WO2015009449A1 - Supply duct for cooling air - Google Patents

Supply duct for cooling air Download PDF

Info

Publication number
WO2015009449A1
WO2015009449A1 PCT/US2014/045175 US2014045175W WO2015009449A1 WO 2015009449 A1 WO2015009449 A1 WO 2015009449A1 US 2014045175 W US2014045175 W US 2014045175W WO 2015009449 A1 WO2015009449 A1 WO 2015009449A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas turbine
shells
set forth
turbine engine
downstream
Prior art date
Application number
PCT/US2014/045175
Other languages
French (fr)
Inventor
Brandon W. Spangler
Ricardo Trindade
Original Assignee
United Technologies Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corporation filed Critical United Technologies Corporation
Priority to EP14826896.4A priority Critical patent/EP3022421B1/en
Priority to US14/900,730 priority patent/US10227927B2/en
Publication of WO2015009449A1 publication Critical patent/WO2015009449A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/14Casings modified therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • F01D5/082Cooling fluid being directed on the side of the rotor disc or at the roots of the blades on the side of the rotor disc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • F01D5/084Cooling fluid being directed on the side of the rotor disc or at the roots of the blades the fluid circulating at the periphery of a multistage rotor, e.g. of drum type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/085Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/085Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
    • F01D5/088Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor in a closed cavity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/06Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas
    • F02C6/08Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas the gas being bled from the gas-turbine compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/205Cooling fluid recirculation, i.e. after cooling one or more components is the cooling fluid recovered and used elsewhere for other purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/306Mass flow
    • F05D2270/3062Mass flow of the auxiliary fluid for heating or cooling purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • This application relates to a supply duct for supplying cooling air with minimal pressure loss.
  • Gas turbine engines are known and, typically, include a fan delivering air into a compressor. The air is compressed and delivered into a combustor section where it is mixed with fuel and ignited. Products of this combustion pass downstream over turbine rotors driving them to rotate.
  • the flow of air to the combustor section is closely controlled.
  • a diffuser is positioned immediately upstream of the combustor section and serves to prepare the air for delivery into the combustor section. Due to various packaging realities, the airflow downstream of the diffuser is turned through an approximately 90 degree angle and then back into an inlet through another 90 degree angle.
  • a gas turbine engine has a compressor section having a downstream rotor and a diffuser downstream of the compressor section.
  • a combustor receives air downstream of the diffuser.
  • a turbine section has at least one component to be cooled.
  • a conduit is spaced from the diffuser and defines a cooling airflow path. The cooling airflow path is separate from an airflow downstream the diffuser, and passing to the combustor. The conduit passes cooling air to the component to be cooled.
  • the cooling airflow path is tapped from a location downstream of the downstream rotor, and upstream of the diffuser.
  • the conduit is provided by a pair of radially spaced shells.
  • the shells are positioned radially inwardly of the diffuser and the combustor.
  • shells are also positioned radially outwardly of the diffuser and the combustor section to provide a second cooling airflow path.
  • the component to be cooled includes at least one of a turbine vane, a turbine rotor, and a blade outer air seal.
  • one of the shells has a downstream end secured to a base of the turbine vane to provide cooling air to the turbine vane.
  • the cooling airflow path downstream of the shells, passes into an injector tube for supplying cooling air to the turbine rotor.
  • one of the shells has an upstream end positioned downstream of an upstream end of a second of the shells to provide an open inlet into the cooling airflow path.
  • one of the shells is positioned closer to an outer surface of the diffuser than the second of the shells.
  • the shells and the cooling air path are positioned radially outwardly of the diffuser and the combustor section.
  • the component to be cooled includes a blade outer air seal.
  • the diffuser is mounted by a mount structure to an inner housing.
  • At least one of the shells has a slot to be received on the mount structure.
  • one of the shells has an upstream end positioned downstream of an upstream end of a second of the shells to provide an open inlet into the cooling airflow path.
  • the component to be cooled includes at least one of a turbine vane, a turbine rotor, and a blade outer air seal.
  • the conduit is provided by a pair of radially spaced shells.
  • one of the shells has a downstream end secured to a base of the turbine vane to provide cooling air to the turbine vane.
  • the cooling airflow path downstream of the shells, passes into an injector tube for supplying cooling air to the turbine rotor.
  • a combustor housing is positioned downstream of an outlet of the diffuser, such that air downstream of the diffuser bends through an approximately ninety degree angle in one radial direction, then moves back through an approximately ninety degree angle through an inlet port into a combustion chamber.
  • Figure 1 schematically shows a gas turbine engine.
  • Figure 2 shows a portion of the gas turbine engine of Figure 1.
  • Figure 3 shows one mechanical feature of the Figure 2 structure.
  • Figure 4 shows an alternative embodiment.
  • FIG. 1 schematically illustrates a gas turbine engine 20.
  • the gas turbine engine 20 is disclosed herein as a two-spool turbofan that generally incorporates a fan section
  • the fan section 22 drives air along a bypass flow path B in a bypass duct defined within a nacelle 15, while the compressor section 24 drives air along a core flow path C for compression and communication into the combustor section 26 then expansion through the turbine section 28.
  • a two-spool turbofan gas turbine engine in the disclosed non-limiting embodiment, it should be understood that the concepts described herein are not limited to use with two-spool turbofans as the teachings may be applied to other types of turbine engines including three- spool architectures.
  • the exemplary engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided, and the location of bearing systems 38 may be varied as appropriate to the application.
  • the low speed spool 30 generally includes an inner shaft 40 that interconnects a fan 42, a low pressure compressor 44 and a low pressure turbine 46.
  • the inner shaft 40 is connected to the fan 42 through a speed change mechanism, which in exemplary gas turbine engine 20 is illustrated as a geared architecture 48 to drive the fan 42 at a lower speed than the low speed spool 30.
  • the high speed spool 32 includes an outer shaft 50 that interconnects a high pressure compressor 52 and high pressure turbine 54.
  • a combustor 56 is arranged in exemplary gas turbine 20 between the high pressure compressor 52 and the high pressure turbine 54.
  • a mid-turbine frame 57 of the engine static structure 36 is arranged generally between the high pressure turbine 54 and the low pressure turbine 46.
  • the mid-turbine frame 57 further supports bearing systems 38 in the turbine section 28.
  • the inner shaft 40 and the outer shaft 50 are concentric and rotate via bearing systems 38 about the engine central longitudinal axis A which is collinear with their longitudinal axes.
  • the core airflow is compressed by the low pressure compressor 44 then the high pressure compressor 52, mixed and burned with fuel in the combustor 56, then expanded over the high pressure turbine 54 and low pressure turbine 46.
  • the mid-turbine frame 57 includes airfoils 59 which are in the core airflow path C.
  • the turbines 46, 54 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion.
  • gear system 48 may be located aft of combustor section 26 or even aft of turbine section 28, and fan section 22 may be positioned forward or aft of the location of gear system 48.
  • the engine 20 in one example is a high-bypass geared aircraft engine.
  • the engine 20 bypass ratio is greater than about six (6), with an example embodiment being greater than about ten (10)
  • the geared architecture 48 is an epicyclic gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3 and the low pressure turbine 46 has a pressure ratio that is greater than about five.
  • the engine 20 bypass ratio is greater than about ten (10: 1)
  • the fan diameter is significantly larger than that of the low pressure compressor 44
  • the low pressure turbine 46 has a pressure ratio that is greater than about five (5: 1).
  • Low pressure turbine 46 pressure ratio is pressure measured prior to inlet of low pressure turbine 46 as related to the pressure at the outlet of the low pressure turbine 46 prior to an exhaust nozzle.
  • the geared architecture 48 may be an epicycle gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3: 1. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine and that the present invention is applicable to other gas turbine engines including direct drive turbofans.
  • the fan section 22 of the engine 20 is designed for a particular flight condition - typically cruise at about 0.8 Mach and about 35,000 feet.
  • the flight condition of 0.8 Mach and 35,000 ft, with the engine at its best fuel consumption - also known as "bucket cruise Thrust Specific Fuel Consumption ('TSFC')" - is the industry standard parameter of lbm of fuel being burned divided by lbf of thrust the engine produces at that minimum point.
  • "Low fan pressure ratio” is the pressure ratio across the fan blade alone, without a Fan Exit Guide Vane (“FEGV”) system.
  • the low fan pressure ratio as disclosed herein according to one non- limiting embodiment is less than about 1.45.
  • Low corrected fan tip speed is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [(Tram °R) / (518.7 °R)] 0'5 .
  • the "Low corrected fan tip speed” as disclosed herein according to one non- limiting embodiment is less than about 1150 ft / second.
  • Figure 2 shows a downstream-most compressor rotor 179 and a downstream most compressor vane 80. This may be part of an engine such as shown in Figure 1. Downstream of the compressor vane 80 is a diffuser 82. As known, the diffuser has an upstream end 95 and a downstream exit 81 that is typically of a larger cross-sectional area than the upstream end 95.
  • a plurality of circumferentially spaced mount structures 79 mount the diffuser 82 to a radially inner housing 21.
  • Downstream of the diffuser exit 81 is a portion 86 of a housing for a combustion section 56. As shown by arrows, part of the air leaving the exit 81 bends through a radially inward direction (approximately through a ninety degree angle), then flows axially along an outer surface of the housing 86, then radially outwardly (again, approximately through a ninety degree angle) into ports 88 and into a combustion chamber 15. Fuel is injected through elements 89 and an igniter 91 ignites the fuel and air within the combustion chamber 15. Products of this combustion pass downstream over a vane 104 and a turbine rotor 102.
  • a conduit is formed of a radially inner shell 90 and a radially outer shell 92 to provide a flow path 198 from an inlet 93.
  • an upstream end 94 of the inner shell 90 is more upstream than an upstream end 96 of the outer shell 92.
  • the upstream end 96 which is downstream of upstream end 94, is on the outer shell 92, which is closer to an outer surface 23 of diffuser 82 than is shell 90.
  • the forward facing inlet provided by this positioning results in a reduced pressure drop across the inlet 93.
  • the shells extend for 360° about a center axis (A) of the engine.
  • the air exiting port 106 cools the turbine vane 104, while the air through the injector tube 100 is aimed at the inner bore of the turbine rotor 102.
  • Figure 3 shows a feature that may be found in both the inner and outer shells 90 and 92, but is illustrated at the inner shell 90. As shown, the mount structures 79 may be received within slots 101 in the shell 90. Thus, there are effective vane structures within the cooling air path 198.
  • FIG 4 schematically shows an alternative embodiment wherein there are shells 190 and 192 at a radially inner end delivering air to the uses 298 which may be schematically a vane, such as turbine vane 104 and a rotor, such as turbine rotor 102.
  • An outer flow path 288 is provided radially outwardly of the diffuser 82 by two shells 290 and 292 and delivers air, such as to a use 396, which may be radially outward of the combustor 56.
  • the use 396 may be a blade outer air seal 296, such as shown in Figure 2.
  • shells are shown as a conduit defining a cooling air passage
  • any other method of providing a conduit to define a cooling airflow path separate from the combustion flow path can be utilized.
  • the shells could be split into several circumferentially spaced pieces, and bolted together.
  • axial ribs can extend the length of the shells and tie them together structurally.
  • the inlet to the cooling air passages faces axially forwardly, or toward an upstream end, the air delivered into the passage sees a total pressure, rather than just static pressure.
  • the shape of the cooling air path is smooth, and has no sharp bends which could reduce the pressure of the air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

In a featured embodiment, a gas turbine engine has a compressor section having a downstream rotor and a diffuser downstream of the compressor section. A combustor receives air downstream of the diffuser. A turbine section has at least one component to be cooled. A conduit is spaced from the diffuser and defines a cooling airflow path. The cooling airflow path is separate from an airflow downstream the diffuser, and passing to the combustor. The conduit passes cooling air to the component to be cooled.

Description

SUPPLY DUCT FOR COOLING AIR
CROSS-REFERENCE TO RELATED APPLICATION
[0001] This application claims priority to U.S. Provisional Application No. 61/847,104, filed July 17, 2013.
BACKGROUND
[0002] This application relates to a supply duct for supplying cooling air with minimal pressure loss.
[0003] Gas turbine engines are known and, typically, include a fan delivering air into a compressor. The air is compressed and delivered into a combustor section where it is mixed with fuel and ignited. Products of this combustion pass downstream over turbine rotors driving them to rotate.
[0004] The products of combustion are quite hot and cooling air is typically provided to a number of locations within the gas turbine engine.
[0005] In addition, the flow of air to the combustor section is closely controlled. Often, a diffuser is positioned immediately upstream of the combustor section and serves to prepare the air for delivery into the combustor section. Due to various packaging realities, the airflow downstream of the diffuser is turned through an approximately 90 degree angle and then back into an inlet through another 90 degree angle.
[0006] In the prior art, this same airflow is utilized as a source of cooling air.
SUMMARY
[0007] In a featured embodiment, a gas turbine engine has a compressor section having a downstream rotor and a diffuser downstream of the compressor section. A combustor receives air downstream of the diffuser. A turbine section has at least one component to be cooled. A conduit is spaced from the diffuser and defines a cooling airflow path. The cooling airflow path is separate from an airflow downstream the diffuser, and passing to the combustor. The conduit passes cooling air to the component to be cooled.
[0008] In another embodiment according to the previous embodiment, the cooling airflow path is tapped from a location downstream of the downstream rotor, and upstream of the diffuser. [0009] In another embodiment according to any of the previous embodiments, the conduit is provided by a pair of radially spaced shells.
[0010] In another embodiment according to any of the previous embodiments, the shells are positioned radially inwardly of the diffuser and the combustor.
[0011] In another embodiment according to any of the previous embodiments, shells are also positioned radially outwardly of the diffuser and the combustor section to provide a second cooling airflow path.
[0012] In another embodiment according to any of the previous embodiments, the component to be cooled includes at least one of a turbine vane, a turbine rotor, and a blade outer air seal.
[0013] In another embodiment according to any of the previous embodiments, one of the shells has a downstream end secured to a base of the turbine vane to provide cooling air to the turbine vane.
[0014] In another embodiment according to any of the previous embodiments, the cooling airflow path, downstream of the shells, passes into an injector tube for supplying cooling air to the turbine rotor.
[0015] In another embodiment according to any of the previous embodiments, one of the shells has an upstream end positioned downstream of an upstream end of a second of the shells to provide an open inlet into the cooling airflow path.
[0016] In another embodiment according to any of the previous embodiments, one of the shells is positioned closer to an outer surface of the diffuser than the second of the shells.
[0017] In another embodiment according to any of the previous embodiments, the shells and the cooling air path are positioned radially outwardly of the diffuser and the combustor section.
[0018] In another embodiment according to any of the previous embodiments, the component to be cooled includes a blade outer air seal.
[0019] In another embodiment according to any of the previous embodiments, the diffuser is mounted by a mount structure to an inner housing.
[0020] In another embodiment according to any of the previous embodiments, at least one of the shells has a slot to be received on the mount structure. [0021] In another embodiment according to any of the previous embodiments, one of the shells has an upstream end positioned downstream of an upstream end of a second of the shells to provide an open inlet into the cooling airflow path.
[0022] In another embodiment according to any of the previous embodiments, the component to be cooled includes at least one of a turbine vane, a turbine rotor, and a blade outer air seal.
[0023] In another embodiment according to any of the previous embodiments, the conduit is provided by a pair of radially spaced shells.
[0024] In another embodiment according to any of the previous embodiments, one of the shells has a downstream end secured to a base of the turbine vane to provide cooling air to the turbine vane.
[0025] In another embodiment according to any of the previous embodiments, the cooling airflow path, downstream of the shells, passes into an injector tube for supplying cooling air to the turbine rotor.
[0026] In another embodiment according to any of the previous embodiments, a combustor housing is positioned downstream of an outlet of the diffuser, such that air downstream of the diffuser bends through an approximately ninety degree angle in one radial direction, then moves back through an approximately ninety degree angle through an inlet port into a combustion chamber.
[0027] These and other features may be best understood from the following drawings and specification.
BRIEF DESCRIPTION OF THE DRAWINGS
[0028] Figure 1 schematically shows a gas turbine engine.
[0029] Figure 2 shows a portion of the gas turbine engine of Figure 1.
[0030] Figure 3 shows one mechanical feature of the Figure 2 structure.
[0031] Figure 4 shows an alternative embodiment.
DETAILED DESCRIPTION
[0032] Figure 1 schematically illustrates a gas turbine engine 20. The gas turbine engine 20 is disclosed herein as a two-spool turbofan that generally incorporates a fan section
22, a compressor section 24, a combustor section 26 and a turbine section 28. Alternative engines might include an augmentor section (not shown) among other systems or features. The fan section 22 drives air along a bypass flow path B in a bypass duct defined within a nacelle 15, while the compressor section 24 drives air along a core flow path C for compression and communication into the combustor section 26 then expansion through the turbine section 28. Although depicted as a two-spool turbofan gas turbine engine in the disclosed non-limiting embodiment, it should be understood that the concepts described herein are not limited to use with two-spool turbofans as the teachings may be applied to other types of turbine engines including three- spool architectures.
[0033] The exemplary engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided, and the location of bearing systems 38 may be varied as appropriate to the application.
[0034] The low speed spool 30 generally includes an inner shaft 40 that interconnects a fan 42, a low pressure compressor 44 and a low pressure turbine 46. The inner shaft 40 is connected to the fan 42 through a speed change mechanism, which in exemplary gas turbine engine 20 is illustrated as a geared architecture 48 to drive the fan 42 at a lower speed than the low speed spool 30. The high speed spool 32 includes an outer shaft 50 that interconnects a high pressure compressor 52 and high pressure turbine 54. A combustor 56 is arranged in exemplary gas turbine 20 between the high pressure compressor 52 and the high pressure turbine 54. A mid-turbine frame 57 of the engine static structure 36 is arranged generally between the high pressure turbine 54 and the low pressure turbine 46. The mid-turbine frame 57 further supports bearing systems 38 in the turbine section 28. The inner shaft 40 and the outer shaft 50 are concentric and rotate via bearing systems 38 about the engine central longitudinal axis A which is collinear with their longitudinal axes.
[0035] The core airflow is compressed by the low pressure compressor 44 then the high pressure compressor 52, mixed and burned with fuel in the combustor 56, then expanded over the high pressure turbine 54 and low pressure turbine 46. The mid-turbine frame 57 includes airfoils 59 which are in the core airflow path C. The turbines 46, 54 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion. It will be appreciated that each of the positions of the fan section 22, compressor section 24, combustor section 26, turbine section 28, and fan drive gear system 48 may be varied. For example, gear system 48 may be located aft of combustor section 26 or even aft of turbine section 28, and fan section 22 may be positioned forward or aft of the location of gear system 48.
[0036] The engine 20 in one example is a high-bypass geared aircraft engine. In a further example, the engine 20 bypass ratio is greater than about six (6), with an example embodiment being greater than about ten (10), the geared architecture 48 is an epicyclic gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3 and the low pressure turbine 46 has a pressure ratio that is greater than about five. In one disclosed embodiment, the engine 20 bypass ratio is greater than about ten (10: 1), the fan diameter is significantly larger than that of the low pressure compressor 44, and the low pressure turbine 46 has a pressure ratio that is greater than about five (5: 1). Low pressure turbine 46 pressure ratio is pressure measured prior to inlet of low pressure turbine 46 as related to the pressure at the outlet of the low pressure turbine 46 prior to an exhaust nozzle. The geared architecture 48 may be an epicycle gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3: 1. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine and that the present invention is applicable to other gas turbine engines including direct drive turbofans.
[0037] A significant amount of thrust is provided by the bypass flow B due to the high bypass ratio. The fan section 22 of the engine 20 is designed for a particular flight condition - typically cruise at about 0.8 Mach and about 35,000 feet. The flight condition of 0.8 Mach and 35,000 ft, with the engine at its best fuel consumption - also known as "bucket cruise Thrust Specific Fuel Consumption ('TSFC')" - is the industry standard parameter of lbm of fuel being burned divided by lbf of thrust the engine produces at that minimum point. "Low fan pressure ratio" is the pressure ratio across the fan blade alone, without a Fan Exit Guide Vane ("FEGV") system. The low fan pressure ratio as disclosed herein according to one non- limiting embodiment is less than about 1.45. "Low corrected fan tip speed" is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [(Tram °R) / (518.7 °R)]0'5. The "Low corrected fan tip speed" as disclosed herein according to one non- limiting embodiment is less than about 1150 ft / second.
[0038] Figure 2 shows a downstream-most compressor rotor 179 and a downstream most compressor vane 80. This may be part of an engine such as shown in Figure 1. Downstream of the compressor vane 80 is a diffuser 82. As known, the diffuser has an upstream end 95 and a downstream exit 81 that is typically of a larger cross-sectional area than the upstream end 95.
[0039] A plurality of circumferentially spaced mount structures 79 mount the diffuser 82 to a radially inner housing 21.
[0040] Downstream of the diffuser exit 81 is a portion 86 of a housing for a combustion section 56. As shown by arrows, part of the air leaving the exit 81 bends through a radially inward direction (approximately through a ninety degree angle), then flows axially along an outer surface of the housing 86, then radially outwardly (again, approximately through a ninety degree angle) into ports 88 and into a combustion chamber 15. Fuel is injected through elements 89 and an igniter 91 ignites the fuel and air within the combustion chamber 15. Products of this combustion pass downstream over a vane 104 and a turbine rotor 102.
[0041] As is known, the turbine vane 104 and turbine rotor 102 will become quite hot due to the products of combustion. Thus, cooling air is provided. In the past, part of the air flowing to ports 88 was diverted as cooling air.
[0042] In this disclosure, a conduit is formed of a radially inner shell 90 and a radially outer shell 92 to provide a flow path 198 from an inlet 93. As shown, an upstream end 94 of the inner shell 90 is more upstream than an upstream end 96 of the outer shell 92. As can be seen, the upstream end 96, which is downstream of upstream end 94, is on the outer shell 92, which is closer to an outer surface 23 of diffuser 82 than is shell 90. The forward facing inlet provided by this positioning results in a reduced pressure drop across the inlet 93. As can be appreciated, the shells extend for 360° about a center axis (A) of the engine.
[0043] Air flows through the path 198 and exits through exit port 106 and injector tube 100. The air exiting port 106 cools the turbine vane 104, while the air through the injector tube 100 is aimed at the inner bore of the turbine rotor 102.
[0044] By utilizing the separate cooling air flow path 198, pressure losses across the diffuser 82, and through the bending of the air on the way to the inlet 88 do not occur to the cooling air being delivered to the vane 104 and the rotor 102. As such, more efficient use of the cooling air is achieved. [0045] As also shown in Figure 2, an inner end 201 of the outer shell 92 abuts against an inner surface 203 or base of the turbine vane 104 such that the air is delivered into the inner surface 203 of the turbine vane 104.
[0046] Figure 3 shows a feature that may be found in both the inner and outer shells 90 and 92, but is illustrated at the inner shell 90. As shown, the mount structures 79 may be received within slots 101 in the shell 90. Thus, there are effective vane structures within the cooling air path 198.
[0047] Figure 4 schematically shows an alternative embodiment wherein there are shells 190 and 192 at a radially inner end delivering air to the uses 298 which may be schematically a vane, such as turbine vane 104 and a rotor, such as turbine rotor 102. An outer flow path 288 is provided radially outwardly of the diffuser 82 by two shells 290 and 292 and delivers air, such as to a use 396, which may be radially outward of the combustor 56. As an example, the use 396 may be a blade outer air seal 296, such as shown in Figure 2.
[0048] The use of the dedicated shells to provide the cooling air path result in very efficient use of the cooling airflow. While shells are shown as a conduit defining a cooling air passage, any other method of providing a conduit to define a cooling airflow path separate from the combustion flow path can be utilized. As an example, the shells could be split into several circumferentially spaced pieces, and bolted together. Alternatively, axial ribs can extend the length of the shells and tie them together structurally. Alternatively, there could be individual tubes that carry the airflow from aft of the compressor to the components to be cooled. Again any number of other ways of defining a separate flow path would come within the scope of this disclosure.
[0049] Since the inlet to the cooling air passages faces axially forwardly, or toward an upstream end, the air delivered into the passage sees a total pressure, rather than just static pressure. As can be appreciated from Figure 2, the shape of the cooling air path is smooth, and has no sharp bends which could reduce the pressure of the air.
[0050] Although an embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this disclosure. For that reason, the following claims should be studied to determine the true scope and content of this disclosure.

Claims

1. A gas turbine engine comprising:
a compressor section having a downstream rotor and a diffuser downstream of said compressor section;
a combustor, said combustor for receiving air downstream of the diffuser;
a turbine section having at least one component to be cooled; and
a cooling airflow conduit spaced from said diffuser and defining a cooling airflow path, said cooling airflow path being separate from an airflow downstream said diffuser, and passing to said combustor, with said conduit passing cooling air to said component to be cooled.
2. The gas turbine engine as set forth in claim 1, wherein said cooling airflow path is tapped from a location downstream of said downstream rotor, and upstream of said diffuser.
3. The gas turbine engine as set forth in claim 2, wherein said conduit is provided by a pair of radially spaced shells.
4. The gas turbine engine as set forth in claim 3, wherein said shells are positioned radially inwardly of said diffuser and said combustor.
5. The gas turbine engine as set forth in claim 4, wherein shells are also positioned radially outwardly of said diffuser and said combustor section to provide a second cooling airflow path.
6. The gas turbine engine as set forth in claim 5, wherein said component to be cooled includes at least one of a turbine vane, a turbine rotor, and a blade outer air seal.
7. The gas turbine engine as set forth in claim 6, wherein one of said shells has a downstream end secured to a base of said turbine vane to provide cooling air to said turbine vane.
8. The gas turbine engine as set forth in claim 6, wherein said cooling airflow path, downstream of said shells, passes into an injector tube for supplying cooling air to said turbine rotor.
9. The gas turbine engine as set forth in claim 6, wherein one of said shells has an upstream end positioned downstream of an upstream end of a second of said shells to provide an open inlet into said cooling airflow path.
10. The gas turbine engine as set forth in claim 9, wherein one of said shells is positioned closer to an outer surface of said diffuser than the second of said shells.
11. The gas turbine engine as set forth in claim 3, wherein said shells and said cooling air path are positioned radially outwardly of said diffuser and said combustor section.
12. The gas turbine engine as set forth in claim 11, wherein said component to be cooled includes a blade outer air seal.
13. The gas turbine engine as set forth in claim 3, wherein said diffuser is mounted by a mount structure to an inner housing.
14. The gas turbine engine as set forth in claim 13, wherein at least one of said shells has a slot to be received on said mount structure.
15. The gas turbine engine as set forth in claim 2, wherein one of said shells has an upstream end positioned downstream of an upstream end of a second of said shells to provide an open inlet into said cooling airflow path.
16. The gas turbine engine as set forth in claim 2, wherein said component to be cooled includes at least one of a turbine vane, a turbine rotor, and a blade outer air seal.
17. The gas turbine engine as set forth in claim 2, wherein said conduit is provided by a pair of radially spaced shells.
18. The gas turbine engine as set forth in claim 16, wherein one of said shells has a downstream end secured to a base of said turbine vane to provide cooling air to said turbine vane.
19. The gas turbine engine as set forth in claim 18, wherein said cooling airflow path, downstream of said shells, passes into an injector tube for supplying cooling air to said turbine rotor.
20. The gas turbine engine as set forth in claim 1, wherein a combustor housing is positioned downstream of an outlet of said diffuser, such that air downstream of said diffuser bends through an approximately ninety degree angle in one radial direction, then moves back through an approximately ninety degree angle through an inlet port into a combustion chamber.
PCT/US2014/045175 2013-07-17 2014-07-02 Supply duct for cooling air WO2015009449A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14826896.4A EP3022421B1 (en) 2013-07-17 2014-07-02 Gas turbine engine comprising a cooling airflow conduit
US14/900,730 US10227927B2 (en) 2013-07-17 2014-07-02 Supply duct for cooling air from gas turbine compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361847104P 2013-07-17 2013-07-17
US61/847,104 2013-07-17

Publications (1)

Publication Number Publication Date
WO2015009449A1 true WO2015009449A1 (en) 2015-01-22

Family

ID=52346632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/045175 WO2015009449A1 (en) 2013-07-17 2014-07-02 Supply duct for cooling air

Country Status (3)

Country Link
US (1) US10227927B2 (en)
EP (1) EP3022421B1 (en)
WO (1) WO2015009449A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10731560B2 (en) 2015-02-12 2020-08-04 Raytheon Technologies Corporation Intercooled cooling air
US11808210B2 (en) 2015-02-12 2023-11-07 Rtx Corporation Intercooled cooling air with heat exchanger packaging
US10371055B2 (en) 2015-02-12 2019-08-06 United Technologies Corporation Intercooled cooling air using cooling compressor as starter
US10221862B2 (en) 2015-04-24 2019-03-05 United Technologies Corporation Intercooled cooling air tapped from plural locations
US10830148B2 (en) 2015-04-24 2020-11-10 Raytheon Technologies Corporation Intercooled cooling air with dual pass heat exchanger
US10480419B2 (en) 2015-04-24 2019-11-19 United Technologies Corporation Intercooled cooling air with plural heat exchangers
US10100739B2 (en) 2015-05-18 2018-10-16 United Technologies Corporation Cooled cooling air system for a gas turbine engine
US10794288B2 (en) 2015-07-07 2020-10-06 Raytheon Technologies Corporation Cooled cooling air system for a turbofan engine
US10711702B2 (en) * 2015-08-18 2020-07-14 General Electric Company Mixed flow turbocore
US10578028B2 (en) 2015-08-18 2020-03-03 General Electric Company Compressor bleed auxiliary turbine
US10196982B2 (en) * 2015-11-04 2019-02-05 General Electric Company Gas turbine engine having a flow control surface with a cooling conduit
US10443508B2 (en) 2015-12-14 2019-10-15 United Technologies Corporation Intercooled cooling air with auxiliary compressor control
US10669940B2 (en) 2016-09-19 2020-06-02 Raytheon Technologies Corporation Gas turbine engine with intercooled cooling air and turbine drive
US10794290B2 (en) 2016-11-08 2020-10-06 Raytheon Technologies Corporation Intercooled cooled cooling integrated air cycle machine
US10550768B2 (en) 2016-11-08 2020-02-04 United Technologies Corporation Intercooled cooled cooling integrated air cycle machine
US10961911B2 (en) 2017-01-17 2021-03-30 Raytheon Technologies Corporation Injection cooled cooling air system for a gas turbine engine
US10995673B2 (en) 2017-01-19 2021-05-04 Raytheon Technologies Corporation Gas turbine engine with intercooled cooling air and dual towershaft accessory gearbox
US10577964B2 (en) 2017-03-31 2020-03-03 United Technologies Corporation Cooled cooling air for blade air seal through outer chamber
US10711640B2 (en) 2017-04-11 2020-07-14 Raytheon Technologies Corporation Cooled cooling air to blade outer air seal passing through a static vane
US10738703B2 (en) * 2018-03-22 2020-08-11 Raytheon Technologies Corporation Intercooled cooling air with combined features
US10830145B2 (en) 2018-04-19 2020-11-10 Raytheon Technologies Corporation Intercooled cooling air fleet management system
US10808619B2 (en) 2018-04-19 2020-10-20 Raytheon Technologies Corporation Intercooled cooling air with advanced cooling system
US10718233B2 (en) 2018-06-19 2020-07-21 Raytheon Technologies Corporation Intercooled cooling air with low temperature bearing compartment air
US11255268B2 (en) 2018-07-31 2022-02-22 Raytheon Technologies Corporation Intercooled cooling air with selective pressure dump
US11808178B2 (en) 2019-08-05 2023-11-07 Rtx Corporation Tangential onboard injector inlet extender

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2030993A5 (en) 1969-08-18 1970-11-13 Motoren Turbinen Union
GB2084654A (en) 1980-10-01 1982-04-15 Mtu Muenchen Gmbh Cooling gas turbine engines
US4374466A (en) * 1979-03-08 1983-02-22 Rolls Royce Limited Gas turbine engine
US4807433A (en) * 1983-05-05 1989-02-28 General Electric Company Turbine cooling air modulation
US5329761A (en) * 1991-07-01 1994-07-19 General Electric Company Combustor dome assembly
EP1033484A2 (en) 1999-03-02 2000-09-06 General Electric Company Gas turbine cooling system
US20040040309A1 (en) * 2000-07-21 2004-03-04 Manfred Ziegner Gas turbine and method for operating a gas turbine
US20050268619A1 (en) 2004-06-08 2005-12-08 Ress Robert A Jr Method and apparatus for increasing the pressure of cooling fluid within a gas turbine engine
US7055306B2 (en) * 2003-04-30 2006-06-06 Hamilton Sundstrand Corporation Combined stage single shaft turbofan engine
EP2375005A2 (en) 2010-03-29 2011-10-12 United Technologies Corporation Method for controlling turbine blade tip seal clearance
US20120060507A1 (en) 2010-09-10 2012-03-15 Rolls-Royce Plc Gas turbine engine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3952501A (en) * 1971-04-15 1976-04-27 United Aircraft Of Canada Limited Gas turbine control
DE59605505D1 (en) * 1995-03-08 2000-08-03 Rolls Royce Deutschland AXIAL STAGE DOUBLE RING COMBUSTION CHAMBER OF A GAS TURBINE
US6672072B1 (en) * 1998-08-17 2004-01-06 General Electric Company Pressure boosted compressor cooling system
GB9917957D0 (en) * 1999-07-31 1999-09-29 Rolls Royce Plc A combustor arrangement
US6584778B1 (en) 2000-05-11 2003-07-01 General Electric Co. Methods and apparatus for supplying cooling air to turbine engines
US6540162B1 (en) * 2000-06-28 2003-04-01 General Electric Company Methods and apparatus for decreasing combustor emissions with spray bar assembly
JP3840556B2 (en) * 2002-08-22 2006-11-01 川崎重工業株式会社 Combustor liner seal structure
EP1508680A1 (en) * 2003-08-18 2005-02-23 Siemens Aktiengesellschaft Diffuser located between a compressor and a combustion chamber of a gasturbine
US7752848B2 (en) * 2004-03-29 2010-07-13 General Electric Company System and method for co-production of hydrogen and electrical energy
FR2897143B1 (en) * 2006-02-08 2012-10-05 Snecma COMBUSTION CHAMBER OF A TURBOMACHINE
US8240153B2 (en) 2008-05-14 2012-08-14 General Electric Company Method and system for controlling a set point for extracting air from a compressor to provide turbine cooling air in a gas turbine
US8142141B2 (en) 2009-03-23 2012-03-27 General Electric Company Apparatus for turbine engine cooling air management
FR2946687B1 (en) 2009-06-10 2011-07-01 Snecma TURBOMACHINE COMPRISING IMPROVED MEANS FOR ADJUSTING THE FLOW RATE OF A COOLING AIR FLOW TAKEN AT HIGH PRESSURE COMPRESSOR OUTPUT
US8371127B2 (en) 2009-10-01 2013-02-12 Pratt & Whitney Canada Corp. Cooling air system for mid turbine frame

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2030993A5 (en) 1969-08-18 1970-11-13 Motoren Turbinen Union
US4374466A (en) * 1979-03-08 1983-02-22 Rolls Royce Limited Gas turbine engine
GB2084654A (en) 1980-10-01 1982-04-15 Mtu Muenchen Gmbh Cooling gas turbine engines
US4807433A (en) * 1983-05-05 1989-02-28 General Electric Company Turbine cooling air modulation
US5329761A (en) * 1991-07-01 1994-07-19 General Electric Company Combustor dome assembly
EP1033484A2 (en) 1999-03-02 2000-09-06 General Electric Company Gas turbine cooling system
US20040040309A1 (en) * 2000-07-21 2004-03-04 Manfred Ziegner Gas turbine and method for operating a gas turbine
US7055306B2 (en) * 2003-04-30 2006-06-06 Hamilton Sundstrand Corporation Combined stage single shaft turbofan engine
US20050268619A1 (en) 2004-06-08 2005-12-08 Ress Robert A Jr Method and apparatus for increasing the pressure of cooling fluid within a gas turbine engine
EP2375005A2 (en) 2010-03-29 2011-10-12 United Technologies Corporation Method for controlling turbine blade tip seal clearance
US20120060507A1 (en) 2010-09-10 2012-03-15 Rolls-Royce Plc Gas turbine engine

Also Published As

Publication number Publication date
US10227927B2 (en) 2019-03-12
EP3022421B1 (en) 2020-03-04
US20160131037A1 (en) 2016-05-12
EP3022421A4 (en) 2016-08-03
EP3022421A1 (en) 2016-05-25

Similar Documents

Publication Publication Date Title
EP3022421B1 (en) Gas turbine engine comprising a cooling airflow conduit
EP3085923B1 (en) Cooling air intercooling with dual pass heat exchanger
US10087782B2 (en) Engine mid-turbine frame transfer tube for low pressure turbine case cooling
US11053808B2 (en) Multiple injector holes for gas turbine engine vane
EP3039264B1 (en) Gas turbine engine diffuser cooling and mixing arrangement
US10378381B2 (en) Airfoil with skin core cooling
US11286856B2 (en) Diversion of fan air to provide cooling air for gas turbine engine
WO2015153171A1 (en) Active clearance control for gas turbine engine
EP3219959B1 (en) Intercooled cooling air using existing heat exchanger
US10837364B2 (en) Thermal shield for gas turbine engine diffuser case
EP3388625B1 (en) Cooled cooling air to blade outer air seal through a static vane
EP3388637B1 (en) Cooling air chamber for blade outer air seal
EP3358152B1 (en) External mixing chamber for a gas turbine engine with cooled turbine cooling air
US10823071B2 (en) Multi-source turbine cooling air
US20170167384A1 (en) Compressor core inner diameter cooling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014826896

Country of ref document: EP