WO2015016006A1 - System and method for controlling solar power generation system - Google Patents

System and method for controlling solar power generation system Download PDF

Info

Publication number
WO2015016006A1
WO2015016006A1 PCT/JP2014/067978 JP2014067978W WO2015016006A1 WO 2015016006 A1 WO2015016006 A1 WO 2015016006A1 JP 2014067978 W JP2014067978 W JP 2014067978W WO 2015016006 A1 WO2015016006 A1 WO 2015016006A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
voltage
generation system
control
power generation
Prior art date
Application number
PCT/JP2014/067978
Other languages
French (fr)
Japanese (ja)
Inventor
正成 藤森
亨 河野
俊祐 松永
將紀 栗田
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to CN201480038312.XA priority Critical patent/CN105359051B/en
Publication of WO2015016006A1 publication Critical patent/WO2015016006A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a control system and control method for a photovoltaic power generation system.
  • PV system is a PV array in which solar cell modules (PV modules) are combined, and a power conditioner (PCS) that converts the operation of the PV array into a power form that actually uses the generated DC power. Consists of.
  • the maximum power that can be taken out from the PV array varies depending on the operating environment such as temperature and solar radiation.
  • a combination of voltage and current at which the PV array is operating is referred to as an operating point, but the operating point (maximum power point) at which the maximum generated power can be extracted also varies depending on the operating environment. For this reason, most PV systems incorporate a maximum power point tracking mechanism (MPPT) in the PCS that controls the operating point to track the maximum power point.
  • MPPT maximum power point tracking mechanism
  • DC power is converted into alternating current so as not to disturb the commercial electric power system. And it is necessary to adjust the voltage and frequency according to the commercial power system.
  • the PCS generates a voltage control command value by MPPT, converts it to a current control command value by proportional integral (PI) control according to the difference from the operating voltage of the PV array, and gate control signal based on the current control command value And the AC power is adjusted by a switching operation by PWM control of the inverter.
  • PI proportional integral
  • the conversion capacity of PCS is usually set to a level that allows a slight margin from the rated power generation of the PV array to be controlled. For this reason, the power generation amount of the PV array may exceed the PCS conversion capacity, for example, when the temperature is low and the solar radiation is strong, or when the processing capacity deteriorates due to deterioration over time. In addition, the PCS may fail if power generation is maintained, such as when abnormal heating of the PCS occurs for some reason. In order to cope with such a situation, a power suppression function is added to the PCS.
  • the power suppression function is a function of continuing power generation while avoiding the occurrence of PCS abnormality by moving the operating point from the maximum power point to a lower generated power point. Such a power suppression mechanism may be activated to protect the power system. This is a case where the abnormality is accelerated when the power supply is continued from the PV system with respect to the abnormality such as the voltage fluctuation generated on the power system side.
  • Patent Document 1 A method of power suppression in PCS is disclosed in Patent Document 1, for example.
  • the power suppression method of Patent Document 1 converts a voltage control command value generated by MPPT based on the operating voltage value and output current of the PV array into a current control command value by PI control, and converts this command value to a limiter upper limit value. This is a method of realizing power suppression by comparing and outputting a current control value as necessary.
  • the voltage and current output from the PV array are measured by the measurement unit, the power value calculated therefrom is MPPT, and the measured voltage value is AVR (Automatic Voltage Regulator). Each is output.
  • MPPT the voltage command value of the next step is calculated based on the measured power value, and is output to the AVR.
  • a current command value for PWM control is output by PI control according to the difference between the voltage measurement value and the voltage command value.
  • the output current command value is input to the power suppression unit.
  • a current control value for PWM control is generated so as to suppress the generated power in accordance with the power suppression signal. This is compared with the current command value, and a current value at which the inverter conduction ratio is reduced is output. That is, when a current control value resulting from the power suppression signal is output, the current command value resulting from MPPT is replaced with this.
  • the present invention has been made to solve such a problem, and a typical object of the present invention is to provide a technique for optimally performing voltage control during cancellation of power suppression from during power suppression. is there.
  • a control system for a typical photovoltaic power generation system sets an operating voltage of a solar cell array, converts an inverter DC power output from the solar cell array into AC, and outputs the solar cell array
  • a measuring unit that measures current and voltage, and a maximum power point tracking unit that calculates an operating voltage command value of the solar cell array based on the operating voltage and output current value of the solar cell array measured by the measuring unit;
  • the operation voltage value of the solar cell array obtained from the measurement unit is compared with the operation voltage command value of the solar cell array set by the maximum power point tracking unit, and proportional integral control is performed based on the difference.
  • an automatic voltage adjusting unit that generates a gate signal of the inverter based on a current command value output from the automatic voltage adjusting unit. And it has the electric power control part always controlled by the voltage command output by the maximum electric power point tracking from the sunrise to the sunset including the case of the low solar radiation.
  • a typical solar power generation system control method is a control of a solar power generation system including an inverter, a measurement unit, a maximum power point tracking unit, an automatic voltage adjustment unit, a pulse width modulation signal generation unit, and a power control unit. Is the method.
  • the power control unit performs control of the solar power generation system by a voltage command output based on maximum power point tracking from sunrise to sunset, even in the case of low solar radiation.
  • a typical effect is that voltage control can be optimally performed when power suppression is canceled during power suppression. As a result, it is possible to reduce the generated power loss at the time of solar radiation fluctuation during power suppression or when shifting from the power suppression state to the normal operation state.
  • Embodiment 1 of this invention It is a block diagram which shows an example of a structure of the solar energy power generation system in Embodiment 1 of this invention.
  • Embodiment 1 of this invention it is a flowchart which shows an example of maximum electric power point tracking.
  • Embodiment 1 of this invention it is a figure which shows an example of the voltage-power characteristic of a solar cell array, and an operating point when electric power suppression is imposed.
  • it is a time chart which shows an example of the maximum electric power point tracking control at the time of electric power suppression.
  • Embodiment 2 of this invention It is a block diagram which shows an example of a structure of the solar energy power generation system in Embodiment 2 of this invention.
  • Embodiment 2 of this invention it is a flowchart which shows an example of maximum electric power point tracking. It is a flowchart which shows an example of the determination of the voltage command value by MPPT in FIG. In Embodiment 2 of this invention, it is a time chart which shows an example of the maximum electric power point tracking control at the time of electric power suppression. In Embodiment 3 of this invention, it is a flowchart which shows an example of maximum electric power point tracking. 10 is a flowchart illustrating an example of determination of a voltage command value by MPPT in FIG. 9. In Embodiment 3 of this invention, it is a figure which shows an example of the creation method of the look-up table in the operating voltage setting method of maximum power point tracking.
  • Embodiment 3 of this invention it is a figure which shows an example of the lookup table produced by FIG.
  • Embodiment 4 of this invention it is a figure which shows an example of the operating voltage setting method at the time of the electric power suppression cancellation
  • Embodiment 5 of this invention it is a flowchart which shows an example of the control which outputs the command value of a constant voltage as a part of maximum power point tracking control also in the case of the fixed voltage operation
  • Embodiment 5 of this invention it is a figure which shows an example of the voltage-power relationship in the solar energy power generation system for description of the constant voltage control at the time of low solar radiation.
  • it is a time chart which shows an example of the maximum electric power point tracking control at the time of electric power suppression.
  • the constituent elements are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
  • the shapes, positional relationships, etc. of the components, etc. when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
  • the voltage command value for controlling the state of the solar cell array is not compared with the current control value that causes power suppression in the state converted to the current control signal, but replaced by the voltage
  • the control value may be updated by comparing the power corresponding to the control value with the power value to be suppressed.
  • the control system (the power conditioner 2 of FIG. 1 and the power conditioner 2a of FIG. 5) of the typical photovoltaic power generation system of this Embodiment sets the operating voltage of a solar cell array (PV array 1). And an inverter (inverter 21) that converts DC power output from the solar cell array into AC, a measurement unit (measurement unit 22) that measures current and voltage output from the solar cell array, and the measurement unit.
  • a maximum power point tracking unit MPPT + MPPT of the power control unit 23, MPPT23a) that calculates an operating voltage command value of the solar cell array based on the measured operating voltage and output current value of the solar cell array.
  • an automatic voltage adjustment unit (automatic voltage adjustment unit 24) that performs the above and a pulse width modulation signal generation unit (pulse width modulation signal generation) that generates a gate signal of the inverter based on a current command value output from the automatic voltage adjustment unit Part 25). And it has the power control part (the power control part of the power control part 23, the power control part 23b) always controlled by the voltage command output by the maximum power point tracking from the sunrise to the sunset including the case of the low solar radiation.
  • a typical solar power generation system control method includes an inverter, a measurement unit, a maximum power point tracking unit, an automatic voltage adjustment unit, a pulse width modulation signal generation unit, and a power control unit. It is the control method (FIG. 2, FIG. 6 and FIG. 7, FIG. 9, FIG. 10, FIG. 15) of a photovoltaic system.
  • the power control unit controls the solar power generation system from sunrise to sunset. Up to and including the case of low solar radiation, the voltage command output always follows the maximum power point.
  • Embodiment 1 The control system and control method of the photovoltaic power generation system according to Embodiment 1 will be described with reference to FIGS.
  • FIG. 1 is a block diagram illustrating an example of the configuration of the photovoltaic power generation system according to the present embodiment. More specifically, FIG. 1 shows an example of the configuration of a power conditioner that enables MPPT control even when power is suppressed.
  • the solar power generation system includes a solar cell (PV) array 1, a power conditioner 2 connected to the PV array 1, and a power system 3 connected to the power conditioner 2.
  • PV solar cell
  • the power conditioner 2 includes an inverter 21, a measurement unit 22, a maximum power point tracking unit (MPPT) + power control unit 23, an automatic voltage adjustment unit (AVR) 24, and a pulse width modulation signal generation unit (PWM) 25. It consists of.
  • MPPT maximum power point tracking unit
  • AVR automatic voltage adjustment unit
  • PWM pulse width modulation signal generation unit
  • the inverter 21 is an inverter that sets the operating voltage of the PV array 1 and converts DC power output from the PV array 1 into AC.
  • the measuring unit 22 is a measuring unit that measures the current and voltage output from the PV array 1.
  • the MPPT + power control unit 23 includes an MPPT function unit and a power control unit function unit.
  • the functional unit of the MPPT is a maximum power point tracking unit that calculates the operating voltage command value of the PV array 1 based on the power (calculated from the operating voltage and the output current value) of the PV array 1 measured by the measuring unit 22.
  • the function unit of the power control unit is a power control unit that always receives a power suppression signal as input and controls the voltage command output by MPPT from sunrise to sunset, including the case of low solar radiation. More specifically, the function unit of the power control unit has a function of setting the operating voltage of the solar cell array by the MPPT even when the power of the solar power generation system is suppressed, and also when the control voltage of the solar power generation system is kept constant. It has a function of setting the operating voltage of the solar cell array by MPPT.
  • the AVR 24 compares the operation voltage value of the PV array 1 obtained from the measurement unit 22 with the operation voltage command value of the PV array 1 set by the MPPT + power control unit 23, and performs proportional-integral control based on the difference.
  • An automatic voltage adjustment unit An automatic voltage adjustment unit.
  • PWM25 is a pulse width modulation signal generation unit that generates a gate signal of the inverter 21 based on a current command value output from the AVR 24.
  • the DC power generated by the PV array 1 is converted into AC by the inverter 21 in the power conditioner 2 and is reversely flowed to the power system 3.
  • the output current and voltage of the PV array 1 are measured by the measuring unit 22, the power value is passed to the MPPT + power control unit 23, and the voltage value is passed to the AVR 24.
  • the MPPT + power control unit 23 obtains a power measurement value corresponding to the output power command value, and determines a voltage command value for the next step based on those values.
  • the voltage command value used for determining the voltage command value of the next step and the power measurement value corresponding to the voltage command value are not necessarily limited to those of the immediately preceding step, but are determined according to the MPPT method to be used. Many proposals have already been made for the MPPT method, and any of these methods may be used.
  • FIG. 2 shows an operation flow of a block indicated by the MPPT + power control unit 23 in FIG.
  • FIG. 2 is a flowchart illustrating an example of maximum power point tracking that enables maximum power point tracking control even during power suppression.
  • step S101 an initial voltage value V 0 , a voltage update width ⁇ V, and a direction sign ( ⁇ + 1) are set.
  • step S ⁇ b> 102 V 0 is output as the initial voltage command value, and the power measurement value P 0 at V 0 is acquired from the measurement unit 22.
  • steps S103 and S104 a voltage V 1 that is larger than V 0 by ⁇ V is output as a voltage command value (V 1 ⁇ V 0 + sign ⁇ ⁇ V), and a power measurement value P 1 for V 1 is obtained from the measurement unit 22. To do.
  • step S105 the values of P 0 and P 1 are compared (P 1 > P 0 ?), And it is determined whether the voltage command value to be updated is in the direction in which the voltage increases or decreases. The greater the direction of P 1 (S105-Yes), so that the next voltage instruction value becomes greater than V 1, adding ⁇ V to V 1. On the other hand, if P 0 is larger (S105-No), ⁇ V is subtracted from V 1 so as to decrease the voltage.
  • step S107 the power suppression value P limit is updated. If power suppression is not required, the rated power of the PCS may be input to P limit .
  • step S108 you compare the P 1 and P limit and (P limit> P 1?), The smaller the better of P 1 (S108-Yes), it proceeds to step S110, the voltage command value and a power measurement as an unnecessary power throttle The value is updated (V 1 ⁇ V 1 + sign ⁇ ⁇ V, P 0 ⁇ P 1 ).
  • P 1 exceeds P limit (S108-No) since power suppression is necessary, the search direction of the voltage command value is reversed (sign ⁇ ⁇ 1 ⁇ sign) in step S109, and step S110. Proceed to
  • step S105 and step S106A or S106B the search direction of the voltage command value is set to increase or decrease the voltage in the direction in which the power increases. Therefore, in step S109, reversing the search direction in the direction in which the power decreases. This means that the voltage command value is set.
  • step S104 in FIG. 2 the power value for the new voltage command value is acquired, and the above steps are repeated.
  • the voltage command value output from the MPPT + power control unit 23 is input to the AVR 24 as shown in FIG.
  • PI proportional integration
  • control is performed according to the difference between the voltage measurement value obtained from the measurement unit 22 and the voltage command value obtained from the MPPT + power control unit 23, and a current command value serving as a PWM control signal is transferred to the PWM 25.
  • the PWM 25 outputs a gate signal corresponding to the current command value, changes the conduction rate of the inverter 21, and sets the operating voltage of the PV array 1 to the voltage command value.
  • the operation voltage control of the PV array 1 by the AVR 24, PI control, PWM 25, and inverter 21 is a general control method, and can be realized by a known method.
  • FIG. 3 is a diagram illustrating an example of voltage-power characteristics of a PV array and operating points when power suppression is imposed.
  • the horizontal axis is voltage
  • the vertical axis is power
  • 30 is a voltage-power characteristic curve of the PV array
  • 31 is one of operating points when power suppression is imposed (point A)
  • 32 Indicates another operating point (point B) when power suppression is imposed.
  • MPP is the maximum power point
  • V mpp is the voltage corresponding to the maximum power point
  • P mpp is the power corresponding to the maximum power point
  • P limit-1 is one of the power suppression values
  • P limit-2 is another power suppression. Value.
  • the operating point When the voltage command value is smaller than V mpp when the power suppression is imposed, the operating point converges within ⁇ ⁇ V with the A point 31 as the center by the control shown in FIG. On the other hand, when the voltage command value is larger than V mpp when the power suppression is imposed, the operating point converges within ⁇ ⁇ V with the B point 32 as the center. If it is desired to limit the point of convergence to either one, the sign sign may be limited to either + or-in step S109 in FIG. In the case of +, it converges to the B point 32, and in the case of-, it converges to the A point 31. When converged to the point B 32, the current value is smaller than the point A 31, so there is an advantage that heat generation in the wiring portion can be suppressed.
  • FIG. 4 shows a time chart of control according to the flow of FIG.
  • FIG. 4 is a time chart showing an example of maximum power point tracking control during power suppression.
  • the horizontal axis represents time
  • the vertical axis represents the voltage command value
  • power, and sign 40 represents the power value after update (P 1 in FIG. 2)
  • 41 represents the power value one step before (FIG. 2).
  • P 0 the power suppression is applied at the position of P limit-1 , but the value of power suppression changes to the position of P limit-2 at Step-A.
  • P limit-2 is a suppression at a power value larger than P mpp which is the maximum power point, and there is virtually no suppression. After that, at Step-B, it again changes to power suppression at P limit-1 (see FIG. 3).
  • Embodiment 1 As described above, according to the control system and control method of the photovoltaic power generation system in the present embodiment, inverter 21, measurement unit 22, maximum power point tracking unit + power control unit 23, automatic voltage adjustment unit 24, and pulse width.
  • modulation signal generation unit 25 By including the modulation signal generation unit 25, it is possible to realize a technique for optimally performing voltage control from the time of power suppression to the cancellation of power suppression. As a result, it is possible to suppress the generated power loss to a low level when a PV array output change occurs due to fluctuations in solar radiation during power suppression, or when shifting from the power suppression state to the normal operation state.
  • MPPT control can be validated even when power is suppressed, and MPPT can be continued even when power suppression is released.
  • the voltage command value for controlling the state of the PV array 1 is replaced with a current control value that causes power suppression in a state converted to a current control signal as in the past. Instead, it can be realized by updating the control value by comparing the power according to the voltage control value with the power value to be suppressed.
  • Embodiment 2 A control system and control method for the photovoltaic power generation system according to Embodiment 2 will be described with reference to FIGS. In the following, differences from the first embodiment will be mainly described.
  • FIG. 5 is a block diagram showing an example of the configuration of a photovoltaic power generation system including a power conditioner
  • FIGS. 6 and 7 are flowcharts showing an example of maximum power point tracking (the control flow of the power control unit and MPPT shown in FIG. 5).
  • FIG. 8 is a time chart showing an example of maximum power point tracking control at the time of power suppression according to these flows.
  • the power conditioner 2a includes an inverter 21, a measurement unit 22, a maximum power point tracking unit (MPPT) 23a, a power control unit 23b, an automatic voltage adjustment unit (AVR) 24, and a pulse width modulation signal. And a generation unit (PWM) 25.
  • MPPT 23a and power control unit 23b have separate block configurations.
  • the MPPT 23a is a maximum power point tracking unit that calculates the operation voltage command value of the PV array 1 based on the power (operation voltage and output current value) of the PV array 1 measured by the measurement unit 22 through the power control unit 23b. is there.
  • the power control unit 23b receives the voltage command value output from the MPPT 23a and the power suppression signal based on the power of the PV array 1 measured by the measurement unit 22, and includes the case of low solar radiation from sunrise to sunset. This is a power control unit that is always controlled by a voltage command output by tracking the maximum power point. More specifically, the power control unit 23b uses the MPPT to maintain a constant control voltage of the solar power generation system, a function of setting the operating voltage of the solar battery array by the MPPT even when the power of the solar power generation system is suppressed. It has a function of setting the operating voltage of the solar cell array.
  • the power value is provided to the MPPT 23a through the power control unit 23b.
  • the measurement unit 22 may directly input the MPPT 23a.
  • step S201 the voltage initial value V 0 of the voltage command value is set by MPPT.
  • step S ⁇ b> 202 the power measurement value P 0 at V 0 is acquired from the measurement unit 22.
  • step S203 from V 0 by a voltage update width [Delta] V to set a large voltages V 1 as the voltage command value (V 1 ⁇ V 0 + sign 0 ⁇ sign 1 ⁇ ⁇ V).
  • step S204 it is determined whether power suppression is imposed (power suppression signal On). If power suppression is not imposed (S204-No), the process proceeds to step S205, where the power command value of MPPT is set. Set up. This flow is repeated unless power suppression is imposed.
  • the power measurement P 1 continues to update to below power suppression value P limit. This is because the voltage-power characteristics of the PV array have an upwardly convex shape as shown in FIG. 3, and therefore the power is always reduced by monotonously increasing or decreasing the voltage command value.
  • FIG. 7 shows a flow of determining the voltage command value by the MPPT shown in step S205 of FIG. 7, (acquires P 1 in V 1) Step S2051, Step S2052 (P 1> P 0? ), Step S2053 (sign 0 ⁇ sign 1, sign 1 ⁇ + 1 ⁇ sign 1), step S2054 (sign 0 ⁇ sign 1 , sign 1 ⁇ ⁇ 1 ⁇ sign 1 ), step S 2055 (V 1 ⁇ V 1 + sign 0 ⁇ sign 1 ⁇ ⁇ V, P 0 ⁇ P 1 ) are sequentially performed.
  • FIG. 8 shows a time chart of control according to the flow of FIG.
  • the horizontal axis represents time
  • the vertical axis represents the voltage command value, power, sign 1 , sign 0, and power suppression signal.
  • the MPPT 23a and the power control unit 23b are configured as separate blocks, thereby providing an effect different from that of the first embodiment.
  • the following effects can be obtained. For example, since it is not necessary to consider power suppression in the MPPT 23a, there is an advantage that the MPPT algorithm can be easily implemented. Further, since branching to the power suppression process is determined by ON / OFF of the power suppression signal, the processing time when power suppression is not required can be shortened.
  • the power suppression process is separated in the configuration of the present embodiment, as the power suppression process, different power suppression methods such as using the power to be suppressed for charging the storage battery instead of suppressing the generated power, for example.
  • different power suppression methods such as using the power to be suppressed for charging the storage battery instead of suppressing the generated power, for example.
  • Embodiment 3 A control system and a control method for the photovoltaic power generation system according to Embodiment 3 will be described with reference to FIGS. In the following, differences from the first and second embodiments will be mainly described.
  • FIG. 9 and FIG. Although it is almost the same as the control flow shown in FIGS. 6 and 7, the control when the power suppression signal is ON is different.
  • the power command value is measured while updating the voltage command value to determine the voltage command value.
  • FIGS. 9 and 10 this process is replaced using a table. That is, a look-up table (LUT) of a list corresponding to the rated power generation amount of the photovoltaic power generation system is prepared in advance. In the LUT, a voltage command value is described according to the ratio of the power suppression value to the maximum generated power of the solar power generation system.
  • FIGS. A time chart is shown in FIG.
  • step S301 a voltage initial value V 0 , a voltage update width ⁇ V, a power difference threshold value ⁇ P, and sign ( ⁇ + 1) are set by MPPT. Then, (acquires P 0 in V 0) step S302, performs the step S303 (V 1 ⁇ V 0 + sign ⁇ ⁇ V).
  • step S304 it is determined whether or not power suppression is imposed (power suppression signal On). Set up. This flow is repeated unless power suppression is imposed.
  • step S310 it is determined whether P limit ⁇ P 1 is 0 or more and ⁇ P or less ( ⁇ P ⁇ P limit ⁇ P 1 ⁇ 0?). If it is 0 or more and ⁇ P or less (S310—Yes), Proceeding to step S304, this flow is repeated until it is not less than 0 and not more than ⁇ P.
  • step S313 determines whether towards P 1 is greater than P 0 (P 1> P 0 ?) Is determined, the larger the better in P 1 (S313-Yes), the step S314 (sign ⁇ + 1 ⁇ performs sign), it is larger in P 0 (S313-No), performs step S315 to (sign ⁇ -1 ⁇ sign).
  • FIG. 10 shows a flowchart for determining the voltage command value by the MPPT shown in step S305 of FIG. 10, (acquires P 1 in V 1) Step S3051, Step S3052 (P 1> P 0? ), Step S3053 (sign ⁇ + 1 ⁇ sign ), step S3054 (sign ⁇ -1 ⁇ sign) , step S3055 (V 1 ⁇ V 1 + sign ⁇ ⁇ V, P 0 ⁇ P 1 ) are sequentially performed.
  • FIG. 11 is a diagram illustrating an example of a method for creating a lookup table in the operation voltage setting method for maximum power point tracking.
  • FIG. 12 is a diagram showing an example of the created lookup table.
  • the horizontal axis represents voltage
  • the vertical axis represents power suppression value P limit / maximum generated power P max
  • 90 is a voltage-power characteristic curve (characteristic 1) with respect to the PV array rating
  • 91 is a decrease in solar radiation.
  • the voltage-power characteristic curve (characteristic 2) of the PV array is shown.
  • the maximum generated power P max of the solar power generation system is set to 1, and the voltage command value is obtained from the characteristics of the solar power generation system for every arbitrary ratio of the electric power.
  • the voltage command value is V 6L or V 6H .
  • FIG. 12 shows an example in which this is summarized in a lookup table (LUT) for each P limit / P max .
  • the voltage command value (V dc-low , V dc-high ) can be one for each P limit , and a total of two voltage command values can be taken. What is necessary is just to determine arbitrarily according to the request
  • the voltage-power characteristics shown in FIG. 11 change due to solar radiation, temperature, shade, etc., but these generally affect the direction in which the generated power decreases. If a table is created from the characteristics of the photovoltaic power generation system with respect to the rating, the actual generated power is lower than the generated power corresponding to the voltage command value obtained from the LUT. For this reason, power suppression works in an excessive direction and does not adversely affect the photovoltaic power generation system.
  • the generated power corresponding to the voltage command value obtained from the LUT is obtained from P limit .
  • P limit is updated to a smaller value as necessary, and the required power is suppressed.
  • the voltage command value is set as shown in the flow from step S313 to S318 in FIG. This difference can be eliminated by the updating control.
  • FIG. 13 shows a time chart of control according to the flow of FIGS. 9 and 10 using the LUT shown in FIG.
  • the horizontal axis represents time
  • the vertical axis represents the voltage command value, power, power suppression value P limit / maximum generated power P max , sign, and power suppression signal.
  • Step-C The situation from Steps S313 to S318 in FIG. 9 described above is shown in the vicinity of Step-C in FIG. Assume that the characteristic 1 and the characteristic 2 in FIG. 11 are switched at Step-C as shown in the graph of P limit / P mpp in FIG. 13 due to the fluctuation of solar radiation.
  • the characteristic 2 operates in the vicinity of P limit / P max ⁇ 0.4 where the power is significantly lower than the power suppression value.
  • the method using the LUT shown in the present embodiment needs to store the table in the control system, but does not need to suppress power by gradually updating V dc , so the processing becomes faster. .
  • Steps A and B in FIG. 13 since the power suppression signal is ON, the voltage command value is changed by the LUT, and the power value changes sharply accordingly.
  • the change in the voltage command value in the vicinity of Step-D is a change due to the hill-climbing method because the power suppression signal is OFF, and the change in power gradually changes accordingly.
  • the power suppression value prepared in advance for the voltage setting method during power suppression and the voltage command value corresponding to this power suppression value can be obtained as effects different from those of the first and second embodiments.
  • the method using the look-up table has an advantage that the processing is fast because it is not necessary to suppress the power by gradually updating the voltage command value by storing the table in the control system.
  • Embodiment 4 A control system and a control method for the photovoltaic power generation system according to Embodiment 4 will be described with reference to FIG. In the following, differences from the first to third embodiments will be mainly described.
  • FIG. 14 is a diagram illustrating an example of an operating voltage setting method at the time of canceling power suppression using a threshold value determined from the minimum operating voltage of the photovoltaic power generation system.
  • FIG. 14 shows a voltage-power characteristic curve of the photovoltaic power generation system.
  • Characteristic 1 is a characteristic corresponding to the rated output of the system, and characteristics 2 to 4 are characteristics when the output is lower than that of characteristic 1, such as in the case of low solar radiation.
  • the voltage V min is the minimum operating voltage of the photovoltaic power generation system, and when only a voltage lower than this is output, the system enters a standby state or a stopped state.
  • V min is the maximum power point (MPP) voltage
  • MPP maximum power point
  • the MPPT voltage command value calculation method is changed according to the magnitude relationship between the operating voltage (voltage measurement value) and the threshold when power suppression is changed from ON to OFF.
  • the search width is changed with the threshold as a boundary
  • the binary search method is used, the initial value of the search width is changed with the threshold as a boundary.
  • the operating point by MPPT is either a straight line connecting A1 and B1.
  • the operating point is A1
  • the characteristic 1 changes to the characteristic 2 due to solar radiation fluctuation or the like
  • the operating point moves to A2
  • the power suppression is removed, so the MPPT starts searching for the maximum power point.
  • the binary search method two points for determining a search range are determined, the range is divided into two, and a search is performed by comparing the representative points of the range. Therefore, you must first specify two points that determine the range.
  • the operating voltage V A of the initial value one for a point A2 of the two points may be selected one from the inside of the two points of V A and the threshold voltage.
  • the binary search is limited to V B and V oc4 , that is, the range 2, and the search width can be made larger than that of the range 1.
  • the MPP may not always be reached by the binary search alone, but in this case, the hill climbing method may be used after the binary search.
  • this voltage threshold can be uniquely determined with reasonableness from the minimum voltage of the photovoltaic power generation system.
  • the number of series modules in the system is N 1
  • the number of cells constituting the module is N 2
  • the temperature difference between the module operating temperature and 25 ° C. is ⁇ T
  • the temperature coefficient indicating the temperature dependence of the voltage is ⁇
  • V oc4 V oc4 (25 ° C.) ⁇ ⁇ V It becomes.
  • V oc4 437.5-35.3 ⁇ 402 (V) It becomes.
  • the voltage threshold value for switching the plurality of voltage command value setting methods is determined from the minimum startup voltage value of the photovoltaic power generation system, By determining the search width initial value of the binary search method with this voltage threshold as a boundary, the following effects can be obtained as effects different from those of the first to third embodiments. For example, by providing a voltage threshold and changing the MPPT search method, it is possible to search for a voltage command value efficiently, and to reduce the risk of searching for an inappropriate voltage command value.
  • Embodiment 5 A control system and a control method for the photovoltaic power generation system according to Embodiment 5 will be described with reference to FIGS. In the following, differences from the first to fourth embodiments will be mainly described.
  • control during low solar radiation will be described.
  • the power conditioner performs control to fix the operating voltage of the PV array to a constant voltage instead of setting it with MPPT. Therefore, if the part that performs this constant voltage control is output as a voltage command value by MPPT, the operating voltage of the PV array can be controlled by MPPT while the power conditioner is activated.
  • Such control can be realized by the flow shown in FIG. 15, for example, using the configuration of FIG. Consider the case of sunrise as an example of low solar radiation.
  • the voltage-power characteristics are shown in FIG. 16, and the time chart is shown in FIG.
  • FIG. 15 is a flowchart showing an example of control for outputting a constant voltage command value as part of the maximum power point tracking control even during a constant voltage operation during low solar radiation.
  • FIG. 16 is a diagram illustrating an example of a voltage-power relationship in the photovoltaic power generation system for explaining the constant voltage control during low solar radiation.
  • FIG. 17 is a time chart illustrating an example of maximum power point tracking control during power suppression.
  • V oc reaches V min
  • the process proceeds to step S405, and the photovoltaic power generation system starts power generation at a predetermined constant voltage V dc_const .
  • V dc_const V min may be set. Even in the case of a constant voltage operation at V dc_const , it is important to output the operation voltage as the MPPT voltage command value as shown in FIGS. 15 and 17.
  • the maximum power point is obtained from Vmin as shown in characteristics 4 and 5. Since it is located on the high voltage side, it shifts to a voltage command value setting method based on a maximum power point search such as constant voltage control or hill-climbing method (steps S408 to S417).
  • the threshold power P min is the maximum power having such characteristics that the generated power is maximum when the voltage is V min .
  • the part that performs constant voltage control when the amount of solar radiation is small is configured to output a voltage command value with the MPPT.
  • a voltage value can be output as a command value and controlled even during a constant voltage operation during low solar radiation.
  • voltage control by MPPT can be consistently performed from sunrise to sunset.
  • Embodiments 1 to 5 described above have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. . Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment. Furthermore, the form which combines each embodiment can also be changed as the scope of the present invention.
  • SYMBOLS 1 Solar cell (PV) array, 2, 2a ... Power conditioner, 3 ... Electric power system, DESCRIPTION OF SYMBOLS 21 ... Inverter, 22 ... Measurement part, 23 ... Maximum electric power point tracking part (MPPT) + electric power control part, 23a ... Maximum electric power point tracking part (MPPT), 23b ... Electric power control part, 24 ... Automatic voltage adjustment part (AVR) 25.
  • Pulse width modulation signal generator (PWM) 30 ... Voltage-power characteristic curve of the solar cell array, 31 ... One of operating points when power suppression is imposed, 32 ... Another operating point when power suppression is imposed, 40 ... updated power value, 41 ... 1 step previous power value, 90: Voltage-power characteristic curve with respect to the rating of the solar cell array, 91: Voltage-power characteristic curve of the solar cell array when solar radiation is lowered.

Abstract

The present invention is a technology for optimally controlling the voltage during a power suppression release. A system for controlling a solar power generation system has an inverter (21), a measurement unit (22), an MPPT + power control unit (23), an AVR (24), and a PWM (25). The MPPT + power control unit (23) has a function unit for MPPT for calculating an operating voltage command value of a PV array (1) on the basis of an operating voltage and output current value of the PV array (1) as measured by the measurement unit (22), and a function unit of for power control unit for control by a voltage command output by maximum power point tracking at all times from sunrise until sunset, inclusive even of when insolation is low.

Description

太陽光発電システムの制御システムおよび制御方法Control system and control method for photovoltaic power generation system
 本発明は、太陽光発電システムの制御システムおよび制御方法に関する。 The present invention relates to a control system and control method for a photovoltaic power generation system.
 太陽光発電システム(PVシステム)は、太陽電池モジュール(PVモジュール)を組み合わせたPVアレイと、PVアレイの動作制御および発電した直流電力を実際に利用する電力形態に変換するパワーコンディショナ(PCS)で構成される。PVアレイは、温度や日射量等の運転環境により取り出せる最大電力が変化する。PVアレイが動作している電圧および電流の組み合わせを動作点というが、最大発電電力を取り出せる動作点(最大電力点)も運転環境に応じて変化する。このため、大半のPVシステムには、最大電力点を追従するよう動作点を制御する最大電力点追従機構(MPPT)がPCSに組み込まれている。 A photovoltaic power generation system (PV system) is a PV array in which solar cell modules (PV modules) are combined, and a power conditioner (PCS) that converts the operation of the PV array into a power form that actually uses the generated DC power. Consists of. The maximum power that can be taken out from the PV array varies depending on the operating environment such as temperature and solar radiation. A combination of voltage and current at which the PV array is operating is referred to as an operating point, but the operating point (maximum power point) at which the maximum generated power can be extracted also varies depending on the operating environment. For this reason, most PV systems incorporate a maximum power point tracking mechanism (MPPT) in the PCS that controls the operating point to track the maximum power point.
 例えば、PVアレイによって発電した電力を電力会社に売電する場合、電力会社が構築した商用の電力系統に電力を供給するために、商用電力系統に擾乱を与えないよう直流電力を交流に変換し、かつ商用電力系統に合わせて電圧、周波数の調整を行う必要がある。PCSは、MPPTにより電圧制御指令値を生成し、PVアレイの動作電圧との差分に応じた比例積分(PI)制御により電流制御指令値に変換し、その電流制御指令値に基づいてゲート制御信号を発生させ、インバータのPWM制御によるスイッチング動作で交流電力の調整を行う。 For example, when selling electric power generated by a PV array to an electric power company, in order to supply electric power to a commercial electric power system constructed by the electric power company, DC power is converted into alternating current so as not to disturb the commercial electric power system. And it is necessary to adjust the voltage and frequency according to the commercial power system. The PCS generates a voltage control command value by MPPT, converts it to a current control command value by proportional integral (PI) control according to the difference from the operating voltage of the PV array, and gate control signal based on the current control command value And the AC power is adjusted by a switching operation by PWM control of the inverter.
 PCSの変換容量は、通常、制御するPVアレイの定格発電量より多少余裕ができる程度に設定する。このため、気温が低く日射が強い場合や経時劣化が生じ処理能力が落ちてしまった場合など、PVアレイの発電量がPCSの変換容量を超えてしまうことがある。また、何らかの原因によりPCSの異常加熱が発生した場合など、発電を維持するとPCSが故障する場合がある。こうした状況に対処するため、PCSには電力抑制機能が付加される。電力抑制機能は、動作点を最大電力点からより低い発電電力点に移すことによりPCSの異常発生を回避しつつ発電を継続する機能である。こうした電力抑制機構は、電力系統保護のために発動することもある。電力系統側で発生した電圧変動などの異常に対し、PVシステムから電力供給を継続すると異常を加速する場合である。 ∙ The conversion capacity of PCS is usually set to a level that allows a slight margin from the rated power generation of the PV array to be controlled. For this reason, the power generation amount of the PV array may exceed the PCS conversion capacity, for example, when the temperature is low and the solar radiation is strong, or when the processing capacity deteriorates due to deterioration over time. In addition, the PCS may fail if power generation is maintained, such as when abnormal heating of the PCS occurs for some reason. In order to cope with such a situation, a power suppression function is added to the PCS. The power suppression function is a function of continuing power generation while avoiding the occurrence of PCS abnormality by moving the operating point from the maximum power point to a lower generated power point. Such a power suppression mechanism may be activated to protect the power system. This is a case where the abnormality is accelerated when the power supply is continued from the PV system with respect to the abnormality such as the voltage fluctuation generated on the power system side.
 PCSにおける電力抑制の方法は、例えば特許文献1に開示されている。特許文献1の電力抑制方法は、PVアレイの動作電圧値と出力電流に基づいてMPPTにて生成した電圧制御指令値をPI制御によって電流制御指令値に変換し、この指令値をリミッタ上限値と比較し、必要に応じて電流制御値を出力することにより電力抑制を実現する方法であった。特許文献1の図1の構成では、PVアレイから出力される電圧および電流が計測部により計測され、そこから算出された電力値がMPPTへ、計測された電圧値がAVR(Automatic Voltage Regulator)へそれぞれ出力される。MPPTでは、計測された電力値を基に次ステップの電圧指令値を算出し、AVRへ出力する。AVRでは、電圧計測値と電圧指令値の差に応じたPI制御によりPWM制御のための電流指令値を出力する。出力された電流指令値は、電力抑制部に入力される。電力抑制部では、電力抑制信号に応じて発電電力を抑制するよう、PWM制御への電流制御値が生成される。これが電流指令値と比較され、インバータの通流率が小さくなる電流値が出力される。すなわち、電力抑制信号起因の電流制御値が出力される場合、MPPT起因の電流指令値はこれに置き換えられる。 A method of power suppression in PCS is disclosed in Patent Document 1, for example. The power suppression method of Patent Document 1 converts a voltage control command value generated by MPPT based on the operating voltage value and output current of the PV array into a current control command value by PI control, and converts this command value to a limiter upper limit value. This is a method of realizing power suppression by comparing and outputting a current control value as necessary. In the configuration of FIG. 1 of Patent Document 1, the voltage and current output from the PV array are measured by the measurement unit, the power value calculated therefrom is MPPT, and the measured voltage value is AVR (Automatic Voltage Regulator). Each is output. In MPPT, the voltage command value of the next step is calculated based on the measured power value, and is output to the AVR. In AVR, a current command value for PWM control is output by PI control according to the difference between the voltage measurement value and the voltage command value. The output current command value is input to the power suppression unit. In the power suppression unit, a current control value for PWM control is generated so as to suppress the generated power in accordance with the power suppression signal. This is compared with the current command value, and a current value at which the inverter conduction ratio is reduced is output. That is, when a current control value resulting from the power suppression signal is output, the current command value resulting from MPPT is replaced with this.
特開2012-113495号公報JP 2012-113495 A
 上述した特許文献1の電力抑制方法では、電力抑制が行われている間はMPPTから出力される電圧指令値に応じて決まる電流指令値を、リミッタ制御から決まる電流値によって置き換え続けるため、電力抑制が行われている間はMPPT制御が行われていないことを意味する。従って、電力抑制中に日射変動によってPVアレイの出力が電力抑制値を下回った場合など、PVアレイの動作点が適切に制御されず最大電力点へ復帰するまでの制御に時間を要し、発電電力損失をもたらすことになる。 In the power suppression method of Patent Document 1 described above, since the current command value determined according to the voltage command value output from the MPPT is continuously replaced with the current value determined from the limiter control while the power suppression is performed, the power suppression is performed. This means that the MPPT control is not being performed while the operation is being performed. Therefore, when the PV array output falls below the power suppression value due to solar radiation fluctuations during power suppression, the PV array operating point is not properly controlled and it takes time to return to the maximum power point. This will result in power loss.
 そこで、本発明は、かかる課題を解決するためになされたものであり、この発明の代表的な目的は、電力抑制中から電力抑制解除の際の電圧制御を最適に行う技術を提供することである。 Therefore, the present invention has been made to solve such a problem, and a typical object of the present invention is to provide a technique for optimally performing voltage control during cancellation of power suppression from during power suppression. is there.
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.
 (1)代表的な太陽光発電システムの制御システムは、太陽電池アレイの動作電圧を設定し、かつ前記太陽電池アレイの出力する直流電力を交流に変換するインバータと、前記太陽電池アレイの出力する電流および電圧を計測する計測部と、前記計測部により計測される前記太陽電池アレイの動作電圧および出力電流値を基に前記太陽電池アレイの動作電圧指令値を算出する最大電力点追従部と、を有する。さらに、前記計測部より得られる前記太陽電池アレイの動作電圧値と、前記最大電力点追従部より設定される前記太陽電池アレイの動作電圧指令値とを比較し、その差分を基に比例積分制御を行う自動電圧調整部と、前記自動電圧調整部より出力される電流指令値を基に前記インバータのゲート信号を生成するパルス幅変調信号生成部と、を有する。そして、日の出から日の入りまで、低日射の場合も含めて常に最大電力点追従による電圧指令出力により制御する電力制御部を有する。 (1) A control system for a typical photovoltaic power generation system sets an operating voltage of a solar cell array, converts an inverter DC power output from the solar cell array into AC, and outputs the solar cell array A measuring unit that measures current and voltage, and a maximum power point tracking unit that calculates an operating voltage command value of the solar cell array based on the operating voltage and output current value of the solar cell array measured by the measuring unit; Have Further, the operation voltage value of the solar cell array obtained from the measurement unit is compared with the operation voltage command value of the solar cell array set by the maximum power point tracking unit, and proportional integral control is performed based on the difference. And an automatic voltage adjusting unit that generates a gate signal of the inverter based on a current command value output from the automatic voltage adjusting unit. And it has the electric power control part always controlled by the voltage command output by the maximum electric power point tracking from the sunrise to the sunset including the case of the low solar radiation.
 (2)代表的な太陽光発電システムの制御方法は、インバータと計測部と最大電力点追従部と自動電圧調整部とパルス幅変調信号生成部と電力制御部とを有する太陽光発電システムの制御方法である。前記太陽光発電システムの制御方法において、前記電力制御部は、前記太陽光発電システムの制御を、日の出から日の入りまで、低日射の場合も含めて常に最大電力点追従による電圧指令出力により行う。 (2) A typical solar power generation system control method is a control of a solar power generation system including an inverter, a measurement unit, a maximum power point tracking unit, an automatic voltage adjustment unit, a pulse width modulation signal generation unit, and a power control unit. Is the method. In the control method of the solar power generation system, the power control unit performs control of the solar power generation system by a voltage command output based on maximum power point tracking from sunrise to sunset, even in the case of low solar radiation.
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。 Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.
 すなわち、代表的な効果は、電力抑制中から電力抑制解除の際の電圧制御を最適に行うことができる。この結果、電力抑制中の日射変動時や電力抑制状態から通常の運転状態への移行時に、発電電力損失を低く抑えることが可能となる。 That is, a typical effect is that voltage control can be optimally performed when power suppression is canceled during power suppression. As a result, it is possible to reduce the generated power loss at the time of solar radiation fluctuation during power suppression or when shifting from the power suppression state to the normal operation state.
本発明の実施の形態1における太陽光発電システムの構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the solar energy power generation system in Embodiment 1 of this invention. 本発明の実施の形態1において、最大電力点追従の一例を示すフローチャートである。In Embodiment 1 of this invention, it is a flowchart which shows an example of maximum electric power point tracking. 本発明の実施の形態1において、太陽電池アレイの電圧-電力特性と、電力抑制が課せられた場合の動作点との一例を示す図である。In Embodiment 1 of this invention, it is a figure which shows an example of the voltage-power characteristic of a solar cell array, and an operating point when electric power suppression is imposed. 本発明の実施の形態1において、電力抑制時の最大電力点追従制御の一例を示すタイムチャートである。In Embodiment 1 of this invention, it is a time chart which shows an example of the maximum electric power point tracking control at the time of electric power suppression. 本発明の実施の形態2における太陽光発電システムの構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the solar energy power generation system in Embodiment 2 of this invention. 本発明の実施の形態2において、最大電力点追従の一例を示すフローチャートである。In Embodiment 2 of this invention, it is a flowchart which shows an example of maximum electric power point tracking. 図6におけるMPPTによる電圧指令値の決定の一例を示すフローチャートである。It is a flowchart which shows an example of the determination of the voltage command value by MPPT in FIG. 本発明の実施の形態2において、電力抑制時の最大電力点追従制御の一例を示すタイムチャートである。In Embodiment 2 of this invention, it is a time chart which shows an example of the maximum electric power point tracking control at the time of electric power suppression. 本発明の実施の形態3において、最大電力点追従の一例を示すフローチャートである。In Embodiment 3 of this invention, it is a flowchart which shows an example of maximum electric power point tracking. 図9におけるMPPTによる電圧指令値の決定の一例を示すフローチャートである。10 is a flowchart illustrating an example of determination of a voltage command value by MPPT in FIG. 9. 本発明の実施の形態3において、最大電力点追従の動作電圧設定方法におけるルックアップテーブルの作成方法の一例を示す図である。In Embodiment 3 of this invention, it is a figure which shows an example of the creation method of the look-up table in the operating voltage setting method of maximum power point tracking. 本発明の実施の形態3において、図11により作成されたルックアップテーブルの一例を示す図である。In Embodiment 3 of this invention, it is a figure which shows an example of the lookup table produced by FIG. 本発明の実施の形態3において、電力抑制時の最大電力点追従制御の一例を示すタイムチャートである。In Embodiment 3 of this invention, it is a time chart which shows an example of the maximum electric power point tracking control at the time of electric power suppression. 本発明の実施の形態4において、太陽光発電システムの最低動作電圧から決まる閾値を用いた電力抑制解除時の動作電圧設定方法の一例を示す図である。In Embodiment 4 of this invention, it is a figure which shows an example of the operating voltage setting method at the time of the electric power suppression cancellation | release using the threshold value determined from the minimum operating voltage of a photovoltaic power generation system. 本発明の実施の形態5において、低日射時における一定電圧動作の際にも最大電力点追従制御の一環として定電圧の指令値を出力する制御の一例を示すフローチャートである。In Embodiment 5 of this invention, it is a flowchart which shows an example of the control which outputs the command value of a constant voltage as a part of maximum power point tracking control also in the case of the fixed voltage operation | movement at the time of low solar radiation. 本発明の実施の形態5において、低日射時における一定電圧制御の説明のための太陽光発電システムにおける電圧-電力関係の一例を示す図である。In Embodiment 5 of this invention, it is a figure which shows an example of the voltage-power relationship in the solar energy power generation system for description of the constant voltage control at the time of low solar radiation. 本発明の実施の形態5において、電力抑制時の最大電力点追従制御の一例を示すタイムチャートである。In Embodiment 5 of this invention, it is a time chart which shows an example of the maximum electric power point tracking control at the time of electric power suppression.
 以下の実施の形態においては、便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらは互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。 In the following embodiments, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant and one is the other. There are some or all of the modifications, details, supplementary explanations, and the like. Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number.
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。 Further, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say. Similarly, in the following embodiments, when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
 [実施の形態の概要]
 まず、実施の形態の概要について説明する。本実施の形態では、電力抑制解除の際の電圧制御を最適に行う技術を実現するものである。具体的には、電力抑制時にもMPPT制御を有効にし、電力抑制解除時にもMPPTを継続する方法、さらに、電力抑制解除後、太陽電池アレイの動作電圧指令値を算出するにあたり、太陽光発電システムの動作下限値から決まる電圧閾値と電圧計測値との大小関係に応じてMPPTでの電圧指令値算出方法を変える方法である。電力抑制時にMPPT制御を有効にするには、太陽電池アレイの状態を制御する電圧指令値を、電流制御信号に変換した状態で電力抑制をもたらす電流制御値と比較して置き換えるのではなく、電圧制御値に応じた電力を、抑制すべき電力値と比較して制御値を更新すればよい。
[Outline of the embodiment]
First, an outline of the embodiment will be described. In the present embodiment, a technique for optimally performing voltage control when canceling power suppression is realized. Specifically, a method of enabling MPPT control even when power is suppressed and continuing MPPT even when power suppression is canceled, and further, when calculating the operating voltage command value of the solar cell array after canceling power suppression, a photovoltaic power generation system In this method, the MPPT voltage command value calculation method is changed according to the magnitude relationship between the voltage threshold value determined from the operation lower limit value and the voltage measurement value. In order to enable the MPPT control at the time of power suppression, the voltage command value for controlling the state of the solar cell array is not compared with the current control value that causes power suppression in the state converted to the current control signal, but replaced by the voltage The control value may be updated by comparing the power corresponding to the control value with the power value to be suppressed.
 次に、実施の形態の概要において、代表的な太陽光発電システムの制御システムおよび制御方法について説明する。本実施の形態の概要では、一例として、括弧内に実施の形態の対応する構成要素、符号等を付して説明する。 Next, in the outline of the embodiment, a control system and a control method of a typical solar power generation system will be described. In the outline of the present embodiment, as an example, the description will be given with parentheses corresponding constituent elements, reference numerals and the like in parentheses.
 (1)本実施の形態の代表的な太陽光発電システムの制御システム(図1のパワーコンディショナ2、図5のパワーコンディショナ2a)は、太陽電池アレイ(PVアレイ1)の動作電圧を設定し、かつ前記太陽電池アレイの出力する直流電力を交流に変換するインバータ(インバータ21)と、前記太陽電池アレイの出力する電流および電圧を計測する計測部(計測部22)と、前記計測部により計測される前記太陽電池アレイの動作電圧および出力電流値を基に前記太陽電池アレイの動作電圧指令値を算出する最大電力点追従部(MPPT+電力制御部23のMPPT、MPPT23a)と、を有する。さらに、前記計測部より得られる前記太陽電池アレイの動作電圧値と、前記最大電力点追従部より設定される前記太陽電池アレイの動作電圧指令値とを比較し、その差分を基に比例積分制御を行う自動電圧調整部(自動電圧調整部24)と、前記自動電圧調整部より出力される電流指令値を基に前記インバータのゲート信号を生成するパルス幅変調信号生成部(パルス幅変調信号生成部25)と、を有する。そして、日の出から日の入りまで、低日射の場合も含めて常に最大電力点追従による電圧指令出力により制御する電力制御部(MPPT+電力制御部23の電力制御部、電力制御部23b)を有する。 (1) The control system (the power conditioner 2 of FIG. 1 and the power conditioner 2a of FIG. 5) of the typical photovoltaic power generation system of this Embodiment sets the operating voltage of a solar cell array (PV array 1). And an inverter (inverter 21) that converts DC power output from the solar cell array into AC, a measurement unit (measurement unit 22) that measures current and voltage output from the solar cell array, and the measurement unit. A maximum power point tracking unit (MPPT + MPPT of the power control unit 23, MPPT23a) that calculates an operating voltage command value of the solar cell array based on the measured operating voltage and output current value of the solar cell array. Further, the operation voltage value of the solar cell array obtained from the measurement unit is compared with the operation voltage command value of the solar cell array set by the maximum power point tracking unit, and proportional integral control is performed based on the difference. An automatic voltage adjustment unit (automatic voltage adjustment unit 24) that performs the above and a pulse width modulation signal generation unit (pulse width modulation signal generation) that generates a gate signal of the inverter based on a current command value output from the automatic voltage adjustment unit Part 25). And it has the power control part (the power control part of the power control part 23, the power control part 23b) always controlled by the voltage command output by the maximum power point tracking from the sunrise to the sunset including the case of the low solar radiation.
 (2)本実施の形態の代表的な太陽光発電システムの制御方法は、インバータと計測部と最大電力点追従部と自動電圧調整部とパルス幅変調信号生成部と電力制御部とを有する太陽光発電システムの制御方法(図2、図6および図7、図9および図10、図15)である。前記太陽光発電システムの制御方法において、前記電力制御部(図1のMPPT+電力制御部23の電力制御部、図5の電力制御部23b)は、前記太陽光発電システムの制御を、日の出から日の入りまで、低日射の場合も含めて常に最大電力点追従による電圧指令出力により行う。 (2) A typical solar power generation system control method according to the present embodiment includes an inverter, a measurement unit, a maximum power point tracking unit, an automatic voltage adjustment unit, a pulse width modulation signal generation unit, and a power control unit. It is the control method (FIG. 2, FIG. 6 and FIG. 7, FIG. 9, FIG. 10, FIG. 15) of a photovoltaic system. In the control method of the solar power generation system, the power control unit (the power control unit of the MPPT + power control unit 23 in FIG. 1 and the power control unit 23b in FIG. 5) controls the solar power generation system from sunrise to sunset. Up to and including the case of low solar radiation, the voltage command output always follows the maximum power point.
 以下、上述した実施の形態の概要に基づいた各実施の形態を図面に基づいて詳細に説明する。なお、各実施の形態を説明するための全図において、同一機能を有するものは原則として同一の符号を付し、その繰り返しの説明は省略する。 Hereinafter, each embodiment based on the outline of the above-described embodiment will be described in detail based on the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments, and the repetitive description thereof will be omitted.
 [実施の形態1]
 本実施の形態1における太陽光発電システムの制御システムおよび制御方法について、図1~図4を用いて説明する。     
[Embodiment 1]
The control system and control method of the photovoltaic power generation system according to Embodiment 1 will be described with reference to FIGS.
 <システム構成>
 まず、本実施の形態における太陽光発電システムの構成を図1に示す。図1は、本実施の形態における太陽光発電システムの構成の一例を示すブロック図である。より具体的に、図1では、電力抑制時にもMPPT制御を有効にするパワーコンディショナの構成の一例を示している。
<System configuration>
First, the structure of the solar power generation system in this Embodiment is shown in FIG. FIG. 1 is a block diagram illustrating an example of the configuration of the photovoltaic power generation system according to the present embodiment. More specifically, FIG. 1 shows an example of the configuration of a power conditioner that enables MPPT control even when power is suppressed.
 太陽光発電システムは、太陽電池(PV)アレイ1と、このPVアレイ1に接続されたパワーコンディショナ2と、このパワーコンディショナ2に接続された電力系統3とから構成される。 The solar power generation system includes a solar cell (PV) array 1, a power conditioner 2 connected to the PV array 1, and a power system 3 connected to the power conditioner 2.
 パワーコンディショナ2は、インバータ21と、計測部22と、最大電力点追従部(MPPT)+電力制御部23と、自動電圧調整部(AVR)24と、パルス幅変調信号生成部(PWM)25とから構成される。 The power conditioner 2 includes an inverter 21, a measurement unit 22, a maximum power point tracking unit (MPPT) + power control unit 23, an automatic voltage adjustment unit (AVR) 24, and a pulse width modulation signal generation unit (PWM) 25. It consists of.
 インバータ21は、PVアレイ1の動作電圧を設定し、かつPVアレイ1の出力する直流電力を交流に変換するインバータである。 The inverter 21 is an inverter that sets the operating voltage of the PV array 1 and converts DC power output from the PV array 1 into AC.
 計測部22は、PVアレイ1の出力する電流および電圧を計測する計測部である。 The measuring unit 22 is a measuring unit that measures the current and voltage output from the PV array 1.
 MPPT+電力制御部23は、MPPTの機能部と電力制御部の機能部とを含む。MPPTの機能部は、計測部22により計測されるPVアレイ1の電力(動作電圧および出力電流値より算出)を基にPVアレイ1の動作電圧指令値を算出する最大電力点追従部である。電力制御部の機能部は、電力抑制信号を入力として、日の出から日の入りまで、低日射の場合も含めて常にMPPTによる電圧指令出力により制御する電力制御部である。より具体的に、電力制御部の機能部は、太陽光発電システムの電力抑制時にもMPPTによって太陽電池アレイの動作電圧を設定する機能、太陽光発電システムの制御電圧を一定に保つ場合にも、MPPTによって太陽電池アレイの動作電圧を設定する機能などを有する。 The MPPT + power control unit 23 includes an MPPT function unit and a power control unit function unit. The functional unit of the MPPT is a maximum power point tracking unit that calculates the operating voltage command value of the PV array 1 based on the power (calculated from the operating voltage and the output current value) of the PV array 1 measured by the measuring unit 22. The function unit of the power control unit is a power control unit that always receives a power suppression signal as input and controls the voltage command output by MPPT from sunrise to sunset, including the case of low solar radiation. More specifically, the function unit of the power control unit has a function of setting the operating voltage of the solar cell array by the MPPT even when the power of the solar power generation system is suppressed, and also when the control voltage of the solar power generation system is kept constant. It has a function of setting the operating voltage of the solar cell array by MPPT.
 AVR24は、計測部22より得られるPVアレイ1の動作電圧値と、MPPT+電力制御部23より設定されるPVアレイ1の動作電圧指令値とを比較し、その差分を基に比例積分制御を行う自動電圧調整部である。 The AVR 24 compares the operation voltage value of the PV array 1 obtained from the measurement unit 22 with the operation voltage command value of the PV array 1 set by the MPPT + power control unit 23, and performs proportional-integral control based on the difference. An automatic voltage adjustment unit.
 PWM25は、AVR24より出力される電流指令値を基にインバータ21のゲート信号を生成するパルス幅変調信号生成部である。 PWM25 is a pulse width modulation signal generation unit that generates a gate signal of the inverter 21 based on a current command value output from the AVR 24.
 太陽光発電システムにおいて、PVアレイ1で発電される直流電力はパワーコンディショナ2内のインバータ21によって交流に変換され、電力系統3へと逆潮流される。PVアレイ1の出力電流および電圧は計測部22により計測され、MPPT+電力制御部23へは電力値が渡され、AVR24へは電圧値が渡される。MPPT+電力制御部23では、出力した電力指令値に対応した電力計測値を得、それらの値を基に次ステップの電圧指令値を決定する。次ステップの電圧指令値の決定に用いる電圧指令値およびそれに対応する電力計測値は、必ずしも直前のステップの物だけとは限らず、使用するMPPTの方法に応じて決定される。MPPTの方法については、既に多くの提案がなされており、それらの何れの方法を用いてもよい。 In the solar power generation system, the DC power generated by the PV array 1 is converted into AC by the inverter 21 in the power conditioner 2 and is reversely flowed to the power system 3. The output current and voltage of the PV array 1 are measured by the measuring unit 22, the power value is passed to the MPPT + power control unit 23, and the voltage value is passed to the AVR 24. The MPPT + power control unit 23 obtains a power measurement value corresponding to the output power command value, and determines a voltage command value for the next step based on those values. The voltage command value used for determining the voltage command value of the next step and the power measurement value corresponding to the voltage command value are not necessarily limited to those of the immediately preceding step, but are determined according to the MPPT method to be used. Many proposals have already been made for the MPPT method, and any of these methods may be used.
 <動作フロー>
 本実施の形態では山登り法を例に、電力抑制時にもMPPT制御を有効にした状態で電力を抑制する方法を説明する。図1のMPPT+電力制御部23で示すブロックの動作フローを図2に示す。図2は、電力抑制時にも最大電力点追従制御を有効にする最大電力点追従の一例を示すフローチャートである。
<Operation flow>
In the present embodiment, a method of suppressing power in a state where MPPT control is enabled even when power is suppressed will be described by taking a hill climbing method as an example. FIG. 2 shows an operation flow of a block indicated by the MPPT + power control unit 23 in FIG. FIG. 2 is a flowchart illustrating an example of maximum power point tracking that enables maximum power point tracking control even during power suppression.
 まず、ステップS101において、電圧初期値V、電圧更新幅ΔV、向きsign(←+1)を設定する。そして、ステップS102において、初期電圧指令値としてVを出力し、Vにおける電力計測値Pを計測部22より取得する。次に、ステップS103,S104において、VよりΔVだけ大きな電圧Vを電圧指令値として出力し(V←V+sign×ΔV)、Vに対する電力計測値Pを計測部22より取得する。 First, in step S101, an initial voltage value V 0 , a voltage update width ΔV, and a direction sign (← + 1) are set. In step S <b> 102, V 0 is output as the initial voltage command value, and the power measurement value P 0 at V 0 is acquired from the measurement unit 22. Next, in steps S103 and S104, a voltage V 1 that is larger than V 0 by ΔV is output as a voltage command value (V 1 ← V 0 + sign × ΔV), and a power measurement value P 1 for V 1 is obtained from the measurement unit 22. To do.
 そして、ステップS105において、PとPの値を比較(P>P?)し、更新する電圧指令値を電圧が増加する方向か減少する方向かのどちらにするかを決定する。Pの方が大きければ(S105-Yes)、次の電圧指示値をVより大きくなるよう、VにΔVを加算する。一方、Pの方が大きければ(S105-No)、Vから電圧を小さくするようΔVだけ減算する。実際の電圧指令値の更新は、ステップS110におけるVの計算において行うが、計算時のΔVの符号をPとPの大小関係に応じて、ステップS106A(sign←+1×sign)若しくはステップS106B(sign←-1×sign)において決定する。 In step S105, the values of P 0 and P 1 are compared (P 1 > P 0 ?), And it is determined whether the voltage command value to be updated is in the direction in which the voltage increases or decreases. The greater the direction of P 1 (S105-Yes), so that the next voltage instruction value becomes greater than V 1, adding ΔV to V 1. On the other hand, if P 0 is larger (S105-No), ΔV is subtracted from V 1 so as to decrease the voltage. Actual update of the voltage command value is performed in the calculation of V 1 at step S110, the sign of the computation time of ΔV in accordance with the magnitude relationship between P 0 and P 1, step S106A (sign ← + 1 × sign ) or step The determination is made in S106B (sign ← −1 × sign).
 その後、ステップS107において、電力抑制値Plimitを更新する。電力抑制が不要な場合はPlimitにPCSの定格電力を入力しておけばよい。ステップS108において、PとPlimitを比較(Plimit>P?)し、Pの方が小さければ(S108-Yes)、電力抑制不要としてそのままステップS110に進み、電圧指令値と電力計測値の更新を行う(V←V+sign×ΔV、P←P)。一方、PがPlimitを超えている場合(S108-No)、電力抑制が必要であるため、ステップS109において、電圧指令値の探索方向を逆転し(sign←-1×sign)、ステップS110に進む。 Thereafter, in step S107, the power suppression value P limit is updated. If power suppression is not required, the rated power of the PCS may be input to P limit . In step S108, you compare the P 1 and P limit and (P limit> P 1?), The smaller the better of P 1 (S108-Yes), it proceeds to step S110, the voltage command value and a power measurement as an unnecessary power throttle The value is updated (V 1 ← V 1 + sign × ΔV, P 0 ← P 1 ). On the other hand, if P 1 exceeds P limit (S108-No), since power suppression is necessary, the search direction of the voltage command value is reversed (sign ← −1 × sign) in step S109, and step S110. Proceed to
 ステップS105およびステップS106A若しくはS106Bにおいて、電圧指令値の探索方向は電力が増加する方向に電圧を増減する設定となっているため、ステップS109において、探索方向を逆転することは電力が減少する方向へ電圧指令値を設定することを意味する。 In step S105 and step S106A or S106B, the search direction of the voltage command value is set to increase or decrease the voltage in the direction in which the power increases. Therefore, in step S109, reversing the search direction in the direction in which the power decreases. This means that the voltage command value is set.
 以上によって電圧指令値が更新されたので、図2のステップS104に戻り、新しい電圧指令値に対する電力値の取得を行い、上記のステップを繰り返し行う。 Since the voltage command value has been updated as described above, the process returns to step S104 in FIG. 2, the power value for the new voltage command value is acquired, and the above steps are repeated.
 MPPT+電力制御部23より出力された電圧指令値は、図1に示すように、AVR24に入力される。AVR24では、計測部22より得た電圧計測値とMPPT+電力制御部23より得た電圧指令値との差に応じたPI(比例積分)制御を行い、PWM制御信号となる電流指令値をPWM25へ出力する。PWM25は、電流指令値に応じたゲート信号を出力し、インバータ21の通流率を変化させ、PVアレイ1の動作電圧を電圧指令値に設定する。AVR24やPI制御、PWM25、インバータ21によるPVアレイ1の動作電圧制御は一般的な制御方法であり、公知となっている方法により実現可能である。 The voltage command value output from the MPPT + power control unit 23 is input to the AVR 24 as shown in FIG. In the AVR 24, PI (proportional integration) control is performed according to the difference between the voltage measurement value obtained from the measurement unit 22 and the voltage command value obtained from the MPPT + power control unit 23, and a current command value serving as a PWM control signal is transferred to the PWM 25. Output. The PWM 25 outputs a gate signal corresponding to the current command value, changes the conduction rate of the inverter 21, and sets the operating voltage of the PV array 1 to the voltage command value. The operation voltage control of the PV array 1 by the AVR 24, PI control, PWM 25, and inverter 21 is a general control method, and can be realized by a known method.
 以上のフローにより、MPPTによる電圧制御を行いながら電力抑制を行うことが可能である。 By the above flow, it is possible to suppress power while performing voltage control by MPPT.
 <PVアレイの電圧-電力特性>
 PVアレイの電圧-電力特性を図3に示す。図3は、PVアレイの電圧-電力特性と、電力抑制が課せられた場合の動作点との一例を示す図である。図3において、横軸は電圧、縦軸は電力であり、また、30はPVアレイの電圧-電力特性曲線、31は電力抑制が課された時の動作点の一つ(A点)、32は電力抑制が課された時のもう一つの動作点(B点)を示す。MPPは最大電力点、Vmppは最大電力点に対応する電圧、Pmppは最大電力点に対応する電力、Plimit-1は電力抑制値の一つ、Plimit-2はもう一つの電力抑制値である。
<Voltage-power characteristics of PV array>
The voltage-power characteristics of the PV array are shown in FIG. FIG. 3 is a diagram illustrating an example of voltage-power characteristics of a PV array and operating points when power suppression is imposed. In FIG. 3, the horizontal axis is voltage, the vertical axis is power, 30 is a voltage-power characteristic curve of the PV array, 31 is one of operating points when power suppression is imposed (point A), 32 Indicates another operating point (point B) when power suppression is imposed. MPP is the maximum power point, V mpp is the voltage corresponding to the maximum power point, P mpp is the power corresponding to the maximum power point, P limit-1 is one of the power suppression values, and P limit-2 is another power suppression. Value.
 電力抑制が課せられた時点で電圧指令値がVmppよりも小さい場合、図2に示す制御によって動作点はA点31を中心として±ΔV以内に収束する。一方、電力抑制が課された時点で電圧指令値がVmppよりも大きい場合、動作点はB点32を中心として±ΔV以内に収束する。どちらか一方に収束する点を限定したい場合、図2のステップS109でsignの符号を+か-のどちらか一方に限定すればよい。+の場合はB点32に、-の場合はA点31に収束する。B点32に収束させた場合、電流値がA点31より小さいため、配線部での発熱が抑えられる利点がある。 When the voltage command value is smaller than V mpp when the power suppression is imposed, the operating point converges within ± ΔV with the A point 31 as the center by the control shown in FIG. On the other hand, when the voltage command value is larger than V mpp when the power suppression is imposed, the operating point converges within ± ΔV with the B point 32 as the center. If it is desired to limit the point of convergence to either one, the sign sign may be limited to either + or-in step S109 in FIG. In the case of +, it converges to the B point 32, and in the case of-, it converges to the A point 31. When converged to the point B 32, the current value is smaller than the point A 31, so there is an advantage that heat generation in the wiring portion can be suppressed.
 <タイムチャート>
 図2のフローに従った制御のタイムチャートを図4に示す。図4は、電力抑制時の最大電力点追従制御の一例を示すタイムチャートである。図4において、横軸は時間、縦軸は電圧指令値と電力とsignであり、また、40は更新後の電力値(図2のP)、41は1ステップ前の電力値(図2のP)を示す。図4では、Plimit-1の位置で電力抑制がかかっているが、Step-AでPlimit-2の位置に電力抑制の値が変化する。Plimit-2は最大電力点であるPmppよりも大きな電力値での抑制であり、事実上抑制が無い状態である。その後、Step-Bにて再度、Plimit-1での電力抑制に変化している(図3参照)。
<Time chart>
FIG. 4 shows a time chart of control according to the flow of FIG. FIG. 4 is a time chart showing an example of maximum power point tracking control during power suppression. 4, the horizontal axis represents time, the vertical axis represents the voltage command value, power, and sign, 40 represents the power value after update (P 1 in FIG. 2), and 41 represents the power value one step before (FIG. 2). Of P 0 ). In FIG. 4, power suppression is applied at the position of P limit-1 , but the value of power suppression changes to the position of P limit-2 at Step-A. P limit-2 is a suppression at a power value larger than P mpp which is the maximum power point, and there is virtually no suppression. After that, at Step-B, it again changes to power suppression at P limit-1 (see FIG. 3).
 <実施の形態1の効果>
 以上のように、本実施の形態における太陽光発電システムの制御システムおよび制御方法によれば、インバータ21と計測部22と最大電力点追従部+電力制御部23と自動電圧調整部24とパルス幅変調信号生成部25とを有することで、電力抑制時から電力抑制解除の際の電圧制御を最適に行う技術を実現することができる。この結果、電力抑制中に日射変動などによるPVアレイ出力変化が生じた際や、電力抑制状態から通常の運転状態への移行時に、発電電力損失を低く抑えることが可能となる。具体的には、電力抑制時にもMPPT制御を有効にし、電力抑制解除時にもMPPTを継続することができる。電力抑制時にMPPT制御を有効にするには、PVアレイ1の状態を制御する電圧指令値を、従来のように電流制御信号に変換した状態で電力抑制をもたらす電流制御値と比較して置き換えるのではなく、電圧制御値に応じた電力を、抑制すべき電力値と比較して制御値を更新することで実現することができる。
<Effect of Embodiment 1>
As described above, according to the control system and control method of the photovoltaic power generation system in the present embodiment, inverter 21, measurement unit 22, maximum power point tracking unit + power control unit 23, automatic voltage adjustment unit 24, and pulse width. By including the modulation signal generation unit 25, it is possible to realize a technique for optimally performing voltage control from the time of power suppression to the cancellation of power suppression. As a result, it is possible to suppress the generated power loss to a low level when a PV array output change occurs due to fluctuations in solar radiation during power suppression, or when shifting from the power suppression state to the normal operation state. Specifically, MPPT control can be validated even when power is suppressed, and MPPT can be continued even when power suppression is released. In order to enable the MPPT control at the time of power suppression, the voltage command value for controlling the state of the PV array 1 is replaced with a current control value that causes power suppression in a state converted to a current control signal as in the past. Instead, it can be realized by updating the control value by comparing the power according to the voltage control value with the power value to be suppressed.
 [実施の形態2]
 本実施の形態2における太陽光発電システムの制御システムおよび制御方法について、図5~図8を用いて説明する。以下においては、上記実施の形態1と異なる点を主に説明する。
[Embodiment 2]
A control system and control method for the photovoltaic power generation system according to Embodiment 2 will be described with reference to FIGS. In the following, differences from the first embodiment will be mainly described.
 本実施の形態においては、電力抑制時にもMPPT制御を有効にするパワーコンディショナの別の構成について述べる。図5がパワーコンディショナを含む太陽光発電システムの構成の一例を示すブロック図で、図6および図7が最大電力点追従の一例を示すフローチャート(図5に示す電力制御部およびMPPTの制御フロー)である。図8は、これらのフローに従った電力抑制時の最大電力点追従制御の一例を示すタイムチャートである。 In this embodiment, another configuration of a power conditioner that enables MPPT control even when power is suppressed will be described. FIG. 5 is a block diagram showing an example of the configuration of a photovoltaic power generation system including a power conditioner, and FIGS. 6 and 7 are flowcharts showing an example of maximum power point tracking (the control flow of the power control unit and MPPT shown in FIG. 5). ). FIG. 8 is a time chart showing an example of maximum power point tracking control at the time of power suppression according to these flows.
 <システム構成>
 図5において、パワーコンディショナ2aは、インバータ21と、計測部22と、最大電力点追従部(MPPT)23aと、電力制御部23bと、自動電圧調整部(AVR)24と、パルス幅変調信号生成部(PWM)25とから構成される。図1と異なる点は、MPPT23aと電力制御部23bとが別々のブロック構成となっている。
<System configuration>
In FIG. 5, the power conditioner 2a includes an inverter 21, a measurement unit 22, a maximum power point tracking unit (MPPT) 23a, a power control unit 23b, an automatic voltage adjustment unit (AVR) 24, and a pulse width modulation signal. And a generation unit (PWM) 25. The difference from FIG. 1 is that MPPT 23a and power control unit 23b have separate block configurations.
 MPPT23aは、電力制御部23bを通して、計測部22により計測されるPVアレイ1の電力(動作電圧および出力電流値)を基に、PVアレイ1の動作電圧指令値を算出する最大電力点追従部である。 The MPPT 23a is a maximum power point tracking unit that calculates the operation voltage command value of the PV array 1 based on the power (operation voltage and output current value) of the PV array 1 measured by the measurement unit 22 through the power control unit 23b. is there.
 電力制御部23bは、計測部22により計測されるPVアレイ1の電力を基に、MPPT23aより出力される電圧指令値、電力抑制信号を入力として、日の出から日の入りまで、低日射の場合も含めて常に最大電力点追従による電圧指令出力により制御する電力制御部である。より具体的に、電力制御部23bは、太陽光発電システムの電力抑制時にもMPPTによって太陽電池アレイの動作電圧を設定する機能、太陽光発電システムの制御電圧を一定に保つ場合にも、MPPTによって太陽電池アレイの動作電圧を設定する機能などを有する。 The power control unit 23b receives the voltage command value output from the MPPT 23a and the power suppression signal based on the power of the PV array 1 measured by the measurement unit 22, and includes the case of low solar radiation from sunrise to sunset. This is a power control unit that is always controlled by a voltage command output by tracking the maximum power point. More specifically, the power control unit 23b uses the MPPT to maintain a constant control voltage of the solar power generation system, a function of setting the operating voltage of the solar battery array by the MPPT even when the power of the solar power generation system is suppressed. It has a function of setting the operating voltage of the solar cell array.
 なお、図5では、電力値は電力制御部23bを通してMPPT23aへ与える構成となっているが、必ずしもこの構成をとる必要はなく、計測部22より直接MPPT23aへ入力する構成となっていてもよい。 In FIG. 5, the power value is provided to the MPPT 23a through the power control unit 23b. However, this configuration is not necessarily required, and the measurement unit 22 may directly input the MPPT 23a.
 <動作フロー>
 図6において、まず、ステップS201において、MPPTにより電圧指令値の電圧初期値Vを設定する。また、電圧更新幅ΔV、sign(←+1)、sign(←+1)も設定する。そして、ステップS202において、Vにおける電力計測値Pを計測部22より取得する。次に、ステップS203において、Vより電圧更新幅ΔVだけ大きな電圧Vを電圧指令値として設定する(V←V+sign×sign×ΔV)。
<Operation flow>
In FIG. 6, first, in step S201, the voltage initial value V 0 of the voltage command value is set by MPPT. In addition, the voltage update width ΔV, sign 0 (← + 1), sign 1 (← + 1) are also set. In step S <b> 202, the power measurement value P 0 at V 0 is acquired from the measurement unit 22. Next, in step S203, from V 0 by a voltage update width [Delta] V to set a large voltages V 1 as the voltage command value (V 1 ← V 0 + sign 0 × sign 1 × ΔV).
 次に、ステップS204の分岐において、電力抑制が課せられているか(電力抑制信号On)判断し、電力抑制が課せられていなければ(S204-No)、ステップS205に進み、MPPTによる電力指令値の設定を行う。電力抑制が課せられない限り、このフローを繰り返して行う。 Next, in the branch of step S204, it is determined whether power suppression is imposed (power suppression signal On). If power suppression is not imposed (S204-No), the process proceeds to step S205, where the power command value of MPPT is set. Set up. This flow is repeated unless power suppression is imposed.
 一方、電力抑制が課せられた場合、ステップS204(Yes)でステップS206へ分岐し、ステップS206~S211を順に行う。すなわち、ステップS206(VにおけるP(V)(=P)を取得)、ステップS207(Plimitを更新)を行う。さらに、ステップS208(Plimit>P?)、ステップS209(sign←sign、sign←+1×sign)、ステップS210(sign←sign、sign←-1×sign)を行う。そして、ステップS211(V←V+sign×sign×ΔV、P←P)を行う。 On the other hand, if power suppression is imposed, the process branches to step S206 in step S204 (Yes), and steps S206 to S211 are performed in order. That is, (acquires P (V 1) (= P 1) in V 1) step S206, performs step S207 (the updated P limit). Furthermore, step S208 (P limit > P 1 ?), Step S209 (sign 0 ← sign 1 , sign 1 ← + 1 × sign 1 ), step S210 (sign 0 ← sign 1 , sign 1 ← −1 × sign 1 ) Do. Then, step S211 (V 1 ← V 1 + sign 0 × sign 1 × ΔV, P 0 ← P 1 ) is performed.
 このようにして、直前の電圧指令値から電圧更新幅ΔVずつ電圧指令値を単調に増加若しくは減少させ、電力計測値Pが電力抑制値Plimitを下回るまで更新を続ける。これは、PVアレイの電圧-電力特性が図3に示すように上に凸の形状を持つため、電圧指令値を単調に増加若しくは減少させることにより必ず電力が減少することを利用している。 In this way, immediately before monotonically increase or decrease the voltage command value by voltage update width ΔV from the voltage command value, the power measurement P 1 continues to update to below power suppression value P limit. This is because the voltage-power characteristics of the PV array have an upwardly convex shape as shown in FIG. 3, and therefore the power is always reduced by monotonously increasing or decreasing the voltage command value.
 図6のステップS205に示すMPPTによる電圧指令値の決定のフローを示したのが図7である。図7において、ステップS2051(VにおけるPを取得)、ステップS2052(P>P?)、ステップS2053(sign←sign、sign←+1×sign)、ステップS2054(sign←sign、sign←-1×sign)、ステップS2055(V←V+sign×sign×ΔV、P←P)を順に行う。 FIG. 7 shows a flow of determining the voltage command value by the MPPT shown in step S205 of FIG. 7, (acquires P 1 in V 1) Step S2051, Step S2052 (P 1> P 0? ), Step S2053 (sign 0 ← sign 1, sign 1 ← + 1 × sign 1), step S2054 (sign 0 ← sign 1 , sign 1 ← −1 × sign 1 ), step S 2055 (V 1 ← V 1 + sign 0 × sign 1 × ΔV, P 0 ← P 1 ) are sequentially performed.
 <タイムチャート>
 図6のフローに従った制御のタイムチャートを示したのが図8である。図8において、横軸は時間、縦軸は電圧指令値と電力とsignとsignと電力抑制信号である。図8では、電力抑制信号のON/OFFにより、電力抑制が課せられているか(ON)、課せられていないか(OFF)が決められる。
<Time chart>
FIG. 8 shows a time chart of control according to the flow of FIG. In FIG. 8, the horizontal axis represents time, and the vertical axis represents the voltage command value, power, sign 1 , sign 0, and power suppression signal. In FIG. 8, it is determined whether power suppression is imposed (ON) or not (OFF) depending on ON / OFF of the power suppression signal.
 <実施の形態2の効果>
 以上のように、本実施の形態における太陽光発電システムの制御システムおよび制御方法によれば、MPPT23aと電力制御部23bとを別々のブロック構成とすることで、上記実施の形態1と異なる効果として、以下のような効果を得ることができる。例えば、MPPT23aで電力抑制を考慮しなくてもよいため、MPPTアリゴリズムの実装が容易となる利点がある。また、電力抑制信号のON/OFFにより電力抑制処理への分岐を決めるため、電力抑制が不要な場合の処理時間を短くできる。このように、本実施の形態の構成では電力抑制処理を分離しているため、電力抑制処理として、例えば発電電力の抑制ではなく、抑制すべき電力を蓄電池の充電に用いるなど、異なる電力抑制手法を導入することが上記実施の形態1の構成に比べ容易となる利点がある。
<Effect of Embodiment 2>
As described above, according to the control system and the control method of the photovoltaic power generation system in the present embodiment, the MPPT 23a and the power control unit 23b are configured as separate blocks, thereby providing an effect different from that of the first embodiment. The following effects can be obtained. For example, since it is not necessary to consider power suppression in the MPPT 23a, there is an advantage that the MPPT algorithm can be easily implemented. Further, since branching to the power suppression process is determined by ON / OFF of the power suppression signal, the processing time when power suppression is not required can be shortened. As described above, since the power suppression process is separated in the configuration of the present embodiment, as the power suppression process, different power suppression methods such as using the power to be suppressed for charging the storage battery instead of suppressing the generated power, for example. There is an advantage that it is easier to introduce than the configuration of the first embodiment.
 [実施の形態3]
 本実施の形態3における太陽光発電システムの制御システムおよび制御方法について、図9~図13を用いて説明する。以下においては、上記実施の形態1および2と異なる点を主に説明する。
[Embodiment 3]
A control system and a control method for the photovoltaic power generation system according to Embodiment 3 will be described with reference to FIGS. In the following, differences from the first and second embodiments will be mainly described.
 本実施の形態では、電力抑制時にもMPPTを有効にする図5の構成を用いた異なる制御例について述べる。制御フローを図9および図10に示す。図6および図7に示す制御フローとほぼ同じであるが、電力抑制信号がONの場合の制御が異なる。図6および図7に示す制御フローでは電圧指令値を更新しながら電力値を計測して電圧指令値を決定するが、図9および図10ではこの過程を、テーブルを利用して置き換える。すなわち、事前に太陽光発電システムの定格発電量に応じた一覧表のルックアップテーブル(LUT)を用意しておく。LUTには太陽光発電システムの最大発電電力に対する電力抑制値の割合に応じて電圧指令値が記載されている。一例を図11および図12に示す。また、タイムチャートを図13に示す。 In this embodiment, a different control example using the configuration of FIG. 5 that enables MPPT even when power is suppressed will be described. The control flow is shown in FIG. 9 and FIG. Although it is almost the same as the control flow shown in FIGS. 6 and 7, the control when the power suppression signal is ON is different. In the control flow shown in FIGS. 6 and 7, the power command value is measured while updating the voltage command value to determine the voltage command value. In FIGS. 9 and 10, this process is replaced using a table. That is, a look-up table (LUT) of a list corresponding to the rated power generation amount of the photovoltaic power generation system is prepared in advance. In the LUT, a voltage command value is described according to the ratio of the power suppression value to the maximum generated power of the solar power generation system. An example is shown in FIGS. A time chart is shown in FIG.
 <動作フロー>
 図9および図10は、最大電力点追従の一例を示すフローチャートである。
<Operation flow>
9 and 10 are flowcharts showing an example of maximum power point tracking.
 図9において、まず、ステップS301において、MPPTにより電圧指令値の電圧初期値V、電圧更新幅ΔV、電力差閾値ΔP、sign(←+1)を設定する。そして、ステップS302(VにおけるPを取得)、ステップS303(V←V+sign×ΔV)を行う。 In FIG. 9, first, in step S301, a voltage initial value V 0 , a voltage update width ΔV, a power difference threshold value ΔP, and sign (← + 1) are set by MPPT. Then, (acquires P 0 in V 0) step S302, performs the step S303 (V 1 ← V 0 + sign × ΔV).
 次に、ステップS304の分岐において、電力抑制が課せられているか(電力抑制信号On)判断し、電力抑制が課せられていなければ(S304-No)、ステップS305に進み、MPPTによる電力指令値の設定を行う。電力抑制が課せられない限り、このフローを繰り返して行う。 Next, in the branch of step S304, it is determined whether or not power suppression is imposed (power suppression signal On). Set up. This flow is repeated unless power suppression is imposed.
 一方、電力抑制が課せられた場合、ステップS304(Yes)でステップS306へ分岐し、ステップS306(Plimitを更新)、ステップS307(Plimit/Pmppに応じたVLUTをLUTより取得)、ステップS308(V←VLUT)、ステップS309(VにおけるP(V)(=P)を取得)を行う。 On the other hand, if power suppression is imposed, the process branches to step S306 in step S304 (Yes), step S306 (updates P limit ), step S307 (V LUT corresponding to P limit / P mpp is acquired from the LUT), step S308 (V 1 ← V LUT) , perform (P (V 1) acquires (= P 1) in V 1) step S309.
 次に、ステップS310の分岐において、Plimit-Pが0以上でΔP以下か(ΔP≧Plimit-P≧0?)判断し、0以上でΔP以下の場合(S310-Yes)は、ステップS304に進み、0以上でΔP以下でなくなるまで、このフローを繰り返して行う。 Next, in the branch of step S310, it is determined whether P limit −P 1 is 0 or more and ΔP or less (ΔP ≧ P limit −P 1 ≧ 0?). If it is 0 or more and ΔP or less (S310—Yes), Proceeding to step S304, this flow is repeated until it is not less than 0 and not more than ΔP.
 一方、Plimit-Pが0以上でΔP以下でなくなると(S310-No)、ステップS311へ分岐し、ステップS311(P←P、V←V+sign×ΔV)、ステップS312(VにおけるP(V)(=P)を取得)を行う。 On the other hand, if P limit −P 1 is not less than 0 and not more than ΔP (S310—No), the process branches to step S311, and step S311 (P 0 ← P 1 , V 1 ← V 1 + sign × ΔV), step S312 ( performing P (V 1) acquires (= P 1)) in V 1.
 次に、ステップS313の分岐において、Pの方がPより大きいか(P>P?)判断し、Pの方が大きければ(S313-Yes)、ステップS314(sign←+1×sign)を行い、Pの方が大きければ(S313-No)、ステップS315(sign←-1×sign)を行う。 Next, in the branch of step S313, whether towards P 1 is greater than P 0 (P 1> P 0 ?) Is determined, the larger the better in P 1 (S313-Yes), the step S314 (sign ← + 1 × performs sign), it is larger in P 0 (S313-No), performs step S315 to (sign ← -1 × sign).
 次に、ステップS316(P←P、V←V+sign×ΔV)、ステップS317(VにおけるP(V)(=P)を取得)を行う。そして、ステップS318の分岐において、Plimit-Pが0超でΔP未満か(ΔP>Plimit-P>0?)判断し、0超でΔP未満の場合(S318-Yes)は、ステップS304に進み、0超でΔP未満でなくなると(S318-No)、ステップS313に進み、このフローを繰り返して行う。 Next, a (P (V 1) acquires (= P 1) in V 1) Step S316 (P 0 ← P 1, V 1 ← V 1 + sign × ΔV), step S317. Then, in the branch of step S318, it is determined whether P limit −P 1 is greater than 0 and less than ΔP (ΔP> P limit −P 1 > 0?). If it is greater than 0 and less than ΔP (S318—Yes), step S318 is performed. The process proceeds to S304, and if it is greater than 0 and less than ΔP (S318-No), the process proceeds to step S313, and this flow is repeated.
 図9のステップS305に示すMPPTによる電圧指令値の決定のフローチャートを示したのが図10である。図10において、ステップS3051(VにおけるPを取得)、ステップS3052(P>P?)、ステップS3053(sign←+1×sign)、ステップS3054(sign←-1×sign)、ステップS3055(V←V+sign×ΔV、P←P)を順に行う。 FIG. 10 shows a flowchart for determining the voltage command value by the MPPT shown in step S305 of FIG. 10, (acquires P 1 in V 1) Step S3051, Step S3052 (P 1> P 0? ), Step S3053 (sign ← + 1 × sign ), step S3054 (sign ← -1 × sign) , step S3055 (V 1 ← V 1 + sign × ΔV, P 0 ← P 1 ) are sequentially performed.
 <太陽光発電システムの特性とルックアップテーブル>
 図11は、最大電力点追従の動作電圧設定方法におけるルックアップテーブルの作成方法の一例を示す図である。図12は、この作成されたルックアップテーブルの一例を示す図である。
<Characteristics of solar power generation system and lookup table>
FIG. 11 is a diagram illustrating an example of a method for creating a lookup table in the operation voltage setting method for maximum power point tracking. FIG. 12 is a diagram showing an example of the created lookup table.
 図11において、横軸は電圧、縦軸は電力抑制値Plimit/最大発電電力Pmaxあり、また、90はPVアレイの定格に対する電圧-電力特性曲線(特性1)、91は日射が低下した場合のPVアレイの電圧-電力特性曲線(特性2)を示す。 In FIG. 11, the horizontal axis represents voltage, the vertical axis represents power suppression value P limit / maximum generated power P max , 90 is a voltage-power characteristic curve (characteristic 1) with respect to the PV array rating, and 91 is a decrease in solar radiation. The voltage-power characteristic curve (characteristic 2) of the PV array is shown.
 図11で示す特性1(90)に対し、太陽光発電システムの最大発電電力Pmaxを1として、それに対する任意の割合の電力毎に電圧指令値を太陽光発電システムの特性から求めておく。例えば、電力抑制値PlimitがPmaxに対して0.6の場合(Plimit/Pmax=0.6)、電圧指令値はV6L若しくはV6Hである。これを、各Plimit/Pmax毎にルックアップテーブル(LUT)にまとめたものの例が図12である。 With respect to the characteristic 1 (90) shown in FIG. 11, the maximum generated power P max of the solar power generation system is set to 1, and the voltage command value is obtained from the characteristics of the solar power generation system for every arbitrary ratio of the electric power. For example, when the power suppression value P limit is 0.6 with respect to P max (P limit / P max = 0.6), the voltage command value is V 6L or V 6H . FIG. 12 shows an example in which this is summarized in a lookup table (LUT) for each P limit / P max .
 一つのPlimitに対して電圧指令値(Vdc-low、Vdc-high)は大小各1つ、合計2つの電圧指令値を取り得るが、どちらの指令値を採用するかは太陽光発電システムの要求に応じて任意に定めればよい。図11の電圧-電力特性は日射や気温、陰などにより変化するが、これらは概ね発電電力が低下する方向に影響する。太陽光発電システムの定格に対する特性からテーブルを作成しておけば、実際の発電電力はLUTから得た電圧指令値に対応する発電電力を下回る。このため、電力抑制は過剰な方向に働き、太陽光発電システムに悪影響を与えることはない。 The voltage command value (V dc-low , V dc-high ) can be one for each P limit , and a total of two voltage command values can be taken. What is necessary is just to determine arbitrarily according to the request | requirement of a system. The voltage-power characteristics shown in FIG. 11 change due to solar radiation, temperature, shade, etc., but these generally affect the direction in which the generated power decreases. If a table is created from the characteristics of the photovoltaic power generation system with respect to the rating, the actual generated power is lower than the generated power corresponding to the voltage command value obtained from the LUT. For this reason, power suppression works in an excessive direction and does not adversely affect the photovoltaic power generation system.
 温度の比較的低い晴れた日など、気象が特定の条件を満たす場合に定格発電量を超えて発電が行われることもあるため、LUTから得た電圧指令値に対応する発電電力がPlimitより大きくなる可能性はある。しかし、図9および図10に示すようにPlimitと対応する電圧指令値を更新し続けるので、必要に応じてPlimitがより小さな値に更新され、必要な電力まで抑制されることになる。また、LUTによる電圧指令値から得られる電力値と、定格発電量から想定される電力値の間に差がある場合も、図9のステップS313~S318までのフローに示すように電圧指令値を更新する制御によりこの差を解消することができる。 Since the power generation may exceed the rated power generation amount when the weather meets certain conditions, such as on a sunny day with a relatively low temperature, the generated power corresponding to the voltage command value obtained from the LUT is obtained from P limit . There is a possibility of growing. However, as shown in FIGS. 9 and 10, since the voltage command value corresponding to P limit is continuously updated, P limit is updated to a smaller value as necessary, and the required power is suppressed. Also, when there is a difference between the power value obtained from the voltage command value by the LUT and the power value assumed from the rated power generation amount, the voltage command value is set as shown in the flow from step S313 to S318 in FIG. This difference can be eliminated by the updating control.
 <タイムチャート>
 図12に示したLUTを用いて図9および図10のフローに従った制御のタイムチャートを示したのが図13である。図13において、横軸は時間、縦軸は電圧指令値と電力と電力抑制値Plimit/最大発電電力Pmaxとsignと電力抑制信号である。
<Time chart>
FIG. 13 shows a time chart of control according to the flow of FIGS. 9 and 10 using the LUT shown in FIG. In FIG. 13, the horizontal axis represents time, and the vertical axis represents the voltage command value, power, power suppression value P limit / maximum generated power P max , sign, and power suppression signal.
 上述した図9のステップS313~S318までの様子を示したのが、図13のStep-C近傍である。日射の変動を原因として、図13のPlimit/Pmppのグラフ中に示すように、図11の特性1と特性2がStep-Cで切り替わったとする。Plimit/Pmax=0.6で電力抑制が働いているとするとLUTからの電圧指令値は図11のV6Lとなる。(V6Hでも良いが、図面の分かりやすさからV6Lとする)しかし、実際の動作時の特性が特性2であった場合、同じPlimit/Pmax=0.6の電力抑制状態であっても動作電圧はV9Lより僅かに高圧側に位置する。LUTの示す電圧指令値のままであると、特性2では電力抑制値よりも大幅に低電力となるPlimit/Pmax≒0.4付近で動作することになる。図9のステップS313~S318のフローにより電圧指令値の更新が行われ、特性2でもPlimit/Pmax=0.6の付近まで動作点が変化する。図13のStep-C以降の電圧指令値および電力の変化がこのプロセスに対応する。 The situation from Steps S313 to S318 in FIG. 9 described above is shown in the vicinity of Step-C in FIG. Assume that the characteristic 1 and the characteristic 2 in FIG. 11 are switched at Step-C as shown in the graph of P limit / P mpp in FIG. 13 due to the fluctuation of solar radiation. If P limit / P max = 0.6 and power suppression is working, the voltage command value from the LUT is V 6L in FIG. (V 6H may be used, but V 6L is used for easy understanding of the drawing.) However, when the characteristic at the time of actual operation is characteristic 2, the power suppression state is the same P limit / P max = 0.6. Even so, the operating voltage is slightly higher than V 9L . If the voltage command value indicated by the LUT remains, the characteristic 2 operates in the vicinity of P limit / P max ≈0.4 where the power is significantly lower than the power suppression value. The voltage command value is updated by the flow of steps S313 to S318 in FIG. 9, and the operating point is changed to near P limit / P max = 0.6 even in the characteristic 2. Changes in the voltage command value and power after Step-C in FIG. 13 correspond to this process.
 本実施の形態に示したLUTを用いる方法は、テーブルを制御システムに記憶しておく必要があるが、漸次的にVdcの更新を行って電力抑制をする必要がないため、処理が速くなる。図13のStep-A,Bでは電力抑制信号がONとなっているため、LUTによる電圧指令値の変更が働き、それに応じて電力値も急峻に変化している。一方、Step-D付近の電圧指令値の変化は、電力抑制信号がOFFのため、山登り法による変化となり、それに対応して電力の変化も漸次的に変化する。両者を比較するとその変化にかかるステップ数に大きな差があることが明白である。 The method using the LUT shown in the present embodiment needs to store the table in the control system, but does not need to suppress power by gradually updating V dc , so the processing becomes faster. . In Steps A and B in FIG. 13, since the power suppression signal is ON, the voltage command value is changed by the LUT, and the power value changes sharply accordingly. On the other hand, the change in the voltage command value in the vicinity of Step-D is a change due to the hill-climbing method because the power suppression signal is OFF, and the change in power gradually changes accordingly. When both are compared, it is clear that there is a large difference in the number of steps required for the change.
 <実施の形態3の効果>
 以上のように、本実施の形態における太陽光発電システムの制御システムおよび制御方法によれば、電力抑制時の電圧設定方法を事前に準備した電力抑制値とこの電力抑制値に対応する電圧指令値との一覧表のルックアップテーブルから選択することで、上記実施の形態1および2と異なる効果として、以下のような効果を得ることができる。例えば、ルックアップテーブルを用いる方法は、テーブルを制御システムに記憶しておくことで、漸次的に電圧指令値の更新を行って電力抑制をする必要がないため、処理が速いという利点がある。
<Effect of Embodiment 3>
As described above, according to the control system and the control method of the photovoltaic power generation system in the present embodiment, the power suppression value prepared in advance for the voltage setting method during power suppression and the voltage command value corresponding to this power suppression value The following effects can be obtained as effects different from those of the first and second embodiments. For example, the method using the look-up table has an advantage that the processing is fast because it is not necessary to suppress the power by gradually updating the voltage command value by storing the table in the control system.
 [実施の形態4]
 本実施の形態4における太陽光発電システムの制御システムおよび制御方法について、図14を用いて説明する。以下においては、上記実施の形態1~3と異なる点を主に説明する。
[Embodiment 4]
A control system and a control method for the photovoltaic power generation system according to Embodiment 4 will be described with reference to FIG. In the following, differences from the first to third embodiments will be mainly described.
 本実施の形態では、電力抑制時にもMPPTを有効にする図5の構成を用いた異なる制御例として、電力抑制解除後、PVアレイの動作する電圧指令値を算出するにあたり、太陽光発電システムの動作下限値から決まる電圧閾値と電圧計測値との大小関係に応じてMPPTでの電圧指令値算出の仕方を変える方法について述べる。この方法を図14に示す。 In this embodiment, as a different control example using the configuration of FIG. 5 that enables MPPT even when power is suppressed, after calculating the voltage command value for operating the PV array after canceling power suppression, A method for changing the method of calculating the voltage command value in the MPPT according to the magnitude relationship between the voltage threshold value determined from the operation lower limit value and the voltage measurement value will be described. This method is shown in FIG.
 <太陽光発電システムの電圧-電力特性>
 図14は、太陽光発電システムの最低動作電圧から決まる閾値を用いた電力抑制解除時の動作電圧設定方法の一例を示す図である。図14では、太陽光発電システムの電圧-電力特性曲線を示している。特性1がシステムの定格出力に対応する特性で、特性2~4は低日射の場合など、特性1に比べて出力が低下している場合の特性である。電圧Vminは太陽光発電システムの最低動作電圧であり、これより低い電圧しか出力されない場合、システムは待機、もしくは停止状態となる。従って、Vminが最大電力点(MPP)の電圧となる特性(特性4)よりも低出力の場合、MPPT制御を行う必要性はない。経験的に、開放電圧Vocと最大電力点電圧Vpmaxの比Vpmax/Vocは0.8程度になることが知られているが、この関係を用いると特性4の解放電圧Voc4は、
  Voc4≒Vmin/0.8
となる。
<Voltage-power characteristics of photovoltaic power generation system>
FIG. 14 is a diagram illustrating an example of an operating voltage setting method at the time of canceling power suppression using a threshold value determined from the minimum operating voltage of the photovoltaic power generation system. FIG. 14 shows a voltage-power characteristic curve of the photovoltaic power generation system. Characteristic 1 is a characteristic corresponding to the rated output of the system, and characteristics 2 to 4 are characteristics when the output is lower than that of characteristic 1, such as in the case of low solar radiation. The voltage V min is the minimum operating voltage of the photovoltaic power generation system, and when only a voltage lower than this is output, the system enters a standby state or a stopped state. Therefore, when the output is lower than the characteristic (characteristic 4) in which V min is the maximum power point (MPP) voltage, there is no need to perform MPPT control. Empirically, it is known that the ratio V pmax / V oc of the open circuit voltage V oc and the maximum power point voltage V pmax is about 0.8, but if this relationship is used, the release voltage V oc4 of the characteristic 4 is ,
V oc4 ≈ V min /0.8
It becomes.
 この電圧を閾値にして、電力抑制がONの状態からOFFに変わった際の動作電圧(電圧計測値)と閾値との大小関係によりMPPTによる電圧指令値算出方法を変更する。例えば、山登り法によりMPPを探索するのであれば、閾値を境に探索幅を変え、二分探索法を用いる場合では閾値を境に探索幅の初期値を変える。以下、二分探索を例にして閾値を境にした探索方法の切り替えについて説明する。 こ の With this voltage as a threshold, the MPPT voltage command value calculation method is changed according to the magnitude relationship between the operating voltage (voltage measurement value) and the threshold when power suppression is changed from ON to OFF. For example, when searching for an MPP by the hill-climbing method, the search width is changed with the threshold as a boundary, and when the binary search method is used, the initial value of the search width is changed with the threshold as a boundary. Hereinafter, switching of search methods with a threshold as a boundary will be described by taking a binary search as an example.
 図14の特性1にPlimitの位置で電力抑制がかかっている状態では、MPPTによる動作点はA1とB1を結ぶ直線状の何れかとなる。動作点がA1の時、日射変動などにより特性1が特性2へと変化したとすると動作点はA2に移るが、電力抑制が外れるため、MPPTは最大電力点の探索を開始する。二分探索法では探索範囲を決める2点を定め、その範囲を二分し、その範囲の代表点を比較して探索を行う。従って、まず範囲を決める2点を指定しなければならない。 In the state in which power suppression is applied at the position of P limit in the characteristic 1 of FIG. 14, the operating point by MPPT is either a straight line connecting A1 and B1. When the operating point is A1, if the characteristic 1 changes to the characteristic 2 due to solar radiation fluctuation or the like, the operating point moves to A2, but the power suppression is removed, so the MPPT starts searching for the maximum power point. In the binary search method, two points for determining a search range are determined, the range is divided into two, and a search is performed by comparing the representative points of the range. Therefore, you must first specify two points that determine the range.
 A2点のように動作電圧が範囲1に属する場合、その2点の初期値は一方をA2点の動作電圧V、もう一方をVと閾値電圧の2点の内部から選択すればよい。例えば山登り法の電圧探索幅をΔVとすれば、VとVoc4との差に応じて、ΔV×n(n=1、2、3、4、…)からVoc4を超えないもう一点を決める。これにより探索範囲が限定され、過大な電圧を指定する恐れがなくなる。例えば、電圧抑制のかかった状態で特性1から特性3に遷移した場合、Voc4より大きな電圧を探索幅の一端に指定し、発電電力が0の電圧指令値を指定してしまう恐れもある。Voc4より低電圧であればこうした恐れはない。 If the operating voltage as point A2 belongs to the range 1, the operating voltage V A of the initial value one for a point A2 of the two points may be selected one from the inside of the two points of V A and the threshold voltage. For example, if the voltage search width of the hill-climbing method is ΔV, depending on the difference between V A and V oc4 , another point that does not exceed V oc4 from ΔV × n (n = 1, 2, 3, 4,...) Decide. This limits the search range and eliminates the possibility of specifying an excessive voltage. For example, when a transition is made from the characteristic 1 to the characteristic 3 in a state where the voltage is suppressed, there is a possibility that a voltage larger than V oc4 is designated as one end of the search width and a voltage command value where the generated power is 0 is designated. If the voltage is lower than V oc4 , there is no such fear.
 一方、動作点がB1からB2に遷移した場合、二分探索をVとVoc4の間、すなわち範囲2に限定し、探索幅を範囲1に比べて大きく取ることができる。探索幅の初期値は一端をVoc4とし、もう一端をVoc4+ΔV×n(n=1、2、3、4、…)の中からVを超えない最大のものを選ぶ。特性2のA2点の場合のように、二分探索だけでは必ずしもMPPへは到達しない場合があるが、その場合は二分探索後に山登り法を用いればよい。 On the other hand, when the operating point transitions from B1 to B2, the binary search is limited to V B and V oc4 , that is, the range 2, and the search width can be made larger than that of the range 1. The initial value of the search width is V oc4 at one end, and the other end is selected from V oc4 + ΔV × n (n = 1, 2, 3, 4,...) That does not exceed V B. As in the case of the A2 point of the characteristic 2, the MPP may not always be reached by the binary search alone, but in this case, the hill climbing method may be used after the binary search.
 このように閾値を設け、MPPTの探索方法を変えることで効率よく探索することができ、また、不適当な電圧指令値を探索する恐れも低くなる。さらに、この電圧閾値は太陽光発電システムの最小電圧から妥当性をもって一意に決めることができる。 Thus, by setting the threshold value and changing the MPPT search method, the search can be performed efficiently, and the risk of searching for an inappropriate voltage command value is reduced. Furthermore, this voltage threshold can be uniquely determined with reasonableness from the minimum voltage of the photovoltaic power generation system.
 上記の説明では温度の影響を考えなかったが、実際には温度の影響を考慮する必要がある。システムのモジュール直列数をN、モジュールを構成するセル数をN、モジュール動作温度と25℃との温度差をΔT、電圧の温度依存性を示す温度係数をβ、電圧変動量をΔVとすると、
  ΔV=β×ΔT×N×N
  Voc4=Voc4(25℃)-ΔV
となる。
In the above description, the influence of temperature was not considered, but in reality, the influence of temperature needs to be considered. The number of series modules in the system is N 1 , the number of cells constituting the module is N 2 , the temperature difference between the module operating temperature and 25 ° C. is ΔT, the temperature coefficient indicating the temperature dependence of the voltage is β, and the voltage variation is ΔV. Then
ΔV = β × ΔT × N 1 × N 2
V oc4 = V oc4 (25 ° C.) − ΔV
It becomes.
 ここで、Vmin=350V、βを2mV/℃、気温25℃の時のモジュール動作温度をJIS C8907:2005に則り気温+18.4℃=43.4℃、N=16、N=60とすると、
  Voc4(25℃)=350/0.8=437.5
  ΔV=2×10-3×18.4×16×60=35.3
  Voc4=437.5-35.3≒402(V)
となる。
Here, the module operating temperature when V min = 350 V, β is 2 mV / ° C., and the air temperature is 25 ° C., the air temperature + 18.4 ° C. = 43.4 ° C., N 1 = 16, N 2 = 60 in accordance with JIS C8907: 2005. Then,
V oc4 (25 ° C.) = 350 / 0.8 = 437.5
ΔV = 2 × 10 −3 × 18.4 × 16 × 60 = 35.3
V oc4 = 437.5-35.3 ≒ 402 (V)
It becomes.
 <実施の形態4の効果>
 以上のように、本実施の形態における太陽光発電システムの制御システムおよび制御方法によれば、複数の電圧指令値設定方法を切り替える電圧閾値を、太陽光発電システムの最小起動電圧値から決定し、この電圧閾値を境に二分探索法の探索幅初期値を決定することで、上記実施の形態1~3と異なる効果として、以下のような効果を得ることができる。例えば、電圧閾値を設けてMPPTの探索方法を変えることで、効率よく電圧指令値を探索することができ、また、不適当な電圧指令値を探索する恐れも低くできる利点がある。
<Effect of Embodiment 4>
As described above, according to the control system and the control method of the photovoltaic power generation system in the present embodiment, the voltage threshold value for switching the plurality of voltage command value setting methods is determined from the minimum startup voltage value of the photovoltaic power generation system, By determining the search width initial value of the binary search method with this voltage threshold as a boundary, the following effects can be obtained as effects different from those of the first to third embodiments. For example, by providing a voltage threshold and changing the MPPT search method, it is possible to search for a voltage command value efficiently, and to reduce the risk of searching for an inappropriate voltage command value.
 [実施の形態5]
 本実施の形態5における太陽光発電システムの制御システムおよび制御方法について、図15~図17を用いて説明する。以下においては、上記実施の形態1~4と異なる点を主に説明する。
[Embodiment 5]
A control system and a control method for the photovoltaic power generation system according to Embodiment 5 will be described with reference to FIGS. In the following, differences from the first to fourth embodiments will be mainly described.
 本実施の形態では、低日射の際の制御について述べる。日の出や日の入りなど、日射量が少ない場合、パワーコンディショナはPVアレイの動作電圧をMPPTで設定するのではなく、一定電圧に固定する制御を行う。従って、この一定電圧制御を行う部分をMPPTで電圧指令値として出力する方式とすれば、パワーコンディショナ起動中は全てPVアレイの動作電圧をMPPTにより制御することができる。このような制御は、例えば図1の構成を用い、図15に示すフローにより実現できる。低日射の例として日の出の場合を考えてみる。電圧-電力特性を図16、タイムチャートを図17に示す。 In this embodiment, control during low solar radiation will be described. When the amount of solar radiation is small, such as at sunrise or sunset, the power conditioner performs control to fix the operating voltage of the PV array to a constant voltage instead of setting it with MPPT. Therefore, if the part that performs this constant voltage control is output as a voltage command value by MPPT, the operating voltage of the PV array can be controlled by MPPT while the power conditioner is activated. Such control can be realized by the flow shown in FIG. 15, for example, using the configuration of FIG. Consider the case of sunrise as an example of low solar radiation. The voltage-power characteristics are shown in FIG. 16, and the time chart is shown in FIG.
 <低日射の際の制御>
 図15は、低日射時における一定電圧動作の際にも最大電力点追従制御の一環として定電圧の指令値を出力する制御の一例を示すフローチャートである。図16は、低日射時における一定電圧制御の説明のための太陽光発電システムにおける電圧-電力関係の一例を示す図である。図17は、電力抑制時の最大電力点追従制御の一例を示すタイムチャートである。
<Control during low solar radiation>
FIG. 15 is a flowchart showing an example of control for outputting a constant voltage command value as part of the maximum power point tracking control even during a constant voltage operation during low solar radiation. FIG. 16 is a diagram illustrating an example of a voltage-power relationship in the photovoltaic power generation system for explaining the constant voltage control during low solar radiation. FIG. 17 is a time chart illustrating an example of maximum power point tracking control during power suppression.
 図15において、ステップS401,S402で初期値を設定(最低電圧Vmin、一定動作電圧Vdc_const’、最低電力Pmin、電圧初期値V、電圧更新幅ΔV、sign←+1、P=Pmin)した後、ステップS403で開放電圧VOCを計測する。日の出直後の日射が弱い場合、図16の特性1のように開放電圧Vocがシステムの最低動作電圧Vminより低い場合、ステップS403およびS404(VOC>Vmin?)を繰り返し、電圧が上昇するまで待機する。 In FIG. 15, initial values are set in steps S401 and S402 (minimum voltage V min , constant operating voltage V dc_const ′ , minimum power P min , initial voltage value V 0 , voltage update width ΔV, sign ← + 1, P 0 = P min ), the open circuit voltage VOC is measured in step S403. If sunrise after the sunlight is weak, when the open circuit voltage V oc to the characteristic 1 of Fig. 16 is lower than the minimum operating voltage V min of the system, steps S403 and S404 repeatedly (V OC> V min?) , The voltage rises Wait until
 図16の特性2に示すようにVocがVminに達するとステップS405に進み、太陽光発電システムは定められた一定電圧Vdc_constにて発電を開始する。特別な事情がない限り、Vdc_const=Vminとすればよい。Vdc_constでの一定電圧動作の際も図15、図17に示すようにMPPTの電圧指令値として動作電圧を出力することが肝要である。 As shown in characteristic 2 in FIG. 16, when V oc reaches V min , the process proceeds to step S405, and the photovoltaic power generation system starts power generation at a predetermined constant voltage V dc_const . Unless there are special circumstances, V dc_const = V min may be set. Even in the case of a constant voltage operation at V dc_const , it is important to output the operation voltage as the MPPT voltage command value as shown in FIGS. 15 and 17.
 その後、日射の増加と共に発電量が増え、ステップS406で取得した発電電力P(Vdc)がある閾値Pminを超えると(ステップS407)、特性4、5に示すように最大電力点はVminより高電圧側に位置することになるので、一定電圧制御か山登り法などの最大電力点探索に基づいた電圧指令値設定方法に移行する(ステップS408~S417)。閾値となる電力Pminは、電圧がVminの時に発電電力が最大となるような特性の最大電力である。図16では特性3の最大電力点MPP3の電力値(=Pmin)が閾値となる。 After that, the amount of power generation increases as the solar radiation increases, and when the generated power P (V dc ) acquired in step S406 exceeds a certain threshold value P min (step S407), the maximum power point is obtained from Vmin as shown in characteristics 4 and 5. Since it is located on the high voltage side, it shifts to a voltage command value setting method based on a maximum power point search such as constant voltage control or hill-climbing method (steps S408 to S417). The threshold power P min is the maximum power having such characteristics that the generated power is maximum when the voltage is V min . In FIG. 16, the power value (= P min ) of the maximum power point MPP3 of characteristic 3 is the threshold value.
 MPPTによる最大電力点動作を行っている際にも、ステップS410に示すように電圧指令値に対する発電量Pを電力の閾値Pminと比較することにより、発電電力の低下の検出を行う。日没時のように日射量が低下すると、発電電力が低下し、Pminを下回る。その際、制御は図15のステップS410でBに分岐(No)し、ステップS403に戻る。その後は、既に説明したアルゴリズムに従い、ある範囲の日射量では一定電圧動作を行う。さらに日射量が低下した場合は発電を停止し、開放電圧の監視状態に入る。 Even when performing maximum power point operation of the MPPT, by comparing with a threshold P min of the amount of power generation P 1 power for the voltage command value as shown in step S410, the detection of the decrease in the generated power. When the amount of solar radiation decreases as at sunset, the generated power decreases and falls below Pmin . At that time, the control branches to B (No) in step S410 of FIG. 15, and returns to step S403. Thereafter, according to the algorithm already described, a constant voltage operation is performed with a certain amount of solar radiation. When the amount of solar radiation further decreases, power generation is stopped and the open voltage monitoring state is entered.
 上記のように低日射時における一定電圧動作の際にも電圧値を指令値として出力し制御することができる。重要なことは、一定電圧値を指令値としてAVRに入力し、その値がMPPT制御と同じ制御経路を辿ってインバータの制御信号へ変換され、PVアレイの動作電圧を制御していることである。これにより、電力抑制時に加え、日の出、日の入り時を代表とした低日射時の一定電圧動作についても、MPPTからの指令値を基にPVアレイの電圧を制御できる。すなわち、日の出から日の入りまで一貫してMPPTによる電圧制御が可能となる。 As described above, it is possible to output and control the voltage value as a command value even in the case of constant voltage operation during low solar radiation. What is important is that a constant voltage value is input to the AVR as a command value, and that value is converted into an inverter control signal through the same control path as the MPPT control, thereby controlling the operating voltage of the PV array. . Thereby, the voltage of the PV array can be controlled based on the command value from the MPPT for the constant voltage operation at the time of low solar radiation represented by sunrise and sunset as well as the power suppression. That is, voltage control by MPPT is possible consistently from sunrise to sunset.
 <実施の形態5の効果>
 以上のように、本実施の形態における太陽光発電システムの制御システムおよび制御方法によれば、日射量が少ない場合の一定電圧制御を行う部分をMPPTで電圧指令値として出力する方式とすることで、上記実施の形態1~4と異なる効果として、以下のような効果を得ることができる。例えば、低日射時における一定電圧動作の際にも、電圧値を指令値として出力し制御することができる。この結果、日の出から日の入りまで一貫してMPPTによる電圧制御が可能となる利点がある。
<Effect of Embodiment 5>
As described above, according to the control system and the control method of the photovoltaic power generation system in the present embodiment, the part that performs constant voltage control when the amount of solar radiation is small is configured to output a voltage command value with the MPPT. As effects different from those of the first to fourth embodiments, the following effects can be obtained. For example, a voltage value can be output as a command value and controlled even during a constant voltage operation during low solar radiation. As a result, there is an advantage that voltage control by MPPT can be consistently performed from sunrise to sunset.
 以上、本発明者によってなされた発明を実施の形態1~5に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。 Although the invention made by the present inventor has been specifically described based on the first to fifth embodiments, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
 たとえば、上記した実施の形態1~5は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。さらに、各実施の形態を組み合わせる形態も、本発明の範囲として変更可能である。 For example, Embodiments 1 to 5 described above have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. . Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment. Furthermore, the form which combines each embodiment can also be changed as the scope of the present invention.
1…太陽電池(PV)アレイ、2,2a…パワーコンディショナ、3…電力系統、
21…インバータ、22…計測部、23…最大電力点追従部(MPPT)+電力制御部、23a…最大電力点追従部(MPPT)、23b…電力制御部、24…自動電圧調整部(AVR)、25…パルス幅変調信号生成部(PWM)、
30…太陽電池アレイの電圧-電力特性曲線、31…電力抑制が課された時の動作点の一つ、32…電力抑制が課された時のもう一つの動作点、
40…更新後の電力値、41…1ステップ前の電力値、
90…太陽電池アレイの定格に対する電圧-電力特性曲線、91…日射が低下した場合の太陽電池アレイの電圧-電力特性曲線。
 
DESCRIPTION OF SYMBOLS 1 ... Solar cell (PV) array, 2, 2a ... Power conditioner, 3 ... Electric power system,
DESCRIPTION OF SYMBOLS 21 ... Inverter, 22 ... Measurement part, 23 ... Maximum electric power point tracking part (MPPT) + electric power control part, 23a ... Maximum electric power point tracking part (MPPT), 23b ... Electric power control part, 24 ... Automatic voltage adjustment part (AVR) 25. Pulse width modulation signal generator (PWM),
30 ... Voltage-power characteristic curve of the solar cell array, 31 ... One of operating points when power suppression is imposed, 32 ... Another operating point when power suppression is imposed,
40 ... updated power value, 41 ... 1 step previous power value,
90: Voltage-power characteristic curve with respect to the rating of the solar cell array, 91: Voltage-power characteristic curve of the solar cell array when solar radiation is lowered.

Claims (15)

  1.  太陽電池アレイの動作電圧を設定し、かつ前記太陽電池アレイの出力する直流電力を交流に変換するインバータと、
     前記太陽電池アレイの出力する電流および電圧を計測する計測部と、
     前記計測部により計測される前記太陽電池アレイの動作電圧および出力電流値を基に前記太陽電池アレイの動作電圧指令値を算出する最大電力点追従部と、
     前記計測部より得られる前記太陽電池アレイの動作電圧値と、前記最大電力点追従部より設定される前記太陽電池アレイの動作電圧指令値とを比較し、その差分を基に比例積分制御を行う自動電圧調整部と、
     前記自動電圧調整部より出力される電流指令値を基に前記インバータのゲート信号を生成するパルス幅変調信号生成部と、
     日の出から日の入りまで、低日射の場合も含めて常に最大電力点追従による電圧指令出力により制御する電力制御部と、
     を有する、太陽光発電システムの制御システム。
    An inverter that sets an operating voltage of the solar cell array and converts DC power output from the solar cell array into AC;
    A measurement unit for measuring current and voltage output from the solar cell array;
    A maximum power point tracking unit that calculates an operating voltage command value of the solar cell array based on the operating voltage and output current value of the solar cell array measured by the measuring unit;
    The operation voltage value of the solar cell array obtained from the measurement unit is compared with the operation voltage command value of the solar cell array set by the maximum power point tracking unit, and proportional-integral control is performed based on the difference. An automatic voltage regulator,
    A pulse width modulation signal generation unit that generates a gate signal of the inverter based on a current command value output from the automatic voltage adjustment unit;
    From sunrise to sunset, including the case of low solar radiation, a power control unit that always controls by voltage command output by maximum power point tracking,
    A control system for a photovoltaic power generation system.
  2.  請求項1記載の太陽光発電システムの制御システムにおいて、
     前記電力制御部は、前記太陽光発電システムの電力抑制時にも前記最大電力点追従部によって前記太陽電池アレイの動作電圧を設定する、太陽光発電システムの制御システム。
    In the control system of the photovoltaic power generation system according to claim 1,
    The said power control part is a control system of a solar power generation system which sets the operating voltage of the said solar cell array by the said maximum power point tracking part also at the time of the electric power suppression of the said solar power generation system.
  3.  請求項2記載の太陽光発電システムの制御システムにおいて、
     前記電力制御部は、前記太陽光発電システムの制御電圧を一定に保つ場合にも、前記最大電力点追従部によって前記太陽電池アレイの動作電圧を設定する、太陽光発電システムの制御システム。
    In the control system of the photovoltaic power generation system according to claim 2,
    The said electric power control part is a control system of the solar power generation system which sets the operating voltage of the said solar cell array by the said maximum power point tracking part, also when keeping the control voltage of the said solar power generation system constant.
  4.  請求項2記載の太陽光発電システムの制御システムにおいて、
     前記電力制御部は、電力抑制時の前記太陽電池アレイの動作電圧設定方法において、前記最大電力点追従部での前記太陽電池アレイの動作電圧設定毎の電力測定値を電力抑制値と比較し、電圧設定値を決定する、太陽光発電システムの制御システム。
    In the control system of the photovoltaic power generation system according to claim 2,
    In the method for setting the operating voltage of the solar cell array at the time of power suppression, the power control unit compares a power measurement value for each operating voltage setting of the solar cell array at the maximum power point tracking unit with a power suppression value. A control system for a photovoltaic power generation system that determines a voltage setting value.
  5.  請求項2記載の太陽光発電システムの制御システムにおいて、
     前記電力制御部は、電力抑制時の前記太陽電池アレイの動作電圧設定方法において、前記最大電力点追従部による電圧設定方法と、電力抑制時の電圧設定方法とを有し、前記電力抑制時の電圧設定方法を電力抑制値と電力計測値との比較に基づいて決定する、太陽光発電システムの制御システム。
    In the control system of the photovoltaic power generation system according to claim 2,
    The power control unit has a voltage setting method by the maximum power point tracking unit and a voltage setting method at the time of power suppression in an operating voltage setting method of the solar cell array at the time of power suppression. A control system for a photovoltaic power generation system that determines a voltage setting method based on a comparison between a power suppression value and a power measurement value.
  6.  請求項2記載の太陽光発電システムの制御システムにおいて、
     前記電力制御部は、電力抑制時の前記太陽電池アレイの動作電圧設定方法において、前記最大電力点追従部による電圧設定方法と、電力抑制時の電圧設定方法とを有し、前記電力抑制時の電圧設定方法を事前に準備した電力抑制値と前記電力抑制値に対応する電圧指令値との一覧表から選択する、太陽光発電システムの制御システム。
    In the control system of the photovoltaic power generation system according to claim 2,
    The power control unit has a voltage setting method by the maximum power point tracking unit and a voltage setting method at the time of power suppression in an operating voltage setting method of the solar cell array at the time of power suppression. A control system for a photovoltaic power generation system, which is selected from a list of power suppression values prepared in advance for a voltage setting method and voltage command values corresponding to the power suppression values.
  7.  請求項2記載の太陽光発電システムの制御システムにおいて、
     前記電力制御部は、前記太陽光発電システムの制御において、電力抑制解除時の電圧指令値設定方法を複数有し、前記複数の電圧指令値設定方法を切り替える電圧閾値を、前記太陽光発電システムの最小起動電圧値から決定する、太陽光発電システムの制御システム。
    In the control system of the photovoltaic power generation system according to claim 2,
    In the control of the photovoltaic power generation system, the power control unit has a plurality of voltage command value setting methods at the time of canceling power suppression, and sets a voltage threshold value for switching the plurality of voltage command value setting methods to the solar power generation system. A control system for a photovoltaic power generation system, determined from the minimum starting voltage value.
  8.  請求項7記載の太陽光発電システムの制御システムにおいて、
     前記複数の電圧指令値設定方法は、二分探索法および山登り法を含み、
     前記二分探索法は、前記太陽光発電システムの最小起動電圧から決まる電圧閾値を境に前記二分探索法の探索幅初期値を決定する、太陽光発電システムの制御システム。
    In the control system of the solar power generation system according to claim 7,
    The plurality of voltage command value setting methods include a binary search method and a hill-climbing method,
    The said binary search method is a control system of a solar power generation system which determines the search width initial value of the said binary search method on the boundary of the voltage threshold value determined from the minimum starting voltage of the said solar power generation system.
  9.  太陽電池アレイの動作電圧を設定し、かつ前記太陽電池アレイの出力する直流電力を交流に変換するインバータと、
     前記太陽電池アレイの出力する電流および電圧を計測する計測部と、
     前記計測部により計測される前記太陽電池アレイの動作電圧および出力電流値を基に前記太陽電池アレイの動作電圧指令値を算出する最大電力点追従部と、
     前記計測部より得られる前記太陽電池アレイの動作電圧値と、前記最大電力点追従部より設定される前記太陽電池アレイの動作電圧指令値とを比較し、その差分を基に比例積分制御を行う自動電圧調整部と、
     前記自動電圧調整部より出力される電流指令値を基に前記インバータのゲート信号を生成するパルス幅変調信号生成部と、
     電力制御部と、
     を有する、太陽光発電システムの制御方法であって、
     前記電力制御部は、前記太陽光発電システムの制御を、日の出から日の入りまで、低日射の場合も含めて常に最大電力点追従による電圧指令出力により行う、太陽光発電システムの制御方法。
    An inverter that sets an operating voltage of the solar cell array and converts DC power output from the solar cell array into AC;
    A measurement unit for measuring current and voltage output from the solar cell array;
    A maximum power point tracking unit that calculates an operating voltage command value of the solar cell array based on the operating voltage and output current value of the solar cell array measured by the measuring unit;
    The operation voltage value of the solar cell array obtained from the measurement unit is compared with the operation voltage command value of the solar cell array set by the maximum power point tracking unit, and proportional-integral control is performed based on the difference. An automatic voltage regulator,
    A pulse width modulation signal generation unit that generates a gate signal of the inverter based on a current command value output from the automatic voltage adjustment unit;
    A power control unit;
    A solar power generation system control method comprising:
    The said electric power control part is a control method of the solar power generation system which performs control of the said solar power generation system by the voltage command output by a maximum power point tracking always from the sunrise to the sunset including the case of a low solar radiation.
  10.  請求項9記載の太陽光発電システムの制御方法において、
     前記電力制御部は、前記太陽光発電システムの電力抑制時にも前記最大電力点追従部によって前記太陽電池アレイの動作電圧を設定する、太陽光発電システムの制御方法。
    In the control method of the photovoltaic power generation system according to claim 9,
    The said electric power control part is a control method of the solar power generation system which sets the operating voltage of the said solar cell array by the said maximum power point tracking part also at the time of the electric power suppression of the said solar power generation system.
  11.  請求項10記載の太陽光発電システムの制御方法において、
     前記電力制御部は、前記太陽光発電システムの制御電圧を一定に保つ場合にも、前記最大電力点追従部によって前記太陽電池アレイの動作電圧を設定する、太陽光発電システムの制御方法。
    In the control method of the solar power generation system according to claim 10,
    The method for controlling a solar power generation system, wherein the power control unit sets an operating voltage of the solar cell array by the maximum power point tracking unit even when the control voltage of the solar power generation system is kept constant.
  12.  請求項10記載の太陽光発電システムの制御方法において、
     前記電力制御部は、電力抑制時の前記太陽電池アレイの動作電圧設定方法において、前記最大電力点追従部での前記太陽電池アレイの動作電圧設定毎の電力測定値を電力抑制値と比較し、電圧設定値を決定する、太陽光発電システムの制御方法。
    In the control method of the solar power generation system according to claim 10,
    In the method for setting the operating voltage of the solar cell array at the time of power suppression, the power control unit compares a power measurement value for each operating voltage setting of the solar cell array at the maximum power point tracking unit with a power suppression value. A method for controlling a photovoltaic power generation system that determines a voltage setting value.
  13.  請求項10記載の太陽光発電システムの制御方法において、
     前記電力制御部は、電力抑制時の前記太陽電池アレイの動作電圧設定方法において、前記最大電力点追従部による電圧設定方法と、電力抑制時の電圧設定方法とを有し、前記電力抑制時の電圧設定方法を電力抑制値と電力計測値との比較に基づいて決定する、太陽光発電システムの制御方法。
    In the control method of the solar power generation system according to claim 10,
    The power control unit has a voltage setting method by the maximum power point tracking unit and a voltage setting method at the time of power suppression in an operating voltage setting method of the solar cell array at the time of power suppression. A control method for a photovoltaic power generation system, wherein a voltage setting method is determined based on a comparison between a power suppression value and a power measurement value.
  14.  請求項10記載の太陽光発電システムの制御方法において、
     前記電力制御部は、電力抑制時の前記太陽電池アレイの動作電圧設定方法において、前記最大電力点追従部による電圧設定方法と、電力抑制時の電圧設定方法とを有し、前記電力抑制時の電圧設定方法を事前に準備した電力抑制値と前記電力抑制値に対応する電圧指令値との一覧表から選択する、太陽光発電システムの制御方法。
    In the control method of the solar power generation system according to claim 10,
    The power control unit has a voltage setting method by the maximum power point tracking unit and a voltage setting method at the time of power suppression in an operating voltage setting method of the solar cell array at the time of power suppression. The control method of a solar power generation system which selects from the list | wrist of the electric power suppression value which prepared the voltage setting method in advance, and the voltage command value corresponding to the said electric power suppression value.
  15.  請求項10記載の太陽光発電システムの制御方法において、
     前記電力制御部は、前記太陽光発電システムの制御において、電力抑制解除時の電圧指令値設定方法を複数有し、前記複数の電圧指令値設定方法を切り替える電圧閾値を、前記太陽光発電システムの最小起動電圧値から決定する、太陽光発電システムの制御方法。
    In the control method of the solar power generation system according to claim 10,
    In the control of the photovoltaic power generation system, the power control unit has a plurality of voltage command value setting methods at the time of canceling power suppression, and sets a voltage threshold value for switching the plurality of voltage command value setting methods to the solar power generation system. A method for controlling a photovoltaic power generation system, which is determined from a minimum starting voltage value.
PCT/JP2014/067978 2013-07-30 2014-07-04 System and method for controlling solar power generation system WO2015016006A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480038312.XA CN105359051B (en) 2013-07-30 2014-07-04 The control system of solar power system and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-157698 2013-07-30
JP2013157698A JP6168897B2 (en) 2013-07-30 2013-07-30 Control system and control method for photovoltaic power generation system

Publications (1)

Publication Number Publication Date
WO2015016006A1 true WO2015016006A1 (en) 2015-02-05

Family

ID=52431546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067978 WO2015016006A1 (en) 2013-07-30 2014-07-04 System and method for controlling solar power generation system

Country Status (3)

Country Link
JP (1) JP6168897B2 (en)
CN (1) CN105359051B (en)
WO (1) WO2015016006A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108695892A (en) * 2018-06-13 2018-10-23 国网上海市电力公司 A kind of distribution network voltage control method adjusted based on photovoltaic DC-to-AC converter
US20210288502A1 (en) * 2020-03-12 2021-09-16 Qatar Foundation For Education, Science And Community Development Methods and systems of power production

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017192243A (en) * 2016-04-15 2017-10-19 日立アプライアンス株式会社 Photovoltaic power generation system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08221143A (en) * 1995-02-14 1996-08-30 Kansai Electric Power Co Inc:The Maximum electric power follow-up control method for solar light power generation system
JP2007058845A (en) * 2005-07-27 2007-03-08 Gunma Prefecture Photovoltaic power generator
JP2008226870A (en) * 2007-03-08 2008-09-25 Mitsubishi Electric Corp Solar cell generation system
JP2011171348A (en) * 2010-02-16 2011-09-01 Hitachi Industrial Equipment Systems Co Ltd Photovoltaic power generation system
JP2011181055A (en) * 2010-02-08 2011-09-15 Minoru Murano Dc electric power source utilization system
JP2012185627A (en) * 2011-03-04 2012-09-27 Daikin Ind Ltd Control device and control method of solar power conversion unit, and photovoltaic power generation device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003009537A (en) * 2001-06-27 2003-01-10 Hitachi Ltd Power converter
CN1933315B (en) * 2005-07-27 2011-05-11 武藤健一 Sun's rays generating device
CN100347925C (en) * 2006-01-06 2007-11-07 清华大学 Electric network power oscillation inhibitor based on photovoltaic battery
JP5733558B2 (en) * 2010-11-24 2015-06-10 日新電機株式会社 Output control method of photovoltaic power generation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08221143A (en) * 1995-02-14 1996-08-30 Kansai Electric Power Co Inc:The Maximum electric power follow-up control method for solar light power generation system
JP2007058845A (en) * 2005-07-27 2007-03-08 Gunma Prefecture Photovoltaic power generator
JP2008226870A (en) * 2007-03-08 2008-09-25 Mitsubishi Electric Corp Solar cell generation system
JP2011181055A (en) * 2010-02-08 2011-09-15 Minoru Murano Dc electric power source utilization system
JP2011171348A (en) * 2010-02-16 2011-09-01 Hitachi Industrial Equipment Systems Co Ltd Photovoltaic power generation system
JP2012185627A (en) * 2011-03-04 2012-09-27 Daikin Ind Ltd Control device and control method of solar power conversion unit, and photovoltaic power generation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108695892A (en) * 2018-06-13 2018-10-23 国网上海市电力公司 A kind of distribution network voltage control method adjusted based on photovoltaic DC-to-AC converter
CN108695892B (en) * 2018-06-13 2022-03-15 国网上海市电力公司 Power distribution network voltage control method based on photovoltaic inverter regulation
US20210288502A1 (en) * 2020-03-12 2021-09-16 Qatar Foundation For Education, Science And Community Development Methods and systems of power production
US11682906B2 (en) * 2020-03-12 2023-06-20 Qatar Foundation For Education, Science And Community Development Methods and systems of power production

Also Published As

Publication number Publication date
JP2015028694A (en) 2015-02-12
JP6168897B2 (en) 2017-07-26
CN105359051A (en) 2016-02-24
CN105359051B (en) 2016-11-16

Similar Documents

Publication Publication Date Title
KR100908156B1 (en) Solar maximum power tracking device and method
US10770988B2 (en) Non-linear droop control
KR101431047B1 (en) Coordinated Droop Control Apparatus and the Method for Stand-alone DC Micro-grid
US9729083B2 (en) Power supply system and power source apparatus
US8810213B2 (en) Power control method and apparatus for tracking maximum power point in a photovoltaic system
KR101426826B1 (en) Variable Resistance Type Droop Control Appratus and the Method for Stand-alone Micro-grid
US9235226B2 (en) Method for determining a maximum power point of photovoltaic generators
KR101223611B1 (en) Control system of solar cell generation using pertubation and observation method tracking maximum power point and thereof method using variable voltage increment
JP6168897B2 (en) Control system and control method for photovoltaic power generation system
KR101498449B1 (en) Stand-alone pv power generation system and charging controlling method thereof
KR101371226B1 (en) MPPT method for mobile PV module
Issa et al. Smooth mode transfer in AC microgrids during unintentional islanding
CN107742902B (en) Multi-path MPPT input mode judgment method for photovoltaic inverter
KR101138507B1 (en) Solar cell system
JP2013255375A (en) Distribution grid voltage regulator, voltage regulation method, and power control system
KR20130102390A (en) Active power limitation method
US11075522B2 (en) Control system and photovoltaic system and micro-grid using the same and method thereof
JP6551143B2 (en) Power conditioner and solar power generation system
JP5912957B2 (en) Power control system and power control method
US20150142189A1 (en) Power generation control system, method and non-transitory computer readable storage medium of the same
JP2000020149A (en) Sunshine inverter device
JP2013206352A (en) Maximum power point detection method and maximum power point detector
CN110829490B (en) Equal-power control method of photovoltaic power generation system based on optimized Fibonacci sequence
KR20130141782A (en) Photovoltaic power generation system and control method thereof
KR20160104331A (en) Dc-dc converter of photovoltaics system using time delay estimation and control method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480038312.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14832415

Country of ref document: EP

Kind code of ref document: A1