2b, the aperture stop S, and the third partial group G2c of the second lens group G2 move together during zooming.
  • the third lens group G3 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
  • the second partial group G2b in the second lens group G2 is moved as a movable group so as to include a component in a direction orthogonal to the optical axis, thereby performing image stabilization.
  • Table 14 lists the values of the specifications of the zoom lens according to the present example.
  • FIG. 37A and 37B are graphs showing various aberrations when the zoom lens according to Example 14 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
  • FIG. 38A and FIG. 38B are coma aberration diagrams when anti-vibration is performed against a rotational blur of 0.5 ° at the time of focusing on an object at infinity in the wide-angle end state of the zoom lens according to Example 14 of the present application.
  • FIG. 6B is a coma aberration diagram when anti-vibration is performed with respect to a rotational shake of 0.5 ° during focusing on an object at infinity in the telephoto end state.
  • FIGS. 39A and 39B are graphs showing various aberrations when focusing on a short-distance object in the wide-angle end state and the telephoto end state of the zoom lens according to Example 14 of the present application, respectively.
  • the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state, and also has high optical performance even during image stabilization. I understand that.
  • the zoom lens according to Example 15 of the fourth embodiment of the present application is cross-sectional views of the zoom lens according to Example 15 of the fourth embodiment of the present application in the wide-angle end state and the telephoto end state, respectively.
  • the zoom lens according to the present example includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a negative refractive power. G3 and a fourth lens group G4 having a positive refractive power.
  • the first lens group G1 in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of.
  • the negative meniscus lens L12 has an aspheric lens surface on the image side.
  • the second lens group G2 includes, in order from the object side, a first partial group G2a having a positive refractive power, a second partial group G2b having a negative refractive power, an aperture stop S, and a first partial group having a positive refractive power. 3 subgroups G2c.
  • the first partial group G2a is composed of a biconvex positive lens L21.
  • the positive lens L21 has an aspheric lens surface on the object side.
  • the second partial group G2b includes, in order from the object side, a cemented lens of a negative meniscus lens L22 having a convex surface facing the object side and a positive meniscus lens L23 having a convex surface facing the object side.
  • the third partial group G2c is composed of a biconvex positive lens L24.
  • the third lens group G3 includes a negative meniscus lens L31 having a convex surface directed toward the object side.
  • the negative meniscus lens L31 has an aspheric lens surface on the image side.
  • the fourth lens group G4 includes a planoconvex positive lens L41 having a convex surface directed toward the object side.
  • the positive lens L41 has an aspheric lens surface on the image side.
  • the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens
  • the first lens group G1 moves along the optical axis so that the air gap between the group G2 and the third lens group G3 increases and the air gap between the third lens group G3 and the fourth lens group G4 increases.
  • the second lens group G2 and the third lens group G3 move toward the object side along the optical axis.
  • the position of the fourth lens group G4 is fixed at the time of zooming.
  • the first partial group G2a, the second partial group G2b, the aperture stop S, and the third partial group G2c of the second lens group G2 move together during zooming.
  • the zoom lens according to the present embodiment is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object. Further, in the zoom lens according to the present embodiment, the first partial group G2a in the second lens group G2 is moved as a movable group so as to include a component in a direction orthogonal to the optical axis, thereby performing image stabilization. Table 15 below lists values of specifications of the zoom lens according to the present example.
  • FIGS. 41A and 41B are graphs showing various aberrations when the zoom lens according to Example 15 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
  • FIG. 42A and FIG. 42B are coma aberration diagrams obtained when image stabilization is performed for a 0.3 ° rotational blur at the time of focusing on an object at infinity in the wide-angle end state of the zoom lens according to Example 15 of the present application.
  • FIG. 6B is a coma aberration diagram when anti-vibration is performed with respect to a rotational shake of 0.3 ° during focusing on an object at infinity in the telephoto end state.
  • FIGS. 43A and 43B are graphs showing various aberrations when focusing on a short-distance object in the wide-angle end state and the telephoto end state of the zoom lens according to Example 15 of the present application, respectively.
  • the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state, and also has high optical performance even during image stabilization. I understand that.
  • the fourteenth and fifteenth embodiments it is possible to realize a zoom lens having a short overall lens length, small size and light weight, good optical performance, and small deterioration in optical performance during image stabilization.
  • each said Example has shown one specific example of this invention, and this invention is not limited to these.
  • the following contents can be adopted as appropriate as long as the optical performance of the zoom lens according to the first to fourth embodiments of the present application is not impaired.
  • zoom lens As numerical examples of the zoom lens according to the first to fourth embodiments of the present application, those having a four-group or five-group configuration are shown. However, the present application is not limited to this, and other group configurations (for example, six groups) may be used.
  • a zoom lens can also be configured. Specifically, a configuration in which a lens or a lens group is added to the most object side or the most image side of the zoom lens according to the first to fourth embodiments of the present application may be used.
  • the zoom lenses according to the first to fourth embodiments of the present application include a part of a lens group, an entire lens group, or a plurality of lens groups in order to perform focusing from an object at infinity to an object at a short distance.
  • the focusing lens group may be moved in the optical axis direction.
  • Such a focusing lens group can be applied to autofocus, and is also suitable for driving by an autofocus motor such as an ultrasonic motor.
  • either the entire lens group or a part thereof is moved so as to include a component in a direction perpendicular to the optical axis as an anti-vibration lens group.
  • it can also be configured to perform vibration isolation by rotating (swinging) in the in-plane direction including the optical axis.
  • the lens surface of the lens constituting the zoom lens according to the first to fourth embodiments of the present application may be a spherical surface, a flat surface, or an aspherical surface.
  • the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are easy, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance.
  • the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • GRIN lens gradient index lens
  • the aperture stop is disposed in the second lens group, and the role is replaced by a lens frame without providing a member as the aperture stop. Also good. Further, an antireflection film having a high transmittance in a wide wavelength region may be provided on the lens surface of the lens constituting the zoom lens according to the first to fourth embodiments of the present application. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.
  • the front lens group and the rear lens group have at least one negative lens and at least one positive lens. .
  • chromatic aberration can be corrected in both the front lens group and the rear lens group.
  • the zoom lens according to the first and second embodiments of the present application includes, in the second lens group, at least a part of one of the front lens group and the rear lens group as a movable group and is included in the second lens group.
  • a lens other than the movable group is a fixed group
  • the movable group and the fixed group have at least one negative lens and at least one positive lens.
  • FIG. 44 is a diagram showing a configuration of a camera including a zoom lens according to the first to fourth embodiments of the present application.
  • the camera 1 is a so-called mirrorless camera with interchangeable lenses provided with the zoom lens according to the first embodiment as the photographing lens 2.
  • the present camera 1 In the present camera 1, light from an object (not shown) that is a subject is collected by the taking lens 2 and is on the imaging surface of the imaging unit 3 via an OLPF (Optical Low Pass Filter) not shown. A subject image is formed on the screen. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3 to generate an image of the subject. This image is displayed on an EVF (Electronic view finder) 4 provided in the camera 1. Thus, the photographer can observe the subject via the EVF 4. When the release button (not shown) is pressed by the photographer, the subject image generated by the imaging unit 3 is stored in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.
  • OLPF Optical Low Pass Filter
  • the zoom lens according to the first embodiment mounted on the camera 1 as the photographing lens 2 is a zoom lens having high optical performance. Therefore, this camera 1 can realize high optical performance. It should be noted that the same effects as those of the camera 1 can be obtained even if a camera equipped with the zoom lenses according to the second to fifteenth embodiments as the photographing lens 2 is configured. Further, even when the zoom lens according to each of the above embodiments is mounted on a single-lens reflex camera having a quick return mirror and observing a subject with a finder optical system, the same effect as the camera 1 can be obtained.
  • the zoom lens manufacturing method according to the first embodiment of the present application shown in FIG. 45 includes, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a negative lens group.
  • Step S11 The second lens group includes a front lens group, an aperture stop, and a rear lens group in order from the object side.
  • Step S13 By providing a known moving mechanism in the lens barrel, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, and the The interval between the third lens group and the fourth lens group is changed.
  • Step S14 By providing a known moving mechanism in the lens barrel, at least a part of the lenses in the second lens group is moved as a movable group so as to include a component in a direction perpendicular to the optical axis. .
  • the method for manufacturing a zoom lens according to the first embodiment of the present application it is possible to manufacture a zoom lens having high optical performance by satisfactorily correcting chromatic aberration both during image stabilization and during non-image stabilization. it can.
  • the zoom lens manufacturing method according to the second embodiment of the present application shown in FIG. 46 includes, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a negative
  • a zoom lens manufacturing method having a third lens group having a refractive power and a fourth lens group having a positive refractive power includes the following steps S21 to S24.
  • Step S21 The second lens group includes a front lens group, an aperture stop, and a rear lens group in order from the object side.
  • Step S23 By providing a known moving mechanism in the lens barrel, the distance between the first lens group and the second lens group, the second lens group and the second lens group at the time of zooming from the wide-angle end state to the telephoto end state. The distance between the three lens groups and the distance between the third lens group and the fourth lens group are changed.
  • Step S24 A known moving mechanism is provided in the lens barrel so that at least a part of the lenses in the rear lens group moves so as to include a component in a direction orthogonal to the optical axis.
  • the method for manufacturing a zoom lens according to the second embodiment of the present application it is possible to manufacture a zoom lens having high optical performance by satisfactorily correcting chromatic aberration both at the time of image stabilization and at the time of non-image stabilization. it can.
  • the zoom lens manufacturing method according to the third embodiment of the present application shown in FIG. 47 includes, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a negative
  • Step S31 The first to fourth lens groups are arranged in order from the object side in the lens barrel. Then, by providing a known moving mechanism in the lens barrel, the third lens group moves along the optical axis during zooming from the wide-angle end state to the telephoto end state, and the first lens group and the second lens group The distance between the lens group, the distance between the second lens group and the third lens group, and the distance between the third lens group and the fourth lens group are changed.
  • Step S32 The third lens group is made to satisfy the following conditional expression (3-1). (3-1) 0.50 ⁇ m3 / fw ⁇ 0.80 However, m3: Amount of movement of the third lens unit during zooming from the wide-angle end state to the telephoto end state fw: focal length of the zoom lens in the wide-angle end state
  • the zoom lens manufacturing method it is possible to manufacture a zoom lens having a short overall length and a small size and high optical performance.
  • the zoom lens manufacturing method according to the fourth embodiment shown in FIG. 48 includes, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a negative lens group.
  • Step S41 The second lens group includes, in order from the object side, a first partial group having a positive refractive power, a second partial group having a negative refractive power, an aperture stop, and a third partial group.
  • the first to fourth lens groups are arranged in order from the object side in the lens barrel.
  • Step S42 By providing a known moving mechanism in the lens barrel, the position of the fourth lens group is fixed and the first to third lens groups move along the optical axis upon zooming. .
  • Step S43 By providing a known moving mechanism in the lens barrel, etc., at the time of focusing, at least a part of the third lens group is moved along the optical axis.
  • Step S44 By providing a known moving mechanism on the lens barrel, the first partial group or the second partial group in the second lens group moves as a movable group so as to include a component in a direction orthogonal to the optical axis. Like that.
  • Step S45 The movable group is made to satisfy the following conditional expression (4-1). (4-1) 0.15 ⁇
  • fw focal length of zoom lens in wide-angle end state
  • fvr focal length of movable group
  • the zoom lens manufacturing method it is possible to manufacture a zoom lens that is small in size and has good optical performance during image stabilization.

Abstract

This zoom lens comprises, in order from the object side: a first lens group (G1) having a negative refractive power; a second lens group (G2) having a positive refractive power; a third lens group (G3) having a negative refractive power; and a fourth lens group (G4) having a positive refractive power. When the magnification is varied, the distance between the first lens group (G1) and the second lens group (G2), the distance between the second lens group (G2) and the third lens group (G3), and the distance between the third lens group (G3) and the fourth lens group (G4) are varied. The second lens group (G2) includes, in order from the object side: a front-side lens group (G2F); an aperture stop (S); and a rear-side lens group (G2R). The front-side lens group (G2F) and the rear-side lens group (G2R) each have at least one negative lens. At least some of the lenses in the second lens group (G2) move as a movable group so as to include a component in a direction orthogonal to the optical axis. Thus, this zoom lens can be provided with high optical performance.

Description

ズームレンズ、光学装置、ズームレンズの製造方法Zoom lens, optical device, and zoom lens manufacturing method
 本発明は、デジタルカメラ、ビデオカメラ、銀塩フィルム用カメラ等の撮像装置に好適なズームレンズ、光学装置、ズームレンズの製造方法に関する。 The present invention relates to a zoom lens, an optical device, and a zoom lens manufacturing method suitable for an imaging device such as a digital camera, a video camera, and a silver salt film camera.
 近年、デジタルカメラ等の撮像装置に用いられる撮像素子は高画素化が進んでいる。そして、高画素の撮像素子を備えた撮像装置に用いられる撮影レンズには、高い光学性能を有することが求められている。 In recent years, the number of pixels of an image sensor used in an image pickup apparatus such as a digital camera has been increased. An imaging lens used in an imaging apparatus provided with a high-pixel imaging device is required to have high optical performance.
 斯かる背景の下、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とからなり、隣り合うレンズ群どうしの間隔を変化させることによって変倍を行うズームレンズが提案されている。例えば、特開2001-343584号公報を参照。 Under such a background, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a positive refraction. There has been proposed a zoom lens which includes a fourth lens group having power and performs zooming by changing the interval between adjacent lens groups. For example, see Japanese Patent Laid-Open No. 2001-343584.
特開2001-343584号公報Japanese Patent Laid-Open No. 2001-343584
 しかしながら、上述のような従来のズームレンズは、十分な光学性能を備えていなかった。 However, the conventional zoom lens as described above does not have sufficient optical performance.
 そこで本発明は上記問題点に鑑みてなされたものであり、高い光学性能を備えたズームレンズ、該ズームレンズを有する光学装置、及び該ズームレンズの製造方法を提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and an object thereof is to provide a zoom lens having high optical performance, an optical device having the zoom lens, and a method for manufacturing the zoom lens.
 上記課題を解決するために本発明の第1態様は、
 物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、
 変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化し、
 前記第2レンズ群が、物体側から順に、前側レンズ群と、開口絞りと、後側レンズ群とを有し、
 前記前側レンズ群と前記後側レンズ群が少なくとも1つの負レンズをそれぞれ有し、
 前記第2レンズ群中の少なくとも一部のレンズが可動群として光軸と直交する方向の成分を含むように移動することを特徴とするズームレンズを提供する。
In order to solve the above problems, the first aspect of the present invention is:
In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power And having a group
At the time of zooming, there are an interval between the first lens group and the second lens group, an interval between the second lens group and the third lens group, and an interval between the third lens group and the fourth lens group. Change,
The second lens group includes, in order from the object side, a front lens group, an aperture stop, and a rear lens group.
The front lens group and the rear lens group each have at least one negative lens;
The zoom lens is characterized in that at least a part of the second lens group moves as a movable group so as to include a component in a direction orthogonal to the optical axis.
 また本発明の第2態様は、
 物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、
 広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化し、
 前記第2レンズ群が、物体側から順に、前側レンズ群と、開口絞りと、後側レンズ群とを有し、
 前記前側レンズ群と前記後側レンズ群が少なくとも1つの負レンズをそれぞれ有し、
 前記後側レンズ群中の少なくとも一部のレンズが光軸と直交する方向の成分を含むように移動することを特徴とするズームレンズを提供する。
The second aspect of the present invention is
In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power And having a group
At the time of zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, and the third lens group The distance from the fourth lens group changes,
The second lens group includes, in order from the object side, a front lens group, an aperture stop, and a rear lens group.
The front lens group and the rear lens group each have at least one negative lens;
A zoom lens is provided in which at least a part of the lenses in the rear lens group moves so as to include a component in a direction orthogonal to the optical axis.
 また本発明の第3態様は、
 物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、
 広角端状態から望遠端状態への変倍時に、前記第3レンズ群が光軸に沿って移動し、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化し、
 以下の条件式を満足することを特徴とするズームレンズを提供する。
0.50 < m3/fw < 0.80
 ただし、
m3:広角端状態から望遠端状態への変倍時の前記第3レンズ群の移動量
fw:広角端状態における前記ズームレンズの焦点距離
The third aspect of the present invention is:
In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power And having a group
At the time of zooming from the wide-angle end state to the telephoto end state, the third lens group moves along the optical axis, the distance between the first lens group and the second lens group, the second lens group and the second lens group. The distance between the three lens groups and the distance between the third lens group and the fourth lens group change,
Provided is a zoom lens that satisfies the following conditional expression.
0.50 <m3 / fw <0.80
However,
m3: amount of movement of the third lens group during zooming from the wide-angle end state to the telephoto end state fw: focal length of the zoom lens in the wide-angle end state
 また本発明の第4態様は、
 物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、
 前記第2レンズ群が、物体側から順に、正の屈折力を有する第1部分群と、負の屈折力を有する第2部分群と、開口絞りと、第3部分群とを有し、
 変倍に際して、前記第1レンズ群、前記第2レンズ群及び前記第3レンズ群が光軸に沿って移動し、前記第4レンズ群の位置が固定であり、
 合焦に際して、前記第3レンズ群の少なくとも一部が光軸に沿って移動し、
 前記第2レンズ群における前記第1部分群又は前記第2部分群が可動群として光軸と直交する方向の成分を含むように移動し、
 以下の条件式を満足することを特徴とするズームレンズを提供する。
0.15<|fw/fvr|<0.50
 ただし、
fw:広角端状態における前記ズームレンズの焦点距離
fvr:前記可動群の焦点距離
The fourth aspect of the present invention is
In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power And having a group
The second lens group includes, in order from the object side, a first partial group having a positive refractive power, a second partial group having a negative refractive power, an aperture stop, and a third partial group.
During zooming, the first lens group, the second lens group, and the third lens group move along the optical axis, and the position of the fourth lens group is fixed,
At the time of focusing, at least a part of the third lens group moves along the optical axis,
The first partial group or the second partial group in the second lens group moves as a movable group so as to include a component in a direction orthogonal to the optical axis,
Provided is a zoom lens that satisfies the following conditional expression.
0.15 <| fw / fvr | <0.50
However,
fw: focal length of the zoom lens in the wide-angle end state fvr: focal length of the movable group
 また本発明の第5態様は、
 本発明の第1態様に係るズームレンズを有することを特徴とする光学装置を提供する。
The fifth aspect of the present invention is
An optical apparatus having the zoom lens according to the first aspect of the present invention is provided.
 また本発明の第6態様は、
 本発明の第2態様に係るズームレンズを有することを特徴とする光学装置を提供する。
The sixth aspect of the present invention is
An optical apparatus having the zoom lens according to the second aspect of the present invention is provided.
 また本発明の第7態様は、
 本発明の第3態様に係るズームレンズを有することを特徴とする光学装置を提供する。
The seventh aspect of the present invention is
An optical apparatus having the zoom lens according to the third aspect of the present invention is provided.
 また本発明の第8態様は、
 本発明の第4態様に係るズームレンズを有することを特徴とする光学装置を提供する。
The eighth aspect of the present invention provides
An optical apparatus having the zoom lens according to the fourth aspect of the present invention is provided.
 また本発明の第9態様は、
 物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有するズームレンズの製造方法であって、
 前記第2レンズ群が、物体側から順に、前側レンズ群と、開口絞りと、後側レンズ群とを有するようにし、
 前記前側レンズ群と前記後側レンズ群が少なくとも1つの負レンズをそれぞれ有するようにし、
 変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化するようにし、
 前記第2レンズ群中の少なくとも一部のレンズが可動群として光軸と直交する方向の成分を含むように移動するようにすることを特徴とするズームレンズの製造方法を提供する。
The ninth aspect of the present invention
In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power A zoom lens manufacturing method comprising:
The second lens group includes, in order from the object side, a front lens group, an aperture stop, and a rear lens group.
The front lens group and the rear lens group each have at least one negative lens;
At the time of zooming, there are an interval between the first lens group and the second lens group, an interval between the second lens group and the third lens group, and an interval between the third lens group and the fourth lens group. To change,
The zoom lens manufacturing method is characterized in that at least a part of the second lens group moves as a movable group so as to include a component in a direction orthogonal to the optical axis.
 また本発明の第10態様は、
 物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有するズームレンズの製造方法であって、
 前記第2レンズ群が、物体側から順に、前側レンズ群と、開口絞りと、後側レンズ群とを有するようにし、
 前記前側レンズ群と前記後側レンズ群が少なくとも1つの負レンズをそれぞれ有するようにし、
 広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化するようにし、
 前記後側レンズ群中の少なくとも一部のレンズが光軸と直交する方向の成分を含むように移動するようにすることを特徴とするズームレンズの製造方法を提供する。
The tenth aspect of the present invention provides
In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power A zoom lens manufacturing method comprising:
The second lens group includes, in order from the object side, a front lens group, an aperture stop, and a rear lens group.
The front lens group and the rear lens group each have at least one negative lens;
At the time of zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, and the third lens group The distance from the fourth lens group is changed,
A zoom lens manufacturing method is provided, wherein at least some of the lenses in the rear lens group are moved so as to include a component in a direction orthogonal to the optical axis.
 また本発明の第11態様は、
 物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有するズームレンズの製造方法であって、
 広角端状態から望遠端状態への変倍時に、前記第3レンズ群が光軸に沿って移動し、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化するようにし、
 前記第3レンズ群が以下の条件式を満足するようにすることを特徴とするズームレンズの製造方法を提供する。
0.50 < m3/fw < 0.80
 ただし、
m3:広角端状態から望遠端状態への変倍時の前記第3レンズ群の移動量
fw:広角端状態における前記ズームレンズの焦点距離
The eleventh aspect of the present invention provides
In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power A zoom lens manufacturing method comprising:
At the time of zooming from the wide-angle end state to the telephoto end state, the third lens group moves along the optical axis, the distance between the first lens group and the second lens group, the second lens group and the second lens group. The distance between the three lens groups and the distance between the third lens group and the fourth lens group are changed,
A zoom lens manufacturing method is provided in which the third lens group satisfies the following conditional expression.
0.50 <m3 / fw <0.80
However,
m3: amount of movement of the third lens group during zooming from the wide-angle end state to the telephoto end state fw: focal length of the zoom lens in the wide-angle end state
 また本発明の第12態様は、
 物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有するズームレンズの製造方法であって、
 前記第2レンズ群が、物体側から順に、正の屈折力を有する第1部分群と、負の屈折力を有する第2部分群と、開口絞りと、第3部分群とを有するようにし、
 変倍に際して、前記第4レンズ群の位置が固定で、前記第1レンズ群、前記第2レンズ群及び前記第3レンズ群が光軸に沿って移動するようにし、
 合焦に際して、前記第3レンズ群の少なくとも一部が光軸に沿って移動するようにし、
 前記第2レンズ群における前記第1部分群又は前記第2部分群が可動群として光軸と直交する方向の成分を含むように移動するようにし、
 前記可動群が以下の条件式を満足するようにすることを特徴とするズームレンズの製造方法を提供する。
0.15<|fw/fvr|<0.50
 ただし、
fw:広角端状態における前記ズームレンズの焦点距離
fvr:前記可動群の焦点距離
The twelfth aspect of the present invention provides
In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power A zoom lens manufacturing method comprising:
The second lens group includes, in order from the object side, a first partial group having a positive refractive power, a second partial group having a negative refractive power, an aperture stop, and a third partial group.
During zooming, the position of the fourth lens group is fixed, and the first lens group, the second lens group, and the third lens group move along the optical axis,
At the time of focusing, at least a part of the third lens group moves along the optical axis,
The first partial group or the second partial group in the second lens group moves as a movable group so as to include a component in a direction orthogonal to the optical axis,
A zoom lens manufacturing method is provided in which the movable group satisfies the following conditional expression.
0.15 <| fw / fvr | <0.50
However,
fw: focal length of the zoom lens in the wide-angle end state fvr: focal length of the movable group
 本発明の第1、5、9態様によれば、色収差を良好に補正し、高い光学性能を備えたズームレンズ、該ズームレンズを有する光学装置、及び該ズームレンズの製造方法を提供することができる。 According to the first, fifth, and ninth aspects of the present invention, it is possible to provide a zoom lens that corrects chromatic aberration satisfactorily and has high optical performance, an optical device having the zoom lens, and a method for manufacturing the zoom lens. it can.
 本発明の第2、6、10態様によれば、防振時と非防振時の両方において色収差を良好に補正し、高い光学性能を備えたズームレンズ、該ズームレンズを有する光学装置、及び該ズームレンズの製造方法を提供することができる。 According to the second, sixth, and tenth aspects of the present invention, a zoom lens that satisfactorily corrects chromatic aberration both at the time of anti-vibration and at the time of non-vibration and has high optical performance, an optical device having the zoom lens, A method for manufacturing the zoom lens can be provided.
 本発明の第3、7、11態様によれば、全長が短く小型で高い光学性能を備えたズームレンズ、該ズームレンズを有する光学装置、及び該ズームレンズの製造方法を提供することができる。 According to the third, seventh and eleventh aspects of the present invention, it is possible to provide a zoom lens having a short overall length and a small size and high optical performance, an optical device having the zoom lens, and a method for manufacturing the zoom lens.
 本発明の第4、8、12態様によれば、小型で、防振時の光学性能が良好なズームレンズ、光学装置及びズームレンズの製造方法を提供することができる。 According to the fourth, eighth, and twelfth aspects of the present invention, it is possible to provide a zoom lens, an optical device, and a zoom lens manufacturing method that are small in size and have good optical performance during image stabilization.
図1A、及び図1Bはそれぞれ、本願の第1、第2実施形態に共通の第1実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。1A and 1B are sectional views of a zoom lens according to a first example common to the first and second embodiments of the present application in a wide-angle end state and a telephoto end state, respectively. 図2A、及び図2Bはそれぞれ、本願の第1実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。2A and 2B are graphs showing various aberrations when an object at infinity is in focus in the wide-angle end state and the telephoto end state of the zoom lens according to Example 1 of the present application, respectively. 図3A、及び図3Bはそれぞれ、本願の第1実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のコマ収差図である。FIGS. 3A and 3B are coma aberration diagrams when the image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to the first example of the present application, respectively. 図4A、及び図4Bはそれぞれ、本願の第1、第2実施形態に共通の第2実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。4A and 4B are sectional views of the zoom lens according to a second example common to the first and second embodiments of the present application in the wide-angle end state and the telephoto end state, respectively. 図5A、及び図5Bはそれぞれ、本願の第2実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 5A and 5B are graphs showing various aberrations at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to Example 2 of the present application. 図6A、及び図6Bはそれぞれ、本願の第2実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のコマ収差図である。FIGS. 6A and 6B are coma aberration diagrams obtained when image stabilization is performed when an infinite object is focused in the wide-angle end state and the telephoto end state of the zoom lens according to Example 2 of the present application. 図7A、及び図7Bはそれぞれ、本願の第1、第2実施形態に共通の第3実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。7A and 7B are cross-sectional views of the zoom lens according to a third example common to the first and second embodiments of the present application in the wide-angle end state and the telephoto end state, respectively. 図8A、及び図8Bはそれぞれ、本願の第3実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。8A and 8B are graphs showing various aberrations when the zoom lens according to the third example of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively. 図9A、及び図9Bはそれぞれ、本願の第3実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のコマ収差図である。FIGS. 9A and 9B are coma aberration diagrams obtained when image stabilization is performed when an infinite object is focused in the wide-angle end state and the telephoto end state of the zoom lens according to Example 3 of the present application. 図10A、及び図10Bはそれぞれ、本願の第1、第2実施形態に共通の第4実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。10A and 10B are cross-sectional views of the zoom lens according to a fourth example common to the first and second embodiments of the present application in the wide-angle end state and the telephoto end state, respectively. 図11A、及び図11Bはそれぞれ、本願の第4実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 11A and 11B are graphs showing various aberrations during focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to Example 4 of the present application, respectively. 図12A、及び図12Bはそれぞれ、本願の第4実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のコマ収差図である。12A and 12B are coma aberration diagrams when the image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to Example 4 of the present application, respectively. 図13A、及び図13Bはそれぞれ、本願の第1、第2実施形態に共通の第5実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。13A and 13B are cross-sectional views of a zoom lens according to a fifth example common to the first and second embodiments of the present application in the wide-angle end state and the telephoto end state, respectively. 図14A、及び図14Bはそれぞれ、本願の第5実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 14A and 14B are graphs showing various aberrations when the zoom lens according to Example 5 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively. 図15A、及び図15Bはそれぞれ、本願の第5実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のコマ収差図である。FIGS. 15A and 15B are coma aberration diagrams when the image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to Example 5 of the present application, respectively. 図16A、及び図16Bはそれぞれ、本願の第1、第2実施形態に共通の第6実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。16A and 16B are cross-sectional views of the zoom lens according to a sixth example common to the first and second embodiments of the present application in the wide-angle end state and the telephoto end state, respectively. 図17A、及び図17Bはそれぞれ、本願の第6実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 17A and 17B are graphs showing various aberrations when the zoom lens according to Example 6 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively. 図18A、及び図18Bはそれぞれ、本願の第6実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のコマ収差図である。18A and 18B are coma aberration diagrams when the image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to Example 6 of the present application, respectively. 図19A、及び図19Bはそれぞれ、本願の第1、第2実施形態に共通の第7実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。19A and 19B are cross-sectional views of the zoom lens according to a seventh example common to the first and second embodiments of the present application in the wide-angle end state and the telephoto end state, respectively. 図20A、及び図20Bはそれぞれ、本願の第7実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。20A and 20B are graphs showing various aberrations when the zoom lens according to Example 7 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively. 図21A、及び図21Bはそれぞれ、本願の第7実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のコマ収差図である。FIGS. 21A and 21B are coma aberration diagrams obtained when image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to Example 7 of the present application, respectively. 図22A、及び図22Bはそれぞれ、本願の第1実施形態の第8実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。22A and 22B are cross-sectional views of the zoom lens according to Example 8 of the first embodiment of the present application in the wide-angle end state and the telephoto end state, respectively. 図23A、及び図23Bはそれぞれ、本願の第8実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 23A and 23B are graphs showing various aberrations when the zoom lens according to the eighth example of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively. 図24A、及び図24Bはそれぞれ、本願の第8実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のコマ収差図である。FIGS. 24A and 24B are coma aberration diagrams obtained when image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to Example 8 of the present application. 図25A、及び図25Bはそれぞれ、本願の第1実施形態の第9実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。25A and 25B are cross-sectional views of the zoom lens according to Example 9 of the first embodiment of the present application in the wide-angle end state and the telephoto end state, respectively. 図26A、及び図26Bはそれぞれ、本願の第9実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 26A and 26B are graphs showing various aberrations when the zoom lens according to Example 9 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively. 図27A、及び図27Bはそれぞれ、本願の第9実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のコマ収差図である。FIGS. 27A and 27B are coma aberration diagrams when the image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to Example 9 of the present application, respectively. 図28A、及び図28Bはそれぞれ、本願の第3実施形態の第10実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。28A and 28B are cross-sectional views of the zoom lens according to the tenth example of the third embodiment of the present application in the wide-angle end state and the telephoto end state, respectively. 図29A、及び図29Bはそれぞれ、本願の第10実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 29A and 29B are graphs showing various aberrations when the zoom lens according to Example 10 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively. 図30A、及び図30Bはそれぞれ、本願の第3実施形態の第11実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。30A and 30B are cross-sectional views of the zoom lens according to Example 11 of the third embodiment of the present application in the wide-angle end state and the telephoto end state, respectively. 図31A、及び図31Bはそれぞれ、本願の第11実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 31A and 31B are graphs showing various aberrations when the zoom lens according to Example 11 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively. 図32A、及び図32Bはそれぞれ、本願の第3実施形態の第12実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。32A and 32B are cross-sectional views of the zoom lens according to Example 12 of the third embodiment of the present application in the wide-angle end state and the telephoto end state, respectively. 図33A、及び図33Bはそれぞれ、本願の第12実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 33A and 33B are graphs showing various aberrations when the zoom lens according to Example 12 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively. 図34A、及び図34Bはそれぞれ、本願の第3実施形態の第13実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。34A and 34B are cross-sectional views of the zoom lens according to Example 13 of the third embodiment of the present application in the wide-angle end state and the telephoto end state, respectively. 図35A、及び図35Bはそれぞれ、本願の第13実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 35A and 35B are graphs showing various aberrations at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to Example 13 of the present application, respectively. 図36A、及び図36Bはそれぞれ、本願の第4実施形態の第14実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。36A and 36B are cross-sectional views of the zoom lens according to Example 14 of the fourth embodiment of the present application in the wide-angle end state and the telephoto end state, respectively. 図37A、及び図37Bはそれぞれ、本願の第14実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。37A and 37B are graphs showing various aberrations when the zoom lens according to Example 14 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively. 図38A、及び図38Bはそれぞれ、本願の第14実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のコマ収差図である。FIGS. 38A and 38B are coma aberration diagrams obtained when image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to Example 14 of the present application, respectively. 図39A、及び図39Bはそれぞれ、本願の第14実施例に係るズームレンズの広角端状態、及び望遠端状態における近距離物体合焦時の諸収差図である。FIGS. 39A and 39B are graphs showing various aberrations when focusing on a short-distance object in the wide-angle end state and the telephoto end state of the zoom lens according to Example 14 of the present application, respectively. 図40A、及び図40Bはそれぞれ、本願の第4実施形態の第15実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。40A and 40B are cross-sectional views of the zoom lens according to Example 15 of the fourth embodiment of the present application in the wide-angle end state and the telephoto end state, respectively. 図41A、及び図41Bはそれぞれ、本願の第15実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 41A and 41B are graphs showing various aberrations when the zoom lens according to Example 15 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively. 図42A、及び図42Bはそれぞれ、本願の第15実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のコマ収差図である。42A and 42B are coma aberration diagrams when the image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to Example 15 of the present application, respectively. 図43A、及び図43Bはそれぞれ、本願の第15実施例に係るズームレンズの広角端状態、及び望遠端状態における近距離物体合焦時の諸収差図である。FIGS. 43A and 43B are graphs showing various aberrations when focusing on a short-distance object in the wide-angle end state and the telephoto end state of the zoom lens according to Example 15 of the present application, respectively. 図44は、本願の第1~第4実施形態に係るズームレンズを備えたカメラの構成を示す図である。FIG. 44 is a diagram showing a configuration of a camera including a zoom lens according to the first to fourth embodiments of the present application. 図45は、本願の第1実施形態に係るズームレンズの製造方法の概略を示す図である。FIG. 45 is a diagram showing an outline of the zoom lens manufacturing method according to the first embodiment of the present application. 図46は、本願の第2実施形態に係るズームレンズの製造方法の概略を示す図である。FIG. 46 is a diagram showing an outline of a zoom lens manufacturing method according to the second embodiment of the present application. 図47は、本願の第3実施形態に係るズームレンズの製造方法の概略を示す図である。FIG. 47 is a diagram showing an outline of a zoom lens manufacturing method according to the third embodiment of the present application. 図48は、本願の第4実施形態に係るズームレンズの製造方法の概略を示す図である。FIG. 48 is a diagram showing an outline of a zoom lens manufacturing method according to the fourth embodiment of the present application.
 以下、本願の第1実施形態に係るズームレンズ、光学装置及びズームレンズの製造方法について説明する。
 本願の第1実施形態に係るズームレンズは、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化し、前記第2レンズ群が、物体側から順に、前側レンズ群と、開口絞りと、後側レンズ群とを有し、前記前側レンズ群と前記後側レンズ群が少なくとも1つの負レンズをそれぞれ有し、前記第2レンズ群中の少なくとも一部のレンズが可動群として光軸と直交する方向の成分を含むように移動することを特徴とする。ここで、前側レンズ群とは、第2レンズ群内において開口絞りより物体側に配置された光学要素からなるレンズ群をいう。また、後側レンズ群とは、第2レンズ群内において開口絞りより像側に配置された光学要素からなるレンズ群をいう。
Hereinafter, the zoom lens, the optical device, and the manufacturing method of the zoom lens according to the first embodiment of the present application will be described.
The zoom lens according to the first embodiment of the present application includes, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens having a negative refractive power. And a fourth lens group having a positive refractive power, and at the time of zooming, an interval between the first lens group and the second lens group, and between the second lens group and the third lens group The distance and the distance between the third lens group and the fourth lens group change, and the second lens group includes, in order from the object side, a front lens group, an aperture stop, and a rear lens group. The front lens group and the rear lens group each have at least one negative lens, and at least some of the lenses in the second lens group include a component in a direction perpendicular to the optical axis as a movable group. It is characterized by moving. Here, the front lens group refers to a lens group including optical elements arranged on the object side of the aperture stop in the second lens group. Further, the rear lens group refers to a lens group including optical elements arranged on the image side from the aperture stop in the second lens group.
 上記のように本願の第1実施形態に係るズームレンズは、第2レンズ群中の少なくとも一部のレンズが可動群として光軸と直交する方向の成分を含むように移動する。これにより、手ぶれや振動等に起因する像ぶれの補正、即ち防振を行うことができる。 As described above, the zoom lens according to the first embodiment of the present application moves so that at least a part of the lenses in the second lens group includes a component in a direction orthogonal to the optical axis as a movable group. Accordingly, it is possible to correct image blur due to camera shake, vibration, or the like, that is, to perform image stabilization.
 上記のように本願の第1実施形態に係るズームレンズは、第2レンズ群が、物体側から順に、前側レンズ群と、開口絞りと、後側レンズ群とを有し、前側レンズ群と後側レンズ群が少なくとも1つの負レンズをそれぞれ有している。この構成により、第2レンズ群に正の屈折力を持たせつつ、第2レンズ群内で色収差を補正することができ、色収差の補正された高い光学性能のズームレンズとすることができる。 As described above, in the zoom lens according to the first embodiment of the present application, the second lens group includes, in order from the object side, the front lens group, the aperture stop, and the rear lens group, and the front lens group and the rear lens group. The side lens groups each have at least one negative lens. With this configuration, chromatic aberration can be corrected in the second lens group while giving the second lens group positive refracting power, and a zoom lens with high optical performance in which chromatic aberration is corrected can be obtained.
 また、本願の第1実施形態に係るズームレンズは、前記前側レンズ群が正の屈折力を有することが望ましい。この構成により、前記第2レンズ群に正の屈折力を持たせて、負・正・負・正の4群構成を有するズームレンズとして広角化を図ることができる。
 また、本願の第1実施形態に係るズームレンズは、前記後側レンズ群が正の屈折力を有することが望ましい。この構成により、前記第2レンズ群に正の屈折力を持たせて、負・正・負・正の4群構成を有するズームレンズとして広角化を図ることができる。
In the zoom lens according to the first embodiment of the present application, it is desirable that the front lens group has a positive refractive power. With this configuration, the second lens group can have a positive refractive power, and a wide angle can be achieved as a zoom lens having a four-group configuration of negative, positive, negative, and positive.
In the zoom lens according to the first embodiment of the present application, it is desirable that the rear lens group has a positive refractive power. With this configuration, the second lens group can have a positive refractive power, and a wide angle can be achieved as a zoom lens having a four-group configuration of negative, positive, negative, and positive.
 また、本願の第1実施形態に係るズームレンズは、前記第2レンズ群が、物体側から順に、正の屈折力を有する前側レンズ群と、開口絞りと、正の屈折力を有する後側レンズ群とを有することが望ましい。この構成により、開口絞りを中心として第2レンズ群内で屈折力を前後に分担させて対称性を保ちやすく、球面収差とコマ収差の補正バランスをとり良好に補正することができる。 In the zoom lens according to the first embodiment of the present application, the second lens group includes, in order from the object side, a front lens group having a positive refractive power, an aperture stop, and a rear lens having a positive refractive power. It is desirable to have a group. With this configuration, it is easy to maintain the symmetry by sharing the refractive power back and forth within the second lens group with the aperture stop as the center, and it is possible to make a good correction by balancing the correction of spherical aberration and coma.
 また、本願の第1実施形態に係るズームレンズは、第2レンズ群における前側レンズ群と後側レンズ群に正レンズと負レンズとを少なくとも1枚ずつ有することが望ましい。この構成により、単レンズで構成するよりも色収差補正の自由度を確保できるので、前側レンズ群と後側レンズ群とを構成する各々のレンズの屈折率とアッベ数を適切に設定することができる。また、後側レンズ群が正レンズと負レンズとを少なくとも1枚ずつ有することによって、可動群の屈折力を大きくしながら、非防振時の軸上色収差と倍率色収差の補正と、防振時の軸上色収差と倍率色収差の補正とをより好ましく両立することができる。
 また、本願の第1実施形態に係るズームレンズは、前側レンズ群と後側レンズ群とが1枚の正レンズと1枚の負レンズとから構成されることが望ましい。また、前側レンズ群と後側レンズ群とがそれぞれ1枚の接合レンズから構成されることが望ましい。さらに、第2レンズ群が、物体側から順に、正レンズ、負レンズ、開口絞り、負レンズ、正レンズを配置する、又は、物体側から順に、負レンズ、正レンズ、開口絞り、正レンズ、負レンズを配置することが対称性の観点から望ましい。
In addition, the zoom lens according to the first embodiment of the present application desirably includes at least one positive lens and one negative lens in the front lens group and the rear lens group in the second lens group. With this configuration, the degree of freedom of chromatic aberration correction can be secured as compared with a single lens, and therefore the refractive index and Abbe number of each lens constituting the front lens group and the rear lens group can be set appropriately. . In addition, since the rear lens group includes at least one positive lens and one negative lens, the correction of axial chromatic aberration and lateral chromatic aberration during non-vibration correction and vibration correction while increasing the refractive power of the movable group It is possible to more preferably achieve both axial chromatic aberration and lateral chromatic aberration correction.
In the zoom lens according to the first embodiment of the present application, it is desirable that the front lens group and the rear lens group include one positive lens and one negative lens. Further, it is desirable that each of the front lens group and the rear lens group is composed of one cemented lens. Further, the second lens group is arranged in order from the object side, positive lens, negative lens, aperture stop, negative lens, positive lens, or in order from the object side, negative lens, positive lens, aperture stop, positive lens, It is desirable to arrange a negative lens from the viewpoint of symmetry.
 また、本願の第1実施形態に係るズームレンズは、以下の条件式(1-1)を満足することが望ましい。
(1-1) 1.00 < |f2vr|/fw < 4.00
 ただし、
f2vr:前記可動群の焦点距離
fw :広角端状態における前記ズームレンズの焦点距離
In addition, it is desirable that the zoom lens according to the first embodiment of the present application satisfies the following conditional expression (1-1).
(1-1) 1.00 <| f2vr | / fw <4.00
However,
f2vr: focal length of the movable group fw: focal length of the zoom lens in the wide-angle end state
 条件式(1-1)は、第2レンズ群における可動群の焦点距離を規定する条件式である。本願の第1実施形態に係るズームレンズは、条件式(1-1)を満足することにより、コマ収差や球面収差を良好に補正することができる。 Conditional expression (1-1) is a conditional expression that defines the focal length of the movable group in the second lens group. The zoom lens according to the first embodiment of the present application can satisfactorily correct coma and spherical aberration by satisfying conditional expression (1-1).
 本願の第1実施形態に係るズームレンズの条件式(1-1)の対応値が下限値を下回ると、可動群の偏心敏感度が増大する、即ち製造誤差等により可動群に偏芯が生じた場合に諸収差が発生しやすくなってしまう。これにより、コマ収差の悪化を招いてしまう。なお、本願の効果をより確実にするために、条件式(1-1)の下限値を1.50とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1-1)の下限値を2.00とすることがより好ましい。 When the corresponding value of the conditional expression (1-1) of the zoom lens according to the first embodiment of the present application is below the lower limit value, the eccentric sensitivity of the movable group increases, that is, the movable group is decentered due to a manufacturing error or the like. In this case, various aberrations are likely to occur. As a result, coma is deteriorated. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (1-1) to 1.50. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (1-1) to 2.00.
 一方、本願の第1実施形態に係るズームレンズの条件式(1-1)の対応値が上限値を上回ると、可動群の防振時の移動量が増大する。このため、本願の第1実施形態に係るズームレンズの外径の小型化や全長の短縮化を図ることが困難になってしまう。また、可動群の屈折力が小さくなる。そこで、第2レンズ群の屈折力を確保するために第2レンズ群中の可動群以外のレンズの屈折力を大きくすれば、球面収差やコマ収差の悪化を招いてしまう。なお、本願の効果をより確実にするために、条件式(1-1)の上限値を3.50とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1-1)の上限値を3.20とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (1-1) of the zoom lens according to the first embodiment of the present application exceeds the upper limit value, the moving amount of the movable group during vibration isolation increases. This makes it difficult to reduce the outer diameter and the overall length of the zoom lens according to the first embodiment of the present application. In addition, the refractive power of the movable group is reduced. Therefore, if the refractive power of the lens other than the movable group in the second lens group is increased in order to ensure the refractive power of the second lens group, the spherical aberration and the coma aberration will be deteriorated. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1-1) to 3.50. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1-1) to 3.20.
 また、本願の第1実施形態に係るズームレンズは、以下の条件式(1-2)を満足することが望ましい。
(1-2) 0.50 < |f2vr|/f2 < 5.00
 ただし、
f2vr:前記可動群の焦点距離
f2 :前記第2レンズ群の焦点距離
In addition, it is desirable that the zoom lens according to the first embodiment of the present application satisfies the following conditional expression (1-2).
(1-2) 0.50 <| f2vr | / f2 <5.00
However,
f2vr: focal length of the movable group f2: focal length of the second lens group
 条件式(1-2)は、第2レンズ群における可動群の焦点距離を規定する条件式である。本願の第1実施形態に係るズームレンズは、条件式(1-2)を満足することにより、コマ収差や球面収差を良好に補正することができる。 Conditional expression (1-2) is a conditional expression that defines the focal length of the movable group in the second lens group. The zoom lens according to the first embodiment of the present application can satisfactorily correct coma and spherical aberration by satisfying conditional expression (1-2).
 本願の第1実施形態に係るズームレンズの条件式(1-2)の対応値が下限値を下回ると、可動群の屈折力が大きくなるとともに第2レンズ群中の可動群以外のレンズの屈折力が小さくなり、球面収差とコマ収差の悪化を招いてしまう。なお、本願の効果をより確実にするために、条件式(1-2)の下限値を1.00とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1-2)の下限値を1.50とすることがより好ましい。 When the corresponding value of the conditional expression (1-2) of the zoom lens according to the first embodiment of the present application is below the lower limit value, the refractive power of the movable group increases and the refraction of lenses other than the movable group in the second lens group increases. The force is reduced, leading to deterioration of spherical aberration and coma. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (1-2) to 1.00. In order to further secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (1-2) to 1.50.
 一方、本願の第1実施形態に係るズームレンズの条件式(1-2)の対応値が上限値を上回ると、可動群の屈折力が小さくなるとともに第2レンズ群中の可動群以外のレンズの屈折力が大きくなり、コマ収差の悪化を招いてしまう。なお、本願の効果をより確実にするために、条件式(1-2)の上限値を4.00とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1-2)の上限値を3.00とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1-2)の上限値を2.50とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (1-2) of the zoom lens according to the first embodiment of the present application exceeds the upper limit value, the refractive power of the movable group becomes small and the lenses other than the movable group in the second lens group. Increases the refractive power of the lens, leading to deterioration of coma aberration. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (1-2) to 4.00. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1-2) to 3.00. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (1-2) to 2.50.
 また、本願の第1実施形態に係るズームレンズは、以下の条件式(1-3)を満足することが望ましい。
(1-3) 1.00 < m12/fw < 2.00
 ただし、
m12:広角端状態から望遠端状態への変倍時の前記第1レンズ群中の最も像側のレンズ面から前記第2レンズ群中の最も物体側のレンズ面までの光軸上の距離の変化量
fw :広角端状態における前記ズームレンズの焦点距離
In addition, it is desirable that the zoom lens according to the first embodiment of the present application satisfies the following conditional expression (1-3).
(1-3) 1.00 <m12 / fw <2.00
However,
m12: the distance on the optical axis from the most image side lens surface in the first lens group to the most object side lens surface in the second lens group at the time of zooming from the wide-angle end state to the telephoto end state Change amount fw: focal length of the zoom lens in the wide-angle end state
 条件式(1-3)は、広角端状態から望遠端状態への変倍時の第1レンズ群と第2レンズ群との空気間隔の変化量を規定する条件式である。本願の第1実施形態に係るズームレンズは、条件式(1-3)を満足することにより、本願の第1実施形態に係るズームレンズの全長の増大を防止しながら、球面収差、コマ収差、色収差及び像面湾曲を良好に補正することができる。 Conditional expression (1-3) is a conditional expression that defines the amount of change in the air gap between the first lens group and the second lens group during zooming from the wide-angle end state to the telephoto end state. The zoom lens according to the first embodiment of the present application satisfies the conditional expression (1-3), thereby preventing an increase in the overall length of the zoom lens according to the first embodiment of the present application. Chromatic aberration and field curvature can be corrected satisfactorily.
 本願の第1実施形態に係るズームレンズの条件式(1-3)の対応値が下限値を下回ると、各レンズ群の屈折力が増大する、又は各レンズ群の変倍時の移動量が増大する。このため、偏心敏感度の増大や本願の第1実施形態に係るズームレンズの全長の増大を招いてしまう。また、光学性能の悪化、具体的には球面収差、コマ収差及び色収差の悪化を招いてしまう。特に、第3レンズ群の屈折力が増大することにより、像面湾曲の悪化を招いてしまう。なお、本願の効果をより確実にするために、条件式(1-3)の下限値を1.20とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1-3)の下限値を1.40とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1-3)の下限値を1.45とすることがより好ましい。 When the corresponding value of the conditional expression (1-3) of the zoom lens according to the first embodiment of the present application is less than the lower limit value, the refractive power of each lens group increases or the amount of movement of each lens group at the time of zooming varies. Increase. For this reason, an increase in the eccentric sensitivity and an increase in the overall length of the zoom lens according to the first embodiment of the present application are caused. Further, the optical performance is deteriorated, specifically, the spherical aberration, the coma aberration, and the chromatic aberration are deteriorated. In particular, when the refractive power of the third lens group increases, the field curvature is deteriorated. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (1-3) to 1.20. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (1-3) to 1.40. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (1-3) to 1.45.
 一方、本願の第1実施形態に係るズームレンズの条件式(1-3)の対応値が上限値を上回ると、本願の第1実施形態に係るズームレンズの全長が増大してしまう。このため、本願の第1実施形態に係るズームレンズの全長の短縮化や外径の小型化を図ることが困難になってしまう。特に、望遠端状態で、第2レンズ群より像側に配置されたレンズ群(第3レンズ群又は第4レンズ群)と開口絞りとの距離が増大するため、上記レンズ群(第3レンズ群又は第4レンズ群)の偏芯像面湾曲の敏感度がそれぞれ増大してしまう。なお、本願の効果をより確実にするために、条件式(1-3)の上限値を1.80とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1-3)の上限値を1.65とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (1-3) of the zoom lens according to the first embodiment of the present application exceeds the upper limit value, the total length of the zoom lens according to the first embodiment of the present application increases. This makes it difficult to shorten the overall length of the zoom lens according to the first embodiment of the present application and to reduce the outer diameter. In particular, in the telephoto end state, the distance between the lens group (the third lens group or the fourth lens group) disposed on the image side from the second lens group and the aperture stop increases, and thus the lens group (third lens group). Alternatively, the sensitivity of the decentered field curvature of the fourth lens group) increases. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1-3) to 1.80. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1-3) to 1.65.
 また、本願の第1実施形態に係るズームレンズは、広角端状態から望遠端状態への変倍時に、前記第1レンズ群、前記第2レンズ群及び前記第3レンズが光軸に沿って移動し、最も像側に配置されたレンズ群の位置が固定であることが望ましい。この構成により、最も像側に配置されたレンズ群を変倍時固定として偏芯コマ収差の敏感度を低減することができる。 In the zoom lens according to the first embodiment of the present application, the first lens group, the second lens group, and the third lens move along the optical axis at the time of zooming from the wide-angle end state to the telephoto end state. However, it is desirable that the position of the lens unit disposed closest to the image side is fixed. With this configuration, it is possible to reduce the sensitivity of decentering coma aberration by fixing the lens group arranged closest to the image side at the time of zooming.
 また、本願の第1実施形態に係るズームレンズは、前記前側レンズ群が、少なくとも2つのレンズを有し、少なくとも1つの非球面を有することが望ましい。少なくとも2つのレンズ、特に正レンズと負レンズとを組み合わせることにより、色収差を良好に補正することができる。また、少なくとも2つのレンズを有し、かつ、少なくとも1つの非球面を有することにより、球面収差とコマ収差を良好に補正することができる。さらに、前記前側レンズ群は、2枚のレンズからなる構成とすることにより、最小枚数の構成とすることができる。 In the zoom lens according to the first embodiment of the present application, it is desirable that the front lens group has at least two lenses and has at least one aspherical surface. Chromatic aberration can be favorably corrected by combining at least two lenses, particularly a positive lens and a negative lens. Moreover, spherical aberration and coma can be favorably corrected by having at least two lenses and having at least one aspherical surface. Furthermore, the front lens group can be configured to have a minimum number of lenses by configuring the front lens group with two lenses.
 本願の光学装置は、上述した構成の第1実施形態に係るズームレンズを有することを特徴としている。これにより、防振時と非防振時の両方において色収差を良好に補正し、高い光学性能を備えた光学装置を実現することができる。 The optical device of the present application is characterized by having the zoom lens according to the first embodiment having the above-described configuration. As a result, it is possible to realize an optical device having high optical performance by correcting chromatic aberration well both in the case of anti-vibration and in the case of non-vibration.
 本願の第1実施形態に係るズームレンズの製造方法は、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有するズームレンズの製造方法であって、前記第2レンズ群が、物体側から順に、前側レンズ群と、開口絞りと、後側レンズ群とを有するようにし、前記前側レンズ群と前記後側レンズ群が少なくとも1つの負レンズをそれぞれ有するようにし、変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化するようにし、前記第2レンズ群中の少なくとも一部のレンズが可動群として光軸と直交する方向の成分を含むように移動するようにすることを特徴としている。これにより、防振時と非防振時の両方において色収差を良好に補正し、高い光学性能を備えたズームレンズを製造することができる。 The zoom lens manufacturing method according to the first embodiment of the present application has, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a negative refractive power. A method of manufacturing a zoom lens having a third lens group and a fourth lens group having a positive refractive power, wherein the second lens group includes, in order from the object side, a front lens group, an aperture stop, and a rear lens group. A side lens group, and the front lens group and the rear lens group each have at least one negative lens, and at the time of zooming, an interval between the first lens group and the second lens group, The distance between the second lens group and the third lens group and the distance between the third lens group and the fourth lens group are changed, and at least some of the lenses in the second lens group are movable. As a group, formation in a direction perpendicular to the optical axis It is characterized in that so as to move to contain. As a result, it is possible to manufacture a zoom lens having high optical performance by correcting chromatic aberration well both during and without image stabilization.
 以下、本願の第2実施形態に係るズームレンズ、光学装置及びズームレンズの製造方法について説明する。
 本願の第2実施形態に係るズームレンズは、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化し、前記第2レンズ群が、物体側から順に、前側レンズ群と、開口絞りと、後側レンズ群とを有し、前記前側レンズ群と前記後側レンズ群が少なくとも1つの負レンズをそれぞれ有し、前記後側レンズ群中の少なくとも一部のレンズが光軸と直交する方向の成分を含むように移動することを特徴とする。ここで、前側レンズ群とは、第2レンズ群内において開口絞りより物体側に配置された光学要素からなるレンズ群をいう。また、後側レンズ群とは、第2レンズ群内において開口絞りより像側に配置された光学要素からなるレンズ群をいう。
Hereinafter, a zoom lens, an optical device, and a zoom lens manufacturing method according to the second embodiment of the present application will be described.
The zoom lens according to the second embodiment of the present application includes, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens having a negative refractive power. And a fourth lens group having a positive refractive power, and a distance between the first lens group and the second lens group at the time of zooming from the wide-angle end state to the telephoto end state, the second lens The distance between the lens group and the third lens group, and the distance between the third lens group and the fourth lens group are changed, and the second lens group, in order from the object side, includes a front lens group, an aperture stop, A rear lens group, the front lens group and the rear lens group each have at least one negative lens, and at least a part of the lenses in the rear lens group is orthogonal to the optical axis. It moves so that the component of this may be included. Here, the front lens group refers to a lens group including optical elements arranged on the object side of the aperture stop in the second lens group. Further, the rear lens group refers to a lens group including optical elements arranged on the image side from the aperture stop in the second lens group.
 上記のように本願の第2実施形態に係るズームレンズは、後側レンズ群中の少なくとも一部のレンズが防振レンズ群として光軸と直交する方向の成分を含むように移動する。これにより、手ぶれや振動等に起因する像ぶれの補正、即ち防振を行うことができる。 As described above, the zoom lens according to the second embodiment of the present application moves so that at least a part of the lenses in the rear lens group includes a component in a direction orthogonal to the optical axis as a vibration-proof lens group. Accordingly, it is possible to correct image blur due to camera shake, vibration, or the like, that is, to perform image stabilization.
 上記のように本願の第2実施形態に係るズームレンズは、第2レンズ群が、物体側から順に、前側レンズ群と、開口絞りと、後側レンズ群とを有し、前側レンズ群と後側レンズ群が少なくとも1つの負レンズをそれぞれ有している。この構成により、非防振時の軸上色収差と倍率色収差の補正と、防振時の軸上色収差と倍率色収差の補正とを両立することができる。
 以上の構成により、防振時と非防振時の両方において色収差を良好に補正し、高い光学性能を備えたズームレンズを実現することができる。
As described above, in the zoom lens according to the second embodiment of the present application, the second lens group includes, in order from the object side, the front lens group, the aperture stop, and the rear lens group, and the front lens group and the rear lens group. The side lens groups each have at least one negative lens. With this configuration, it is possible to achieve both correction of axial chromatic aberration and lateral chromatic aberration during non-vibration and correction of axial chromatic aberration and lateral chromatic aberration during image stabilization.
With the above-described configuration, it is possible to realize a zoom lens having excellent optical performance by correcting chromatic aberration satisfactorily both during image stabilization and during non-image stabilization.
 また、本願の第2実施形態に係るズームレンズは、前記前側レンズ群が正の屈折力を有することが望ましい。この構成により、前記第2レンズ群に正の屈折力を持たせることができる。
 また、本願の第2実施形態に係るズームレンズは、前記後側レンズ群が正の屈折力を有することが望ましい。この構成により、前記第2レンズ群に正の屈折力を持たせることができる。
In the zoom lens according to the second embodiment of the present application, it is desirable that the front lens group has a positive refractive power. With this configuration, the second lens group can have a positive refractive power.
In the zoom lens according to the second embodiment of the present application, it is preferable that the rear lens group has a positive refractive power. With this configuration, the second lens group can have a positive refractive power.
 また、本願の第2実施形態に係るズームレンズは、前記第2レンズ群が、物体側から順に、正の屈折力を有する前側レンズ群と、開口絞りと、正の屈折力を有する後側レンズ群とを有することが望ましい。この構成により、開口絞りを中心として第2レンズ群内で屈折力を前後に分担させて対称性を保ちやすく、球面収差とコマ収差の補正バランスをとり良好に補正することができる。 In the zoom lens according to the second embodiment of the present application, the second lens group includes, in order from the object side, a front lens group having a positive refractive power, an aperture stop, and a rear lens having a positive refractive power. It is desirable to have a group. With this configuration, it is easy to maintain the symmetry by sharing the refractive power back and forth within the second lens group with the aperture stop as the center, and it is possible to make a good correction by balancing the correction of spherical aberration and coma.
 また、本願の第2実施形態に係るズームレンズは、第2レンズ群における前側レンズ群と後側レンズ群に正レンズと負レンズとを少なくとも1枚ずつ有することが望ましい。この構成により、単レンズで構成するよりも色収差補正の自由度を確保できるので、前側レンズ群と後側レンズ群とを構成する各々のレンズの屈折率とアッベ数を適切に設定することができる。また、後側レンズ群が正レンズと負レンズとを少なくとも1枚ずつ有することによって、防振レンズ群の屈折力を大きくしながら、非防振時の軸上色収差と倍率色収差の補正と、防振時の軸上色収差と倍率色収差の補正とをより好ましく両立することができる。
 また、本願の第2実施形態に係るズームレンズは、前側レンズ群と後側レンズ群とが1枚の正レンズと1枚の負レンズとから構成されることが望ましい。また、前側レンズ群と後側レンズ群とがそれぞれ1枚の接合レンズから構成されることが望ましい。さらに、第2レンズ群が、物体側から順に、正レンズ、負レンズ、開口絞り、負レンズ、正レンズを配置する、又は、物体側から順に、負レンズ、正レンズ、開口絞り、正レンズ、負レンズを配置することが対称性の観点から望ましい。
In addition, the zoom lens according to the second embodiment of the present application preferably includes at least one positive lens and one negative lens in the front lens group and the rear lens group in the second lens group. With this configuration, the degree of freedom of chromatic aberration correction can be secured as compared with a single lens, and therefore the refractive index and Abbe number of each lens constituting the front lens group and the rear lens group can be set appropriately. . In addition, since the rear lens group has at least one positive lens and one negative lens, the correction of axial chromatic aberration and lateral chromatic aberration at the time of non-vibration is prevented while increasing the refractive power of the anti-vibration lens group. It is possible to more preferably achieve both the longitudinal chromatic aberration and the correction of the lateral chromatic aberration during shaking.
In the zoom lens according to the second embodiment of the present application, it is preferable that the front lens group and the rear lens group include one positive lens and one negative lens. Further, it is desirable that each of the front lens group and the rear lens group is composed of one cemented lens. Further, the second lens group is arranged in order from the object side, positive lens, negative lens, aperture stop, negative lens, positive lens, or in order from the object side, negative lens, positive lens, aperture stop, positive lens, It is desirable to arrange a negative lens from the viewpoint of symmetry.
 また、本願の第2実施形態に係るズームレンズは、以下の条件式(2-1)を満足することが望ましい。
(2-1) 1.00 < |f2i|/fw < 4.00
 ただし、
f2i:前記後側レンズ群の焦点距離
fw :広角端状態における前記ズームレンズの焦点距離
In addition, it is desirable that the zoom lens according to the second embodiment of the present application satisfies the following conditional expression (2-1).
(2-1) 1.00 <| f2i | / fw <4.00
However,
f2i: focal length of the rear lens group fw: focal length of the zoom lens in the wide-angle end state
 条件式(2-1)は、第2レンズ群における後側レンズ群の焦点距離を規定する条件式である。本願の第2実施形態に係るズームレンズは、条件式(2-1)を満足することにより、コマ収差や球面収差を良好に補正することができる。 Conditional expression (2-1) is a conditional expression that defines the focal length of the rear lens group in the second lens group. The zoom lens according to the second embodiment of the present application can satisfactorily correct coma and spherical aberration by satisfying conditional expression (2-1).
 本願の第2実施形態に係るズームレンズの条件式(2-1)の対応値が下限値を下回ると、後側レンズ群の偏心敏感度が増大する、即ち製造誤差等により後側レンズ群に偏芯が生じた場合に諸収差が発生しやすくなってしまう。これにより、コマ収差の悪化を招いてしまう。なお、本願の効果をより確実にするために、条件式(2-1)の下限値を1.50とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-1)の下限値を2.00とすることがより好ましい。 When the corresponding value of the conditional expression (2-1) of the zoom lens according to the second embodiment of the present application is less than the lower limit value, the decentering sensitivity of the rear lens group increases, that is, due to manufacturing errors or the like, When the eccentricity occurs, various aberrations are likely to occur. As a result, coma is deteriorated. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2-1) to 1.50. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2-1) to 2.00.
 一方、本願の第2実施形態に係るズームレンズの条件式(2-1)の対応値が上限値を上回ると、後側レンズ群中の少なくとも一部のレンズである防振レンズ群の防振時の移動量が増大する。このため、本願の第2実施形態に係るズームレンズの外径の小型化や全長の短縮化を図ることが困難になってしまう。また、後側レンズ群の屈折力が小さくなる。そこで、第2レンズ群の屈折力を確保するために前側レンズ群の屈折力を大きくすれば、球面収差やコマ収差の悪化を招いてしまう。なお、本願の効果をより確実にするために、条件式(2-1)の上限値を3.50とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-1)の上限値を3.20とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (2-1) of the zoom lens according to the second embodiment of the present application exceeds the upper limit, the image stabilization of the image stabilization lens group which is at least a part of the lenses in the rear lens group. The amount of movement at the time increases. This makes it difficult to reduce the outer diameter and the overall length of the zoom lens according to the second embodiment of the present application. Further, the refractive power of the rear lens group becomes small. Therefore, if the refractive power of the front lens group is increased in order to secure the refractive power of the second lens group, the spherical aberration and the coma aberration will be deteriorated. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2-1) to 3.50. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2-1) to 3.20.
 また、本願の第2実施形態に係るズームレンズは、以下の条件式(2-2)を満足することが望ましい。
(2-2) 0.50 < |f2i|/f2 < 5.00
 ただし、
f2i:前記後側レンズ群の焦点距離
f2 :前記第2レンズ群の焦点距離
In addition, it is desirable that the zoom lens according to the second embodiment of the present application satisfies the following conditional expression (2-2).
(2-2) 0.50 <| f2i | / f2 <5.00
However,
f2i: focal length of the rear lens group f2: focal length of the second lens group
 条件式(2-2)は、第2レンズ群における後側レンズ群の焦点距離を規定する条件式である。本願の第2実施形態に係るズームレンズは、条件式(2-2)を満足することにより、コマ収差や球面収差を良好に補正することができる。 Conditional expression (2-2) is a conditional expression that defines the focal length of the rear lens group in the second lens group. The zoom lens according to the second embodiment of the present application can satisfactorily correct coma and spherical aberration by satisfying conditional expression (2-2).
 本願の第2実施形態に係るズームレンズの条件式(2-2)の対応値が下限値を下回ると、後側レンズ群の屈折力が大きくなるとともに前側レンズ群の屈折力が小さくなり、球面収差とコマ収差の悪化を招いてしまう。なお、本願の効果をより確実にするために、条件式(2-2)の下限値を1.00とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-2)の下限値を1.50とすることがより好ましい。 When the corresponding value of the conditional expression (2-2) of the zoom lens according to the second embodiment of the present application is less than the lower limit value, the refractive power of the rear lens unit is increased and the refractive power of the front lens unit is decreased. Aberration and coma will be worsened. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (2-2) to 1.00. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2-2) to 1.50.
 一方、本願の第2実施形態に係るズームレンズの条件式(2-2)の対応値が上限値を上回ると、後側レンズ群の屈折力が小さくなるとともに前側レンズ群の屈折力が大きくなり、コマ収差の悪化を招いてしまう。なお、本願の効果をより確実にするために、条件式(2-2)の上限値を4.00とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-2)の上限値を3.00とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-2)の上限値を2.50とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (2-2) of the zoom lens according to the second embodiment of the present application exceeds the upper limit value, the refractive power of the rear lens group decreases and the refractive power of the front lens group increases. As a result, coma aberration is worsened. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (2-2) to 4.00. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (2-2) to 3.00. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2-2) to 2.50.
 また、本願の第2実施形態に係るズームレンズは、以下の条件式(2-3)を満足することが望ましい。
(2-3) 1.00 < m12/fw < 2.00
 ただし、
m12:前記第1レンズ群中の最も像側のレンズ面から前記第2レンズ群中の最も物体側のレンズ面までの光軸上の距離の広角端状態から望遠端状態までの変化量
fw :広角端状態における前記ズームレンズの焦点距離
In addition, it is desirable that the zoom lens according to the second embodiment of the present application satisfies the following conditional expression (2-3).
(2-3) 1.00 <m12 / fw <2.00
However,
m12: Amount of change fw from the wide-angle end state to the telephoto end state of the distance on the optical axis from the most image side lens surface in the first lens group to the most object side lens surface in the second lens group: The focal length of the zoom lens in the wide-angle end state
 条件式(2-3)は、広角端状態から望遠端状態への変倍時の第1レンズ群と第2レンズ群との空気間隔の変化量を規定する条件式である。本願の第2実施形態に係るズームレンズは、条件式(2-3)を満足することにより、本願の第2実施形態に係るズームレンズの全長の増大を防止しながら、球面収差、コマ収差、色収差及び像面湾曲を良好に補正することができる。 Conditional expression (2-3) is a conditional expression that regulates the amount of change in the air gap between the first lens group and the second lens group during zooming from the wide-angle end state to the telephoto end state. The zoom lens according to the second embodiment of the present application satisfies the conditional expression (2-3), thereby preventing an increase in the total length of the zoom lens according to the second embodiment of the present application, while preventing spherical aberration, coma aberration, Chromatic aberration and field curvature can be corrected satisfactorily.
 本願の第2実施形態に係るズームレンズの条件式(2-3)の対応値が下限値を下回ると、各レンズ群の屈折力が増大する、又は各レンズ群の変倍時の移動量が増大する。このため、偏心敏感度の増大や本願の第2実施形態に係るズームレンズの全長の増大を招いてしまう。また、光学性能の悪化、具体的には球面収差、コマ収差及び色収差の悪化を招いてしまう。特に、第3レンズ群の屈折力が増大することにより、像面湾曲の悪化を招いてしまう。なお、本願の効果をより確実にするために、条件式(2-3)の下限値を1.20とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-3)の下限値を1.40とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-3)の下限値を1.45とすることがより好ましい。 When the corresponding value of the conditional expression (2-3) of the zoom lens according to the second embodiment of the present application is below the lower limit value, the refractive power of each lens group increases or the amount of movement of each lens group at the time of zooming varies. Increase. For this reason, an increase in the eccentric sensitivity and an increase in the overall length of the zoom lens according to the second embodiment of the present application are caused. Further, the optical performance is deteriorated, specifically, the spherical aberration, the coma aberration, and the chromatic aberration are deteriorated. In particular, when the refractive power of the third lens group increases, the field curvature is deteriorated. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2-3) to 1.20. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2-3) to 1.40. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2-3) to 1.45.
 一方、本願の第2実施形態に係るズームレンズの条件式(2-3)の対応値が上限値を上回ると、本願の第2実施形態に係るズームレンズの全長が増大してしまう。このため、本願の第2実施形態に係るズームレンズの全長の短縮化や外径の小型化を図ることが困難になってしまう。特に、望遠端状態で、第2レンズ群より像側に配置されたレンズ群(第3レンズ群又は第4レンズ群)と開口絞りとの距離が増大するため、上記レンズ群(第3レンズ群又は第4レンズ群)の偏芯像面湾曲の敏感度がそれぞれ増大してしまう。なお、本願の効果をより確実にするために、条件式(2-3)の上限値を1.80とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-3)の上限値を1.65とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (2-3) of the zoom lens according to the second embodiment of the present application exceeds the upper limit value, the total length of the zoom lens according to the second embodiment of the present application increases. For this reason, it becomes difficult to shorten the overall length of the zoom lens according to the second embodiment of the present application and to reduce the outer diameter. In particular, in the telephoto end state, the distance between the lens group (the third lens group or the fourth lens group) disposed on the image side from the second lens group and the aperture stop increases, and thus the lens group (third lens group). Alternatively, the sensitivity of the decentered field curvature of the fourth lens group) increases. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2-3) to 1.80. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2-3) to 1.65.
 また、本願の第2実施形態に係るズームレンズは、広角端状態から望遠端状態への変倍時に、前記第1レンズ群、前記第2レンズ群及び前記第3レンズが光軸に沿って移動し、前記第4レンズ群の位置が固定であることが望ましい。この構成により、第4レンズ群を変倍時固定として偏芯コマ収差の敏感度を低減することができる。 In the zoom lens according to the second embodiment of the present application, the first lens group, the second lens group, and the third lens move along the optical axis when zooming from the wide-angle end state to the telephoto end state. In addition, it is desirable that the position of the fourth lens group is fixed. With this configuration, the sensitivity of decentering coma aberration can be reduced by fixing the fourth lens group at the time of zooming.
 また、本願の第2実施形態に係るズームレンズは、前記前側レンズ群が、少なくとも2つのレンズを有し、少なくとも1つの非球面を有することが望ましい。少なくとも2つのレンズ、特に正レンズと負レンズとを組み合わせることにより、色収差を良好に補正することができる。また、少なくとも2つのレンズを有し、かつ、少なくとも1つの非球面を有することにより、球面収差とコマ収差を良好に補正することができる。さらに、前記前側レンズ群は、2枚のレンズからなる構成とすることにより、最小枚数の構成とすることができる。 In the zoom lens according to the second embodiment of the present application, it is preferable that the front lens group has at least two lenses and has at least one aspherical surface. Chromatic aberration can be favorably corrected by combining at least two lenses, particularly a positive lens and a negative lens. Moreover, spherical aberration and coma can be favorably corrected by having at least two lenses and having at least one aspherical surface. Furthermore, the front lens group can be configured to have a minimum number of lenses by configuring the front lens group with two lenses.
 本願の光学装置は、上述した構成の第2実施形態に係るズームレンズを有することを特徴としている。これにより、防振時と非防振時の両方において色収差を良好に補正し、高い光学性能を備えた光学装置を実現することができる。 The optical apparatus of the present application is characterized by having the zoom lens according to the second embodiment having the above-described configuration. As a result, it is possible to realize an optical device having high optical performance by correcting chromatic aberration well both in the case of anti-vibration and in the case of non-vibration.
 本願の第2実施形態に係るズームレンズの製造方法は、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有するズームレンズの製造方法であって、前記第2レンズ群が、物体側から順に、前側レンズ群と、開口絞りと、後側レンズ群とを有するようにし、前記前側レンズ群と前記後側レンズ群が少なくとも1つの負レンズをそれぞれ有するようにし、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化するようにし、前記後側レンズ群中の少なくとも一部のレンズが光軸と直交する方向の成分を含むように移動するようにすることを特徴としている。これにより、防振時と非防振時の両方において色収差を良好に補正し、高い光学性能を備えたズームレンズを製造することができる。 The zoom lens manufacturing method according to the second embodiment of the present application has, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a negative refractive power. A method of manufacturing a zoom lens having a third lens group and a fourth lens group having a positive refractive power, wherein the second lens group includes, in order from the object side, a front lens group, an aperture stop, and a rear lens group. A front lens group, and the front lens group and the rear lens group each have at least one negative lens, and at the time of zooming from the wide-angle end state to the telephoto end state, The rear lens group is configured such that an interval between the second lens group, an interval between the second lens group and the third lens group, and an interval between the third lens group and the fourth lens group are changed. At least some of the lenses in the optical axis It is characterized in that so as to move to contain the direction orthogonal component. As a result, it is possible to manufacture a zoom lens having high optical performance by correcting chromatic aberration well both during and without image stabilization.
 以下、本願の第3実施形態に係るズームレンズ、光学装置及びズームレンズの製造方法について説明する。
 本願の第3実施形態に係るズームレンズは、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、広角端状態から望遠端状態への変倍時に、前記第3レンズ群が光軸に沿って移動し、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化し、以下の条件式(3-1)を満足することを特徴とする。
(3-1) 0.50 < m3/fw < 0.80
 ただし、
m3:広角端状態から望遠端状態への変倍時の前記第3レンズ群の移動量
fw:広角端状態における前記ズームレンズの焦点距離
Hereinafter, a zoom lens, an optical device, and a zoom lens manufacturing method according to the third embodiment of the present application will be described.
The zoom lens according to the third embodiment of the present application includes, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens having a negative refractive power. And a fourth lens group having a positive refractive power, and the third lens group moves along the optical axis during zooming from the wide-angle end state to the telephoto end state, and the first lens group And the distance between the second lens group, the distance between the second lens group and the third lens group, and the distance between the third lens group and the fourth lens group change, and the following conditional expression (3 -1) is satisfied.
(3-1) 0.50 <m3 / fw <0.80
However,
m3: amount of movement of the third lens group during zooming from the wide-angle end state to the telephoto end state fw: focal length of the zoom lens in the wide-angle end state
 条件式(3-1)は、広角端状態から望遠端状態への変倍時の第3レンズ群の移動量を規定する条件式である。本願の第3実施形態に係るズームレンズは、条件式(3-1)を満足することにより、本願の第3実施形態に係るズームレンズの小型化を図りながら球面収差、色収差、コマ収差及び像面湾曲を良好に補正することができる。また、本願の第3実施形態に係るズームレンズは、従来は第1レンズ群や第2レンズ群に負担させていた変倍時の移動量を、第2レンズ群より像側に配置された第3レンズ群にも負担させることができ、レンズ鏡筒内の光学要素の移動に用いる構成部材(カム筒等)をそれぞれ短縮化させてレンズ全長の短縮化が可能である。 Conditional expression (3-1) is a conditional expression that regulates the amount of movement of the third lens unit during zooming from the wide-angle end state to the telephoto end state. The zoom lens according to the third embodiment of the present application satisfies the conditional expression (3-1), thereby reducing the size of the zoom lens according to the third embodiment of the present application, and reducing spherical aberration, chromatic aberration, coma aberration, and image. Surface curvature can be corrected satisfactorily. Further, in the zoom lens according to the third embodiment of the present application, the amount of movement at the time of zooming, which has conventionally been imposed on the first lens group and the second lens group, is arranged closer to the image side than the second lens group. The three lens groups can also be burdened, and the total length of the lens can be shortened by shortening the constituent members (cam barrel, etc.) used for moving the optical elements in the lens barrel.
 本願の第3実施形態に係るズームレンズの条件式(3-1)の対応値が下限値を下回ると、第3レンズ群以外のレンズ群の変倍の負担が増大する。このため、変倍時の第3レンズ群以外のレンズ群の移動量の増大や、各レンズ群の屈折力の増大を招くことになる。この結果、本願の第3実施形態に係るズームレンズの全長の増大を招いてしまう。また、光学性能の悪化、具体的には球面収差、色収差及びコマ収差の悪化、さらに合焦時の色収差の変動を招いてしまう。また、偏芯敏感度の増大を招いてしまう、即ち製造誤差等により本願の第3実施形態に係るズームレンズを構成するレンズどうしに偏芯が生じた場合に諸収差が発生しやすくなってしまう。なお、本願の効果をより確実にするために、条件式(3-1)の下限値を0.51とすることがより好ましい。 If the corresponding value of conditional expression (3-1) of the zoom lens according to the third embodiment of the present application is less than the lower limit value, the burden of zooming of the lens units other than the third lens unit increases. For this reason, the amount of movement of the lens units other than the third lens unit at the time of zooming increases and the refractive power of each lens unit increases. As a result, the overall length of the zoom lens according to the third embodiment of the present application is increased. Further, the optical performance is deteriorated, specifically, the spherical aberration, the chromatic aberration and the coma aberration are deteriorated, and the chromatic aberration is changed during focusing. In addition, an increase in decentration sensitivity is caused, that is, various aberrations are likely to occur when decentering occurs between lenses constituting the zoom lens according to the third embodiment of the present application due to manufacturing errors or the like. . In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (3-1) to 0.51.
 一方、本願の第3実施形態に係るズームレンズの条件式(3-1)の対応値が上限値を上回ると、本願の第3実施形態に係るズームレンズの全長の増大を招いてしまう。また、光学性能の悪化、特に像面湾曲の悪化を招いてしまう。なお、本願の効果をより確実にするために、条件式(3-1)の上限値を0.70とすることがより好ましい。また、本願の効果をより確実にするために、条件式(3-1)の上限値を0.68とすることがより好ましい。
 以上の構成により、全長が短く小型で高い光学性能を備えたズームレンズを実現することができる。
On the other hand, if the corresponding value of the conditional expression (3-1) of the zoom lens according to the third embodiment of the present application exceeds the upper limit value, the total length of the zoom lens according to the third embodiment of the present application is increased. In addition, the optical performance is deteriorated, particularly, the curvature of field is deteriorated. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (3-1) to 0.70. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (3-1) to 0.68.
With the above configuration, a zoom lens having a short overall length and a small size and high optical performance can be realized.
 また、本願の第3実施形態に係るズームレンズは、前記第4レンズ群が、像側に凸面を向けたメニスカスレンズを有することが望ましい。この構成により、像面湾曲を補正し、像面の平坦性を確保することができる。第4レンズ群は、前記メニスカスレンズの物体側又は像側にさらにレンズ成分を有する構成としてもよい。また、前記メニスカスレンズは他のレンズと貼り合わせて接合レンズを構成することとしても構わない。 In the zoom lens according to the third embodiment of the present application, it is preferable that the fourth lens group includes a meniscus lens having a convex surface directed toward the image side. With this configuration, it is possible to correct curvature of field and to ensure flatness of the image surface. The fourth lens group may further include a lens component on the object side or the image side of the meniscus lens. The meniscus lens may be bonded to another lens to form a cemented lens.
 また、本願の第3実施形態に係るズームレンズは、以下の条件式(3-2)を満足することが望ましい。
(3-2) -5.00 < (r42+r41)/(r42-r41) < -1.30
 ただし、
r41:前記第4レンズ群中の前記メニスカスレンズの物体側のレンズ面の曲率半径
r42:前記第4レンズ群中の前記メニスカスレンズの像側のレンズ面の曲率半径
In addition, it is desirable that the zoom lens according to the third embodiment of the present application satisfies the following conditional expression (3-2).
(3-2) -5.00 <(r42 + r41) / (r42-r41) <-1.30
However,
r41: radius of curvature of the object side lens surface of the meniscus lens in the fourth lens group r42: radius of curvature of the image side lens surface of the meniscus lens in the fourth lens group
 条件式(3-2)は、第4レンズ群中のメニスカスレンズのシェイプファクタを規定する条件式である。本願の第3実施形態に係るズームレンズは、条件式(3-2)を満足することにより、像面湾曲をより良好に補正し、像面の平坦性を確保することができる。 Conditional expression (3-2) is a conditional expression that defines the shape factor of the meniscus lens in the fourth lens group. By satisfying conditional expression (3-2), the zoom lens according to the third embodiment of the present application can correct field curvature more favorably and ensure flatness of the image plane.
 本願の第3実施形態に係るズームレンズの条件式(3-2)の対応値が下限値を下回ると、第4レンズ群中のメニスカスレンズの物体側のレンズ面の曲率半径及び像側のレンズ面の曲率半径が互いに小さくなり過ぎる。これにより、球面収差やコマ収差の悪化を招いてしまう。なお、本願の効果をより確実にするために、条件式(3-2)の下限値を-4.00とすることがより好ましい。また、本願の効果をより確実にするために、条件式(3-2)の下限値を-3.80とすることがより好ましい。 When the corresponding value of conditional expression (3-2) of the zoom lens according to the third embodiment of the present application is below the lower limit value, the radius of curvature of the object side lens surface of the meniscus lens in the fourth lens group and the lens on the image side The curvature radii of the surfaces are too small. This leads to deterioration of spherical aberration and coma aberration. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (3-2) to −4.00. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (3-2) to −3.80.
 一方、本願の第3実施形態に係るズームレンズの条件式(3-2)の対応値が上限値を上回ると、像面湾曲を十分に補正することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(3-2)の上限値を-1.50とすることがより好ましい。また、本願の効果をより確実にするために、条件式(3-2)の上限値を-1.80とすることがより好ましい。 On the other hand, if the corresponding value of conditional expression (3-2) of the zoom lens according to the third embodiment of the present application exceeds the upper limit value, the curvature of field cannot be corrected sufficiently. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (3-2) to −1.50. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (3-2) to −1.80.
 また、本願の第3実施形態に係るズームレンズは、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が減少し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が増加することが望ましい。この構成により、レンズ全長を短くすることが可能である。 In the zoom lens according to the third embodiment of the present application, the distance between the first lens group and the second lens group is reduced during zooming from the wide-angle end state to the telephoto end state, and the second lens group It is preferable that the distance between the third lens group and the third lens group changes, and the distance between the third lens group and the fourth lens group increases. With this configuration, it is possible to shorten the overall lens length.
 また、本願の第3実施形態に係るズームレンズは、広角端状態から望遠端状態への変倍時に、前記第3レンズ群が光軸に沿って物体側へ移動し、無限遠物体から近距離物体への合焦時に、前記第3レンズ群が光軸に沿って像側へ移動することが望ましい。
 また、本願の第3実施形態に係るズームレンズは、変倍時に前記第3レンズ群が光軸に沿って物体側へ移動し、合焦時に前記第3レンズ群が光軸に沿って像側へ移動する場合、以下の条件式(3-3)を満足することが望ましい。
(3-3) 0.45 < fst/m3 < 1.00
 ただし、
fst :望遠端状態において無限遠物体から近距離物体へ合焦する時の前記第3レンズ群の移動量
m3:広角端状態から望遠端状態への変倍時の前記第3レンズ群の移動量
In the zoom lens according to the third embodiment of the present application, the third lens unit moves toward the object side along the optical axis at the time of zooming from the wide-angle end state to the telephoto end state. It is desirable that the third lens group moves toward the image side along the optical axis when focusing on the object.
In the zoom lens according to the third embodiment of the present application, the third lens group moves toward the object side along the optical axis during zooming, and the third lens group moves along the optical axis at the image side during focusing. It is preferable that the following conditional expression (3-3) is satisfied.
(3-3) 0.45 <fst / m3 <1.00
However,
fst: amount of movement of the third lens group when focusing from an object at infinity to a close object in the telephoto end state m3: amount of movement of the third lens group during zooming from the wide-angle end state to the telephoto end state
 本願の第3実施形態に係るズームレンズは、上記のように広角端状態から望遠端状態への変倍時に、第3レンズ群が光軸に沿って物体側へ移動し、無限遠物体から近距離物体への合焦時に、第3レンズ群が光軸に沿って像側へ移動する構成とすることにより、広角端状態から望遠端状態への変倍時に第3レンズ群が物体側へ移動したストローク(第3レンズ群と第4レンズ群との間隔の変化量含む)の分だけ、望遠端状態において第3レンズ群が像側へ移動することが可能となる。
 条件式(3-3)は、望遠端状態において無限遠物体から近距離物体へ合焦する時の第3レンズ群の移動量と、変倍時の第3レンズ群の移動量との関係を規定する条件式である。条件式(3-3)は、第3レンズ群が、変倍の際に物体側に移動することにより生じる間隔を、合焦の際に像側に移動することに利用することを示している。本願の第3実施形態に係るズームレンズは、条件式(3-3)を満足することにより、第3レンズ群の変倍時のストロークと合焦時のストロークとを効率良く配置させることができ、全長の短縮化が可能である。
In the zoom lens according to the third embodiment of the present application, the third lens unit moves toward the object side along the optical axis at the time of zooming from the wide-angle end state to the telephoto end state as described above. When focusing on a distance object, the third lens group moves toward the image side along the optical axis, so that the third lens group moves toward the object side during zooming from the wide-angle end state to the telephoto end state. The third lens group can move to the image side in the telephoto end state by the stroke (including the change in the distance between the third lens group and the fourth lens group).
Conditional expression (3-3) shows the relationship between the amount of movement of the third lens unit when focusing from an object at infinity to a close object in the telephoto end state and the amount of movement of the third lens unit during zooming. It is a conditional expression to prescribe. Conditional expression (3-3) indicates that the third lens unit uses the distance generated by moving toward the object side during zooming to move toward the image side during focusing. . The zoom lens according to the third embodiment of the present application can efficiently arrange the zooming stroke and the focusing stroke of the third lens group by satisfying conditional expression (3-3). The overall length can be shortened.
 本願の第3実施形態に係るズームレンズの条件式(3-3)の対応値が下限値を下回ると、第3レンズ群の変倍時の移動量が大きくなり全長の増大を招くとともに、光学性能の悪化、特に像面湾曲の悪化を招いてしまう。なお、本願の効果をより確実にするために、条件式(3-3)の下限値を0.47とすることがより好ましい。また、本願の効果をより確実にするために、条件式(3-3)の下限値を0.50とすることがより好ましい。 When the corresponding value of the conditional expression (3-3) of the zoom lens according to the third embodiment of the present application is below the lower limit value, the amount of movement of the third lens unit at the time of zooming increases, leading to an increase in the total length and the optical length. Deterioration of performance, especially deterioration of curvature of field will be caused. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (3-3) to 0.47. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (3-3) to 0.50.
 一方、本願の第3実施形態に係るズームレンズの条件式(3-3)の対応値が上限値を上回ると、第3レンズ群の変倍時の移動量が小さくなり、第3レンズ群以外のレンズ群の変倍の負担が大きくなる。したがって、変倍時の第3レンズ群以外のレンズ群の移動量の増大や、各レンズ群の屈折力の増大を招くことになる。変倍時の第3レンズ群以外のレンズ群の移動量を増大させると、本願の第3実施形態に係るズームレンズの全長の増大を招いてしまう。また、各レンズ群の屈折力を増大させると、光学性能の悪化、具体的には球面収差、色収差及びコマ収差の悪化、さらに合焦時の色収差の変動を招くとともに、偏芯敏感度の増大を招いてしまう。なお、本願の効果をより確実にするために、条件式(3-3)の上限値を0.90とすることがより好ましい。また、本願の効果をより確実にするために、条件式(3-3)の上限値を0.80とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (3-3) of the zoom lens according to the third embodiment of the present application exceeds the upper limit value, the moving amount at the time of zooming of the third lens group becomes small, and other than the third lens group The burden of zooming on the lens group increases. Therefore, the amount of movement of the lens units other than the third lens unit at the time of zooming increases and the refractive power of each lens unit increases. Increasing the amount of movement of the lens units other than the third lens unit at the time of zooming increases the overall length of the zoom lens according to the third embodiment of the present application. Increasing the refractive power of each lens group leads to deterioration of optical performance, specifically, spherical aberration, chromatic aberration and coma aberration, and further fluctuation of chromatic aberration at the time of focusing. Will be invited. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (3-3) to 0.90. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (3-3) to 0.80.
 また、本願の第3実施形態に係るズームレンズは、前記第3レンズ群が以下の条件式(3-4)を満足することが望ましい。
(3-4) 1.50 < (-f3)/fw < 4.00
 ただし、
f3:前記第3レンズ群の焦点距離
fw:広角端状態における前記ズームレンズの焦点距離
In the zoom lens according to Embodiment 3 of the present application, it is preferable that the third lens group satisfies the following conditional expression (3-4).
(3-4) 1.50 <(− f3) / fw <4.00
However,
f3: focal length of the third lens group fw: focal length of the zoom lens in the wide-angle end state
 条件式(3-4)は、第3レンズ群の屈折力を規定する条件式である。本願の第3実施形態に係るズームレンズは、条件式(3-4)を満足することにより、本願の第3実施形態に係るズームレンズの小型化を図りながら球面収差、色収差、コマ収差及び像面湾曲を良好に補正することができる。 Conditional expression (3-4) is a conditional expression that defines the refractive power of the third lens group. The zoom lens according to the third embodiment of the present application satisfies the conditional expression (3-4), thereby reducing the size of the zoom lens according to the third embodiment of the present application, while reducing spherical aberration, chromatic aberration, coma aberration, and image. Surface curvature can be corrected satisfactorily.
 本願の第3実施形態に係るズームレンズの条件式(3-4)の対応値が下限値を下回ると、第3レンズ群の屈折力が大きくなり過ぎて、コマ収差の悪化を招いてしまう。なお、本願の効果をより確実にするために、条件式(3-4)の下限値を2.00とすることがより好ましい。 If the corresponding value of the conditional expression (3-4) of the zoom lens according to the third embodiment of the present application is lower than the lower limit value, the refractive power of the third lens group becomes too large, leading to deterioration of coma aberration. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (3-4) to 2.00.
 一方、本願の第3実施形態に係るズームレンズの条件式(3-4)の対応値が上限値を上回ると、第3レンズ群の屈折力が小さくなり過ぎて、第3レンズ群以外のレンズ群の変倍の負担が増大する。このため、特に変倍時の第2レンズ群の移動量の増大や各レンズ群の屈折力の増大を招くことになる。この結果、本願の第3実施形態に係るズームレンズの全長の増大を招いてしまう。また、光学性能の悪化、具体的には球面収差、色収差及びコマ収差の悪化、さらに合焦時の色収差の変動を招いてしまう。また、偏芯敏感度の増大を招いてしまう。なお、本願の効果をより確実にするために、条件式(3-4)の上限値を3.00とすることがより好ましい。また、本願の効果をより確実にするために、条件式(3-4)の上限値を2.80とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (3-4) of the zoom lens according to the third embodiment of the present application exceeds the upper limit value, the refractive power of the third lens group becomes too small, and lenses other than the third lens group The burden of zooming on the group increases. For this reason, an increase in the amount of movement of the second lens group at the time of zooming and an increase in the refractive power of each lens group are caused. As a result, the overall length of the zoom lens according to the third embodiment of the present application is increased. Further, the optical performance is deteriorated, specifically, the spherical aberration, the chromatic aberration and the coma aberration are deteriorated, and the chromatic aberration is changed during focusing. In addition, the eccentric sensitivity increases. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (3-4) to 3.00. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (3-4) to 2.80.
 また、本願の第3実施形態に係るズームレンズは、前記第4レンズ群が、像側に凸面を向けた正メニスカスレンズからなることが望ましい。この構成により、像面湾曲を補正し、像面の平坦性を確保するとともに、第4レンズ群の構成を簡略化することができる。 In the zoom lens according to the third embodiment of the present application, it is desirable that the fourth lens group is composed of a positive meniscus lens having a convex surface facing the image side. With this configuration, it is possible to correct the curvature of field, ensure the flatness of the image surface, and simplify the configuration of the fourth lens group.
 また、本願の第3実施形態に係るズームレンズは、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群が光軸に沿って移動し、前記第4レンズ群の位置が固定であることが望ましい。この構成により、偏芯敏感度の高い前記第4レンズ群の偏芯誤差による収差発生を抑えることが可能となる。 In the zoom lens according to the third embodiment of the present application, the first lens group and the second lens group move along the optical axis at the time of zooming from the wide-angle end state to the telephoto end state. It is desirable that the position of the lens group is fixed. With this configuration, it is possible to suppress the occurrence of aberration due to the decentration error of the fourth lens group having high decentering sensitivity.
 また、本願の第3実施形態に係るズームレンズは、前記第4レンズ群が少なくとも1つの非球面を有することが望ましい。この構成により、像面の平坦性をより良好に確保することができる。 In the zoom lens according to the third embodiment of the present application, it is preferable that the fourth lens group has at least one aspheric surface. With this configuration, the flatness of the image surface can be ensured better.
 本願の光学装置は、上述した構成の第3実施形態に係るズームレンズを有することを特徴としている。これにより、小型で高い光学性能を備えた光学装置を実現することができる。 The optical apparatus of the present application is characterized by having the zoom lens according to the third embodiment having the above-described configuration. Thereby, it is possible to realize a small optical device having high optical performance.
 本願の第3実施形態に係るズームレンズの製造方法は、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有するズームレンズの製造方法であって、広角端状態から望遠端状態への変倍時に、前記第3レンズ群が光軸に沿って移動し、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化するようにし、前記第3レンズ群が以下の条件式(3-1)を満足するようにすることを特徴としている。これにより、全長が短く小型で高い光学性能を備えたズームレンズを製造することができる。
(3-1) 0.50 < m3/fw < 0.80
 ただし、
m3:広角端状態から望遠端状態への変倍時の前記第3レンズ群の移動量
fw:広角端状態における前記ズームレンズの焦点距離
The zoom lens manufacturing method according to the third embodiment of the present application has, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a negative refractive power. A zoom lens manufacturing method having a third lens group and a fourth lens group having a positive refractive power, wherein the third lens group is placed on the optical axis at the time of zooming from the wide-angle end state to the telephoto end state. The distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, and the distance between the third lens group and the fourth lens group. Is changed so that the third lens group satisfies the following conditional expression (3-1). Thereby, a zoom lens having a short overall length and a small size and high optical performance can be manufactured.
(3-1) 0.50 <m3 / fw <0.80
However,
m3: amount of movement of the third lens group during zooming from the wide-angle end state to the telephoto end state fw: focal length of the zoom lens in the wide-angle end state
 以下、本願の第4実施形態に係るズームレンズ、光学装置及びズームレンズの製造方法について説明する。
 本願の第4実施形態に係るズームレンズは、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、前記第2レンズ群が、物体側から順に、正の屈折力を有する第1部分群と、負の屈折力を有する第2部分群と、開口絞りと、第3部分群とを有し、変倍に際して、前記第1レンズ群、前記第2レンズ群及び前記第3レンズ群が光軸に沿って移動し、前記第4レンズ群の位置が固定であり、合焦に際して、前記第3レンズ群の少なくとも一部が光軸に沿って移動し、前記第2レンズ群における前記第1部分群又は前記第2部分群が可動群として光軸と直交する方向の成分を含むように移動し、以下の条件式(4-1)を満足することを特徴としている。
(4-1) 0.15<|fw/fvr|<0.50
 ただし、
fw:広角端状態における前記ズームレンズの焦点距離
fvr:前記可動群の焦点距離
Hereinafter, a zoom lens, an optical device, and a zoom lens manufacturing method according to the fourth embodiment of the present application will be described.
The zoom lens according to the fourth embodiment of the present application includes, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens having a negative refractive power. And a fourth lens group having a positive refractive power. The second lens group, in order from the object side, a first partial group having a positive refractive power and a second lens group having a negative refractive power. The zoom lens has a partial group, an aperture stop, and a third partial group. During zooming, the first lens group, the second lens group, and the third lens group move along the optical axis, and the fourth lens group moves. The position of the lens group is fixed, and at the time of focusing, at least a part of the third lens group moves along the optical axis, and the first partial group or the second partial group in the second lens group is movable. Move so as to include a component in the direction perpendicular to the optical axis as a group, and satisfy the following conditional expression (4-1) It is characterized in Rukoto.
(4-1) 0.15 <| fw / fvr | <0.50
However,
fw: focal length of the zoom lens in the wide-angle end state fvr: focal length of the movable group
 上記のように本願の第4実施形態に係るズームレンズは、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、第2レンズ群が、物体側から順に、正の屈折力を有する第1部分群と、負の屈折力を有する第2部分群と、開口絞りと、第3部分群とを有する。この構成により、本願の第4実施形態に係るズームレンズは高変倍比と長焦点距離を有しながら良好な光学性能を達成することができる。 As described above, the zoom lens according to the fourth embodiment of the present application has, in order from the object side, the first lens group having negative refractive power, the second lens group having positive refractive power, and the negative refractive power. A third lens group having a positive refractive power and a fourth lens group having a positive refractive power. The second lens group in order from the object side has a first partial group having a positive refractive power and a negative refractive power. A second partial group, an aperture stop, and a third partial group. With this configuration, the zoom lens according to the fourth embodiment of the present application can achieve good optical performance while having a high zoom ratio and a long focal length.
 また、上記のように本願の第4実施形態に係るズームレンズは、第2レンズ群における第1部分群又は第2部分群が可動群として光軸と直交する方向の成分を含むように移動する。これにより、手ぶれ等に起因する像ぶれの補正、即ち防振を行うことができる。 In addition, as described above, the zoom lens according to the fourth embodiment of the present application moves so that the first partial group or the second partial group in the second lens group includes a component in a direction orthogonal to the optical axis as a movable group. . Accordingly, it is possible to correct image blur due to camera shake or the like, that is, to perform image stabilization.
 条件式(4-1)は、可動群の屈折力を規定するものである。本願の第4実施形態に係るズームレンズは、条件式(4-1)を満足することにより、小型化を図りながら防振時の光学性能の劣化を良好に抑えることができる。 Conditional expression (4-1) defines the refractive power of the movable group. By satisfying conditional expression (4-1), the zoom lens according to the fourth embodiment of the present application can satisfactorily suppress deterioration in optical performance during vibration isolation while achieving downsizing.
 本願の第4実施形態に係るズームレンズの条件式(4-1)の対応値が下限値を下回ると、防振時の可動群の移動量が大きくなり過ぎる。このため、本願の第4実施形態に係るズームレンズが大型化してしまうので好ましくない。なお、本願の効果をより確実にするために、条件式(4-1)の下限値を0.20とすることがより好ましい。 If the corresponding value of the conditional expression (4-1) of the zoom lens according to the fourth embodiment of the present application is less than the lower limit value, the moving amount of the movable group at the time of image stabilization becomes too large. For this reason, the zoom lens according to the fourth embodiment of the present application is undesirably enlarged. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (4-1) to 0.20.
 一方、本願の第4実施形態に係るズームレンズの条件式(4-1)の対応値が上限値を上回ると、可動群の屈折力が大きくなり過ぎる。このため、防振時に偏芯コマ収差、倍率色収差及び像面湾曲が悪化してしまうので好ましくない。なお、本願の効果をより確実にするために、条件式(4-1)の上限値を0.40とすることがより好ましい。 On the other hand, when the corresponding value of conditional expression (4-1) of the zoom lens according to the fourth embodiment of the present application exceeds the upper limit value, the refractive power of the movable group becomes too large. For this reason, the eccentric coma, the lateral chromatic aberration, and the curvature of field are deteriorated at the time of image stabilization, which is not preferable. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (4-1) to 0.40.
 以上の構成により、小型で、防振時の光学性能が良好なズームレンズを実現することができる。 With the above configuration, it is possible to realize a zoom lens that is small and has good optical performance during vibration isolation.
 また本願の第4実施形態に係るズームレンズは、前記第3部分群が正の屈折力を有することが望ましい。この構成により、正の第2レンズ群の主な屈折力を第3部分群が担うことにより、良好な収差補正を実現することができる。 In the zoom lens according to the fourth embodiment of the present application, it is desirable that the third partial group has a positive refractive power. With this configuration, since the third partial group bears the main refractive power of the positive second lens group, it is possible to realize good aberration correction.
 また本願の第4実施形態に係るズームレンズは、以下の条件式(4-2)を満足することが望ましい。
(4-2) 0.50<fw/f2<0.90
 ただし、
fw:広角端状態における前記ズームレンズの焦点距離
f2:前記第2レンズ群の焦点距離
In the zoom lens according to the fourth embodiment of the present application, it is preferable that the following conditional expression (4-2) is satisfied.
(4-2) 0.50 <fw / f2 <0.90
However,
fw: focal length of the zoom lens in the wide-angle end state f2: focal length of the second lens group
 条件式(4-2)は、第2レンズ群の屈折力を規定するものである。本願の第4実施形態に係るズームレンズは、条件式(4-2)を満足することにより、良好な収差補正と小型化とを実現することができる。 Conditional expression (4-2) defines the refractive power of the second lens group. The zoom lens according to the fourth embodiment of the present application can achieve satisfactory aberration correction and size reduction by satisfying conditional expression (4-2).
 本願の第4実施形態に係るズームレンズの条件式(4-2)の対応値が下限値を下回ると、第2レンズ群の屈折力が小さくなり過ぎて、所望の変倍を行うための移動量が大きくなり、大型化を招いてしまう。なお、本願の効果をより確実にするために、条件式(4-2)の下限値を0.60とすることがより好ましい。 When the corresponding value of the conditional expression (4-2) of the zoom lens according to the fourth embodiment of the present application is less than the lower limit value, the refractive power of the second lens unit becomes too small, and the movement for performing desired zooming is performed. The amount increases, leading to an increase in size. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (4-2) to 0.60.
 一方、本願の第4実施形態に係るズームレンズの条件式(4-2)の対応値が上限値を上回ると、第2レンズ群の屈折力が大きくなり過ぎて、小型化には有利であるが、球面収差の発生や偏芯による敏感度の増大を招いてしまう。なお、本願の効果をより確実にするために、条件式(4-2)の上限値を0.80とすることがより好ましい。 On the other hand, if the corresponding value of the conditional expression (4-2) of the zoom lens according to the fourth embodiment of the present application exceeds the upper limit value, the refractive power of the second lens group becomes too large, which is advantageous for downsizing. However, this increases the sensitivity due to the occurrence of spherical aberration and eccentricity. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (4-2) to 0.80.
 また本願の第4実施形態に係るズームレンズは、以下の条件式(4-3)を満足することが望ましい。
(4-3) 0.20<|f2/fvr|<0.60
 ただし、
f2:前記第2レンズ群の焦点距離
fvr:前記可動群の焦点距離
In the zoom lens according to the fourth embodiment of the present application, it is preferable that the following conditional expression (4-3) is satisfied.
(4-3) 0.20 <| f2 / fvr | <0.60
However,
f2: focal length of the second lens group fvr: focal length of the movable group
 条件式(4-3)は、第2レンズ群の屈折力と可動群の屈折力の比を規定するものである。本願の第4実施形態に係るズームレンズは、条件式(4-3)を満足することにより、小型化を図りながら防振時の光学性能の劣化を良好に抑えることができる。 Conditional expression (4-3) defines the ratio between the refractive power of the second lens group and the refractive power of the movable group. By satisfying conditional expression (4-3), the zoom lens according to the fourth embodiment of the present application can satisfactorily suppress deterioration in optical performance during vibration isolation while achieving downsizing.
 本願の第4実施形態に係るズームレンズの条件式(4-3)の対応値が下限値を下回ると、防振時の可動群の移動量が大きくなり過ぎる。このため、本願の第4実施形態に係るズームレンズが大型化してしまうので好ましくない。なお、本願の効果をより確実にするために、条件式(4-3)の下限値を0.30とすることがより好ましい。 If the corresponding value of the conditional expression (4-3) of the zoom lens according to the fourth embodiment of the present application is lower than the lower limit value, the moving amount of the movable group at the time of image stabilization becomes too large. For this reason, the zoom lens according to the fourth embodiment of the present application is undesirably enlarged. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (4-3) to 0.30.
 一方、本願の第4実施形態に係るズームレンズの条件式(4-3)の対応値が上限値を上回ると、可動群の屈折力が大きくなり過ぎる。このため、防振時に偏芯コマ収差、倍率色収差及び像面湾曲が悪化してしまうので好ましくない。なお、本願の効果をより確実にするために、条件式(4-3)の上限値を0.50とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (4-3) of the zoom lens according to the fourth embodiment of the present application exceeds the upper limit value, the refractive power of the movable group becomes too large. For this reason, the eccentric coma, the lateral chromatic aberration, and the curvature of field are deteriorated at the time of image stabilization, which is not preferable. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (4-3) to 0.50.
 また本願の第4実施形態に係るズームレンズは、前記第1レンズ群、前記第2レンズ群、前記第3レンズ群及び前記第4レンズ群が、それぞれ少なくとも1つの非球面を備えていることが望ましい。この構成により、球面収差や像面湾曲を良好に補正することができる。 In the zoom lens according to the fourth embodiment of the present application, the first lens group, the second lens group, the third lens group, and the fourth lens group each include at least one aspheric surface. desirable. With this configuration, spherical aberration and field curvature can be favorably corrected.
 本願の光学装置は、上述した構成の第4実施形態に係るズームレンズを有することを特徴としている。これにより、小型で、防振時の光学性能が良好な光学装置を実現することができる。 The optical device of the present application is characterized by including the zoom lens according to the fourth embodiment having the above-described configuration. As a result, it is possible to realize an optical device that is small and has good optical performance during vibration isolation.
 本願の第4実施形態に係るズームレンズの製造方法は、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有するズームレンズの製造方法であって、前記第2レンズ群が、物体側から順に、正の屈折力を有する第1部分群と、負の屈折力を有する第2部分群と、開口絞りと、第3部分群とを有するようにし、変倍に際して、前記第4レンズ群の位置が固定で、前記第1レンズ群、前記第2レンズ群及び前記第3レンズ群が光軸に沿って移動するようにし、合焦に際して、前記第3レンズ群の少なくとも一部が光軸に沿って移動するようにし、前記第2レンズ群における前記第1部分群又は前記第2部分群が可動群として光軸と直交する方向の成分を含むように移動するようにし、前記可動群が以下の条件式(4-1)を満足するようにすることを特徴としている。これにより、小型で、防振時の光学性能が良好なズームレンズを製造することができる。
(4-1) 0.15<|fw/fvr|<0.50
 ただし、
fw:広角端状態における前記ズームレンズの焦点距離
fvr:前記可動群の焦点距離
The zoom lens manufacturing method according to the fourth embodiment of the present application has, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a negative refractive power. A zoom lens manufacturing method having a third lens group and a fourth lens group having a positive refractive power, wherein the second lens group has a positive refractive power in order from the object side. And a second partial group having a negative refractive power, an aperture stop, and a third partial group, and at the time of zooming, the position of the fourth lens group is fixed, and the first lens group, The second lens group and the third lens group are moved along the optical axis, and at the time of focusing, at least a part of the third lens group is moved along the optical axis, and the second lens group is moved. The first partial group or the second partial group in the optical axis as a movable group Orthogonal to move in a direction including a component, the movable group is characterized in that so as to satisfy the following condition (4-1). Thereby, it is possible to manufacture a zoom lens that is small and has good optical performance during image stabilization.
(4-1) 0.15 <| fw / fvr | <0.50
However,
fw: focal length of the zoom lens in the wide-angle end state fvr: focal length of the movable group
 以下、本願の第1、第2実施形態の数値実施例に係るズームレンズを添付図面に基づいて説明する。なお、第1~第7実施例は第1、第2実施形態に共通する実施例であり、第8、第9実施例は第1実施形態の実施例である。
(第1実施例)
 図1A、及び図1Bはそれぞれ、本願の第1、第2実施形態に共通の第1実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。なお、図1及び後述する図4、7、10、13、16、19、22、25、28、30、32、34、36、40中の矢印は、広角端状態から望遠端状態への変倍時の各レンズ群の移動軌跡を示している。
 本実施例に係るズームレンズは、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
Hereinafter, zoom lenses according to numerical examples of the first and second embodiments of the present application will be described with reference to the accompanying drawings. The first to seventh examples are examples common to the first and second embodiments, and the eighth and ninth examples are examples of the first embodiment.
(First embodiment)
1A and 1B are sectional views of a zoom lens according to a first example common to the first and second embodiments of the present application in a wide-angle end state and a telephoto end state, respectively. The arrows in FIG. 1 and FIGS. 4, 7, 10, 13, 16, 19, 22, 25, 28, 30, 32, 34, 36, and 40 described later change from the wide-angle end state to the telephoto end state. The movement locus of each lens group at the time of magnification is shown.
The zoom lens according to the present embodiment includes a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a negative refractive power, and a positive It is composed of a fourth lens group G4 having refractive power.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。なお、負メニスカスレンズL12は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The first lens group G1, in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of. The negative meniscus lens L12 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 第2レンズ群G2は、物体側から順に、正の屈折力を有する前側レンズ群G2Fと、開口絞りSと、正の屈折力を有する後側レンズ群G2Rとから構成されている。
 前側レンズ群G2Fは、物体側から順に、両凸形状の正レンズL21と物体側に凹面を向けた負メニスカスレンズL22との接合レンズからなる。なお、正レンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
 後側レンズ群G2Rは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL23と両凸形状の正レンズL24との接合レンズからなる。
The second lens group G2 includes, in order from the object side, a front lens group G2F having a positive refractive power, an aperture stop S, and a rear lens group G2R having a positive refractive power.
The front lens group G2F includes, in order from the object side, a cemented lens of a biconvex positive lens L21 and a negative meniscus lens L22 having a concave surface facing the object side. The positive lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
The rear lens group G2R includes, in order from the object side, a cemented lens of a negative meniscus lens L23 having a convex surface facing the object side and a biconvex positive lens L24.
 第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL31からなる。なお、負メニスカスレンズL31は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The third lens group G3 includes a negative meniscus lens L31 having a convex surface directed toward the object side. The negative meniscus lens L31 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 第4レンズ群G4は、像側に凸面を向けた正メニスカスレンズL41からなる。なお、正メニスカスレンズL41は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The fourth lens group G4 includes a positive meniscus lens L41 having a convex surface directed toward the image side. The positive meniscus lens L41 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 以上の構成の下、本実施例に係るズームレンズでは、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が減少し、第2レンズ群G2と第3レンズ群G3との空気間隔が増加し、第3レンズ群G3と第4レンズ群G4との空気間隔が増加するように、第1レンズ群G1が光軸に沿って移動し、第2レンズ群G2及び第3レンズ群G3が光軸に沿って物体側へ移動する。なお、第4レンズ群G4の位置は変倍時に固定である。また、第2レンズ群G2の前側レンズ群G2Fと開口絞りSと後側レンズ群G2Rとは変倍時に一体で移動する。 With the above configuration, in the zoom lens according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens The first lens group G1 moves along the optical axis so that the air gap between the group G2 and the third lens group G3 increases and the air gap between the third lens group G3 and the fourth lens group G4 increases. The second lens group G2 and the third lens group G3 move toward the object side along the optical axis. The position of the fourth lens group G4 is fixed at the time of zooming. In addition, the front lens group G2F, the aperture stop S, and the rear lens group G2R of the second lens group G2 move together during zooming.
 本実施例に係るズームレンズでは、第3レンズ群G3を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。 In the zoom lens according to the present embodiment, the third lens group G3 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
 また、本実施例に係るズームレンズは、第2レンズ群G2における後側レンズ群G2Rを可動群として光軸と直交する方向の成分を含むように移動させることにより防振を行う。 Further, the zoom lens according to the present embodiment performs image stabilization by moving the rear lens group G2R in the second lens group G2 as a movable group so as to include a component in a direction orthogonal to the optical axis.
 以下の表1に、本実施例に係るズームレンズの諸元の値を掲げる。
 表1において、fは焦点距離、BFはバックフォーカス、即ち最も像側のレンズ面と像面Iとの光軸上の距離を示す。
 [面データ]において、mは物体側から数えた光学面の順番、rは曲率半径、dは面間隔(第n面(nは整数)と第n+1面との間隔)、ndはd線(波長587.6nm)に対する屈折率、νdはd線(波長587.6nm)に対するアッベ数をそれぞれ示している。また、OPは物体面、可変は可変の面間隔、Sは開口絞りS、Iは像面をそれぞれ示している。なお、曲率半径r=∞は平面を示している。非球面は面番号に*を付して曲率半径rの欄に近軸曲率半径の値を示している。空気の屈折率nd=1.000の記載は省略している。
Table 1 below lists values of specifications of the zoom lens according to the present example.
In Table 1, f indicates the focal length, and BF indicates the back focus, that is, the distance on the optical axis between the lens surface closest to the image side and the image surface I.
In [Surface data], m is the order of the optical surfaces counted from the object side, r is the radius of curvature, d is the surface spacing (the space between the nth surface (n is an integer) and the (n + 1) th surface), and nd is d. The refractive index for the line (wavelength 587.6 nm) and νd indicate the Abbe number for the d line (wavelength 587.6 nm), respectively. OP represents the object plane, variable represents the variable surface spacing, S represents the aperture stop S, and I represents the image plane. The radius of curvature r = ∞ indicates a plane. For the aspherical surface, * is added to the surface number, and the value of the paraxial radius of curvature is indicated in the column of the radius of curvature r. The description of the refractive index of air nd = 1.000 is omitted.
 [非球面データ]には、[面データ]に示した非球面について、その形状を次式で表した場合の非球面係数及び円錐定数を示す。
x=(h/r)/[1+{1-κ(h/r)1/2
  +A4h+A6h+A8h+A10h10
 ここで、hを光軸に垂直な方向の高さ、xを高さhにおける非球面の頂点の接平面から当該非球面までの光軸方向に沿った距離であるサグ量、κを円錐定数、A4,A6,A8,A10を非球面係数、rを基準球面の曲率半径である近軸曲率半径とする。なお、「E-n」(nは整数)は「×10-n」を示し、例えば「1.234E-05」は「1.234×10-5」を示す。2次の非球面係数A2は0であり、記載を省略している。
[Aspherical data] shows an aspherical coefficient and a conic constant when the shape of the aspherical surface shown in [Surface data] is expressed by the following equation.
x = (h 2 / r) / [1+ {1-κ (h / r) 2 } 1/2 ]
+ A4h 4 + A6h 6 + A8h 8 + A10h 10
Here, h is the height in the direction perpendicular to the optical axis, x is the distance along the optical axis direction from the tangent plane of the apex of the aspheric surface at the height h to the aspheric surface, and κ is the conic constant. , A4, A6, A8, and A10 are aspherical coefficients, and r is a paraxial radius of curvature which is the radius of curvature of the reference spherical surface. “E−n” (n is an integer) indicates “× 10 −n ”, for example “1.234E-05” indicates “1.234 × 10 −5 ”. The secondary aspherical coefficient A2 is 0 and is not shown.
 [各種データ]において、FNOはFナンバー、2ωは画角(単位は「°」)、Yは像高、TLは本実施例に係るズームレンズの全長、即ち第1面から像面Iまでの光軸上の距離、dnは第n面と第n+1面との可変の間隔をそれぞれ示す。なお、Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態をそれぞれ示す。Dは物体から第1面までの距離を示す。
 [レンズ群データ]には、各レンズ群の始面STと焦点距離fを示す。
 [防振データ]において、Zは可動群のシフト量即ち光軸に直交する方向への移動量、θは本実施例に係るズームレンズの回転ぶれの角度(傾き角度、単位は「°」)、Kは防振係数をそれぞれ示す。
 [条件式対応値]には、本実施例に係るズームレンズの各条件式の対応値を示す。
In [various data], FNO is the F number, 2ω is the angle of view (unit is “°”), Y is the image height, TL is the total length of the zoom lens according to the present embodiment, that is, from the first surface to the image surface I. A distance on the optical axis, dn, indicates a variable distance between the nth surface and the (n + 1) th surface. W represents the wide-angle end state, M represents the intermediate focal length state, and T represents the telephoto end state. D represents the distance from the object to the first surface.
[Lens Group Data] indicates the start surface ST and focal length f of each lens group.
In [Anti-Vibration Data], Z is the amount of shift of the movable group, that is, the amount of movement in the direction perpendicular to the optical axis, and θ is the rotation blur angle (tilt angle, unit is “°”) of the zoom lens according to the present embodiment. , K represents a vibration isolation coefficient.
[Conditional Expression Corresponding Value] indicates the corresponding value of each conditional expression of the zoom lens according to the present embodiment.
 ここで、表1に掲載されている焦点距離f、曲率半径r及びその他の長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
 なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。
Here, the focal length f, the radius of curvature r, and other length units listed in Table 1 are generally “mm”. However, the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.
In addition, the code | symbol of Table 1 described above shall be similarly used also in the table | surface of each Example mentioned later.
(表1)第1実施例
[面データ]
  m            r      d     nd    νd
 OP           ∞
 
   1          72.401   0.800   1.603   65.440
   2           8.933   3.247
 *3          81.430   1.000   1.623   58.163
 *4          14.381   0.217
   5          11.610   2.300   2.001   25.455
   6          16.466   可変
 
 *7          17.188   2.688   1.623   58.163
   8          -8.884   0.800   1.603   38.028
   9         -46.602   1.500
  10(S)        ∞     2.989
  11          18.062   0.800   1.583   46.422
  12           6.945   3.024   1.498   82.570
  13         -30.319   可変
 
*14          95.105   0.800   1.623   58.163
*15          11.725   可変
 
*16         -30.246   2.900   1.583   59.460
*17         -11.506   BF
 
  I            ∞
 
[非球面データ]
  m        κ          A4          A6          A8          A10
   3     1.000E+00  -1.341E-04   4.946E-06  -2.851E-08   0.000E+00
   4     1.000E+00  -1.733E-04   4.608E-06  -2.877E-09  -4.422E-10
   7     1.000E+00  -6.445E-05  -1.030E-06   3.176E-08   1.259E-11
  14     1.000E+00   5.106E-04  -1.420E-05  -1.448E-07   1.178E-08
  15     1.000E+00   7.701E-04  -1.866E-05   1.925E-07   0.000E+00
  16     1.000E+00   1.161E-04   1.252E-06  -3.371E-08   1.439E-10
  17     1.000E+00   1.152E-04   1.558E-06  -2.620E-08   8.016E-11
 
[各種データ]
変倍比     2.83
 
           W        T
f        10.3      29.1
FNO     3.56      5.66
2ω      77.0°    31.4°
Y         8.19      8.19
 
(無限遠物体合焦時)
            W         M         T
f        10.300     18.383     29.100
d6       17.948      7.230      2.253
d13       1.600      6.325     11.865
d15       5.138      7.347     10.568
BF      13.299     13.299     13.299
TL      47.750     43.966     47.750
 
(近距離物体合焦時)
            W         M         T
D       200.000    200.000    200.000
d6       17.948      7.230      2.253
d13       2.070      7.693     15.083
d15       4.668      5.979      7.349
BF      13.299     13.299     13.299
TL      47.750     43.966     47.750
 
[レンズ群データ]
       ST       f
G1       1     -14.141
G2       7      13.652
G3      14     -21.559
G4      16      30.130
 
[防振データ]
            W         M         T
f        10.300     18.383     29.100
Z         0.142      0.148      0.171
θ         0.624      0.500      0.500
K         0.789      1.087      1.485
 
[条件式対応値]
(1-1) |f2vr|/fw = 2.718
(1-2) |f2vr|/f2 = 2.051
(1-3) m12/fw = 1.524
(2-1) |f2i|/fw = 2.718
(2-2) |f2i|/f2 = 2.051
(2-3) m12/fw = 1.524
 
(Table 1) First Example
[Surface data]
m r d nd νd
OP ∞

1 72.401 0.800 1.603 65.440
2 8.933 3.247
* 3 81.430 1.000 1.623 58.163
* 4 14.381 0.217
5 11.610 2.300 2.001 25.455
6 16.466 Variable
* 7 17.188 2.688 1.623 58.163
8 -8.884 0.800 1.603 38.028
9 -46.602 1.500
10 (S) ∞ 2.989
11 18.062 0.800 1.583 46.422
12 6.945 3.024 1.498 82.570
13 -30.319 Variable
* 14 95.105 0.800 1.623 58.163
* 15 11.725 Variable
* 16 -30.246 2.900 1.583 59.460
* 17 -11.506 BF

I ∞

[Aspherical data]
m κ A4 A6 A8 A10
3 1.000E + 00 -1.341E-04 4.946E-06 -2.851E-08 0.000E + 00
4 1.000E + 00 -1.733E-04 4.608E-06 -2.877E-09 -4.422E-10
7 1.000E + 00 -6.445E-05 -1.030E-06 3.176E-08 1.259E-11
14 1.000E + 00 5.106E-04 -1.420E-05 -1.448E-07 1.178E-08
15 1.000E + 00 7.701E-04 -1.866E-05 1.925E-07 0.000E + 00
16 1.000E + 00 1.161E-04 1.252E-06 -3.371E-08 1.439E-10
17 1.000E + 00 1.152E-04 1.558E-06 -2.620E-08 8.016E-11

[Various data]
Scaling ratio 2.83

W T
f 10.3 29.1
FNO 3.56 5.66
2ω 77.0 ° 31.4 °
Y 8.19 8.19

(When focusing on an infinite object)
W M T
f 10.300 18.383 29.100
d6 17.948 7.230 2.253
d13 1.600 6.325 11.865
d15 5.138 7.347 10.568
BF 13.299 13.299 13.299
TL 47.750 43.966 47.750

(When focusing on a short distance object)
W M T
D 200.000 200.000 200.000
d6 17.948 7.230 2.253
d13 2.070 7.693 15.083
d15 4.668 5.979 7.349
BF 13.299 13.299 13.299
TL 47.750 43.966 47.750

[Lens group data]
ST f
G1 1 -14.141
G2 7 13.652
G3 14 -21.559
G4 16 30.130

[Anti-vibration data]
W M T
f 10.300 18.383 29.100
Z 0.142 0.148 0.171
θ 0.624 0.500 0.500
K 0.789 1.087 1.485

[Conditional expression values]
(1-1) | f2vr | /fw=2.718
(1-2) | f2vr | / f2 = 2.051
(1-3) m12 / fw = 1.524
(2-1) | f2i | /fw=2.718
(2-2) | f2i | / f2 = 2.051
(2-3) m12 / fw = 1.524
 図2A、及び図2Bはそれぞれ、本願の第1実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
 図3A、及び図3Bはそれぞれ、本願の第1実施例に係るズームレンズの広角端状態における無限遠物体合焦時に0.624°の回転ぶれに対して防振を行った際のコマ収差図、及び望遠端状態における無限遠物体合焦時に0.500°の回転ぶれに対して防振を行った際のコマ収差図である。
2A and 2B are graphs showing various aberrations when an object at infinity is in focus in the wide-angle end state and the telephoto end state of the zoom lens according to Example 1 of the present application, respectively.
FIGS. 3A and 3B are coma aberration diagrams when anti-vibration is performed for 0.624 ° rotational blur when an object at infinity is in focus at the wide-angle end state of the zoom lens according to Example 1 of the present application. FIG. 6B is a coma aberration diagram when anti-vibration is performed for a rotational shake of 0.500 ° when an object at infinity is in focus in the telephoto end state.
 各収差図において、FNOはFナンバー、Yは像高をそれぞれ示す。dはd線(波長587.6nm)、gはg線(波長435.8nm)における収差をそれぞれ示し、d、gの記載のないものはd線における収差を示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。コマ収差図は、各像高Yにおけるコマ収差を示す。なお、後述する各実施例の収差図においても、本実施例と同様の符号を用いる。 In each aberration diagram, FNO represents the F number, and Y represents the image height. d indicates the aberration at the d-line (wavelength 587.6 nm), g indicates the aberration at the g-line (wavelength 435.8 nm), and those without d and g indicate the aberration at the d-line. In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. The coma aberration diagram shows coma aberration at each image height Y. Note that the same reference numerals as in this embodiment are used in the aberration diagrams of each embodiment described later.
 各収差図より、本実施例に係るズームレンズは、広角端状態から望遠端状態にわたって諸収差が良好に補正され高い光学性能を有しており、さらに防振時にも高い光学性能を有していることがわかる。 From each aberration diagram, the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state, and also has high optical performance even during image stabilization. I understand that.
(第2実施例)
 図4A、及び図4Bはそれぞれ、本願の第1、第2実施形態に共通の第2実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。
 本実施例に係るズームレンズは、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
(Second embodiment)
4A and 4B are sectional views of the zoom lens according to a second example common to the first and second embodiments of the present application in the wide-angle end state and the telephoto end state, respectively.
The zoom lens according to the present embodiment includes a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a negative refractive power, and a positive It is composed of a fourth lens group G4 having refractive power.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。なお、負メニスカスレンズL12は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The first lens group G1, in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of. The negative meniscus lens L12 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 第2レンズ群G2は、物体側から順に、正の屈折力を有する前側レンズ群G2Fと、開口絞りSと、正の屈折力を有する後側レンズ群G2Rとから構成されている。
 前側レンズ群G2Fは、物体側から順に、両凸形状の正レンズL21と物体側に凹面を向けた負メニスカスレンズL22との接合レンズからなる。なお、正レンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
 後側レンズ群G2Rは、物体側から順に、両凸形状の正レンズL23と物体側に凹面を向けた負メニスカスレンズL24との接合レンズからなる。
The second lens group G2 includes, in order from the object side, a front lens group G2F having a positive refractive power, an aperture stop S, and a rear lens group G2R having a positive refractive power.
The front lens group G2F includes, in order from the object side, a cemented lens of a biconvex positive lens L21 and a negative meniscus lens L22 having a concave surface facing the object side. The positive lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
The rear lens group G2R includes, in order from the object side, a cemented lens of a biconvex positive lens L23 and a negative meniscus lens L24 having a concave surface facing the object side.
 第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL31からなる。なお、負メニスカスレンズL31は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The third lens group G3 includes a negative meniscus lens L31 having a convex surface directed toward the object side. The negative meniscus lens L31 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 第4レンズ群G4は、像側に凸面を向けた正メニスカスレンズL41からなる。なお、正メニスカスレンズL41は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The fourth lens group G4 includes a positive meniscus lens L41 having a convex surface directed toward the image side. The positive meniscus lens L41 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 以上の構成の下、本実施例に係るズームレンズでは、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が減少し、第2レンズ群G2と第3レンズ群G3との空気間隔が増加し、第3レンズ群G3と第4レンズ群G4との空気間隔が増加するように、第1レンズ群G1が光軸に沿って移動し、第2レンズ群G2及び第3レンズ群G3が光軸に沿って物体側へ移動する。なお、第4レンズ群G4の位置は変倍時に固定である。また、第2レンズ群G2の前側レンズ群G2Fと開口絞りSと後側レンズ群G2Rとは変倍時に一体で移動する。 With the above configuration, in the zoom lens according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens The first lens group G1 moves along the optical axis so that the air gap between the group G2 and the third lens group G3 increases and the air gap between the third lens group G3 and the fourth lens group G4 increases. The second lens group G2 and the third lens group G3 move toward the object side along the optical axis. The position of the fourth lens group G4 is fixed at the time of zooming. In addition, the front lens group G2F, the aperture stop S, and the rear lens group G2R of the second lens group G2 move together during zooming.
 本実施例に係るズームレンズでは、第3レンズ群G3を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。 In the zoom lens according to the present embodiment, the third lens group G3 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
 また、本実施例に係るズームレンズは、第2レンズ群G2における後側レンズ群G2Rを可動群として光軸と直交する方向の成分を含むように移動させることにより防振を行う。
 以下の表2に、本実施例に係るズームレンズの諸元の値を掲げる。
Further, the zoom lens according to the present embodiment performs image stabilization by moving the rear lens group G2R in the second lens group G2 as a movable group so as to include a component in a direction orthogonal to the optical axis.
Table 2 below lists values of specifications of the zoom lens according to the present example.
(表2)第2実施例
[面データ]
  m            r      d     nd    νd
 OP           ∞
 
   1          78.484   0.800   1.603   65.440
   2           9.640   3.089
 *3         240.283   1.000   1.623   58.163
 *4          14.940   0.286
   5          11.133   2.300   2.001   25.455
   6          15.568   可変
 
 *7          17.287   2.475   1.619   63.854
   8         -11.064   0.800   1.648   33.723
   9         -29.967   1.500
  10(S)        ∞     3.054
  11          41.552   2.920   1.498   82.570
  12          -7.477   0.800   1.583   46.422
  13         -18.335   可変
 
*14          63.143   0.800   1.623   58.163
*15          11.500   可変
 
*16         -29.401   2.900   1.583   59.460
*17         -11.497   BF
 
  I            ∞
 
[非球面データ]
  m        κ          A4          A6          A8          A10
   3     1.000E+00   4.841E-06   3.023E-06  -1.926E-08   0.000E+00
   4     1.000E+00  -3.973E-06   3.373E-06  -2.350E-09  -2.653E-10
   7     1.000E+00  -7.145E-05  -2.026E-07   1.193E-08   1.831E-10
  14     1.000E+00   5.024E-04  -1.733E-05   4.606E-07  -1.011E-08
  15     1.000E+00   7.291E-04  -1.452E-05   1.487E-07   0.000E+00
  16     1.000E+00   1.438E-04   1.228E-06  -4.055E-08   1.768E-10
  17     1.000E+00   1.467E-04   1.368E-06  -2.735E-08   5.125E-11
 
[各種データ]
変倍比     2.83
 
           W        T
f        10.3      29.1
FNO     3.56      5.66
2ω      77.0°    31.4°
Y         8.19      8.19
 
(無限遠物体合焦時)
            W         M         T
f        10.300     18.720     29.100
d6       18.251      7.166      2.405
d13       1.600      6.619     12.046
d15       5.176      7.408     10.576
BF      13.299     13.299     13.299
TL      47.750     43.916     47.750
 
(近距離物体合焦時)
            W         M         T
D       200.000    200.000    200.000
d6       18.251      7.166      2.405
d13       2.100      8.132     15.490
d15       4.676      5.895      7.133
BF      13.299     13.299     13.299
TL      47.750     43.916     47.750
 
[レンズ群データ]
       ST       f
G1       1     -14.400
G2       7      13.831
G3      14     -22.718
G4      16      30.553
 
[防振データ]
            W         M         T
f        10.300     18.720     29.100
Z         0.168      0.174      0.198
θ         0.624      0.500      0.500
K         0.668      0.941      1.281
 
[条件式対応値]
(1-1) |f2vr|/fw = 3.042
(1-2) |f2vr|/f2 = 2.265
(1-3) m12/fw = 1.538
(2-1) |f2i|/fw = 3.042
(2-2) |f2i|/f2 = 2.265
(2-3) m12/fw = 1.538
 
(Table 2) Second Example
[Surface data]
m r d nd νd
OP ∞

1 78.484 0.800 1.603 65.440
2 9.640 3.089
* 3 240.283 1.000 1.623 58.163
* 4 14.940 0.286
5 11.133 2.300 2.001 25.455
6 15.568 Variable
* 7 17.287 2.475 1.619 63.854
8 -11.064 0.800 1.648 33.723
9 -29.967 1.500
10 (S) ∞ 3.054
11 41.552 2.920 1.498 82.570
12 -7.477 0.800 1.583 46.422
13 -18.335 Variable
* 14 63.143 0.800 1.623 58.163
* 15 11.500 Variable
* 16 -29.401 2.900 1.583 59.460
* 17 -11.497 BF

I ∞

[Aspherical data]
m κ A4 A6 A8 A10
3 1.000E + 00 4.841E-06 3.023E-06 -1.926E-08 0.000E + 00
4 1.000E + 00 -3.973E-06 3.373E-06 -2.350E-09 -2.653E-10
7 1.000E + 00 -7.145E-05 -2.026E-07 1.193E-08 1.831E-10
14 1.000E + 00 5.024E-04 -1.733E-05 4.606E-07 -1.011E-08
15 1.000E + 00 7.291E-04 -1.452E-05 1.487E-07 0.000E + 00
16 1.000E + 00 1.438E-04 1.228E-06 -4.055E-08 1.768E-10
17 1.000E + 00 1.467E-04 1.368E-06 -2.735E-08 5.125E-11

[Various data]
Scaling ratio 2.83

W T
f 10.3 29.1
FNO 3.56 5.66
2ω 77.0 ° 31.4 °
Y 8.19 8.19

(When focusing on an infinite object)
W M T
f 10.300 18.720 29.100
d6 18.251 7.166 2.405
d13 1.600 6.619 12.046
d15 5.176 7.408 10.576
BF 13.299 13.299 13.299
TL 47.750 43.916 47.750

(When focusing on a short distance object)
W M T
D 200.000 200.000 200.000
d6 18.251 7.166 2.405
d13 2.100 8.132 15.490
d15 4.676 5.895 7.133
BF 13.299 13.299 13.299
TL 47.750 43.916 47.750

[Lens group data]
ST f
G1 1 -14.400
G2 7 13.831
G3 14 -22.718
G4 16 30.553

[Anti-vibration data]
W M T
f 10.300 18.720 29.100
Z 0.168 0.174 0.198
θ 0.624 0.500 0.500
K 0.668 0.941 1.281

[Conditional expression values]
(1-1) | f2vr | /fw=3.042
(1-2) | f2vr | /f2=2.265
(1-3) m12 / fw = 1.538
(2-1) | f2i | /fw=3.042
(2-2) | f2i | /f2=2.265
(2-3) m12 / fw = 1.538
 図5A、及び図5Bはそれぞれ、本願の第2実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
 図6A、及び図6Bはそれぞれ、本願の第2実施例に係るズームレンズの広角端状態における無限遠物体合焦時に0.624°の回転ぶれに対して防振を行った際のコマ収差図、及び望遠端状態における無限遠物体合焦時に0.500°の回転ぶれに対して防振を行った際のコマ収差図である。
FIGS. 5A and 5B are graphs showing various aberrations at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to Example 2 of the present application.
FIG. 6A and FIG. 6B are coma aberration diagrams when anti-vibration is performed for 0.624 ° rotational blur when an object at infinity is in focus at the wide-angle end state of the zoom lens according to Example 2 of the present application. FIG. 6B is a coma aberration diagram when anti-vibration is performed for a rotational shake of 0.500 ° when an object at infinity is in focus in the telephoto end state.
 各収差図より、本実施例に係るズームレンズは、広角端状態から望遠端状態にわたって諸収差が良好に補正され高い光学性能を有しており、さらに防振時にも高い光学性能を有していることがわかる。 From each aberration diagram, the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state, and also has high optical performance even during image stabilization. I understand that.
(第3実施例)
 図7A、及び図7Bはそれぞれ、本願の第1、第2実施形態に共通の第3実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。
 本実施例に係るズームレンズは、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
(Third embodiment)
7A and 7B are cross-sectional views of the zoom lens according to a third example common to the first and second embodiments of the present application in the wide-angle end state and the telephoto end state, respectively.
The zoom lens according to the present embodiment includes a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a negative refractive power, and a positive It is composed of a fourth lens group G4 having refractive power.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。なお、負メニスカスレンズL12は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The first lens group G1, in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of. The negative meniscus lens L12 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 第2レンズ群G2は、物体側から順に、正の屈折力を有する前側レンズ群G2Fと、開口絞りSと、正の屈折力を有する後側レンズ群G2Rとから構成されている。
 前側レンズ群G2Fは、物体側から順に、両凸形状の正レンズL21と、物体側に凹面を向けた負メニスカスレンズL22とからなる。なお、正レンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
 後側レンズ群G2Rは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL23と両凸形状の正レンズL24との接合レンズからなる。
The second lens group G2 includes, in order from the object side, a front lens group G2F having a positive refractive power, an aperture stop S, and a rear lens group G2R having a positive refractive power.
The front lens group G2F is composed of, in order from the object side, a biconvex positive lens L21 and a negative meniscus lens L22 with a concave surface facing the object side. The positive lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
The rear lens group G2R includes, in order from the object side, a cemented lens of a negative meniscus lens L23 having a convex surface facing the object side and a biconvex positive lens L24.
 第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL31からなる。なお、負メニスカスレンズL31は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The third lens group G3 includes a negative meniscus lens L31 having a convex surface directed toward the object side. The negative meniscus lens L31 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 第4レンズ群G4は、像側に凸面を向けた正メニスカスレンズL41からなる。なお、正メニスカスレンズL41は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The fourth lens group G4 includes a positive meniscus lens L41 having a convex surface directed toward the image side. The positive meniscus lens L41 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 以上の構成の下、本実施例に係るズームレンズでは、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が減少し、第2レンズ群G2と第3レンズ群G3との空気間隔が増加し、第3レンズ群G3と第4レンズ群G4との空気間隔が増加するように、第1レンズ群G1が光軸に沿って移動し、第2レンズ群G2及び第3レンズ群G3が光軸に沿って物体側へ移動する。なお、第4レンズ群G4の位置は変倍時に固定である。また、第2レンズ群G2の前側レンズ群G2Fと開口絞りSと後側レンズ群G2Rとは変倍時に一体で移動する。 With the above configuration, in the zoom lens according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens The first lens group G1 moves along the optical axis so that the air gap between the group G2 and the third lens group G3 increases and the air gap between the third lens group G3 and the fourth lens group G4 increases. The second lens group G2 and the third lens group G3 move toward the object side along the optical axis. The position of the fourth lens group G4 is fixed at the time of zooming. In addition, the front lens group G2F, the aperture stop S, and the rear lens group G2R of the second lens group G2 move together during zooming.
 本実施例に係るズームレンズでは、第3レンズ群G3を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。 In the zoom lens according to the present embodiment, the third lens group G3 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
 また、本実施例に係るズームレンズは、第2レンズ群G2における後側レンズ群G2Rを可動群として光軸と直交する方向の成分を含むように移動させることにより防振を行う。
 以下の表3に、本実施例に係るズームレンズの諸元の値を掲げる。
Further, the zoom lens according to the present embodiment performs image stabilization by moving the rear lens group G2R in the second lens group G2 as a movable group so as to include a component in a direction orthogonal to the optical axis.
Table 3 below provides values of specifications of the zoom lens according to the present example.
(表3)第3実施例
[面データ]
  m            r      d     nd    νd
 OP           ∞
 
   1          81.550   0.800   1.603   65.440
   2           9.681   3.069
 *3         328.483   1.000   1.623   58.163
 *4          14.895   0.345
   5          11.373   2.200   2.001   25.455
   6          16.225   可変
 
 *7          17.158   2.493   1.619   63.854
   8         -13.864   0.157
   9         -13.612   0.800   1.648   33.723
  10         -40.184   1.500
  11(S)        ∞     2.911
  12          17.888   0.800   1.583   46.422
  13           6.850   3.050   1.498   82.570
  14         -29.219   可変
 
*15          62.039   0.800   1.623   58.163
*16          11.500   可変
 
*17         -26.508   2.900   1.583   59.460
*18         -11.123   BF
 
  I            ∞
 
[非球面データ]
  m        κ          A4          A6          A8          A10
   3     1.000E+00  -1.154E-06   3.285E-06  -2.143E-08   0.000E+00
   4     1.000E+00  -3.977E-06   3.056E-06   9.547E-09  -4.065E-10
   7     1.000E+00  -5.971E-05  -1.038E-06   6.985E-08  -1.544E-09
  15     1.000E+00   5.899E-04  -2.242E-05   3.797E-07  -1.428E-09
  16     1.000E+00   8.486E-04  -2.240E-05   2.918E-07   0.000E+00
  17     1.000E+00   9.517E-05   3.227E-06  -6.273E-08   2.917E-10
  18     1.000E+00   9.730E-05   2.655E-06  -3.199E-08   6.854E-11
 
[各種データ]
変倍比     2.83
 
           W        T
f        10.3      29.1
FNO     3.56      5.66
2ω      77.0°    31.4°
Y         8.19      8.19
 
(無限遠物体合焦時)
            W         M         T
f        10.300     18.663     29.100
d6       18.137      7.139      2.319
d14       1.600      6.535     12.018
d16       5.189      7.498     10.589
BF      13.299     13.299     13.299
TL      47.750     43.997     47.750
 
(近距離物体合焦時)
            W         M         T
D       200.000    200.000    200.000
d6       18.137      7.139      2.319
d14       2.100      8.032     15.454
d16       4.689      6.001      7.152
BF      13.299     13.299     13.299
TL      47.750     43.997     47.750
 
[レンズ群データ]
       ST       f
G1       1     -14.356
G2       7      13.818
G3      15     -22.812
G4      17      30.732
 
[防振データ]
            W         M         T
f        10.300     18.663     29.100
Z         0.139      0.146      0.168
θ         0.624      0.500      0.500
K         0.804      1.118      1.511
 
[条件式対応値]
(1-1) |f2vr|/fw = 2.664
(1-2) |f2vr|/f2 = 1.986
(1-3) m12/fw = 1.536
(2-1) |f2i|/fw = 2.664
(2-2) |f2i|/f2 = 1.986
(2-3) m12/fw = 1.536
 
(Table 3) Third Example
[Surface data]
m r d nd νd
OP ∞

1 81.550 0.800 1.603 65.440
2 9.681 3.069
* 3 328.483 1.000 1.623 58.163
* 4 14.895 0.345
5 11.373 2.200 2.001 25.455
6 16.225 Variable
* 7 17.158 2.493 1.619 63.854
8 -13.864 0.157
9 -13.612 0.800 1.648 33.723
10 -40.184 1.500
11 (S) ∞ 2.911
12 17.888 0.800 1.583 46.422
13 6.850 3.050 1.498 82.570
14 -29.219 Variable
* 15 62.039 0.800 1.623 58.163
* 16 11.500 Variable
* 17 -26.508 2.900 1.583 59.460
* 18 -11.123 BF

I ∞

[Aspherical data]
m κ A4 A6 A8 A10
3 1.000E + 00 -1.154E-06 3.285E-06 -2.143E-08 0.000E + 00
4 1.000E + 00 -3.977E-06 3.056E-06 9.547E-09 -4.065E-10
7 1.000E + 00 -5.971E-05 -1.038E-06 6.985E-08 -1.544E-09
15 1.000E + 00 5.899E-04 -2.242E-05 3.797E-07 -1.428E-09
16 1.000E + 00 8.486E-04 -2.240E-05 2.918E-07 0.000E + 00
17 1.000E + 00 9.517E-05 3.227E-06 -6.273E-08 2.917E-10
18 1.000E + 00 9.730E-05 2.655E-06 -3.199E-08 6.854E-11

[Various data]
Scaling ratio 2.83

W T
f 10.3 29.1
FNO 3.56 5.66
2ω 77.0 ° 31.4 °
Y 8.19 8.19

(When focusing on an infinite object)
W M T
f 10.300 18.663 29.100
d6 18.137 7.139 2.319
d14 1.600 6.535 12.018
d16 5.189 7.498 10.589
BF 13.299 13.299 13.299
TL 47.750 43.997 47.750

(When focusing on a short distance object)
W M T
D 200.000 200.000 200.000
d6 18.137 7.139 2.319
d14 2.100 8.032 15.454
d16 4.689 6.001 7.152
BF 13.299 13.299 13.299
TL 47.750 43.997 47.750

[Lens group data]
ST f
G1 1 -14.356
G2 7 13.818
G3 15 -22.812
G4 17 30.732

[Anti-vibration data]
W M T
f 10.300 18.663 29.100
Z 0.139 0.146 0.168
θ 0.624 0.500 0.500
K 0.804 1.118 1.511

[Conditional expression values]
(1-1) | f2vr | /fw=2.664
(1-2) | f2vr | /f2=1.986
(1-3) m12 / fw = 1.536
(2-1) | f2i | /fw=2.664
(2-2) | f2i | /f2=1.986
(2-3) m12 / fw = 1.536
 図8A、及び図8Bはそれぞれ、本願の第3実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
 図9A、及び図9Bはそれぞれ、本願の第3実施例に係るズームレンズの広角端状態における無限遠物体合焦時に0.624°の回転ぶれに対して防振を行った際のコマ収差図、及び望遠端状態における無限遠物体合焦時に0.500°の回転ぶれに対して防振を行った際のコマ収差図である。
8A and 8B are graphs showing various aberrations when the zoom lens according to the third example of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
FIGS. 9A and 9B are coma aberration diagrams obtained when image stabilization is performed for a rotational shake of 0.624 ° during focusing on an object at infinity in the wide-angle end state of the zoom lens according to the third example of the present application. FIG. 6B is a coma aberration diagram when anti-vibration is performed for a rotational shake of 0.500 ° when an object at infinity is in focus in the telephoto end state.
 各収差図より、本実施例に係るズームレンズは、広角端状態から望遠端状態にわたって諸収差が良好に補正され高い光学性能を有しており、さらに防振時にも高い光学性能を有していることがわかる。 From each aberration diagram, the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state, and also has high optical performance even during image stabilization. I understand that.
(第4実施例)
 図10A、及び図10Bはそれぞれ、本願の第1、第2実施形態に共通の第4実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。
 本実施例に係るズームレンズは、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
(Fourth embodiment)
10A and 10B are cross-sectional views of the zoom lens according to a fourth example common to the first and second embodiments of the present application in the wide-angle end state and the telephoto end state, respectively.
The zoom lens according to the present embodiment includes a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a negative refractive power, and a positive It is composed of a fourth lens group G4 having refractive power.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。なお、負メニスカスレンズL12は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The first lens group G1, in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of. The negative meniscus lens L12 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 第2レンズ群G2は、物体側から順に、正の屈折力を有する前側レンズ群G2Fと、開口絞りSと、正の屈折力を有する後側レンズ群G2Rとから構成されている。
 前側レンズ群G2Fは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と両凸形状の正レンズL22との接合レンズからなる。なお、負メニスカスレンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
 後側レンズ群G2Rは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL23と両凸形状の正レンズL24との接合レンズからなる。
The second lens group G2 includes, in order from the object side, a front lens group G2F having a positive refractive power, an aperture stop S, and a rear lens group G2R having a positive refractive power.
The front lens group G2F is composed of a cemented lens of a negative meniscus lens L21 having a convex surface directed toward the object side and a biconvex positive lens L22 in order from the object side. The negative meniscus lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
The rear lens group G2R includes, in order from the object side, a cemented lens of a negative meniscus lens L23 having a convex surface facing the object side and a biconvex positive lens L24.
 第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL31からなる。なお、負メニスカスレンズL31は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The third lens group G3 includes a negative meniscus lens L31 having a convex surface directed toward the object side. The negative meniscus lens L31 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 第4レンズ群G4は、像側に凸面を向けた正メニスカスレンズL41からなる。なお、正メニスカスレンズL41は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The fourth lens group G4 includes a positive meniscus lens L41 having a convex surface directed toward the image side. The positive meniscus lens L41 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 以上の構成の下、本実施例に係るズームレンズでは、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が減少し、第2レンズ群G2と第3レンズ群G3との空気間隔が増加し、第3レンズ群G3と第4レンズ群G4との空気間隔が増加するように、第1レンズ群G1が光軸に沿って移動し、第2レンズ群G2及び第3レンズ群G3が光軸に沿って物体側へ移動する。なお、第4レンズ群G4の位置は変倍時に固定である。また、第2レンズ群G2の前側レンズ群G2Fと開口絞りSと後側レンズ群G2Rとは変倍時に一体で移動する。 With the above configuration, in the zoom lens according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens The first lens group G1 moves along the optical axis so that the air gap between the group G2 and the third lens group G3 increases and the air gap between the third lens group G3 and the fourth lens group G4 increases. The second lens group G2 and the third lens group G3 move toward the object side along the optical axis. The position of the fourth lens group G4 is fixed at the time of zooming. In addition, the front lens group G2F, the aperture stop S, and the rear lens group G2R of the second lens group G2 move together during zooming.
 本実施例に係るズームレンズでは、第3レンズ群G3を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。 In the zoom lens according to the present embodiment, the third lens group G3 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
 また、本実施例に係るズームレンズは、第2レンズ群G2における後側レンズ群G2Rを可動群として光軸と直交する方向の成分を含むように移動させることにより防振を行う。
 以下の表4に、本実施例に係るズームレンズの諸元の値を掲げる。
Further, the zoom lens according to the present embodiment performs image stabilization by moving the rear lens group G2R in the second lens group G2 as a movable group so as to include a component in a direction orthogonal to the optical axis.
Table 4 below lists values of specifications of the zoom lens according to the present example.
(表4)第4実施例
[面データ]
  m            r      d     nd    νd
 OP           ∞
 
   1         106.318   0.800   1.603   65.440
   2          10.056   2.861
 *3         143.575   1.000   1.623   58.163
 *4          14.071   0.423
   5          11.120   2.300   2.001   25.455
   6          15.538   可変
 
 *7          13.167   0.800   1.689   31.160
   8          10.273   2.367   1.498   82.570
   9         -30.189   1.500
  10(S)        ∞     2.779
  11          18.410   0.800   1.583   46.422
  12           7.012   3.193   1.498   82.570
  13         -30.652   可変
 
*14          63.684   0.800   1.623   58.163
*15          11.500   可変
 
*16         -27.536   2.900   1.583   59.460
*17         -11.202   BF
 
  I            ∞
 
[非球面データ]
  m        κ          A4          A6          A8          A10
   3     1.000E+00  -8.371E-07   3.721E-06  -2.590E-08   0.000E+00
   4     1.000E+00  -4.169E-06   3.663E-06   6.939E-09  -4.421E-10
   7     1.000E+00  -7.051E-05  -5.833E-07   3.934E-08  -8.656E-10
  14     1.000E+00   5.363E-04  -1.981E-05   3.911E-07  -5.635E-09
  15     1.000E+00   7.643E-04  -1.714E-05   1.457E-07   0.000E+00
  16     1.000E+00   7.120E-05   3.106E-06  -5.397E-08   2.399E-10
  17     1.000E+00   9.425E-05   2.054E-06  -2.025E-08   1.922E-11
 
[各種データ]
変倍比     2.83
 
           W        T
f        10.3      29.1
FNO     3.56      5.66
2ω      77.0°    31.4°
Y         8.19      8.19
 
(無限遠物体合焦時)
            W         M         T
f        10.300     18.719     29.100
d6       18.449      7.402      2.629
d13       1.600      6.578     12.020
d15       5.178      7.477     10.578
BF      13.299     13.299     13.299
TL      47.750     43.980     47.750
 
(近距離物体合焦時)
            W         M         T
D       200.000    200.000    200.000
d6       18.449      7.402      2.629
d13       2.100      8.086     15.463
d15       4.678      5.969      7.136
BF      13.299     13.299     13.299
TL      47.750     43.980     47.750
 
[レンズ群データ]
       ST       f
G1       1     -14.399
G2       7      13.808
G3      14     -22.674
G4      16      30.395
 
[防振データ]
            W         M         T
f        10.300     18.719     29.100
Z         0.145      0.152      0.175
θ         0.624      0.500      0.500
K         0.775      1.077      1.452
 
[条件式対応値]
(1-1) |f2vr|/fw = 2.771
(1-2) |f2vr|/f2 = 2.067
(1-3) m12/fw = 1.536
(2-1) |f2i|/fw = 2.771
(2-2) |f2i|/f2 = 2.067
(2-3) m12/fw = 1.536
 
(Table 4) Fourth Example
[Surface data]
m r d nd νd
OP ∞

1 106.318 0.800 1.603 65.440
2 10.056 2.861
* 3 143.575 1.000 1.623 58.163
* 4 14.071 0.423
5 11.120 2.300 2.001 25.455
6 15.538 Variable
* 7 13.167 0.800 1.689 31.160
8 10.273 2.367 1.498 82.570
9 -30.189 1.500
10 (S) ∞ 2.779
11 18.410 0.800 1.583 46.422
12 7.012 3.193 1.498 82.570
13 -30.652 Variable
* 14 63.684 0.800 1.623 58.163
* 15 11.500 Variable
* 16 -27.536 2.900 1.583 59.460
* 17 -11.202 BF

I ∞

[Aspherical data]
m κ A4 A6 A8 A10
3 1.000E + 00 -8.371E-07 3.721E-06 -2.590E-08 0.000E + 00
4 1.000E + 00 -4.169E-06 3.663E-06 6.939E-09 -4.421E-10
7 1.000E + 00 -7.051E-05 -5.833E-07 3.934E-08 -8.656E-10
14 1.000E + 00 5.363E-04 -1.981E-05 3.911E-07 -5.635E-09
15 1.000E + 00 7.643E-04 -1.714E-05 1.457E-07 0.000E + 00
16 1.000E + 00 7.120E-05 3.106E-06 -5.397E-08 2.399E-10
17 1.000E + 00 9.425E-05 2.054E-06 -2.025E-08 1.922E-11

[Various data]
Scaling ratio 2.83

W T
f 10.3 29.1
FNO 3.56 5.66
2ω 77.0 ° 31.4 °
Y 8.19 8.19

(When focusing on an infinite object)
W M T
f 10.300 18.719 29.100
d6 18.449 7.402 2.629
d13 1.600 6.578 12.020
d15 5.178 7.477 10.578
BF 13.299 13.299 13.299
TL 47.750 43.980 47.750

(When focusing on a short distance object)
W M T
D 200.000 200.000 200.000
d6 18.449 7.402 2.629
d13 2.100 8.086 15.463
d15 4.678 5.969 7.136
BF 13.299 13.299 13.299
TL 47.750 43.980 47.750

[Lens group data]
ST f
G1 1 -14.399
G2 7 13.808
G3 14 -22.674
G4 16 30.395

[Anti-vibration data]
W M T
f 10.300 18.719 29.100
Z 0.145 0.152 0.175
θ 0.624 0.500 0.500
K 0.775 1.077 1.452

[Conditional expression values]
(1-1) | f2vr | /fw=2.771
(1-2) | f2vr | / f2 = 2.067
(1-3) m12 / fw = 1.536
(2-1) | f2i | /fw=2.771
(2-2) | f2i | / f2 = 2.067
(2-3) m12 / fw = 1.536
 図11A、及び図11Bはそれぞれ、本願の第4実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
 図12A、及び図12Bはそれぞれ、本願の第4実施例に係るズームレンズの広角端状態における無限遠物体合焦時に0.624°の回転ぶれに対して防振を行った際のコマ収差図、及び望遠端状態における無限遠物体合焦時に0.500°の回転ぶれに対して防振を行った際のコマ収差図である。
FIGS. 11A and 11B are graphs showing various aberrations during focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to Example 4 of the present application, respectively.
FIGS. 12A and 12B are coma aberration diagrams when anti-vibration is performed for 0.624 ° rotational blur when an object at infinity is in focus at the wide-angle end state of the zoom lens according to Example 4 of the present application. FIG. 6B is a coma aberration diagram when anti-vibration is performed for a rotational shake of 0.500 ° when an object at infinity is in focus in the telephoto end state.
 各収差図より、本実施例に係るズームレンズは、広角端状態から望遠端状態にわたって諸収差が良好に補正され高い光学性能を有しており、さらに防振時にも高い光学性能を有していることがわかる。 From each aberration diagram, the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state, and also has high optical performance even during image stabilization. I understand that.
(第5実施例)
 図13A、及び図13Bはそれぞれ、本願の第1、第2実施形態に共通の第5実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。
 本実施例に係るズームレンズは、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
(5th Example)
13A and 13B are cross-sectional views of the zoom lens according to a fifth example common to the first and second embodiments of the present application in the wide-angle end state and the telephoto end state, respectively.
The zoom lens according to the present embodiment includes a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a negative refractive power, and a positive It is composed of a fourth lens group G4 having refractive power.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。なお、負メニスカスレンズL12は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The first lens group G1, in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of. The negative meniscus lens L12 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 第2レンズ群G2は、物体側から順に、正の屈折力を有する前側レンズ群G2Fと、開口絞りSと、正の屈折力を有する後側レンズ群G2Rとから構成されている。
 前側レンズ群G2Fは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と両凸形状の正レンズL22との接合レンズからなる。なお、負メニスカスレンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
 後側レンズ群G2Rは、物体側から順に、両凸形状の正レンズL23と物体側に凹面を向けた負メニスカスレンズL24との接合レンズからなる。
The second lens group G2 includes, in order from the object side, a front lens group G2F having a positive refractive power, an aperture stop S, and a rear lens group G2R having a positive refractive power.
The front lens group G2F is composed of a cemented lens of a negative meniscus lens L21 having a convex surface directed toward the object side and a biconvex positive lens L22 in order from the object side. The negative meniscus lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
The rear lens group G2R includes, in order from the object side, a cemented lens of a biconvex positive lens L23 and a negative meniscus lens L24 having a concave surface facing the object side.
 第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL31からなる。なお、負メニスカスレンズL31は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The third lens group G3 includes a negative meniscus lens L31 having a convex surface directed toward the object side. The negative meniscus lens L31 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 第4レンズ群G4は、像側に凸面を向けた正メニスカスレンズL41からなる。なお、正メニスカスレンズL41は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The fourth lens group G4 includes a positive meniscus lens L41 having a convex surface directed toward the image side. The positive meniscus lens L41 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 以上の構成の下、本実施例に係るズームレンズでは、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が減少し、第2レンズ群G2と第3レンズ群G3との空気間隔が増加し、第3レンズ群G3と第4レンズ群G4との空気間隔が増加するように、第1レンズ群G1が光軸に沿って移動し、第2レンズ群G2及び第3レンズ群G3が光軸に沿って物体側へ移動する。なお、第4レンズ群G4の位置は変倍時に固定である。また、第2レンズ群G2の前側レンズ群G2Fと開口絞りSと後側レンズ群G2Rとは変倍時に一体で移動する。 With the above configuration, in the zoom lens according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens The first lens group G1 moves along the optical axis so that the air gap between the group G2 and the third lens group G3 increases and the air gap between the third lens group G3 and the fourth lens group G4 increases. The second lens group G2 and the third lens group G3 move toward the object side along the optical axis. The position of the fourth lens group G4 is fixed at the time of zooming. In addition, the front lens group G2F, the aperture stop S, and the rear lens group G2R of the second lens group G2 move together during zooming.
 本実施例に係るズームレンズでは、第3レンズ群G3を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。 In the zoom lens according to the present embodiment, the third lens group G3 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
 また、本実施例に係るズームレンズは、第2レンズ群G2における後側レンズ群G2Rを可動群として光軸と直交する方向の成分を含むように移動させることにより防振を行う。
 以下の表5に、本実施例に係るズームレンズの諸元の値を掲げる。
Further, the zoom lens according to the present embodiment performs image stabilization by moving the rear lens group G2R in the second lens group G2 as a movable group so as to include a component in a direction orthogonal to the optical axis.
Table 5 below provides values of specifications of the zoom lens according to the present example.
(表5)第5実施例
[面データ]
  m            r      d     nd    νd
 OP           ∞
 
   1          88.142   0.800   1.603   65.440
   2           9.905   2.982
 *3         210.317   1.000   1.623   58.163
 *4          14.471   0.351
   5          11.109   2.232   2.001   25.455
   6          15.535   可変
 
 *7          12.853   0.800   1.689   31.160
   8           9.651   2.483   1.498   82.570
   9         -25.272   1.500
  10(S)        ∞     2.982
  11          38.663   2.959   1.498   82.570
  12          -7.387   0.800   1.583   46.422
  13         -18.053   可変
 
*14          62.590   0.800   1.623   58.163
*15          11.500   可変
 
*16         -30.304   2.900   1.583   59.460
*17         -11.634   BF
 
  I            ∞
 
[非球面データ]
  m        κ          A4          A6          A8          A10
   3     1.000E+00   5.701E-06   3.172E-06  -2.105E-08   0.000E+00
   4     1.000E+00  -3.719E-06   3.592E-06  -2.523E-09  -2.835E-10
   7     1.000E+00  -8.356E-05  -4.804E-08   3.953E-08  -1.452E-09
  14     1.000E+00   5.370E-04  -1.971E-05   5.561E-07  -1.276E-08
  15     1.000E+00   7.313E-04  -1.349E-05   7.835E-08   0.000E+00
  16     1.000E+00   9.440E-05   2.643E-06  -5.709E-08   2.373E-10
  17     1.000E+00   1.188E-04   1.670E-06  -2.423E-08  -1.067E-11
 
[各種データ]
変倍比     2.83
 
           W        T
f        10.3      29.1
FNO     3.56      5.66
2ω      77.0°    31.4°
Y         8.19      8.19
 
(無限遠物体合焦時)
            W         M         T
f        10.300     18.707     29.100
d6       18.352      7.209      2.442
d13       1.600      6.675     12.110
d15       5.209      7.356     10.609
BF      13.299     13.299     13.298
TL      47.750     43.831     47.750
 
(近距離物体合焦時)
            W         M         T
D       200.000    200.000    200.000
d6       18.352      7.209      2.442
d13       2.100      8.191     15.553
d15       4.709      5.841      7.165
BF      13.299     13.299     13.298
TL      47.750     43.831     47.750
 
[レンズ群データ]
       ST       f
G1       1     -14.390
G2       7      13.895
G3      14     -22.764
G4      16      30.631
 
[防振データ]
            W         M         T
f        10.300     18.707     29.100
Z         0.161      0.167      0.190
θ         0.624      0.500      0.500
K         0.696      0.980      1.336
 
[条件式対応値]
(1-1) |f2vr|/fw = 2.932
(1-2) |f2vr|/f2 = 2.174
(1-3) m12/fw = 1.545
(2-1) |f2i|/fw = 2.932
(2-2) |f2i|/f2 = 2.174
(2-3) m12/fw = 1.545
 
(Table 5) Fifth Example
[Surface data]
m r d nd νd
OP ∞

1 88.142 0.800 1.603 65.440
2 9.905 2.982
* 3 210.317 1.000 1.623 58.163
* 4 14.471 0.351
5 11.109 2.232 2.001 25.455
6 15.535 Variable
* 7 12.853 0.800 1.689 31.160
8 9.651 2.483 1.498 82.570
9 -25.272 1.500
10 (S) ∞ 2.982
11 38.663 2.959 1.498 82.570
12 -7.387 0.800 1.583 46.422
13 -18.053 Variable
* 14 62.590 0.800 1.623 58.163
* 15 11.500 Variable
* 16 -30.304 2.900 1.583 59.460
* 17 -11.634 BF

I ∞

[Aspherical data]
m κ A4 A6 A8 A10
3 1.000E + 00 5.701E-06 3.172E-06 -2.105E-08 0.000E + 00
4 1.000E + 00 -3.719E-06 3.592E-06 -2.523E-09 -2.835E-10
7 1.000E + 00 -8.356E-05 -4.804E-08 3.953E-08 -1.452E-09
14 1.000E + 00 5.370E-04 -1.971E-05 5.561E-07 -1.276E-08
15 1.000E + 00 7.313E-04 -1.349E-05 7.835E-08 0.000E + 00
16 1.000E + 00 9.440E-05 2.643E-06 -5.709E-08 2.373E-10
17 1.000E + 00 1.188E-04 1.670E-06 -2.423E-08 -1.067E-11

[Various data]
Scaling ratio 2.83

W T
f 10.3 29.1
FNO 3.56 5.66
2ω 77.0 ° 31.4 °
Y 8.19 8.19

(When focusing on an object at infinity)
W M T
f 10.300 18.707 29.100
d6 18.352 7.209 2.442
d13 1.600 6.675 12.110
d15 5.209 7.356 10.609
BF 13.299 13.299 13.298
TL 47.750 43.831 47.750

(When focusing on a short distance object)
W M T
D 200.000 200.000 200.000
d6 18.352 7.209 2.442
d13 2.100 8.191 15.553
d15 4.709 5.841 7.165
BF 13.299 13.299 13.298
TL 47.750 43.831 47.750

[Lens group data]
ST f
G1 1 -14.390
G2 7 13.895
G3 14 -22.764
G4 16 30.631

[Anti-vibration data]
W M T
f 10.300 18.707 29.100
Z 0.161 0.167 0.190
θ 0.624 0.500 0.500
K 0.696 0.980 1.336

[Conditional expression values]
(1-1) | f2vr | /fw=2.932
(1-2) | f2vr | /f2=2.174
(1-3) m12 / fw = 1.545
(2-1) | f2i | /fw=2.932
(2-2) | f2i | /f2=2.174
(2-3) m12 / fw = 1.545
 図14A、及び図14Bはそれぞれ、本願の第5実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
 図15A、及び図15Bはそれぞれ、本願の第5実施例に係るズームレンズの広角端状態における無限遠物体合焦時に0.624°の回転ぶれに対して防振を行った際のコマ収差図、及び望遠端状態における無限遠物体合焦時に0.500°の回転ぶれに対して防振を行った際のコマ収差図である。
FIGS. 14A and 14B are graphs showing various aberrations when the zoom lens according to Example 5 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
FIGS. 15A and 15B are coma aberration diagrams obtained when anti-vibration is performed for 0.624 ° rotational blur when an object at infinity is in focus at the wide-angle end state of the zoom lens according to Example 5 of the present application. FIG. 6B is a coma aberration diagram when anti-vibration is performed against rotational shake of 0.500 ° when an object at infinity is in focus in the telephoto end state.
 各収差図より、本実施例に係るズームレンズは、広角端状態から望遠端状態にわたって諸収差が良好に補正され高い光学性能を有しており、さらに防振時にも高い光学性能を有していることがわかる。 From each aberration diagram, the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state, and also has high optical performance even during image stabilization. I understand that.
(第6実施例)
 図16A、及び図16Bはそれぞれ、本願の第1、第2実施形態に共通の第6実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。
 本実施例に係るズームレンズは、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
(Sixth embodiment)
16A and 16B are cross-sectional views of the zoom lens according to a sixth example common to the first and second embodiments of the present application in the wide-angle end state and the telephoto end state, respectively.
The zoom lens according to the present embodiment includes a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a negative refractive power, and a positive It is composed of a fourth lens group G4 having refractive power.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。なお、負メニスカスレンズL12は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The first lens group G1, in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of. The negative meniscus lens L12 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 第2レンズ群G2は、物体側から順に、正の屈折力を有する前側レンズ群G2Fと、開口絞りSと、正の屈折力を有する後側レンズ群G2Rとから構成されている。
 前側レンズ群G2Fは、物体側から順に、両凸形状の正レンズL21と物体側に凹面を向けた負メニスカスレンズL22との接合レンズからなる。なお、正レンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
 後側レンズ群G2Rは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL23と両凸形状の正レンズL24との接合レンズと、両凸形状の正レンズL25とからなる。
The second lens group G2 includes, in order from the object side, a front lens group G2F having a positive refractive power, an aperture stop S, and a rear lens group G2R having a positive refractive power.
The front lens group G2F includes, in order from the object side, a cemented lens of a biconvex positive lens L21 and a negative meniscus lens L22 having a concave surface facing the object side. The positive lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
The rear lens group G2R includes, in order from the object side, a cemented lens of a negative meniscus lens L23 having a convex surface facing the object side and a biconvex positive lens L24, and a biconvex positive lens L25.
 第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL31からなる。なお、負メニスカスレンズL31は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The third lens group G3 includes a negative meniscus lens L31 having a convex surface directed toward the object side. The negative meniscus lens L31 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 第4レンズ群G4は、像側に凸面を向けた正メニスカスレンズL41からなる。なお、正メニスカスレンズL41は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The fourth lens group G4 includes a positive meniscus lens L41 having a convex surface directed toward the image side. The positive meniscus lens L41 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 以上の構成の下、本実施例に係るズームレンズでは、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が減少し、第2レンズ群G2と第3レンズ群G3との空気間隔が増加し、第3レンズ群G3と第4レンズ群G4との空気間隔が増加するように、第1レンズ群G1が光軸に沿って移動し、第2レンズ群G2及び第3レンズ群G3が光軸に沿って物体側へ移動する。なお、第4レンズ群G4の位置は変倍時に固定である。また、第2レンズ群G2の前側レンズ群G2Fと開口絞りSと後側レンズ群G2Rとは変倍時に一体で移動する。 With the above configuration, in the zoom lens according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens The first lens group G1 moves along the optical axis so that the air gap between the group G2 and the third lens group G3 increases and the air gap between the third lens group G3 and the fourth lens group G4 increases. The second lens group G2 and the third lens group G3 move toward the object side along the optical axis. The position of the fourth lens group G4 is fixed at the time of zooming. In addition, the front lens group G2F, the aperture stop S, and the rear lens group G2R of the second lens group G2 move together during zooming.
 本実施例に係るズームレンズでは、第3レンズ群G3を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。 In the zoom lens according to the present embodiment, the third lens group G3 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
 また、本実施例に係るズームレンズは、後側レンズ群G2Rにおける負メニスカスレンズL23と正レンズL24との接合レンズを可動群として光軸と直交する方向の成分を含むように移動させることにより防振を行う。
 以下の表6に、本実施例に係るズームレンズの諸元の値を掲げる。
In the zoom lens according to the present embodiment, the cemented lens of the negative meniscus lens L23 and the positive lens L24 in the rear lens group G2R is moved as a movable group so as to include a component in a direction orthogonal to the optical axis. Shake.
Table 6 below provides values of specifications of the zoom lens according to the present example.
(表6)第6実施例
[面データ]
  m            r      d     nd    νd
 OP           ∞
 
   1          45.595   0.800   1.603   65.440
   2           9.305   3.897
 *3         105.000   1.000   1.623   58.163
 *4          14.940   0.100
   5          12.251   2.300   2.001   25.455
   6          17.488   可変
 
 *7          17.546   2.764   1.623   58.163
   8         -11.264   0.800   1.603   38.028
   9         -98.822   1.500
  10(S)        ∞     1.387
  11          19.920   0.800   1.583   46.422
  12           7.418   2.957   1.498   82.570
  13         -30.797   0.418
  14          69.148   1.200   1.498   82.570
  15        -235.478   可変
 
*16          84.505   0.800   1.623   58.163
*17          11.200   可変
 
*18         -48.331   2.762   1.583   59.460
*19         -13.370   BF
 
  I            ∞
 
[非球面データ]
  m        κ          A4          A6          A8          A10
   3     1.000E+00  -1.989E-04   4.989E-06  -2.793E-08   0.000E+00
   4     1.000E+00  -2.392E-04   5.104E-06  -1.433E-08  -2.533E-10
   7     1.000E+00  -6.515E-05  -2.091E-07  -5.039E-09   5.126E-10
  16     1.000E+00   2.128E-04   3.675E-06  -3.902E-07   6.158E-09
  17     1.000E+00   3.722E-04   1.473E-06  -2.115E-07   0.000E+00
  18     1.000E+00   2.156E-05   2.295E-06  -5.042E-08   2.351E-10
  19     1.000E+00   5.297E-05   1.731E-06  -3.031E-08   5.877E-11
 
[各種データ]
変倍比     2.83
 
           W        T
f        10.3      29.1
FNO     3.56      5.66
2ω      77.0°    31.4°
Y         8.19      8.19
 
(無限遠物体合焦時)
            W         M         T
f        10.300     20.160     29.100
d6       19.196      6.353      2.334
d15       1.600      6.308      9.827
d17       4.618      8.326     12.191
BF      13.300     13.297     13.299
TL      48.900     44.472     47.837
 
(近距離物体合焦時)
            W         M         T
D       200.000    200.000    200.000
d6       19.196      6.353      2.334
d15       2.058      7.811     12.661
d17       4.161      6.823      9.357
BF      13.300     13.296     13.299
TL      48.900     44.472     47.837
 
[レンズ群データ]
       ST       f
G1       1     -15.508
G2       7      13.604
G3      16     -20.824
G4      18      30.800
 
[防振データ]
            W         M         T
f        10.300     20.160     29.100
Z         0.145      0.162      0.184
θ         0.624      0.500      0.500
K         0.771      1.089      1.383
 
[条件式対応値]
(1-1) |f2vr|/fw = 2.313
(1-2) |f2vr|/f2 = 1.751
(1-3) m12/fw = 1.637
(2-1) |f2i|/fw = 2.313
(2-2) |f2i|/f2 = 1.751
(2-3) m12/fw = 1.637
 
(Table 6) Sixth Example
[Surface data]
m r d nd νd
OP ∞

1 45.595 0.800 1.603 65.440
2 9.305 3.897
* 3 105.000 1.000 1.623 58.163
* 4 14.940 0.100
5 12.251 2.300 2.001 25.455
6 17.488 Variable
* 7 17.546 2.764 1.623 58.163
8 -11.264 0.800 1.603 38.028
9 -98.822 1.500
10 (S) ∞ 1.387
11 19.920 0.800 1.583 46.422
12 7.418 2.957 1.498 82.570
13 -30.797 0.418
14 69.148 1.200 1.498 82.570
15 -235.478 Variable
* 16 84.505 0.800 1.623 58.163
* 17 11.200 Variable
* 18 -48.331 2.762 1.583 59.460
* 19 -13.370 BF

I ∞

[Aspherical data]
m κ A4 A6 A8 A10
3 1.000E + 00 -1.989E-04 4.989E-06 -2.793E-08 0.000E + 00
4 1.000E + 00 -2.392E-04 5.104E-06 -1.433E-08 -2.533E-10
7 1.000E + 00 -6.515E-05 -2.091E-07 -5.039E-09 5.126E-10
16 1.000E + 00 2.128E-04 3.675E-06 -3.902E-07 6.158E-09
17 1.000E + 00 3.722E-04 1.473E-06 -2.115E-07 0.000E + 00
18 1.000E + 00 2.156E-05 2.295E-06 -5.042E-08 2.351E-10
19 1.000E + 00 5.297E-05 1.731E-06 -3.031E-08 5.877E-11

[Various data]
Scaling ratio 2.83

W T
f 10.3 29.1
FNO 3.56 5.66
2ω 77.0 ° 31.4 °
Y 8.19 8.19

(When focusing on an object at infinity)
W M T
f 10.300 20.160 29.100
d6 19.196 6.353 2.334
d15 1.600 6.308 9.827
d17 4.618 8.326 12.191
BF 13.300 13.297 13.299
TL 48.900 44.472 47.837

(When focusing on a short distance object)
W M T
D 200.000 200.000 200.000
d6 19.196 6.353 2.334
d15 2.058 7.811 12.661
d17 4.161 6.823 9.357
BF 13.300 13.296 13.299
TL 48.900 44.472 47.837

[Lens group data]
ST f
G1 1 -15.508
G2 7 13.604
G3 16 -20.824
G4 18 30.800

[Anti-vibration data]
W M T
f 10.300 20.160 29.100
Z 0.145 0.162 0.184
θ 0.624 0.500 0.500
K 0.771 1.089 1.383

[Conditional expression values]
(1-1) | f2vr | /fw=2.313
(1-2) | f2vr | /f2=1.751
(1-3) m12 / fw = 1.637
(2-1) | f2i | /fw=2.313
(2-2) | f2i | /f2=1.751
(2-3) m12 / fw = 1.637
 図17A、及び図17Bはそれぞれ、本願の第6実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
 図18A、及び図18Bはそれぞれ、本願の第6実施例に係るズームレンズの広角端状態における無限遠物体合焦時に0.624°の回転ぶれに対して防振を行った際のコマ収差図、及び望遠端状態における無限遠物体合焦時に0.500°の回転ぶれに対して防振を行った際のコマ収差図である。
FIGS. 17A and 17B are graphs showing various aberrations when the zoom lens according to Example 6 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
18A and 18B are coma aberration diagrams obtained when image stabilization is performed for 0.624 ° rotational blur when an infinite object is focused in the wide-angle end state of the zoom lens according to Example 6 of the present application. FIG. 6B is a coma aberration diagram when anti-vibration is performed against rotational shake of 0.500 ° when an object at infinity is in focus in the telephoto end state.
 各収差図より、本実施例に係るズームレンズは、広角端状態から望遠端状態にわたって諸収差が良好に補正され高い光学性能を有しており、さらに防振時にも高い光学性能を有していることがわかる。 From each aberration diagram, the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state, and also has high optical performance even during image stabilization. I understand that.
(第7実施例)
 図19A、及び図19Bはそれぞれ、本願の第1、第2実施形態に共通の第7実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。
 本実施例に係るズームレンズは、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
(Seventh embodiment)
19A and 19B are cross-sectional views of the zoom lens according to a seventh example common to the first and second embodiments of the present application in the wide-angle end state and the telephoto end state, respectively.
The zoom lens according to the present embodiment includes a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a negative refractive power, and a positive It is composed of a fourth lens group G4 having refractive power.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。なお、負メニスカスレンズL12は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The first lens group G1, in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of. The negative meniscus lens L12 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 第2レンズ群G2は、物体側から順に、正の屈折力を有する前側レンズ群G2Fと、開口絞りSと、正の屈折力を有する後側レンズ群G2Rとから構成されている。
 前側レンズ群G2Fは、物体側から順に、両凸形状の正レンズL21と物体側に凹面を向けた負メニスカスレンズL22との接合レンズからなる。なお、正レンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
 後側レンズ群G2Rは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL23と両凸形状の正レンズL24との接合レンズからなる。
The second lens group G2 includes, in order from the object side, a front lens group G2F having a positive refractive power, an aperture stop S, and a rear lens group G2R having a positive refractive power.
The front lens group G2F includes, in order from the object side, a cemented lens of a biconvex positive lens L21 and a negative meniscus lens L22 having a concave surface facing the object side. The positive lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
The rear lens group G2R includes, in order from the object side, a cemented lens of a negative meniscus lens L23 having a convex surface facing the object side and a biconvex positive lens L24.
 第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL31からなる。 The third lens group G3 includes a negative meniscus lens L31 having a convex surface directed toward the object side.
 第4レンズ群G4は、物体側から順に、像側に凸面を向けた正メニスカスレンズL41と、両凸形状の正レンズL42とからなる。なお、正メニスカスレンズL41と正レンズL42はそれぞれ、物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The fourth lens group G4 is composed of a positive meniscus lens L41 having a convex surface directed toward the image side and a biconvex positive lens L42 in order from the object side. The positive meniscus lens L41 and the positive lens L42 are glass mold aspherical lenses in which the object-side and image-side lens surfaces are aspherical, respectively.
 以上の構成の下、本実施例に係るズームレンズでは、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が減少し、第2レンズ群G2と第3レンズ群G3との空気間隔が増加し、第3レンズ群G3と第4レンズ群G4との空気間隔が増加するように、第1レンズ群G1が光軸に沿って移動し、第2レンズ群G2及び第3レンズ群G3が光軸に沿って物体側へ移動する。なお、第4レンズ群G4の位置は変倍時に固定である。また、第2レンズ群G2の前側レンズ群G2Fと開口絞りSと後側レンズ群G2Rとは変倍時に一体で移動する。 With the above configuration, in the zoom lens according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens The first lens group G1 moves along the optical axis so that the air gap between the group G2 and the third lens group G3 increases and the air gap between the third lens group G3 and the fourth lens group G4 increases. The second lens group G2 and the third lens group G3 move toward the object side along the optical axis. The position of the fourth lens group G4 is fixed at the time of zooming. In addition, the front lens group G2F, the aperture stop S, and the rear lens group G2R of the second lens group G2 move together during zooming.
 本実施例に係るズームレンズでは、第3レンズ群G3を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。 In the zoom lens according to the present embodiment, the third lens group G3 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
 また、本実施例に係るズームレンズは、第2レンズ群G2における後側レンズ群G2Rを可動群として光軸と直交する方向の成分を含むように移動させることにより防振を行う。
 以下の表7に、本実施例に係るズームレンズの諸元の値を掲げる。
Further, the zoom lens according to the present embodiment performs image stabilization by moving the rear lens group G2R in the second lens group G2 as a movable group so as to include a component in a direction orthogonal to the optical axis.
Table 7 below lists values of specifications of the zoom lens according to the present example.
(表7)第7実施例
[面データ]
  m            r      d     nd    νd
 OP           ∞
 
   1          49.983   0.800   1.603   65.440
   2           9.505   3.797
 *3         105.000   1.000   1.623   58.163
 *4          15.558   0.100
   5          12.387   2.300   2.001   25.455
   6          17.350   可変
 
 *7          17.524   2.569   1.623   58.163
   8         -10.281   0.800   1.603   38.028
   9         -57.158   1.500
  10(S)        ∞     2.772
  11          18.079   0.800   1.583   46.422
  12           6.987   3.000   1.498   82.570
  13         -30.422   可変
 
  14          67.175   0.800   1.623   58.163
  15          11.200   可変
 
*16         -36.612   2.616   1.583   59.460
*17         -12.977   0.300
*18        1000.000   1.115   1.583   59.460
*19        -210.703   BF
 
  I            ∞
 
[非球面データ]
  m        κ          A4          A6          A8          A10
   3     1.000E+00  -1.815E-04   4.949E-06  -2.802E-08   0.000E+00
   4     1.000E+00  -2.152E-04   4.869E-06  -9.757E-09  -2.834E-10
   7     1.000E+00  -5.840E-05  -1.272E-06   8.962E-08  -2.229E-09
  16     1.000E+00   2.682E-06   4.729E-06  -1.432E-07   1.899E-09
  17     1.000E+00   1.508E-04   2.729E-06  -7.215E-08   0.000E+00
  18     1.000E+00   7.330E-05   1.194E-06  -2.778E-08   2.807E-11
  19     1.000E+00   7.834E-05   1.005E-06  -1.240E-08  -1.054E-10
 
[各種データ]
変倍比     2.83
 
           W        T
f        10.3      29.1
FNO     3.56      5.66
2ω      77.0°    31.4°
Y         8.19      8.19
 
(無限遠物体合焦時)
            W         M         T
f        10.300     20.356     29.100
d6       19.255      6.343      2.342
d13       1.600      6.867     10.960
d15       3.777      7.568     10.723
BF      13.299     13.299     13.299
TL      48.900     45.046     48.293
 
(近距離物体合焦時)
            W         M         T
D       200.000    200.000    200.000
d6       19.255      6.343      2.342
d13       2.102      8.572     14.245
d15       3.275      5.863      7.438
BF      13.299     13.299     13.299
TL      48.900     45.046     48.293
 
[レンズ群データ]
       ST       f
G1       1     -15.658
G2       7      14.031
G3      14     -21.707
G4      16      29.815
 
[防振データ]
            W         M         T
f        10.300     20.356     29.100
Z         0.144      0.157      0.176
θ         0.624      0.500      0.500
K         0.779      1.134      1.441
 
[条件式対応値]
(1-1) |f2vr|/fw = 2.718
(1-2) |f2vr|/f2 = 1.996
(1-3) m12/fw = 1.642
(2-1) |f2i|/fw = 2.718
(2-2) |f2i|/f2 = 1.996
(2-3) m12/fw = 1.642
 
(Table 7) Seventh Example
[Surface data]
m r d nd νd
OP ∞

1 49.983 0.800 1.603 65.440
2 9.505 3.797
* 3 105.000 1.000 1.623 58.163
* 4 15.558 0.100
5 12.387 2.300 2.001 25.455
6 17.350 Variable
* 7 17.524 2.569 1.623 58.163
8 -10.281 0.800 1.603 38.028
9 -57.158 1.500
10 (S) ∞ 2.772
11 18.079 0.800 1.583 46.422
12 6.987 3.000 1.498 82.570
13 -30.422 Variable
14 67.175 0.800 1.623 58.163
15 11.200 Variable
* 16 -36.612 2.616 1.583 59.460
* 17 -12.977 0.300
* 18 1000.000 1.115 1.583 59.460
* 19 -210.703 BF

I ∞

[Aspherical data]
m κ A4 A6 A8 A10
3 1.000E + 00 -1.815E-04 4.949E-06 -2.802E-08 0.000E + 00
4 1.000E + 00 -2.152E-04 4.869E-06 -9.757E-09 -2.834E-10
7 1.000E + 00 -5.840E-05 -1.272E-06 8.962E-08 -2.229E-09
16 1.000E + 00 2.682E-06 4.729E-06 -1.432E-07 1.899E-09
17 1.000E + 00 1.508E-04 2.729E-06 -7.215E-08 0.000E + 00
18 1.000E + 00 7.330E-05 1.194E-06 -2.778E-08 2.807E-11
19 1.000E + 00 7.834E-05 1.005E-06 -1.240E-08 -1.054E-10

[Various data]
Scaling ratio 2.83

W T
f 10.3 29.1
FNO 3.56 5.66
2ω 77.0 ° 31.4 °
Y 8.19 8.19

(When focusing on an object at infinity)
W M T
f 10.300 20.356 29.100
d6 19.255 6.343 2.342
d13 1.600 6.867 10.960
d15 3.777 7.568 10.723
BF 13.299 13.299 13.299
TL 48.900 45.046 48.293

(When focusing on a short distance object)
W M T
D 200.000 200.000 200.000
d6 19.255 6.343 2.342
d13 2.102 8.572 14.245
d15 3.275 5.863 7.438
BF 13.299 13.299 13.299
TL 48.900 45.046 48.293

[Lens group data]
ST f
G1 1 -15.658
G2 7 14.031
G3 14 -21.707
G4 16 29.815

[Anti-vibration data]
W M T
f 10.300 20.356 29.100
Z 0.144 0.157 0.176
θ 0.624 0.500 0.500
K 0.779 1.134 1.441

[Conditional expression values]
(1-1) | f2vr | /fw=2.718
(1-2) | f2vr | /f2=1.996
(1-3) m12 / fw = 1.642
(2-1) | f2i | /fw=2.718
(2-2) | f2i | /f2=1.996
(2-3) m12 / fw = 1.642
 図20A、及び図20Bはそれぞれ、本願の第7実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
 図21A、及び図21Bはそれぞれ、本願の第7実施例に係るズームレンズの広角端状態における無限遠物体合焦時に0.624°の回転ぶれに対して防振を行った際のコマ収差図、及び望遠端状態における無限遠物体合焦時に0.500°の回転ぶれに対して防振を行った際のコマ収差図である。
20A and 20B are graphs showing various aberrations when the zoom lens according to Example 7 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
FIGS. 21A and 21B are coma aberration diagrams when anti-vibration is performed for 0.624 ° rotational blur when an object at infinity is in focus in the wide-angle end state of the zoom lens according to Example 7 of the present application. FIG. 6B is a coma aberration diagram when anti-vibration is performed for a rotational shake of 0.500 ° when an object at infinity is in focus in the telephoto end state.
 各収差図より、本実施例に係るズームレンズは、広角端状態から望遠端状態にわたって諸収差が良好に補正され高い光学性能を有しており、さらに防振時にも高い光学性能を有していることがわかる。 From each aberration diagram, the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state, and also has high optical performance even during image stabilization. I understand that.
(第8実施例)
 図22A、及び図22Bはそれぞれ、本願の第1実施形態の第8実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。
 本実施例に係るズームレンズは、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
(Eighth embodiment)
22A and 22B are sectional views of the zoom lens according to Example 8 of the first embodiment of the present application in the wide-angle end state and the telephoto end state, respectively.
The zoom lens according to the present embodiment includes a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a negative refractive power, and a positive It is composed of a fourth lens group G4 having refractive power.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。なお、負メニスカスレンズL11、L12は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The first lens group G1, in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of. The negative meniscus lenses L11 and L12 are glass mold aspherical lenses in which the object-side and image-side lens surfaces are aspherical.
 第2レンズ群G2は、物体側から順に、正の屈折力を有する前側レンズ群G2Fと、開口絞りSと、正の屈折力を有する後側レンズ群G2Rとから構成されている。
 前側レンズ群G2Fは、物体側から順に、両凸形状の正レンズL21と物体側に凹面を向けた負メニスカスレンズL22との接合レンズからなる。なお、正レンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
 後側レンズ群G2Rは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL23と両凸形状の正レンズL24との接合レンズからなる。
The second lens group G2 includes, in order from the object side, a front lens group G2F having a positive refractive power, an aperture stop S, and a rear lens group G2R having a positive refractive power.
The front lens group G2F includes, in order from the object side, a cemented lens of a biconvex positive lens L21 and a negative meniscus lens L22 having a concave surface facing the object side. The positive lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
The rear lens group G2R includes, in order from the object side, a cemented lens of a negative meniscus lens L23 having a convex surface facing the object side and a biconvex positive lens L24.
 第3レンズ群G3は、物体側から順に、両凹形状の負レンズL31と物体側に凸面を向けた正メニスカスレンズL32との接合レンズからなる。なお、正メニスカスレンズL32は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The third lens group G3 includes, in order from the object side, a cemented lens of a biconcave negative lens L31 and a positive meniscus lens L32 having a convex surface directed toward the object side. The positive meniscus lens L32 is a glass mold aspheric lens having an aspheric lens surface on the image side.
 第4レンズ群G4は、像側に凸面を向けた正メニスカスレンズL41からなる。なお、正メニスカスレンズL41は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The fourth lens group G4 includes a positive meniscus lens L41 having a convex surface directed toward the image side. The positive meniscus lens L41 is a glass mold aspheric lens having an aspheric lens surface on the image side.
 以上の構成の下、本実施例に係るズームレンズでは、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が減少し、第2レンズ群G2と第3レンズ群G3との空気間隔が増加し、第3レンズ群G3と第4レンズ群G4との空気間隔が増加するように、第1レンズ群G1が光軸に沿って移動し、第2レンズ群G2及び第3レンズ群G3が光軸に沿って物体側へ移動する。なお、第4レンズ群G4の位置は変倍時に固定である。また、第2レンズ群G2の前側レンズ群G2Fと開口絞りSと後側レンズ群G2Rとは変倍時に一体で移動する。 With the above configuration, in the zoom lens according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens The first lens group G1 moves along the optical axis so that the air gap between the group G2 and the third lens group G3 increases and the air gap between the third lens group G3 and the fourth lens group G4 increases. The second lens group G2 and the third lens group G3 move toward the object side along the optical axis. The position of the fourth lens group G4 is fixed at the time of zooming. In addition, the front lens group G2F, the aperture stop S, and the rear lens group G2R of the second lens group G2 move together during zooming.
 本実施例に係るズームレンズでは、第3レンズ群G3を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。 In the zoom lens according to the present embodiment, the third lens group G3 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
 また、本実施例に係るズームレンズは、第2レンズ群G2における前側レンズ群G2Fを可動群として光軸と直交する方向の成分を含むように移動させることにより防振を行う。
 以下の表8に、本実施例に係るズームレンズの諸元の値を掲げる。
Further, the zoom lens according to the present embodiment performs image stabilization by moving the front lens group G2F in the second lens group G2 as a movable group so as to include a component in a direction orthogonal to the optical axis.
Table 8 below provides values of specifications of the zoom lens according to the present example.
(表8)第8実施例
[面データ]
  m            r      d     nd    νd
 OP           ∞
 
 *1          41.364   0.800   1.697   55.460
 *2          10.676   3.644
 *3          92.728   0.800   1.623   58.163
 *4          11.362   0.300
   5          11.589   2.116   2.001   25.458
   6          17.859   可変
 
 *7          19.709   4.000   1.498   82.570
   8         -10.373   0.800   1.593   35.271
   9         -17.799   4.717
  10(S)        ∞     3.881
  11          14.096   0.800   1.702   41.018
  12           8.189   2.400   1.498   82.570
  13         -29.442   可変
 
  14        -173.316   0.800   1.532   48.779
  15           6.986   1.000   1.689   31.160
*16           9.416   可変
 
  17         -65.070   2.430   1.497   81.558
*18         -13.885   BF
 
  I            ∞
 
[非球面データ]
  m        κ          A4          A6          A8          A10
   1     1.000E+00   1.895E-05  -8.057E-08   1.203E-09   0.000E+00
   2     1.000E+00   1.352E-04  -2.937E-07  -1.567E-08   0.000E+00
   3     1.000E+00  -9.934E-05   8.829E-07  -4.475E-09   0.000E+00
   4     1.000E+00  -2.433E-04   2.518E-06   1.027E-08   0.000E+00
   7     1.000E+00  -7.257E-05  -3.785E-07   1.817E-08   0.000E+00
  16     1.000E+00   1.393E-04  -4.903E-07  -1.723E-08   0.000E+00
  18     1.000E+00  -1.372E-05   4.080E-08  -1.307E-09   0.000E+00
 
[各種データ]
変倍比     2.83
 
           W        T
f        10.3      29.1
FNO     3.56      5.66
2ω      77.0°    31.4°
Y         8.19      8.19
 
(無限遠物体合焦時)
            W         M         T
f        10.300     19.073     29.100
d6        19.180      7.156      1.819
d13        1.002      4.723      8.893
d16        2.530      7.777     11.898
BF      13.800     13.800     13.800
TL      51.200     48.144     51.097
 
(近距離物体合焦時)
            W         M         T
D       200.000    200.000    200.000
d6        19.180      7.156      1.819
d13        1.424      5.840     11.184
d16        2.108      6.660      9.607
BF      13.800     13.800     13.800
TL      51.200     48.144     51.097
 
[レンズ群データ]
       ST       f
G1       1     -14.672
G2       7      14.776
G3      14     -18.879
G4      17      34.956
 
[防振データ]
            W         M         T
f        10.300     19.073     29.100
Z         0.087      0.101      0.126
θ         0.624      0.500      0.500
K         1.293      1.651      2.017
 
[条件式対応値]
(1-1) |f2vr|/fw = 2.044
(1-2) |f2vr|/f2 = 1.425
(1-3) m12/fw = 1.686
 
(Table 8) Eighth Example
[Surface data]
m r d nd νd
OP ∞

* 1 41.364 0.800 1.697 55.460
* 2 10.676 3.644
* 3 92.728 0.800 1.623 58.163
* 4 11.362 0.300
5 11.589 2.116 2.001 25.458
6 17.859 Variable
* 7 19.709 4.000 1.498 82.570
8 -10.373 0.800 1.593 35.271
9 -17.799 4.717
10 (S) ∞ 3.881
11 14.096 0.800 1.702 41.018
12 8.189 2.400 1.498 82.570
13 -29.442 Variable
14 -173.316 0.800 1.532 48.779
15 6.986 1.000 1.689 31.160
* 16 9.416 Variable
17 -65.070 2.430 1.497 81.558
* 18 -13.885 BF

I ∞

[Aspherical data]
m κ A4 A6 A8 A10
1 1.000E + 00 1.895E-05 -8.057E-08 1.203E-09 0.000E + 00
2 1.000E + 00 1.352E-04 -2.937E-07 -1.567E-08 0.000E + 00
3 1.000E + 00 -9.934E-05 8.829E-07 -4.475E-09 0.000E + 00
4 1.000E + 00 -2.433E-04 2.518E-06 1.027E-08 0.000E + 00
7 1.000E + 00 -7.257E-05 -3.785E-07 1.817E-08 0.000E + 00
16 1.000E + 00 1.393E-04 -4.903E-07 -1.723E-08 0.000E + 00
18 1.000E + 00 -1.372E-05 4.080E-08 -1.307E-09 0.000E + 00

[Various data]
Scaling ratio 2.83

W T
f 10.3 29.1
FNO 3.56 5.66
2ω 77.0 ° 31.4 °
Y 8.19 8.19

(When focusing on an object at infinity)
W M T
f 10.300 19.073 29.100
d6 19.180 7.156 1.819
d13 1.002 4.723 8.893
d16 2.530 7.777 11.898
BF 13.800 13.800 13.800
TL 51.200 48.144 51.097

(When focusing on a short distance object)
W M T
D 200.000 200.000 200.000
d6 19.180 7.156 1.819
d13 1.424 5.840 11.184
d16 2.108 6.660 9.607
BF 13.800 13.800 13.800
TL 51.200 48.144 51.097

[Lens group data]
ST f
G1 1 -14.672
G2 7 14.776
G3 14 -18.879
G4 17 34.956

[Anti-vibration data]
W M T
f 10.300 19.073 29.100
Z 0.087 0.101 0.126
θ 0.624 0.500 0.500
K 1.293 1.651 2.017

[Conditional expression values]
(1-1) | f2vr | /fw=2.044
(1-2) | f2vr | /f2=1.425
(1-3) m12 / fw = 1.686
 図23A、及び図23Bはそれぞれ、本願の第8実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
 図24A、及び図24Bはそれぞれ、本願の第8実施例に係るズームレンズの広角端状態における無限遠物体合焦時に0.624°の回転ぶれに対して防振を行った際のコマ収差図、及び望遠端状態における無限遠物体合焦時に0.500°の回転ぶれに対して防振を行った際のコマ収差図である。
FIGS. 23A and 23B are graphs showing various aberrations when the zoom lens according to the eighth example of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
FIGS. 24A and 24B are coma aberration diagrams obtained when anti-vibration is performed for 0.624 ° rotational blur when an object at infinity is in focus at the wide-angle end state of the zoom lens according to Example 8 of the present application. FIG. 6B is a coma aberration diagram when anti-vibration is performed for a rotational shake of 0.500 ° when an object at infinity is in focus in the telephoto end state.
 各収差図より、本実施例に係るズームレンズは、広角端状態から望遠端状態にわたって諸収差が良好に補正され高い光学性能を有しており、さらに防振時にも高い光学性能を有していることがわかる。 From each aberration diagram, the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state, and also has high optical performance even during image stabilization. I understand that.
(第9実施例)
 図25A、及び図25Bはそれぞれ、本願の第1実施形態の第9実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。
 本実施例に係るズームレンズは、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。
(Ninth embodiment)
25A and 25B are cross-sectional views of the zoom lens according to Example 9 of the first embodiment of the present application in the wide-angle end state and the telephoto end state, respectively.
The zoom lens according to the present embodiment includes a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a negative refractive power, and a positive The lens unit includes a fourth lens group G4 having a refractive power and a fifth lens group G5 having a positive refractive power.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。なお、負メニスカスレンズL12は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The first lens group G1, in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of. The negative meniscus lens L12 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 第2レンズ群G2は、物体側から順に、正の屈折力を有する前側レンズ群G2Fと、開口絞りSと、正の屈折力を有する後側レンズ群G2Rとから構成されている。
 前側レンズ群G2Fは、物体側から順に、両凸形状の正レンズL21と物体側に凹面を向けた負メニスカスレンズL22との接合レンズからなる。なお、正レンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
 後側レンズ群G2Rは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL23と両凸形状の正レンズL24との接合レンズからなる。
The second lens group G2 includes, in order from the object side, a front lens group G2F having a positive refractive power, an aperture stop S, and a rear lens group G2R having a positive refractive power.
The front lens group G2F includes, in order from the object side, a cemented lens of a biconvex positive lens L21 and a negative meniscus lens L22 having a concave surface facing the object side. The positive lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
The rear lens group G2R includes, in order from the object side, a cemented lens of a negative meniscus lens L23 having a convex surface facing the object side and a biconvex positive lens L24.
 第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL31からなる。なお、負メニスカスレンズL31は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The third lens group G3 includes a negative meniscus lens L31 having a convex surface directed toward the object side. The negative meniscus lens L31 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 第4レンズ群G4は、像側に凸面を向けた正メニスカスレンズL41からなる。なお、正メニスカスレンズL41は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
 第5レンズ群G5は、両凸形状の正レンズL51からなる。
The fourth lens group G4 includes a positive meniscus lens L41 having a convex surface directed toward the image side. The positive meniscus lens L41 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
The fifth lens group G5 is composed of a biconvex positive lens L51.
 以上の構成の下、本実施例に係るズームレンズでは、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が減少し、第2レンズ群G2と第3レンズ群G3との空気間隔が増加し、第3レンズ群G3と第4レンズ群G4との空気間隔が増加し、第4レンズ群G4と第5レンズ群G5との空気間隔が変化するように、第1レンズ群G1及び第4レンズ群G4が光軸に沿って移動し、第2レンズ群G2及び第3レンズ群G3が光軸に沿って物体側へ移動する。なお、第5レンズ群G5の位置は変倍時に固定である。また、第2レンズ群G2の前側レンズ群G2Fと開口絞りSと後側レンズ群G2Rとは変倍時に一体で移動する。 With the above configuration, in the zoom lens according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens The air gap between the group G2 and the third lens group G3 increases, the air gap between the third lens group G3 and the fourth lens group G4 increases, and the air gap between the fourth lens group G4 and the fifth lens group G5. So that the first lens group G1 and the fourth lens group G4 move along the optical axis, and the second lens group G2 and the third lens group G3 move toward the object side along the optical axis. The position of the fifth lens group G5 is fixed at the time of zooming. In addition, the front lens group G2F, the aperture stop S, and the rear lens group G2R of the second lens group G2 move together during zooming.
 本実施例に係るズームレンズでは、第3レンズ群G3を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。 In the zoom lens according to the present embodiment, the third lens group G3 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
 また、本実施例に係るズームレンズは、第2レンズ群G2における後側レンズ群G2Rを可動群として光軸と直交する方向の成分を含むように移動させることにより防振を行う。
 以下の表9に、本実施例に係るズームレンズの諸元の値を掲げる。
Further, the zoom lens according to the present embodiment performs image stabilization by moving the rear lens group G2R in the second lens group G2 as a movable group so as to include a component in a direction orthogonal to the optical axis.
Table 9 below provides values of specifications of the zoom lens according to the present example.
(表9)第9実施例
[面データ]
  m            r      d     nd    νd
 OP           ∞
 
   1          46.214   0.800   1.603   65.440
   2           9.455   3.704
 *3          66.876   1.000   1.623   58.163
 *4          13.627   0.251
   5          11.862   2.300   2.001   25.455
   6          16.694   可変
 
 *7          17.515   2.406   1.623   58.163
   8          -9.943   0.800   1.603   38.028
   9         -66.732   1.500
  10(S)        ∞     2.920
  11          17.632   0.800   1.583   46.422
  12           7.009   2.942   1.498   82.570
  13         -32.172   可変
 
*14          50.543   0.800   1.623   58.163
*15          11.200   可変
 
*16         -39.592   2.522   1.583   59.460
*17         -13.816   可変
 
  18        1000.000   1.138   1.583   59.460
  19        -185.156   BF
 
  I            ∞
 
[非球面データ]
  m        κ          A4          A6          A8          A10
   3     1.000E+00  -1.574E-04   4.358E-06  -2.353E-08   0.000E+00
   4     1.000E+00  -2.003E-04   4.247E-06  -1.333E-09  -3.237E-10
   7     1.000E+00  -5.432E-05  -7.941E-07   4.408E-08  -9.972E-10
  14     1.000E+00  -1.087E-04   1.017E-05  -2.054E-07   2.789E-10
  15     1.000E+00   2.298E-05   9.118E-06  -1.945E-07   0.000E+00
  16     1.000E+00   1.332E-04  -2.972E-07  -1.673E-08   1.213E-11
  17     1.000E+00   1.279E-04   1.508E-07  -1.498E-08  -3.985E-11
 
[各種データ]
変倍比     2.83
 
           W        T
f        10.3      29.1
FNO     3.56      5.66
2ω      77.0°    31.4°
Y         8.19      8.19
 
(無限遠物体合焦時)
            W         M         T
f        10.300     20.399     29.100
d6        19.238      6.325      2.465
d13        1.600      7.004     11.124
d15        3.879      7.526     11.128
d17        0.300      0.525      0.300
BF      14.250     14.250     14.250
TL      48.900     45.263     48.900
 
(近距離物体合焦時)
            W         M         T
D       200.000    200.000    200.000
d6        19.238      6.325      2.465
d13        2.138      8.847     14.624
d15        3.341      5.682      7.627
d17        0.300      0.525      0.300
BF      14.250     14.250     14.250
TL      48.900     45.263     48.900
 
[レンズ群データ]
       ST       f
G1       1     -15.692
G2       7      14.237
G3      14     -23.291
G4      16      35.128
G5      18     268.010
 
[防振データ]
            W         M         T
f        10.300     20.399     29.100
Z         0.143      0.156      0.175
θ         0.624      0.500      0.500
K         0.784      1.142      1.455
 
[条件式対応値]
(1-1) |f2vr|/fw = 2.718
(1-2) |f2vr|/f2 = 1.967
(1-3) m12/fw = 1.628
 
(Table 9) Ninth Example
[Surface data]
m r d nd νd
OP ∞

1 46.214 0.800 1.603 65.440
2 9.455 3.704
* 3 66.876 1.000 1.623 58.163
* 4 13.627 0.251
5 11.862 2.300 2.001 25.455
6 16.694 Variable
* 7 17.515 2.406 1.623 58.163
8 -9.943 0.800 1.603 38.028
9 -66.732 1.500
10 (S) ∞ 2.920
11 17.632 0.800 1.583 46.422
12 7.009 2.942 1.498 82.570
13 -32.172 Variable
* 14 50.543 0.800 1.623 58.163
* 15 11.200 Variable
* 16 -39.592 2.522 1.583 59.460
* 17 -13.816 Variable
18 1000.000 1.138 1.583 59.460
19 -185.156 BF

I ∞

[Aspherical data]
m κ A4 A6 A8 A10
3 1.000E + 00 -1.574E-04 4.358E-06 -2.353E-08 0.000E + 00
4 1.000E + 00 -2.003E-04 4.247E-06 -1.333E-09 -3.237E-10
7 1.000E + 00 -5.432E-05 -7.941E-07 4.408E-08 -9.972E-10
14 1.000E + 00 -1.087E-04 1.017E-05 -2.054E-07 2.789E-10
15 1.000E + 00 2.298E-05 9.118E-06 -1.945E-07 0.000E + 00
16 1.000E + 00 1.332E-04 -2.972E-07 -1.673E-08 1.213E-11
17 1.000E + 00 1.279E-04 1.508E-07 -1.498E-08 -3.985E-11

[Various data]
Scaling ratio 2.83

W T
f 10.3 29.1
FNO 3.56 5.66
2ω 77.0 ° 31.4 °
Y 8.19 8.19

(When focusing on an object at infinity)
W M T
f 10.300 20.399 29.100
d6 19.238 6.325 2.465
d13 1.600 7.004 11.124
d15 3.879 7.526 11.128
d17 0.300 0.525 0.300
BF 14.250 14.250 14.250
TL 48.900 45.263 48.900

(When focusing on a short distance object)
W M T
D 200.000 200.000 200.000
d6 19.238 6.325 2.465
d13 2.138 8.847 14.624
d15 3.341 5.682 7.627
d17 0.300 0.525 0.300
BF 14.250 14.250 14.250
TL 48.900 45.263 48.900

[Lens group data]
ST f
G1 1 -15.692
G2 7 14.237
G3 14 -23.291
G4 16 35.128
G5 18 268.010

[Anti-vibration data]
W M T
f 10.300 20.399 29.100
Z 0.143 0.156 0.175
θ 0.624 0.500 0.500
K 0.784 1.142 1.455

[Conditional expression values]
(1-1) | f2vr | /fw=2.718
(1-2) | f2vr | /f2=1.967
(1-3) m12 / fw = 1.628
 図26A、及び図26Bはそれぞれ、本願の第9実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
 図27A、及び図27Bはそれぞれ、本願の第9実施例に係るズームレンズの広角端状態における無限遠物体合焦時に0.624°の回転ぶれに対して防振を行った際のコマ収差図、及び望遠端状態における無限遠物体合焦時に0.500°の回転ぶれに対して防振を行った際のコマ収差図である。
FIGS. 26A and 26B are graphs showing various aberrations when the zoom lens according to Example 9 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
FIGS. 27A and 27B are coma aberration diagrams obtained when image stabilization is performed for a rotational shake of 0.624 ° during focusing on an object at infinity in the wide-angle end state of the zoom lens according to Example 9 of the present application. FIG. 6B is a coma aberration diagram when anti-vibration is performed for a rotational shake of 0.500 ° when an object at infinity is in focus in the telephoto end state.
 各収差図より、本実施例に係るズームレンズは、広角端状態から望遠端状態にわたって諸収差が良好に補正され高い光学性能を有しており、さらに防振時にも高い光学性能を有していることがわかる。 From each aberration diagram, the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state, and also has high optical performance even during image stabilization. I understand that.
 上記第1~第9実施例によれば、全長が短く小型軽量で、防振時と非防振時の両方において色収差を良好に補正し、高い光学性能を備えたズームレンズを実現することができる。 According to the first to ninth embodiments, it is possible to realize a zoom lens having a short overall length, a small size and a light weight, which can correct chromatic aberration satisfactorily both in anti-vibration and non-anti-vibration and has high optical performance. it can.
 以下、本願の第3実施形態の数値実施例に係るズームレンズを添付図面に基づいて説明する。
(第10実施例)
 図28A、及び図28Bはそれぞれ、本願の第3実施形態の第10実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。
 本実施例に係るズームレンズは、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
Hereinafter, a zoom lens according to a numerical example of the third embodiment of the present application will be described with reference to the accompanying drawings.
(Tenth embodiment)
28A and 28B are cross-sectional views of the zoom lens according to the tenth example of the third embodiment of the present application in the wide-angle end state and the telephoto end state, respectively.
The zoom lens according to the present example includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a negative refractive power. G3 and a fourth lens group G4 having a positive refractive power.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。なお、負メニスカスレンズL12は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The first lens group G1, in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of. The negative meniscus lens L12 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 第2レンズ群G2は、物体側から順に、両凸形状の正レンズL21と物体側に凹面を向けた負メニスカスレンズL22との接合レンズと、開口絞りSと、物体側に凸面を向けた負メニスカスレンズL23と両凸形状の正レンズL24との接合レンズとからなる。なお、正レンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The second lens group G2 includes, in order from the object side, a cemented lens of a biconvex positive lens L21 and a negative meniscus lens L22 having a concave surface facing the object side, an aperture stop S, and a negative lens having a convex surface facing the object side. It consists of a cemented lens of a meniscus lens L23 and a biconvex positive lens L24. The positive lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
 第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL31からなる。なお、負メニスカスレンズL31は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The third lens group G3 includes a negative meniscus lens L31 having a convex surface directed toward the object side. The negative meniscus lens L31 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 第4レンズ群G4は、像側に凸面を向けた正メニスカスレンズL41からなる。なお、正メニスカスレンズL41は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The fourth lens group G4 includes a positive meniscus lens L41 having a convex surface directed toward the image side. The positive meniscus lens L41 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 以上の構成の下、本実施例に係るズームレンズでは、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が減少し、第2レンズ群G2と第3レンズ群G3との空気間隔が増加し、第3レンズ群G3と第4レンズ群G4との空気間隔が増加するように、第1レンズ群G1が光軸に沿って移動し、第2レンズ群G2及び第3レンズ群G3が光軸に沿って物体側へ移動する。なお、第4レンズ群G4の位置は変倍時に固定である。 With the above configuration, in the zoom lens according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens The first lens group G1 moves along the optical axis so that the air gap between the group G2 and the third lens group G3 increases and the air gap between the third lens group G3 and the fourth lens group G4 increases. The second lens group G2 and the third lens group G3 move toward the object side along the optical axis. The position of the fourth lens group G4 is fixed at the time of zooming.
 本実施例に係るズームレンズでは、第3レンズ群G3を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。 In the zoom lens according to the present embodiment, the third lens group G3 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
 以下の表10に、本実施例に係るズームレンズの諸元の値を掲げる。 Table 10 below lists the values of the specifications of the zoom lens according to the present example.
(表10)第10実施例
[面データ]
  m            r      d     nd    νd
 OP           ∞
 
   1         234.198   0.800   1.618   63.3
   2          10.139   2.598
 *3         104.171   1.000   1.623   58.2
 *4          13.875   0.489
   5          11.360   2.222   2.001   25.5
   6          16.191   可変
 
 *7          16.228   2.724   1.619   63.9
   8         -10.495   0.800   1.603   38.0
   9         -35.530   1.500
  10(S)        ∞     2.919
  11          17.997   0.800   1.583   46.5
  12           6.891   3.028   1.498   82.6
  13         -30.452   可変
 
*14          70.323   0.800   1.619   63.9
*15          11.725   可変
 
*16         -23.210   2.893   1.517   63.9
*17         -10.545   BF
 
  I            ∞
 
[非球面データ]
  m        κ          A4          A6          A8          A10
   3     1.000E+00   5.896E-05   2.075E-06  -1.269E-08   0.000E+00
   4     1.000E+00   4.789E-05   1.866E-06   8.533E-09  -2.754E-10
   7     1.000E+00  -6.693E-05  -2.872E-07  -1.175E-08   1.194E-09
  14     1.000E+00   7.428E-04  -3.644E-05   1.001E-06  -1.552E-08
  15     1.000E+00   1.000E-03  -3.068E-05   4.236E-07   0.000E+00
  16     1.000E+00   7.202E-05   4.723E-06  -7.472E-08   3.145E-10
  17     1.000E+00   9.722E-05   3.060E-06  -1.991E-08  -3.234E-11
 
[各種データ]
変倍比     2.83
 
           W        T
f        10.3      29.1
FNO     3.6       5.7
2ω      75.7°    30.7°
Y         8.19      8.19
TL      63.1      59.9
 
(無限遠物体合焦時)
           W         M         T
f        10.30      18.53      29.10
d6       17.92       7.24       2.29
d13       1.60       6.29      11.95
d15       5.21       7.80      10.64
BF      13.30      13.30      13.30
 
(近距離物体合焦時)
           W         M         T
D       200.00     200.00     200.00
d6       17.92       7.24       2.29
d13       2.07       7.72      15.32
d15       4.74       6.37       7.26
BF      13.30      13.30      13.30
 
[レンズ群データ]
       ST      f
G1       1     -14.25
G2       7      13.72
G3      14     -22.72
G4      16      30.57
 
[条件式対応値]
m3 = 5.43
fst = 3.38
(3-1) m3/fw = 0.53
(3-2) (r42+r41)/(r42-r41) = -2.67
(3-3) fst/m3 = 0.62
(3-4) (-f3)/fw = 2.21
 
(Table 10) Tenth Example
[Surface data]
m r d nd νd
OP ∞

1 234.198 0.800 1.618 63.3
2 10.139 2.598
* 3 104.171 1.000 1.623 58.2
* 4 13.875 0.489
5 11.360 2.222 2.001 25.5
6 16.191 Variable
* 7 16.228 2.724 1.619 63.9
8 -10.495 0.800 1.603 38.0
9 -35.530 1.500
10 (S) ∞ 2.919
11 17.997 0.800 1.583 46.5
12 6.891 3.028 1.498 82.6
13 -30.452 Variable
* 14 70.323 0.800 1.619 63.9
* 15 11.725 Variable
* 16 -23.210 2.893 1.517 63.9
* 17 -10.545 BF

I ∞

[Aspherical data]
m κ A4 A6 A8 A10
3 1.000E + 00 5.896E-05 2.075E-06 -1.269E-08 0.000E + 00
4 1.000E + 00 4.789E-05 1.866E-06 8.533E-09 -2.754E-10
7 1.000E + 00 -6.693E-05 -2.872E-07 -1.175E-08 1.194E-09
14 1.000E + 00 7.428E-04 -3.644E-05 1.001E-06 -1.552E-08
15 1.000E + 00 1.000E-03 -3.068E-05 4.236E-07 0.000E + 00
16 1.000E + 00 7.202E-05 4.723E-06 -7.472E-08 3.145E-10
17 1.000E + 00 9.722E-05 3.060E-06 -1.991E-08 -3.234E-11

[Various data]
Scaling ratio 2.83

W T
f 10.3 29.1
FNO 3.6 5.7
2ω 75.7 ° 30.7 °
Y 8.19 8.19
TL 63.1 59.9

(When focusing on an object at infinity)
W M T
f 10.30 18.53 29.10
d6 17.92 7.24 2.29
d13 1.60 6.29 11.95
d15 5.21 7.80 10.64
BF 13.30 13.30 13.30

(When focusing on a short distance object)
W M T
D 200.00 200.00 200.00
d6 17.92 7.24 2.29
d13 2.07 7.72 15.32
d15 4.74 6.37 7.26
BF 13.30 13.30 13.30

[Lens group data]
ST f
G1 1 -14.25
G2 7 13.72
G3 14 -22.72
G4 16 30.57

[Conditional expression values]
m3 = 5.43
fst = 3.38
(3-1) m3 / fw = 0.53
(3-2) (r42 + r41) / (r42-r41) = − 2.67
(3-3) fst / m3 = 0.62
(3-4) (-f3) / fw = 2.21
 図29A、及び図29Bはそれぞれ、本願の第10実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。 FIGS. 29A and 29B are graphs showing various aberrations when the zoom lens according to Example 10 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
 各収差図より、本実施例に係るズームレンズは、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。 From each aberration diagram, it can be seen that the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.
(第11実施例)
 図30A、及び図30Bはそれぞれ、本願の第3実施形態の第11実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。
 本実施例に係るズームレンズは、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
(Eleventh embodiment)
30A and 30B are cross-sectional views of the zoom lens according to Example 11 of the third embodiment of the present application in the wide-angle end state and the telephoto end state, respectively.
The zoom lens according to the present example includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a negative refractive power. G3 and a fourth lens group G4 having a positive refractive power.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。なお、負メニスカスレンズL12は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The first lens group G1, in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of. The negative meniscus lens L12 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 第2レンズ群G2は、物体側から順に、両凸形状の正レンズL21と物体側に凹面を向けた負メニスカスレンズL22との接合レンズと、開口絞りSと、物体側に凸面を向けた負メニスカスレンズL23と両凸形状の正レンズL24との接合レンズとからなる。なお、正レンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The second lens group G2 includes, in order from the object side, a cemented lens of a biconvex positive lens L21 and a negative meniscus lens L22 having a concave surface facing the object side, an aperture stop S, and a negative lens having a convex surface facing the object side. It consists of a cemented lens of a meniscus lens L23 and a biconvex positive lens L24. The positive lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
 第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL31からなる。なお、負メニスカスレンズL31は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The third lens group G3 includes a negative meniscus lens L31 having a convex surface directed toward the object side. The negative meniscus lens L31 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 第4レンズ群G4は、像側に凸面を向けた正メニスカスレンズL41からなる。なお、正メニスカスレンズL41は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The fourth lens group G4 includes a positive meniscus lens L41 having a convex surface directed toward the image side. The positive meniscus lens L41 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 以上の構成の下、本実施例に係るズームレンズでは、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が減少し、第2レンズ群G2と第3レンズ群G3との空気間隔が増加し、第3レンズ群G3と第4レンズ群G4との空気間隔が増加するように、第1レンズ群G1が光軸に沿って移動し、第2レンズ群G2及び第3レンズ群G3が光軸に沿って物体側へ移動する。なお、第4レンズ群G4の位置は変倍時に固定である。 With the above configuration, in the zoom lens according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens The first lens group G1 moves along the optical axis so that the air gap between the group G2 and the third lens group G3 increases and the air gap between the third lens group G3 and the fourth lens group G4 increases. The second lens group G2 and the third lens group G3 move toward the object side along the optical axis. The position of the fourth lens group G4 is fixed at the time of zooming.
 本実施例に係るズームレンズでは、第3レンズ群G3を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。
 以下の表11に、本実施例に係るズームレンズの諸元の値を掲げる。
In the zoom lens according to the present embodiment, the third lens group G3 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
Table 11 below lists values of specifications of the zoom lens according to the present example.
(表11)第11実施例
[面データ]
  m            r      d     nd    νd
 OP           ∞
 
   1         131.926   0.800   1.618   63.3
   2           9.887   2.207
 *3          22.899   1.000   1.623   58.2 
 *4           9.089   0.862
   5          11.594   1.892   2.001   25.5
   6          17.515   可変
 
 *7          15.735   3.218   1.619   63.9
   8         -10.904   0.800   1.603   38.0
   9         -75.326   2.678
  10(S)        ∞     1.500
  11          16.112   0.800   1.583   46.5
  12           6.544   2.114   1.498   82.6
  13         -31.376   可変
 
*14          39.745   0.800   1.619   63.9
*15          10.560   可変
 
*16         -23.030   2.584   1.517   63.9
*17         -10.518   BF
 
  I            ∞
 
[非球面データ]
  m        κ          A4          A6          A8          A10
   3     1.000E+00  -3.833E-04   9.067E-06  -6.487E-08   7.866E-11
   4     1.000E+00  -5.554E-04   8.416E-06  -3.144E-08  -7.595E-10
   7     1.000E+00  -6.517E-05  -1.259E-06   3.629E-08   8.838E-11
  14     1.000E+00   8.336E-04  -3.542E-05   1.312E-07   3.038E-08
  15     1.000E+00   1.164E-03  -4.103E-05   8.025E-07  -4.760E-09
  16     1.000E+00   1.801E-04   1.181E-06  -3.912E-08   1.795E-11
  17     1.000E+00   1.621E-04   1.593E-06  -2.352E-08  -1.206E-10
 
[各種データ]
変倍比     2.88
 
           W        T
f        10.2      29.4
FNO     3.6       6.4
2ω      76.2°    30.4°
Y         8.19      8.19
TL      63.0      59.2
 
(無限遠物体合焦時)
           W         M         T
f        10.20      20.00      29.40
d6       18.51       6.32       2.14
d13       1.57       6.56      11.21
d15       5.36       8.74      11.31
BF      13.30      13.30      13.30
 
(近距離物体合焦時)
           W         M         T
D       200.00     200.00     200.00
d6       18.51       6.32       2.14
d13       1.98       8.15      14.40
d15       4.95       7.16       8.12
BF      13.30      13.30      13.30
 
[レンズ群データ]
       ST      f
G1       1     -14.43
G2       7      13.57
G3      14     -23.49
G4      16      35.00
 
[条件式対応値]
m3 = 5.95
fst = 3.19
(3-1) m3/fw = 0.58
(3-2) (r42+r41)/(r42-r41) = -2.68
(3-3) fst/m3 = 0.54
(3-4) (-f3)/fw = 2.30
 
(Table 11) Eleventh Example
[Surface data]
m r d nd νd
OP ∞

1 131.926 0.800 1.618 63.3
2 9.887 2.207
* 3 22.899 1.000 1.623 58.2
* 4 9.089 0.862
5 11.594 1.892 2.001 25.5
6 17.515 Variable
* 7 15.735 3.218 1.619 63.9
8 -10.904 0.800 1.603 38.0
9 -75.326 2.678
10 (S) ∞ 1.500
11 16.112 0.800 1.583 46.5
12 6.544 2.114 1.498 82.6
13 -31.376 Variable
* 14 39.745 0.800 1.619 63.9
* 15 10.560 Variable
* 16 -23.030 2.584 1.517 63.9
* 17 -10.518 BF

I ∞

[Aspherical data]
m κ A4 A6 A8 A10
3 1.000E + 00 -3.833E-04 9.067E-06 -6.487E-08 7.866E-11
4 1.000E + 00 -5.554E-04 8.416E-06 -3.144E-08 -7.595E-10
7 1.000E + 00 -6.517E-05 -1.259E-06 3.629E-08 8.838E-11
14 1.000E + 00 8.336E-04 -3.542E-05 1.312E-07 3.038E-08
15 1.000E + 00 1.164E-03 -4.103E-05 8.025E-07 -4.760E-09
16 1.000E + 00 1.801E-04 1.181E-06 -3.912E-08 1.795E-11
17 1.000E + 00 1.621E-04 1.593E-06 -2.352E-08 -1.206E-10

[Various data]
Scaling ratio 2.88

W T
f 10.2 29.4
FNO 3.6 6.4
2ω 76.2 ° 30.4 °
Y 8.19 8.19
TL 63.0 59.2

(When focusing on an object at infinity)
W M T
f 10.20 20.00 29.40
d6 18.51 6.32 2.14
d13 1.57 6.56 11.21
d15 5.36 8.74 11.31
BF 13.30 13.30 13.30

(When focusing on a short distance object)
W M T
D 200.00 200.00 200.00
d6 18.51 6.32 2.14
d13 1.98 8.15 14.40
d15 4.95 7.16 8.12
BF 13.30 13.30 13.30

[Lens group data]
ST f
G1 1 -14.43
G2 7 13.57
G3 14 -23.49
G4 16 35.00

[Conditional expression values]
m3 = 5.95
fst = 3.19
(3-1) m3 / fw = 0.58
(3-2) (r42 + r41) / (r42-r41) = − 2.68
(3-3) fst / m3 = 0.54
(3-4) (−f3) /fw=2.30
 図31A、及び図31Bはそれぞれ、本願の第11実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。 FIGS. 31A and 31B are graphs showing various aberrations during focusing on an object at infinity in the wide-angle end state and the telephoto end state of the zoom lens according to Example 11 of the present application, respectively.
 各収差図より、本実施例に係るズームレンズは、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。 From each aberration diagram, it can be seen that the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.
(第12実施例)
 図32A、及び図32Bはそれぞれ、本願の第3実施形態の第12実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。
 本実施例に係るズームレンズは、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
(Twelfth embodiment)
32A and 32B are cross-sectional views of the zoom lens according to Example 12 of the third embodiment of the present application in the wide-angle end state and the telephoto end state, respectively.
The zoom lens according to the present example includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a negative refractive power. G3 and a fourth lens group G4 having a positive refractive power.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。なお、負メニスカスレンズL12は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The first lens group G1, in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of. The negative meniscus lens L12 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 第2レンズ群G2は、物体側から順に、両凸形状の正レンズL21と物体側に凹面を向けた負メニスカスレンズL22との接合レンズと、開口絞りSと、物体側に凸面を向けた負メニスカスレンズL23と両凸形状の正レンズL24との接合レンズとからなる。なお、正レンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The second lens group G2 includes, in order from the object side, a cemented lens of a biconvex positive lens L21 and a negative meniscus lens L22 having a concave surface facing the object side, an aperture stop S, and a negative lens having a convex surface facing the object side. It consists of a cemented lens of a meniscus lens L23 and a biconvex positive lens L24. The positive lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
 第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL31からなる。なお、負メニスカスレンズL31は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The third lens group G3 includes a negative meniscus lens L31 having a convex surface directed toward the object side. The negative meniscus lens L31 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 第4レンズ群G4は、像側に凸面を向けた正メニスカスレンズL41からなる。なお、正メニスカスレンズL41は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The fourth lens group G4 includes a positive meniscus lens L41 having a convex surface directed toward the image side. The positive meniscus lens L41 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 以上の構成の下、本実施例に係るズームレンズでは、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が減少し、第2レンズ群G2と第3レンズ群G3との空気間隔が増加し、第3レンズ群G3と第4レンズ群G4との空気間隔が増加するように、第1レンズ群G1が光軸に沿って移動し、第2レンズ群G2及び第3レンズ群G3が光軸に沿って物体側へ移動する。なお、第4レンズ群G4の位置は変倍時に固定である。 With the above configuration, in the zoom lens according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens The first lens group G1 moves along the optical axis so that the air gap between the group G2 and the third lens group G3 increases and the air gap between the third lens group G3 and the fourth lens group G4 increases. The second lens group G2 and the third lens group G3 move toward the object side along the optical axis. The position of the fourth lens group G4 is fixed at the time of zooming.
 本実施例に係るズームレンズでは、第3レンズ群G3を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。
 以下の表12に、本実施例に係るズームレンズの諸元の値を掲げる。
In the zoom lens according to the present embodiment, the third lens group G3 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
Table 12 below provides values of specifications of the zoom lens according to the present example.
(表12)第12実施例
[面データ]
  m            r      d     nd    νd
 OP           ∞
 
   1          46.250   0.800   1.618   63.3
   2           9.071   2.923
 *3          65.166   1.000   1.619   63.7
 *4          11.707   0.576
   5          12.414   1.756   2.001   25.5
   6          19.421   可変
 
 *7          16.791   4.129   1.619   63.9
   8         -10.239   0.800   1.603   38.0
   9         -51.266   1.500
  10(S)        ∞     1.500
  11          18.401   0.800   1.583   46.5
  12           6.931   3.163   1.498   82.6
  13         -27.503   可変
 
*14          94.732   0.800   1.619   63.9
*15          13.489   可変
 
*16         -15.587   2.523   1.517   63.9
*17          -8.834   BF
 
  I            ∞
 
[非球面データ]
  m        κ          A4          A6          A8          A10
   3     1.000E+00  -3.493E-04   9.551E-06  -9.426E-08   3.168E-10
   4     1.000E+00  -4.421E-04   1.007E-05  -8.974E-08   2.250E-11
   7     1.000E+00  -7.028E-05  -8.151E-07   3.411E-08  -4.721E-10
  14     1.000E+00   1.115E-03  -3.903E-05   6.896E-08   2.986E-08
  15     1.000E+00   1.425E-03  -3.788E-05   5.432E-08   2.514E-08
  16     1.000E+00   1.441E-04   5.894E-07  -2.786E-10  -1.123E-09
  17     1.000E+00   2.175E-04   2.668E-07   4.907E-08  -1.168E-09
 
[各種データ]
変倍比     2.88
 
           W        T
f        10.2      29.4
FNO     3.6       5.8
2ω      76.2°    30.4°
Y         8.19      8.19
TL      63.1      59.3
 
(無限遠物体合焦時)
           W         M         T
f        10.20      20.00      29.40
d6       17.52       5.71       1.70
d13       1.57       6.75      11.51
d15       5.66       8.89      11.52
BF      13.04      13.04      13.04
 
(近距離物体合焦時)
           W         M         T
D       200.00     200.00     200.00
d6       17.52       5.71       1.70
d13       2.05       8.52      15.05
d15       5.18       7.11       7.98
BF      13.04      13.04      13.04
 
[レンズ群データ]
       ST      f
G1       1     -14.31
G2       7      13.55
G3      14     -25.51
G4      16      35.00
 
[条件式対応値]
m3 = 5.86
fst = 3.55
(3-1) m3/fw = 0.57
(3-2) (r42+r41)/(r42-r41) = -3.62
(3-3) fst/m3 = 0.61
(3-4) (-f3)/fw = 2.50
 
(Table 12) 12th Example
[Surface data]
m r d nd νd
OP ∞

1 46.250 0.800 1.618 63.3
2 9.071 2.923
* 3 65.166 1.000 1.619 63.7
* 4 11.707 0.576
5 12.414 1.756 2.001 25.5
6 19.421 Variable
* 7 16.791 4.129 1.619 63.9
8 -10.239 0.800 1.603 38.0
9 -51.266 1.500
10 (S) ∞ 1.500
11 18.401 0.800 1.583 46.5
12 6.931 3.163 1.498 82.6
13 -27.503 Variable
* 14 94.732 0.800 1.619 63.9
* 15 13.489 Variable
* 16 -15.587 2.523 1.517 63.9
* 17 -8.834 BF

I ∞

[Aspherical data]
m κ A4 A6 A8 A10
3 1.000E + 00 -3.493E-04 9.551E-06 -9.426E-08 3.168E-10
4 1.000E + 00 -4.421E-04 1.007E-05 -8.974E-08 2.250E-11
7 1.000E + 00 -7.028E-05 -8.151E-07 3.411E-08 -4.721E-10
14 1.000E + 00 1.115E-03 -3.903E-05 6.896E-08 2.986E-08
15 1.000E + 00 1.425E-03 -3.788E-05 5.432E-08 2.514E-08
16 1.000E + 00 1.441E-04 5.894E-07 -2.786E-10 -1.123E-09
17 1.000E + 00 2.175E-04 2.668E-07 4.907E-08 -1.168E-09

[Various data]
Scaling ratio 2.88

W T
f 10.2 29.4
FNO 3.6 5.8
2ω 76.2 ° 30.4 °
Y 8.19 8.19
TL 63.1 59.3

(When focusing on an object at infinity)
W M T
f 10.20 20.00 29.40
d6 17.52 5.71 1.70
d13 1.57 6.75 11.51
d15 5.66 8.89 11.52
BF 13.04 13.04 13.04

(When focusing on a short distance object)
W M T
D 200.00 200.00 200.00
d6 17.52 5.71 1.70
d13 2.05 8.52 15.05
d15 5.18 7.11 7.98
BF 13.04 13.04 13.04

[Lens group data]
ST f
G1 1 -14.31
G2 7 13.55
G3 14 -25.51
G4 16 35.00

[Conditional expression values]
m3 = 5.86
fst = 3.55
(3-1) m3 / fw = 0.57
(3-2) (r42 + r41) / (r42-r41) = − 3.62
(3-3) fst / m3 = 0.61
(3-4) (−f3) /fw=2.50
 図33A、及び図33Bはそれぞれ、本願の第12実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。 33A and 33B are graphs showing various aberrations when the zoom lens according to Example 12 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
 各収差図より、本実施例に係るズームレンズは、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。 From each aberration diagram, it can be seen that the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.
(第13実施例)
 図34A、及び図34Bはそれぞれ、本願の第3実施形態の第13実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。
 本実施例に係るズームレンズは、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
(Thirteenth embodiment)
34A and 34B are cross-sectional views of the zoom lens according to Example 13 of the third embodiment of the present application in the wide-angle end state and the telephoto end state, respectively.
The zoom lens according to the present example includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a negative refractive power. G3 and a fourth lens group G4 having a positive refractive power.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。なお、負メニスカスレンズL12は物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The first lens group G1, in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of. The negative meniscus lens L12 is a glass mold aspheric lens in which the object-side and image-side lens surfaces are aspherical.
 第2レンズ群G2は、物体側から順に、両凸形状の正レンズL21と物体側に凹面を向けた負メニスカスレンズL22との接合レンズと、開口絞りSと、物体側に凸面を向けた負メニスカスレンズL23と両凸形状の正レンズL24との接合レンズとからなる。なお、正レンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The second lens group G2 includes, in order from the object side, a cemented lens of a biconvex positive lens L21 and a negative meniscus lens L22 having a concave surface facing the object side, an aperture stop S, and a negative lens having a convex surface facing the object side. It consists of a cemented lens of a meniscus lens L23 and a biconvex positive lens L24. The positive lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
 第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL31からなる。 The third lens group G3 includes a negative meniscus lens L31 having a convex surface directed toward the object side.
 第4レンズ群G4は、物体側から順に、像側に凸面を向けた正メニスカスレンズL41と、両凸形状の正レンズL42とからなる。なお、正メニスカスレンズL41と正レンズL42はそれぞれ、物体側及び像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The fourth lens group G4 is composed of a positive meniscus lens L41 having a convex surface directed toward the image side and a biconvex positive lens L42 in order from the object side. The positive meniscus lens L41 and the positive lens L42 are glass mold aspherical lenses in which the object-side and image-side lens surfaces are aspherical, respectively.
 以上の構成の下、本実施例に係るズームレンズでは、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が減少し、第2レンズ群G2と第3レンズ群G3との空気間隔が増加し、第3レンズ群G3と第4レンズ群G4との空気間隔が増加するように、第1レンズ群G1が光軸に沿って移動し、第2レンズ群G2及び第3レンズ群G3が光軸に沿って物体側へ移動する。なお、第4レンズ群G4の位置は変倍時に固定である。 With the above configuration, in the zoom lens according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens The first lens group G1 moves along the optical axis so that the air gap between the group G2 and the third lens group G3 increases and the air gap between the third lens group G3 and the fourth lens group G4 increases. The second lens group G2 and the third lens group G3 move toward the object side along the optical axis. The position of the fourth lens group G4 is fixed at the time of zooming.
 本実施例に係るズームレンズでは、第3レンズ群G3を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。
 以下の表13に、本実施例に係るズームレンズの諸元の値を掲げる。
In the zoom lens according to the present embodiment, the third lens group G3 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
Table 13 below provides values of specifications of the zoom lens according to the present example.
(表13)第13実施例
[面データ]
  m            r      d     nd    νd
 OP           ∞
 
   1          49.983   0.800   1.603   65.440
   2           9.505   3.797
 *3         105.000   1.000   1.623   58.163
 *4          15.558   0.100
   5          12.387   2.300   2.001   25.455
   6          17.350   可変
 
 *7          17.524   2.569   1.623   58.163
   8         -10.281   0.800   1.603   38.028
   9         -57.158   1.500
  10(S)        ∞     2.772
  11          18.079   0.800   1.583   46.422
  12           6.987   3.000   1.498   82.570
  13         -30.422   可変
 
  14          67.175   0.800   1.623   58.163
  15          11.200   可変
 
*16         -36.612   2.616   1.583   59.460
*17         -12.977   0.300
*18        1000.000   1.115   1.583   59.460
*19        -210.703   BF
 
  I            ∞
 
[非球面データ]
  m        κ          A4          A6          A8          A10
   3     1.000E+00  -1.815E-04   4.949E-06  -2.802E-08   0.000E+00
   4     1.000E+00  -2.152E-04   4.869E-06  -9.757E-09  -2.834E-10
   7     1.000E+00  -5.840E-05  -1.272E-06   8.962E-08  -2.229E-09
  16     1.000E+00   2.682E-06   4.729E-06  -1.432E-07   1.899E-09
  17     1.000E+00   1.508E-04   2.729E-06  -7.215E-08   0.000E+00
  18     1.000E+00   7.330E-05   1.194E-06  -2.778E-08   2.807E-11
  19     1.000E+00   7.834E-05   1.005E-06  -1.240E-08  -1.054E-10
 
[各種データ]
変倍比     2.83
 
           W        T
f        10.3      29.1
FNO     3.56      5.66
2ω      77.0°    31.4°
Y         8.19      8.19
TL      48.90     48.29
 
(無限遠物体合焦時)
           W         M         T
f        10.30      20.356     29.100
d6       19.255      6.343      2.342
d13       1.600      6.867     10.960
d15       3.777      7.568     10.723
BF      13.299     13.299     13.299
 
(近距離物体合焦時)
           W         M         T
D       200.000    200.000    200.000
d6       19.255      6.343      2.342
d13       2.102      8.572     14.245
d15       3.275      5.863      7.438
BF      13.299     13.299     13.299
 
[レンズ群データ]
       ST      f
G1       1     -15.658
G2       7      14.031
G3      14     -21.707
G4      16      29.815
 
[条件式対応値]
m3 = 6.95
fst = 3.29
(3-1) m3/fw = 0.67
(3-2) (r42+r41)/(r42-r41) = -2.10
(3-3) fst/m3 = 0.47
(3-4) (-f3)/fw = 2.11
 
(Table 13) 13th Example
[Surface data]
m r d nd νd
OP ∞

1 49.983 0.800 1.603 65.440
2 9.505 3.797
* 3 105.000 1.000 1.623 58.163
* 4 15.558 0.100
5 12.387 2.300 2.001 25.455
6 17.350 Variable
* 7 17.524 2.569 1.623 58.163
8 -10.281 0.800 1.603 38.028
9 -57.158 1.500
10 (S) ∞ 2.772
11 18.079 0.800 1.583 46.422
12 6.987 3.000 1.498 82.570
13 -30.422 Variable
14 67.175 0.800 1.623 58.163
15 11.200 Variable
* 16 -36.612 2.616 1.583 59.460
* 17 -12.977 0.300
* 18 1000.000 1.115 1.583 59.460
* 19 -210.703 BF

I ∞

[Aspherical data]
m κ A4 A6 A8 A10
3 1.000E + 00 -1.815E-04 4.949E-06 -2.802E-08 0.000E + 00
4 1.000E + 00 -2.152E-04 4.869E-06 -9.757E-09 -2.834E-10
7 1.000E + 00 -5.840E-05 -1.272E-06 8.962E-08 -2.229E-09
16 1.000E + 00 2.682E-06 4.729E-06 -1.432E-07 1.899E-09
17 1.000E + 00 1.508E-04 2.729E-06 -7.215E-08 0.000E + 00
18 1.000E + 00 7.330E-05 1.194E-06 -2.778E-08 2.807E-11
19 1.000E + 00 7.834E-05 1.005E-06 -1.240E-08 -1.054E-10

[Various data]
Scaling ratio 2.83

W T
f 10.3 29.1
FNO 3.56 5.66
2ω 77.0 ° 31.4 °
Y 8.19 8.19
TL 48.90 48.29

(When focusing on an object at infinity)
W M T
f 10.30 20.356 29.100
d6 19.255 6.343 2.342
d13 1.600 6.867 10.960
d15 3.777 7.568 10.723
BF 13.299 13.299 13.299

(When focusing on a short distance object)
W M T
D 200.000 200.000 200.000
d6 19.255 6.343 2.342
d13 2.102 8.572 14.245
d15 3.275 5.863 7.438
BF 13.299 13.299 13.299

[Lens group data]
ST f
G1 1 -15.658
G2 7 14.031
G3 14 -21.707
G4 16 29.815

[Conditional expression values]
m3 = 6.95
fst = 3.29
(3-1) m3 / fw = 0.67
(3-2) (r42 + r41) / (r42-r41) = -2.10
(3-3) fst / m3 = 0.47
(3-4) (−f3) /fw=2.11
 図35A、及び図35Bはそれぞれ、本願の第13実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。 FIGS. 35A and 35B are graphs showing various aberrations when the zoom lens according to Example 13 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
 各収差図より、本実施例に係るズームレンズは、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。 From each aberration diagram, it can be seen that the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.
 上記第10~第13実施例によれば、全長が短く小型軽量で、小さなレンズ鏡筒に保持されることが可能であり、高い光学性能を有するズームレンズを実現することができる。 According to the tenth to thirteenth embodiments, it is possible to realize a zoom lens having a short overall length, a small size and a light weight, which can be held by a small lens barrel, and having high optical performance.
 以下、本願の第4実施形態の数値実施例に係るズームレンズを添付図面に基づいて説明する。
(第14実施例)
 図36A、及び図36Bはそれぞれ、本願の第4実施形態の第14実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。
 本実施例に係るズームレンズは、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
A zoom lens according to a numerical example of the fourth embodiment of the present application will be described below with reference to the accompanying drawings.
(14th embodiment)
36A and 36B are cross-sectional views of the zoom lens according to Example 14 of the fourth embodiment of the present application in the wide-angle end state and the telephoto end state, respectively.
The zoom lens according to the present example includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a negative refractive power. G3 and a fourth lens group G4 having a positive refractive power.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。なお、負メニスカスレンズL12は物体側及び像側のレンズ面が非球面である。 The first lens group G1, in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of. The negative meniscus lens L12 has an aspheric lens surface on the object side and the image side.
 第2レンズ群G2は、物体側から順に、正の屈折力を有する第1部分群G2aと、負の屈折力を有する第2部分群G2bと、開口絞りSと、正の屈折力を有する第3部分群G2cとから構成されている。
 第1部分群G2aは、両凸形状の正レンズL21からなる。
 第2部分群G2bは、物体側に凹面を向けた負メニスカスレンズL22からなる。なお、負メニスカスレンズL22は物体側のレンズ面が非球面である。
 第3部分群G2cは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL23と両凸形状の正レンズL24との接合レンズからなる。
The second lens group G2 includes, in order from the object side, a first partial group G2a having a positive refractive power, a second partial group G2b having a negative refractive power, an aperture stop S, and a first partial group having a positive refractive power. 3 subgroups G2c.
The first partial group G2a is composed of a biconvex positive lens L21.
The second partial group G2b includes a negative meniscus lens L22 having a concave surface directed toward the object side. The negative meniscus lens L22 has an aspheric lens surface on the object side.
The third partial group G2c is composed of a cemented lens of a negative meniscus lens L23 having a convex surface directed toward the object side and a biconvex positive lens L24 in order from the object side.
 第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL31からなる。なお、負メニスカスレンズL31は物体側及び像側のレンズ面が非球面である。
 第4レンズ群G4は、物体側に凹面を向けた正メニスカスレンズL41からなる。なお、正メニスカスレンズL41は像側のレンズ面が非球面である。
The third lens group G3 includes a negative meniscus lens L31 having a convex surface directed toward the object side. The negative meniscus lens L31 has aspherical object-side and image-side lens surfaces.
The fourth lens group G4 includes a positive meniscus lens L41 having a concave surface directed toward the object side. The positive meniscus lens L41 has an aspheric lens surface on the image side.
 以上の構成の下、本実施例に係るズームレンズでは、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が減少し、第2レンズ群G2と第3レンズ群G3との空気間隔が増加し、第3レンズ群G3と第4レンズ群G4との空気間隔が増加するように、第1レンズ群G1が光軸に沿って移動し、第2レンズ群G2及び第3レンズ群G3が光軸に沿って物体側へ移動する。なお、第4レンズ群G4の位置は変倍時に固定である。また、第2レンズ群G2の第1部分群G2a、第2部分群G2b、開口絞りS及び第3部分群G2cは変倍時に一体で移動する。 With the above configuration, in the zoom lens according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens The first lens group G1 moves along the optical axis so that the air gap between the group G2 and the third lens group G3 increases and the air gap between the third lens group G3 and the fourth lens group G4 increases. The second lens group G2 and the third lens group G3 move toward the object side along the optical axis. The position of the fourth lens group G4 is fixed at the time of zooming. Further, the first partial group G2a, the second partial group G2b, the aperture stop S, and the third partial group G2c of the second lens group G2 move together during zooming.
 また本実施例に係るズームレンズでは、第3レンズ群G3を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。
 また本実施例に係るズームレンズでは、第2レンズ群G2における第2部分群G2bを可動群として光軸と直交する方向の成分を含むように移動させることにより防振を行う。
In the zoom lens according to the present embodiment, the third lens group G3 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
In the zoom lens according to the present example, the second partial group G2b in the second lens group G2 is moved as a movable group so as to include a component in a direction orthogonal to the optical axis, thereby performing image stabilization.
 以下の表14に、本実施例に係るズームレンズの諸元の値を掲げる。 Table 14 below lists the values of the specifications of the zoom lens according to the present example.
(表14)第14実施例
[面データ]
  m            r      d     nd    νd
 OP           ∞      ∞
 
   1          78.892   0.80   1.7450   52.4
   2          10.034   1.71
 *3          17.452   1.00   1.8512   40.0
 *4           9.307   0.98
   5          12.455   2.27   2.0007   25.5
   6          26.745   可変
 
   7          15.912   1.59   1.6380   61.0
   8         -36.986   1.13
 *9         -14.015   0.80   1.4978   82.6
  10         -36.732   1.15
  11(S)        ∞     0.90
  12          13.073   0.80   1.6133   35.8
  13           5.489   2.81   1.4978   82.6
  14         -33.124   可変
 
*15         -32.118   0.80   1.5452   63.7
*16          43.926   可変
 
  17         -77.198   2.73   1.6263   60.3
*18         -16.492   BF
 
  I            ∞
 
[非球面データ]
  m       κ          A4          A6          A8          A10
   3    0.000E+00   1.232E-04  -1.192E-06   9.574E-09  -1.191E-11
   4    0.000E+00  -9.802E-06  -1.437E-06  -1.507E-08  -7.874E-11
   9    0.000E+00   2.704E-05   3.771E-06  -1.175E-07   0.000E+00
  15    0.000E+00   4.690E-04   3.430E-05  -9.148E-07   0.000E+00
  16    0.000E+00   6.793E-04   3.487E-05  -8.133E-07   0.000E+00
  18    0.000E+00   5.620E-05  -1.305E-06   4.685E-09   7.830E-12
 
[各種データ]
                  W         T
f               10.20      29.40
FNO            3.6        6.35
2ω             77.6°     31.2°
Y                8.20       8.20
TL             58.03      58.47
BF             12.89      12.89
 
(無限遠物体合焦時)
                  W         M         T
f               10.20      18.60      29.40
d6              18.13       6.61       1.45
d14              2.12       7.29      13.58
d16              5.41       8.01      11.16
BF             12.89      12.89      12.89
 
[レンズ群データ]
         ST        f
G1         1        -16.57
G2         7         14.62
G3        15        -33.90
G4        17         32.92
 
[防振データ]
           W         M         T
f        10.20      18.60      29.40
Z         0.18       0.25       0.30
θ         0.5        0.5        0.5
K        -0.50      -0.65      -0.84
 
[条件式対応値]
fvr = -46.06
(4-1) |fw/fvr| = 0.22
(4-2) fw/f2 = 0.70
(4-3) |f2/fvr| = 0.32
 
(Table 14) 14th Example
[Surface data]
m r d nd νd
OP ∞ ∞

1 78.892 0.80 1.7450 52.4
2 10.034 1.71
* 3 17.452 1.00 1.8512 40.0
* 4 9.307 0.98
5 12.455 2.27 2.0007 25.5
6 26.745 Variable
7 15.912 1.59 1.6380 61.0
8 -36.986 1.13
* 9 -14.015 0.80 1.4978 82.6
10 -36.732 1.15
11 (S) ∞ 0.90
12 13.073 0.80 1.6133 35.8
13 5.489 2.81 1.4978 82.6
14 -33.124 Variable
* 15 -32.118 0.80 1.5452 63.7
* 16 43.926 Variable
17 -77.198 2.73 1.6263 60.3
* 18 -16.492 BF

I ∞

[Aspherical data]
m κ A4 A6 A8 A10
3 0.000E + 00 1.232E-04 -1.192E-06 9.574E-09 -1.191E-11
4 0.000E + 00 -9.802E-06 -1.437E-06 -1.507E-08 -7.874E-11
9 0.000E + 00 2.704E-05 3.771E-06 -1.175E-07 0.000E + 00
15 0.000E + 00 4.690E-04 3.430E-05 -9.148E-07 0.000E + 00
16 0.000E + 00 6.793E-04 3.487E-05 -8.133E-07 0.000E + 00
18 0.000E + 00 5.620E-05 -1.305E-06 4.685E-09 7.830E-12

[Various data]
W T
f 10.20 29.40
FNO 3.6 6.35
2ω 77.6 ° 31.2 °
Y 8.20 8.20
TL 58.03 58.47
BF 12.89 12.89

(When focusing on an object at infinity)
W M T
f 10.20 18.60 29.40
d6 18.13 6.61 1.45
d14 2.12 7.29 13.58
d16 5.41 8.01 11.16
BF 12.89 12.89 12.89

[Lens group data]
ST f
G1 1 -16.57
G2 7 14.62
G3 15 -33.90
G4 17 32.92

[Anti-vibration data]
W M T
f 10.20 18.60 29.40
Z 0.18 0.25 0.30
θ 0.5 0.5 0.5
K -0.50 -0.65 -0.84

[Conditional expression values]
fvr = -46.06
(4-1) | fw / fvr | = 0.22
(4-2) fw / f2 = 0.70
(4-3) | f2 / fvr | = 0.32
 図37A、及び図37Bはそれぞれ、本願の第14実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
 図38A、及び図38Bはそれぞれ、本願の第14実施例に係るズームレンズの広角端状態における無限遠物体合焦時に0.5°の回転ぶれに対して防振を行った際のコマ収差図、及び望遠端状態における無限遠物体合焦時に0.5°の回転ぶれに対して防振を行った際のコマ収差図である。
 図39A、及び図39Bはそれぞれ、本願の第14実施例に係るズームレンズの広角端状態、及び望遠端状態における近距離物体合焦時の諸収差図である。
37A and 37B are graphs showing various aberrations when the zoom lens according to Example 14 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
FIG. 38A and FIG. 38B are coma aberration diagrams when anti-vibration is performed against a rotational blur of 0.5 ° at the time of focusing on an object at infinity in the wide-angle end state of the zoom lens according to Example 14 of the present application. FIG. 6B is a coma aberration diagram when anti-vibration is performed with respect to a rotational shake of 0.5 ° during focusing on an object at infinity in the telephoto end state.
FIGS. 39A and 39B are graphs showing various aberrations when focusing on a short-distance object in the wide-angle end state and the telephoto end state of the zoom lens according to Example 14 of the present application, respectively.
 各収差図より、本実施例に係るズームレンズは、広角端状態から望遠端状態にわたって諸収差が良好に補正され高い光学性能を有しており、さらに防振時にも高い光学性能を有していることがわかる。 From each aberration diagram, the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state, and also has high optical performance even during image stabilization. I understand that.
(第15実施例)
 図40A、及び図40Bはそれぞれ、本願の第4実施形態の第15実施例に係るズームレンズの広角端状態、及び望遠端状態における断面図である。
 本実施例に係るズームレンズは、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
(15th embodiment)
40A and 40B are cross-sectional views of the zoom lens according to Example 15 of the fourth embodiment of the present application in the wide-angle end state and the telephoto end state, respectively.
The zoom lens according to the present example includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a negative refractive power. G3 and a fourth lens group G4 having a positive refractive power.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。なお、負メニスカスレンズL12は像側のレンズ面が非球面である。 The first lens group G1, in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Consists of. The negative meniscus lens L12 has an aspheric lens surface on the image side.
 第2レンズ群G2は、物体側から順に、正の屈折力を有する第1部分群G2aと、負の屈折力を有する第2部分群G2bと、開口絞りSと、正の屈折力を有する第3部分群G2cとから構成されている。
 第1部分群G2aは、両凸形状の正レンズL21からなる。なお、正レンズL21は物体側のレンズ面が非球面である。
 第2部分群G2bは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL22と物体側に凸面を向けた正メニスカスレンズL23との接合レンズからなる。
 第3部分群G2cは、両凸形状の正レンズL24からなる。
The second lens group G2 includes, in order from the object side, a first partial group G2a having a positive refractive power, a second partial group G2b having a negative refractive power, an aperture stop S, and a first partial group having a positive refractive power. 3 subgroups G2c.
The first partial group G2a is composed of a biconvex positive lens L21. The positive lens L21 has an aspheric lens surface on the object side.
The second partial group G2b includes, in order from the object side, a cemented lens of a negative meniscus lens L22 having a convex surface facing the object side and a positive meniscus lens L23 having a convex surface facing the object side.
The third partial group G2c is composed of a biconvex positive lens L24.
 第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL31からなる。なお、負メニスカスレンズL31は像側のレンズ面が非球面である。
 第4レンズ群G4は、物体側に凸面を向けた平凸形状の正レンズL41からなる。なお、正レンズL41は像側のレンズ面が非球面である。
The third lens group G3 includes a negative meniscus lens L31 having a convex surface directed toward the object side. The negative meniscus lens L31 has an aspheric lens surface on the image side.
The fourth lens group G4 includes a planoconvex positive lens L41 having a convex surface directed toward the object side. The positive lens L41 has an aspheric lens surface on the image side.
 以上の構成の下、本実施例に係るズームレンズでは、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が減少し、第2レンズ群G2と第3レンズ群G3との空気間隔が増加し、第3レンズ群G3と第4レンズ群G4との空気間隔が増加するように、第1レンズ群G1が光軸に沿って移動し、第2レンズ群G2及び第3レンズ群G3が光軸に沿って物体側へ移動する。なお、第4レンズ群G4の位置は変倍時に固定である。また、第2レンズ群G2の第1部分群G2a、第2部分群G2b、開口絞りS及び第3部分群G2cは変倍時に一体で移動する。 With the above configuration, in the zoom lens according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 decreases during zooming from the wide-angle end state to the telephoto end state, and the second lens The first lens group G1 moves along the optical axis so that the air gap between the group G2 and the third lens group G3 increases and the air gap between the third lens group G3 and the fourth lens group G4 increases. The second lens group G2 and the third lens group G3 move toward the object side along the optical axis. The position of the fourth lens group G4 is fixed at the time of zooming. Further, the first partial group G2a, the second partial group G2b, the aperture stop S, and the third partial group G2c of the second lens group G2 move together during zooming.
 また本実施例に係るズームレンズでは、第3レンズ群G3を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。
 また本実施例に係るズームレンズでは、第2レンズ群G2における第1部分群G2aを可動群として光軸と直交する方向の成分を含むように移動させることにより防振を行う。
 以下の表15に、本実施例に係るズームレンズの諸元の値を掲げる。
In the zoom lens according to the present embodiment, the third lens group G3 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
Further, in the zoom lens according to the present embodiment, the first partial group G2a in the second lens group G2 is moved as a movable group so as to include a component in a direction orthogonal to the optical axis, thereby performing image stabilization.
Table 15 below lists values of specifications of the zoom lens according to the present example.
(表15)第15実施例
[面データ]
  m            r      d     nd    νd
 OP           ∞      ∞
 
   1          65.074   1.00   1.7678   49.7
   2          10.582   2.22
   3          21.472   1.00   1.7766   48.7
 *4           9.015   0.60
   5          11.386   2.67   2.0006   25.5
   6          22.956   可変
 
 *7          15.422   1.20   1.4978   82.6
   8        -460.710   1.48
   9           9.744   0.60   1.8081   22.7
  10           6.869   1.20   1.8830   40.8
  11           7.816   2.11
  12(S)        ∞     1.50
  13          14.686   1.63   1.4978   82.6
  14         -19.110   可変
 
  15          10.782   0.80   1.6908   36.5
*16           7.017   可変
 
  17            ∞     2.50   1.7007   56.3
*18         -28.026   BF
 
  I            ∞
 
[非球面データ]
  m       κ          A4          A6          A8          A10
   4    0.000E+00  -1.642E-04  -1.853E-07  -1.249E-08  -2.299E-10
   7    0.000E+00  -1.148E-04   9.544E-07  -2.877E-08  -5.249E-10
  16    0.000E+00  -2.139E-05   1.247E-06  -5.518E-08   0.000E+00
  18    0.000E+00   4.282E-05  -1.969E-06   1.391E-08  -3.253E-11
 
[各種データ]
                  W         T
f               10.2       29.40
FNO            3.6        6.35
2ω             77.6°     31.2°
Y                8.20       8.20
TL             59.06      59.06
BF             12.58      12.58
 
(無限遠物体合焦時)
                  W         M         T
f               10.20      19.99      29.40
d6              17.84       5.24       1.15
d14              1.61       7.63      12.53
d16              6.50       9.11      12.31
BF             12.58      12.58      12.58
 
[レンズ群データ]
         ST         f
G1         1        -15.4661
G2         7         14.4691
G3        15        -31.8519
G4        17         40.0000
 
[防振データ]
           W         M         T
f        10.20      19.99      29.40
Z         0.07       0.10       0.12
θ         0.3        0.3        0.3
K         0.80       1.04       1.27
 
[条件式対応値]
fvr = 30.00
(4-1) |fw/fvr| = 0.34
(4-2) fw/f2 = 0.70
(4-3) |f2/fvr| = 0.48
 
(Table 15) 15th Example
[Surface data]
m r d nd νd
OP ∞ ∞

1 65.074 1.00 1.7678 49.7
2 10.582 2.22
3 21.472 1.00 1.7766 48.7
* 4 9.015 0.60
5 11.386 2.67 2.0006 25.5
6 22.956 Variable
* 7 15.422 1.20 1.4978 82.6
8 -460.710 1.48
9 9.744 0.60 1.8081 22.7
10 6.869 1.20 1.8830 40.8
11 7.816 2.11
12 (S) ∞ 1.50
13 14.686 1.63 1.4978 82.6
14 -19.110 Variable
15 10.782 0.80 1.6908 36.5
* 16 7.017 Variable
17 ∞ 2.50 1.7007 56.3
* 18 -28.026 BF

I ∞

[Aspherical data]
m κ A4 A6 A8 A10
4 0.000E + 00 -1.642E-04 -1.853E-07 -1.249E-08 -2.299E-10
7 0.000E + 00 -1.148E-04 9.544E-07 -2.877E-08 -5.249E-10
16 0.000E + 00 -2.139E-05 1.247E-06 -5.518E-08 0.000E + 00
18 0.000E + 00 4.282E-05 -1.969E-06 1.391E-08 -3.253E-11

[Various data]
W T
f 10.2 29.40
FNO 3.6 6.35
2ω 77.6 ° 31.2 °
Y 8.20 8.20
TL 59.06 59.06
BF 12.58 12.58

(When focusing on an object at infinity)
W M T
f 10.20 19.99 29.40
d6 17.84 5.24 1.15
d14 1.61 7.63 12.53
d16 6.50 9.11 12.31
BF 12.58 12.58 12.58

[Lens group data]
ST f
G1 1 -15.4661
G2 7 14.4691
G3 15 -31.8519
G4 17 40.0000

[Anti-vibration data]
W M T
f 10.20 19.99 29.40
Z 0.07 0.10 0.12
θ 0.3 0.3 0.3
K 0.80 1.04 1.27

[Conditional expression values]
fvr = 30.00
(4-1) | fw / fvr | = 0.34
(4-2) fw / f2 = 0.70
(4-3) | f2 / fvr | = 0.48
 図41A、及び図41Bはそれぞれ、本願の第15実施例に係るズームレンズの広角端状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
 図42A、及び図42Bはそれぞれ、本願の第15実施例に係るズームレンズの広角端状態における無限遠物体合焦時に0.3°の回転ぶれに対して防振を行った際のコマ収差図、及び望遠端状態における無限遠物体合焦時に0.3°の回転ぶれに対して防振を行った際のコマ収差図である。
 図43A、及び図43Bはそれぞれ、本願の第15実施例に係るズームレンズの広角端状態、及び望遠端状態における近距離物体合焦時の諸収差図である。
FIGS. 41A and 41B are graphs showing various aberrations when the zoom lens according to Example 15 of the present application is focused on an object at infinity in the wide-angle end state and the telephoto end state, respectively.
FIG. 42A and FIG. 42B are coma aberration diagrams obtained when image stabilization is performed for a 0.3 ° rotational blur at the time of focusing on an object at infinity in the wide-angle end state of the zoom lens according to Example 15 of the present application. FIG. 6B is a coma aberration diagram when anti-vibration is performed with respect to a rotational shake of 0.3 ° during focusing on an object at infinity in the telephoto end state.
FIGS. 43A and 43B are graphs showing various aberrations when focusing on a short-distance object in the wide-angle end state and the telephoto end state of the zoom lens according to Example 15 of the present application, respectively.
 各収差図より、本実施例に係るズームレンズは、広角端状態から望遠端状態にわたって諸収差が良好に補正され高い光学性能を有しており、さらに防振時にも高い光学性能を有していることがわかる。 From each aberration diagram, the zoom lens according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state, and also has high optical performance even during image stabilization. I understand that.
 上記第14、第15実施例によれば、レンズ全長が短く小型軽量で、良好な光学性能を備え、防振時の光学性能の劣化が小さなズームレンズを実現することができる。 According to the fourteenth and fifteenth embodiments, it is possible to realize a zoom lens having a short overall lens length, small size and light weight, good optical performance, and small deterioration in optical performance during image stabilization.
 上記各実施例によれば、高い光学性能を備えたズームレンズを実現することができる。なお、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。以下の内容は、本願の第1~第4実施形態に係るズームレンズの光学性能を損なわない範囲で適宜採用することが可能である。 According to the above embodiments, a zoom lens having high optical performance can be realized. In addition, each said Example has shown one specific example of this invention, and this invention is not limited to these. The following contents can be adopted as appropriate as long as the optical performance of the zoom lens according to the first to fourth embodiments of the present application is not impaired.
 本願の第1~第4実施形態に係るズームレンズの数値実施例として4群や5群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、6群等)のズームレンズを構成することもできる。具体的には、本願の第1~第4実施形態に係るズームレンズの最も物体側や最も像側にレンズ又はレンズ群を追加した構成でも構わない。 As numerical examples of the zoom lens according to the first to fourth embodiments of the present application, those having a four-group or five-group configuration are shown. However, the present application is not limited to this, and other group configurations (for example, six groups) may be used. A zoom lens can also be configured. Specifically, a configuration in which a lens or a lens group is added to the most object side or the most image side of the zoom lens according to the first to fourth embodiments of the present application may be used.
 また、本願の第1~第4実施形態に係るズームレンズは、無限遠物体から近距離物体への合焦を行うために、レンズ群の一部、1つのレンズ群全体、或いは複数のレンズ群を合焦レンズ群として光軸方向へ移動させる構成としてもよい。特に、第3レンズ群の少なくとも一部を合焦レンズ群とすることが好ましい。斯かる合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ等による駆動にも適している。 In addition, the zoom lenses according to the first to fourth embodiments of the present application include a part of a lens group, an entire lens group, or a plurality of lens groups in order to perform focusing from an object at infinity to an object at a short distance. The focusing lens group may be moved in the optical axis direction. In particular, it is preferable that at least a part of the third lens group is a focusing lens group. Such a focusing lens group can be applied to autofocus, and is also suitable for driving by an autofocus motor such as an ultrasonic motor.
 また、本願の第1~第4実施形態に係るズームレンズにおいて、いずれかのレンズ群全体又はその一部を、防振レンズ群として光軸に対して垂直な方向の成分を含むように移動させ、又は光軸を含む面内方向へ回転移動(揺動)させることにより、防振を行う構成とすることもできる。特に、本願の第1~第4実施形態に係るズームレンズでは第2レンズ群の少なくとも一部を防振レンズ群とすることが好ましい。 In the zoom lens according to the first to fourth embodiments of the present application, either the entire lens group or a part thereof is moved so as to include a component in a direction perpendicular to the optical axis as an anti-vibration lens group. Alternatively, it can also be configured to perform vibration isolation by rotating (swinging) in the in-plane direction including the optical axis. In particular, in the zoom lens according to the first to fourth embodiments of the present application, it is preferable that at least a part of the second lens group is an anti-vibration lens group.
 また、本願の第1~第4実施形態に係るズームレンズを構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。 Further, the lens surface of the lens constituting the zoom lens according to the first to fourth embodiments of the present application may be a spherical surface, a flat surface, or an aspherical surface. When the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are easy, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. When the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
 また、本願の第1~第4実施形態に係るズームレンズにおいて開口絞りは第2レンズ群中に配置されることが好ましく、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としてもよい。
 また、本願の第1~第4実施形態に係るズームレンズを構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
In the zoom lens according to the first to fourth embodiments of the present application, it is preferable that the aperture stop is disposed in the second lens group, and the role is replaced by a lens frame without providing a member as the aperture stop. Also good.
Further, an antireflection film having a high transmittance in a wide wavelength region may be provided on the lens surface of the lens constituting the zoom lens according to the first to fourth embodiments of the present application. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.
 本願の第1、第2実施形態に係るズームレンズとしては、第2レンズ群において、前側レンズ群と後側レンズ群とが、少なくとも1つの負レンズと少なくとも1つの正レンズとを有することが好ましい。この構成により、前側レンズ群と後側レンズ群との両方で色収差を補正することができる。 As a zoom lens according to the first and second embodiments of the present application, in the second lens group, it is preferable that the front lens group and the rear lens group have at least one negative lens and at least one positive lens. . With this configuration, chromatic aberration can be corrected in both the front lens group and the rear lens group.
 また、本願の第1、第2実施形態に係るズームレンズとしては、第2レンズ群において、前側レンズ群又は後側レンズ群の一方の少なくとも一部を可動群とし、第2レンズ群に含まれる可動群以外のレンズを固定群とした際に、可動群と固定群とが少なくとも1つの負レンズと少なくとも1つの正レンズとを有する構成とすることが好ましい。この構成により、非防振時の軸上色収差と倍率色収差の補正と、防振時の軸上色収差と倍率色収差の補正とを両立することができ、防振時と非防振時の両方において色収差を良好に補正し、高い光学性能を備えたズームレンズを実現することができる。 The zoom lens according to the first and second embodiments of the present application includes, in the second lens group, at least a part of one of the front lens group and the rear lens group as a movable group and is included in the second lens group. When a lens other than the movable group is a fixed group, it is preferable that the movable group and the fixed group have at least one negative lens and at least one positive lens. With this configuration, it is possible to achieve both correction of axial chromatic aberration and lateral chromatic aberration during non-vibration and correction of axial chromatic aberration and lateral chromatic aberration during anti-vibration. A zoom lens that corrects chromatic aberration well and has high optical performance can be realized.
 次に、本願の第1~第4実施形態に係るズームレンズを備えたカメラを図44に基づいて説明する。
 図44は、本願の第1~第4実施形態に係るズームレンズを備えたカメラの構成を示す図である。
 図44に示すようにカメラ1は、撮影レンズ2として上記第1実施例に係るズームレンズを備えたレンズ交換式の所謂ミラーレスカメラである。
Next, a camera including a zoom lens according to the first to fourth embodiments of the present application will be described with reference to FIG.
FIG. 44 is a diagram showing a configuration of a camera including a zoom lens according to the first to fourth embodiments of the present application.
As shown in FIG. 44, the camera 1 is a so-called mirrorless camera with interchangeable lenses provided with the zoom lens according to the first embodiment as the photographing lens 2.
 本カメラ1において、被写体である不図示の物体からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子によって被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。
 また、撮影者によって不図示のレリーズボタンが押されると、撮像部3で生成された被写体の画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
In the present camera 1, light from an object (not shown) that is a subject is collected by the taking lens 2 and is on the imaging surface of the imaging unit 3 via an OLPF (Optical Low Pass Filter) not shown. A subject image is formed on the screen. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3 to generate an image of the subject. This image is displayed on an EVF (Electronic view finder) 4 provided in the camera 1. Thus, the photographer can observe the subject via the EVF 4.
When the release button (not shown) is pressed by the photographer, the subject image generated by the imaging unit 3 is stored in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.
 ここで、本カメラ1に撮影レンズ2として搭載した上記第1実施例に係るズームレンズは、高い光学性能を備えたズームレンズである。したがって本カメラ1は、高い光学性能を実現することができる。なお、上記第2~第15実施例に係るズームレンズを撮影レンズ2として搭載したカメラを構成しても、上記カメラ1と同様の効果を奏することができる。また、クイックリターンミラーを有し、ファインダ光学系によって被写体を観察する一眼レフタイプのカメラに上記各実施例に係るズームレンズを搭載した場合でも、上記カメラ1と同様の効果を奏することができる。 Here, the zoom lens according to the first embodiment mounted on the camera 1 as the photographing lens 2 is a zoom lens having high optical performance. Therefore, this camera 1 can realize high optical performance. It should be noted that the same effects as those of the camera 1 can be obtained even if a camera equipped with the zoom lenses according to the second to fifteenth embodiments as the photographing lens 2 is configured. Further, even when the zoom lens according to each of the above embodiments is mounted on a single-lens reflex camera having a quick return mirror and observing a subject with a finder optical system, the same effect as the camera 1 can be obtained.
 最後に、本願の第1~第4実施形態に係るズームレンズの製造方法の概略を図45~図48に基づいて説明する。
 図45に示す本願の第1実施形態に係るズームレンズの製造方法は、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有するズームレンズの製造方法であって、以下のステップS11~S14を含むものである。
Finally, an outline of the zoom lens manufacturing method according to the first to fourth embodiments of the present application will be described with reference to FIGS. 45 to 48.
The zoom lens manufacturing method according to the first embodiment of the present application shown in FIG. 45 includes, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a negative lens group. A zoom lens manufacturing method including a third lens group having a refractive power and a fourth lens group having a positive refractive power, and includes the following steps S11 to S14.
 ステップS11:第2レンズ群が、物体側から順に、前側レンズ群と、開口絞りと、後側レンズ群とを有するようにする。
 ステップS12:前側レンズ群と後側レンズ群が少なくとも1つの負レンズをそれぞれ有するようにし、第1~第4レンズ群をレンズ鏡筒内に物体側から順に配置する。
Step S11: The second lens group includes a front lens group, an aperture stop, and a rear lens group in order from the object side.
Step S12: The front lens group and the rear lens group each have at least one negative lens, and the first to fourth lens groups are sequentially arranged in the lens barrel from the object side.
 ステップS13:レンズ鏡筒に公知の移動機構を設ける等することで、変倍時に、第1レンズ群と第2レンズ群との間隔、第2レンズ群と第3レンズ群との間隔、及び第3レンズ群と第4レンズ群との間隔が変化するようにする。
 ステップS14:レンズ鏡筒に公知の移動機構を設ける等することで、第2レンズ群中の少なくとも一部のレンズが可動群として光軸と直交する方向の成分を含むように移動するようにする。
Step S13: By providing a known moving mechanism in the lens barrel, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, and the The interval between the third lens group and the fourth lens group is changed.
Step S14: By providing a known moving mechanism in the lens barrel, at least a part of the lenses in the second lens group is moved as a movable group so as to include a component in a direction perpendicular to the optical axis. .
 斯かる本願の第1実施形態に係るズームレンズの製造方法によれば、防振時と非防振時の両方において色収差を良好に補正し、高い光学性能を備えたズームレンズを製造することができる。 According to the method for manufacturing a zoom lens according to the first embodiment of the present application, it is possible to manufacture a zoom lens having high optical performance by satisfactorily correcting chromatic aberration both during image stabilization and during non-image stabilization. it can.
 図46に示す本願の第2実施形態に係るズームレンズの製造方法は、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有するズームレンズの製造方法であって、以下のステップS21~S24を含むものである。 The zoom lens manufacturing method according to the second embodiment of the present application shown in FIG. 46 includes, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a negative A zoom lens manufacturing method having a third lens group having a refractive power and a fourth lens group having a positive refractive power, and includes the following steps S21 to S24.
 ステップS21:第2レンズ群が、物体側から順に、前側レンズ群と、開口絞りと、後側レンズ群とを有するようにする。
 ステップS22:前側レンズ群と後側レンズ群が少なくとも1つの負レンズをそれぞれ有するようにし、第1~第4レンズ群をレンズ鏡筒内に物体側から順に配置する。
Step S21: The second lens group includes a front lens group, an aperture stop, and a rear lens group in order from the object side.
Step S22: The front lens group and the rear lens group each have at least one negative lens, and the first to fourth lens groups are sequentially arranged in the lens barrel from the object side.
 ステップS23:レンズ鏡筒に公知の移動機構を設ける等することで、広角端状態から望遠端状態への変倍時に、第1レンズ群と第2レンズ群との間隔、第2レンズ群と第3レンズ群との間隔、及び第3レンズ群と第4レンズ群との間隔が変化するようにする。
 ステップS24:レンズ鏡筒に公知の移動機構を設ける等することで、後側レンズ群中の少なくとも一部のレンズが光軸と直交する方向の成分を含むように移動するようにする。
Step S23: By providing a known moving mechanism in the lens barrel, the distance between the first lens group and the second lens group, the second lens group and the second lens group at the time of zooming from the wide-angle end state to the telephoto end state. The distance between the three lens groups and the distance between the third lens group and the fourth lens group are changed.
Step S24: A known moving mechanism is provided in the lens barrel so that at least a part of the lenses in the rear lens group moves so as to include a component in a direction orthogonal to the optical axis.
 斯かる本願の第2実施形態に係るズームレンズの製造方法によれば、防振時と非防振時の両方において色収差を良好に補正し、高い光学性能を備えたズームレンズを製造することができる。 According to the method for manufacturing a zoom lens according to the second embodiment of the present application, it is possible to manufacture a zoom lens having high optical performance by satisfactorily correcting chromatic aberration both at the time of image stabilization and at the time of non-image stabilization. it can.
 図47に示す本願の第3実施形態に係るズームレンズの製造方法は、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有するズームレンズの製造方法であって、以下のステップS31、S32を含むものである。 The zoom lens manufacturing method according to the third embodiment of the present application shown in FIG. 47 includes, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a negative A zoom lens manufacturing method including a third lens group having a refractive power and a fourth lens group having a positive refractive power, and includes the following steps S31 and S32.
 ステップS31:第1~第4レンズ群をレンズ鏡筒内に物体側から順に配置する。そして、レンズ鏡筒に公知の移動機構を設ける等することで、広角端状態から望遠端状態への変倍時に、第3レンズ群が光軸に沿って移動し、第1レンズ群と第2レンズ群との間隔、第2レンズ群と第3レンズ群との間隔、及び第3レンズ群と第4レンズ群との間隔が変化するようにする。 Step S31: The first to fourth lens groups are arranged in order from the object side in the lens barrel. Then, by providing a known moving mechanism in the lens barrel, the third lens group moves along the optical axis during zooming from the wide-angle end state to the telephoto end state, and the first lens group and the second lens group The distance between the lens group, the distance between the second lens group and the third lens group, and the distance between the third lens group and the fourth lens group are changed.
 ステップS32:第3レンズ群が以下の条件式(3-1)を満足するようにする。
(3-1) 0.50 < m3/fw < 0.80
 ただし、
m3:広角端状態から望遠端状態への変倍時の第3レンズ群の移動量
fw:広角端状態におけるズームレンズの焦点距離
Step S32: The third lens group is made to satisfy the following conditional expression (3-1).
(3-1) 0.50 <m3 / fw <0.80
However,
m3: Amount of movement of the third lens unit during zooming from the wide-angle end state to the telephoto end state fw: focal length of the zoom lens in the wide-angle end state
 斯かる本願の第3実施形態に係るズームレンズの製造方法によれば、全長が短く小型で高い光学性能を備えたズームレンズを製造することができる。 According to the zoom lens manufacturing method according to the third embodiment of the present application, it is possible to manufacture a zoom lens having a short overall length and a small size and high optical performance.
 図48に示す本願の第4実施形態に係るズームレンズの製造方法は、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有するズームレンズの製造方法であって、以下のステップS41~S45を含むものである。 The zoom lens manufacturing method according to the fourth embodiment shown in FIG. 48 includes, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a negative lens group. A zoom lens manufacturing method including a third lens group having a refractive power and a fourth lens group having a positive refractive power, and includes the following steps S41 to S45.
 ステップS41:第2レンズ群が、物体側から順に、正の屈折力を有する第1部分群と、負の屈折力を有する第2部分群と、開口絞りと、第3部分群とを有するようにし、第1~第4レンズ群をレンズ鏡筒内に物体側から順に配置する。
 ステップS42:レンズ鏡筒に公知の移動機構を設ける等することで、変倍に際して、第4レンズ群の位置が固定で、第1~第3レンズ群が光軸に沿って移動するようにする。
Step S41: The second lens group includes, in order from the object side, a first partial group having a positive refractive power, a second partial group having a negative refractive power, an aperture stop, and a third partial group. The first to fourth lens groups are arranged in order from the object side in the lens barrel.
Step S42: By providing a known moving mechanism in the lens barrel, the position of the fourth lens group is fixed and the first to third lens groups move along the optical axis upon zooming. .
 ステップS43:レンズ鏡筒に公知の移動機構を設ける等することで、合焦に際して、第3レンズ群の少なくとも一部が光軸に沿って移動するようにする。
 ステップS44:レンズ鏡筒に公知の移動機構を設ける等することで、第2レンズ群における第1部分群又は第2部分群が可動群として光軸と直交する方向の成分を含むように移動するようにする。
Step S43: By providing a known moving mechanism in the lens barrel, etc., at the time of focusing, at least a part of the third lens group is moved along the optical axis.
Step S44: By providing a known moving mechanism on the lens barrel, the first partial group or the second partial group in the second lens group moves as a movable group so as to include a component in a direction orthogonal to the optical axis. Like that.
 ステップS45:可動群が以下の条件式(4-1)を満足するようにする。
(4-1) 0.15<|fw/fvr|<0.50
 ただし、
fw:広角端状態におけるズームレンズの焦点距離
fvr:可動群の焦点距離
Step S45: The movable group is made to satisfy the following conditional expression (4-1).
(4-1) 0.15 <| fw / fvr | <0.50
However,
fw: focal length of zoom lens in wide-angle end state fvr: focal length of movable group
 斯かる本願の第4実施形態に係るズームレンズの製造方法によれば、小型で、防振時の光学性能が良好なズームレンズを製造することができる。 According to the zoom lens manufacturing method according to the fourth embodiment of the present application, it is possible to manufacture a zoom lens that is small in size and has good optical performance during image stabilization.

Claims (35)

  1.  物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、
     変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化し、
     前記第2レンズ群が、物体側から順に、前側レンズ群と、開口絞りと、後側レンズ群とを有し、
     前記前側レンズ群と前記後側レンズ群が少なくとも1つの負レンズをそれぞれ有し、
     前記第2レンズ群中の少なくとも一部のレンズが可動群として光軸と直交する方向の成分を含むように移動することを特徴とするズームレンズ。
    In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power And having a group
    At the time of zooming, there are an interval between the first lens group and the second lens group, an interval between the second lens group and the third lens group, and an interval between the third lens group and the fourth lens group. Change,
    The second lens group includes, in order from the object side, a front lens group, an aperture stop, and a rear lens group.
    The front lens group and the rear lens group each have at least one negative lens;
    The zoom lens according to claim 1, wherein at least a part of the second lens group moves as a movable group so as to include a component in a direction orthogonal to the optical axis.
  2.  前記前側レンズ群が正の屈折力を有することを特徴とする請求項1に記載のズームレンズ。 The zoom lens according to claim 1, wherein the front lens group has a positive refractive power.
  3.  前記後側レンズ群が正の屈折力を有することを特徴とする請求項1に記載のズームレンズ。 2. The zoom lens according to claim 1, wherein the rear lens group has a positive refractive power.
  4.  以下の条件式を満足することを特徴とする請求項1に記載のズームレンズ。
    1.00 < |f2vr|/fw < 4.00
     ただし、
    f2vr:前記可動群の焦点距離
    fw :広角端状態における前記ズームレンズの焦点距離
    The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
    1.00 <| f2vr | / fw <4.00
    However,
    f2vr: focal length of the movable group fw: focal length of the zoom lens in the wide-angle end state
  5.  以下の条件式を満足することを特徴とする請求項1に記載のズームレンズ。
    0.50 < |f2vr|/f2 < 5.00
     ただし、
    f2vr:前記可動群の焦点距離
    f2 :前記第2レンズ群の焦点距離
    The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
    0.50 <| f2vr | / f2 <5.00
    However,
    f2vr: focal length of the movable group f2: focal length of the second lens group
  6.  以下の条件式を満足することを特徴とする請求項1に記載のズームレンズ。
    1.00 < m12/fw < 2.00
     ただし、
    m12:広角端状態から望遠端状態への変倍時の前記第1レンズ群中の最も像側のレンズ面から前記第2レンズ群中の最も物体側のレンズ面までの光軸上の距離の変化量
    fw :広角端状態における前記ズームレンズの焦点距離
    The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
    1.00 <m12 / fw <2.00
    However,
    m12: the distance on the optical axis from the most image side lens surface in the first lens unit to the most object side lens surface in the second lens unit at the time of zooming from the wide-angle end state to the telephoto end state Change amount fw: focal length of the zoom lens in the wide-angle end state
  7.  広角端状態から望遠端状態への変倍時に、前記第1レンズ群、前記第2レンズ群及び前記第3レンズが光軸に沿って移動し、最も像側に配置されたレンズ群の位置が固定であることを特徴とする請求項1に記載のズームレンズ。 At the time of zooming from the wide-angle end state to the telephoto end state, the first lens group, the second lens group, and the third lens move along the optical axis, and the position of the lens group disposed closest to the image side is The zoom lens according to claim 1, wherein the zoom lens is fixed.
  8.  前記前側レンズ群が、少なくとも2つのレンズを有し、少なくとも1つの非球面を有することを特徴とする請求項1に記載のズームレンズ。 The zoom lens according to claim 1, wherein the front lens group has at least two lenses and has at least one aspherical surface.
  9.  広角端状態から望遠端状態への変倍時に、前記第3レンズ群が光軸に沿って移動し、
     以下の条件式を満足することを特徴とする請求項1に記載のズームレンズ。
    0.50 < m3/fw < 0.80
     ただし、
    m3:広角端状態から望遠端状態への変倍時の前記第3レンズ群の移動量
    fw:広角端状態における前記ズームレンズの焦点距離
    When zooming from the wide-angle end state to the telephoto end state, the third lens group moves along the optical axis,
    The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
    0.50 <m3 / fw <0.80
    However,
    m3: amount of movement of the third lens group during zooming from the wide-angle end state to the telephoto end state fw: focal length of the zoom lens in the wide-angle end state
  10.  前記第4レンズ群が、像側に凸面を向けたメニスカスレンズを有することを特徴とする請求項9に記載のズームレンズ。 The zoom lens according to claim 9, wherein the fourth lens group includes a meniscus lens having a convex surface facing the image side.
  11.  以下の条件式を満足することを特徴とする請求項10に記載のズームレンズ。
    -5.00 < (r42+r41)/(r42-r41) < -1.30
     ただし、
    r41:前記第4レンズ群中の前記メニスカスレンズの物体側のレンズ面の曲率半径
    r42:前記第4レンズ群中の前記メニスカスレンズの像側のレンズ面の曲率半径
    The zoom lens according to claim 10, wherein the following conditional expression is satisfied.
    −5.00 <(r42 + r41) / (r42−r41) <− 1.30
    However,
    r41: radius of curvature of the object side lens surface of the meniscus lens in the fourth lens group r42: radius of curvature of the image side lens surface of the meniscus lens in the fourth lens group
  12.  前記第2レンズ群の前記前側レンズ群が、物体側から順に、正の屈折力を有する第1部分群と、負の屈折力を有する第2部分群とからなり、前記後側レンズ群が、第3部分群からなり、
     変倍に際して、前記第1レンズ群、前記第2レンズ群及び前記第3レンズ群が光軸に沿って移動し、前記第4レンズ群の位置が固定であり、
     合焦に際して、前記第3レンズ群の少なくとも一部が光軸に沿って移動し、
     前記第2レンズ群における前記第1部分群又は前記第2部分群が前記可動群として光軸と直交する方向の成分を含むように移動し、
     以下の条件式を満足することを特徴とする請求項1に記載のズームレンズ。
    0.15<|fw/fvr|<0.50
     ただし、
    fw:広角端状態における前記ズームレンズの焦点距離
    fvr:前記可動群の焦点距離
    The front lens group of the second lens group includes, in order from the object side, a first partial group having a positive refractive power and a second partial group having a negative refractive power, and the rear lens group is Consisting of a third subgroup,
    During zooming, the first lens group, the second lens group, and the third lens group move along the optical axis, and the position of the fourth lens group is fixed,
    At the time of focusing, at least a part of the third lens group moves along the optical axis,
    The first lens group or the second lens group in the second lens group moves so as to include a component in a direction perpendicular to the optical axis as the movable group,
    The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
    0.15 <| fw / fvr | <0.50
    However,
    fw: focal length of the zoom lens in the wide-angle end state fvr: focal length of the movable group
  13.  物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、
     広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化し、
     前記第2レンズ群が、物体側から順に、前側レンズ群と、開口絞りと、後側レンズ群とを有し、
     前記前側レンズ群と前記後側レンズ群が少なくとも1つの負レンズをそれぞれ有し、
     前記後側レンズ群中の少なくとも一部のレンズが光軸と直交する方向の成分を含むように移動することを特徴とするズームレンズ。
    In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power And having a group
    At the time of zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, and the third lens group The distance from the fourth lens group changes,
    The second lens group includes, in order from the object side, a front lens group, an aperture stop, and a rear lens group.
    The front lens group and the rear lens group each have at least one negative lens;
    A zoom lens, wherein at least a part of the lenses in the rear lens group moves so as to include a component in a direction orthogonal to the optical axis.
  14.  物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、
     広角端状態から望遠端状態への変倍時に、前記第3レンズ群が光軸に沿って移動し、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化し、
     以下の条件式を満足することを特徴とするズームレンズ。
    0.50 < m3/fw < 0.80
     ただし、
    m3:広角端状態から望遠端状態への変倍時の前記第3レンズ群の移動量
    fw:広角端状態における前記ズームレンズの焦点距離
    In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power And having a group
    At the time of zooming from the wide-angle end state to the telephoto end state, the third lens group moves along the optical axis, the distance between the first lens group and the second lens group, the second lens group and the second lens group. The distance between the three lens groups and the distance between the third lens group and the fourth lens group change,
    A zoom lens satisfying the following conditional expression:
    0.50 <m3 / fw <0.80
    However,
    m3: amount of movement of the third lens group during zooming from the wide-angle end state to the telephoto end state fw: focal length of the zoom lens in the wide-angle end state
  15.  前記第4レンズ群が、像側に凸面を向けたメニスカスレンズを有することを特徴とする請求項14に記載のズームレンズ。 The zoom lens according to claim 14, wherein the fourth lens group includes a meniscus lens having a convex surface directed toward the image side.
  16.  以下の条件式を満足することを特徴とする請求項15に記載のズームレンズ。
    -5.00 < (r42+r41)/(r42-r41) < -1.30
     ただし、
    r41:前記第4レンズ群中の前記メニスカスレンズの物体側のレンズ面の曲率半径
    r42:前記第4レンズ群中の前記メニスカスレンズの像側のレンズ面の曲率半径
    The zoom lens according to claim 15, wherein the following conditional expression is satisfied.
    −5.00 <(r42 + r41) / (r42−r41) <− 1.30
    However,
    r41: radius of curvature of the object side lens surface of the meniscus lens in the fourth lens group r42: radius of curvature of the image side lens surface of the meniscus lens in the fourth lens group
  17.  広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が減少し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が増加することを特徴とする請求項14に記載のズームレンズ。 At the time of zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group decreases, and the distance between the second lens group and the third lens group changes, The zoom lens according to claim 14, wherein an interval between the third lens group and the fourth lens group is increased.
  18.  広角端状態から望遠端状態への変倍時に、前記第3レンズ群が光軸に沿って物体側へ移動し、
     無限遠物体から近距離物体への合焦時に、前記第3レンズ群が光軸に沿って像側へ移動し、
     以下の条件式を満足すること特徴とする請求項14に記載のズームレンズ。
    0.45 < fst/m3 < 1.00
     ただし、
    fst :望遠端状態において無限遠物体から近距離物体へ合焦する時の前記第3レンズ群の移動量
    m3:広角端状態から望遠端状態への変倍時の前記第3レンズ群の移動量
    When zooming from the wide-angle end state to the telephoto end state, the third lens group moves to the object side along the optical axis,
    When focusing from an object at infinity to a near object, the third lens group moves to the image side along the optical axis;
    The zoom lens according to claim 14, wherein the following conditional expression is satisfied.
    0.45 <fst / m3 <1.00
    However,
    fst: amount of movement of the third lens group when focusing from an object at infinity to a close object in the telephoto end state m3: amount of movement of the third lens group during zooming from the wide-angle end state to the telephoto end state
  19.  前記第3レンズ群が以下の条件式を満足すること特徴とする請求項14に記載のズームレンズ。
    1.50 < (-f3)/fw < 4.00
     ただし、
    f3:前記第3レンズ群の焦点距離
    fw:広角端状態における前記ズームレンズの焦点距離
    The zoom lens according to claim 14, wherein the third lens group satisfies the following conditional expression.
    1.50 <(− f3) / fw <4.00
    However,
    f3: focal length of the third lens group fw: focal length of the zoom lens in the wide-angle end state
  20.  前記第4レンズ群が、像側に凸面を向けた正メニスカスレンズからなることを特徴とする請求項14に記載のズームレンズ。 15. The zoom lens according to claim 14, wherein the fourth lens group comprises a positive meniscus lens having a convex surface facing the image side.
  21.  広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群が光軸に沿って移動し、前記第4レンズ群の位置が固定であることを特徴とする請求項14に記載のズームレンズ。 The first lens group and the second lens group move along an optical axis during zooming from the wide-angle end state to the telephoto end state, and the position of the fourth lens group is fixed. Item 15. The zoom lens according to Item 14.
  22.  前記第4レンズ群が少なくとも1つの非球面を有することを特徴とする請求項14に記載のズームレンズ。 The zoom lens according to claim 14, wherein the fourth lens group has at least one aspheric surface.
  23.  物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、
     前記第2レンズ群が、物体側から順に、正の屈折力を有する第1部分群と、負の屈折力を有する第2部分群と、開口絞りと、第3部分群とを有し、
     変倍に際して、前記第1レンズ群、前記第2レンズ群及び前記第3レンズ群が光軸に沿って移動し、前記第4レンズ群の位置が固定であり、
     合焦に際して、前記第3レンズ群の少なくとも一部が光軸に沿って移動し、
     前記第2レンズ群における前記第1部分群又は前記第2部分群が可動群として光軸と直交する方向の成分を含むように移動し、
     以下の条件式を満足することを特徴とするズームレンズ。
    0.15<|fw/fvr|<0.50
     ただし、
    fw:広角端状態における前記ズームレンズの焦点距離
    fvr:前記可動群の焦点距離
    In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power And having a group
    The second lens group includes, in order from the object side, a first partial group having a positive refractive power, a second partial group having a negative refractive power, an aperture stop, and a third partial group.
    During zooming, the first lens group, the second lens group, and the third lens group move along the optical axis, and the position of the fourth lens group is fixed,
    At the time of focusing, at least a part of the third lens group moves along the optical axis,
    The first partial group or the second partial group in the second lens group moves as a movable group so as to include a component in a direction orthogonal to the optical axis,
    A zoom lens satisfying the following conditional expression:
    0.15 <| fw / fvr | <0.50
    However,
    fw: focal length of the zoom lens in the wide-angle end state fvr: focal length of the movable group
  24.  前記第3部分群が正の屈折力を有することを特徴とする請求項23に記載のズームレンズ。 The zoom lens according to claim 23, wherein the third partial group has a positive refractive power.
  25.  以下の条件式を満足することを特徴とする請求項23に記載のズームレンズ。
    0.50<fw/f2<0.90
     ただし、
    fw:広角端状態における前記ズームレンズの焦点距離
    f2:前記第2レンズ群の焦点距離
    The zoom lens according to claim 23, wherein the following conditional expression is satisfied.
    0.50 <fw / f2 <0.90
    However,
    fw: focal length of the zoom lens in the wide-angle end state f2: focal length of the second lens group
  26.  以下の条件式を満足することを特徴とする請求項23に記載のズームレンズ。
    0.20<|f2/fvr|<0.60
     ただし、
    f2:前記第2レンズ群の焦点距離
    fvr:前記可動群の焦点距離
    The zoom lens according to claim 23, wherein the following conditional expression is satisfied.
    0.20 <| f2 / fvr | <0.60
    However,
    f2: focal length of the second lens group fvr: focal length of the movable group
  27.  前記第1レンズ群、前記第2レンズ群、前記第3レンズ群及び前記第4レンズ群が、それぞれ少なくとも1つの非球面を備えていることを特徴とする請求項23に記載のズームレンズ。 The zoom lens according to claim 23, wherein each of the first lens group, the second lens group, the third lens group, and the fourth lens group includes at least one aspheric surface.
  28.  請求項1に記載のズームレンズを有することを特徴とする光学装置。 An optical apparatus comprising the zoom lens according to claim 1.
  29.  請求項13に記載のズームレンズを有することを特徴とする光学装置。 An optical apparatus comprising the zoom lens according to claim 13.
  30.  請求項14に記載のズームレンズを有することを特徴とする光学装置。 An optical apparatus comprising the zoom lens according to claim 14.
  31.  請求項23に記載のズームレンズを有することを特徴とする光学装置。 An optical apparatus comprising the zoom lens according to claim 23.
  32.  物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有するズームレンズの製造方法であって、
     前記第2レンズ群が、物体側から順に、前側レンズ群と、開口絞りと、後側レンズ群とを有するようにし、
     前記前側レンズ群と前記後側レンズ群が少なくとも1つの負レンズをそれぞれ有するようにし、
     変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化するようにし、
     前記第2レンズ群中の少なくとも一部のレンズが可動群として光軸と直交する方向の成分を含むように移動するようにすることを特徴とするズームレンズの製造方法。
    In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power A zoom lens manufacturing method comprising:
    The second lens group includes, in order from the object side, a front lens group, an aperture stop, and a rear lens group.
    The front lens group and the rear lens group each have at least one negative lens;
    At the time of zooming, there are an interval between the first lens group and the second lens group, an interval between the second lens group and the third lens group, and an interval between the third lens group and the fourth lens group. To change,
    A method of manufacturing a zoom lens, wherein at least a part of the lenses in the second lens group moves as a movable group so as to include a component in a direction orthogonal to the optical axis.
  33.  物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有するズームレンズの製造方法であって、
     前記第2レンズ群が、物体側から順に、前側レンズ群と、開口絞りと、後側レンズ群とを有するようにし、
     前記前側レンズ群と前記後側レンズ群が少なくとも1つの負レンズをそれぞれ有するようにし、
     広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化するようにし、
     前記後側レンズ群中の少なくとも一部のレンズが光軸と直交する方向の成分を含むように移動するようにすることを特徴とするズームレンズの製造方法。
    In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power A zoom lens manufacturing method comprising:
    The second lens group includes, in order from the object side, a front lens group, an aperture stop, and a rear lens group.
    The front lens group and the rear lens group each have at least one negative lens;
    At the time of zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, and the third lens group The distance from the fourth lens group is changed,
    A method of manufacturing a zoom lens, characterized in that at least a part of the lenses in the rear lens group moves so as to include a component in a direction orthogonal to the optical axis.
  34.  物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有するズームレンズの製造方法であって、
     広角端状態から望遠端状態への変倍時に、前記第3レンズ群が光軸に沿って移動し、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化するようにし、
     前記第3レンズ群が以下の条件式を満足するようにすることを特徴とするズームレンズの製造方法。
    0.50 < m3/fw < 0.80
     ただし、
    m3:広角端状態から望遠端状態への変倍時の前記第3レンズ群の移動量
    fw:広角端状態における前記ズームレンズの焦点距離
    In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power A zoom lens manufacturing method comprising:
    At the time of zooming from the wide-angle end state to the telephoto end state, the third lens group moves along the optical axis, the distance between the first lens group and the second lens group, the second lens group and the second lens group. The distance between the three lens groups and the distance between the third lens group and the fourth lens group are changed,
    A method for manufacturing a zoom lens, characterized in that the third lens group satisfies the following conditional expression.
    0.50 <m3 / fw <0.80
    However,
    m3: amount of movement of the third lens group during zooming from the wide-angle end state to the telephoto end state fw: focal length of the zoom lens in the wide-angle end state
  35.  物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有するズームレンズの製造方法であって、
     前記第2レンズ群が、物体側から順に、正の屈折力を有する第1部分群と、負の屈折力を有する第2部分群と、開口絞りと、第3部分群とを有するようにし、
     変倍に際して、前記第4レンズ群の位置が固定で、前記第1レンズ群、前記第2レンズ群及び前記第3レンズ群が光軸に沿って移動するようにし、
     合焦に際して、前記第3レンズ群の少なくとも一部が光軸に沿って移動するようにし、
     前記第2レンズ群における前記第1部分群又は前記第2部分群が可動群として光軸と直交する方向の成分を含むように移動するようにし、
     前記可動群が以下の条件式を満足するようにすることを特徴とするズームレンズの製造方法。
    0.15<|fw/fvr|<0.50
     ただし、
    fw:広角端状態における前記ズームレンズの焦点距離
    fvr:前記可動群の焦点距離
    In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power A zoom lens manufacturing method comprising:
    The second lens group includes, in order from the object side, a first partial group having a positive refractive power, a second partial group having a negative refractive power, an aperture stop, and a third partial group.
    During zooming, the position of the fourth lens group is fixed, and the first lens group, the second lens group, and the third lens group move along the optical axis,
    At the time of focusing, at least a part of the third lens group moves along the optical axis,
    The first partial group or the second partial group in the second lens group moves as a movable group so as to include a component in a direction orthogonal to the optical axis,
    A method for manufacturing a zoom lens, wherein the movable group satisfies the following conditional expression:
    0.15 <| fw / fvr | <0.50
    However,
    fw: focal length of the zoom lens in the wide-angle end state fvr: focal length of the movable group
PCT/JP2014/068447 2013-08-02 2014-07-10 Zoom lens, optical device, and method for producing zoom lens WO2015016031A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480051255.9A CN105556368B (en) 2013-08-02 2014-07-10 Zoom lens, optical device and the method for manufacturing zoom lens
US14/909,139 US9939621B2 (en) 2013-08-02 2014-07-10 Zoom lens, optical apparatus, and method for manufacturing the zoom lens
US15/916,186 US10670847B2 (en) 2013-08-02 2018-03-08 Zoom lens, optical apparatus, and method for manufacturing the zoom lens
US16/879,739 US11428913B2 (en) 2013-08-02 2020-05-20 Zoom lens, optical apparatus, and method for manufacturing the zoom lens
US17/886,406 US20230027556A1 (en) 2013-08-02 2022-08-11 Zoom lens, optical apparatus, and method for manufacturing the zoom lens

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2013161487 2013-08-02
JP2013-161486 2013-08-02
JP2013-161487 2013-08-02
JP2013161486A JP6268792B2 (en) 2013-08-02 2013-08-02 Zoom lens, optical device, and zoom lens manufacturing method
JP2014047611A JP5839062B2 (en) 2014-03-11 2014-03-11 Zoom lens, optical device
JP2014-047611 2014-03-11
JP2014-048997 2014-03-12
JP2014-048994 2014-03-12
JP2014048997A JP6349801B2 (en) 2013-08-02 2014-03-12 Zoom lens, optical device
JP2014048994A JP6354222B2 (en) 2014-03-12 2014-03-12 Zoom lens, optical device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/909,139 A-371-Of-International US9939621B2 (en) 2013-08-02 2014-07-10 Zoom lens, optical apparatus, and method for manufacturing the zoom lens
US15/916,186 Division US10670847B2 (en) 2013-08-02 2018-03-08 Zoom lens, optical apparatus, and method for manufacturing the zoom lens

Publications (1)

Publication Number Publication Date
WO2015016031A1 true WO2015016031A1 (en) 2015-02-05

Family

ID=52431571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068447 WO2015016031A1 (en) 2013-08-02 2014-07-10 Zoom lens, optical device, and method for producing zoom lens

Country Status (1)

Country Link
WO (1) WO2015016031A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392808A (en) * 1989-09-05 1991-04-18 Canon Inc Zoom lens
JP2002107627A (en) * 2000-09-27 2002-04-10 Minolta Co Ltd Projection zoom lens
WO2012086153A1 (en) * 2010-12-22 2012-06-28 パナソニック株式会社 Zoom lens system, interchangeable lens device, and camera system
JP2013015778A (en) * 2011-07-06 2013-01-24 Konica Minolta Advanced Layers Inc Zoom lens, imaging optical apparatus and digital instrument
JP2013182054A (en) * 2012-02-29 2013-09-12 Sony Corp Zoom lens and image capturing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392808A (en) * 1989-09-05 1991-04-18 Canon Inc Zoom lens
JP2002107627A (en) * 2000-09-27 2002-04-10 Minolta Co Ltd Projection zoom lens
WO2012086153A1 (en) * 2010-12-22 2012-06-28 パナソニック株式会社 Zoom lens system, interchangeable lens device, and camera system
JP2013015778A (en) * 2011-07-06 2013-01-24 Konica Minolta Advanced Layers Inc Zoom lens, imaging optical apparatus and digital instrument
JP2013182054A (en) * 2012-02-29 2013-09-12 Sony Corp Zoom lens and image capturing device

Similar Documents

Publication Publication Date Title
JP5273184B2 (en) Zoom lens, optical device, and zoom lens manufacturing method
JP5458477B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system magnification method
JP5581730B2 (en) Variable magnification optical system, optical device
JP5510876B2 (en) Zoom lens and optical apparatus provided with the zoom lens
JP5212898B2 (en) Zoom lens, optical apparatus including the zoom lens, and method of manufacturing the zoom lens
WO2010018727A1 (en) Zoom lens, optical apparatus with the zoom lens, and method of manufacturing zoom lens
JP5344291B2 (en) Zoom lens, optical device, and method of manufacturing zoom lens
WO2018074413A1 (en) Variable-magnification optical system, optical device, and method for manufacturing variable-magnification optical system
JP2012042549A (en) Variable power optical system, optical apparatus having the same and method for manufacturing variable power optical system
JP6127462B2 (en) Variable magnification optical system, optical device
JP5839062B2 (en) Zoom lens, optical device
JP6583420B2 (en) Zoom lens and optical equipment
WO2014077120A1 (en) Variable power optical assembly, optical device, and variable power optical assembly fabrication method
JP6268792B2 (en) Zoom lens, optical device, and zoom lens manufacturing method
WO2015136988A1 (en) Zoom lens, optical device, and method for manufacturing zoom lens
JP5540513B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP6349801B2 (en) Zoom lens, optical device
JP6197489B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP7184081B2 (en) zoom lens and optics
JP5326433B2 (en) Variable magnification optical system and optical apparatus equipped with the variable magnification optical system
WO2015016031A1 (en) Zoom lens, optical device, and method for producing zoom lens
JPWO2016194811A1 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6323045B2 (en) Variable magnification optical system
JP6354222B2 (en) Zoom lens, optical device
JP6251947B2 (en) Variable magnification optical system, optical apparatus having the variable magnification optical system, and method of manufacturing the variable magnification optical system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480051255.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832211

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14909139

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14832211

Country of ref document: EP

Kind code of ref document: A1