WO2015011706A1 - Single large mode cladding amplification in active double-clad fibers - Google Patents

Single large mode cladding amplification in active double-clad fibers Download PDF

Info

Publication number
WO2015011706A1
WO2015011706A1 PCT/IL2014/050668 IL2014050668W WO2015011706A1 WO 2015011706 A1 WO2015011706 A1 WO 2015011706A1 IL 2014050668 W IL2014050668 W IL 2014050668W WO 2015011706 A1 WO2015011706 A1 WO 2015011706A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
core
clad layer
clad
refractive index
Prior art date
Application number
PCT/IL2014/050668
Other languages
French (fr)
Inventor
Amiel Ishaaya
Eitan RONEN
Original Assignee
B.G. Negev Technologies And Applications Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by B.G. Negev Technologies And Applications Ltd. filed Critical B.G. Negev Technologies And Applications Ltd.
Priority to EP14830119.5A priority Critical patent/EP3025175B1/en
Priority to US14/906,295 priority patent/US9645310B2/en
Publication of WO2015011706A1 publication Critical patent/WO2015011706A1/en
Priority to IL243701A priority patent/IL243701A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/0672Non-uniform radial doping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • H01S3/06733Fibre having more than one cladding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/0804Transverse or lateral modes
    • H01S3/08045Single-mode emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094007Cladding pumping, i.e. pump light propagating in a clad surrounding the active core

Definitions

  • the invention is related to the field of optical fibers. Specifically the invention is related to the field of double-clad active fibers. Background of the Invention
  • fiber lasers have become exceedingly widespread and are replacing bulk solid state lasers in diverse applications.
  • high CW powers or high peak power pulses where the intensity in the core is very high, deleterious nonlinear effects and material damage limit the fiber laser performance.
  • LMA fibers Large Mode Area fibers
  • PCFs photonic crystal fibers
  • the invention is an active double-clad fiber comprising the following four layers:
  • the structure of the fiber of the invention and the properties of the materials of its layers provides high discrimination against higher modes, thereby maintaining single mode operation in laser systems.
  • the diameter of the core of the fiber of the invention is much smaller than the diameter of the large single transverse mode that it guides, thereby allowing guiding and amplification to take place mainly in the inner doped clad layer.
  • the mode field diameter reaches at least 80 ⁇ with good modal discrimination.
  • the core can be either doped with active ions or undoped with active ions.
  • the diameter of the core is between 2.5 - 5% of the diameter of the inner doped clad layer.
  • the refractive indices of the inner and outer clad layers are less than the refractive index of the core and larger than the refractive index of outer coating layer. In embodiments of the fiber of the invention the refractive indices of the inner and outer clad layers are equal. In embodiments of the fiber of the invention the refractive index of the outer clad layer is slightly different than the refractive index of the inner clad layer such that the difference between the refractive indices is on the order of l-2xl0- 4 .
  • Embodiments of the fiber of the invention comprise a fifth annular layer of rigid material surrounding the outer coating layer.
  • Fig. 1A is a cross-sectional view schematically showing the four layers of the active double-clad fiber of the invention
  • Fig. IB is a schematic illustration showing the refractive index profile of the double clad active fiber of the invention.
  • Fig. 2A shows the normalized field amplitude cross sections plotted for different modes
  • Fig. 2B shows the mode field diameter plotted as a function of the V-number for different core sizes
  • Fig. 3A shows calculated and numerical values of the discrimination between the LP 0l mode and the high symmetric mode LP 0P as a function of the mode number P;
  • Fig. 3B shows the minimal modal discrimination between the LP 0l and any other higher mode as a function of the radius of doped region ( r d ) for different core radiuses;
  • Fig. 4 shows the minimal modal discrimination as a function of the difference in the refractive index between the doped and the undoped sections of clad for fibers of different core radiuses.
  • the invention is an active double-clad fiber that has a very small core that guides a large single transverse mode having large overlap with a doped active cladding. Under certain circumstances the mode field diameter can reach at least 80 ⁇ with good modal discrimination. It is shown herein below the effect of small refractive index changes in the doped region on the modal discrimination and the sensitivity to fiber bending.
  • the fibers of the invention are relatively simple to fabricate compared to PCFs, can be spliced and used in an "all-fiber" configuration with improved performance compared to standard LMA and PCF fibers. The inventors believe that the design of the fiber of the invention will open new opportunities in robust high power fiber lasers and amplifiers with superior beam quality.
  • Fig. 1A is a cross-sectional view schematically showing the four layers of the active double-clad fiber of the invention.
  • a high index small diameter core (10) which can be undoped or doped with active ions.
  • a lower index cladding (14) Surrounding the core is a lower index cladding (14), having an inner part (12) close to the core (10) that is doped with active ions.
  • the outer layer 16 of the fiber is a low index polymer coating.
  • Fig. IB is a schematic illustration showing the refractive index profile of the double clad active fiber of the invention.
  • no radius of the core (10)
  • ⁇ 2 radius of the doped region of the cladding (12)
  • ru radius of the cladding (14)
  • radius of the outer layer (16)
  • mo refractive index of the core (10)
  • ni2 refractive index of the doped region of the cladding (12)
  • m 4 refractive index of the cladding (14)
  • refractive index of the outer layer (16).
  • the refractive indices are related as follows:
  • the cladding guides the pump light, which is gradually absorbed by the active ions in the doped region.
  • the core is intended for guiding the laser field, but in the case of the present invention it will be shown herein below that, because the radius of the core is so small relative to that of the doped part of the cladding, the field is not confined in the core but has a large overlap with the doped region of the cladding.
  • a fiber In general, if a fiber is to be used for single mode high power laser amplification it must have a large area single transverse mode (core guided), large overlap of this mode with the doped region, and high modal discrimination (low overlap of cladding modes with the doped region). All these requirements are fulfilled by the fiber of the invention.
  • the eigenmodes may be solved analytically without taking into account the presence of gain, and then the gain may be super imposed, and overlap integrals calculated in order to obtain the overall effective gain per mode.
  • the fiber doping is at first neglected, treating the passive three layer fiber problem. Assuming radial symmetry and the standard weakly guiding approximation (namely that ni ° ni4 ⁇ 1) expressions for the eigenmodes of the fiber are obtained.
  • the LP 0l mode diameter ( 4 ⁇ x) , defined according to four times the second order moment of the intensity distribution [5], is about 80 ⁇ (the mode area equals 5000 ⁇ 2 ). This mode diameter is significantly larger than obtained with standard LMA fibers.
  • the second LP 02 mode (dashed line) is the lowest symmetric mode that is guided by the cladding, however, because it is altered (“scattered") by the core, its overlap with the gain region is low.
  • the LP 01 mode (dash-dot-dash line) is an example of a symmetric mode which has the largest overlap with the gain region after the LP 0l mode (minimal modal discrimination). Notice that this mode is less altered by the small core than the LP 02 mode.
  • Fig. 2B the mode field diameter ( D4a ) is plotted as a function of the V-number for different core sizes. As evident, the diameter decreases as the V-number increases, and for a constant V-number it increases with the core radius.
  • r d ri2 is the radius of the doped region and ⁇ is the mode field distribution.
  • the results are shown as circles in Fig. 3A.
  • Numerical results (using commercial Finite Element Method solver) are shown as squares. As shown the analytical and numerical results fully agree.
  • Fig. 3B the analytical minimal discrimination between the LP 0l and higher symmetrical modes is plotted as a function of the radius of doping r d .
  • the inventors believe that in the case of a properly designed fiber laser oscillator or amplifier a discrimination of 4 is more than enough for achieving single mode operation. As seen, this corresponds to a doping radius of about 40 ⁇ .
  • the corresponding gain ratio in a commercial DC-200/70-PM-Yb-rod PCF fiber is less than 1.5. Nevertheless, if a gain ratio of 4 is not enough, narrowing the doping area can yield a ratio of up to 6. Narrowing of the doped region will increase the overlap between the basic mode central area and the gain region increasing the amplification efficiency, but will also decrease pump absorption which is important for short amplification rigidized configurations.
  • the fiber robustness is considered against technical limitations.
  • the tolerance is about lO -4 for small cores and about 2 10 4 for bigger cores (see different curves in Fig. 4), however the latter ones will have smaller mode field diameters.
  • the fiber of the invention can be rigidized by adding a relatively thick fifth annular layer of rigid material surrounding the outer coating layer 16. In embodiments of the fiber this layer can be made of glass and can have a thickness of 0.5 to 1 mm or even more.
  • the present invention presents a new approach for achieving very large mode area active double clad fibers with single mode operation based on a simple structure.
  • these fibers When properly designed, these fibers have better performance than standard LMA fibers, with larger single mode area and higher modal discrimination.
  • these fibers can have comparable mode areas, with better modal discrimination but with tremendous advantages in system robustness due to the possibility to operate in an "all-fiber" configuration.
  • Clarkson Mode selection in high power cladding pumped fibre lasers with tapered section, in: Lasers and Electro-Optics, 1999. CLEO '99. Summaries of Papers Presented at the Conference on, (may 1999), pp. 247 -248.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)

Abstract

The invention is an active double-clad fiber comprising the following four layers: a high refractive index small diameter core; an inner annular clad layer doped with active ions surrounding the core; an outer annular clad layer surrounding the inner clad layer; and an annular low refractive index outer coating layer surrounding the outer clad layer. The structure of the fiber of the invention and the properties of the materials of its layers provides high discrimination against higher modes, thereby maintaining single mode operation in laser systems. The diameter of the core of the fiber of the invention is much smaller than the diameter of the large single transverse mode that it guides, thereby allowing guiding and amplification to take place mainly in the inner doped clad layer.

Description

SINGLE LARGE MODE CLADDING AMPLIFICATION IN ACTIVE
DOUBLE-CLAD FIBERS
Field of the Invention
The invention is related to the field of optical fibers. Specifically the invention is related to the field of double-clad active fibers. Background of the Invention
Publications and other reference materials referred to herein, including reference cited therein, are numerically referenced in the following text and respectively grouped in the appended Bibliography which immediately precedes the claims.
In the past decade fiber lasers have become exceedingly widespread and are replacing bulk solid state lasers in diverse applications. The ability to efficiently absorb the pump light by use of double clad fibers, the high gain achieved by long interaction lengths, the favorable heat dissipation configuration, the excellent beam quality dictated by the single mode waveguide, and the ease of alignment, all together make the fiber laser very attractive, combining high output power and excellent beam quality in a reliable and relatively low cost configuration. However, with high CW powers or high peak power pulses, where the intensity in the core is very high, deleterious nonlinear effects and material damage limit the fiber laser performance.
Two main approaches have been developed to overcome this problem. The more straightforward and common approach is using step index fibers with very small refractive index difference An between the core and the cladding (often referred to as Large Mode Area (LMA) fibers). These fibers have large cores supporting large transverse mode operation and thus the intensity in the core is reduced. Due to the inability to fabricate fibers with very small An this approach is currently limited to modes with less than 30 μηι mode field diameter. Furthermore, these fibers are not strictly single mode and coiling should be used to achieve truly single mode operation. This coiling often results in smaller and asymmetric modes and reduced efficiency[l], [2]. The second approach is the use of large single mode, double clad, photonic crystal fibers (PCFs). Here the large single mode cores are achieved by introducing very small air holes in the silica, creating a very small effective An . Mode field diameters of 30 μηι have been achieved with flexible PCFs and 80 μηι with rigid rod-type PCFs. The main disadvantage of this approach is the lack of an "all-fiber" configuration, which results from the difficulty to splice PCFs to side pump couplers, to fiber bragg gratings (FBG) and to end caps. The need for free space light coupling reduces dramatically the robustness of the system [3], [4]. Moreover, the fabrication of PCFs is relatively complicated and costly, with only a few companies offering them commercially.
It is a purpose of the present invention to provide an active double-clad fiber that guides only a single transverse mode that has large overlap with a doped active cladding and has very large mode area with good modal discrimination.
It is another purpose of the invention to provide an active double-clad fiber that is simple to fabricate compared to PCFs.
It is another purpose of the invention to provide an active double-clad fiber that can be spliced and used in an "all-fiber" configuration with improved performance compared to standard active LMA and PCF fibers. Further purposes and advantages of this invention will appear as the description proceeds.
Summary nf the Invention
The invention is an active double-clad fiber comprising the following four layers:
a. a high refractive index small diameter core;
b. an inner annular clad layer doped with active ions surrounding the core;
c. an outer annular clad layer surrounding the inner clad layer; and d. an annular low refractive index outer coating layer surrounding the outer clad layer.
The structure of the fiber of the invention and the properties of the materials of its layers provides high discrimination against higher modes, thereby maintaining single mode operation in laser systems. The diameter of the core of the fiber of the invention is much smaller than the diameter of the large single transverse mode that it guides, thereby allowing guiding and amplification to take place mainly in the inner doped clad layer. In embodiments of the fiber of the invention the mode field diameter reaches at least 80 μιη with good modal discrimination.
In embodiments of the fiber of the invention the core can be either doped with active ions or undoped with active ions.
In embodiments of the fiber of the invention the diameter of the core is between 2.5 - 5% of the diameter of the inner doped clad layer.
In embodiments of the fiber of the invention the refractive indices of the inner and outer clad layers are less than the refractive index of the core and larger than the refractive index of outer coating layer. In embodiments of the fiber of the invention the refractive indices of the inner and outer clad layers are equal. In embodiments of the fiber of the invention the refractive index of the outer clad layer is slightly different than the refractive index of the inner clad layer such that the difference between the refractive indices is on the order of l-2xl0-4. Embodiments of the fiber of the invention comprise a fifth annular layer of rigid material surrounding the outer coating layer.
All the above and other characteristics and advantages of the invention will be further understood through the following illustrative and non-limitative description of embodiments thereof, with reference to the appended drawings.
Brief Description of the Drawings
— Fig. 1A is a cross-sectional view schematically showing the four layers of the active double-clad fiber of the invention;
— Fig. IB is a schematic illustration showing the refractive index profile of the double clad active fiber of the invention;
— Fig. 2A shows the normalized field amplitude cross sections plotted for different modes;
— Fig. 2B shows the mode field diameter plotted as a function of the V-number for different core sizes;
— Fig. 3A shows calculated and numerical values of the discrimination between the LP0l mode and the high symmetric mode LP0P as a function of the mode number P; — Fig. 3B shows the minimal modal discrimination between the LP0l and any other higher mode as a function of the radius of doped region ( rd ) for different core radiuses; and
— Fig. 4 shows the minimal modal discrimination as a function of the difference in the refractive index between the doped and the undoped sections of clad for fibers of different core radiuses.
Detailed Description of Embodiments of the Invention
The invention is an active double-clad fiber that has a very small core that guides a large single transverse mode having large overlap with a doped active cladding. Under certain circumstances the mode field diameter can reach at least 80 μιη with good modal discrimination. It is shown herein below the effect of small refractive index changes in the doped region on the modal discrimination and the sensitivity to fiber bending. The fibers of the invention are relatively simple to fabricate compared to PCFs, can be spliced and used in an "all-fiber" configuration with improved performance compared to standard LMA and PCF fibers. The inventors believe that the design of the fiber of the invention will open new opportunities in robust high power fiber lasers and amplifiers with superior beam quality.
Fig. 1A is a cross-sectional view schematically showing the four layers of the active double-clad fiber of the invention. In the center there is a high index small diameter core (10), which can be undoped or doped with active ions. Surrounding the core is a lower index cladding (14), having an inner part (12) close to the core (10) that is doped with active ions. The outer layer 16 of the fiber is a low index polymer coating.
Fig. IB is a schematic illustration showing the refractive index profile of the double clad active fiber of the invention. In Fig. IB: no = radius of the core (10), Π2 = radius of the doped region of the cladding (12), ru = radius of the cladding (14), and πβ = radius of the outer layer (16) and mo = refractive index of the core (10), ni2 = refractive index of the doped region of the cladding (12), m4 = refractive index of the cladding (14), and ηιβ = refractive index of the outer layer (16). The refractive indices are related as follows:
Figure imgf000008_0001
It is to be noted that Figs. 1A and IB are not drawn to scale and that the radii of the different layers are not proportional to possible values of a fiber of the invention. Taking into accout the limitations of present day fabrication techniques, typical demensions for the various layers can be: no = l-2um; Π2 = 40μπι; and Π4 = 100-200μπι.
As in standard active double clad fibers, the cladding guides the pump light, which is gradually absorbed by the active ions in the doped region. The core is intended for guiding the laser field, but in the case of the present invention it will be shown herein below that, because the radius of the core is so small relative to that of the doped part of the cladding, the field is not confined in the core but has a large overlap with the doped region of the cladding. In general, if a fiber is to be used for single mode high power laser amplification it must have a large area single transverse mode (core guided), large overlap of this mode with the doped region, and high modal discrimination (low overlap of cladding modes with the doped region). All these requirements are fulfilled by the fiber of the invention.
In order to show the viability of the invention a series of calculations that will now be described were caried out. In carrying out these calculations initially it is assumed that the real part of the refractive index of the doped region in the cladding is exactly equal to that of the undoped region in the cladding and at a later stage the effect of differences in the refractive indices is considered. If the imaginary part of the refractive index, corresponding to gain in the doped region, is very small compared to the real part of the refractive index (3 orders of magnitude in the case of the fiber of the invention), then the intensity distributions of the modes will not be significantly affected by the presence of the gain. In this case the eigenmodes may be solved analytically without taking into account the presence of gain, and then the gain may be super imposed, and overlap integrals calculated in order to obtain the overall effective gain per mode. To analytically solve for the eigenmodes of the fiber the fiber doping is at first neglected, treating the passive three layer fiber problem. Assuming radial symmetry and the standard weakly guiding approximation (namely that ni° ni4 ~ 1) expressions for the eigenmodes of the fiber are obtained.
In Fig. 2A the normalized field amplitude cross sections are plotted for different modes, assuming a core radius of no = 1.2μπι; cladding radius ri4 =
200μπι; core Numerical Aperture (NACOre) of 0.104 , ( NAcore = Jnf0 - n 4 ) where nio and ni4 = ni2 are the core and cladding refractive indicies; and V-number = 0.7325 ( V = NAcore , where no is the core radius, and λ is the wavelength). The refractive indexes of the two outer layers, nu and ηιβ, are 1.46 and 1.4 so as to create a multimode waveguide with pump Numerical Aperature NACOre = 0.41. Nevertheless because of the high V number of this waveguide all the cladding modes will almost not be effected by NACOre of this waveguide. As is evident, the lowest order mode LPm (solid line) is guided by the core and its amplitude practically vanishes only at r=100 μιη, far away from the cladding boundary. The LP0l mode diameter ( 4<x) , defined according to four times the second order moment of the intensity distribution [5], is about 80 μιη (the mode area equals 5000 μπι2). This mode diameter is significantly larger than obtained with standard LMA fibers. The second LP02 mode (dashed line) is the lowest symmetric mode that is guided by the cladding, however, because it is altered ("scattered") by the core, its overlap with the gain region is low. The LP01 mode (dash-dot-dash line) is an example of a symmetric mode which has the largest overlap with the gain region after the LP0l mode (minimal modal discrimination). Notice that this mode is less altered by the small core than the LP02 mode. The LPl5 mode
(dash-dot-dot-dash line) is the antisymmetric mode with the highest gain (almost not affected by the core) demonstrating that the minimal discrimination of the antisymmetric modes ( LPjk for every k, and j > 0 ) can not be much lower than the minimal discrimination of the symmetric modes because they null in the center.
In Fig. 2B the mode field diameter ( D4a ) is plotted as a function of the V-number for different core sizes. As evident, the diameter decreases as the V-number increases, and for a constant V-number it increases with the core radius. The beam quality factor M 2 of the lowest order mode ( LPm ) is Μχ = 1.4 for all configurations. In principle, since this is a spatially coherent single mode it can be efficiently transformed into a Gaussian beam with M 2 = 1 by use of phase plates [6] or adiabatic tapering of wave guides [7] (unlike spatially incoherent multimode lasing in which the M 2 can not be improved with out decreasing the power).
Next, in order to calculate the effective gain of each mode, and thus the modal discrimination, it is assumed that the imaginary part of the refractive index in the doped region is small compared to the real part, and equal to a = -2 10 6 (where n = n0 + ia in the core; and n = nl + ia in the doped region of the cladding). This seems a reasonable maximum value because it corresponds to an intensity increase by a factor of 1000 (30 dB) in 30 cm of propagation, which is valid for all practical purposes (the intensity is
/(z) = Ι0βγζ , where /0 is the initial intensity, γ = - ^π , z is the propagation distance, and λ is the wavelength). Under this assumption of small a 's the doping does not alter the modes, and it is possible to estimate the effective gain of each mode by calculating the overlap integral of the "passive" mode with the doped region:
λ
Figure imgf000011_0001
where rd = ri2 is the radius of the doped region and ψ is the mode field distribution.
Using the overlap integrals the discrimination (the ratio between the effective gain of LP0l mode to that of a higher LP0p mode) was computed as a function of the mode number p, for the case where rw = 1.2 jUtn, rl4 = 200 μηι, ru = 40 μτη, NAcore = 0.104 . The results are shown as circles in Fig. 3A. As evident, the minimal discrimination is for the modes near P=7 and is about 4. Numerical results (using commercial Finite Element Method solver) are shown as squares. As shown the analytical and numerical results fully agree. The minimal discrimination between the basic mode and
y
the antisymmetric modes is — = 3.9 (analytical results). For smaller radiuses of doping the discrimination between the antisymmetrical modes will be much higher.
In Fig. 3B the analytical minimal discrimination between the LP0l and higher symmetrical modes is plotted as a function of the radius of doping rd .
Different geometrical configurations (i.e. with different core radiuses: rc = 1.2 μιη - solid line; rc = 0.92 μιη - dashed line; rc = 0.6 μιη - dash-dot-dash line; rc = 0.3 μιη - dash-dot-dot-dash line;) are compared. For all calculated configurations the basic mode diameter is about 80 μπι. As seen in Fig. 3B, the gain ratio dependence on the doping radius is similar for the different configurations with small noticeable differences only when ri2 is smaller than 30 μπι. The inventors believe that in the case of a properly designed fiber laser oscillator or amplifier a discrimination of 4 is more than enough for achieving single mode operation. As seen, this corresponds to a doping radius of about 40 μπι. For comparison, according to the calculations of the inventors, the corresponding gain ratio in a commercial DC-200/70-PM-Yb-rod PCF fiber is less than 1.5. Nevertheless, if a gain ratio of 4 is not enough, narrowing the doping area can yield a ratio of up to 6. Narrowing of the doped region will increase the overlap between the basic mode central area and the gain region increasing the amplification efficiency, but will also decrease pump absorption which is important for short amplification rigidized configurations.
Next, the fiber robustness is considered against technical limitations. In particular, the sensitivity to small changes of the real part of the refractive index of the doped area (due to the active ion doping) was investigated. It is known that when silica fibers are doped with active ions the real part of the refractive index is changed by a small amount. This can be balanced in general in the fabrication process up to a value of An = ±10 4 [8].
Fig. 4 shows the minimal modal discrimination as a function of the difference in the refractive index between the doped and the undoped sections of clad, ni2 = ni4 + Δη for fibers of different core radiuses all having ru = 40 m nn = 1.4637, nl4 = 1.46. As evident, with increasing \n the modal discrimination decays rapidly, due to competition with intermediate waveguide modes. For negative \n the good modal discrimination is maintained up to some negative value. As seen the tolerance is about lO-4 for small cores and about 2 10 4 for bigger cores (see different curves in Fig. 4), however the latter ones will have smaller mode field diameters. It can be seen that even in the presence of a small An in the doped region, good modal discrimination can be obtained. Finally, the loss of the lowest order core-guided mode is examined as a function on the macro radius of curvature (ROC) of the fiber. The loss parameter, γ 2 , was calculated from the formula of Marcuse [9]. For large ROCs, the loss depends exponentially on the ROC. From the inventor's calculations it was found that for all fiber geometries that have a mode diameter of 80 μιη , a fiber ROC of about 50 m will result in γ2 = -0.1 [— ] m
(-0.4 dBM). This means that practically the fiber can not be coiled. Nevertheless, when holding the fiber straight (e.g. applying slight tension, or rigidizing the fiber) achieving ROC > 50m is possible. For fiber configurations with a basic mode diameter of 120 μτη the radius of curvature needed for χ2 = -0.1 [— ] is ROC > 200m which is harder to achieve. For fiber m
configurations with a basic mode diameter of Ι μιη (e.g. a core radius of 1.2 μτη , and V=2), the loss is higher than -0.1 [— ] (-0.4 dBM) for ROC smaller m
than 0.25m. In this case coiling is achievable, however the mode area is significantly smaller. Therefore the choice of modes having 80 μιη diameter seems to be a good choice for a short single pass fiber amplifier, assuming the fiber is held straight or rigidized like rod-type PCFs. With this choice the mode area is very large compared to standard LMA fibers, and comparable with that of rod-type PCFs. One should also take into considerations the influences of microbending which cause great losses when the fiber is under tension [10], [11]. The exact loss magnitude caused by the bending depends greatly on the manufacturing capabilities of the particular fiber (smoothness of interfaces in production, materials, thickness of the coating polymers etc.), nevertheless the inventors note this as another motivation for rigidizing the fiber so as to reduce tensions caused by bending. In an embodiment the fiber of the invention can be rigidized by adding a relatively thick fifth annular layer of rigid material surrounding the outer coating layer 16. In embodiments of the fiber this layer can be made of glass and can have a thickness of 0.5 to 1 mm or even more.
To conclude, the present invention presents a new approach for achieving very large mode area active double clad fibers with single mode operation based on a simple structure. When properly designed, these fibers have better performance than standard LMA fibers, with larger single mode area and higher modal discrimination. Compared to large air clad rod-type PCFs these fibers can have comparable mode areas, with better modal discrimination but with tremendous advantages in system robustness due to the possibility to operate in an "all-fiber" configuration.
Although embodiments of the invention have been described by way of illustration, it will be understood that the invention may be carried out with many variations, modifications, and adaptations, without exceeding the scope of the claims.
Bibliography
[I] S. Acco, Y. Sintov, Y. Glick, O. Katz, Y. Nafcha, and R. Lavi, Bend-loss control of multi-mode fiber power amplifiers producing single-mode operation, in: Advanced Solid-State Photonics (TOPS), (Optical Society of America, 2005), p. 565.
[2] J. K. Sahu, S. Yoo, A. J. Boyland, A. S. Webb, M. Kalita, J. N.
Maran, Y. Jeong, J. Nilsson, W. A. Clarkson, and D. N. Payne, Fiber design for high-power fiber lasers, in: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, , Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7195 (February 2009).
[3] J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R.
Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen High-power air-clad large-mode-area photonic crystal fiber laser, Opt. Expr. 11(7), 818-823 (2003).
[4] B. Shulga and A. Ishaaya Off-axis pumping of a photonic crystal fiber laser, Appl. Phys. B 101, 701-704 (2010).
[5] ISO Standard 11146 (2005).
[6] A. A. Ishaaya, G. Machavariani, N. Davidson, A. A. Friesem, and E.
Hasman Conversion of a high-order mode beam into a nearly gaussian beam by use of a single interferometric element, Opt. Lett. 28(7), 504-506 (2003).
[7] J. Alvarez-Chavez, A. Grudinin, J. Nilsson, P. Turner, and W.
Clarkson, Mode selection in high power cladding pumped fibre lasers with tapered section, in: Lasers and Electro-Optics, 1999. CLEO '99. Summaries of Papers Presented at the Conference on, (may 1999), pp. 247 -248.
[8] F. Jansen, F. Stutzki, H. J. Otto, M. Baumgartl, C. Jauregui, J.
Limpert, and A. Tunnermann The influence of index-depressions in core-pumped Yb-doped large pitch fibers, Opt. Expr. 18(26), 26834-26842 (2010).
[9] D. Marcuse Curvature loss formula for optical fibers, J. Opt. Soc. Am. 66(3), 216-220 (1976).
[10] R. Olshansky Distortion losses in cabled optical fibers, Appl. Opt. 14(1), 20- 21 (1975).
[II] D. Marcuse Microdeformation losses of single-mode fibers, Appl. Opt. 23(7), 1082-1091 (1984).

Claims

Claims
1. An active double-clad fiber comprising the following four layers:
a. a high refractive index small diameter core;
b. an inner annular clad layer doped with active ions surrounding the core;
c. an outer annular clad layer surrounding the inner clad layer; and d. an annular low refractive index outer coating layer surrounding the outer clad layer;
wherein:
the structure of the fiber and properties of the materials of its layers provides high discrimination against higher modes, thereby maintaining single mode operation in laser systems; and
the diameter of the core is much smaller than the diameter of the large single transverse mode that it guides, thereby allowing guiding and amplification to take place mainly in the inner doped clad layer.
2. The fiber of claim 1, wherein the mode field diameter reaches at least 80 μπι with good modal discrimination.
3. The fiber of claim 1, wherein the core is one of: doped with active ions and undoped with active ions.
4. The fiber of claim 1, wherein the diameter of the core is between 2.5 - 5% of the diameter of the inner doped clad layer.
5. The fiber of claim 1, wherein the refractive indices of the inner and outer clad layers are less than the refractive index of the core and larger than the refractive index of outer coating layer.
6. The fiber of claim 1, wherein the refractive indices of the inner and outer clad layers are equal. The fiber of claim 1, wherein the refractive index of the outer clad layer is different than the refractive index of the inner clad layer such that the difference between the refractive indices is on the order of l-2xl0~4.
The fiber of claim 1, comprising a fifth annular layer of rigid material surrounding the outer coating layer.
PCT/IL2014/050668 2013-07-25 2014-07-23 Single large mode cladding amplification in active double-clad fibers WO2015011706A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14830119.5A EP3025175B1 (en) 2013-07-25 2014-07-23 Single large mode cladding amplification in active double-clad fibers
US14/906,295 US9645310B2 (en) 2013-07-25 2014-07-23 Single large mode cladding amplification in active double-clad fibers
IL243701A IL243701A (en) 2013-07-25 2016-01-20 Single large mode cladding amplification in active double-clad fibers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361858130P 2013-07-25 2013-07-25
US61/858,130 2013-07-25

Publications (1)

Publication Number Publication Date
WO2015011706A1 true WO2015011706A1 (en) 2015-01-29

Family

ID=52392817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IL2014/050668 WO2015011706A1 (en) 2013-07-25 2014-07-23 Single large mode cladding amplification in active double-clad fibers

Country Status (3)

Country Link
US (1) US9645310B2 (en)
EP (1) EP3025175B1 (en)
WO (1) WO2015011706A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106125192A (en) * 2016-06-01 2016-11-16 中天科技光纤有限公司 A kind of ultra-low loss large effective area fiber and preparation technology thereof
CN109799572A (en) * 2018-12-12 2019-05-24 桂林电子科技大学 A kind of Gauss-annular mould field adapter that fiber is integrated
CN113835150A (en) * 2021-08-11 2021-12-24 江苏法尔胜光电科技有限公司 Double-clad active optical fiber and preparation method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013021463A2 (en) 2011-02-24 2016-11-01 Eximo Medical Ltd tissue resection hybrid catheter
CN111317565B (en) 2014-05-18 2023-05-09 爱克斯莫医疗有限公司 System for tissue ablation using pulsed lasers
JP2016171208A (en) * 2015-03-12 2016-09-23 株式会社フジクラ Optical fiber, fiber amplifier, and fiber laser
US11684420B2 (en) 2016-05-05 2023-06-27 Eximo Medical Ltd. Apparatus and methods for resecting and/or ablating an undesired tissue
CN108155546A (en) * 2017-12-29 2018-06-12 北京交通大学 It is a kind of to match optical fiber for generating the doubly clad optical fiber of big circular hollow light beam
US11353650B2 (en) * 2018-03-30 2022-06-07 Nlight, Inc. Single mode LMA (large mode area) fiber
US10790633B2 (en) 2018-08-15 2020-09-29 The Board Of Trustees Of The Leland Stanford Junior University Anti-Stokes-fluorescence-cooled fiber-based gain element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000002290A1 (en) * 1998-07-03 2000-01-13 University Of Southampton Optical fibre and optical fibre device
US20050024716A1 (en) * 2003-07-15 2005-02-03 Johan Nilsson Optical device with immediate gain for brightness enhancement of optical pulses
WO2007107164A2 (en) * 2006-03-17 2007-09-27 Crystal Fibre A/S An optical fiber, a fiber laser, a fiber amplifier and articles comprising such elements
WO2008046159A1 (en) * 2006-10-18 2008-04-24 The Commonwealth Of Australia Cascade laser
WO2010060435A1 (en) * 2008-11-28 2010-06-03 Nkt Photonics A/S Improved cladding-pumped optical waveguide
US20120105947A1 (en) 2010-11-02 2012-05-03 Fujikura Ltd. Amplification optical fiber and optical fiber amplifier and resonator using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7450813B2 (en) * 2006-09-20 2008-11-11 Imra America, Inc. Rare earth doped and large effective area optical fibers for fiber lasers and amplifiers
WO2009014623A1 (en) * 2007-07-20 2009-01-29 Corning Incorporated Large-mode-area optical fiber
CA2712123C (en) * 2008-01-17 2014-12-23 Institut National D'optique Multi-cladding optical fiber with mode filtering through differential bending losses

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000002290A1 (en) * 1998-07-03 2000-01-13 University Of Southampton Optical fibre and optical fibre device
US20050024716A1 (en) * 2003-07-15 2005-02-03 Johan Nilsson Optical device with immediate gain for brightness enhancement of optical pulses
WO2007107164A2 (en) * 2006-03-17 2007-09-27 Crystal Fibre A/S An optical fiber, a fiber laser, a fiber amplifier and articles comprising such elements
WO2008046159A1 (en) * 2006-10-18 2008-04-24 The Commonwealth Of Australia Cascade laser
WO2010060435A1 (en) * 2008-11-28 2010-06-03 Nkt Photonics A/S Improved cladding-pumped optical waveguide
US20120105947A1 (en) 2010-11-02 2012-05-03 Fujikura Ltd. Amplification optical fiber and optical fiber amplifier and resonator using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MATTSSON K.: "Low photo darkening single mode RMO fiber.", OPTICS EXPRESS, vol. 17, no. 20, 28 September 2009 (2009-09-28), pages 17855 - 17861, XP055310987, ISSN: 1094-4087, Retrieved from the Internet <URL:http://dx.doi.org/10.1364/OE.17.017855> *
NILSSON J. ET AL.: "Ring-doped cladding-pumped single-mode three-level fiber laser.", OPTICS LETTERS, vol. 23, no. 5, 1 March 1998 (1998-03-01), pages 355 - 357, XP000740627, ISSN: 1539-4794, Retrieved from the Internet <URL:http://dx.doi.org/10.1364/OL.23.000355> *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106125192A (en) * 2016-06-01 2016-11-16 中天科技光纤有限公司 A kind of ultra-low loss large effective area fiber and preparation technology thereof
CN109799572A (en) * 2018-12-12 2019-05-24 桂林电子科技大学 A kind of Gauss-annular mould field adapter that fiber is integrated
CN109799572B (en) * 2018-12-12 2020-12-04 桂林电子科技大学 Fiber integrated Gaussian-annular mode field adapter
CN113835150A (en) * 2021-08-11 2021-12-24 江苏法尔胜光电科技有限公司 Double-clad active optical fiber and preparation method thereof

Also Published As

Publication number Publication date
EP3025175A1 (en) 2016-06-01
EP3025175A4 (en) 2017-06-21
US9645310B2 (en) 2017-05-09
EP3025175B1 (en) 2019-11-20
US20160170138A1 (en) 2016-06-16

Similar Documents

Publication Publication Date Title
US9645310B2 (en) Single large mode cladding amplification in active double-clad fibers
US10197727B2 (en) Large core holey fibers
US8406594B2 (en) Optical fiber with resonant structure of cladding features connected to light sink
Kashiwagi et al. Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers
Wadsworth et al. High power air-clad photonic crystal fibre laser
JP6657087B2 (en) Polarization and polarization maintaining leaky channel fiber
WO2012043603A1 (en) Solid photonic band gap fiber, and fiber module, fiber amp, and fiber laser employing solid photonic band gap fiber
Dussardier et al. Large-mode-area leaky optical fiber fabricated by MCVD
US9448359B2 (en) Single mode propagation in microstructured optical fibers
US8938146B2 (en) Hollow core fiber with improvements relating to optical properties and its use, method of its production and use thereof
Dianov et al. Solid-core photonic bandgap fibers for high-power fiber lasers
Egorova et al. Single-mode all-silica photonic bandgap fiber with 20-μm mode-field diameter
CN104503020A (en) Longitudinal spiral mode transfer optical fiber
Ma et al. Design and analysis of a modified segmented cladding fiber with large mode area
US20110026890A1 (en) Holey fibers
Goto et al. Birefringent all-solid hybrid microstructured fiber
CN103091769A (en) Ring-shaped microstructure fiber
Demidov et al. Microstructured single-mode lightguides based on the phenomenon of differential mode damping
Rastogi Application specific leaky optical fibers
Aleshkina et al. Spectrally selective fundamental core mode suppression in an optical fiber with absorbing rods
Semjonov et al. LMA fibers based on two-dimensional solid-core photonic bandgap fiber design
Knight Optics in Microstructured and Photonic Crystal Fibers
Wei et al. Fabrication and characteristic of a multicore fiber for high power laser delivery
Ronen et al. Single-large-mode cladding amplification in active double-clad fibers

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 243701

Country of ref document: IL

Ref document number: 14906295

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014830119

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14830119

Country of ref document: EP

Kind code of ref document: A1