WO2015015891A1 - 無線通信装置及び無線通信方法 - Google Patents

無線通信装置及び無線通信方法 Download PDF

Info

Publication number
WO2015015891A1
WO2015015891A1 PCT/JP2014/064471 JP2014064471W WO2015015891A1 WO 2015015891 A1 WO2015015891 A1 WO 2015015891A1 JP 2014064471 W JP2014064471 W JP 2014064471W WO 2015015891 A1 WO2015015891 A1 WO 2015015891A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission power
wireless communication
terminal station
interference
transmission
Prior art date
Application number
PCT/JP2014/064471
Other languages
English (en)
French (fr)
Inventor
慶彦 池長
和之 迫田
貴彦 渡邉
千裕 藤田
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US14/907,554 priority Critical patent/US9763202B2/en
Priority to EP19209850.7A priority patent/EP3629636B1/en
Priority to JP2015529429A priority patent/JPWO2015015891A1/ja
Priority to CN201910746716.9A priority patent/CN110446251B/zh
Priority to EP14832167.2A priority patent/EP3030013B1/en
Priority to CN201480041514.XA priority patent/CN105723782A/zh
Publication of WO2015015891A1 publication Critical patent/WO2015015891A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/283Power depending on the position of the mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/46TPC being performed in particular situations in multi hop networks, e.g. wireless relay networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/407Bus networks with decentralised control
    • H04L12/413Bus networks with decentralised control with random access, e.g. carrier-sense multiple-access with collision detection [CSMA-CD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/383TPC being performed in particular situations power control in peer-to-peer links

Definitions

  • the technology disclosed in this specification mainly relates to a wireless communication apparatus and a wireless communication method that control access to a medium according to the occupation state of the medium. For example, a plurality of techniques on a same channel such as a mesh network are provided.
  • the present invention relates to a wireless communication apparatus and a wireless communication method for transmitting information in a communication environment where a terminal station exists.
  • each terminal transmits information under the control of a control station called “access point”
  • Each terminal station performs wireless communication while synchronizing via an access point.
  • a terminal station reserves a band necessary for information transmission, and uses a channel so as not to collide with information transmission of other terminal stations.
  • such a network configuration method has a problem that, even when performing asynchronous communication between terminals, it is necessary to perform wireless communication via an access point, and channel use efficiency is halved.
  • Ad-hoc communication in which terminal stations perform wireless communication directly and asynchronously without using an access point has been devised.
  • IEEE802.11 wireless LAN Local Area Network
  • each terminal station in addition to an infrastructure mode in which an access point is interposed, each terminal station is distributed in an autonomous and distributed manner without using an access point. To-peer) is available.
  • CSMA Carrier Sense Multiple Access: carrier detection multiple connection
  • CSMA has a problem of hidden terminals.
  • the hidden terminal is a terminal station that is in a state where the mutual radio signal does not reach. Since the carrier of the hidden terminal cannot be detected, the collision with the hidden terminal cannot be avoided only by CSMA.
  • RTS / CTS has been devised as a method for avoiding a collision with a hidden terminal.
  • the transmission source communication station transmits a transmission request packet RTS (Request To Send), and starts data transmission in response to receiving the confirmation notification packet CTS (Clear To Send) from the data transmission destination communication station.
  • RTS Request To Send
  • CTS Clear To Send
  • the hidden terminal can receive at least one of RTS and CTS, the transmission stop period of its own station is set only during the period when data transmission based on RTS / CTS is expected to be performed, and the collision is detected. To avoid.
  • An object of the technology disclosed in the present specification is to provide an excellent wireless communication apparatus and wireless communication method capable of suitably transmitting information by a method of controlling access to a medium according to the occupation state of the medium. There is.
  • a further object of the technology disclosed in this specification is to provide excellent wireless communication capable of suitably transmitting information while suppressing interference with other terminal stations and preventing a decrease in transmission opportunities of other terminal stations.
  • a transmitter that transmits a radio signal;
  • a receiver for receiving a radio signal;
  • a transmission power control unit for controlling transmission power of the transmission unit;
  • An interference suppression unit that instructs the transmission power control unit to change the transmission power so as to suppress interference according to the distance to the surrounding terminal station; Is a wireless communication device.
  • the interference suppression unit of the wireless communication device transmits the transmission power control unit to the transmission power control unit so as to suppress interference with a distant terminal station. It is configured to instruct a change in power.
  • the interference suppression unit of the wireless communication apparatus is configured to perform the determination according to a determination value weighted by a distance from another terminal station capable of communication.
  • the transmission power control unit is instructed to change the transmission power.
  • the interference suppression unit of the wireless communication apparatus according to claim 3 when the interference suppression unit of the wireless communication apparatus according to claim 3 is estimated that the number of terminal stations far away from each other is increased based on the determination value. It is configured to instruct a decrease in transmission power.
  • the interference suppression unit of the wireless communication device is configured to estimate that the number of terminal stations far away from each other is reduced based on the determination value. It is configured to instruct an increase in transmission power.
  • the interference suppression unit of the wireless communication device is configured to suppress interference to a terminal station far away from the currently communicating terminal station.
  • the transmission power control unit is configured to instruct a decrease in transmission power.
  • the interference suppression unit of the wireless communication device is a terminal station in which a terminal station capable of communication exists and is estimated to be the farthest away. Is not subject to communication, it is configured to instruct a decrease in transmission power.
  • the interference suppression unit of the wireless communication apparatus of claim 7 does not instruct a decrease in transmission power when the number of terminal stations capable of communication is less than a predetermined number. It is configured.
  • the interference suppression unit of the wireless communication device is based on the group affiliation status, communication history, or nexthop designation in the mesh network, It is configured to determine whether or not the terminal station that is estimated to be the farthest is the target for communication.
  • the interference suppression unit of the wireless communication apparatus of claim 1 changes the transmission power to the transmission power control unit so as to suppress interference with a hidden terminal. Is configured to direct.
  • the interference suppression unit of the wireless communication apparatus estimates the total number of terminal stations that affect transmission / reception of own packets, and the total number is predetermined.
  • the transmission power control unit is configured to instruct a decrease in transmission power.
  • the interference suppression unit of the wireless communication device of claim 11 is based on a Beacon Interval Timing Element included in a beacon or action frame transmitted by each terminal station.
  • the terminal station is configured to estimate the total number of terminal stations that affect the transmission / reception of own packets.
  • the interference suppression unit of the wireless communication device according to claim 1 is configured to cause other terminal stations to transmit information regarding transmission power.
  • the interference suppression unit of the wireless communication apparatus transmits the transmission power control information to another terminal station when the transmission power control is performed. Is configured to instruct the transmission unit to increase transmission power.
  • the interference control unit of the wireless communication apparatus of claim 13 is configured to transmit a packet carrying information on transmission power by broadcast transfer or multicast communication. It is configured.
  • the interference control unit of the wireless communication apparatus is configured to transmit a transmission power control request to another terminal station as information regarding transmission power. Has been.
  • the interference control unit of the wireless communication apparatus is configured to transmit information relating to own transmission power as information relating to transmission power.
  • the interference control unit of the wireless communication apparatus responds to reception of information related to transmission power from another terminal station. It is comprised so that control of this may be performed.
  • the wireless communication apparatus further includes a signal detection capability control unit that controls the signal detection capability of the reception unit.
  • the interference suppression unit is configured to instruct the signal detection capability control unit to change the signal detection capability in response to a change in transmission power.
  • the technique described in claim 20 of the present application is: An estimation step for estimating interference according to the distance to the surrounding station; A transmission power control step for controlling transmission power at the time of data transmission so as to suppress the interference; A wireless communication method.
  • an excellent wireless communication apparatus capable of suitably transmitting information while suppressing interference with other terminal stations and preventing a decrease in transmission opportunities of other terminal stations. And a wireless communication method can be provided.
  • a wireless communication apparatus to which the technology disclosed in this specification is applied operates as a terminal station autonomously in a network in which wireless access control is performed based on CSMA, and controls other transmission terminals by controlling transmission power. It is possible to suppress the interference with the mobile station and prevent the transmission opportunities of other terminal stations from being reduced unnecessarily.
  • a wireless communication apparatus to which the technology disclosed in this specification is applied can suppress interference with a terminal station that is far away from itself and improve a transmission opportunity.
  • FIG. 1 is a diagram illustrating a configuration of a wireless communication device 100 to which the technology disclosed in this specification is applied.
  • FIG. 2 is a diagram schematically illustrating a configuration example of an ad hoc network.
  • FIG. 3 is a diagram schematically illustrating a configuration example of a network that performs multi-hop communication.
  • FIG. 4 is a diagram schematically illustrating a configuration example of a mesh network in which different groups are mixed.
  • FIG. 5 is a diagram illustrating a state in which STA0 in FIG. 4 reduces transmission power by reducing transmission power.
  • FIG. 6 is a diagram schematically illustrating a configuration example of a network in which a hidden terminal exists.
  • FIG. 7 is a diagram showing a data format of the Bescon Interval Timing Element.
  • FIG. 1 is a diagram illustrating a configuration of a wireless communication device 100 to which the technology disclosed in this specification is applied.
  • FIG. 2 is a diagram schematically illustrating a configuration example of an
  • FIG. 8 is a diagram for explaining a method of estimating the number of hidden terminals using the Beacon Interval Timing Element.
  • FIG. 9 is a diagram illustrating a configuration example of a network in which transmission power is biased for each terminal station.
  • FIG. 10 is a flowchart showing a processing procedure for the wireless communication apparatus 100 to control its own transmission power based on distance information of other terminal stations.
  • FIG. 11 is a flowchart showing a processing procedure for the radio communication apparatus 100 to control its own transmission power so as to suppress interference with a long-distance terminal station that is not performing communication.
  • FIG. 12 is a flowchart illustrating a processing procedure for the wireless communication apparatus 100 to control its own transmission power in accordance with the presence of a terminal station that is substantially affected.
  • FIG. 13 is a diagram illustrating a wireless network environment in which the transmittable range is uneven for each terminal station.
  • FIG. 14 is a diagram showing a virtual transmittable range of another terminal station for a terminal station whose signal detection threshold
  • the technology disclosed in this specification can be applied to a wireless network to which an access method based on CSMA adopted in IEEE 802.11 or the like is applied.
  • the technology disclosed in this specification can be applied to a mesh network as defined in IEEE 802.11s. In this type of wireless network, it is assumed that there are a plurality of terminal stations using the same channel in the vicinity.
  • Ad hoc communication, ad hoc network, and the like are known as communication methods for autonomously interconnecting between adjacent terminal stations.
  • FIG. 2 schematically shows the configuration of the ad hoc network.
  • the terminal stations STA0 to STA4 can directly communicate with neighboring terminal stations without depending on a master station such as an access point.
  • terminal stations capable of direct communication are connected by straight lines a to g, respectively.
  • Each terminal station STA0 to STA4 adopts a radio access scheme based on CSMA.
  • ad hoc network when a new terminal station appears in the vicinity, this terminal station can freely join the network.
  • Each terminal station may not only interconnect autonomously with a neighboring terminal station but also transfer (relay) information exchanged between other terminal stations in a bucket relay manner.
  • STA0 can only communicate directly with STA1 and STA3 because the radio waves do not reach.
  • STA0 and STA4 can communicate with each other by transferring (relaying) the data of STA0. Can be exchanged.
  • a method in which the terminal stations perform bucket relays with each other and deliver information to a distant terminal station is called a multi-hop relay.
  • a network that performs multi-hop communication is generally known as a mesh network.
  • FIG. 2 only five terminal stations are depicted, but in a mesh network or the like, it is assumed that there are a plurality of terminal stations using the same channel in the vicinity.
  • each terminal station confirms the occupation state of the media prior to packet transmission, and performs transmission when the media is clear. In order to avoid packet collision, in other words, even if the terminal station receives a packet that is not related to itself, the transmission opportunity of the packet is limited. In relation to this, there are the following problems (1) to (4) in the mesh network of the access method based on CSMA.
  • the terminal station can control the transmission power and the signal detection capability according to the number of adjacent nodes, and can limit the number of terminal stations that can communicate (for example, Patent Document 1). See However, in this method, only the number of communicable terminal stations is considered as a trigger for controlling the transmission power and the signal detection capability. Therefore, the transmission power is not controlled unless the predetermined number is reached. For example, even when a large number of packets are detected for a terminal station that is not performing direct data communication, transmission power control is not performed. For this reason, there is a problem that the terminal station has its own data transmission opportunities limited by data communication unrelated to itself. On the other hand, there is a problem that the terminal station limits the transmission opportunities of other terminal stations not related to the communication by its own communication.
  • path loss information is estimated based on the difference between the transmission power of the communication partner and the received RSSI, and an appropriate MCS (Modulation and Modulation and Based on the path loss information and the packet loss rate is used.
  • MCS Modulation and Modulation and Based on the path loss information and the packet loss rate
  • MCS Modulation and Modulation and Based on the path loss information and the packet loss rate
  • MCS Modulation and Modulation and Based on the path loss information and the packet loss rate
  • MCS Modulation and Modulation and Based on the path loss information and the packet loss rate
  • MCS Modulation and Modulation and Based on the path loss information and the packet loss rate
  • the above path loss estimation method is based on the premise that the transmission power of the terminal station serving as a communication partner is constant (or known). As will be described later, when each terminal station individually performs transmission power control for the purpose of interference suppression or the like, the transmission power is not constant. That is, since the transmission power of the communication partner is unknown, the path loss cannot be estimated even if RSSI is measured. As a
  • FIG. 1 shows a configuration of a wireless communication apparatus 100 that can operate as a terminal station in a wireless network to which the technology disclosed in this specification is applied and an access method based on CSMA is applied.
  • the substance of the wireless communication device 100 is a wireless computer, a personal computer, a multifunction information terminal such as a smartphone, various information devices equipped with a wireless LAN function such as a network printer and a network drive.
  • the illustrated wireless communication apparatus 100 includes a transmission unit 110, a reception unit 120, a transmission / reception antenna 101 shared by the transmission unit 110 and the reception unit 120, transmission data transmitted from the transmission unit 110, and reception data received by the reception unit 120.
  • An upper layer processing unit 130 that performs the above processing, and an interference removal unit 140.
  • the transmission unit 110 and the reception unit 120 mainly perform physical (Phy) layer processing. Further, the upper layer processing unit 130 performs a process of media connection control (Media Access Control: MAC) based on CSMA and a process corresponding to an upper layer than the MAC layer.
  • Media Connection Control Media Access Control: MAC
  • the upper layer processing unit 130 performs, as MAC layer processing, network access control based on CSMA, data transmission / reception using RTS / CTS, transmission / reception of beacons, and beacon transmission timing (TBTT: Target Beacon Transmission Time) of an adjacent terminal station. Perform management. Further, the upper layer processing unit 130 activates a predetermined application in response to, for example, a user request. The application generates transmission data to be transmitted to a terminal station that is a communication partner or processes reception data transmitted from the communication partner.
  • the transmission unit 110 includes a channel encoding unit 111, a modulation unit 112, an RF transmission unit 113, and a transmission power control unit 114.
  • the channel encoding unit 111 encodes the transmission data passed from the higher layer processing unit 130 and further performs error correction encoding.
  • Modulation section 112 performs modulation processing such as OFDM on transmission data subjected to error correction coding.
  • the RF transmission unit 113 converts the modulated digital signal into an analog signal, and further performs RF transmission processing such as up-conversion to the RF band and power amplification, and then transmits the signal from the antenna 101.
  • transmission power control section 114 outputs an instruction value for power amplification to RF transmission section 113 in accordance with an instruction from interference suppression section 140 to control transmission power.
  • the reception unit 120 includes an RF reception unit 121, a demodulation unit 122, a channel decoding unit 123, and a signal detection capability control unit 125.
  • the RF reception unit 121 performs RF reception processing such as low-noise amplification, down-conversion, and conversion to a digital signal of the signal received by the antenna 101.
  • the demodulation unit 122 performs demodulation processing such as OFDM on the received digital signal.
  • Channel decoding section 123 then decodes the demodulated received data, further corrects the error, and passes the result to upper layer processing section 130.
  • the signal detection capability control unit 125 changes the signal detection capability in the demodulation unit 122 in the reception unit 120 in accordance with, for example, an instruction from the interference suppression unit 140.
  • the signal detection is generally to detect the presence of the signal in the preamble portion of the received packet, and is positioned as a part of the synchronization processing. Therefore, the signal detection capability control unit 125 can control the signal detection capability by changing the threshold value set for preamble detection.
  • a switch and an attenuator are inserted in the signal receiving system and it is desired to reduce the signal detection capability, it is possible to adopt a means of adopting the received signal as a received signal via the attenuator.
  • the interference suppression unit 140 controls the transmission power control unit 114 so as to suppress interference with other terminal stations so as not to decrease transmission opportunities of other terminal stations or to suppress a decrease in own transmission opportunities.
  • the transmission power change instruction is output as appropriate.
  • the interference suppression unit 140 performs, for example, the following (1) to (3) as processing for suppressing interference with other terminal stations. In summary, it can be said that the interference suppression unit 140 controls the transmission power so as to suppress interference according to the distance to the surrounding terminal station. However, details of the processes (1) to (3) will be described later.
  • the interference suppression unit 140 monitors packet transmission / reception processing performed by the higher layer processing unit 130 and performs transmission data input to the channel encoding unit 111 and channel decoding in order to perform the interference suppression processing as described above.
  • the feature amount extracted from the reception data decoded by the unit 123 is analyzed, and the interference given to surrounding terminal stations and the interference received by itself are estimated.
  • the interference suppression unit 140 can be arranged inside any one of the transmission unit 110, the reception unit 120, and the upper layer processing unit 130, or can be arranged independently of these.
  • the interference suppression unit 140 also demodulates the signal detection capability control unit 125 to the demodulation unit 122 so that the transmission possible range from the transmission unit 110 and the reception possible range in the reception unit 120 are balanced in accordance with the change in transmission power. It is possible to instruct a change in the signal detection capability in. Further, the interference suppression unit 140 performs transmission power management (such as sharing transmission power information and transmission power control of other terminal stations) with other terminal stations.
  • the wireless communication apparatus 100 operating as a terminal station in a wireless access scheme network based on CSMA suppresses interference with a terminal station having a low received RSSI (a long distance).
  • the terminal station controls its transmission power according to the value weighted by the distance to other terminal stations that can communicate, thereby suppressing interference with terminal stations that are far away. To do.
  • packets can be transmitted by bucket relay.
  • a terminal station relay station
  • STA5 exists near the boundary of the packet arrival range 301 of STA0. For this reason, the transmission packet from STA0 may or may not reach STA5. That is, when communicating from STA0 to STA5, the radio wave condition is not stable, and in the multi-hop network, paths 302 and 303 for communicating from STA0 to STA5 via STA3 are formed.
  • STA0 and STA5 do not communicate directly. However, if the STA5 can receive the packet sent by the STA0, the transmission of the STA5 is restricted in order to avoid a collision.
  • STA5 transmits STA0. In the same manner as described above, the transmission opportunity of the STA 5 is suppressed in order to avoid radio wave interference.
  • the wireless communication device 100 when the wireless communication device 100 operates as STA0, for example, its own transmission power is controlled according to a value weighted by the distance to other terminal stations STA1 to STA5 that can communicate. In this way, interference with a distant terminal station such as STA5 is suppressed.
  • the interference suppression unit 140 estimates the distance of other terminal stations (within the receivable range) from, for example, MCS and RSSI, and performs transmission power control according to the determination value weighted with respect to the distance. Instruct the unit 114 to control the transmission power. For example, if it is estimated that the number of terminal stations far away is increased from the determination value weighted with respect to the distance, the own transmission power is reduced. As a result, multi-hop transmission is explicitly performed, and radio interference at the multi-hop destination can be suppressed.
  • an example of a value weighted with respect to the distance is a value representing a distance based on the RSSI value R k of each terminal station k (where k is a serial number) as shown in the following equation (1). This is the total value of 1 / Rk multiplied by the coefficient ⁇ .
  • the interference suppression unit 140 uses this total value as a determination value for determining transmission power control.
  • the transmission power is reduced and the multi-hop destination Try to suppress radio wave interference.
  • the transmission power is increased to increase data transmission. Make sure to secure a margin to make sure.
  • the transmission power decrease threshold ⁇ and the transmission power increase threshold ⁇ are different values ( ⁇ ⁇ ⁇ ) so that the transmission power does not frequently change with the change in the determination value shown in the above equation (1). (For example, ⁇ ⁇ ).
  • FIG. 10 shows, in the form of a flowchart, a processing procedure for wireless communication apparatus 100 operating as a terminal station in a multi-hop network to control its own transmission power based on distance information of other terminal stations. Yes.
  • the reception unit 120 measures the RSSI of the received packet from the surrounding terminal station (step S1001).
  • the interference suppression unit 140 acquires the RSSI of each terminal station measured by the receiving unit 120, and calculates a determination value that determines transmission power control according to the above equation (1) (step S1002).
  • the interference suppression unit 140 compares the calculated determination value with the threshold value ⁇ for decreasing the transmission power (step S1003).
  • the interference suppression unit 140 determines the transmission power control unit 114 to Then, an instruction to decrease the transmission power is issued (step S1004).
  • the transmission power control unit 114 controls power amplification in the RF transmission unit 113 in response to this instruction.
  • the calculated transmission power is used for all transmission packets including beacons.
  • the interference suppression unit 140 compares the calculated determination value with a threshold ⁇ that increases the transmission power. (Step S1005). Then, as shown in the above equation (3), when the determination value falls below the threshold value ⁇ for increasing the transmission power (Yes in step S1005), the interference suppression unit 140 transmits the transmission power to the transmission power control unit 114. Is instructed to amplify the power to the RF transmitter 113 (step S1006). By controlling own transmission power, it is possible to suppress interference with a terminal station that is far away.
  • the calculated transmission power is used for all transmission packets including beacons.
  • the interference suppression unit 140 changes the signal detection capability in the demodulation unit 122 in the reception unit 120 with respect to the signal detection capability control unit 125. (Step S1007). For example, when the transmission power is reduced, the transmittable range is reduced, and accordingly, adjustment is made so that a packet received with a small power is not detected. However, it is arbitrary whether or not to adjust the signal detection capability with the change of the transmission power.
  • the calculated transmission path metric and actual value may fluctuate with the transmission power after the change, which may cause problems such as packet loss of transmission data.
  • the wireless communication device 100 may reduce the transmission power to the minimum transmission power that is the minimum necessary to hold the current data transmission.
  • the minimum transmission power mentioned here can be calculated based on the data transmission rate required for the currently transmitted data, path loss information obtained from RSSI or MCS, and the QoS of the data.
  • the process of increasing the transmission power in step S1006 may be an operation for returning to the transmission power before the reduction.
  • the RSSI value is used as a value correlated with the distance to the terminal station.
  • the gist of the technique disclosed in this specification is not limited to such a calculation method of the determination value.
  • a wireless module other than IEEE 802.11s may be used to estimate the distance to surrounding terminal stations.
  • the distance from the captured image such as a camera (for example, a stereo camera) to each terminal station may be calculated.
  • FIG. 13 exemplifies a wireless network environment in which the transmittable range is uneven for each terminal station.
  • each terminal station is connected by peer-to-peer transmission such as Wi-Fi Direct or mesh network.
  • STA0 is reducing transmission power.
  • the transmittable range of STA0 is small as indicated by the ellipse indicated by reference numeral 1304.
  • the transmission power of STA4 remains large.
  • the transmittable range of STA4 is represented by an ellipse indicated by reference numeral 1305, but includes STA0.
  • STA0 can detect a signal transmitted from STA4. For example, when receiving an RTS packet of STA4, STA0 stops data transmission. On the other hand, since the STA4 cannot detect the signal of the STA0, for example, the STA4 may transmit its own data without detecting the RTS packet of the STA0.
  • STA0 also controls its own signal detection capability when the transmission power is changed. That is, in STA0, the signal detection threshold in the demodulation unit 122 in the reception unit 120 is changed. STA0 narrows the signal detection range by increasing the signal detection threshold in demodulator 122 when its transmission power is reduced.
  • FIG. 14 shows a virtual transmittable range of STA4 for STA0 when STA0 increases the signal detection threshold.
  • STA0 reduces its own transmittable range 1401
  • the signal detection range is also narrowed, thereby reducing the transmittable range of STA4 as indicated by reference numeral 1402. Can be obtained. Since the STA0 cannot detect the signal of the STA4, for example, the STA0 can transmit its own data without detecting the RTS packet of the STA4.
  • a value indicating the proximity of the route is calculated.
  • a path metric is calculated.
  • the time for occupying a channel when transmitting a data frame which is calculated from the transmission rate of the physical layer and the packet error rate, is defined as a default path metric.
  • the propagation environment and the status of each terminal station are expected to change from moment to moment. For this reason, the path metric is calculated at regular time intervals.
  • the terminal station changes the transmission power or signal detection capability in step S1008, the calculated path metric and the actual value are inconsistent, and there is a high possibility that problems such as packet loss of transmission data will occur. . Therefore, it is preferable that the terminal station recalculates the path metric when its transmission power or signal detection capability is changed.
  • the re-calculation of the path metric is executed when the source terminal station transmits a route request PREQ packet, as in the case of normal route selection.
  • a path metric cannot be obtained by the method of transmitting PREQ. Therefore, the terminal station that is a relay node transmits a route error PERR packet to the terminal station of the transmission source.
  • the PERR is originally used when the set mesh path becomes unavailable due to deterioration of the radio link or the like, and prompts the transmission source to refresh the mesh path (recalculate the path metric). Thus, this operation recalculates the path metric.
  • the terminal station reduces its transmission power, thereby suppressing interference with a remote terminal station that does not communicate directly and reducing the transmission opportunities of other terminal stations. Can be prevented.
  • the wireless communication apparatus 100 operating as a terminal station in a wireless access scheme network based on CSMA suppresses interference with a terminal station far away from the currently communicating terminal station.
  • the terminal station reduces the transmission power to such an extent that the communication link with the currently communicating terminal station is not lowered, thereby interfering with the terminal station farther away than the currently communicating terminal station. Suppress.
  • a terminal station has a problem that its transmission opportunity is limited due to data communication unrelated to itself.
  • the transmission opportunities of other unrelated terminal stations are limited for own communication.
  • STA0 belongs to a different network from STA5, it does not exchange data with each other. However, since STA5 is within the reach range 401 of the packet of STA0, it receives interference.
  • the wireless communication apparatus 100 when the wireless communication apparatus 100 operates as, for example, STA0, a terminal station that is assumed to be the farthest away communicates when there is already a terminal station that can sufficiently communicate. If it is not the target, the transmission power is reduced to reduce the packet reachable range, thereby suppressing unnecessary radio wave interference and preventing a decrease in transmission opportunities of terminals that are not the target of communication.
  • FIG. 5 shows a state in which STA0 in FIG. 4 reduces transmission power by reducing transmission power.
  • the reach of the transmission packet of STA 0 after being reduced is surrounded by an ellipse indicated by reference numeral 501.
  • the wireless communication apparatus 100 operating as a terminal station on a wireless access scheme network based on CSMA controls its transmission power so as to suppress interference with a long-distance terminal station that is not performing communication.
  • the processing procedure for this is shown in the form of a flowchart.
  • the reception unit 120 measures the RSSI of the received packet from the surrounding terminal station (step S1101).
  • the interference suppression unit 140 checks whether communication with the transmission source of each received packet is possible based on the RSSI information measured in step S1101, and counts the number of terminal stations capable of communication (step S1102). ). Then, the interference suppression unit 140 checks whether there are more than a certain number of terminal stations that can currently communicate (step S1103).
  • step S1103 when the number of terminal stations capable of communication is less than a certain number (No in step S1103), control of the subsequent transmission power is avoided. This is because if the transmission power is lowered in such a situation, the number of terminal stations that can communicate with each other further decreases, and the communication opportunity of the user is significantly impaired.
  • the interference suppression unit 140 identifies the farthest terminal station that can communicate. (Step S1104).
  • the RSSI value is used as a value correlated with the distance, and the distance is estimated using a wireless module other than IEEE802.11s. And a method of calculating from the captured images (described above).
  • the interference suppression unit 140 checks whether communication is being performed with the terminal station determined to be the longest distance (step S1105).
  • the interference suppression unit 140 can determine whether or not communication with the terminal station is performed based on the group membership information as described above.
  • step S1105 When communication is performed with the terminal station farthest away (Yes in step S1105), control of subsequent transmission power is avoided. This is because if the transmission power is lowered under such circumstances, communication with the terminal station is interrupted.
  • the interference suppression unit 140 instructs the transmission power control unit 114 to reduce the transmission power ( Step S1106).
  • the transmission power control unit 114 controls power amplification in the RF transmission unit 113 in response to this instruction. By reducing own transmission power, it is possible to suppress interference and prevent a decrease in transmission opportunities of terminal stations that are not subject to communication.
  • the calculated transmission power is used for all transmission packets including beacons.
  • the interference suppression unit 140 also instructs the signal detection capability control unit 125 to change the signal detection capability in the demodulation unit 122 in the reception unit 120. (Step S1107). For example, when the transmission power is reduced, the transmittable range is reduced, and accordingly, adjustment is made so that a packet received with a small power is not detected. However, it is arbitrary whether or not to adjust the signal detection capability with the change of the transmission power.
  • Step S1108 since the transmission power after the change may cause a discrepancy between the calculated path metric and the actual value, which may cause problems such as packet loss of transmission data, re-calculate the path metric. (Step S1108). However, it is optional whether or not the path metric is recalculated when the transmission power is changed.
  • step S1105 it may be determined whether communication with the terminal station is performed based on information other than the group membership status. For example, although it is possible to communicate directly, a terminal station that does not communicate so much from the communication history can determine that communication is not performed. Further, in the case of an IEEE 802.11s network, it may be determined that a terminal not designated as “next” is not communicating.
  • the terminal station reduces its transmission power, thereby suppressing interference with a remote terminal station that does not communicate directly and reducing the transmission opportunities of other terminal stations. Can be prevented.
  • the wireless communication apparatus 100 operating as a terminal station in a wireless access scheme network based on CSMA suppresses interference with hidden terminals.
  • a terminal station controls its transmission power according to the number of terminal stations detected by itself and the number of terminal stations detected by other adjacent terminal stations. , Suppress interference with hidden terminals and suppress a decrease in transmission opportunities.
  • FIG. 6 For example, let us consider mutual interference between terminal stations in a network configuration where hidden terminals as shown in FIG. 6 exist.
  • six terminal stations STA0 to STA5 operate, and the reach of packets transmitted from STA0 is surrounded by an ellipse indicated by reference numeral 601.
  • a state is shown in which STA1, STA2, and STA3 can receive a packet transmitted from STA0, but STA4 and STA5 cannot receive the packet.
  • STA0 transmits data to STA1 as indicated by reference number 602
  • STA4 does not know the state of STA0, so at the same time as the transmission timing of STA0, STA3 transmits to STA3 as indicated by reference number 603.
  • the RTS / CTS method is used together (described above).
  • RTS / CTS packet collision can be suppressed, but the transmission timing is delayed.
  • the throughput does not increase as a result of delaying the transmission timing.
  • the wireless communication apparatus 100 when the wireless communication apparatus 100 operates as, for example, STA0, the presence of a hidden terminal is estimated, and the number of terminal stations including the hidden terminal that have a substantial influence on transmission / reception of own packets.
  • the transmission power is controlled according to the above.
  • the method for estimating the number of hidden terminals is not particularly limited.
  • a beacon interval timing element Beacon Interval Timing Element
  • Beacon Interval Timing Element Beacon Interval Timing Element
  • FIG. 7 shows the data format of the Bescon Interval Timing Element.
  • the Beacon Interval Timing Element is inserted into a beacon or action frame and transmitted.
  • Beacon Interval Timing Element beacon transmission timing information of other terminal stations received by each terminal station is stored.
  • the Beacon Interval Timing Element 700 shown in FIG. 7 stores N pieces of received beacon timing information 701-1,..., 701-N.
  • the terminal station that has received the Beacon Interval Timing Element determines its beacon transmission timing based on the notified beacon transmission timing so that no collision occurs.
  • the Beacon Interval Timing Element for example, it is possible to prevent a beacon collision from occurring with a terminal station (hidden terminal) that cannot directly receive a beacon. In this embodiment, the number of hidden terminals is estimated by using this mechanism.
  • a method for estimating the number of hidden terminals using the Beacon Interval Timing Element will be described with reference to FIG.
  • seven terminal stations STA0 to STA6 are operating. Further, the reception range of the packet transmitted from STA0 is surrounded by an ellipse indicated by reference numeral 801.
  • Table 1 below shows a list of terminal stations (reception side) in the reception range of packets of each terminal station (transmission side) in the illustrated network configuration.
  • STA0 can receive beacons only from STA1, STA2, and STA3 within its own reception range (see reference numbers 802 to 804) and cannot directly receive beacons from STA4, STA5, and STA6.
  • STA3 can receive beacons from STA1, STA4, and STA5, as indicated by reference numeral 801
  • the beacon transmission timing (TBTT) of STA1, STA4, and STA5 is stored in the Beacon Interval Timing Element, and the beacon is stored. Send it out.
  • STA0 has hidden terminals STA4 and STA5 by seeing the difference between the Beacon Interval Timing Element included in the beacon received from STA3 and the beacon transmission timing of STA1, STA2, and STA3 managed by itself. Can be estimated.
  • STA1 can also receive the beacon of STA6, which is a hidden terminal of STA0, as indicated by reference numeral 803, the beacon transmission timing of STA2, STA3, and STA6 is stored in the Beacon Interval Timing Element, and the beacon is transmitted. . And STA0 can estimate that STA6 exists based on the Beacon Interval Timing Element received from STA1.
  • STA0 has three terminals STA1, STA2, and STA3 as terminal stations that can directly receive beacons, and three terminals STA4, STA5, and STA6 as hidden terminal hidden terminals that affect transmission and reception of their own packets. You can see that it exists as a station. Then, STA0 controls transmission power when the number of terminal stations that are substantially affected, including hidden terminals, exceeds a predetermined threshold. As a result, STA0 is not limited to terminal stations STA1, STA2, and STA3 that receive direct radio waves, but depending on the presence of terminal stations (hidden terminals) STA4, STA5, and STA6 that do not receive direct radio waves but have substantial effects, It becomes possible to control the transmission power as well as the signal detection capability.
  • FIG. 12 shows a processing procedure for the radio communication apparatus 100 operating as a terminal station on a CSMA-based radio access scheme network to control its transmission power according to the presence of a terminal station that is substantially affected. Is shown in the form of a flowchart.
  • step S1201 When a beacon from a surrounding terminal station is received (step S1201), the receiving unit 120 performs demodulation and decoding processing. Then, the upper layer processing unit 130 analyzes the description content of the beacon.
  • the interference suppression unit 140 estimates the total number of terminal stations that have a substantial effect on transmission / reception of own packets, including hidden terminals, from the Beacon Interval Timing Element stored in each received beacon (step S1202). Then, the total number of terminal stations that substantially affect transmission / reception of own packets is compared with a predetermined threshold value (step S1203).
  • the subsequent transmission power is not controlled. This is because if the transmission power is lowered under such circumstances, the margin of the transmission power to the terminal station that performs direct communication becomes small, and the communication becomes unstable.
  • the interference suppression unit 140 transmits the transmission power to the transmission power control unit 114.
  • An instruction is given to decrease (step S1204).
  • the transmission power control unit 114 controls power amplification in the RF transmission unit 113 in response to this instruction. By reducing own transmission power, it is possible to suppress interference with a terminal that is substantially affected, such as a hidden terminal.
  • the calculated transmission power is used for all transmission packets including beacons.
  • the interference suppression unit 140 also instructs the signal detection capability control unit 125 to change the signal detection capability in the demodulation unit 122 in the reception unit 120. (Step S1205). For example, when the transmission power is reduced, the transmittable range is reduced, and accordingly, adjustment is made so that a packet received with a small power is not detected. However, it is arbitrary whether or not to adjust the signal detection capability with the change of the transmission power.
  • the calculated transmission path metric and actual value may fluctuate with the transmission power after the change, which may cause problems such as packet loss of transmission data.
  • IE Information Elements
  • Vendor Specific IE is an information element that a vendor can freely add and use.
  • the information of the terminal that has been detected (the beacon was received) is stored in the Vendor Specific IE and mutually used, whereby the information of the hidden terminal can be acquired.
  • hidden terminal information may be broadcast, multicast, or unicast as IP layer data packets.
  • the terminal station when the number of hidden terminals increases, the terminal station can suppress interference by decreasing its own transmission power, and can prevent a decrease in transmission opportunities of other terminal stations.
  • the terminal station controls its own transmission power so as to suppress interference according to the distance from the nearby terminal station.
  • the reach range of the packet transmitted from STA0 is surrounded by a solid ellipse indicated by reference numeral 901. Further, the reach range of the packet transmitted from the STA 3 is surrounded by a dotted ellipse indicated by reference numeral 902.
  • STA0 controls the transmission power and at the same time controls the signal detection capability so that the packet of STA3 does not reach. Thereby, the fairness of the data transmission timing between STA0 and STA3 is maintained.
  • STA0 is accommodated in the ellipse 902 in FIG. 9, since the packet of STA3 reaches STA0 in terms of radio waves, the packets of STA0 and STA3 may collide. is there.
  • a control request for transmission power is notified to surrounding terminal stations.
  • This control request describes information such as specific information (for example, an address) of a terminal station to be controlled and an instruction value that indicates how much transmission information should be controlled.
  • the terminal station that has received the interference transmits a packet that requests a reduction in transmission power to the terminal station that caused the interference, thereby suppressing the interference of the packet.
  • the interference suppression unit 140 or the upper layer processing unit 130 transmits a packet requesting a decrease in transmission power in response to detecting the packet interference.
  • information on own transmission power may be notified to surrounding terminal stations.
  • the terminal station that has received the interference broadcasts a packet carrying its own transmission power information to surrounding terminal stations. Or you may make it transmit to the terminal station which caused the interference.
  • the peripheral terminal station that receives this packet determines whether or not to control the transmission power.
  • the user's own transmission power may be controlled so as to match the transmission power information of the other party.
  • the transmission power may be controlled by comparing the RSSI of the terminal station that can be received at the transmission source of this packet with the RSSI of the other party that is observed by itself.
  • the peripheral terminal stations may ignore the transmission power information received from the other party.
  • the terminal station can transmit information on transmission power as described above using an existing frame format.
  • an existing frame format For example, a Vendor Specific IE defined as an information element that can be freely added by a vendor and included in an existing frame format such as a beacon can be used.
  • the terminal station may define a unique action frame such as an IP layer data packet to transmit information on transmission power instead of using an existing frame format.
  • STA0 is in a state in which the transmission power is reduced first, and the radio wave transmitted from STA0 does not reach STA3. Even if STA0 directly transmits a packet carrying information on transmission power to STA3, it cannot be notified. Therefore, the STA0 in a state where the transmission power has been reduced may temporarily increase the transmission power when transmitting a packet for notifying information on the transmission power.
  • the radio communication apparatus 100 operating as the STA0 causes the interference suppression unit 140 to instruct the transmission power control unit 114 of the transmission power according to the type of packet to be transmitted or the type of information included in the packet. Good.
  • the terminal station whose transmission power has been reduced may be notified by broadcast transfer of a packet carrying information on the transmission power.
  • a data frame carrying information on transmission power may be notified by multi-hop communication.
  • each terminal station can set a more optimal transmission power by notifying each other's transmission power information and neighboring terminal station information between neighboring terminal stations. It becomes like this. As a result, it is possible to suppress interference in the entire system and prevent a decrease in transmission opportunities of other terminal stations.
  • the transmission power information between the terminal stations is It can be shared. That is, the above-mentioned problem (4) can be solved, and each terminal station can estimate the path loss information based on the difference between the transmission power of the communication partner and the received RSSI. As a result, an appropriate MCS can be obtained. To enable efficient use of the channel.
  • each terminal station autonomously distributes such as an ad hoc network or a mesh network
  • each terminal station autonomously distributes such as an ad hoc network or a mesh network
  • the gist of the technology disclosed in this specification is limited to this. It is not what is done.
  • the technology disclosed in this specification is applied to various types of wireless networks in which each terminal station controls access to media according to the occupation state of the media including CSMA, and wasteful interference between terminal stations. And the transmission opportunity of each terminal station can be improved.
  • a transmitter that transmits a radio signal
  • a receiver for receiving a radio signal
  • a transmission power control unit for controlling transmission power of the transmission unit
  • An interference suppression unit that instructs the transmission power control unit to change the transmission power so as to suppress interference according to the distance to the surrounding terminal station
  • a wireless communication apparatus comprising: (2) The interference suppression unit instructs the transmission power control unit to change transmission power so as to suppress interference with a terminal station at a long distance.
  • the wireless communication device according to (1) above.
  • the interference suppression unit instructs the transmission power control unit to change transmission power according to a determination value weighted by a distance from another terminal station that can communicate.
  • the wireless communication device according to (1) above.
  • the interference suppression unit instructs to reduce the transmission power when it is estimated that the number of terminal stations far away from each other is increased based on the determination value.
  • the interference suppression unit instructs to increase the transmission power when it is estimated that the number of terminal stations far away from each other is reduced based on the determination value.
  • the interference suppression unit instructs the transmission power control unit to reduce transmission power so as to suppress interference to a terminal station that is farther away than the currently communicating terminal station.
  • the interference suppression unit instructs a decrease in transmission power when a terminal station capable of communication exists and a terminal station that is estimated to be the farthest is not a target for communication;
  • the interference suppression unit does not instruct a decrease in transmission power when the number of terminal stations capable of communication is less than a predetermined number,
  • the interference suppression unit determines whether or not the terminal station estimated to be the farthest is a target for communication based on the group affiliation status in the mesh network, the communication history, or the specification of nexthop. To The wireless communication device according to (7) above.
  • the interference suppression unit instructs the transmission power control unit to change transmission power so as to suppress interference with a hidden terminal.
  • the interference suppression unit estimates the total number of terminal stations that affect the transmission and reception of its own packet, and when the total number exceeds a predetermined value, instructs the transmission power control unit to reduce the transmission power.
  • the interference suppression unit estimates the total number of terminal stations that have an influence on transmission / reception of own packets, based on a Beacon Interval Timing Element included in a beacon or action frame transmitted by each terminal station, The wireless communication device according to (11) above.
  • the interference suppression unit transmits information on transmission power to other terminal stations.
  • the wireless communication device according to (1) above. (13-1) Transmit information on transmission power using the Vendor Specific IE of the existing frame format.
  • the wireless communication device (13) above.
  • (13-2) Transmit information on transmission power using an action frame defined uniquely, The wireless communication device according to (13) above.
  • the interference suppression unit instructs the transmission power control unit to increase transmission power when transmitting information on transmission power to another terminal station.
  • the wireless communication device (13) above.
  • the interference control unit causes a packet carrying information on transmission power to be transmitted by broadcast transfer or multicast communication.
  • the wireless communication device (13) above.
  • the interference control unit transmits a transmission power control request to another terminal station as information on transmission power.
  • the wireless communication device (13) above.
  • (17) The interference control unit transmits information on its own transmission power as information on transmission power.
  • the wireless communication device (13) above.
  • the interference control unit controls its own transmission power in response to receiving information on transmission power from another terminal station.
  • the wireless communication device according to (13) above.
  • It further comprises a signal detection capability control unit for controlling the signal detection capability of the reception unit,
  • the interference suppression unit instructs the signal detection capability control unit to change the signal detection capability in response to a change in transmission power.
  • the wireless communication device according to (1) above.
  • DESCRIPTION OF SYMBOLS 100 ... Wireless communication apparatus, 101 ... Antenna 110 ... Transmission part, 111 ... Channel encoding part, 112 ... Modulation part 113 ... RF transmission part, 114 ... Transmission power control part 120 ... Reception part, 121 ... RF reception part, 122 ... Demodulator 123 ... Channel decoding unit 125 ... Signal detection capability control unit 130 ... Upper layer processing unit 140 ... Interference suppression unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 他の端末局への干渉を抑制し、他の端末局の送信機会の減少を防ぎながら、好適に情報伝送を行なう。 端末局は、例えばMCSやRSSIから、(受信可能範囲内にいる)他の端末局の距離を推定し、距離に対して重み付けした値に応じて、自分の送信電力を制御する。例えば、距離に対して重み付けした値から、距離が遠くの端末局が増えたと推定される場合には、自分の送信電力を下げるようにする。この結果、マルチホップでの送信が明示的に行なわれるようになり、且つ、マルチホップ先の電波干渉を抑制することが可能である。

Description

無線通信装置及び無線通信方法
 本明細書で開示する技術は、主にメディアの占有状態に応じてメディアへのアクセスを制御する無線通信装置及び無線通信方法に係り、例えば、メッシュ・ネットワークのように同一のチャネル上で複数の端末局が存在する通信環境下で情報伝送する無線通信装置及び無線通信方法に関する。
 無線技術を用いたネットワークでは、「アクセスポイント」などとも呼ばれる制御局の配下で各端末が情報伝送を行なう構成方法が広く知られている。各端末局は、アクセスポイントを介して同期をとりながら、無線通信を行なう。例えば、端末局は情報伝送に必要な帯域を予約し、他の端末局の情報伝送と衝突が生じないようにチャネルを利用する。しかしながら、このようなネットワークの構成方法では、端末同士で非同期通信を行なう際にも、アクセスポイントを介して無線通信する必要があり、チャネルの利用効率が半減してしまうという問題がある。
 これに対し、無線ネットワークの他の構成方法として、端末局同士がアクセスポイントを介さず、直接非同期的に無線通信を行なう「アドホック(Ad-hoc)通信」が考案されている。例えば、IEEE802.11系の無線LAN(Local Area Network)システムでは、アクセスポイントが介在するインフラストラクチャー・モードの他、アクセスポイントを配さず各端末局が自律分散的にピア・ツウ・ピア(Peer to Peer)で動作するアドホック・モードが用意されている。
 アドホック・ネットワークでは、アクセスポイントのような、端末局間で同期をとる手段がない。このため、同一チャネルを複数の端末局が使用する際に、競合を回避する必要がある。競合を回避する代表的なアクセス方式として、CSMA(Carrier Sense Multipple Access:キャリア検出多重接続)が知られている。CSMAでは、送信情報のある端末局は、送信に先立ちメディアの占有状態を確認し、メディアがクリアである場合に送信を開始する、という手順によって衝突を回避する。
 また、CSMAでは、隠れ端末の問題がある。ここで、隠れ端末とは、互いの無線信号が到達しない状態にある端末局である。隠れ端末のキャリアを検出することができないので、CSMAのみでは隠れ端末との衝突を回避できない。
 隠れ端末との衝突を回避する方法として、RTS/CTSが考案されている。送信元の通信局が送信要求パケットRTS(Request To Send)を送信し、データ送信先の通信局から確認通知パケットCTS(Clear To Send)を受信したことに応答してデータ送信を開始する。そして、隠れ端末は、RTS又はCTSのうち少なくとも一方を受信することができるので、RTS/CTSに基づくデータ伝送が行なわれると予想される期間だけ自局の送信停止期間を設定して、衝突を回避する。
 しかしながら、CSMAに基づくアクセス方式においては、上記のように衝突を回避できたとしても、同一のチャネル上で情報送信しようとする端末局数に応じて送信可能な機会が減少するという問題がある。ある端末局が、極めて隣接する場所に存在しており当該局との間のパスロスが他局との間のパスロスに比べて著しく小さい端末局との通信を行ないたい場合であっても、他の端末局の信号を受信すると、衝突回避のため送信することが許されない(例えば、特許文献1を参照のこと)。つまり、チャネル上でトラフィック量が増加すると、近隣の端末局への干渉量が増加し、近隣の端末局が使用する帯域を制限してしまう。
 本明細書で開示する技術の目的は、メディアの占有状態に応じてメディアへのアクセスを制御する方式で、好適に情報伝送を行なうことができる、優れた無線通信装置及び無線通信方法を提供することにある。
 本明細書で開示する技術のさらなる目的は、他の端末局への干渉を抑制し、他の端末局の送信機会の減少を防ぎながら、好適に情報伝送を行なうことができる、優れた無線通信装置及び無線通信方法を提供することにある。
 本願は、上記課題を参酌してなされたものであり、請求項1に記載の技術は、
 無線信号を送信する送信部と、
 無線信号を受信する受信部と、
 前記送信部の送信電力を制御する送信電力制御部と、
 周辺の端末局との遠近に応じて干渉を抑制するように、前記送信電力制御部に送信電力の変更を指示する干渉抑制部と、
を具備する無線通信装置である。
 本願の請求項2に記載の技術によれば、請求項1に記載の無線通信装置の前記干渉抑制部は、距離の遠い端末局への干渉を抑制するように、前記送信電力制御部に送信電力の変更を指示するように構成されている。
 本願の請求項3に記載の技術によれば、請求項1に記載の無線通信装置の前記干渉抑制部は、通信可能な他の端末局との距離によって重み付けされた判定値に応じて、前記送信電力制御部に送信電力の変更を指示するように構成されている。
 本願の請求項4に記載の技術によれば、請求項3に記載の無線通信装置の前記干渉抑制部は、前記判定値に基づいて距離が遠くの端末局が増えたと推定される場合には送信電力の低下を指示するように構成されている。
 本願の請求項5に記載の技術によれば、請求項3に記載の無線通信装置の前記干渉抑制部は、前記判定値に基づいて距離が遠くの端末局が減ったと推定される場合には送信電力の増加を指示するように構成されている。
 本願の請求項6に記載の技術によれば、請求項1に記載の無線通信装置の前記干渉抑制部は、現在通信中の端末局より距離の遠い端末局への干渉を抑制するように、前記送信電力制御部に送信電力の減少を指示するように構成されている。
 本願の請求項7に記載の技術によれば、請求項1に記載の無線通信装置の前記干渉抑制部は、通信可能な端末局が存在し、且つ、最も離れていると推定される端末局が通信を行なう対象でない場合には、送信電力の減少を指示するように構成されている。
 本願の請求項8に記載の技術によれば、請求項7に記載の無線通信装置の前記干渉抑制部は、通信可能な端末局が所定台数未満のときには、送信電力の減少を指示しないように構成されている。
 本願の請求項9に記載の技術によれば、請求項7に記載の無線通信装置の前記干渉抑制部は、メッシュ・ネットワークにおけるグループの所属状況、通信履歴、又は、nexthopの指定に基づいて、最も離れていると推定される端末局が通信を行なう対象か否かを判定するように構成されている。
 本願の請求項10に記載の技術によれば、請求項1に記載の無線通信装置の前記干渉抑制部は、隠れ端末との干渉を抑制するように、前記送信電力制御部に送信電力の変更を指示するように構成されている。
 本願の請求項11に記載の技術によれば、請求項1に記載の無線通信装置の前記干渉抑制部は、自分のパケットの送受信に影響のある端末局の総数を推定し、前記総数が所定値を超えるときには、前記送信電力制御部の送信電力の減少を指示するように構成されている。
 本願の請求項12に記載の技術によれば、請求項11に記載の無線通信装置の前記干渉抑制部は、各端末局が送信するビーコン又はアクション・フレームに含まれるBeacon Interval Timing Elementに基づいて、自分のパケットの送受信に影響のある端末局の総数を推定するように構成されている。
 本願の請求項13に記載の技術によれば、請求項1に記載の無線通信装置の前記干渉抑制部は、他の端末局に対して送信電力に関する情報を送信させるように構成されている。
 本願の請求項14に記載の技術によれば、請求項13に記載の無線通信装置の前記干渉抑制部は、他の端末局に対して送信電力に関する情報を送信する際に、前記送信電力制御部に送信電力の増加を指示するように構成されている。
 本願の請求項15に記載の技術によれば、請求項13に記載の無線通信装置の前記干渉制御部は、送信電力に関する情報を載せたパケットをブロードキャスト転送、又は、マルチキャスト通信により送信させるように構成されている。
 本願の請求項16に記載の技術によれば、請求項13に記載の無線通信装置の前記干渉制御部は、送信電力に関する情報として他の端末局に対する送信電力の制御要求を送信するように構成されている。
 本願の請求項17に記載の技術によれば、請求項13に記載の無線通信装置の前記干渉制御部は、送信電力に関する情報として自分の送信電力に関する情報を送信するように構成されている。
 本願の請求項18に記載の技術によれば、請求項13に記載の無線通信装置の前記干渉制御部は、他の端末局から送信電力に関する情報を受信したことに応じて、自分の送信電力の制御を行なうように構成されている。
 本願の請求項19に記載の技術によれば、請求項1に記載の無線通信装置は、前記受信部の信号検出能力を制御する信号検出能力制御部をさらに備えている。そして、前記干渉抑制部は、送信電力の変更に応じて、前記信号検出能力制御部に信号検出能力の変更を指示するように構成されている。
 また、本願の請求項20に記載の技術は、
 周辺局との遠近に応じた干渉を推定する推定ステップと、
 前記干渉を抑制するように、データ送信時における送信電力を制御する送信電力制御ステップと、
を有する無線通信方法である。
 本明細書で開示する技術によれば、他の端末局への干渉を抑制し、他の端末局の送信機会の減少を防ぎながら、好適に情報伝送を行なうことができる、優れた無線通信装置及び無線通信方法を提供することができる。
 本明細書で開示する技術を適用した無線通信装置は、例えば、CSMAに基づいて無線アクセス制御が行なわれるネットワークにおいて、端末局として自律的に動作し、送信電力を制御することで他の端末局への干渉を抑制し、他の端末局の送信機会を無駄に減少させないようにすることができる。
 本明細書で開示する技術を適用した無線通信装置は、自分から距離の遠い端末局への干渉を抑制して、送信機会を向上させることができる。
 なお、本明細書に記載された効果は、あくまでも例示であり、本明細書で開示する技術の効果はこれに限定されるものではない。また、本明細書で開示する技術が、上記の効果以外に、さらに付加的な効果を奏する場合もある。
 本明細書で開示する技術のさらに他の目的、特徴や利点は、後述する実施形態や添付する図面に基づくより詳細な説明によって明らかになるであろう。
図1は、本明細書で開示する技術を適用した無線通信装置100の構成を示した図である。 図2は、アドホック・ネットワークの構成例を模式的に示した図である。 図3は、マルチホップ通信を行なうネットワークの構成例を模式的に示した図である。 図4は、異なるグループが混在するメッシュ・ネットワークの構成例を模式的に示した図である。 図5は、図4中のSTA0が送信電力を下げてパケットの到達範囲を縮小させた様子を示した図である。 図6は、隠れ端末が存在するネットワークの構成例を模式的に示した図である。 図7は、Bescon Interval Timing Elementのデータ・フォーマットを示した図である。 図8は、Beacon Interval Timing Elementを用いて隠れ端末の台数を推定する方法を説明するための図である。 図9は、端末局毎に送信電力に偏りのあるネットワークの構成例を示した図である。 図10は、無線通信装置100が、他の端末局の距離情報に基づいて自分の送信電力を制御するための処理手順を示したフローチャートである。 図11は、無線通信装置100が、通信を行なっていない遠距離の端末局への干渉を抑制するよう自分の送信電力を制御するための処理手順を示したフローチャートである。 図12は、無線通信装置100が、実質的に影響のある端末局の存在に応じて自分の送信電力を制御するための処理手順を示したフローチャートである。 図13は、端末局毎に送信可能範囲が不均一になっている無線ネットワーク環境を例示した図である。 図14は、信号検出の閾値を上げた端末局にとっての他の端末局の仮想的な送信可能範囲を示した図である。
 以下、図面を参照しながら本明細書で開示する技術の実施形態について詳細に説明する。
 本明細書で開示する技術は、IEEE802.11などで採用されている、CSMAに基づくアクセス方式を適用した無線ネットワークに適用することができる。例えば、IEEE802.11sで規定されているようなメッシュ・ネットワークに、本明細書で開示する技術を適用することができる。この種の無線ネットワークでは、近隣に同一のチャネルを使用する複数の端末局が存在することが想定される。
 近接する端末局間で自律的に相互接続する通信方法として、アドホック通信、アドホック・ネットワークなどが知られている。図2には、アドホック・ネットワークの構成を模式的に示している。このようなネットワークにおいては、各端末局STA0~STA4は、アクセスポイントのようなマスター局に依存することなく、近接する端末局と相互に直接通信を行なうことが可能である。図中、直接通信が可能な端末局同士をそれぞれ直線a~gで結んでいる。各端末局STA0~STA4は、CSMAに基づく無線アクセス方式を採用するものとする。また、アドホック・ネットワークでは、新たに近隣に端末局が現れると、この端末局も自由にネットワークに参加することができる。
 各端末局は、自律的に近接する端末局と相互接続するだけでなく、他の端末局間でやり取りされる情報をバケツリレー的に転送(中継)するシナリオも考えられる。例えば、図2において、STA0は、電波が届かないなどの理由から、STA1及びSTA3にしか直接通信できないが、STA3がSTA0のデータを転送(中継)してあげることで、STA0とSTA4は互いに情報をやり取りすることが可能となる。このように端末局が互いにバケツリレーを行ない、遠くの端末局に情報を届ける方法は、マルチホップ・リレーと呼ばれる。マルチホップ通信を行なうネットワークは、メッシュ・ネットワークとして一般に知られている。
 図2では、5台の端末局しか描いていないが、メッシュ・ネットワークなどでは、近隣に同一のチャネルを使用する複数の端末局が存在することが想定される。
 CSMAに基づくアクセス方式においては、各端末局は、パケットの送信に先立ちメディアの占有状態を確認し、メディアがクリアである場合に送信を行なう。パケットの衝突を避けるために、言い換えれば、端末局は、自分とはたとえ関係のないパケットを受信した場合でも、パケットの送信機会が制限される。これに関連して、CSMAに基づくアクセス方式のメッシュ・ネットワークなどでは、以下のような問題点(1)~(4)がある。
問題点(1)不要な電波干渉
 端末局が隣接するノード数に応じて送信電力及び信号検出能力を制御して、通信可能な端末局の台数を制限することができる(例えば、特許文献1を参照のこと)。しかしながら、この方法では、送信電力及び信号検出能力を制御するトリガーとして、通信可能な端末局の台数しか考慮しないので、所定台数に達しない限り、送信電力の制御は行なわれない。例えば、直接データ通信を行なっていない端末局に対するパケットを多く検知した場合であっても、送信電力制御が行なわれない。このため、端末局が、自分にとって関係のないデータ通信によって自分のデータ送信機会が制限されてしまう、という問題がある。また逆に、端末局が自分の通信によって、その通信には関係ない他の端末局の送信機会を制限してしまう、という問題がある。
問題点(2)隠れ端末による送信機会の減少
 CSMAに基づくアクセス方式においては、隠れ端末によるパケットの衝突を避けるために、RTS/CTSによって隠れ端末の送信機会を抑制する(前述)。端末局が隣接するノード数に応じて送信電力及び信号検出能力を制御して、通信可能な端末局の台数を制限する方法では(例えば、特許文献1を参照のこと)、隠れ端末については特に考慮されない。このため、隠れ端末が増えた場合であっても、端末局は特に送信電力の制御を行なわない。しかしながら、RTS/CTSの仕組み上、隠れ端末が増えた場合は干渉する可能性が増えるので、干渉を回避するために送信機会が制限されてしまうという問題がある。
問題点(3)送信電力の不一致による電波干渉
 端末局毎に送信電力を制御すると、送信電力の不一致によるアクセス制御の不均一が生じる。これを解消するために、端末局が送信電力に応じて信号検出能力を制御する方法が考えられる(例えば、特許文献1を参照のこと)。しかしながら、信号検出能力を制御したとしても、他の端末局から送出されたパケットによる電波干渉は依然として発生する。このため、データの衝突が発生し、スループットが上がらないという問題がある。
問題点(4)相手の送信電力の推定が困難
 通常、通信相手の送信電力と受信RSSIの差分に基づいてパスロス情報を推定し、パスロス情報とパケット・ロス率に基づいて適切なMCS(Modulation and Coding Scheme)を決定する(MCSは、パケット送信に用いるPhyレート、符号化率、変調方式の組み合わせを示すインデックス番号である)。ところが、上記のパスロスの推定方法は、通信相手となる端末局の送信電力が一定(若しくは既知)であることが前提となる。後述するように、干渉抑制などの目的で各端末局が個別に送信電力制御を行なう場合、送信電力は一定でなくなる。すなわち、通信相手の送信電力が不明であるから、RSSIを測定してもパスロスを推定することができない。この結果、端末局は適切なMCSを選択できず、チャンネルの効率的な使用が困難になる。
 そこで、本明細書で開示する技術では、CSMAに基づくアクセス方式を適用した無線ネットワークにおいて、少なくとも一部の端末局は、送信電力を制御することで他の端末局への干渉を抑制し、他の端末局の送信機会を無駄に減少させないようにしている。
 図1には、本明細書で開示する技術を適用し、CSMAに基づくアクセス方式を適用した無線ネットワークにおいて端末局として動作することができる無線通信装置100の構成を示している。無線通信装置100の実体は、無線機の他、パーソナル・コンピューターや、スマートフォンなどの多機能情報端末、ネットワーク・プリンター、ネットワーク・ドライブといった無線LAN機能を搭載した各種情報機器などである。 
 図示の無線通信装置100は、送信部110と、受信部120と、送信部110及び受信部120が共用する送受信アンテナ101と、送信部110から送出する送信データ並びに受信部120で受け取った受信データの処理を行なう上位層処理部130と、干渉除去部140を備えている。
 送信部110及び受信部120は、主に物理(Phy)層の処理を行なう。また、上位層処理部130は、CSMAに基づくメディア接続制御(Media Access Control:MAC)の処理、及びMAC層より上位層に相当する処理を行なう。
 上位層処理部130は、MAC層処理として、CSMAに基づくネットワークへのアクセス制御やRTS/CTSを用いたデータ送受信、ビーコンの送受信並びに隣接端末局のビーコン送信タイミング(TBTT:Target Beacon Transmission Time)の管理などを行なう。また、上位層処理部130は、例えばユーザーの要求などに応じて所定のアプリケーションを起動する。アプリケーションは、通信相手となる端末局に送信する送信データを生成したり、通信相手から送られてきた受信データの処理を行なったりする。
 送信部110は、チャネル符号化部111と、変調部112と、RF送信部113と、送信電力制御部114を備えている。
 チャネル符号化部111は、上位層処理部130から渡された送信データを符号化し、さらには誤り訂正符号化する。変調部112は、誤り訂正符号化された送信データに対しOFDMなどの変調処理を施す。そして、RF送信部113は、変調した後のディジタル信号をアナログ信号に変換し、さらにRF帯へのアップ・コンバート、電力増幅などのRF送信処理を行なった後、アンテナ101から送出する。送信電力制御部114は、後述するように、干渉抑制部140からの指示に従って、RF送信部113に対して電力増幅の指示値を出力し、送信電力を制御する。
 受信部120は、RF受信部121と、復調部122と、チャネル復号部123と、信号検出能力制御部125を備えている。
 RF受信部121は、アンテナ101で受信した信号の低雑音増幅、ダウン・コンバート、ディジタル信号への変換などのRF受信処理を行なう。復調部122は、受信ディジタル信号にOFDMなどの復調処理を施す。そして、チャネル復号部123は、復調した後の受信データを復号し、さらには誤り訂正して、上位層処理部130に渡す。
 信号検出能力制御部125は、例えば干渉抑制部140からの指示に従って、受信部120内の復調部122における信号検出能力を変更する。ここで、信号検出は、一般には、受信パケットのプリアンブル部分の信号の存在を検出することであり、同期処理の一部として位置付けされる。したがって、信号検出能力制御部125は、プリアンブル検出に設定する閾値を変更することで信号検出能力を制御することができる。あるいは、信号受信系にスイッチとアッテネーターを挿入し、信号検出能力を落としたい場合には、受信信号をアッテネーター経由で受信信号として採用するという手段を採ることもできる。あるいは、AD変換のビット幅を調整する手段をとることもできる。信号検出能力を下げる場合には、少ないビット幅のAD変換を行なってより多くの量子化誤差を許容し、等価的に受信信号のSNRを低減させる。
 干渉抑制部140は、他の端末局への干渉を抑制し、他の端末局の送信機会を減少させないように、あるいは自分の送信機会の減少を抑制するように、送信電力制御部114に対して送信電力の変更指示を適宜出力する。干渉抑制部140は、他の端末局への干渉を抑制する処理として、例えば以下の(1)~(3)を行なう。これらをまとめると、干渉抑制部140は周辺の端末局との遠近に応じて干渉を抑制するように送信電力を制御する、と言うことができる。但し、各処理(1)~(3)の詳細については後述に譲る。
(1)受信RSSIの低い(言い換えれば、距離の遠い)端末局への干渉抑制
(2)通信中の端末局より距離の遠い端末局への干渉抑制
(3)隠れ端末による送信機会の減少の抑制
 干渉抑制部140は、上記のような干渉抑制処理を行なうために、上位層処理部130で行なわれているパケット送受信処理を監視したり、チャネル符号化部111に入力される送信データやチャネル復号部123により復号した後の受信データから抽出した特徴量を解析したりして、周囲の端末局に与える干渉や自分が受ける干渉を推定するようにしている。干渉抑制部140は、送信部110、受信部120、又は上位層処理部130のいずれかの内部に配置することも、これらとは独立して配置することも可能である。
 また、干渉抑制部140は、送信電力の変更に合わせて、送信部110からの送信可能範囲と受信部120における受信可能範囲がバランスするように、信号検出能力制御部125に対して復調部122における信号検出能力の変更を指示することができる。また、干渉抑制部140は、他の端末局との送信電力の管理(送信電力情報の共有や他の端末局の送信電力制御など)を行なう。
 ここでは、CSMAに基づく無線アクセス方式のネットワークで端末局として動作する無線通信装置100が、受信RSSIの低い(距離の遠い)端末局への干渉を抑制する実施例について説明する。以下で説明するように、端末局は、通信可能な他の端末局との距離によって重み付けされた値に応じて、自分の送信電力を制御することで、距離の遠い端末局への干渉を抑制する。
 IEEE802.11sのような、マルチホップ通信を行なうネットワークでは、パケットをバケツリレーで送信することが可能である。このような場合、距離が遠いなどの理由で電波状況が良好でない端末局に対しては、直接パケットを送信するよりも、途中の端末局(中継局)を経由して送信した方が、効率よく安定してデータ送信を行なうことが可能である。
 例えば、図3に示すようなネットワーク構成において、マルチホップ通信について考察してみる。同図では、6台の端末局STA0~STA5が動作している。このうちSTA0から送出するパケットの到達範囲を、参照番号301で示す楕円で囲んでいる。
 STA5は、STA0のパケット到達範囲301の境界付近に存在する。このため、STA0からの送信パケットは、STA5に届いたり届かなかったりする。すなわち、STA0からSTA5へ通信する際は、電波状態が安定しないので、マルチホップのネットワークでは、STA3を経由してSTA0からSTA5へ通信するような経路302、303が形成される。
 つまり、図3に示す例では、STA0とSTA5は直接通信を行なわない。しかしながら、STA0が送出したパケットをSTA5が受信できた場合は、STA5は衝突を回避するために送信が制限されてしまう。
 また、そもそもSTA0とSTA5が同一の通信グループに所属していない場合(IEEE802.11sであれば、STA0とSTA5がそれぞれ異なるmesh idを持つグループに所属している場合)でも、STA5がSTA0の送信のパケットの到達可能範囲301内にいる場合には、上記と同様に、電波干渉を回避するために、STA5の送信機会が抑制されてしまう。
 そこで、本実施例では、 無線通信装置100が例えばSTA0として動作する際には、通信可能な他の端末局STA1~STA5との距離によって重み付けされた値に応じて、自分の送信電力を制御することで、STA5のような距離の遠い端末局への干渉を抑制するようにしている。
 具体的には、干渉抑制部140は、例えばMCSやRSSIから、(受信可能範囲内にいる)他の端末局の距離を推定し、距離に対して重み付けした判定値に応じて、送信電力制御部114に対して送信電力の制御を指示する。例えば、距離に対して重み付けした判定値から、距離が遠くの端末局が増えたと推定される場合には、自分の送信電力を下げるようにする。この結果、マルチホップでの送信が明示的に行なわれるようになり、且つ、マルチホップ先の電波干渉を抑制することが可能である。
 ここで、距離に対して重み付けした値の一例は、 下式(1)に示すように、各端末局k(但し、kは通し番号とする)のRSSI値Rkを基にした距離を表す値1/Rkに係数αを掛けたものの合計値である。干渉抑制部140は、この合計値を、送信電力の制御を決める判定値に用いる。
Figure JPOXMLDOC01-appb-M000001
 判定値が所定の閾値βを超えた場合には、距離が遠くの端末局が増えたと推定されるので、下式(2)に示すように、自分の送信電力を下げて、マルチホップ先の電波干渉を抑制するようにする。一方、判定値が所定の閾値γを下回った場合には、距離が遠くの端末局が減ったと推定されるので、下式(3)に示すように、自分の送信電力を上げて、データ送信を確実に行なうためのマージンを確保するようにする。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 なお、上式(1)に示した判定値の変化に伴って送信電力が頻繁に変化しないように、送信電力の減少の閾値βと送信電力の増加の閾値γを異なる値(β≠γ)に設定すればよい(例えば、γ<β)。
 図10には、マルチホップのネットワーク内で端末局として動作する無線通信装置100が、他の端末局の距離情報に基づいて自分の送信電力を制御するための処理手順をフローチャートの形式で示している。
 まず、受信部120で、周囲の端末局からの受信パケットのRSSIを計測する(ステップS1001)。
 干渉抑制部140は、受信部120で計測された各端末局のRSSIを取得して、上式(1)に従って、送信電力の制御を決める判定値を計算する(ステップS1002)。
 干渉抑制部140は、算出した判定値を、送信電力を減少させる閾値βと大小比較する(ステップS1003)。ここで、上式(2)で示したように、判定値が送信電力の減少の閾値βを超える場合には(ステップS1003のYes)、干渉抑制部140は、送信電力制御部114に対して、送信電力を減少するよう指示を出す(ステップS1004)。送信電力制御部114は、この指示に応答して、RF送信部113における電力増幅を制御する。なお、ビーコンを含むすべての送信パケットに対して、計算された送信電力を用いる。
 一方、判定値が送信電力の減少の閾値β以下の場合には(ステップS1003のNo)、続いて、干渉抑制部140は、算出した判定値を、送信電力を増加させる閾値γと大小比較する(ステップS1005)。そして、上式(3)で示したように、判定値が送信電力の増加の閾値γを下回るときには(ステップS1005のYes)、干渉抑制部140は、送信電力制御部114に対して、送信電力を増加するよう、RF送信部113に対して電力増幅の指示を出す(ステップS1006)。自分の送信電力を制御することで、距離の遠い端末局への干渉を抑制することができる。なお、ビーコンを含むすべての送信パケットに対して、計算された送信電力を用いる。
 また、ステップS1004又はステップS1006で送信電力を変更したときには、これに併せて、干渉抑制部140は、信号検出能力制御部125に対して、受信部120内の復調部122における信号検出能力を変更するよう指示する(ステップS1007)。例えば、送信電力を減少させたときには、送信可能範囲が縮減するので、これに伴って、小さな電力で受信されるパケットを検出しないように調整する。但し、送信電力の変更に伴い、信号検出能力の調整も行なうかどうかは任意である。
 また、変更した後の送信電力で、算されたパス・メトリックと実際の値に齟齬が生じ、送信データのパケット・ロスなど不具合が発生する可能性があるので、パス・メトリックの再計算を実施する(ステップS1008)。但し、送信電力の変更に伴いパス・メトリックの再計算も行なうかどうかは任意である。
 なお、上記のステップS1004での送信電力を減少する処理では、例えば、無線通信装置100が現在のデータ伝送を保持できる必要最小限となる、最低送信電力まで減少させるようにしてもよい。ここで言う最低送信電力は、現在伝送しているデータに必要なデータ伝送速度、RSSIやMCSから得られたパスロス情報、データのQoSに基づいて算出することができる。また、ステップS1004で送信電力を最低送信電力まで引き下げる場合には、ステップS1006での送信電力を増加する処理では、引き下げる前の送信電力に戻す操作であっても良い。
 上記の説明では、RSSI値を端末局との距離と相関のある値として利用したが、本明細書で開示する技術の要旨はこのような判定値の計算方法に限定されるものではない。例えば、IEEE802.11s以外の無線モジュールを使用して、周囲の端末局までの距離を推定するようにしてもよい。また、カメラ(例えば、ステレオカメラ)などの撮像画像から各端末局までの距離を算出するようにしてもよい。
 ステップS1007で行なわれる、受信部120の信号検出能力の制御について説明を補足しておく。
 各端末局が上記のように送信電力制御をそれぞれ個別に行なうと、端末局によって送信電力が異なる状況が発生する。このような場合、送信電力の大きな方の端末局が送信機会を得る可能性が高くなり、端末局毎の送信機会が不均一になることが懸念される。
 図13には、端末局毎に送信可能範囲が不均一になっている無線ネットワーク環境を例示している。図示の例では、STA0からSTA5までの6台の端末局が存在している。そして、矢印1301で示す方向で、STA0からSTA1へデータ送信が行なわれ、矢印1302で示す方向で、STA2からSTA3へデータ送信が行なわれ、矢印1303で示す方向で、STA4からSTA5へデータ送信が行なわれるものとする。なお、ここでは、Wi-Fi Directやメッシュ・ネットワークなど、各端末局がピア・ツー・ピアで接続し、伝送している場合を想定している。
 STA0は、送信電力を下げている。STA0の送信可能範囲は、参照番号1304で示す楕円で表わされるように、小さくなっている。一方、STA4は、送信電力が大きいままである。STA4の送信可能範囲は、参照番号1305で示す楕円で表わされるが、STA0を含んでいる。このような状況でCSMAに基づく無線アクセスを行なうと、STA0は、STA4から送出される信号を検出できるため、例えばSTA4のRTSパケットを受信するとデータの送信を停止する。一方、STA4は、STA0の信号を検出できないので、例えばSTA0のRTSパケットを検出せず、自分のデータ送信を行なってしまう可能性がある。
 このような送信機会の不均一性を軽減するために、STA0は、送信電力を変更したときには、自分の信号検出能力も併せて制御する。すなわち、STA0では、受信部120内の復調部122における信号検出の閾値を変更する。STA0は、自分の送信電力を小さくしたときには、復調部122における信号検出の閾値を上げることによって、信号検出範囲を狭くする。
 図14には、STA0が信号検出の閾値を上げたときの、STA0にとってのSTA4の仮想的な送信可能範囲を示している。図示のように、STA0が自分の送信可能範囲1401を小さくしたときに、併せて信号検出範囲を狭くすることにより、STA4の送信可能範囲を参照番号1402で示すように狭くすることと同様の効果を得ることができる。STA0は、STA4の信号を検出できなくなるので、例えばSTA4のRTSパケットを検出せず、自分のデータ送信を行なうことが可能になる。
 また、ステップS1008で行なわれる、パス・メトリックの再計算について説明を補足する。
 IEEE802.11sを始めとする無線メッシュ・ネットワークでは、経路を選択するために、経路の近さを示す値すなわちパス・メトリックを計算する。IEEE802.11sでは、物理層の伝送速度とパケット誤り率などから計算される、データ・フレームを送信する際にチャネルを占有する時間をデフォルトのパス・メトリックとして規定している。
 無線ネットワークでは、伝播環境や各端末局の状況は時々刻々と変化することが想定される。このため、パス・メトリックの計算は一定の時間間隔で行なわれている。しかしながら、ステップS1008で端末局が送信電力や信号検出能力を変更すると、計算されたパス・メトリックと実際の値に齟齬が生じ、送信データのパケット・ロスなどの不具合が発生する可能性が高くなる。したがって、端末局は、自分の送信電力や信号検出能力を変更した場合には、パス・メトリックの再計算を行なうことが好ましい。
 パス・メトリックの再計算は、通常の経路選択時と同様に、送信元の端末局が経路要求PREQパケットを送信することで実行される。但し、データの送信元ではなく中継ノードである端末局が送信電力を変更したときには、PREQを送信する方法ではパス・メトリックを得ることはできない。そこで、中継ノードである端末局は、経路エラーPERRパケットを送信元の端末局に送信する。PERRは、本来、無線リンクの悪化などのために設定したメッシュ・パスが利用できなくなった場合に用いられ、送信元に対してメッシュ・パスのリフレッシュ(パス・メトリックの再計算)を促す。したがって、この操作によってパス・メトリックが再計算される。
 第1の実施例によれば、端末局は、自分の送信電力を減少させることで、直接通信することがない遠く離れた端末局に対する干渉を抑制し、他の端末局の送信機会の減少を防ぐことができる。
 ここでは、CSMAに基づく無線アクセス方式のネットワークで端末局として動作する無線通信装置100が、現在通信中の端末局より距離の遠い端末局への干渉を抑制する実施例について説明する。以下で説明するように、端末局は、現在通信中の端末局との通信リンクが低下されない程度に自分の送信電力を引き下げることで、現在通信中の端末局より距離の遠い端末局への干渉を抑制する。
 例えばアドホックなネットワークでは、端末局は、自分にとって関係のないデータ通信のために自分の送信機会が制限されてしまうという問題がある。また逆に、自分の通信のために、関係のない他の端末局の送信機会を制限するという問題がある。
 図4に示すような異なるグループが混在するメッシュ・ネットワークの構成を例にとって、端末局間の相互干渉について考察してみる。同図では、8台の端末局STA0~STA7が動作しているが、STA0、STA1、STA2、STA3、STA4の5台がグループAに所属し、グレーで表示するSTA5、STA6、STA7の3台がグループBに所属している。また、グループAに所属するSTA0から送出するパケットの到達範囲を、参照番号401で示す楕円で囲んでいる。
 STA0は、STA5とは別のネットワークに所属しているので、相互にデータをやり取りすることはない。しかしながら、STA5は、STA0のパケットの到達範囲401の中にいるので、干渉を受けてしまう。
 そこで、本実施例では、無線通信装置100が例えばSTA0として動作する際には、既に十分に通信可能な端末局がいる場合で、且つ、最も離れていると推定される端末局が通信を行なう対象でない場合には、送信電力を下げてパケットの到達範囲を縮小することで、不要な電波干渉を抑制して、通信を行なう対象でない端末の送信機会の減少を防ぐことができる。
 図5には、図4中のSTA0が送信電力を下げてパケットの到達範囲を縮小させた様子を示している。図中、縮小した後のSTA0の送信パケットの到達範囲を、参照番号501で示す楕円で囲んでいる。このように、STA0は、自分から最も離れたSTA5が通信に関わらない端末局であることを検知した際には、自分の送信電力を下げることで、干渉を抑制し、通信を行なう対象ではないSTA5の送信機会の減少を防ぐようにしている。
 図11には、CSMAに基づく無線アクセス方式のネットワーク上で端末局として動作する無線通信装置100が、通信を行なっていない遠距離の端末局への干渉を抑制するよう自分の送信電力を制御するための処理手順をフローチャートの形式で示している。
 まず、受信部120で、周囲の端末局からの受信パケットのRSSIを計測する(ステップS1101)。
 次いで、干渉抑制部140は、ステップS1101で計測したRSSIの情報に基づいて、各受信パケットの送信元と通信が可能かどうかをチェックし、通信が可能な端末局の台数をカウントする(ステップS1102)。そして、干渉抑制部140は、現在通信が可能な端末局が一定台数以上存在するかどうかをチェックする(ステップS1103)。
 ここで、通信可能な端末局が一定台数未満の場合には(ステップS1103のNo)、後続の送信電力の制御を回避する。何故ならば、このような状況下で送信電力を下げると、通信可能な端末局の台数がさらに減少し、自分の通信機会が著しく損なわれるからである。
 一方、現在通信が可能な端末局が一定台数以上存在する場合には(ステップS1103のYes)、続いて、干渉抑制部140は、通信が可能な端末局のうち最も遠距離のものを特定する(ステップS1104)。
 通信が可能な各端末局との距離情報を推定する方法としては、RSSI値を距離と相関のある値として利用する他、IEEE802.11s以外の無線モジュールを使用して距離を推定する方法、カメラの撮像画像から算出する方法などが挙げられる(前述)。
 そして、干渉抑制部140は、最も遠距離と判断した端末局とは通信を行なっているかどうかをチェックする(ステップS1105)。干渉抑制部140は、上記のようにグループの所属情報に基づいて、端末局と通信を行なっているかどうかを判断することができる。
 最も遠距離の端末局と通信を行なっている場合には(ステップS1105のYes)、後続の送信電力の制御を回避する。何故ならば、このような状況下で送信電力を下げると、その端末局との通信が途切れてしまうからである。
 一方、最も遠距離の端末局とは通信を行なっていない場合には(ステップS1105のNo)、干渉抑制部140は、送信電力制御部114に対して、送信電力を減少するよう指示を出す(ステップS1106)。送信電力制御部114は、この指示に応答して、RF送信部113における電力増幅を制御する。自分の送信電力を下げることで、干渉を抑制し、通信を行なう対象ではない端末局の送信機会の減少を防ぐことができる。なお、ビーコンを含むすべての送信パケットに対して、計算された送信電力を用いる。
 また、ステップS1106で送信電力を変更したときには、これに併せて、干渉抑制部140は、信号検出能力制御部125に対して、受信部120内の復調部122における信号検出能力を変更するよう指示する(ステップS1107)。例えば、送信電力を減少させたときには、送信可能範囲が縮減するので、これに伴って、小さな電力で受信されるパケットを検出しないように調整する。但し、送信電力の変更に伴い、信号検出能力の調整も行なうかどうかは任意である。
 また、変更した後の送信電力で、計算されたパス・メトリックと実際の値に齟齬が生じ、送信データのパケット・ロスなど不具合が発生する可能性があるので、パス・メトリックの再計算を実施する(ステップS1108)。但し、送信電力の変更に伴いパス・メトリックの再計算も行なうかどうかは任意である。
 なお、ステップS1105では、グループの所属状況以外の情報に基づいて、端末局と通信を行なっているかどうかを判定するようにしても良い。例えば、直接通信することも可能だが、通信履歴からあまり通信していない端末局は、通信を行なっていないと判定することができる。また、IEEE802.111sのネットワークであれば、nexthopに指定されていない端末を、通信を行なっていないと判定するようにしてもよい。
 第2の実施例によれば、端末局は、自分の送信電力を減少させることで、直接通信することがない遠く離れた端末局に対する干渉を抑制し、他の端末局の送信機会の減少を防ぐことができる。
 ここでは、CSMAに基づく無線アクセス方式のネットワークで端末局として動作する無線通信装置100が、隠れ端末との干渉を抑制する実施例について説明する。以下で説明するように、端末局は、自分が検知している端末局の台数と、隣接する他の端末局が検知している端末局の台数に応じて自分の送信電力を制御することで、隠れ端末との干渉を抑制し、送信機会の減少を抑制する。
 例えば、図6に示すような隠れ端末が存在するネットワークの構成で、端末局間の相互干渉について考察してみる。同図では、6台の端末局STA0~STA5が動作し、このうちSTA0から送出するパケットの到達範囲を、参照番号601で示す楕円で囲んでいる。STA0から送信したパケットを、STA1、STA2、STA3は受信できるが、STA4、STA5は受信できない状態が示されている。
 この場合、参照番号602で示すようにSTA0がSTA1に対してデータを送信する際、STA4はSTA0の状態を知らないので、STA0の送出タイミングと同時期に、参照番号603で示すようにSTA3に対してデータを送信する可能性がある。すると、STA0のパケットとSTA4のパケットが衝突し、STA3はSTA4のデータを受信することはできない。
 CSMAに基づくアクセス制御を行なうネットワークでは、このような隠れ端末問題を解決するために、RTS/CTS方式を併用する(前述)。しかしながら、RTS/CTSを使用すると、パケットの衝突を抑制できるが、送出タイミングが遅延する。周辺の端末局や隠れ端末が多くなると、送出タイミングが遅延する結果として、スループットが上がらない。
 そこで、本実施例では、無線通信装置100が例えばSTA0として動作する際には、隠れ端末の存在を推定し、隠れ端末を含め、自分のパケットの送受信に実質的に影響のある端末局の台数に応じて送信電力を制御するようにしている。
 本明細書で開示する技術の要旨は、隠れ端末の数を推定する方法は特に限定されない。例えば、IEEE802.11sのネットワークであれば、各端末局が報知するビーコンの衝突を防ぐために使用される、ビーコン間隔タイミング要素(Beacon Interval Timing Element)を使用することが考えられる。
 図7には、Bescon Interval Timing Elementのデータ・フォーマットを示している。通常、Beacon Interval Timing Elementは、ビーコンやアクション・フレームに挿入して送信される。Beacon Interval Timing Elementには、各端末局が受信した他の端末局のビーコンの送信タイミング情報が格納される。図7に示すBeacon Interval Timing Element700は、受信したN台分のビーコンタイミング情報701-1、…、701-Nが格納されている。通常、Beacon Interval Timing Elementを受信した端末局は、報知されたビーコンの送信タイミングに基づいて衝突が発生しないように、自分のビーコン送信タイミングを決定する。Beacon Interval Timing Elementを用いることで、例えば直接ビーコンを受信できない端末局(隠れ端末)との間でも、ビーコンの衝突が発生しないようにすることが可能になる。本実施例では、この仕組みを利用することで、隠れ端末の台数を推測する。
 Beacon Interval Timing Elementを用いて隠れ端末の台数を推定する方法について、図8を参照しながら説明する。同図では、7台の端末局STA0~STA6が動作している。また、STA0から送出するパケットの受信範囲を、参照番号801で示す楕円で囲んでいる。図示のネットワーク構成で、各端末局(送信側)のパケットの受信範囲にいる端末局(受信側)の一覧を、以下の表1に示しておく。
Figure JPOXMLDOC01-appb-T000004
 STA0は、自分の受信範囲内のSTA1、STA2、STA3からしかビーコンを受信できず(参照番号802~804を参照のこと)、STA4、STA5、STA6からのビーコンを直接受信できないとする。一方、STA3は、STA1、STA4、STA5からのビーコンを受信できるので、参照番号801で示すように、STA1、STA4、STA5のビーコン送信タイミング(TBTT)をBeacon Interval Timing Elementに格納して、ビーコンを送出する。
 したがって、STA0は、STA3から受信したビーコンに含まれるBeacon Interval Timing Elementと、自分自身が管理するSTA1、STA2、STA3のビーコン送信タイミングとの差分を見ることで、隠れ端末であるSTA4、STA5が存在することを推定することができる。
 また、STA1は、STA0の隠れ端末であるSTA6のビーコンも受信できるので、参照番号803で示すように、STA2、STA3、STA6のビーコン送信タイミングをBeacon Interval Timing Elementに格納して、ビーコンを送出する。そして、STA0は、STA1から受信したBeacon Interval Timing Elementに基づいて、STA6が存在することを推定することができる。
 このようにして、STA0は、直接ビーコンを受信できる端末局としてSTA1、STA2、STA3の3台と、隠れ端末隠れ端末としてSTA4、STA5、STA6の3台が、自分のパケットの送受信に影響ある端末局として存在することを把握できる。そして、STA0は、隠れ端末を含め、実質的に影響のある端末局の台数が所定の閾値を超えた場合には、送信電力を制御する。これによって、STA0は、直接電波が届く端末局STA1、STA2、STA3だけでなく、直接電波は届かないが実質的に影響がある端末局(隠れ端末)STA4、STA5、STA6の存在に応じて、送信電力並びに信号検出能力を制御することが可能になる。
 図12には、CSMAに基づく無線アクセス方式のネットワーク上で端末局として動作する無線通信装置100が、実質的に影響のある端末局の存在に応じて自分の送信電力を制御するための処理手順をフローチャートの形式で示している。
 周囲の端末局からのビーコンを受信すると(ステップS1201)、受信部120で復調及び復号処理を行なう。そして、上位層処理部130では、ビーコンの記載内容を解析する。
 干渉抑制部140は、受信した各ビーコンに格納されているBeacon Interval Timing Elementから、隠れ端末を含む、自分のパケットの送受信に実質的に影響のある端末局の総数を推定する(ステップS1202)。そして、自分のパケットの送受信に実質的に影響のある端末局の総数を所定の閾値と大小比較する(ステップS1203)。
 自分のパケットの送受信に実質的に影響のある端末局の総数が閾値以下であれば(ステップS1203のNo)、後続の送信電力の制御を行なわない。何故ならば、このような状況下で送信電力を下げると、直接通信を行なっている端末局への送信電力のマージンが小さくなり、通信が不安定になるからである。
 一方、自分のパケットの送受信に実質的に影響のある端末局の総数が閾値を超える場合には(ステップS1203のYes)、干渉抑制部140は、送信電力制御部114に対して、送信電力を減少するよう指示を出す(ステップS1204)。送信電力制御部114は、この指示に応答して、RF送信部113における電力増幅を制御する。自分の送信電力を下げることで、隠れ端末など実質的に影響のある端末との干渉を抑制することができる。なお、ビーコンを含むすべての送信パケットに対して、計算された送信電力を用いる。
 また、ステップS1204で送信電力を変更したときには、これに併せて、干渉抑制部140は、信号検出能力制御部125に対して、受信部120内の復調部122における信号検出能力を変更するよう指示する(ステップS1205)。例えば、送信電力を減少させたときには、送信可能範囲が縮減するので、これに伴って、小さな電力で受信されるパケットを検出しないように調整する。但し、送信電力の変更に伴い、信号検出能力の調整も行なうかどうかは任意である。
 また、変更した後の送信電力で、算されたパス・メトリックと実際の値に齟齬が生じ、送信データのパケット・ロスなど不具合が発生する可能性があるので、パス・メトリックの再計算を実施する(ステップS1206)。但し、送信電力の変更に伴いパス・メトリックの再計算も行なうかどうかは任意である。
 なお、上記ではBeacon Interval Timing Elementを含むビーコンやアクション・フレームなど既存の(IEEE802.11で規定されている)フレーム・フォーマットを使用して隠れ端末を推定する方法について詳解したが、その他の方法によっても隠れ端末を推定することができる。
 ビーコン・フレームのフレーム・ボディーには、さまざまな情報要素(Information Element:IE)を格納することができる。その1つとして、Vendor Specific IEが定義されている。Vendor Specific IEは、ベンダーが自由に追加し利用可能な情報要素である。本実施例では、自分が検知した(ビーコンを受信できた)端末局の情報をVendor Specific IEに格納して相互に利用することで、隠れ端末の情報を取得することができる。また、IPレイヤーのデータ・パケットとして、隠れ端末の情報をブロードキャストやマルチキャスト、ユニキャストするようにしてもよい。
 第3の実施例によれば、端末局は、隠れ端末が増加した際に、自分の送信電力を減少することによって干渉を抑制し、 他の端末局の送信機会の減少を防ぐことができる。
 第1乃至第3の実施例では、端末局は、周辺の端末局との遠近に応じて干渉を抑制するように自分の送信電力を制御するものである。
 このように端末局毎に送信電力を制御すると、送信電力の不一致によるアクセス制御の不均一が生じる。これを解消するために、端末局が送信電力に応じて信号検出能力を制御する方法が考えられるが、他の端末局から送出されたパケットによる電波干渉は依然として発生する。このため、データの衝突が発生し、スループットが上がらないという、上記の問題点(3)がある。
 例えば、図9に示すような、端末局毎に送信電力に偏りのあるネットワークを例にとって考察してみる。同図では、6台の端末局STA0~STA5が動作している。このうち、STA0から送出するパケットの到達範囲を、参照番号901で示す実線の楕円で囲んでいる。また、STA3から送出するパケットの到達範囲を、参照番号902で示す点線の楕円で囲んでいる。
 ここで、STA0は、送信電力を制御していると同時に信号検出能力を制御して、STA3のパケットが到達しないようにしている。これによって、STA0とSTA3間のデータ送出タイミングの公平性を保っている。しかしながら、図9中、STA0が楕円902内に収容されていることからも分かるように、電波的にはSTA3のパケットがSTA0に到達しているため、STA0とSTA3のパケットは衝突する可能性がある。
 そこで、本実施例では、端末局間の送信電力の不一致を解消するために、端末局が周辺の端末局に対して送信電力に関する情報を通知する方法を導入し、電波干渉を抑制するようにしている。
 例えば、送信電力に関する情報の一例として、周辺の端末局に対して送信電力の制御要求を通知する。この制御要求には、制御させたい端末局の固有情報(例えばアドレスなど)と、送信情報をどの程度制御すべきかを指示する指示値などの情報を記載する。干渉を受けた端末局は、その原因となった端末局に対して送信電力の低下を要求するパケットを送出して、パケットの干渉を抑制する。図9に当て嵌めて説明すると、STA0からSTA3に対して送信電力の低下を要求するパケットを送出することで、STA3の送信電力を低下させ、パケットの干渉を抑制することが可能である。例えば、無線通信装置100がSTA0として動作する場合、干渉抑制部140又は上位層処理部130が、パケットの干渉を検知したことに応じて、送信電力の低下を要求するパケットを送信させる。
 また、送信電力に関する情報の他の例として、自分の送信電力の情報を周辺の端末局に通知するようにしてもよい。干渉を受けた端末局は、自分の送信電力の情報を載せたパケットを周辺の端末局にブロードキャストする。あるいは、干渉の原因となった端末局宛てに送信するようにしてもよい。このパケットを受信した周辺の端末局側では、送信電力を制御するかどうかを判断する。例えば、相手の送信電力の情報に適合するように、自分の送信電力を制御してもよい。又は、このパケットの送信元で受信できている端末局のRSSIと、自分で観測されているその相手のRSSIを比較して、送信電力を制御するようにしてもよい。勿論、周辺の端末局は、相手から受信した送信電力の情報を無視してもよい。
 端末局は、上記のような送信電力に関する情報を、既存のフレーム・フォーマットを利用して送信することができる。例えば、ビーコンなど既存のフレーム・フォーマットに含まれている、ベンダーが自由に追加し利用可能な情報要素として定義されているVendor Specific IEを利用することができる。また、端末局は、既存のフレーム・フォーマットを利用するのではなく、IPレイヤーのデータ・パケットなど独自のアクション・フレームを定義して、送信電力に関する情報を送信するようにしてもよい。
 但し、図9に示した例では、STA0の方が先に送信電力を低下させた状態であり、STA0から送出する電波はSTA3まで届かない。STA0が送信電力に関する情報を載せたパケットをSTA3に直接送信しても、通知することができない。そこで、先に送信電力を低下させた状態のSTA0は、送信電力に関する情報を通知するパケットの送信するときに、一時的に送信電力を増加させるようにしてもよい。STA0として動作する無線通信装置100は、干渉抑制部140が、送信電力制御部114に対して、送信するパケットの種類又はパケットに含まれる情報の種類に応じた送信電力を指示するようにすればよい。
 あるいは、先に送信電力を低下させた状態の端末局は、送信電力に関する情報を載せたパケットを、ブロードキャスト転送して、通知するようにしてもよい。若しくは、送信電力に関する情報を載せたデータ・フレームをマルチホップ通信で通知するようにしてもよい。
 第4の実施例によれば、周辺の端末局同士で互いの送信電力の情報や周辺の端末局の情報を通知することで、各端末局は、より最適な送信電力を設定することができるようになる。結果として、システム全体で干渉を抑制し、他の端末局の送信機会の減少を防ぐことができる。
 また、端末局が周囲の端末局に対して自分の送信電力に関する情報を通知するメリットとして、周囲の端末局の送信電力を自分に合わせて低下させる以外に、端末局間で送信電力の情報を共有できることが挙げられる。すなわち、上述した問題点(4)を解決することができ、各端末局は、通信相手の送信電力と受信RSSIの差分に基づいてパスロス情報を推定できるようになり、この結果として、適切なMCSを選択して、チャンネルの効率的な使用が可能になる。
特開2005-253047号公報
 以上、特定の実施形態を参照しながら、本明細書で開示する技術について詳細に説明してきた。しかしながら、本明細書で開示する技術の要旨を逸脱しない範囲で当業者が該実施形態の修正や代用を成し得ることは自明である。
 本明細書では、アドホック・ネットワークやメッシュ・ネットワークのように各端末局が自律分散する無線ネットワークに適用した実施形態を中心に説明してきたが、本明細書で開示する技術の要旨はこれに限定されるものではないない。本明細書で開示する技術は、各端末局がCSMAを始めメディアの占有状態に応じてメディアへのアクセスを制御する、さまざまなタイプの無線ネットワークに適用して、端末局間での無駄な干渉を抑制し、各端末局の送信機会を向上することができる。
 要するに、例示という形態により本明細書で開示する技術について説明してきたのであり、本明細書の記載内容を限定的に解釈するべきではない。本明細書で開示する技術の要旨を判断するためには、特許請求の範囲を参酌すべきである。
 なお、本明細書の開示の技術は、以下のような構成をとることも可能である。
(1)無線信号を送信する送信部と、
 無線信号を受信する受信部と、
 前記送信部の送信電力を制御する送信電力制御部と、
 周辺の端末局との遠近に応じて干渉を抑制するように、前記送信電力制御部に送信電力の変更を指示する干渉抑制部と、
を具備する無線通信装置。
(2)前記干渉抑制部は、距離の遠い端末局への干渉を抑制するように、前記送信電力制御部に送信電力の変更を指示する、
上記(1)に記載の無線通信装置。
(3)前記干渉抑制部は、通信可能な他の端末局との距離によって重み付けされた判定値に応じて、前記送信電力制御部に送信電力の変更を指示する、
上記(1)に記載の無線通信装置。
(4)前記干渉抑制部は、前記判定値に基づいて距離が遠くの端末局が増えたと推定される場合には送信電力を下げるように指示する、
上記(3)に記載の無線通信装置。
(5)前記干渉抑制部は、前記判定値に基づいて距離が遠くの端末局が減ったと推定される場合には送信電力を上げるように指示する、
上記(3)に記載の無線通信装置。
(6)前記干渉抑制部は、現在通信中の端末局より距離の遠い端末局への干渉を抑制するように、前記送信電力制御部に送信電力の減少を指示する、
上記(1)に記載の無線通信装置。
(7)前記干渉抑制部は、通信可能な端末局が存在し、且つ、最も離れていると推定される端末局が通信を行なう対象でない場合には、送信電力の減少を指示する、
上記(1)に記載の無線通信装置。
(8)前記干渉抑制部は、通信可能な端末局が所定台数未満のときには、送信電力の減少を指示しない、
上記(7)に記載の無線通信装置。
(9)前記干渉抑制部は、メッシュ・ネットワークにおけるグループの所属状況、通信履歴、又は、nexthopの指定に基づいて、最も離れていると推定される端末局が通信を行なう対象か否かを判定する、
上記(7)に記載の無線通信装置。
(10)前記干渉抑制部は、隠れ端末との干渉を抑制するように、前記送信電力制御部に送信電力の変更を指示する、
上記(1)に記載の無線通信装置。
(11)前記干渉抑制部は、自分のパケットの送受信に影響のある端末局の総数を推定し、前記総数が所定値を超えるときには、前記送信電力制御部の送信電力の減少を指示する、
上記(1)に記載の無線通信装置。
(12)前記干渉抑制部は、各端末局が送信するビーコン又はアクション・フレームに含まれるBeacon Interval Timing Elementに基づいて、自分のパケットの送受信に影響のある端末局の総数を推定する、
上記(11)に記載の無線通信装置。
(13)
前記干渉抑制部は、他の端末局に対して送信電力に関する情報を送信させる、
上記(1)に記載の無線通信装置。
(13-1)既存のフレーム・フォーマットのVendor Specific IEを用いて送信電力に関する情報を送信する、
上記(13)に記載の無線通信装置。
(13-2)独自に定義したアクション・フレームを用いて送信電力に関する情報を送信する、
上記(13)に記載の無線通信装置。
(14)前記干渉抑制部は、他の端末局に対して送信電力に関する情報を送信する際に、前記送信電力制御部に送信電力の増加を指示する、
上記(13)に記載の無線通信装置。
(15)前記干渉制御部は、送信電力に関する情報を載せたパケットをブロードキャスト転送、又は、マルチキャスト通信により送信させる、
上記(13)に記載の無線通信装置。
(16)前記干渉制御部は、送信電力に関する情報として他の端末局に対する送信電力の制御要求を送信する、
上記(13)に記載の無線通信装置。
(17)前記干渉制御部は、送信電力に関する情報として自分の送信電力に関する情報を送信する、
上記(13)に記載の無線通信装置。
(18)前記干渉制御部は、他の端末局から送信電力に関する情報を受信したことに応じて、自分の送信電力の制御を行なう、
上記(13)に記載の無線通信装置。
(19)前記受信部の信号検出能力を制御する信号検出能力制御部をさらに備え、
 前記干渉抑制部は、送信電力の変更に応じて、前記信号検出能力制御部に信号検出能力の変更を指示する、
上記(1)に記載の無線通信装置。
(20)周辺局との遠近に応じた干渉を推定する推定ステップと、
 前記干渉を抑制するように、データ送信時における送信電力を制御する送信電力制御ステップと、
を有する無線通信方法。
 100…無線通信装置、101…アンテナ
 110…送信部、111…チャネル符号化部、112…変調部
 113…RF送信部、114…送信電力制御部
 120…受信部、121…RF受信部、122…復調部
 123…チャネル復号部、125…信号検出能力制御部
 130…上位層処理部、140…干渉抑制部

Claims (20)

  1.  無線信号を送信する送信部と、
     無線信号を受信する受信部と、
     前記送信部の送信電力を制御する送信電力制御部と、
     周辺の端末局との遠近に応じて干渉を抑制するように、前記送信電力制御部に送信電力の変更を指示する干渉抑制部と、
    を具備する無線通信装置。
  2.  前記干渉抑制部は、距離の遠い端末局への干渉を抑制するように、前記送信電力制御部に送信電力の変更を指示する、
    請求項1に記載の無線通信装置。
  3.  前記干渉抑制部は、通信可能な他の端末局との距離によって重み付けされた判定値に応じて、前記送信電力制御部に送信電力の変更を指示する、
    請求項1に記載の無線通信装置。
  4.  前記干渉抑制部は、前記判定値に基づいて距離が遠くの端末局が増えたと推定される場合には送信電力を下げるように指示する、
    請求項3に記載の無線通信装置。
  5.  前記干渉抑制部は、前記判定値に基づいて距離が遠くの端末局が減ったと推定される場合には送信電力を上げるように指示する、
    請求項3に記載の無線通信装置。
  6.  前記干渉抑制部は、現在通信中の端末局より距離の遠い端末局への干渉を抑制するように、前記送信電力制御部に送信電力の減少を指示する、
    請求項1に記載の無線通信装置。
  7.  前記干渉抑制部は、通信可能な端末局が存在し、且つ、最も離れていると推定される端末局が通信を行なう対象でない場合には、送信電力の減少を指示する、
    請求項1に記載の無線通信装置。
  8.  前記干渉抑制部は、通信可能な端末局が所定台数未満のときには、送信電力の減少を指示しない、
    請求項7に記載の無線通信装置。
  9.  前記干渉抑制部は、メッシュ・ネットワークにおけるグループの所属状況、通信履歴、又は、nexthopの指定に基づいて、最も離れていると推定される端末局が通信を行なう対象か否かを判定する、
    請求項7に記載の無線通信装置。
  10.  前記干渉抑制部は、隠れ端末との干渉を抑制するように、前記送信電力制御部に送信電力の変更を指示する、
    請求項1に記載の無線通信装置。
  11.  前記干渉抑制部は、自分のパケットの送受信に影響のある端末局の総数を推定し、前記総数が所定値を超えるときには、前記送信電力制御部の送信電力の減少を指示する、
    請求項1に記載の無線通信装置。
  12.  前記干渉抑制部は、各端末局が送信するビーコン又はアクション・フレームに含まれるBeacon Interval Timing Elementに基づいて、自分のパケットの送受信に影響のある端末局の総数を推定する、
    請求項11に記載の無線通信装置。
  13.  前記干渉抑制部は、他の端末局に対して送信電力に関する情報を送信させる、
    請求項1に記載の無線通信装置。
  14.  前記干渉抑制部は、他の端末局に対して送信電力に関する情報を送信する際に、前記送信電力制御部に送信電力の増加を指示する、
    請求項13に記載の無線通信装置。
  15.  前記干渉制御部は、送信電力に関する情報を載せたパケットをブロードキャスト転送、又は、マルチキャスト通信により送信させる、
    請求項13に記載の無線通信装置。
  16.  前記干渉制御部は、送信電力に関する情報として他の端末局に対する送信電力の制御要求を送信する、
    請求項13に記載の無線通信装置。
  17.  前記干渉制御部は、送信電力に関する情報として自分の送信電力に関する情報を送信する、
    請求項13に記載の無線通信装置。
  18.  前記干渉制御部は、他の端末局から送信電力に関する情報を受信したことに応じて、自分の送信電力の制御を行なう、
    請求項13に記載の無線通信装置。
  19.  前記受信部の信号検出能力を制御する信号検出能力制御部をさらに備え、
     前記干渉抑制部は、送信電力の変更に応じて、前記信号検出能力制御部に信号検出能力の変更を指示する、
    請求項1に記載の無線通信装置。
  20.  周辺局との遠近に応じた干渉を推定する推定ステップと、
     前記干渉を抑制するように、データ送信時における送信電力を制御する送信電力制御ステップと、
    を有する無線通信方法。
PCT/JP2014/064471 2013-07-29 2014-05-30 無線通信装置及び無線通信方法 WO2015015891A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/907,554 US9763202B2 (en) 2013-07-29 2014-05-30 Wireless communication apparatus and wireless communication method
EP19209850.7A EP3629636B1 (en) 2013-07-29 2014-05-30 Wireless communication apparatus and wireless communication method
JP2015529429A JPWO2015015891A1 (ja) 2013-07-29 2014-05-30 無線通信装置及び無線通信方法
CN201910746716.9A CN110446251B (zh) 2013-07-29 2014-05-30 无线通信设备和无线通信方法
EP14832167.2A EP3030013B1 (en) 2013-07-29 2014-05-30 Wireless communication apparatus and wireless communication method
CN201480041514.XA CN105723782A (zh) 2013-07-29 2014-05-30 无线通信设备和无线通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-156362 2013-07-29
JP2013156362 2013-07-29

Publications (1)

Publication Number Publication Date
WO2015015891A1 true WO2015015891A1 (ja) 2015-02-05

Family

ID=52431436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064471 WO2015015891A1 (ja) 2013-07-29 2014-05-30 無線通信装置及び無線通信方法

Country Status (5)

Country Link
US (1) US9763202B2 (ja)
EP (2) EP3629636B1 (ja)
JP (2) JPWO2015015891A1 (ja)
CN (2) CN110446251B (ja)
WO (1) WO2015015891A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018019327A (ja) * 2016-07-29 2018-02-01 日本電気株式会社 無線通信端末および送信電力決定方法
CN108702640A (zh) * 2016-02-26 2018-10-23 日本电信电话株式会社 无线环境判断方法以及无线通信系统
JP2019017094A (ja) * 2013-07-29 2019-01-31 ソニー株式会社 無線通信装置及び無線通信方法
JP2019512930A (ja) * 2016-03-09 2019-05-16 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ワイヤレス通信ネットワークにおいて干渉を低減するための方法
JP2020057941A (ja) * 2018-10-02 2020-04-09 カシオ計算機株式会社 無線通信装置、電子時計、送信電力制御方法、及びプログラム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9955432B2 (en) * 2014-07-29 2018-04-24 Aruba Networks, Inc. Method and system for adaptive cell size management
CN106301676B (zh) * 2015-05-29 2020-01-10 华为技术有限公司 一种数据传输方法、设备及系统
US10602371B2 (en) * 2015-12-14 2020-03-24 Higher Ground Llc Computing protection zones for avoidance of interference in wireless communications
WO2018123970A1 (ja) * 2016-12-27 2018-07-05 株式会社村田製作所 位置推定システム及び位置推定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253047A (ja) 2004-02-02 2005-09-15 Sony Corp 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP2006042076A (ja) * 2004-07-28 2006-02-09 Sony Corp 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP2011254191A (ja) * 2010-06-01 2011-12-15 Hitachi Ltd 無線通信装置、および無線通信システム
JP2013123168A (ja) * 2011-12-12 2013-06-20 Renesas Electronics Corp 車載通信機、its路側機、車載通信用lsiおよびits路側機用lsi

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7251570B2 (en) * 2003-07-18 2007-07-31 Power Measurement Ltd. Data integrity in a mesh network
US8681810B2 (en) * 2006-04-13 2014-03-25 Qualcomm Incorporated Dynamic carrier sensing thresholds
JP2008017302A (ja) * 2006-07-07 2008-01-24 Ntt Docomo Inc 近距離無線通信端末及び送信電力制御方法
WO2009089653A1 (fr) * 2008-01-17 2009-07-23 Alcatel Shanghai Bell Company, Ltd. Procédé et appareil pour réduire le rapport de puissance crête à moyenne (papr) du symbole de sortie d'un émetteur sc-fdma
JP2009231901A (ja) * 2008-03-19 2009-10-08 Nec Corp 無線基地局装置、無線通信システム、および送信電力制御方法
US8594028B2 (en) * 2008-05-30 2013-11-26 George Mason Intellectual Properties, Inc. Cognitive channel assignment in wireless networks
CN101600216B (zh) * 2009-06-26 2013-01-02 北京邮电大学 一种无线接入网络的分布式自愈方法和系统
JP5429036B2 (ja) * 2009-08-06 2014-02-26 ソニー株式会社 通信装置、送信電力制御方法、及びプログラム
JP5300693B2 (ja) * 2009-11-09 2013-09-25 中国電力株式会社 パワーコンディショナ保護装置及びパワーコンディショナ保護方法
WO2011078646A1 (en) * 2009-12-23 2011-06-30 Exs Network Technologies Sdn. Bhd Client load balancing, power management, and mobility in hierarchical wireless mesh networks
JP5400630B2 (ja) * 2010-01-13 2014-01-29 株式会社日立製作所 無線マルチホップ通信装置及びその送信電力制御方法
JP5561779B2 (ja) * 2010-10-21 2014-07-30 日本電気株式会社 無線通信装置、送信電力制御方法およびプログラム
US8600411B2 (en) * 2012-01-23 2013-12-03 Qualcomm Incorporated Methods and apparatus for controlling the transmission and/or reception of safety messages by portable wireless user devices
US9781684B2 (en) * 2013-06-20 2017-10-03 Google Technology Holdings LLC Method and network entity for reducing inter-network interference
JPWO2015015891A1 (ja) * 2013-07-29 2017-03-02 ソニー株式会社 無線通信装置及び無線通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253047A (ja) 2004-02-02 2005-09-15 Sony Corp 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP2006042076A (ja) * 2004-07-28 2006-02-09 Sony Corp 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP2011254191A (ja) * 2010-06-01 2011-12-15 Hitachi Ltd 無線通信装置、および無線通信システム
JP2013123168A (ja) * 2011-12-12 2013-06-20 Renesas Electronics Corp 車載通信機、its路側機、車載通信用lsiおよびits路側機用lsi

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3030013A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019017094A (ja) * 2013-07-29 2019-01-31 ソニー株式会社 無線通信装置及び無線通信方法
CN108702640A (zh) * 2016-02-26 2018-10-23 日本电信电话株式会社 无线环境判断方法以及无线通信系统
EP3422759A4 (en) * 2016-02-26 2020-02-05 Nippon Telegraph And Telephone Corporation METHOD FOR DETERMINING A WIRELESS ENVIRONMENT AND WIRELESS COMMUNICATION SYSTEM
US10681735B2 (en) 2016-02-26 2020-06-09 Nippon Telegraph And Telephone Corporation Wireless environment evaluation method and wireless communicaton system
CN108702640B (zh) * 2016-02-26 2021-12-03 日本电信电话株式会社 无线环境判断方法以及无线通信系统
JP2019512930A (ja) * 2016-03-09 2019-05-16 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ワイヤレス通信ネットワークにおいて干渉を低減するための方法
US10716008B2 (en) 2016-03-09 2020-07-14 Telefonaktiebolaget Lm Ericsson (Publ) Methods and nodes for reducing interference in a wireless communications network
JP2018019327A (ja) * 2016-07-29 2018-02-01 日本電気株式会社 無線通信端末および送信電力決定方法
JP2020057941A (ja) * 2018-10-02 2020-04-09 カシオ計算機株式会社 無線通信装置、電子時計、送信電力制御方法、及びプログラム
CN110996383A (zh) * 2018-10-02 2020-04-10 卡西欧计算机株式会社 无线通信装置、电子表、传输功率控制方法、存储介质
JP7210987B2 (ja) 2018-10-02 2023-01-24 カシオ計算機株式会社 無線通信装置、電子時計、送信電力制御方法、及びプログラム

Also Published As

Publication number Publication date
EP3030013B1 (en) 2019-11-20
JP2019017094A (ja) 2019-01-31
CN110446251B (zh) 2022-08-23
CN110446251A (zh) 2019-11-12
US9763202B2 (en) 2017-09-12
JP6635165B2 (ja) 2020-01-22
US20160174165A1 (en) 2016-06-16
JPWO2015015891A1 (ja) 2017-03-02
EP3030013A4 (en) 2017-03-08
EP3030013A1 (en) 2016-06-08
EP3629636A1 (en) 2020-04-01
EP3629636B1 (en) 2021-04-21
CN105723782A (zh) 2016-06-29

Similar Documents

Publication Publication Date Title
JP6635165B2 (ja) 無線通信装置及び無線通信方法
JP4805756B2 (ja) 通信制御装置及び通信制御方法
US10412656B2 (en) Path selection in wireless mesh networks
KR101018141B1 (ko) 무선 네트워크에서 토폴로지 제어를 수행하기 위한 시스템및 방법
EP1762015B1 (en) Power control in a communication network and method
US11109324B2 (en) Wireless communication apparatus and wireless communication method
KR102497127B1 (ko) Wlan 네트워크들에서 백업 루트들을 갖는 멀티-홉 라우팅 프로토콜
TW201342974A (zh) 通信系統、通信終端及通信方法
TWI796426B (zh) 通訊裝置及通訊方法
Kim et al. Spectrum-aware beaconless geographical routing protocol for mobile cognitive radio networks
Feng et al. Cooperative medium access control based on spectrum leasing
Wu et al. A cross-layer protocol for exploiting cooperative diversity in multi-hop wireless ad hoc networks
WO2015122958A1 (en) Enhanced channel access mechanism for improving performance in dense wifi environments
Masuda et al. A cross-layer design of user cooperation for rate adaptive wireless local area networks
JP5835443B2 (ja) 無線通信方法、無線通信システム、及び無線通信装置
Chu et al. Analysis and determination of cooperative MAC strategies from throughput perspectives
Dai Study on Wireless Ad Hoc Network Considering Hidden Terminal Problem and Intra-Flow Interference Cancellation
Tang et al. An Opportunistic Forwarding Scheme Exploiting both Long Progress and Adaptive Rate in Wireless Networks
Islam et al. WSN11-6: Throughput Performance of Cooperative Diversity in Mobile Ad Hoc Networks
Khalid et al. Instantaneous rate based cooperative MAC protocol for wireless ad hoc networks
Chen et al. Enhancing Efficiency and Effectiveness of 802.11 MAC in Wireless Mesh Networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832167

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015529429

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014832167

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14907554

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE