WO2015010415A1 - 基板、显示屏、拼接屏及拼接屏的对位方法 - Google Patents

基板、显示屏、拼接屏及拼接屏的对位方法 Download PDF

Info

Publication number
WO2015010415A1
WO2015010415A1 PCT/CN2013/088830 CN2013088830W WO2015010415A1 WO 2015010415 A1 WO2015010415 A1 WO 2015010415A1 CN 2013088830 W CN2013088830 W CN 2013088830W WO 2015010415 A1 WO2015010415 A1 WO 2015010415A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
alignment marks
splicing
alignment
height difference
Prior art date
Application number
PCT/CN2013/088830
Other languages
English (en)
French (fr)
Inventor
徐超
张春芳
魏燕
金熙哲
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/361,879 priority Critical patent/US9916121B2/en
Publication of WO2015010415A1 publication Critical patent/WO2015010415A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/1423Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display
    • G06F3/1446Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display display composed of modules, e.g. video walls
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13336Combining plural substrates to produce large-area displays, e.g. tiled displays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/1423Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display
    • G06F3/1431Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display using a single graphics controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]

Definitions

  • the present invention relates to a method of aligning a substrate, a display screen, a splicing screen, and a splicing screen provided with alignment marks.
  • the spliced display is composed of a plurality of display screens as display units arranged in a matrix (for example, 2 x 2, 3 3 , 4 x 4 and larger free infinite 4 )) to form a large screen splicing display, each display Displaying a portion of an image, the matrix-arranged display together displays an image of a large area, or a different image can be displayed on a separate screen.
  • a matrix for example, 2 x 2, 3 3 , 4 x 4 and larger free infinite 4
  • the input signals of the spliced display are all processed by the image controller, and the output is distributed to each display.
  • Each display can cross the boundary of the display, but it is usually necessary to ensure the smallest gap between the displays.
  • the display quality of a single display directly affects the effect of the entire splicing screen. Different types of displays can produce very different results.
  • the image processor is one of the core components of the spliced display. Its function is to send the signals that need to be displayed on the computer, video, network, etc. to the image splicing controller.
  • the processed image signals are sent to the corresponding display screens, respectively.
  • the display shows only one part of the entire image. All the displays add up to form a complete large picture.
  • the resolution of the large picture is a multiple of the resolution of each display.
  • the image processor can only improve the processing of the video.
  • the stitching effect of the obtained splicing screen still has a wide stitching seam, and can not meet the requirements of the narrow stitching seam, as shown in Fig. 1, with a 2
  • the splicing screen of x 2 is taken as an example, in which each display unit displays a small picture.
  • FIG. 2 is a design of the alignment mark around the narrow splicing display screen in the prior art.
  • Schematic diagram where A, B, and C represent the upper left, lower left, and lower right corners of a small display, respectively, 1A, 2A, and 3A represent the three alignment marks in the upper left corner, and 1B, 2B, and 3B represent the three in the lower left corner.
  • the alignment marks, 1C, 2C and 3C represent the three alignment marks in the lower right corner.
  • any one of the alignment marks has an exclusive area around it, which is the area where any image is prohibited, and the area of the alignment mark is 0.5 mm * 0.5 mm, and the area of the exclusive area is 1.5 mm * 1.5 mm. If other patterns enter the exclusion zone of the registration mark, it will cause an alarm for the production line device and cannot be streamed.
  • Figure 2 there is no coverage between the three alignment marks in the upper left corner and its exclusive area, which does not result in the inability to flow, but the three alignment marks in the lower left and lower right corners and their exclusive areas. There is coverage between, especially in the lower left corner, the coverage between the exclusive areas of the alignment marks 1B, 2B and 3B is severe.
  • the enlarged view is as shown in Fig. 3.
  • the lower left corner of the exclusive area of the alignment mark 2B and the upper right corner of the exclusive area of the alignment mark 1B and the alignment mark 2B partially overlap with the exclusive area of the alignment mark 3B.
  • the pattern enters the exclusive area of the alignment mark, resulting in the inability to stream.
  • Embodiments of the present invention provide a substrate provided with an alignment mark, the substrate including at least two alignment marks, and a height difference between different alignment marks, the height difference being N times the standard difference , N is greater than or equal to 1.
  • the standard deviation is 2000 angstroms.
  • the height difference is 5000 angstroms.
  • the alignment mark is located on the back side and/or the front side of the substrate.
  • the alignment marks having the height difference are formed by the same film layer; or the alignment marks having the height difference are formed by different film layers.
  • Embodiments of the present invention also provide a display screen including at least one of the above substrates.
  • An embodiment of the present invention further provides a splicing screen, the splicing screen includes at least two display screens, and the display screen is the foregoing display screen.
  • An embodiment of the present invention further provides a method for aligning a splicing screen, the method comprising: setting a aligning mark having a height difference on a display screen;
  • the size of the focal length of the image observation device is adjusted, and the alignment mark of the target is aligned, and the splicing positioning is performed.
  • the height difference is 2000 angstroms.
  • the setting of the alignment mark having the height difference on the display screen comprises:
  • the alignment mark having the height difference is formed on the same film layer; or the alignment mark having the height difference is formed in the different film layers.
  • FIG. 2 is a schematic diagram showing the design of the alignment mark of the periphery of the narrow frame stitching in the conventional technology
  • FIG. 3 is a schematic diagram of three alignment mark distributions in a lower left corner region of a conventional technique
  • FIG. 4 is a schematic view showing a substrate provided with an alignment mark and a registration mark disposed on a front surface of the substrate according to an embodiment of the present invention
  • FIG. 5 is a schematic view showing a substrate on which a registration mark is disposed, and a registration mark is disposed on a back surface of a substrate according to an embodiment of the present invention
  • FIG. 6 is a aligning mark Mark1 and an exclusive area thereof in a splicing screen according to an embodiment of the present invention
  • FIG. 7 is a aligning mark Mark2 and an exclusive area thereof in the splicing screen according to an embodiment of the present invention
  • the alignment mark Mark3 and its exclusive area in a splicing screen
  • FIG. 9 is a splicing effect diagram obtained by a splicing screen according to an embodiment of the present invention
  • FIG. 10 is a flow chart showing the steps of a method for aligning a splicing screen according to an embodiment of the present invention. detailed description
  • a substrate provided with an alignment mark is provided.
  • the substrate includes at least two alignment marks, and the height difference between the different alignment marks is N times of the standard difference. N is greater than or equal to 1.
  • the standard deviation is the resolution or measurement accuracy of the image viewing device used in the stitching process.
  • the image observation apparatus of this embodiment may be a camera, or may be another image observation apparatus such as a microscope having higher precision than a camera.
  • a microscope will be described as an example.
  • the microscope can adjust the focal length, and the focal length can be adjusted in a wide range. Alignment marks of different heights need to be observed at different focal lengths. At the same focal length, since the different alignment marks have different heights, only the alignment marks corresponding to the selected focal length can be clearly seen, and other alignment marks corresponding to the selected focal length are blurred. Unclear, it is therefore possible to distinguish the alignment marks having the height difference so that the alignment marks are not affected by each other.
  • the image observation apparatus observes the alignment marks of different heights using different focal lengths, and the size of the focal length is adjusted correspondingly according to the height of the alignment mark.
  • the alignment marks By setting the alignment marks to different heights, there is a height difference between the alignment marks.
  • the two alignment marks cannot be distinguished. Therefore, the positioning is not accurate when splicing, and the frame of the splicing screen is compared. Big.
  • the alignment marks overlapping the exclusive areas can be distinguished, and even if the two alignment marks are very close, they can be distinguished from each other. Accurate positioning can be achieved when positioning, and a good result can be obtained for a process based on alignment mark.
  • the standard deviation value is at least 2000 angstroms.
  • the standard deviation is 2000 angstroms, two highly different alignment marks can be distinguished. It should be noted that in the case of such resolution, 2000 angstroms is the lowest value of the standard deviation, but the standard deviation is not limited to 2000 angstroms, and may be a value greater than 2000 angstroms. Moreover, when the standard deviation is 2000 angstroms, the effect is better when the height difference is 5000 angstroms.
  • the resolution or minimum resolution of the viewing device used is smaller than 2000 angstroms, then a smaller minimum standard deviation can be chosen, then the minimum height difference will be reduced and less than the current 2000 angstroms.
  • the minimum resolution of the device used for observation is 1000 angstroms
  • the height difference can be set to a value above 1000 angstroms, then the minimum standard deviation is 1000.
  • the height difference is greater than or equal to 1000 angstroms.
  • the selection of the standard difference and the height difference in other resolutions will change accordingly, as long as the height difference is satisfied as N times the standard deviation.
  • the alignment mark can be located on the back and/or front side of the substrate. Forming the alignment mark on the back surface of the substrate eliminates the need to consider the structure of the display region, and the formation of the alignment mark on the front surface of the substrate requires consideration of other structures of the display region.
  • the formation of the alignment mark having the height difference includes the following two types: the alignment mark having the height difference is formed on the same film layer; or the alignment mark having the height difference is formed on the different layer film layers.
  • an example will be described in which an alignment mark having a height difference is formed on the same film layer on the back surface of the substrate and a alignment mark having a height difference is formed on a different layer film layer of the substrate.
  • a para-marker having a height difference on the same film layer on the back surface of the substrate For forming a para-marker having a height difference on the same film layer on the back surface of the substrate, first depositing a film layer on the back surface of the substrate, and then applying a photoresist to pass the photoresist through the mask
  • alignment mark For example, in the present embodiment, a description will be given in a manner corresponding to two alignment marks in the lower left corner of Fig. 3. First, deposition is performed on the outside of the effective display area of the back surface of the substrate to form a film layer; then the same layer of film is etched by a patterning process, that is, etching is performed according to a preset height of the alignment mark; finally, alignment marks Mark1 and Mark2 are obtained. They correspond to numbers 10 and 20 respectively.
  • the height difference between the alignment marks Mark1 and Mark2 is twice the standard value, for example, the standard value is 2000 angstroms. Further, the height difference between the alignment marks Mark1 and Mark2 may be N times the standard value, and N is greater than or equal to 1.
  • the alignment marks may be formed on different layers of the film on the back surface of the substrate. Whether the alignment mark is set in the same layer or in different layers, when depositing and etching on the back side of the substrate, since the alignment mark is relatively independent from the front surface, it can be set to an arbitrary height difference, and the height difference size and image
  • the measurement accuracy of the observation device is proportional.
  • the measurement accuracy can reach 2000 angstroms, and the height difference between the alignment marks can be set to N times 2000 angstroms, then Under the microscope, two height-difference alignment marks can be distinguished by adjusting different focal lengths.
  • the alignment mark is sometimes placed on the front side of the substrate depending on the process requirements. If the alignment mark is disposed on the front side of the substrate, the patterning process of the alignment mark can be made in the conventional TFT patterning process without additionally adding MASK, so that the cost is not increased.
  • the alignment mark is formed on the front surface of the substrate.
  • the normal display of the display affects the display. Therefore, in order not to affect the normal display, the alignment mark can be set on different layers outside the effective display area of the display.
  • Such an alignment mark can be formed by a patterning process, and similarly to the above embodiment, the alignment mark can be formed by a deposition, a photoresist patterning process, etching, or the like.
  • the alignment mark provided by the two different layers may be any layer forming the structure of the display region, and the following description will be made by taking the gate insulating layer and the semiconductor active layer as an example.
  • a gate insulating layer on the front side of the substrate; then coating the photoresist, irradiating the photoresist through a mask (MASK), developing, forming a desired pattern on the photoresist; and then insulating the gate
  • the layer is etched. While forming the pattern of the gate insulating layer, the pattern of the alignment mark Mark1 is obtained outside the effective display area. This is a graph of Markl obtained at the first preset height.
  • the semiconductor active layer is deposited, and then the photoresist is coated, the photoresist is illuminated through the mask, developed, and the desired pattern is formed on the photoresist; then the semiconductor active layer is etched.
  • the alignment mark Mark2 is obtained outside the effective display area, which is the pattern of Mark2 obtained according to the second preset height.
  • the alignment marks Mark1 and Mark2 obtained by the above process are located on the front side of the substrate and are located in different layers of the substrate. Therefore, different layers are etched on the front side of the substrate to obtain alignment marks Mark1 and Mark2 having height differences, and their corresponding numbers are respectively For 10 and 20, as shown in Fig. 5, the height difference between the two is N times the standard deviation.
  • the standard deviation can be 2000 angstroms.
  • two alignment marks having a height difference may be formed on the same layer of the front surface F of the substrate by a patterning process, similar to the above method for the same layer etching in FIG. According to the alignment mark etching method of FIG. 4 and FIG. 5, whether the alignment mark having the height difference is on the front side of the substrate or the back side of the substrate, different alignment marks may be formed on the same layer or differently.
  • the layer is formed.
  • the substrate with the height difference aligning mark can distinguish the aligning marks which overlap the exclusive areas or are very close, and can accurately perform the aligning marks according to the separated aligning marks when performing various processing processes. Identify positioning and achieve better process results.
  • the embodiment of the present invention further provides a display screen including at least one substrate provided with an alignment mark, based on the substrate provided with the alignment mark in the embodiment of the present invention.
  • the substrate may be an opposite substrate, such as a color film substrate, and/or an array substrate, and the alignment mark having the height difference may be disposed outside the effective display area on the array substrate or the opposite substrate.
  • the display screen may further include a backlight for providing a light source for normal display of the display screen. It should be noted that the display screen includes the liquid crystal module formed by the substrate and the backlight, and other structures required for the display device to implement the display function, and details are not described herein again.
  • the display screen in this embodiment is described by taking a liquid crystal display as an example, and the display screen for realizing the display function other than the liquid crystal display is also applicable.
  • the display screen provided with the alignment mark provided by the embodiment can distinguish the alignment marks which are overlapped or closely spaced from each other when viewed under a microscope, and are separated according to the respective processing processes.
  • the positioning mark is accurately identified and positioned to achieve better process results.
  • a splicing screen is provided in the second embodiment of the present invention, which includes at least two display screens, wherein the display screen is the display screen provided in the first embodiment.
  • the alignment marks Markl, Mark2 and Mark3 which are required for three different process flows are given, wherein Markl is the mark used for cutting in the Cell process, and Mark2 is the Module process POL.
  • Mark3 is the mark to be used when the UV (ultraviolet curing) process black matrix (BM) is aligned, these three alignments
  • the markers have their own exclusive areas, and images are forbidden in the exclusive area. If the exclusive area overlaps with the exclusive areas of other alignment marks, the positioning may be inaccurate.
  • the above three alignment marks Mark1, Mark2, and Mark3 are disposed outside the effective display area of the liquid crystal panel, and are sequentially or incrementally arranged on the liquid crystal panel.
  • the image observation device to be used for positioning is generally a camera or a microscope.
  • the height difference between the positioning marks is greater than or equal to the standard deviation. If the minimum resolution of the viewing device is 2000 angstroms, that is, the standard When the difference is 2000 angstroms, two highly different alignment marks can be distinguished. It should be noted that in this case, 2000 angstroms is the minimum value of the standard deviation, but the standard deviation is not limited to 2000 angstroms, and may be a value greater than 2000 angstroms. And when the standard deviation is chosen to be 2000 angstroms, the height difference is 5000 angstroms.
  • the resolution or minimum resolution of the viewing device is less than 2000 angstroms, then a smaller minimum standard deviation can be chosen, and then the minimum height difference will be reduced and less than the current 2000 angstroms.
  • the minimum resolvable distance of the device used for observation is 1000 angstroms
  • the height difference can be set to a value above 1000 angstroms, then the minimum standard deviation is 1000 angstroms, and the height difference is greater than or equal to 1000 angstroms.
  • the selection of the standard difference and the height difference in other resolutions will change accordingly, as long as the height difference is N times the standard deviation, and N is greater than or equal to 1.
  • Figure 6 is the alignment mark and its exclusive area observed when the focal length corresponding to the alignment mark Mark1 is selected during the process of forming the box
  • Figure 7 shows the selected and alignment mark Mark2 during the POL&OLB process.
  • FIG. 8 is the alignment mark and its arrangement observed when the focal length corresponding to the alignment mark Mark3 is selected during the UV process. It area.
  • the display screen is spliced by using the alignment mark with the height difference provided by the embodiment.
  • the image observation apparatus can only recognize the alignment by using the selected focal length.
  • the alignment mark corresponding to the selected focal length and the exclusive area of the alignment mark are not seen, and the other alignment marks and the exclusive areas of the other alignment marks are not seen. Therefore, even if there is partial overlap in the exclusive area of the alignment mark, the recognition and alignment will not be affected.
  • the effect of the splicing screen obtained by the above splicing process is as shown in FIG. 9. Compared with the effect diagram of the prior art splicing screen of FIG.
  • the splicing seam is significantly narrowed, and for the splicing screen of large size (46, above)
  • the seam of the original splicing screen is 7-10 mm
  • the substrate with the height difference aligning mark provided by the embodiment of the present invention is spliced, and the seam of the splicing screen can be reduced to 4-6 mm.
  • the narrow frame splicing screen provided by the embodiment has a height difference form on the substrate by aligning the alignment mark outside the effective display area of the panel, and only needs to adjust the focal length of the image observation device when performing the identification alignment. Only one alignment mark and its exclusive area can be seen under the same focal length. Even if different alignment marks are arranged together, they will not interfere with each other, so that different alignment marks can be set at relatively close positions. Achieve narrow border stitching.
  • the narrow frame splicing screen provided in this embodiment sets the alignment marks to different heights outside the effective display area of the panel, so that different alignment marks have a height difference, and when the alignment is performed, the image is Observing the device to set a focal length can only display a registration mark and its exclusive area in the image, even if the different alignment marks are arranged together, they will not interfere with each other, so as to achieve accurate alignment and realize the display. Narrow border stitching.
  • a method for implementing a narrow border splicing screen is provided.
  • the process of the step is as shown in FIG. 10, including:
  • Step Sl Set a registration mark with a height difference on the display screen.
  • the height difference is N times the standard deviation, and N is greater than or equal to 1.
  • the standard deviation is the resolution or measurement accuracy of the image viewing device used in the stitching process.
  • the display includes: a backlight and a liquid crystal panel, and a liquid crystal panel
  • the liquid crystal panel may further include a counter substrate (for example, a color filter substrate), an array substrate, and a liquid crystal between the opposite substrate and the array substrate, and the alignment mark is disposed on the array substrate or the opposite substrate.
  • the counter substrate and/or the array substrate are substrates having a height difference on the alignment mark thereon.
  • the display screen can also be a display screen for realizing display functions other than the liquid crystal display.
  • step S1 Setting the alignment mark with the height difference in step S1 includes:
  • the alignment mark having the height difference is formed by etching in the same layer; or the alignment mark having the height difference is separately etched and formed in different layers. This has been described in detail in the first embodiment and will not be described again.
  • Step S2 When splicing at least two display screens, adjust the focal length of the image observation device to align with the target alignment mark.
  • the alignment marks of different heights correspond to different focal lengths of the image observation device.
  • the image viewing device selects a focal length corresponding to the alignment mark required by the process, and only the alignment mark can be observed at the focal length, and no other alignment mark is seen, so Different alignment marks can be easily distinguished. Since any image is prohibited in the exclusive area of the alignment mark, it is necessary to see only the required alignment mark when performing a certain process, and the other alignment marks are not in the display area, so that the influence of each other can be avoided.
  • the boxing process, the POL&OLB process, and the UV process as an example, the alignment marks observed in the three process flows and their exclusion zone results are shown in Figures 6-8 above.
  • the stitching seam can be original The 7 ⁇ 10mm drop ⁇ ⁇ to 4 ⁇ 6mm.
  • the minimum standard deviation depends on the maximum resolution of the microscope used in the observation. For example, if the minimum resolution of the fluoroscopy is 2000 angstroms, the standard deviation can be 2000 angstroms. When the standard deviation is 2000 angstroms, two highly different alignment marks can be distinguished. Then the height difference can be set to N times 2000 angstroms, N is greater than or equal to 1, that is, the height difference can be a value above 2000 angstroms. It should be noted that in this case, 2000 angstroms is the lowest value of the standard deviation, but the standard deviation is not limited to 2000 angstroms, and may be a value greater than 2000 angstroms. Moreover, when the minimum resolution of the microscope is 2000 angstroms, the height difference is 5000 angstroms.
  • the standard deviation can be more than 1000 angstroms, then the minimum standard deviation is 1000 angstroms, and the height difference is greater than or equal to 1000 angstroms.
  • the selection of the standard and height differences in other resolutions will change accordingly, as long as the height difference is N times the standard deviation, N is greater than or equal to 1.
  • the narrow frame splicing screen splicing method provided in this embodiment, it is not necessary to change the position of the alignment mark overlapped by the conventional process, but the alignment marks outside the effective display area of the panel are made to different heights, so that different alignments are made. There is a significant height difference between the marks.
  • the focal length of the display device needs to be adjusted. Only one alignment mark and its exclusive area can be seen at the same focal length, even if different alignment marks are arranged. They do not interfere with each other together, so that different alignment marks can be placed at a closer distance to achieve narrow frame stitching.
  • Embodiments of the present invention provide a method for aligning a substrate, a display screen, a splicing screen, and a splicing screen provided with alignment marks, by setting the alignment marks outside the effective display area of the display screen to have a height difference form.
  • the image observing device can be used to distinguish the overlapping mark of the exclusive area.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Computer Graphics (AREA)
  • Multimedia (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种设置有对位标记的基板、显示屏、拼接屏及拼接屏的对位方法,其中拼接屏包括至少两块具有对位标记的显示屏,所述显示屏的基板上设置至少两个对位标记(10,20),不同对位标记(10,20)之间具有高度差,高度差大于等于标准差值。将对位标记(10,20)设置成不同的高度,可以实现显示屏的窄边框拼接。

Description

基板、 显示屏、 拼接屏及拼接屏的对位方法 技术领域
本发明涉及一种设置有对位标记的基板、 显示屏、 拼接屏及拼接屏的对 位方法。 背景技术
近年来流行的紧凑型电视, 即窄边框电视(Compact TV )和公共信息显 示(Public Information Display, PID )拼接显示屏的使用范围越来越广, 显 示屏和显示器的拼接技术要求也越来越高。 拼接显示屏就是由多个显示屏作 为显示单元以矩阵排列 (例如 2 x 2, 3 3 , 4 x 4及更大的自由无限 4丼接) 组成一个大屏幕的拼接显示屏, 每个显示屏显示一张图像的一部分, 矩阵排 列的显示屏共同显示一幅面积很大的图像, 也可分屏显示不同图像。
拼接显示屏的输入信号全部通过图像控制器处理后, 分配输出到每个显 示屏, 每个显示屏显示的画面可以跨越显示屏的边界, 但通常需要保证显示 屏之间最小的缝隙。 单个显示屏的显示品质直接影响着整个拼接屏的效果, 采用不同类型的显示屏会得到大不相同的结果。 图像处理器是拼接显示屏的 核心器件之一, 其作用是将计算机、 视频、 网络等需要显示的信号送到图像 拼接控制器, 经处理后的图像信号被分别送到相应的显示屏, 每个显示屏只 显示整个图像的一个部分,全部显示屏加在一起就构成了一幅完整的大画面, 大画面的分辨率为每个显示屏分辨率的倍数。 但是图像处理器只能在视频的 处理方面做出改善, 得到的拼接屏的拼接效果仍然具有很宽的拼接缝, 还不 能满足窄拼接缝的需求, 如图 1所示, 以一个 2 x 2的拼接屏为例进行说明, 其中每一个显示单元显示一小幅图片。
现有技术的窄拼接显示屏技术就是压缩现有每一块显示屏的边框宽度, 达到拼接完成后中间的拼缝更窄的目的, 图 2为现有技术中窄拼接显示屏周 边对位标记设计的示意图。其中 A、 B和 C分别代表一小块显示屏的左上角、 左下角和右下角, 1A、 2A和 3A代表在左上角的三个对位标记, 1B、 2B和 3B代表在左下角的三个对位标记, 1C、 2C和 3C代表在右下角的三个对位 标记。 任何一个对位标记, 其周围都有一个排它区, 就是禁止任何图像的区 域, 并且对位标记的面积为 0.5mm*0.5mm, 其排它区面积为 1.5mm*1.5mm。 如果有其它图案进入到对位标记的排它区范围内, 就会造成产线设备的报警 而无法进行流片。 如图 2中所示, 左上角的三个对位标记及其排它区之间不 存在覆盖, 不会导致无法流片, 但是左下角和右下角的三个对位标记及其排 它区之间存在覆盖, 尤其是左下角的对位标记 1B、 2B和 3B的排它区之间 覆盖很严重。 放大图如图 3所示, 对位标记 2B的排它区的左下角与对位标 记 1B和对位标记 2B的排它区的右上角与对位标记 3B的排它区都存在部分 重叠的情况, 造成有图案进入到对位标记的排它区, 导致无法流片。
若要实现拼接显示屏的窄边框, 就要极限压缩现有工艺的余量, 减小显 示屏对位标记处的宽度, 减小基板的对位标记的宽度, 提高精准度和标准。 但是只靠极限压缩现有工艺的余量, 对拼接显示屏的边框变窄没有明显的改 善, 影响拼接显示屏显示效果的问题仍然存在。 发明内容
本发明的实施例提供了一种设置有对位标记的基板, 所述基板上包括至 少两个对位标记,不同对位标记之间具有高度差,所述高度差为标准差值的 N 倍, N大于等于 1。
进一步地, 所述标准差值为 2000埃。
进一步地, 所述高度差为 5000埃。
进一步地, 所述对位标记位于所述基板的背面和 /或正面。
进一步地, 所述具有高度差的对位标记为同一层膜层形成; 或者所述具 有高度差的对位标记为不同层膜层形成。
本发明的实施例还提供一种显示屏, 其包括至少一个上述基板。
本发明的实施例还提供一种拼接屏, 所述拼接屏包括至少两块显示屏, 所述显示屏为上述显示屏。
本发明的实施例还提供一种拼接屏的对位方法, 所述方法包括: 在显示屏上设置具有高度差的对位标记;
将至少两块显示屏进行拼接时, 通过调节图像观察设备焦距的大小, 与 目标的对位标记对位, 进行拼接定位。
进一步地, 所述高度差为 2000埃。
进一步地, 所述在显示屏上设置具有高度差的对位标记包括:
将具有高度差的对位标记在同一层膜层形成; 或者将具有高度差的对位 标记在不同层膜层形成。 附图说明 以下将结合附图对本发明的实施例进行更详细的说明, 以使本领域普通 技术人员更加清楚地理解本发明, 其中:
图 1为现有技术拼接屏的效果图;
图 2为常规技术中窄边框拼接的周边的对位标记设计示意图;
图 3为常规技术左下角区域的三个对位标记分布示意图;
图 4为本发明实施例中一种设置有对位标记的基板将对位标记设置在基 板正面的示意图;
图 5为本发明实施例中一种设置有对位标记的基板将对位标记设置在基 板背面的示意图;
图 6为本发明实施例中一种拼接屏中对位标记 Markl及其排它区; 图 7为本发明实施例中一种拼接屏中对位标记 Mark2及其排它区; 图 8为本发明实施例中一种拼接屏中对位标记 Mark3及其排它区; 图 9为本发明实施例中一种拼接屏得到的拼接效果图;
图 10为本发明实施例中一种拼接屏的对位方法的步骤流程图。 具体实施方式
为使本发明的实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例的附图对本发明的实施例的技术方案进行清楚、 完整的描述。 显 然, 所描述的实施例仅是本发明的一部分示例性实施例, 而不是全部的实施 例。 基于所描述的本发明的示例性实施例, 本领域普通技术人员在无需创造 性劳动的前提下所获得的所有其它实施例都属于本发明的保护范围。
除非另作定义, 此处使用的技术术语或者科学术语应当为本发明所属领 域内具有一般技能的人士所理解的通常意义。 本发明专利申请说明书以及权 利要求书中使用的 "第一"、 "第二" 以及类似的词语并不表示任何顺序、 数 量或者重要性, 而只是用来区分不同的组成部分。 同样, "一个"、 "一" 或者 "该" 等类似词语也不表示数量限制, 而是表示存在至少一个。 "包括" 或者 "包含" 等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后 面列举的元件或者物件及其等同,而不排除其他元件或者物件。 "上"、 "下"、 等仅用于表示相对位置关系, 当被描述对象的绝对位置改变后, 则该相对位 置关系也可能相应地改变。 实施例一
本发明实施例一中提供了一种设置有对位标记的基板, 基板上包括至少 两个对位标记, 不同对位标记之间具有高度差, 所述高度差为标准差值的 N 倍, N大于等于 1。 标准差值即为拼接过程中使用的图像观察设备的分辨率 或测量精度。
本实施例的图像观察设备可以是相机, 还可以是比相机的精度更高的显 微镜等其他图像观察设备, 以下以显微镜为例进行说明。 显微镜是可以调整 焦距的, 且焦距的调整范围很宽。 不同高度的对位标记需要在不同的焦距下 进行观察。 在同一个焦距下, 由于不同的对位标记具有不同的高度, 因此只 有与选定焦距相对应的对位标记可以清楚地看到, 而除了与选定焦距相对应 的其它对位标记则模糊不清, 因此可以将具有高度差的对位标记区分开, 使 得对位标记之间不会彼此受到影响。
在根据对位标记进行识别对位时, 图像观察设备使用不同的焦距观察不 同高度的对位标记, 焦距的大小根据对位标记的高度进行相应的调节。
通过将对位标记设置成不同的高度, 使得对位标记之间具有高度差。 常 规技术中当一个对位标记的排它区进入到另一个对位标记的排它区时就无法 将这两个对位标记区分开, 因此, 拼接时定位不准, 导致拼接屏的边框比较 大。 本发明实施例中由于不同的对位标记之间具有高度差, 就能将排它区重 叠的对位标记区分开, 即便两个对位标记距离非常近也能将它们彼此区分开, 在进行定位时就能实现精准的定位, 对于基于对位标记实现的工艺能够得到 4艮好的效果。
取决于拼接过程中所使用的图像观察设备的可分辨距离或测量精度, 例 如,如果观察用的显 镜的最小分辨率为 2000埃,则标准差值的大小最小为 2000埃。 当标准差值为 2000埃时, 就能将两个高度不同的对位标记区分开。 需要说明的是, 在此种分辨率的情况下, 2000埃为设置标准差值的最低值, 但是标准差值并不局限于 2000埃, 还可以是大于 2000埃的数值。 而且当标 准差值为 2000埃时, 选取高度差为 5000埃时效果更好。
显然, 如果所使用的观察设备的分辨率或最小分辨距离比 2000埃更小, 则可以选取更小的最小标准差值, 那么, 最小的高度差也会因此降低而比当 前的 2000埃更小。 例如, 如果观察所使用的设备的最小可分辨距离为 1000 埃,则高度差就可以设定为 1000埃以上的数值,那么最小标准差值即为 1000 埃, 则高度差大于等于 1000埃即可。依此类推, 其他分辨率情况下的标准差 值和高度差的选取会相应变化, 只要满足高度差为标准差值的 N倍。
对位标记可以位于基板的背面和 /或正面。在基板的背面形成对位标记可 以不用考虑显示区域的结构, 在基板的正面形成对位标记需要考虑显示区域 的其他结构。 具有高度差的对位标记的形成方式包括以下两种: 具有高度差 的对位标记在同一层膜层上形成; 或者所述具有高度差的对位标记在不同层 膜层上形成。
以下以在基板的背面同一层膜层上形成具有高度差的对位标记和在基板 的不同层膜层上形成具有高度差的对位标记为例进行说明。
对于在基板背面同一层膜层上形成具有高度差的对位标记, 首先在基板 的背面进行一次沉积形成膜层, 然后涂覆光刻胶, 将光刻胶通过掩膜板
( MASK )进行光照, 显影, 在光刻胶上形成所要的图案, 之后对该膜层进 行刻蚀, 按照对每一个对位标记的预设高度通过刻蚀去掉多余的高度, 得到 高度满足要求的对位标记。 例如, 本实施例中以对应图 3中左下角的两个对 位标记的方式进行说明。 首先在基板背面 B的有效显示区域外 W进行沉积 形成膜层; 之后利用构图工艺进行同一层膜层刻蚀, 即按照对位标记的预设 高度进行刻蚀; 最后得到对位标记 Markl和 Mark2, 它们对应的编号分别为 10和 20。 如图 4所示, 对位标记 Markl和 Mark2之间的高度差为标准值的 一倍,例如,所述标准值为 2000埃。进一步的,所述对位标记 Markl和 Mark2 之间的高度差可以为标准值的 N倍, N大于等于 1。
需要说明的是, 上述对位标记也可以是在基板的背面分别形成在不同层 膜层上。 无论对位标记是设置在同层还是设置在不同层, 在基板的背面进行 沉积和刻蚀时, 由于对位标记与正面相对独立, 可以设置成任意的高度差, 而高度差的大小与图像观察设备的测量精度成正比。 作为本发明的一个实施 例, 在本实施例中图像观察设备使用的显微镜, 其测量精度可以达到 2000 埃, 就可以将对位标记之间的高度差设置为 2000埃的 N倍, 那么在该显微 镜下就能通过调节不同的焦距将两个具有高度差的对位标记区分开。
进一步地, 有时根据工艺需求还会将对位标记设置在基板的正面。 如果 将对位标记设置在基板正面,所述对位标记的构图工艺可以在常规的 TFT的 构图工艺中做出来, 不用额外增加 MASK, 因此也就不会增加成本。
由于基板的正面需要实现显示的功能, 在基板的正面形成对位标记会对 显示屏的正常显示造成影响, 因此, 为了不影响正常显示, 可以在显示屏的 有效显示区外 W, 在不同层上设置对位标记。 可以通过构图工艺形成这样的 对位标记, 与上面的实施例类似, 可以通过沉积、 光刻胶构图工艺, 刻蚀等 步骤形成对位标记。 这两个不同层设置的对位标记可以是形成显示区域结构 的任何一层, 下面以栅绝缘层和半导体有源层为例进行说明。
首先, 在基板的正面进行栅绝缘层的沉积; 然后涂覆光刻胶, 将光刻胶 通过掩膜板(MASK )进行光照, 显影, 在光刻胶上形成所要的图案; 之后 对栅绝缘层进行刻蚀。在形成栅绝缘层的图形的同时,在有效显示区外 W得 到对位标记 Markl的图形。 这是按照第一预设高度得到的 Markl的图形。 然 后, 再进行半导体有源层的沉积, 然后涂覆光刻胶, 将光刻胶通过掩膜板进 行光照, 显影, 在光刻胶上形成所要的图案; 之后对半导体有源层进行刻蚀, 在形成半导体有源层图形的同时, 在有效显示区外 W得到对位标记 Mark2, 此为按照第二预设高度得到的 Mark2的图形。由此,对位标记 Markl和 Mark2 之间存在一个预设的高度差。上述工艺得到的对位标记 Markl和 Mark2均位 于基板的正面, 且位于基板的不同层, 因此在基板的正面进行不同层刻蚀得 到具有高度差的对位标记 Markl和 Mark2,它们对应的编号分别为 10和 20, 如图 5所示, 两者高度差为标准差值的 N倍。 所述标准差值可以为 2000埃。 需要说明的是, 也可以在基板的正面 F的同一层上, 通过构图工艺形成两个 具有高度差的对位标记, 方法类似上述关于图 4中同层刻蚀的方法。 根据图 4和图 5的对位标记刻蚀方法可知: 无论具有高度差的对位标记是在基板的 正面还是在基板的背面, 不同的对位标记既可以在同一层形成, 也可以在不 同层形成。
上述图 4和图 5中是以两个对位标记为例进行说明得到的, 上述具有高 度差的对位标记的形成方法同样适用于三个及三个以上的对位标记的形成。
综上所述, 具有高度差对位标记的基板, 能将排它区重叠或者距离非常 近的对位标记区分开, 能够在进行到各个加工工艺时, 根据区分开的对位标 记进行精准的识别定位, 实现更好的工艺效果。
基于本发明实施例中的设置有对位标记的基板, 本发明实施例还提供一 种显示屏, 其包括设置有对位标记的至少一个基板。 以液晶显示屏为例, 上 述基板可以是对置基板, 例如彩膜基板, 和 /或阵列基板, 并且可以将具有高 度差的对位标记设置在阵列基板或者对置基板上的有效显示区域外。 上述显示屏除了包括上述基板, 还可以包括背光源, 用于为显示屏的正 常显示提供光源。 需要说明的是, 显示屏除了包括上述基板和背光源构成的 液晶模组,还包括显示装置实现显示功能所需要的其它结构,在此不再赘述。
还需要说明的是,本实施例中的显示屏是以液晶显示屏为例进行说明的, 对于液晶显示屏之外的实现显示功能的显示屏同样适用。
因此, 本实施例提供的设置有对位标记的显示屏, 在显微镜下观察时能 将排它区重叠或者距离非常近的对位标记区分开, 在进行到各个加工工艺时, 根据区分开的对位标记进行精准的识别定位, 实现更好的工艺效果。
实施例二
本发明实施例二中提供一种拼接屏, 其包括至少两块显示屏, 其中的显 示屏为上述实施例一中提供的显示屏。
在本实施中给出三个不同工艺流程需要使用的对位标记 Markl , Mark2 和 Mark3 , 其中 Markl为成盒(Cell )工艺进行切割时要用到的标记, Mark2 为成模 ( Module )工艺 POL (偏光片贴合)工序和 OLB (绑定)工序进行对 位时要使用的标记, Mark3为 UV (紫外光固化)工艺黑矩阵(BM )对位时 要使用的标记, 这三个对位标记均有各自的排它区, 在排它区中禁止出现图 像, 如果在排它区与其他对位标记的排它区发生重叠就会导致定位不准。
以液晶面板为例, 将上述三个对位标记 Markl , Mark2和 Mark3均设置 于液晶面板的有效显示区域外 W, 依次递增或递减地排列在液晶面板上。
对多块显示屏进行拼接, 定位时需要使用的图像观察设备, 一般为相机 或显微镜, 定位标记之间的高度差大于等于标准差值, 如果观察设备的最小 分辨率为 2000埃, 即当标准差值为 2000埃时, 就能将两个高度不同的对位 标记区分开。 需要说明的是, 在此种情况下, 2000埃为设置标准差值的最小 值, 但是标准差值并不局限于 2000埃, 还可以是大于 2000埃的数值。 并且 当标准差值选为 2000埃时, 高度差为 5000埃效果更好。
显然,如果观察设备的分辨率或最小分辨距离比 2000埃更小,则可以选 取更小的最小标准差值, 那么, 最小的高度差也会因此降低而比当前的 2000 埃更小。 例如, 如果观察所使用的设备的最小可分辨距离为 1000埃, 则高度 差就可以设定为 1000埃以上的数值, 那么最小标准差值即为 1000埃, 则高 度差大于等于 1000埃。依此类推,其他分辨率情况下的标准差值和高度差的 选取会相应变化, 只要满足高度差为标准差值的 N倍, N大于等于 1即可。 图 6为进行成盒工艺过程中选定与对位标记 Markl相对应的焦距进行观 察时观察到的对位标记以及其排它区, 图 7为进行 POL&OLB工艺过程中选 定与对位标记 Mark2 相对应的焦距进行观察时观察到的对位标记及其排它 区, 图 8为进行 UV工艺过程中选定与对位标记 Mark3相对应的焦距进行观 察时观察到的对位标记及其排它区。
通过采用本实施例提供的具有高度差的对位标记进行显示屏拼接, 当不 同的对位标记的排它区相互交叠时, 图像观察设备采用选定的焦距进行识别 对位也只能看到与选定的焦距相对应的对位标记以及对位标记的排它区, 而 看不到其它对位标记以及其它对位标记的排它区。 因此即便对位标记的排它 区存在部分重叠, 也不会影响识别和对位。 使用上述拼接工艺得到的拼接屏 的效果如图 9所示, 与图 1 中现有技术拼接屏的效果图相比较, 拼接缝明显 地变窄, 对于大尺寸 (46, 以上)的拼接屏而言, 原有拼接屏的拼缝在 7-10mm, 使用本发明实施例提供的具有高度差对位标记的基板进行拼接, 得到拼接屏 的拼缝可降低到 4-6mm。
本实施例提供的窄边框拼接屏, 通过将面板有效显示区以外的对位标记 在基板上做成具有高度差的形式, 在进行识别对位时, 只需要调节图像观察 设备的焦距, 使在同一焦距下只能看到一个对位标记及其排它区, 即便不同 的对位标记排布在一起也不会彼此产生干扰, 从而可以将不同的对位标记设 置在相对较近的位置, 实现窄边框拼接。
综上所述, 本实施例提供的窄边框拼接屏在面板有效显示区域外将对位 标记设置成不同的高度, 使不同的对位标记之间具有高度差, 当进行识别对 位时, 图像观察设备设定一个焦距就只能在图像中显示一个对位标记及其排 它区, 即便不同的对位标记排布在一起也不会彼此产生干扰, 以便进行精准 的对位, 实现显示屏的窄边框拼接。
实施例三
实施例三中提供了一种窄边框拼接屏的实现方法,步骤流程如图 10所示, 包括:
步骤 Sl、 在显示屏上设置具有高度差的对位标记。
进一步地, 其中高度差为标准差值的 N倍, N大于等于 1。 所述标准差 值为拼接过程中使用的图像观察设备的分辨率或测量精度。
以液晶显示屏为例, 则所述显示屏包括: 背光源和液晶面板, 液晶面板 为基于对位标记的液晶面板, 液晶面板进一步可以包括对置基板 (例如彩膜 基板)、 阵列基板以及对置基板与阵列基板之间的液晶, 对位标记设置在阵列 基板或者所对置基板上的有效显示区域外, 对置基板和 /或阵列基板都是其上 面的对位标记具有高度差的基板。 当然显示屏也可以是液晶显示屏之外的实 现显示功能的显示屏。
步骤 S1中设置具有高度差的对位标记包括:
将具有高度差的对位标记在同层刻蚀形成; 或者将具有高度差的对位标 记在不同层分别刻蚀形成。 这在实施例一中已经进行了详细描述, 在此不再 赘述。
步骤 S2、 将至少两块显示屏进行拼接时, 通过调节图像观察设备焦距的 大小, 与目标的对位标记对位。
由于通过调节图像观察设备焦距的大小, 设定一个焦距就只能在图像中 显示一个对位标记及其排它区, 就可以将具有高度差的对位标记区分开, 以 便进行精准的对位, 进行拼接定位, 得到窄边框拼接屏。
进行识别对位时, 不同高度的对位标记对应图像观察设备不同的焦距, 进行到不同的加工工艺时就需要根据工艺所需的对位标记选择对应的焦距进 行观察。 比如, 如果在成盒工艺中需要根据 Markl的对位标记进行定位, 就 需要将图像观察设备的焦距调节到与 Markl的高度相对应的焦距上, 如果在 POL&OLB工艺中需要根据 Mark2的对位标记进行定位, 就需要将图像观察 设备的焦距调节到与 Mark2的高度相对应的焦距上, 如果在 UV工艺中需要 根据 Mark3 的对位标记进行定位, 就需要将图像观察设备的焦距调节到与 Mark3的高度相对应的焦距上。
在进行某一工艺时, 图像观察设备选定了与该工艺需要的对位标记相对 应的焦距, 在该焦距下只能观察到该对位标记, 而看不到其它的对位标记, 因此可以很容易地将不同的对位标记区分开。 因为对位标记的排它区中禁止 任何图像, 因此需要在进行某一工艺时只能看到需要的对位标记, 而其它的 对位标记不在显示区域, 这样就能避免彼此产生的影响。 以成盒工艺、 POL&OLB工艺和 UV工艺为例, 三个工艺流程观察到的对位标记及其排它 区结果如上述图 6-图 8所示。 即使不同的对位标记排布在一起也不会彼此产 生干扰, 从而可以将不同的对位标记设置在相对较近的位置, 实现窄边框拼 接, 使得拼接缝变窄, 对于大尺寸 (46, 以上)拼接屏而言, 拼接缝可以由原来 的 7~10mm降^ ί氐到 4~6mm。
最小标准差值取决于观察中所使用的显微镜的最大分辨率, 例如, 如果 显敫镜的最小可分辨距离为 2000埃, 则标准差值的大小可以为 2000埃。 当 标准差值为 2000埃时,就能将两个高度不同的对位标记区分开。那么高度差 就可以设定为 2000埃的 N倍, N大于等于 1 , 即, 高度差可以为 2000埃以 上的数值。需要说明的是,在此种情况下, 2000埃为设置标准差值的最低值, 但是标准差值并不局限于 2000埃, 还可以是大于 2000埃的数值。 而且当显 微镜的最小可分辨距离为 2000埃时, 高度差为 5000埃效果较好。 而如果观 察所使用的显微镜的最小可分辨距离为 1000埃, 则标准差值就可以为 1000 埃以上的数值,那么最小标准差值就为 1000埃,则高度差大于等于 1000埃。 依此类推, 其他分辨率情况下的标准差值和高度差的选取会相应变化, 只要 满足高度差为标准差值的 N倍, N大于等于 1。
通过使用本实施例提供的窄边框拼接屏拼接方法, 不必改变常规工艺相 互重叠的对位标记的位置, 而是将面板有效显示区域以外的对位标记做成不 同的高度, 使不同的对位标记之间具有明显的高度差, 在进行识别对位时, 只需要调节显示设备的焦距, 在同一焦距下只能看到一个对位标记及其排它 区, 即便不同的对位标记排布在一起也不会彼此产生干扰, 从而可以将不同 的对位标记设置在距离较近的位置, 实现窄边框拼接。
本发明的实施例提出了一种设置有对位标记的基板、 显示屏、 拼接屏及 拼接屏的对位方法, 通过将显示屏的有效显示区域外的对位标记设置成具有 高度差的形式, 能够利用图像观察设备将排它区重叠的对位标记区分开, 当 多块显示屏进行拼接识别对位时, 即便不同的对位标记排布在一起也不会对 彼此产生干扰, 实现显示屏拼接时的精准定位, 得到窄边框的拼接屏。
以上实施方式仅以示例方式说明本发明, 而并非对本发明的限制, 所属 技术领域的普通技术人员, 在不脱离本发明的精神和范围的情况下, 还可以 做出各种变化和变型,而这些变化和变型及其等同物都应属于本发明的范围。

Claims

权利要求书
1、 一种设置有对位标记的基板, 包括:
至少两个对位标记, 不同对位标记之间具有高度差, 所述高度差为标准 差值的 N倍, N大于等于 1。
2、 如权利要求 1所述的基板, 其中所述标准差值为 2000埃。
3、 如权利要求 1或 2所述的基板, 其中所述高度差为 5000埃。
4、 如权利要求 1-3任一项所述的基板, 其中所述对位标记位于所述基板 的背面和 /或正面。
5、 如权利要求 1-4任一项所述的基板, 其中所述具有高度差的对位标记 在同一层膜层形成; 或者所述具有高度差的对位标记在不同层膜层形成。
6、 一种显示屏, 包括至少一个如权利要求 1-5中任一项中所述的基板。
7、 一种拼接屏, 包括至少两块如权利要求 6中所述的显示屏。
8、 一种 f接屏的对位方法, 包括:
在显示屏上设置具有高度差的对位标记; 以及
将至少两块显示屏进行拼接时, 通过调节图像观察设备焦距的大小, 与 目标的对位标记对位, 进行拼接定位。
9、 如权利要求 8所述的方法, 其中所述高度差为 2000埃。
10、 如权利要求 8或 9所述的方法, 其中所述在显示屏上设置具有高度 差的对位标记包括:
将具有高度差的对位标记在同一层膜层形成; 或者将具有高度差的对位 标记在不同层膜层形成。
PCT/CN2013/088830 2013-07-24 2013-12-09 基板、显示屏、拼接屏及拼接屏的对位方法 WO2015010415A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/361,879 US9916121B2 (en) 2013-07-24 2013-12-09 Substrate, display screen, splicing screen and alignment method of splicing screen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310314619.5A CN103366648B (zh) 2013-07-24 2013-07-24 基板、显示屏、拼接屏及拼接屏的对位方法
CN201310314619.5 2013-07-24

Publications (1)

Publication Number Publication Date
WO2015010415A1 true WO2015010415A1 (zh) 2015-01-29

Family

ID=49367881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088830 WO2015010415A1 (zh) 2013-07-24 2013-12-09 基板、显示屏、拼接屏及拼接屏的对位方法

Country Status (3)

Country Link
US (1) US9916121B2 (zh)
CN (1) CN103366648B (zh)
WO (1) WO2015010415A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113380137A (zh) * 2020-02-21 2021-09-10 群创光电股份有限公司 拼接式显示装置的制造方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103366648B (zh) 2013-07-24 2015-06-17 京东方科技集团股份有限公司 基板、显示屏、拼接屏及拼接屏的对位方法
CN103412428B (zh) * 2013-07-24 2016-01-27 北京京东方光电科技有限公司 一种对位系统
CN104658436B (zh) * 2013-11-25 2018-09-28 丁炜慷 一种在拼接显示屏上点对点显示输入视频的方法
CN106709894B (zh) * 2015-08-17 2020-10-27 北京亿羽舜海科技有限公司 一种图像实时拼接方法及系统
CN106297576B (zh) * 2016-10-08 2023-04-11 杭州美卡乐光电有限公司 Led箱体、led显示屏及其组装方法
CN106772738B (zh) * 2017-02-21 2023-02-03 擎中科技(上海)有限公司 一种对位方法及光栅结构
KR101898706B1 (ko) * 2017-07-31 2018-09-13 엘지디스플레이 주식회사 마운팅 장치, 이를 이용한 디스플레이 모듈 조립장치 및 방법
CN110148606B (zh) 2018-04-18 2021-03-02 友达光电股份有限公司 显示面板及其制造方法
CN109596971B (zh) * 2018-11-28 2020-12-18 深圳市大族数控科技有限公司 飞针测试机的对位方法
CN110767084B (zh) * 2019-02-01 2022-07-08 云谷(固安)科技有限公司 显示面板及其制作方法和显示装置
CN110262108B (zh) * 2019-06-28 2022-07-01 厦门天马微电子有限公司 显示面板和显示装置
CN110211502A (zh) * 2019-06-28 2019-09-06 云谷(固安)科技有限公司 阵列基板及其制作方法和显示面板的制作方法
CN110375692A (zh) * 2019-07-24 2019-10-25 深圳市科伦特电子有限公司 一种led显示屏拼接检测及定位方法和装置
CN110618552A (zh) * 2019-08-21 2019-12-27 深圳市华星光电技术有限公司 一种显示面板及显示装置
CN111128965B (zh) * 2019-12-16 2022-05-31 深圳市华星光电半导体显示技术有限公司 一种阵列基板及显示面板
CN112117316B (zh) * 2020-09-23 2024-05-31 京东方科技集团股份有限公司 显示母板、显示母板的制备方法和对位方法
CN113142798B (zh) * 2021-04-29 2022-11-08 山东数字人科技股份有限公司 一种三维场景展示系统及其三维场景展示方法
CN113597149A (zh) * 2021-07-16 2021-11-02 Tcl华星光电技术有限公司 一种拼接箱及拼接显示屏
CN113763824B (zh) * 2021-09-06 2023-09-26 京东方科技集团股份有限公司 一种拼接屏和智慧黑板
CN113593426B (zh) * 2021-09-28 2021-12-03 卡莱特云科技股份有限公司 一种led拼接屏图像的模组划分方法以及led屏校正方法
CN114694518B (zh) * 2022-04-20 2023-07-25 武汉华星光电半导体显示技术有限公司 拼接显示屏

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5369281A (en) * 1992-02-18 1994-11-29 Thomson Tubes Electroniques Matrix screen, particularly a large screen, and a method of manufacturing it
CN101097302A (zh) * 2006-06-30 2008-01-02 Lg.菲利浦Lcd株式会社 柔性显示器及形成该柔性显示器的对准标记的方法
CN101261960A (zh) * 2007-03-06 2008-09-10 三星电子株式会社 包括绝缘母基板中形成对准标记的液晶显示器的制造方法
US20090289160A1 (en) * 2008-05-23 2009-11-26 Kludt Kory D Support assembly
CN101661220A (zh) * 2008-08-27 2010-03-03 北京京东方光电科技有限公司 液晶显示器面板和掩模板
CN103137029A (zh) * 2013-03-14 2013-06-05 利亚德光电股份有限公司 Led显示装置
CN103366648A (zh) * 2013-07-24 2013-10-23 京东方科技集团股份有限公司 基板、显示屏、拼接屏及拼接屏的对位方法
CN203366657U (zh) * 2013-07-24 2013-12-25 京东方科技集团股份有限公司 设置有对位标记的基板、显示屏及拼接屏

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6227394B1 (en) * 1998-06-09 2001-05-08 Asahi Glass Company Ltd. Glass bulb for a cathode ray tube and a method for producing a cathode ray tube
KR100801151B1 (ko) * 2001-10-04 2008-02-05 엘지.필립스 엘시디 주식회사 액정표시장치용 블랙매트릭스
US8730475B2 (en) * 2007-12-10 2014-05-20 Samsung Electronics Co., Ltd. Method of aligning a substrate
US8758865B2 (en) * 2008-09-04 2014-06-24 Xerox Corporation Ultra-violet curable gellant inks for tactile and regular print applications for signature and document authentication
CN101685217A (zh) * 2008-09-24 2010-03-31 吴小平 拼接式液晶面板及工艺以及所组合的大屏幕显示器
JP4650703B2 (ja) * 2008-12-25 2011-03-16 ソニー株式会社 表示パネルおよびモジュール並びに電子機器
CN101900933A (zh) * 2009-06-01 2010-12-01 北京京东方光电科技有限公司 使用掩模板曝光工艺的基板及其对位方法
CN101672997B (zh) * 2009-09-28 2011-12-28 友达光电(苏州)有限公司 液晶显示面板
US20110109526A1 (en) * 2009-11-09 2011-05-12 Qualcomm Incorporated Multi-screen image display
CN101986206B (zh) * 2010-07-30 2012-08-08 南京中电熊猫液晶显示科技有限公司 利用功能掩膜板制造封接胶固化用掩膜基板的方法
TWI451134B (zh) * 2012-03-21 2014-09-01 Au Optronics Corp 立體顯示面板以及顯示面板
CN202631948U (zh) * 2012-04-01 2012-12-26 京东方科技集团股份有限公司 一种在阵列基板和/或彩膜基板上形成对位标记的掩膜版
US9889504B2 (en) * 2012-12-11 2018-02-13 Vanderbilt University Porous nanomaterials having three-dimensional patterning
CN103199084B (zh) * 2013-03-08 2015-10-14 京东方科技集团股份有限公司 基板对位标记、基板及基板对位标记的制作方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5369281A (en) * 1992-02-18 1994-11-29 Thomson Tubes Electroniques Matrix screen, particularly a large screen, and a method of manufacturing it
CN101097302A (zh) * 2006-06-30 2008-01-02 Lg.菲利浦Lcd株式会社 柔性显示器及形成该柔性显示器的对准标记的方法
CN101261960A (zh) * 2007-03-06 2008-09-10 三星电子株式会社 包括绝缘母基板中形成对准标记的液晶显示器的制造方法
US20090289160A1 (en) * 2008-05-23 2009-11-26 Kludt Kory D Support assembly
CN101661220A (zh) * 2008-08-27 2010-03-03 北京京东方光电科技有限公司 液晶显示器面板和掩模板
CN103137029A (zh) * 2013-03-14 2013-06-05 利亚德光电股份有限公司 Led显示装置
CN103366648A (zh) * 2013-07-24 2013-10-23 京东方科技集团股份有限公司 基板、显示屏、拼接屏及拼接屏的对位方法
CN203366657U (zh) * 2013-07-24 2013-12-25 京东方科技集团股份有限公司 设置有对位标记的基板、显示屏及拼接屏

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113380137A (zh) * 2020-02-21 2021-09-10 群创光电股份有限公司 拼接式显示装置的制造方法

Also Published As

Publication number Publication date
CN103366648A (zh) 2013-10-23
US9916121B2 (en) 2018-03-13
CN103366648B (zh) 2015-06-17
US20150205564A1 (en) 2015-07-23

Similar Documents

Publication Publication Date Title
WO2015010415A1 (zh) 基板、显示屏、拼接屏及拼接屏的对位方法
US9141000B2 (en) Double-surface manufacturing method and exposure apparatus
WO2016173210A1 (zh) 黑色矩阵的制作方法
EP3306382B1 (en) Method for manufacturing alignment identifier of spacer, method for detecting position accuracy, and color filter and manufacturing method thereof
KR20080061774A (ko) 액정표시장치의 마스크를 정렬하는 장치 및 방법
US10365523B2 (en) Display panel and manufacturing method based on BOA technology
WO2013170595A1 (zh) 彩色滤光片及其制作方法以及液晶面板和显示装置
US20180130845A1 (en) Flat panel array with the alignment marks in active area
WO2014134886A1 (zh) 彩膜基板及其制作方法、液晶显示屏
WO2017118196A1 (zh) 对盒装置
WO2022166451A1 (zh) 彩膜基板及其制作方法和显示面板
TWI485473B (zh) 液晶顯示裝置及其製造方法
US20150323715A1 (en) Method for manufacturing a color filter, and a color filter
JP2007240711A (ja) 液晶表示装置用カラーフィルタの製造方法及び液晶表示装置用カラーフィルタ
CN110764327A (zh) 阵列基板及其制备方法
KR102002960B1 (ko) 정렬 장치, 이를 포함하는 노광 장치 및 액정 표시 장치의 제조 방법
US10824026B2 (en) Substrate and preparation method therefor, and display panel
CN203366657U (zh) 设置有对位标记的基板、显示屏及拼接屏
WO2013129059A1 (ja) 偏光フィルム貼り合わせ装置
WO2014132819A1 (ja) カラーフィルタの製造方法及び液晶表示装置
JP2010181652A (ja) カラーフィルタ及びその製造方法、フォトマスク
JP5513729B2 (ja) カラーフィルタ形成基板の作製方法
US10345633B2 (en) Pixel structure, display panel and operation method thereof
JP5453754B2 (ja) アライメントマーク部の位置検出方法およびカラーフィルタ形成基板の作製方法
TW200834495A (en) Systems for displaying images and methods for fabricating the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14361879

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.06.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13890003

Country of ref document: EP

Kind code of ref document: A1