WO2015008625A1 - Power control system, power control method, and recording medium - Google Patents

Power control system, power control method, and recording medium Download PDF

Info

Publication number
WO2015008625A1
WO2015008625A1 PCT/JP2014/067647 JP2014067647W WO2015008625A1 WO 2015008625 A1 WO2015008625 A1 WO 2015008625A1 JP 2014067647 W JP2014067647 W JP 2014067647W WO 2015008625 A1 WO2015008625 A1 WO 2015008625A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
time
storage battery
unit
supply
Prior art date
Application number
PCT/JP2014/067647
Other languages
French (fr)
Japanese (ja)
Inventor
龍 橋本
仁之 矢野
寿人 佐久間
耕治 工藤
貴裕 戸泉
永典 實吉
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2015008625A1 publication Critical patent/WO2015008625A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/64Optimising energy costs, e.g. responding to electricity rates
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the present invention relates to a power control system, a power control method, and a program for controlling supply of power to a load or a storage battery.
  • renewable power sources such as solar cells and wind power generators, which are being rapidly introduced, are considered to be effective means for reducing carbon and solving energy resource problems.
  • thermal power generators with a fast response speed are mainly used at present. For this reason, the more a renewable power source with a large output fluctuation is introduced into the electric power system, the more dilemma is that a thermal power generator as an adjustment means becomes necessary. Therefore, it is a big problem to secure adjusting means to replace the thermal power generator.
  • consumer equipment for example, storage batteries
  • Patent Document 1 describes a charge control system that sets a charging time zone of a storage battery according to a power price.
  • the charging control system described in Patent Document 1 sets a priority coefficient corresponding to the power price of each time slot for each time slot in an hour unit, and sets a plurality of time slots in descending order of the priority coefficient to charge the storage battery. Select as a belt. And the charge control system of patent document 1 increases the charge amount performed in the time slot
  • Patent Literature 1 Since the charging control system described in Patent Literature 1 charges the storage battery not only in the time zone with the highest priority coefficient but also in other time zones, charging the storage battery causes the power system to become unstable. The possibility of becoming a factor can be reduced.
  • An object of the present invention is to provide a power control system, a power control method, and a program that can solve the above-described problems.
  • the power control system of the present invention is A power control system for controlling power supply to a load or a storage battery, Supply time information obtaining means for obtaining the amount of power to be supplied to the load or the storage battery, and the supply allowable time for supplying power to the load or the storage battery, Execution means for selecting at least one or more time zones of the unit time zones obtained by dividing the supply allowable time as power supply time zones and supplying a constant amount of power in each power supply time zone.
  • the power control method of the present invention includes: A power control method performed by a power control system that controls supply of power to a load or a storage battery, Obtaining an amount of electric power to be supplied to the load or the storage battery, and an allowable supply time to supply electric power to the load or the storage battery, At least one time zone of the unit time zones into which the supply allowable time is divided is selected as a power supply time zone, and a constant amount of power is supplied in each power supply time zone.
  • the recording medium of the present invention is On the computer, A supply time information obtaining procedure for obtaining an amount of power to be supplied to a load or a storage battery and a supply allowable time for supplying power to the load or the storage battery; The execution procedure for selecting at least one time zone of the unit time zones obtained by dividing the supply allowable time as a power supply time zone and supplying a constant amount of power in each power supply time zone is recorded.
  • the present invention it is possible to suppress the control of the power supplied to the load or the storage battery from being complicated while suppressing the concentration of the timing at which the power is supplied to the load or the storage battery.
  • FIG. 1 is a diagram illustrating a management system 10 including a power control system according to an embodiment of the present invention. It is the figure which showed an example of the charge control system. It is the figure which showed an example of the price signal P (t).
  • 2 is a diagram illustrating an example of a hardware configuration of a charging control system 101.
  • FIG. 3 is a flowchart for explaining the operation of the charging control system 101. It is the figure which showed an example of control signal (PSI) (t) and probability density function (phi) (t). An example in which the connection time zone ts-te is divided at equal intervals by the time interval A is shown. It is the figure which showed the simulation result at the time of using this embodiment. It is the figure which showed the charge control system which consists of specific part 104bA and execution part 105A. It is the figure which showed an example of 4 A of signal transmitters.
  • PSI control signal
  • phi probability density function
  • FIG. 1 is a diagram showing a management system 10 including a power control system according to an embodiment of the present invention.
  • management system 10 includes HEMS (Home Energy Management System) devices 1a to 1d installed in residential area 10-1, and BEMS (Building Energy Management System) devices installed in building parking lot 10-2. 2a, charging stations 3a to 3c installed in charging station area 10-3, and signal transmission device 4.
  • HEMS Home Energy Management System
  • BEMS Building Energy Management System
  • the HEMS devices 1a to 1d, the BEMS device 2a, and the charging stations 3a to 3c are connected to the substation 6 through the power distribution network 5, respectively.
  • the power distribution network 5 and the substation 6 are included in the power system 7.
  • the HEMS devices 1a to 1d, the BEMS device 2a, and the charging stands 3a to 3c communicate with the signal transmission device 4, respectively.
  • the HEMS devices 1a to 1c control charging / discharging of the storage batteries in the EVs 8a to 8c, respectively.
  • the HEMS devices 1a to 1c control power supply from the power system 7 to the EVs 8a to 8c, respectively.
  • EVs and storage batteries in EVs are examples of power supply targets.
  • “charging / discharging of the storage battery in the EV” is also referred to as “charging / discharging of the EV”.
  • the HEMS device 1d controls power supply from the power system 7 to a stationary energy storage (for example, a stationary storage battery or a heat pump) 9a.
  • a stationary energy storage for example, a stationary storage battery or a heat pump
  • the stationary energy storage is an example of a power supply target.
  • the BEMS device 2a controls the charging / discharging of the EVs 8d to 8g and the power supply to the stationary energy storages 9b to 9c.
  • the BEMS device 2a controls the supply of power from the power system 7 to the EVs 8d to 8g and the stationary energy storages 9b to 9c.
  • the charging stations 3a to 3c control power supply from the power system 7 to the EVs 8h to 8i, respectively.
  • the signal transmission device 4 transmits a price signal (price signal) indicating a power price to the HEMS devices 1a to 1d, the BEMS device 2a, and the charging stands 3a to 3c.
  • a price signal is an example of recommendation level information, and is a time function representing a power price at each time.
  • the power price represented by the price signal is an example of a power supply recommendation level indicating a degree of recommending power supply. The power supply recommendation level becomes higher as the power price is lower.
  • the price signal represents, for example, the power price at each time for one day determined by a power supply source such as a power company.
  • the price signal represents a power price at each time of ** month **.
  • the price signal is transmitted from the signal transmission device 4 on the day before the date (for example, the day of the month, the day of the month) when the power price is represented by the price signal.
  • the period in which the price signal represents the power price is not limited to one day, and may be, for example, one week or one month, and can be changed as appropriate.
  • the timing at which the price signal is transmitted may be any timing before the period in which the price signal represents the power price.
  • FIG. 2 is a diagram showing an example of the charging control system 101 mounted on each of the HEMS devices 1a to 1d, the BEMS device 2a, and the charging stands 3a to 3c.
  • the charge control system of the present invention may be mounted on the HEMS device, the BEMS device, or the charging stand in FIG. 2, or may be mounted as a system for managing these as a microgrid.
  • the charging control system is mounted on, for example, a control device connected to a HEMS device, a BEMS device, or a charging stand via a communication line.
  • the charging control system 101 is an example of a power control system.
  • the charging control system 101 determines a charging schedule for the storage battery 111 mounted on the EV 110, and controls charging of the storage battery 111 according to the charging schedule.
  • the EV 110 corresponds to the EV 8a.
  • the storage battery 111 is an example of a power supply target.
  • the charging schedule of the storage battery 111 represents a supply time zone in which power is supplied from the power system 7 to the storage battery 111 and a power value supplied from the power system 7 to the storage battery 111 at each time within the supply time zone.
  • the charging control system 101 includes an information acquisition unit 102, a storage unit 103, an EV data acquisition unit 104, and an execution unit 105.
  • the EV data acquisition unit 104 includes a connection time information acquisition unit 104a and a necessary charge amount acquisition unit 104b.
  • the connection time information acquisition unit 104a includes a connection detection unit 104a1 and a connection end time acquisition unit 104a2.
  • the execution unit 105 includes a probability density function calculation unit 105a, a schedule calculation unit 105b, and a charge control unit 105c.
  • the information acquisition unit 102 is an example of a recommended information receiving unit.
  • the information acquisition unit 102 receives a price signal from the signal transmission device 4.
  • the information acquisition unit 102 receives the price signal by wired communication or wireless communication.
  • FIG. 3 is a diagram showing an example of the price signal P (t).
  • the horizontal axis indicates time
  • the vertical axis indicates power price.
  • the information acquisition unit 102 Each time the information acquisition unit 102 receives the price signal P (t), the information acquisition unit 102 notifies the probability density function calculation unit 105a of the price signal P (t). Alternatively, the information acquisition unit 102 may notify the probability density function calculation unit 105a of the price signal P (t) every specific period instead of receiving the price signal P (t).
  • the storage unit 103 stores various information.
  • the storage unit 103 stores a charging schedule of the storage battery 111 determined by the charging control system 101.
  • the EV data acquisition unit 104 is an example of a supply time information acquisition unit.
  • the EV data acquisition unit 104 acquires information regarding the storage battery 111.
  • connection time information acquisition unit 104a is an example of a target information receiving unit.
  • connection time information obtaining unit 104a accepts target information for specifying an allowable time zone (allowable supply time) in which power supply to the storage battery 111 is allowed.
  • connection detection unit 104a1 detects the time when the storage battery 111 is connected to the charge control system 101 (for example, the plug-in time of the storage battery 111).
  • connection start time the time when the storage battery 111 is connected to the charge control system 101.
  • connection detection unit 104a1 includes a clock unit (not shown), and a connection signal indicating connection (hereinafter referred to as “EV connection”) from the connection detection switch (not shown) to the charge control system 101 of the storage battery 111. Is received, the time is read from the clock unit, and the time is used as the connection start time.
  • EV connection connection signal indicating connection
  • the connection end time obtaining unit 104a2 obtains a scheduled time for terminating the EV connection (for example, a planned plug-out time for the storage battery 111).
  • a scheduled time for terminating the EV connection for example, a planned plug-out time for the storage battery 111).
  • the scheduled time for terminating the EV connection is referred to as “estimated connection termination time”.
  • connection end time acquisition unit 104a2 has an input device such as a touch panel or an operation button, and acquires the estimated connection end time input by the user of the EV 110 by operating the input device.
  • the target information is composed of the connection signal and the estimated connection end time.
  • the required charge acquisition unit 104b is an example of a specifying unit.
  • the required charge acquisition unit 104b specifies the charge required for the storage battery 111 (hereinafter referred to as “required charge”).
  • the required charge amount is an example of the amount of power supplied to the power supply target.
  • the required charge amount obtaining unit 104b detects the SOC (State of geCharge) of the storage battery 111 at the time of EV connection, and calculates the required charge amount based on the difference between the SOC and the target SOC that is the target value for completion of charging. calculate.
  • SOC State of geCharge
  • the SOC of the storage battery 111 at the time of EV connection is an example of predetermined information related to a power supply target.
  • the execution unit 105 is an example of an execution unit.
  • the execution unit 105 determines a charging schedule for the storage battery 111 based on the price signal P (t), the connection start time, the scheduled connection end time, and the required charge amount.
  • the probability density function calculation unit 105a generates a probability density function used for determining a charging schedule based on the price signal P (t).
  • the probability density function calculation unit 105a sequentially receives the price signal P (t) from the information acquisition unit 102.
  • the probability density function calculation unit 105a holds the latest price signal P (t) among the sequentially received price signals P (t).
  • the probability density function calculation unit 105a generates a probability density function based on the latest price signal P (t).
  • the schedule calculation unit 105b determines a charging schedule for the storage battery 111 based on the probability density function, the connection start time, the connection end scheduled time, and the required charge amount.
  • the charging control unit 105c supplies power from the power system 7 to the storage battery 111 according to the charging schedule calculated by the schedule calculating unit 105b.
  • the charging control unit 105c supplies power from the power system 7 to the storage battery 111 with power of a predetermined value (for example, maximum value) within the rated power of the storage battery 111.
  • the predetermined value is not limited to the maximum value within the rated power of the storage battery 111, and can be appropriately changed as long as it is a value within the rated power of the storage battery 111.
  • the predetermined value is referred to as “output power value”.
  • the output power value is also set in the probability density function calculation unit 105a and the schedule calculation unit 105b.
  • FIG. 4 is a diagram illustrating an example of a hardware configuration of the charging control system 101.
  • the same components as those shown in FIG. 4 are identical to FIG. 4, the same components as those shown in FIG. 4, the same components as those shown in FIG. 4, the same components as those shown in FIG.
  • the charge control device 201 is an example of a control system and has the same function as the charge control system 101.
  • the charging control device 201 includes a communication control unit 202, a main storage unit 203A, a data storage unit 203B, memory control interface units 203A-1 and 203B-1, an input unit 204, and an I / O (Input / Output). It includes an interface unit 204-1, a calculation unit 205, and a switch control unit 206.
  • the communication control unit 202 has the same function as the information acquisition unit 102.
  • the main storage unit 203A is a storage unit mainly used by the calculation unit 205.
  • the main storage unit 203A stores a program for defining the operation of the computing unit 205.
  • the memory control interface 203A-1 is an interface for the main storage unit 203A.
  • the data storage unit 203B has the same function as the storage unit 103.
  • the memory control interface 203B-1 is an interface for the data storage unit 203B.
  • the input unit 204 has the same function as the EV data acquisition unit 104.
  • the I / O interface unit 204-1 is an interface for the input unit 204.
  • the calculation unit 205 has the function of the probability density function calculation unit 105a and the function of the schedule calculation unit 105b.
  • the calculation unit 205 reads and executes a program stored in the main storage unit 203A, so that the function of the probability density function calculation unit 105a and the schedule calculation unit are included.
  • the function which 105b has is implement
  • the switch control unit 206 has the same function as the charge control unit 105c.
  • a relay switch is used as the switch control unit 206.
  • the switch control unit 206 is not limited to a relay switch and can be changed as appropriate.
  • FIG. 5 is a flowchart for explaining the operation of the charging control system 101.
  • a user (for example, an owner) of the EV 110 connects the EV 110 to the charging control system 101 to charge the EV 110 (storage battery 111), operates the connection end time acquisition unit 104a2, and starts using the EV 110 next time. Enter the scheduled time, that is, the scheduled connection end time.
  • the connection end scheduled time is input, for example, every time a user of the EV 110 connects the EV 110 to the charge control system 101.
  • connection detection unit 104a1 detects the connection (EV connection) between the charge control system 101 and the EV 110 (step S501), and the necessary charge amount acquisition unit 104b specifies the necessary charge amount. (Step S502). Further, the connection end time acquisition unit 104a2 holds the input connection end scheduled time (step S503).
  • connection detection unit 104a1 When detecting the EV connection, the connection detection unit 104a1 specifies the connection start time and notifies the probability density function calculation unit 105a of the connection start time.
  • the probability density function calculation unit 105a When the probability density function calculation unit 105a receives the connection start time, the probability density function calculation unit 105a notifies the connection end time acquisition unit 104a2 and the necessary charge amount acquisition unit 104b of an acquisition request to obtain the connection end scheduled time and the necessary charge amount.
  • the acquisition operation is executed (step S504).
  • connection end time acquisition unit 104a2 When the connection end time acquisition unit 104a2 receives the acquisition request, the connection end time acquisition unit 104a2 notifies the probability density function calculation unit 105a of the scheduled connection end time. In addition, when the required charge amount obtaining unit 104b receives an acquisition request, the required charge amount obtaining unit 104b notifies the probability density function calculating unit 105a of the necessary charge amount.
  • the probability density function calculating unit 105a cannot obtain the connection end scheduled time and the necessary charge amount.
  • the probability density function calculating unit 105a determines whether the connection end scheduled time and the necessary charge amount have been acquired (step S505). For example, in step S505, the probability density function calculation unit 105a determines whether the scheduled connection end time and the required charge amount have been obtained within a predetermined time after the acquisition request is notified.
  • the predetermined time can be set as appropriate.
  • the probability density function calculating unit 105a calculates the required charging time by dividing the required charging amount by the output power value (the power value supplied to the storage battery 111) when the connection end scheduled time and the required charging amount can be obtained. (Step S506).
  • the required charging time is the shortest time required for the charge control unit 105c to charge the storage battery 111 with the required charge amount.
  • the probability density function calculation unit 105a calculates the scheduled connection time by subtracting the connection start time from the estimated connection end time (step S507).
  • the scheduled connection time is a scheduled time when the EV 110 is continuously connected to the charge control system 101.
  • the probability density function calculation unit 105a determines whether the estimated connection time is longer than the required charging time (step S508).
  • Step S509 If the estimated connection time is equal to or longer than the required charge time, charging of the required charge amount can be completed by the estimated connection end time, so the probability density function calculating unit 105a generates a probability density function used to determine the charge schedule. (Step S509).
  • step S509 will be described.
  • the probability density function calculation unit 105a first generates a control signal ⁇ (t) obtained by inverting the waveform of the latest price signal P (t).
  • the probability density function calculation unit 105a specifies the maximum value and the minimum value of the latest price signal P (t), and subtracts the latest price signal P (t) from the maximum value of the latest price signal P (t). Then, the control signal ⁇ (t) is generated by adding the minimum value of the latest price signal P (t) to the subtraction result.
  • the method for generating the control signal ⁇ (t) using the latest price signal P (t) can be changed as appropriate.
  • control signal ⁇ (t) also represents the power supply recommendation degree, and the power supply recommendation degree increases as the value of the control signal ⁇ (t) increases.
  • the probability density function calculating unit 105a multiplies the control signal ⁇ (t) by extracting the period portion from the connection start time to the connection end scheduled time by the normalization constant N to obtain the probability density function ⁇ . Generate (t).
  • the probability density function ⁇ (t) can be expressed as the following equation (1).
  • connection time zone N ⁇ ⁇ (t) (1)
  • connection time zone The time zone from the connection start time to the scheduled connection end time
  • step S509 The above is an example of step S509.
  • the probability density function calculating unit 105a notifies the schedule calculating unit 105b of the probability density function ⁇ (t), the connection start time, the scheduled connection end time, and the required charge amount.
  • step S510 When the schedule calculation unit 105b receives the probability density function ⁇ (t), the connection start time, the connection end scheduled time, and the required charge amount, the time period for supplying power from the power system 7 to the storage battery 111 (hereinafter, referred to as “supply time zone”) (step S510).
  • determining the supply time zone means determining the charging schedule of the storage battery 111.
  • step S510 an example of step S510 will be described.
  • FIG. 6 is a diagram showing an example of the control signal ⁇ (t) and the probability density function ⁇ (t).
  • time ts indicates a connection start time
  • time te indicates a connection end scheduled time
  • time zone ts-te indicates a connection time zone, a period before time ts and a period after time te. Indicates a non-connection time zone.
  • the probability density function ⁇ (t) is defined within the connection time zone ts-te.
  • the schedule calculation unit 105b When the schedule calculation unit 105b receives the probability density function ⁇ (t), the connection start time, the connection end scheduled time, and the required charge amount, first, the schedule calculation unit 105b divides the connection time zone ts-te into equal intervals.
  • the schedule calculation unit 105b holds in advance a related table in which the length of the connection time zone and the number of divisions of the connection time zone are associated with each other, and refers to the related table to determine the connection time zone ts-te as the connection time zone. By dividing equally by the number of divisions associated with the band ts-te, the connection time band ts-te is divided at equal intervals.
  • FIG. 7 shows an example in which the connection time zone ts-te is divided at equal intervals by the time interval A.
  • the schedule calculation unit 105b calculates the number of charge allocations by dividing the required charge amount by the integrated value of the output voltage value and the time interval A.
  • the schedule calculation unit 105b uses the probability density function ⁇ (t) to calculate the connection time zone ts ⁇ te.
  • a power supply operation (hereinafter, simply referred to as “power supply operation”) for supplying power of the output power value from the power system 7 to the storage battery 111 continuously for the time interval A is allocated for the number of times of charge allocation.
  • the schedule calculation unit 105b sets each element corresponding to each section (unit time period) of the time interval A within the connection time period ts-te, and calculates the probability distribution of each element as a probability density function.
  • ⁇ (t) one of a plurality of elements is randomly generated for the number of times of charge allocation.
  • the schedule calculation unit 105b determines a section corresponding to the randomly generated element as a supply time zone (power supply time zone) for executing the power supply operation.
  • the time of each section is the time interval A, and this time is an example of a predetermined time. For this reason, the schedule calculation unit 105b sets a time equal to or less than half the time of the connection time zone ts-te as the predetermined time.
  • a variety of methods can be used as a method of randomly generating any one of a plurality of elements by using the probability distribution of each element as a probability distribution according to the probability density function ⁇ (t).
  • a generally known inverse function method or Monte Carlo method is used.
  • sections B1, B2, B3, and B4 are determined as supply time zones.
  • the schedule calculation unit 105b holds the determined charging schedule in the storage unit 103 and notifies the charging control unit 105c.
  • the charging control unit 105c executes the charging of the storage battery 111 according to the determined charging schedule (step S511).
  • step S511 the charging control unit 106 starts power supply at the output power value from the power system 7 to the storage battery 111 at the start time of each section represented in the determined charging schedule. .
  • the start time of each section shown in the determined charging schedule is a time that is included in the connection time zone ts-te and is more than the time of the time interval A from the last time of the connection time zone ts-te zone.
  • it is an example of each of a plurality of specific times separated from each other by a time interval A or more, and an example of a time corresponding to each of the plurality of elements.
  • step S505 the probability density function calculation unit 105a instructs the charge control unit 105c to charge if the estimated connection end time and the required charge amount cannot be obtained within a predetermined time after the acquisition request is notified. Notify the charging instruction to do so.
  • step S508 also when the estimated connection time is not equal to or longer than the required charging time, the probability density function calculation unit 105a notifies the charging control unit 105c of a charging instruction.
  • the charging control unit 105c When the charging control unit 105c receives the charging instruction, the charging control unit 105c supplies power from the power system 7 to the storage battery 111 with the output power value (step S512).
  • FIG. 8 is a diagram showing a simulation result when the above-described method is used.
  • the simulation result shown in FIG. 8 is a simulation result of load fluctuation in three days of (holiday)-(weekdays)-(weekdays) when the charging control system 101 is installed at the connection destination of 1,000 EVs. Indicates.
  • the electric power price is 50 yen / kwh only between 10:00 and 12:00 based on 150 yen / kwh, and this electric power price is presented every day at 0:00.
  • the solid line is the electricity price
  • the filled curve is the load curve for 1,000 EVs.
  • the execution unit 105 selects at least one time zone of each section of the time interval A within the connection time zone ts-te as the power supply time zone, and is constant in each power supply time zone. The amount of electric power is supplied to the storage battery 111.
  • the value of power supplied to the storage battery 111 is constant, and it is not necessary to perform complicated power control of changing the power value when charging the storage battery 111.
  • the charging time zones of the storage battery 111 can be dispersed. Therefore, for example, even when each of the plurality of charging control systems 101 individually controls the charging schedule of the storage battery 111, it is possible to suppress the timing at which power is supplied from the power system 7 to the plurality of storage batteries 111. . For this reason, for example, when charging a large number of EVs, it is possible to prevent the load curve created by charging from fluctuating greatly.
  • the above effect is that at least one or more times in the unit time zone obtained by dividing the supply allowable time and the EV data acquisition unit 104X that acquires the amount of power supplied to the storage battery and the supply allowable time for supplying power to the storage battery.
  • a band is selected as a power supply time zone, and a charging control system including an execution unit 105X that supplies a constant amount of power in each power supply time zone is also effective.
  • FIG. 9 is a diagram illustrating a charge control system including an EV data acquisition unit 104X and an execution unit 105X.
  • the execution unit 105 randomly generates one of a plurality of elements associated with each of the plurality of unit time zones, and converts the unit time zone corresponding to the randomly generated elements to the power Select as supply time zone.
  • the execution unit 105 selects a power supply time zone by the number obtained by dividing the amount of power supplied to the storage battery by the power output value in the unit time zone. For this reason, it becomes possible to supply the electrode which a storage battery requires to a storage battery.
  • the information acquisition unit 102 accepts a price signal that is an example of recommendation level information for specifying the power supply recommendation level for each time.
  • the execution part 105 determines an electric power supply time slot
  • the power supply operation can be performed more easily at a time when the power supply recommendation level is higher, and the timing for supplying power to the storage battery 111 can be determined according to the power supply recommendation level. Therefore, by adjusting the power supply recommendation degree at each time, it is possible to arbitrarily control the load curve created by the power supply.
  • the power supply recommendation level increases as the power price becomes cheaper. For this reason, the probability of charging the storage battery 111 at a time when the power price is low can be increased.
  • each charging control system 101 controls the charging timing to the storage battery 111 individually, the charge manager who directly controls each charging control system 101 can be made unnecessary.
  • the signal transmission apparatus 4 does not need to change a price signal for every charge control system 101, and should just use the same price signal for each charge control system 101.
  • the signal transmission device 4 may transmit the price signal via a network or may distribute the price signal by radio waves or the like.
  • the load curve created by EV charging is not only the price signal but also each charging control system 101. Depends on the number of EVs connected to and the required amount of EV charge.
  • the probability of executing the power supply operation at a certain time is determined, the possibility that the number of executions of the power supply operation increases as the number of EVs connected to each charge control system 101 increases. Further, even if the probability of executing the power supply operation at a certain time is determined, the number of executions of the power supply operation increases as the required charge amount of the EV increases.
  • the charge control system used in the second embodiment has the same configuration as the charge control system 101 of the first embodiment, but instead of the signal transmission device 4 shown in FIG. 1, the signal transmission device 4A shown in FIG. Is used.
  • the signal transmission device 4A includes a generation unit 4A1 and a communication unit 4A2.
  • EV is an example of an electric device.
  • the generation unit 4A1 is an example of a generation unit.
  • the generation unit 4A1 statistically estimates the number of EVs connected to each charging control system 101 at each time (the number of connected EVs).
  • the generation unit 4A1 collects history data regarding connected EVs from smart meters, charging stations, etc. in HEMS and BEMS, and uses the history data to obtain the transition of the number of connected EVs at each time of day. . Then, the generation unit 4A1 generates a connected EV number function x (t) representing the number of connected EVs for each time as a function representing the transition.
  • the connected EV number function x (t) represents a value obtained by statistically estimating the number of connected EVs for each time.
  • the generation unit 4A1 creates a target EV load curve y (t) corresponding to the predicted power generation amount of solar power generation, the predicted amount of loads other than EV, and the power price.
  • the target EV load curve y (t) represents the target EV load magnitude for each time.
  • the generation unit 4A1 may receive the target EV load curve y (t) from another device (for example, a communication device on the electric power company side).
  • the value of the target EV load curve y (t) represents the power supply recommendation level at each time t, and the power supply recommendation level increases as the value of the target EV load curve y (t) increases.
  • the generation unit 4A1 generates the control signal z (t) using the connected EV number function x (t) and the target EV load curve y (t).
  • the generation unit 4A1 generates the control signal z (t) as shown in Equation (3).
  • Control signal z (t) (Target EV load curve y (t)) / (Connected EV number function x (t)) Equation (3)
  • the control signal z (t) is an example of recommendation degree information.
  • the value of z (t) represents the recommended power supply at each time t, and the recommended power supply increases as the value of the control signal z (t) increases.
  • the communication unit 4A2 is an example of communication means.
  • the communication unit 4A2 transmits the control signal z (t) generated by the generation unit 4A1 to the charging control system 101 instead of the price signal.
  • the probability density function calculation unit 105a in the charge control system 101 uses the control signal z (t) as it is as the control signal ⁇ (t).
  • the execution unit 105 can adjust the execution timing of the power supply operation according to the number of connected EVs.
  • the generation unit 4A1 collects historical data regarding the connected EV from a smart meter or a charging stand in the HEMS or BEMS. The history data is used to obtain the transition of the total required charge amount at each time of day. Then, the generation unit 4A1 generates a necessary charge amount function ⁇ (t) that represents the sum of necessary charge amounts for each time as a function that represents the transition.
  • the required charge amount function ⁇ (t) represents a value obtained by statistically estimating the total required charge amount at each time.
  • the generation unit 4A1 generates the control signal ⁇ (t) using the necessary charge amount function ⁇ (t) and the target EV load curve y (t).
  • the generation unit 4A1 generates the control signal ⁇ (t) as shown in the equation (4).
  • Control signal ⁇ (t) (target EV load curve y (t)) / (necessary charge amount function ⁇ (t)) Equation (4)
  • the control signal ⁇ (t) is an example of recommendation degree information.
  • the value of ⁇ (t) represents the power supply recommendation level at each time t, and the power supply recommendation level increases as the value of the control signal ⁇ (t) increases.
  • the communication unit 4A2 transmits the control signal ⁇ (t) generated by the generation unit 4A1 to the charging control system 101.
  • the probability density function calculation unit 105a in the charge control system 101 uses the control signal ⁇ (t) as it is as the control signal ⁇ (t).
  • the execution unit 105 can adjust the execution timing of the power supply operation according to the total required charge amount.
  • the EV is used as an example of the electric device.
  • the electric device is not limited to the EV and can be appropriately changed.
  • a storage battery is used as a power supply target. For this reason, it becomes possible to suppress that the charging timing of the large capacity stationary storage battery or the large capacity storage battery in the EV is concentrated, for example.
  • a stationary storage battery when used as a power supply target, for example, a time period in which the stationary storage battery is not discharged to supply power to other devices is used.
  • a power load such as a home appliance
  • a device for example, a rice cooker
  • a charge schedule may be created so as to match it.
  • connection end time acquisition unit 104a2 receives the connection end scheduled time from the user every time the EV 110 is connected to the charging control system 101. However, when the use of the EV 110 starts at the same time every day, The use start time may be set in advance in the connection end time acquisition unit 104a2, and the connection end time acquisition unit 104a2 may hold the set use start time as the connection end scheduled time.
  • the probability density function calculation unit 105a uses the detection result of the connection detection unit 104a1 to output the EV 110. May be stored in the storage unit 103 for each day of the week, and the estimated connection end time may be predicted for each day of the week using the history.
  • the signal transmission device 4 may transmit the target EV load curve y (t) instead of the price signal.
  • the target EV load curve y (t) is an example of recommendation level information.
  • the charging control system 101 and the signal transmission devices 4 and 4A may be realized by a computer.
  • the computer reads and executes a program recorded on a recording medium such as a CD-ROM (Compact Disk Read Only Memory) that can be read by the computer, and performs each function of the charge control system and the signal transmission device. Execute.
  • a recording medium such as a CD-ROM (Compact Disk Read Only Memory) that can be read by the computer, and performs each function of the charge control system and the signal transmission device. Execute.
  • the recording medium is not limited to the CD-ROM and can be changed as appropriate.
  • this program may be distributed to a computer via a communication line, and the computer that has received this distribution may execute this program.
  • This program may be for realizing a part of the functions described above.
  • this program may be a so-called difference file (difference program) that can realize the above-described functions in combination with a program already recorded in the computer.

Abstract

A power control system controlling power supply to a load or a storage battery, having: a supply time information acquisition means that obtains the amount of power supplied to the load or the storage battery and the supply permission time at which the power is supplied to the load or the storage battery; and an execution means that determines, as the power supply time slot, at least one time slot among unit time slots that divide the supply permission time, and supplies a constant amount of power during each power supply time slot.

Description

電力制御システム、電力制御方法及び記録媒体Power control system, power control method, and recording medium
 本発明は、負荷または蓄電池への電力の供給を制御する電力制御システム、電力制御方法及びプログラムに関する。 The present invention relates to a power control system, a power control method, and a program for controlling supply of power to a load or a storage battery.
 近年、環境問題が益々深刻化する中、導入が急速に進められている太陽電池や風力発電機等の再生可能電源は、低炭素化やエネルギー資源問題解決の有効な手段と考えられる。 In recent years, as environmental problems become more and more serious, renewable power sources such as solar cells and wind power generators, which are being rapidly introduced, are considered to be effective means for reducing carbon and solving energy resource problems.
 しかしながら、このような再生可能電源の出力は大きく変動する。このため、出力変動の大きい再生可能電源が電力系統に接続された場合、電力品質の観点から、その出力変動を相殺するための調整手段が不可欠となる。 However, the output of such a renewable power source varies greatly. For this reason, when a renewable power source having a large output fluctuation is connected to the power system, an adjustment means for canceling the output fluctuation is indispensable from the viewpoint of power quality.
 調整手段としては、現状、主に応答速度の速い火力発電機が用いられている。このため、出力変動の大きな再生可能電源を電力系統に導入すればするほど、調整手段としての火力発電機が必要になってしまうというジレンマにも陥り兼ねない。したがって、火力発電機に代わる調整手段を確保することが大きな課題である。 As a means of adjustment, thermal power generators with a fast response speed are mainly used at present. For this reason, the more a renewable power source with a large output fluctuation is introduced into the electric power system, the more dilemma is that a thermal power generator as an adjustment means becomes necessary. Therefore, it is a big problem to secure adjusting means to replace the thermal power generator.
 そこで、調整手段として、需要家側の機器(例えば、蓄電池)を利用することが検討されている。 Therefore, the use of consumer equipment (for example, storage batteries) is being studied as an adjustment means.
 一般家庭やビルなどの需要家は、送電・配電事業者に対して、電力の利用に応じた料金を支払うことによって機器を使用している。そこで、需要家に対する電力価格を電力の逼迫状況に応じて変更することで需要制御を行う“料金制デマンドレスポンス”(ここでは、料金制デマンドレスポンスを「DR」と称する)の研究が進められている。 Consumers such as ordinary households and buildings use equipment by paying transmission / distribution companies according to the usage of power. Therefore, research on “fee-based demand response” (referred to here as “DR”) that controls demand by changing the power price for consumers according to the tightness of power is underway. Yes.
 特許文献1には、蓄電池の充電時間帯を電力価格に応じて設定する充電制御システムが記載されている。 Patent Document 1 describes a charge control system that sets a charging time zone of a storage battery according to a power price.
 特許文献1に記載の充電制御システムは、1時間単位の各時間帯に、その時間帯の電力価格に対応した優先係数を設定し、その優先係数が高い順に複数の時間帯を蓄電池の充電時間帯として選択する。そして、特許文献1に記載の充電制御システムは、蓄電池の充電時間帯においては、優先係数の高い時間帯ほど、その時間帯で実行する充電量を多くする。 The charging control system described in Patent Document 1 sets a priority coefficient corresponding to the power price of each time slot for each time slot in an hour unit, and sets a plurality of time slots in descending order of the priority coefficient to charge the storage battery. Select as a belt. And the charge control system of patent document 1 increases the charge amount performed in the time slot | zone in the time slot | zone with a higher priority coefficient in the charge time slot | zone of a storage battery.
特開2008-67418号公報JP 2008-67418 A
 蓄電池の数が多い場合、蓄電池の充電が特定の時間帯(例えば、電力価格の最も低い時間帯)に集中して行われると、各蓄電池の充電は、電力系統の安定化よりも、電力系統の不安定化を引き起こす要因になる。 When the number of storage batteries is large, when the storage battery is concentrated in a specific time zone (for example, the time zone with the lowest power price), the charging of each storage battery is more than the stabilization of the power system. Cause instability.
 特許文献1に記載の充電制御システムは、蓄電池の充電を、優先係数の最も高い時間帯だけでなく、他の時間帯も利用して行うため、蓄電池の充電が電力系統の不安定化を引き起こす要因になる可能性を低くすることができる。 Since the charging control system described in Patent Literature 1 charges the storage battery not only in the time zone with the highest priority coefficient but also in other time zones, charging the storage battery causes the power system to become unstable. The possibility of becoming a factor can be reduced.
 しかしながら、特許文献1に記載の充電制御システムは、蓄電池の充電を行う際に、時間帯ごとに充電量を変更しなければならず、電力供給対象である蓄電池に供給する電力の制御が複雑になるという課題があった。 However, when charging the storage battery, the charge control system described in Patent Document 1 must change the amount of charge for each time zone, and the control of the power supplied to the storage battery that is the power supply target is complicated. There was a problem of becoming.
 なお、電力供給対象に供給する電力の制御が複雑になるという課題は、電力供給対象が蓄電池である場合にのみ生じるものではなく、電力供給対象が蓄電池でない場合にも生じる。 Note that the problem of complicated control of the power supplied to the power supply target does not only occur when the power supply target is a storage battery, but also occurs when the power supply target is not a storage battery.
 本発明の目的は、上記課題を解決可能な電力制御システム、電力制御方法およびプログラムを提供することである。 An object of the present invention is to provide a power control system, a power control method, and a program that can solve the above-described problems.
 本発明の電力制御システムは、
 負荷または蓄電池への電力の供給を制御する電力制御システムであって、
 前記負荷または前記蓄電池に供給する電力量と、前記負荷または前記蓄電池に電力を供給する供給許容時間と、を取得する供給時間情報入手手段と、
 前記供給許容時間を分割した単位時間帯の少なくとも一以上の時間帯を電力供給時間帯として選定し、各電力供給時間帯で一定の電力量を供給する実行手段と、を有する。
The power control system of the present invention is
A power control system for controlling power supply to a load or a storage battery,
Supply time information obtaining means for obtaining the amount of power to be supplied to the load or the storage battery, and the supply allowable time for supplying power to the load or the storage battery,
Execution means for selecting at least one or more time zones of the unit time zones obtained by dividing the supply allowable time as power supply time zones and supplying a constant amount of power in each power supply time zone.
 本発明の電力制御方法は、
 負荷または蓄電池への電力の供給を制御する電力制御システムが行う電力制御方法であって、
 前記負荷または前記蓄電池に供給する電力量と、前記負荷または前記蓄電池に電力を供給する供給許容時間と、を取得し、
 前記供給許容時間を分割した単位時間帯の少なくとも一以上の時間帯を電力供給時間帯として選定し、各電力供給時間帯で一定の電力量を供給する。
The power control method of the present invention includes:
A power control method performed by a power control system that controls supply of power to a load or a storage battery,
Obtaining an amount of electric power to be supplied to the load or the storage battery, and an allowable supply time to supply electric power to the load or the storage battery,
At least one time zone of the unit time zones into which the supply allowable time is divided is selected as a power supply time zone, and a constant amount of power is supplied in each power supply time zone.
 本発明の記録媒体は、
 コンピュータに、
 負荷または蓄電池に供給する電力量と、前記負荷または前記蓄電池に電力を供給する供給許容時間と、を取得する供給時間情報入手手順と、
 前記供給許容時間を分割した単位時間帯の少なくとも一以上の時間帯を電力供給時間帯として選定し、各電力供給時間帯で一定の電力量を供給する実行手順と、を実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体である。
The recording medium of the present invention is
On the computer,
A supply time information obtaining procedure for obtaining an amount of power to be supplied to a load or a storage battery and a supply allowable time for supplying power to the load or the storage battery;
The execution procedure for selecting at least one time zone of the unit time zones obtained by dividing the supply allowable time as a power supply time zone and supplying a constant amount of power in each power supply time zone is recorded. A computer-readable recording medium.
 本発明によれば、負荷または蓄電池に電力が供給されるタイミングが集中することを抑制しつつ、負荷または蓄電池に供給する電力の制御が複雑になることを抑制可能になる。 According to the present invention, it is possible to suppress the control of the power supplied to the load or the storage battery from being complicated while suppressing the concentration of the timing at which the power is supplied to the load or the storage battery.
本発明の一実施形態の電力制御システムを含む管理システム10を示した図である。1 is a diagram illustrating a management system 10 including a power control system according to an embodiment of the present invention. 充電制御システム101の一例を示した図である。It is the figure which showed an example of the charge control system. プライス信号P(t)の一例を示した図である。It is the figure which showed an example of the price signal P (t). 充電制御システム101のハードウエア構成の一例を示した図である。2 is a diagram illustrating an example of a hardware configuration of a charging control system 101. FIG. 充電制御システム101の動作を説明するためのフローチャートである。3 is a flowchart for explaining the operation of the charging control system 101. 制御信号Ψ(t)と確率密度関数φ(t)との一例を示した図である。It is the figure which showed an example of control signal (PSI) (t) and probability density function (phi) (t). 接続時間帯ts-teを、時間間隔Aで等間隔に分割した例を示す。An example in which the connection time zone ts-te is divided at equal intervals by the time interval A is shown. 本実施形態を用いた場合のシミュレーション結果を示した図である。It is the figure which showed the simulation result at the time of using this embodiment. 特定部104bAと実行部105Aとからなる充電制御システムを示した図である。It is the figure which showed the charge control system which consists of specific part 104bA and execution part 105A. 信号送信装置4Aの一例を示した図である。It is the figure which showed an example of 4 A of signal transmitters.
 以下、本発明の実施形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態の電力制御システムを含む管理システム10を示した図である。 FIG. 1 is a diagram showing a management system 10 including a power control system according to an embodiment of the present invention.
 図1において、管理システム10は、住宅街エリア10-1に設置されたHEMS(Home Energy Management System)機器1a~1dと、ビル駐車場10-2に設置されたBEMS(Building Energy Management System)機器2aと、充電スタンドエリア10-3に設置された充電スタンド3a~3cと、信号送信装置4と、を含む。 In FIG. 1, management system 10 includes HEMS (Home Energy Management System) devices 1a to 1d installed in residential area 10-1, and BEMS (Building Energy Management System) devices installed in building parking lot 10-2. 2a, charging stations 3a to 3c installed in charging station area 10-3, and signal transmission device 4.
 HEMS機器1a~1dとBEMS機器2aと充電スタンド3a~3cは、それぞれ、電力配電線網5を介して変電所6に接続されている。なお、電力配電線網5と変電所6は、電力系統7に含まれる。また、HEMS機器1a~1dとBEMS機器2aと充電スタンド3a~3cは、それぞれ、信号送信装置4と通信する。 The HEMS devices 1a to 1d, the BEMS device 2a, and the charging stations 3a to 3c are connected to the substation 6 through the power distribution network 5, respectively. The power distribution network 5 and the substation 6 are included in the power system 7. The HEMS devices 1a to 1d, the BEMS device 2a, and the charging stands 3a to 3c communicate with the signal transmission device 4, respectively.
 HEMS機器1a~1cは、それぞれ、EV8a~8c内の蓄電池の充放電を制御する。例えば、HEMS機器1a~1cは、それぞれ、電力系統7からEV8a~8cへの電力の供給を制御する。なお、EVやEV内の蓄電池は、電力供給対象の一例である。また、以下では、「EV内の蓄電池の充放電」を、「EVの充放電」とも称する。 The HEMS devices 1a to 1c control charging / discharging of the storage batteries in the EVs 8a to 8c, respectively. For example, the HEMS devices 1a to 1c control power supply from the power system 7 to the EVs 8a to 8c, respectively. Note that EVs and storage batteries in EVs are examples of power supply targets. Hereinafter, “charging / discharging of the storage battery in the EV” is also referred to as “charging / discharging of the EV”.
 HEMS機器1dは、電力系統7から定置型エネルギーストレージ(例えば、定置型蓄電池またはヒートポンプ)9aへの電力の供給を制御する。なお、定置型エネルギーストレージは、電力供給対象の一例である。 The HEMS device 1d controls power supply from the power system 7 to a stationary energy storage (for example, a stationary storage battery or a heat pump) 9a. The stationary energy storage is an example of a power supply target.
 BEMS機器2aは、EV8d~8gの充放電と定置型エネルギーストレージ9b~9cへの電力の供給を制御する。例えば、BEMS機器2aは、電力系統7からEV8d~8gと定置型エネルギーストレージ9b~9cへの電力の供給を制御する。 The BEMS device 2a controls the charging / discharging of the EVs 8d to 8g and the power supply to the stationary energy storages 9b to 9c. For example, the BEMS device 2a controls the supply of power from the power system 7 to the EVs 8d to 8g and the stationary energy storages 9b to 9c.
 充電スタンド3a~3cは、それぞれ、電力系統7からEV8h~8iへの電力の供給を制御する。 The charging stations 3a to 3c control power supply from the power system 7 to the EVs 8h to 8i, respectively.
 信号送信装置4は、電力価格を表すプライス信号(価格信号)を、HEMS機器1a~1dと、BEMS機器2aと、充電スタンド3a~3cに送信する。 The signal transmission device 4 transmits a price signal (price signal) indicating a power price to the HEMS devices 1a to 1d, the BEMS device 2a, and the charging stands 3a to 3c.
 プライス信号は、推奨度情報の一例であり、時刻ごとの電力価格を表す時間関数である。なお、プライス信号が表す電力価格は、電力の供給を推奨する度合いを表す電力供給推奨度の一例である。電力供給推奨度は、電力価格が安価なほど高くなる。 A price signal is an example of recommendation level information, and is a time function representing a power price at each time. Note that the power price represented by the price signal is an example of a power supply recommendation level indicating a degree of recommending power supply. The power supply recommendation level becomes higher as the power price is lower.
 プライス信号は、例えば、電力会社等の電力供給元が決定した1日分の各時刻の電力価格を表す。例えば、プライス信号は、○月○日の各時刻の電力価格を表す。プライス信号は、プライス信号にて電力価格が表された日(例えば、○月○日)よりも前の日に、信号送信装置4から送信される。 The price signal represents, for example, the power price at each time for one day determined by a power supply source such as a power company. For example, the price signal represents a power price at each time of ** month **. The price signal is transmitted from the signal transmission device 4 on the day before the date (for example, the day of the month, the day of the month) when the power price is represented by the price signal.
 なお、プライス信号が電力価格を表す期間は1日に限らず、例えば1週間または1ヵ月でもよく、適宜変更可能である。また、プライス信号が送信されるタイミングは、プライス信号が電力価格を表す期間よりも前のタイミングであればよい。 Note that the period in which the price signal represents the power price is not limited to one day, and may be, for example, one week or one month, and can be changed as appropriate. The timing at which the price signal is transmitted may be any timing before the period in which the price signal represents the power price.
 図2は、HEMS機器1a~1d、BEMS機器2aおよび充電スタンド3a~3cの各々に搭載される充電制御システム101の一例を示した図である。図2において、図1に示したものと同一構成のものには同一符号を付してある。以下では、説明の簡略化を図るために、充電制御システム101がHEMS機器1aに搭載された例を説明する。なお、本発明の充電制御システムは図2のHEMS機器、BEMS機器、充電スタンドに搭載されでも良いし、これらをマイクログリッドとして管理するシステムとして搭載してもよい。その場合には、充電制御システムは、例えばHEMS機器、BEMS機器、充電スタンドと通信回線を介して接続される制御機器に搭載される。 FIG. 2 is a diagram showing an example of the charging control system 101 mounted on each of the HEMS devices 1a to 1d, the BEMS device 2a, and the charging stands 3a to 3c. In FIG. 2, the same components as those shown in FIG. Below, in order to simplify description, the example in which the charge control system 101 was mounted in the HEMS apparatus 1a is demonstrated. Note that the charge control system of the present invention may be mounted on the HEMS device, the BEMS device, or the charging stand in FIG. 2, or may be mounted as a system for managing these as a microgrid. In that case, the charging control system is mounted on, for example, a control device connected to a HEMS device, a BEMS device, or a charging stand via a communication line.
 図2において、充電制御システム101は、電力制御システムの一例である。 2, the charging control system 101 is an example of a power control system.
 充電制御システム101は、EV110に搭載された蓄電池111の充電スケジュールを決定し、その充電スケジュールに従って蓄電池111の充電を制御する。なお、EV110は、EV8aに対応する。蓄電池111は電力供給対象の一例である。 The charging control system 101 determines a charging schedule for the storage battery 111 mounted on the EV 110, and controls charging of the storage battery 111 according to the charging schedule. The EV 110 corresponds to the EV 8a. The storage battery 111 is an example of a power supply target.
 なお、蓄電池111の充電スケジュールは、蓄電池111に電力系統7から電力を供給する供給時間帯と、その供給時間帯内の各時刻に電力系統7から蓄電池111に供給する電力値と、を表す。 In addition, the charging schedule of the storage battery 111 represents a supply time zone in which power is supplied from the power system 7 to the storage battery 111 and a power value supplied from the power system 7 to the storage battery 111 at each time within the supply time zone.
 充電制御システム101は、情報入手部102と、記憶部103と、EVデータ入手部104と、実行部105と、を含む。EVデータ入手部104は、接続時間情報入手部104aと、必要充電量入手部104bと、を含む。接続時間情報入手部104aは、接続検出部104a1と、接続終了時刻入手部104a2と、を含む。実行部105は、確率密度関数算出部105aと、スケジュール算出部105bと、充電制御部105cと、を含む。 The charging control system 101 includes an information acquisition unit 102, a storage unit 103, an EV data acquisition unit 104, and an execution unit 105. The EV data acquisition unit 104 includes a connection time information acquisition unit 104a and a necessary charge amount acquisition unit 104b. The connection time information acquisition unit 104a includes a connection detection unit 104a1 and a connection end time acquisition unit 104a2. The execution unit 105 includes a probability density function calculation unit 105a, a schedule calculation unit 105b, and a charge control unit 105c.
 情報入手部102は、推奨情報受付手段の一例である。 The information acquisition unit 102 is an example of a recommended information receiving unit.
 情報入手部102は、信号送信装置4から、プライス信号を受け付ける。例えば、情報入手部102は、プライス信号を有線通信または無線通信で受信する。 The information acquisition unit 102 receives a price signal from the signal transmission device 4. For example, the information acquisition unit 102 receives the price signal by wired communication or wireless communication.
 図3は、プライス信号P(t)の一例を示した図である。図3において、横軸は時刻を示し、縦軸は電力価格を示す。 FIG. 3 is a diagram showing an example of the price signal P (t). In FIG. 3, the horizontal axis indicates time, and the vertical axis indicates power price.
 情報入手部102は、プライス信号P(t)を受信するごとに、そのプライス信号P(t)を確率密度関数算出部105aに通知する。または情報入手部102は、プライス信号P(t)を受信するごとではなく、特定の期間ごとにプライス信号P(t)を確率密度関数算出部105aに通知するとしてもよい。 Each time the information acquisition unit 102 receives the price signal P (t), the information acquisition unit 102 notifies the probability density function calculation unit 105a of the price signal P (t). Alternatively, the information acquisition unit 102 may notify the probability density function calculation unit 105a of the price signal P (t) every specific period instead of receiving the price signal P (t).
 記憶部103は、種々の情報を記憶する。例えば、記憶部103は、充電制御システム101が決定した蓄電池111の充電スケジュールを記憶する。 The storage unit 103 stores various information. For example, the storage unit 103 stores a charging schedule of the storage battery 111 determined by the charging control system 101.
 EVデータ入手部104は、供給時間情報入手手段の一例である。 The EV data acquisition unit 104 is an example of a supply time information acquisition unit.
 EVデータ入手部104は、蓄電池111に関する情報を入手する。 The EV data acquisition unit 104 acquires information regarding the storage battery 111.
 接続時間情報入手部104aは、対象情報受付手段の一例である。 The connection time information acquisition unit 104a is an example of a target information receiving unit.
 接続時間情報入手部104aは、蓄電池111への電力の供給が許容される許容時間帯(供給許容時間)を特定するための対象情報を受け付ける。 The connection time information obtaining unit 104a accepts target information for specifying an allowable time zone (allowable supply time) in which power supply to the storage battery 111 is allowed.
 接続検出部104a1は、蓄電池111が充電制御システム101に接続された時刻(例えば、蓄電池111のプラグイン時刻)を検出する。以下、蓄電池111が充電制御システム101に接続された時刻を「接続開始時刻」と称する。 The connection detection unit 104a1 detects the time when the storage battery 111 is connected to the charge control system 101 (for example, the plug-in time of the storage battery 111). Hereinafter, the time when the storage battery 111 is connected to the charge control system 101 is referred to as “connection start time”.
 例えば、接続検出部104a1は、時計部(不図示)を有しており、不図示の接続検出スイッチから蓄電池111の充電制御システム101への接続(以下「EV接続」と称する)を表す接続信号を受け付けると、時計部から時刻を読み出し、その時刻を接続開始時刻として用いる。 For example, the connection detection unit 104a1 includes a clock unit (not shown), and a connection signal indicating connection (hereinafter referred to as “EV connection”) from the connection detection switch (not shown) to the charge control system 101 of the storage battery 111. Is received, the time is read from the clock unit, and the time is used as the connection start time.
 接続終了時刻入手部104a2は、EV接続を終了する予定時刻(例えば、蓄電池111のプラグアウト予定時刻)を入手する。以下、EV接続を終了する予定時刻を「接続終了予定時刻」と称する。 The connection end time obtaining unit 104a2 obtains a scheduled time for terminating the EV connection (for example, a planned plug-out time for the storage battery 111). Hereinafter, the scheduled time for terminating the EV connection is referred to as “estimated connection termination time”.
 例えば、接続終了時刻入手部104a2は、タッチパネルまたは操作ボタン等の入力装置を有し、EV110のユーザが入力装置を操作して入力した接続終了予定時刻を入手する。 For example, the connection end time acquisition unit 104a2 has an input device such as a touch panel or an operation button, and acquires the estimated connection end time input by the user of the EV 110 by operating the input device.
 なお、接続信号と接続終了予定時刻にて、対象情報が構成される。 Note that the target information is composed of the connection signal and the estimated connection end time.
 必要充電量入手部104bは、特定手段の一例である。 The required charge acquisition unit 104b is an example of a specifying unit.
 必要充電量入手部104bは、蓄電池111に必要な充電量(以下「必要充電量」と称する)を特定する。必要充電量は、電力供給対象に供給する電力量の一例である。 The required charge acquisition unit 104b specifies the charge required for the storage battery 111 (hereinafter referred to as “required charge”). The required charge amount is an example of the amount of power supplied to the power supply target.
 例えば、必要充電量入手部104bは、EV接続時の蓄電池111のSOC(State of Charge)を検出し、そのSOCと充電完了の目標値となる目標SOCとの差に基づいて、必要充電量を算出する。なお、SOCを用いて必要充電量を算出する手法は公知技術であるため、詳細な説明は省略する。EV接続時の蓄電池111のSOCは、電力供給対象に関する所定情報の一例である。 For example, the required charge amount obtaining unit 104b detects the SOC (State of geCharge) of the storage battery 111 at the time of EV connection, and calculates the required charge amount based on the difference between the SOC and the target SOC that is the target value for completion of charging. calculate. In addition, since the method for calculating the required charge amount using the SOC is a known technique, detailed description thereof is omitted. The SOC of the storage battery 111 at the time of EV connection is an example of predetermined information related to a power supply target.
 実行部105は、実行手段の一例である。 The execution unit 105 is an example of an execution unit.
 実行部105は、プライス信号P(t)と、接続開始時刻と、接続終了予定時刻と、必要充電量と、に基づいて、蓄電池111の充電スケジュールを決定する。 The execution unit 105 determines a charging schedule for the storage battery 111 based on the price signal P (t), the connection start time, the scheduled connection end time, and the required charge amount.
 確率密度関数算出部105aは、プライス信号P(t)に基づいて、充電スケジュールを決定するために用いる確率密度関数を生成する。 The probability density function calculation unit 105a generates a probability density function used for determining a charging schedule based on the price signal P (t).
 確率密度関数算出部105aは、情報入手部102から、プライス信号P(t)を順次受け付ける。確率密度関数算出部105aは、順次受け付けられたプライス信号P(t)のうち、最新のプライス信号P(t)を保持する。確率密度関数算出部105aは、最新のプライス信号P(t)に基づいて、確率密度関数を生成する。 The probability density function calculation unit 105a sequentially receives the price signal P (t) from the information acquisition unit 102. The probability density function calculation unit 105a holds the latest price signal P (t) among the sequentially received price signals P (t). The probability density function calculation unit 105a generates a probability density function based on the latest price signal P (t).
 スケジュール算出部105bは、確率密度関数と、接続開始時刻と、接続終了予定時刻と、必要充電量と、に基づいて、蓄電池111についての充電スケジュールを決定する。 The schedule calculation unit 105b determines a charging schedule for the storage battery 111 based on the probability density function, the connection start time, the connection end scheduled time, and the required charge amount.
 充電制御部105cは、スケジュール算出部105bが算出した充電スケジュールに従って、蓄電池111に電力系統7から電力を供給する。 The charging control unit 105c supplies power from the power system 7 to the storage battery 111 according to the charging schedule calculated by the schedule calculating unit 105b.
 本実施形態では、充電制御部105cは、蓄電池111の定格電力内の所定値(例えば、最大値)の電力で、蓄電池111に電力系統7からの電力を供給する。所定値は、蓄電池111の定格電力内の最大値に限らず、蓄電池111の定格電力内の値であれば適宜変更可能である。以下、所定値を「出力電力値」と称する。なお、本実施形態では、出力電力値は、確率密度関数算出部105aとスケジュール算出部105bにも設定されている。 In the present embodiment, the charging control unit 105c supplies power from the power system 7 to the storage battery 111 with power of a predetermined value (for example, maximum value) within the rated power of the storage battery 111. The predetermined value is not limited to the maximum value within the rated power of the storage battery 111, and can be appropriately changed as long as it is a value within the rated power of the storage battery 111. Hereinafter, the predetermined value is referred to as “output power value”. In the present embodiment, the output power value is also set in the probability density function calculation unit 105a and the schedule calculation unit 105b.
 図4は、充電制御システム101のハードウエア構成の一例を示した図である。なお、図4において、図2に示したものと同一構成のものには同一符号を付してある。 FIG. 4 is a diagram illustrating an example of a hardware configuration of the charging control system 101. In FIG. 4, the same components as those shown in FIG.
 充電制御装置201は、制御システムの一例であり、充電制御システム101と同様の機能を有する。充電制御装置201は、通信制御部202と、主記憶部203Aと、データ蓄積部203Bと、メモリ制御インタフェース部203A-1および203B-1と、入力部204と、I/O(Input/Output)インタフェース部204-1と、演算部205と、スイッチ制御部206と、を含む。 The charge control device 201 is an example of a control system and has the same function as the charge control system 101. The charging control device 201 includes a communication control unit 202, a main storage unit 203A, a data storage unit 203B, memory control interface units 203A-1 and 203B-1, an input unit 204, and an I / O (Input / Output). It includes an interface unit 204-1, a calculation unit 205, and a switch control unit 206.
 通信制御部202は、情報入手部102と同様の機能を有する。 The communication control unit 202 has the same function as the information acquisition unit 102.
 主記憶部203Aは、演算部205が主に用いる記憶部である。なお、演算部205として、CPU(Central Processing Unit)等のコンピュータが用いられた場合、主記憶部203Aは、演算部205の動作を規定するためのプログラムを記憶する。メモリ制御インタフェース203A-1は、主記憶部203A用のインタフェースである。 The main storage unit 203A is a storage unit mainly used by the calculation unit 205. When a computer such as a CPU (Central Processing Unit) is used as the computing unit 205, the main storage unit 203A stores a program for defining the operation of the computing unit 205. The memory control interface 203A-1 is an interface for the main storage unit 203A.
 データ蓄積部203Bは、記憶部103と同様の機能を有する。メモリ制御インタフェース203B-1は、データ蓄積部203B用のインタフェースである。 The data storage unit 203B has the same function as the storage unit 103. The memory control interface 203B-1 is an interface for the data storage unit 203B.
 入力部204は、EVデータ入手部104と同様の機能を有する。I/Oインタフェース部204-1は、入力部204用のインタフェースである。 The input unit 204 has the same function as the EV data acquisition unit 104. The I / O interface unit 204-1 is an interface for the input unit 204.
 演算部205は、確率密度関数算出部105aが有する機能とスケジュール算出部105bが有する機能を有する。なお、演算部205としてCPU等のコンピュータが用いられた場合、演算部205は、主記憶部203Aに記憶されたプログラムを読み取り実行することによって、確率密度関数算出部105aが有する機能とスケジュール算出部105bが有する機能を実現する。 The calculation unit 205 has the function of the probability density function calculation unit 105a and the function of the schedule calculation unit 105b. When a computer such as a CPU is used as the calculation unit 205, the calculation unit 205 reads and executes a program stored in the main storage unit 203A, so that the function of the probability density function calculation unit 105a and the schedule calculation unit are included. The function which 105b has is implement | achieved.
 スイッチ制御部206は、充電制御部105cと同様の機能を有する。スイッチ制御部206として、例えば、リレースイッチが用いられる。なお、スイッチ制御部206はリレースイッチに限らず適宜変更可能である。 The switch control unit 206 has the same function as the charge control unit 105c. For example, a relay switch is used as the switch control unit 206. The switch control unit 206 is not limited to a relay switch and can be changed as appropriate.
 次に、動作を説明する。 Next, the operation will be described.
 以下では、最新のプライス信号P(t)が、確率密度関数算出部105aに保持されているとする。 Hereinafter, it is assumed that the latest price signal P (t) is held in the probability density function calculation unit 105a.
 図5は、充電制御システム101の動作を説明するためのフローチャートである。 FIG. 5 is a flowchart for explaining the operation of the charging control system 101.
 EV110のユーザ(例えば、保有者)は、EV110(蓄電池111)を充電するために、充電制御システム101にEV110を接続し、接続終了時刻入手部104a2を操作して、次回EV110の利用を開始する予定時刻、つまり、接続終了予定時刻を入力する。接続終了予定時刻の入力は、例えば、EV110のユーザがEV110を充電制御システム101に接続するごとに行われる。 A user (for example, an owner) of the EV 110 connects the EV 110 to the charging control system 101 to charge the EV 110 (storage battery 111), operates the connection end time acquisition unit 104a2, and starts using the EV 110 next time. Enter the scheduled time, that is, the scheduled connection end time. The connection end scheduled time is input, for example, every time a user of the EV 110 connects the EV 110 to the charge control system 101.
 EV110が充電制御システム101に接続すると、接続検出部104a1は、充電制御システム101とEV110との接続(EV接続)を検出し(ステップS501)、必要充電量入手部104bは、必要充電量を特定する(ステップS502)。また、接続終了時刻入手部104a2は、入力された接続終了予定時刻を保持する(ステップS503)。 When the EV 110 is connected to the charge control system 101, the connection detection unit 104a1 detects the connection (EV connection) between the charge control system 101 and the EV 110 (step S501), and the necessary charge amount acquisition unit 104b specifies the necessary charge amount. (Step S502). Further, the connection end time acquisition unit 104a2 holds the input connection end scheduled time (step S503).
 接続検出部104a1は、EV接続を検出すると、接続開始時刻を特定し、その接続開始時刻を確率密度関数算出部105aに通知する。 When detecting the EV connection, the connection detection unit 104a1 specifies the connection start time and notifies the probability density function calculation unit 105a of the connection start time.
 確率密度関数算出部105aは、接続開始時刻を受け付けると、接続終了時刻入手部104a2と必要充電量入手部104bの各々に入手要求を通知して、接続終了予定時刻と必要充電量を入手するための入手動作を実行する(ステップS504)。 When the probability density function calculation unit 105a receives the connection start time, the probability density function calculation unit 105a notifies the connection end time acquisition unit 104a2 and the necessary charge amount acquisition unit 104b of an acquisition request to obtain the connection end scheduled time and the necessary charge amount. The acquisition operation is executed (step S504).
 接続終了時刻入手部104a2は、入手要求を受け付けると、接続終了予定時刻を確率密度関数算出部105aに通知する。また、必要充電量入手部104bは、入手要求を受け付けると、必要充電量を確率密度関数算出部105aに通知する。 When the connection end time acquisition unit 104a2 receives the acquisition request, the connection end time acquisition unit 104a2 notifies the probability density function calculation unit 105a of the scheduled connection end time. In addition, when the required charge amount obtaining unit 104b receives an acquisition request, the required charge amount obtaining unit 104b notifies the probability density function calculating unit 105a of the necessary charge amount.
 しかしながら、例えば、接続終了時刻入手部104a2や必要充電量入手部104bで通信エラーが生じると、確率密度関数算出部105aは接続終了予定時刻や必要充電量を入手できなくなる。 However, for example, if a communication error occurs in the connection end time obtaining unit 104a2 or the necessary charge amount obtaining unit 104b, the probability density function calculating unit 105a cannot obtain the connection end scheduled time and the necessary charge amount.
 そこで、確率密度関数算出部105aは、入手要求を通知した後に、接続終了予定時刻と必要充電量を入手できたかを判断する(ステップS505)。例えば、ステップS505では、確率密度関数算出部105aは、入手要求を通知してから所定時間以内に、接続終了予定時刻と必要充電量を入手できたかを判断する。なお、所定時間は適宜設定可能である。 Therefore, after notifying the acquisition request, the probability density function calculating unit 105a determines whether the connection end scheduled time and the necessary charge amount have been acquired (step S505). For example, in step S505, the probability density function calculation unit 105a determines whether the scheduled connection end time and the required charge amount have been obtained within a predetermined time after the acquisition request is notified. The predetermined time can be set as appropriate.
 確率密度関数算出部105aは、接続終了予定時刻と必要充電量を入手できた場合、必要充電量を出力電力値(蓄電池111に供給する電力値)で除算することによって、必要充電時間を算出する(ステップS506)。なお、必要充電時間は、充電制御部105cが蓄電池111に必要充電量を充電するのに要する最短時間となる。 The probability density function calculating unit 105a calculates the required charging time by dividing the required charging amount by the output power value (the power value supplied to the storage battery 111) when the connection end scheduled time and the required charging amount can be obtained. (Step S506). The required charging time is the shortest time required for the charge control unit 105c to charge the storage battery 111 with the required charge amount.
 続いて、確率密度関数算出部105aは、接続終了予定時刻から接続開始時刻を減算することによって、接続予定時間を算出する(ステップS507)。なお、接続予定時間は、EV110が充電制御システム101に継続的に接続されている予定の時間である。 Subsequently, the probability density function calculation unit 105a calculates the scheduled connection time by subtracting the connection start time from the estimated connection end time (step S507). Note that the scheduled connection time is a scheduled time when the EV 110 is continuously connected to the charge control system 101.
 続いて、確率密度関数算出部105aは、接続予定時間が必要充電時間以上であるかを判断する(ステップS508)。 Subsequently, the probability density function calculation unit 105a determines whether the estimated connection time is longer than the required charging time (step S508).
 接続予定時間が必要充電時間以上であると、接続終了予定時刻までに必要充電量の充電を完了できるため、確率密度関数算出部105aは、充電スケジュールを決定するために用いる確率密度関数を生成する(ステップS509)。 If the estimated connection time is equal to or longer than the required charge time, charging of the required charge amount can be completed by the estimated connection end time, so the probability density function calculating unit 105a generates a probability density function used to determine the charge schedule. (Step S509).
 ここで、ステップS509の一例を説明する。 Here, an example of step S509 will be described.
 確率密度関数算出部105aは、まず、最新のプライス信号P(t)の波形を反転した制御信号Ψ(t)を生成する。 The probability density function calculation unit 105a first generates a control signal Ψ (t) obtained by inverting the waveform of the latest price signal P (t).
 例えば、確率密度関数算出部105aは、最新のプライス信号P(t)の最大値および最小値を特定し、最新のプライス信号P(t)の最大値から最新のプライス信号P(t)を減算し、その減算結果に最新のプライス信号P(t)の最小値を加算して、制御信号Ψ(t)を生成する。なお、最新のプライス信号P(t)を用いて制御信号Ψ(t)を生成する手法は、適宜変更可能である。 For example, the probability density function calculation unit 105a specifies the maximum value and the minimum value of the latest price signal P (t), and subtracts the latest price signal P (t) from the maximum value of the latest price signal P (t). Then, the control signal Ψ (t) is generated by adding the minimum value of the latest price signal P (t) to the subtraction result. The method for generating the control signal Ψ (t) using the latest price signal P (t) can be changed as appropriate.
 なお、制御信号Ψ(t)の値も、電力供給推奨度を表し、制御信号Ψ(t)の値が大きくなるほど、電力供給推奨度が高くなる。 Note that the value of the control signal Ψ (t) also represents the power supply recommendation degree, and the power supply recommendation degree increases as the value of the control signal Ψ (t) increases.
 続いて、確率密度関数算出部105aは、制御信号Ψ(t)から、接続開始時刻から接続終了予定時刻までの期間部分を抽出したものに、規格化定数Nを乗算して、確率密度関数φ(t)を生成する。 Subsequently, the probability density function calculating unit 105a multiplies the control signal Ψ (t) by extracting the period portion from the connection start time to the connection end scheduled time by the normalization constant N to obtain the probability density function φ. Generate (t).
 確率密度関数φ(t)は、以下の(1)式のように表すことができる。 The probability density function φ (t) can be expressed as the following equation (1).
 φ(t)=N・Ψ(t)      (1)式
 なお、(1)式において、時刻tは、接続開始時刻≦t≦接続終了予定時刻とする。接続開始時刻から接続終了予定時刻までの時間帯(以下「接続時間帯」と称する)は、蓄電池111への電力の供給が許容される許容時間帯の一例である。
φ (t) = N · Ψ (t) (1) In the equation (1), the time t is assumed to be connection start time ≦ t ≦ connection end scheduled time. The time zone from the connection start time to the scheduled connection end time (hereinafter referred to as “connection time zone”) is an example of an allowable time zone in which power supply to the storage battery 111 is allowed.
 また、規格化定数Nは、 Also, the normalization constant N is
Figure JPOXMLDOC01-appb-M000001
 である。
Figure JPOXMLDOC01-appb-M000001
It is.
 以上が、ステップS509の一例である。 The above is an example of step S509.
 続いて、確率密度関数算出部105aは、確率密度関数φ(t)と、接続開始時刻と、接続終了予定時刻と、必要充電量とを、スケジュール算出部105bに通知する。 Subsequently, the probability density function calculating unit 105a notifies the schedule calculating unit 105b of the probability density function φ (t), the connection start time, the scheduled connection end time, and the required charge amount.
 スケジュール算出部105bは、確率密度関数φ(t)と、接続開始時刻と、接続終了予定時刻と、必要充電量と、を受け付けると、蓄電池111に電力系統7から電力を供給する時間帯(以下「供給時間帯」と称する)を決定する(ステップS510)。 When the schedule calculation unit 105b receives the probability density function φ (t), the connection start time, the connection end scheduled time, and the required charge amount, the time period for supplying power from the power system 7 to the storage battery 111 (hereinafter, referred to as the time period) (Referred to as “supply time zone”) (step S510).
 なお、蓄電池111に供給される電力値(出力電力値)は予め決まっているため、供給時間帯を決定することが、蓄電池111の充電スケジュールを決定することを意味する。 In addition, since the electric power value (output electric power value) supplied to the storage battery 111 is determined in advance, determining the supply time zone means determining the charging schedule of the storage battery 111.
 ここで、ステップS510の一例を説明する。 Here, an example of step S510 will be described.
 図6は、制御信号Ψ(t)と確率密度関数φ(t)との一例を示した図である。 FIG. 6 is a diagram showing an example of the control signal Ψ (t) and the probability density function φ (t).
 図6において、時刻tsは接続開始時刻を示し、時刻teは接続終了予定時刻を示し、時間帯ts-teは接続時間帯を示し、時刻tsよりも前の期間および時刻teよりも後の期間は非接続時間帯を示す。確率密度関数φ(t)は、接続時間帯ts-te内で定義されている。 In FIG. 6, time ts indicates a connection start time, time te indicates a connection end scheduled time, time zone ts-te indicates a connection time zone, a period before time ts and a period after time te. Indicates a non-connection time zone. The probability density function φ (t) is defined within the connection time zone ts-te.
 スケジュール算出部105bは、確率密度関数φ(t)と、接続開始時刻と、接続終了予定時刻と、必要充電量と、を受け付けると、まず、接続時間帯ts-teを等間隔に分割する。 When the schedule calculation unit 105b receives the probability density function φ (t), the connection start time, the connection end scheduled time, and the required charge amount, first, the schedule calculation unit 105b divides the connection time zone ts-te into equal intervals.
 例えば、スケジュール算出部105bは、接続時間帯の長さと接続時間帯の分割数とが互いに関連づけられた関連テーブルを予め保持し、関連テーブルを参照して、接続時間帯ts-teを、接続時間帯ts-teに関連づけられた分割数で等分に分割することによって、接続時間帯ts-teを等間隔に分割する。 For example, the schedule calculation unit 105b holds in advance a related table in which the length of the connection time zone and the number of divisions of the connection time zone are associated with each other, and refers to the related table to determine the connection time zone ts-te as the connection time zone. By dividing equally by the number of divisions associated with the band ts-te, the connection time band ts-te is divided at equal intervals.
 図7は、接続時間帯ts-teを、時間間隔Aで等間隔に分割した例を示す。 FIG. 7 shows an example in which the connection time zone ts-te is divided at equal intervals by the time interval A.
 続いて、スケジュール算出部105bは、必要充電量を、出力電圧値と時間間隔Aとの積算値で除算することによって、充電割り当て回数を算出する。 Subsequently, the schedule calculation unit 105b calculates the number of charge allocations by dividing the required charge amount by the integrated value of the output voltage value and the time interval A.
 なお、充電割り当て回数を算出するための演算手法は、(2)式のように表すことができる。 In addition, the calculation method for calculating the number of times of charge allocation can be expressed as in equation (2).
 充電割り当て回数=(必要充電量)/(出力電力値×時間間隔A)  (2)式
 続いて、スケジュール算出部105bは、確率密度関数φ(t)を用いて、接続時間帯ts-teの中に、電力系統7から出力電力値の電力を時間間隔A継続して蓄電池111に供給する電力供給動作(以下、単に「電力供給動作」と称する)を、充電割り当て回数分、割り当てる。
Number of times of charge allocation = (required charge amount) / (output power value × time interval A) (2) Formula Next, the schedule calculation unit 105b uses the probability density function φ (t) to calculate the connection time zone ts−te. A power supply operation (hereinafter, simply referred to as “power supply operation”) for supplying power of the output power value from the power system 7 to the storage battery 111 continuously for the time interval A is allocated for the number of times of charge allocation.
 例えば、スケジュール算出部105bは、接続時間帯ts-te内の時間間隔Aの各区間(単位時間帯)の各々に対応する各要素を設定し、各要素が発生する確率の分布を確率密度関数φ(t)に従った確率分布として、充電割り当て回数分、複数の要素のいずれかをランダムに発生する。そして、スケジュール算出部105bは、ランダムに発生された要素に対応する区間を、電力供給動作を実行する供給時間帯(電力供給時間帯)として決定する。 For example, the schedule calculation unit 105b sets each element corresponding to each section (unit time period) of the time interval A within the connection time period ts-te, and calculates the probability distribution of each element as a probability density function. As a probability distribution according to φ (t), one of a plurality of elements is randomly generated for the number of times of charge allocation. Then, the schedule calculation unit 105b determines a section corresponding to the randomly generated element as a supply time zone (power supply time zone) for executing the power supply operation.
 なお、各区間の時間は時間間隔Aの時間となり、この時間は所定時間の一例となる。このため、スケジュール算出部105bは、所定時間として、接続時間帯ts-teの時間の1/2の時間以下の時間を設定することになる。 Note that the time of each section is the time interval A, and this time is an example of a predetermined time. For this reason, the schedule calculation unit 105b sets a time equal to or less than half the time of the connection time zone ts-te as the predetermined time.
 なお、各要素が発生する確率の分布を確率密度関数φ(t)に従った確率分布として、複数の要素のいずれかをランダムに発生する手法としては、さまざまな手法を用いることができる。例えば、一般的に知られている逆関数法やモンテカルロ法が用いられる。 It should be noted that a variety of methods can be used as a method of randomly generating any one of a plurality of elements by using the probability distribution of each element as a probability distribution according to the probability density function φ (t). For example, a generally known inverse function method or Monte Carlo method is used.
 図7では、供給時間帯として、区間B1、B2、B3およびB4が決定されている。 In FIG. 7, sections B1, B2, B3, and B4 are determined as supply time zones.
 スケジュール算出部105bは、供給時間帯を決定すると、つまり、充電スケジュールを決定すると、決定済みの充電スケジュールを、記憶部103に保持し、かつ、充電制御部105cに通知する。 When the supply time zone is determined, that is, the charging schedule is determined, the schedule calculation unit 105b holds the determined charging schedule in the storage unit 103 and notifies the charging control unit 105c.
 充電制御部105cは、決定済みの充電スケジュールを受け付けると、決定済みの充電スケジュールに従って蓄電池111の充電を実行する(ステップS511)。 When the charging control unit 105c receives the determined charging schedule, the charging control unit 105c executes the charging of the storage battery 111 according to the determined charging schedule (step S511).
 本実施形態では、ステップS511では、充電制御部106は、決定済みの充電スケジュールに表された各区間の始まりの時刻に、電力系統7から蓄電池111への出力電力値での電力供給を開始する。 In the present embodiment, in step S511, the charging control unit 106 starts power supply at the output power value from the power system 7 to the storage battery 111 at the start time of each section represented in the determined charging schedule. .
 なお、決定済みの充電スケジュールに表された各区間の始まりの時刻は、接続時間帯ts-teに含まれ接続時間帯ts-te帯の最終時刻から時間間隔Aの時間以上前の時刻であって互いが時間間隔A以上離れた複数の特定時刻の各々の一例となり、かつ、複数の要素の各々に応じた時刻の一例となる。 The start time of each section shown in the determined charging schedule is a time that is included in the connection time zone ts-te and is more than the time of the time interval A from the last time of the connection time zone ts-te zone. Thus, it is an example of each of a plurality of specific times separated from each other by a time interval A or more, and an example of a time corresponding to each of the plurality of elements.
 一方、ステップS505で、確率密度関数算出部105aは、入手要求を通知してから所定時間以内に、接続終了予定時刻と必要充電量を入手できなかった場合、充電制御部105cに、充電を指示する旨の充電指示を通知する。 On the other hand, in step S505, the probability density function calculation unit 105a instructs the charge control unit 105c to charge if the estimated connection end time and the required charge amount cannot be obtained within a predetermined time after the acquisition request is notified. Notify the charging instruction to do so.
 また、ステップS508で、接続予定時間が必要充電時間以上でない場合も、確率密度関数算出部105aは、充電制御部105cに充電指示を通知する。 In step S508, also when the estimated connection time is not equal to or longer than the required charging time, the probability density function calculation unit 105a notifies the charging control unit 105c of a charging instruction.
 充電制御部105cは、充電指示を受け付けると、電力系統7から蓄電池111に出力電力値で電力を供給する(ステップS512)。 When the charging control unit 105c receives the charging instruction, the charging control unit 105c supplies power from the power system 7 to the storage battery 111 with the output power value (step S512).
 図8は、上述した方法を用いた場合のシミュレーション結果を示した図である。なお、図8に示したシミュレーション結果は、1,000台分のEVの接続先に充電制御システム101が搭載された場合の(休日)-(平日)-(平日)の3日間ので負荷変動のシミュレーション結果を示す。ここで、電力価格は、150円/kwhを基本として10:00~12:00の間だけ50円/kwhとなり、この電力価格が毎日0:00に提示されるとした。 FIG. 8 is a diagram showing a simulation result when the above-described method is used. The simulation result shown in FIG. 8 is a simulation result of load fluctuation in three days of (holiday)-(weekdays)-(weekdays) when the charging control system 101 is installed at the connection destination of 1,000 EVs. Indicates. Here, the electric power price is 50 yen / kwh only between 10:00 and 12:00 based on 150 yen / kwh, and this electric power price is presented every day at 0:00.
 図8において、実線が電力価格であり、塗りつぶされた曲線がEV1,000台分の負荷曲線である。 In Fig. 8, the solid line is the electricity price, and the filled curve is the load curve for 1,000 EVs.
 図8では、電力価格の安い10:00~12:00の全域にわたって充電が実行され、なおかつ負荷曲線は大きなところでも350 ~420 kWとなっている。 In Fig. 8, charging is performed over the entire area from 10:00 to 12:00 when the power price is low, and the load curve is 350 to 420 kW even at large locations.
 次に、本実施形態の効果を説明する。 Next, the effect of this embodiment will be described.
 本実施形態によれば、実行部105は、接続時間帯ts-te内の時間間隔Aの各区間の少なくとも一以上の時間帯を電力供給時間帯として選定し、各電力供給時間帯で一定の電力量を蓄電池111に供給する。 According to the present embodiment, the execution unit 105 selects at least one time zone of each section of the time interval A within the connection time zone ts-te as the power supply time zone, and is constant in each power supply time zone. The amount of electric power is supplied to the storage battery 111.
 このため、蓄電池111に供給する電力の値は一定となり、蓄電池111の充電を行う際に、電力値を変更するという複雑な電力制御を行う必要がなくなる。 For this reason, the value of power supplied to the storage battery 111 is constant, and it is not necessary to perform complicated power control of changing the power value when charging the storage battery 111.
 また、接続時間帯ts-te内の時間間隔Aの各区間の少なくとも一以上の時間帯を電力供給時間帯として選定するので、蓄電池111の充電時間帯を分散することが可能になる。したがって、例えば、複数の充電制御システム101の各々が個別に蓄電池111の充電スケジュールを制御しても、複数の蓄電池111に電力系統7から電力が供給されるタイミングが集中することを抑制可能になる。このため、例えば多数台のEVを充電する際には、充電によって作られる負荷曲線が大きく変動することを防止可能になる。 In addition, since at least one or more time zones of each section of the time interval A within the connection time zone ts-te are selected as the power supply time zone, the charging time zones of the storage battery 111 can be dispersed. Therefore, for example, even when each of the plurality of charging control systems 101 individually controls the charging schedule of the storage battery 111, it is possible to suppress the timing at which power is supplied from the power system 7 to the plurality of storage batteries 111. . For this reason, for example, when charging a large number of EVs, it is possible to prevent the load curve created by charging from fluctuating greatly.
 なお、上記効果は、蓄電池に供給する電力量と、蓄電池に電力を供給する供給許容時間と、を取得するEVデータ入手部104Xと、供給許容時間を分割した単位時間帯の少なくとも一以上の時間帯を電力供給時間帯として選定し、各電力供給時間帯で一定の電力量を供給する実行部105Xとからなる充電制御システムでも奏する。 Note that the above effect is that at least one or more times in the unit time zone obtained by dividing the supply allowable time and the EV data acquisition unit 104X that acquires the amount of power supplied to the storage battery and the supply allowable time for supplying power to the storage battery. A band is selected as a power supply time zone, and a charging control system including an execution unit 105X that supplies a constant amount of power in each power supply time zone is also effective.
 図9は、EVデータ入手部104Xと実行部105Xとからなる充電制御システムを示した図である。 FIG. 9 is a diagram illustrating a charge control system including an EV data acquisition unit 104X and an execution unit 105X.
 また、本実施形態では、実行部105は、複数の単位時間帯の各々に対応づけられた複数の要素のいずれかをランダムに発生し、ランダムに発生した要素に対応する単位時間帯を、電力供給時間帯として選定する。 Further, in the present embodiment, the execution unit 105 randomly generates one of a plurality of elements associated with each of the plurality of unit time zones, and converts the unit time zone corresponding to the randomly generated elements to the power Select as supply time zone.
 このため、電力供給動作の実行タイミングをランダムに決定することが可能になる。したがって、例えば、複数の充電制御システム101の各々が個別に蓄電池111の充電スケジュールを決定しても、充電タイミングが集中することを抑制可能になる。また、電力が供給されるタイミングがランダムに決定されるために、例えば、EV保有者ごとの充電タイミングに関する不平等さを抑えることも可能である。 For this reason, it becomes possible to randomly determine the execution timing of the power supply operation. Therefore, for example, even if each of the plurality of charging control systems 101 individually determines the charging schedule of the storage battery 111, it is possible to suppress the concentration of charging timing. In addition, since the timing at which power is supplied is randomly determined, for example, it is possible to suppress inequality related to the charging timing for each EV owner.
 また、本実施形態では、実行部105は、蓄電池に供給する電力量を、単位時間帯における電力の出力値で除算した数、電力供給時間帯を選定する。このため、蓄電池が必要とする電極を蓄電池に供給することが可能になる。 Further, in the present embodiment, the execution unit 105 selects a power supply time zone by the number obtained by dividing the amount of power supplied to the storage battery by the power output value in the unit time zone. For this reason, it becomes possible to supply the electrode which a storage battery requires to a storage battery.
 また、本実施形態では、情報入手部102は、電力供給推奨度を時刻ごとに特定するための推奨度情報の一例であるプライス信号を受け付ける。実行部105は、プライス信号を用いて電力供給時間帯を決定する。 In this embodiment, the information acquisition unit 102 accepts a price signal that is an example of recommendation level information for specifying the power supply recommendation level for each time. The execution part 105 determines an electric power supply time slot | zone using a price signal.
 このため、電力供給推奨度が高い時刻ほど、電力供給動作が実行されやすくすることが可能になり、電力供給推奨度に従って、蓄電池111に電力を供給するタイミングを決定することが可能になる。したがって、各時刻の電力供給推奨度を調整することによって、電力供給によって作られる負荷曲線を任意にコントロールすることができる。 For this reason, the power supply operation can be performed more easily at a time when the power supply recommendation level is higher, and the timing for supplying power to the storage battery 111 can be determined according to the power supply recommendation level. Therefore, by adjusting the power supply recommendation degree at each time, it is possible to arbitrarily control the load curve created by the power supply.
 また、本実施形態では、電力供給推奨度は、電力価格が安価な時刻ほど高くなる。このため、電力価格が安価な時刻に蓄電池111を充電する確率を高くできる。 In this embodiment, the power supply recommendation level increases as the power price becomes cheaper. For this reason, the probability of charging the storage battery 111 at a time when the power price is low can be increased.
 また、本実施形態では、各充電制御システム101が個別に蓄電池111への充電タイミングを制御するので、個々の充電制御システム101を直接制御する充電管理者を不要にできる。また、信号送信装置4は、充電制御システム101ごとにプライス信号を変更する必要はなく、同一のプライス信号を各充電制御システム101すればよい。なお、信号送信装置4は、プライス信号を、ネットワークを介して送信してもよいし、電波などによって一斉配信してもよい。 Moreover, in this embodiment, since each charging control system 101 controls the charging timing to the storage battery 111 individually, the charge manager who directly controls each charging control system 101 can be made unnecessary. Moreover, the signal transmission apparatus 4 does not need to change a price signal for every charge control system 101, and should just use the same price signal for each charge control system 101. Note that the signal transmission device 4 may transmit the price signal via a network or may distribute the price signal by radio waves or the like.
 (第2実施形態)
 第1実施形態のように電力供給動作の実行タイミングを、プライス信号から作成した確率密度関数に基づいて決定する場合、EV充電によって作り出される負荷曲線は、プライス信号だけではなく、各充電制御システム101に接続しているEVの数やEVの必要充電量などに依存する。
(Second Embodiment)
When the execution timing of the power supply operation is determined based on the probability density function created from the price signal as in the first embodiment, the load curve created by EV charging is not only the price signal but also each charging control system 101. Depends on the number of EVs connected to and the required amount of EV charge.
 例えば、ある時刻に電力供給動作を実行する確率が決まっていても、各充電制御システム101に接続しているEVの数が多くなるほど、電力供給動作の実行回数は多くなる可能性が高い。また、ある時刻に電力供給動作を実行する確率が決まっていても、EVの必要充電量が多くなるほど、電力供給動作の実行回数は多くなる。 For example, even if the probability of executing the power supply operation at a certain time is determined, the possibility that the number of executions of the power supply operation increases as the number of EVs connected to each charge control system 101 increases. Further, even if the probability of executing the power supply operation at a certain time is determined, the number of executions of the power supply operation increases as the required charge amount of the EV increases.
 図8に示したシミュレーション結果では、毎日10:00~12:00に低価格となるプライス信号を与えており、2日目・3日目のような平日の負荷曲線は、概ね一定値となっている。 In the simulation result shown in FIG. 8, a low price signal is given every day from 10:00 to 12:00, and the load curve on weekdays such as the second and third days is almost constant. ing.
 しかし、1日目のような休日には、電力価格の安い10:00~12:00の間に多くの充電が行われるが、負荷曲線の形状としては、10:00~12:00の間は増加傾向を示している。つまり、電力価格の変動がそのまま負荷曲線に対応しているわけではない。 However, on holidays such as the first day, a lot of charging is done between 10:00 and 12:00 when the electricity price is cheap, but the load curve shape is between 10:00 and 12:00. Shows an increasing trend. In other words, fluctuations in the electricity price do not directly correspond to the load curve.
 このため、EV充電にて任意の負荷曲線を作り出すためには、充電制御システムに接続しているEV台数やEVの必要充電量などを考慮する必要がある。 For this reason, in order to create an arbitrary load curve by EV charging, it is necessary to consider the number of EVs connected to the charging control system and the required charging amount of EVs.
 以下、時刻ごとの接続EV台数を統計的に推定し、その推定結果を用いて、EV充電で達成される負荷曲線を任意に制御する例を説明する。 Hereinafter, an example in which the number of connected EVs at each time is statistically estimated and the load curve achieved by EV charging is arbitrarily controlled using the estimation result will be described.
 第2実施形態で用いる充電制御システムは、第1実施形態の充電制御システム101と同様の構成であるが、図1に示した信号送信装置4の代わりに、図10に示した信号送信装置4Aが用いられる。信号送信装置4Aは、生成部4A1と通信部4A2とを含む。なお、EVは、電気機器の一例である。 The charge control system used in the second embodiment has the same configuration as the charge control system 101 of the first embodiment, but instead of the signal transmission device 4 shown in FIG. 1, the signal transmission device 4A shown in FIG. Is used. The signal transmission device 4A includes a generation unit 4A1 and a communication unit 4A2. EV is an example of an electric device.
 生成部4A1は、生成手段の一例である。 The generation unit 4A1 is an example of a generation unit.
 生成部4A1は、各時刻において各充電制御システム101に接続しているEV台数(接続EV台数)を統計的に推測する。 The generation unit 4A1 statistically estimates the number of EVs connected to each charging control system 101 at each time (the number of connected EVs).
 例えば、生成部4A1は、HEMSやBEMSにおけるスマートメータや充電スタンドなどから、接続されたEVに関する履歴データを収集し、その履歴データを用いて、一日の各時刻における接続EV台数の推移を得る。そして、生成部4A1は、その推移を表す関数として、時刻ごとの接続EV台数を表す接続EV台数関数x(t)を生成する。なお、接続EV台数関数x(t)は、時刻ごとの接続EV台数を統計的に推定した値を表す。 For example, the generation unit 4A1 collects history data regarding connected EVs from smart meters, charging stations, etc. in HEMS and BEMS, and uses the history data to obtain the transition of the number of connected EVs at each time of day. . Then, the generation unit 4A1 generates a connected EV number function x (t) representing the number of connected EVs for each time as a function representing the transition. The connected EV number function x (t) represents a value obtained by statistically estimating the number of connected EVs for each time.
 また、生成部4A1は、太陽光発電の発電予測量やEV以外の負荷の予測量や電力価格に応じた目標EV負荷曲線y(t)を作成する。目標EV負荷曲線y(t)は、目標となるEV負荷の大きさを時刻ごとに表す。なお、生成部4A1は、目標EV負荷曲線y(t)を他の装置(例えば、電力会社側の通信装置)から受け付けてもよい。目標EV負荷曲線y(t)の値は、時刻tごとの電力供給推奨度を表し、目標EV負荷曲線y(t)の値が大きくなるほど、電力供給推奨度が高くなる。 Also, the generation unit 4A1 creates a target EV load curve y (t) corresponding to the predicted power generation amount of solar power generation, the predicted amount of loads other than EV, and the power price. The target EV load curve y (t) represents the target EV load magnitude for each time. The generation unit 4A1 may receive the target EV load curve y (t) from another device (for example, a communication device on the electric power company side). The value of the target EV load curve y (t) represents the power supply recommendation level at each time t, and the power supply recommendation level increases as the value of the target EV load curve y (t) increases.
 そして、生成部4A1は、接続EV台数関数x(t)と目標EV負荷曲線y(t)を用いて、制御信号z(t)を生成する。 Then, the generation unit 4A1 generates the control signal z (t) using the connected EV number function x (t) and the target EV load curve y (t).
 例えば、生成部4A1は、(3)式に示すように制御信号z(t)を生成する。 For example, the generation unit 4A1 generates the control signal z (t) as shown in Equation (3).
 制御信号z(t)=(目標EV負荷曲線y(t))/(接続EV台数関数x(t)) (3)式
 制御信号z(t)は、推奨度情報の一例であり、制御信号z(t)の値は、時刻tごとの電力供給推奨度を表し、制御信号z(t)の値が大きくなるほど、電力供給推奨度が高くなる。
Control signal z (t) = (Target EV load curve y (t)) / (Connected EV number function x (t)) Equation (3) The control signal z (t) is an example of recommendation degree information. The value of z (t) represents the recommended power supply at each time t, and the recommended power supply increases as the value of the control signal z (t) increases.
 通信部4A2は、通信手段の一例である。 The communication unit 4A2 is an example of communication means.
 通信部4A2は、生成部4A1が生成した制御信号z(t)を、プライス信号の代わりに充電制御システム101に送信する。なお、充電制御システム101内の確率密度関数算出部105aは、制御信号z(t)を、制御信号Ψ(t)としてそのまま用いる。 The communication unit 4A2 transmits the control signal z (t) generated by the generation unit 4A1 to the charging control system 101 instead of the price signal. Note that the probability density function calculation unit 105a in the charge control system 101 uses the control signal z (t) as it is as the control signal Ψ (t).
 このため、制御信号z(t)が用いられた場合、確率密度関数φ(t)は、時刻ごとの接続EV台数に応じて変動する。したがって、実行部105は、電力供給動作の実行タイミングを、接続EV台数に応じて調整することが可能になる。 Therefore, when the control signal z (t) is used, the probability density function φ (t) varies according to the number of connected EVs at each time. Therefore, the execution unit 105 can adjust the execution timing of the power supply operation according to the number of connected EVs.
 なお、電力供給動作の実行タイミングをEVの必要充電量に応じて調整する場合には、生成部4A1は、HEMSやBEMSにおけるスマートメータや充電スタンドなどから、接続されたEVに関する履歴データを収集し、その履歴データを用いて、一日の各時刻における必要充電量の総和の推移を得る。そして、生成部4A1は、その推移を表す関数として、時刻ごとの必要充電量の総和を表す必要充電量関数α(t)を生成する。なお、必要充電量関数α(t)は、各時刻での必要充電量の総和を統計的に推定した値を表す。 In addition, when adjusting the execution timing of the power supply operation according to the required charge amount of the EV, the generation unit 4A1 collects historical data regarding the connected EV from a smart meter or a charging stand in the HEMS or BEMS. The history data is used to obtain the transition of the total required charge amount at each time of day. Then, the generation unit 4A1 generates a necessary charge amount function α (t) that represents the sum of necessary charge amounts for each time as a function that represents the transition. The required charge amount function α (t) represents a value obtained by statistically estimating the total required charge amount at each time.
 そして、生成部4A1は、必要充電量関数α(t)と目標EV負荷曲線y(t)を用いて、制御信号β(t)を生成する。 Then, the generation unit 4A1 generates the control signal β (t) using the necessary charge amount function α (t) and the target EV load curve y (t).
 例えば、生成部4A1は、(4)式に示すように制御信号β(t)を生成する。 For example, the generation unit 4A1 generates the control signal β (t) as shown in the equation (4).
 制御信号β(t)=(目標EV負荷曲線y(t))/(必要充電量関数α(t)) (4)式
 制御信号β(t)は、推奨度情報の一例であり、制御信号β(t)の値は、時刻tごとの電力供給推奨度を表し、制御信号β(t)の値が大きくなるほど、電力供給推奨度が高くなる。
Control signal β (t) = (target EV load curve y (t)) / (necessary charge amount function α (t)) Equation (4) The control signal β (t) is an example of recommendation degree information. The value of β (t) represents the power supply recommendation level at each time t, and the power supply recommendation level increases as the value of the control signal β (t) increases.
 通信部4A2は、生成部4A1が生成した制御信号β(t)を、充電制御システム101に送信する。なお、充電制御システム101内の確率密度関数算出部105aは、制御信号β(t)を、制御信号Ψ(t)としてそのまま用いる。 The communication unit 4A2 transmits the control signal β (t) generated by the generation unit 4A1 to the charging control system 101. Note that the probability density function calculation unit 105a in the charge control system 101 uses the control signal β (t) as it is as the control signal Ψ (t).
 このため、制御信号β(t)が用いられた場合、確率密度関数φ(t)は、時刻ごとの必要充電量の総和に応じて変動する。したがって、実行部105は、電力供給動作の実行タイミングを、必要充電量の総和に応じて調整することが可能になる。 For this reason, when the control signal β (t) is used, the probability density function φ (t) varies depending on the total required charge amount for each time. Therefore, the execution unit 105 can adjust the execution timing of the power supply operation according to the total required charge amount.
 なお、本実施形態では、EVが電気機器の一例として用いられたが、電気機器はEVに限らず適宜変更可能である。 In the present embodiment, the EV is used as an example of the electric device. However, the electric device is not limited to the EV and can be appropriately changed.
 上記各実施形態では、電力供給対象として、蓄電池が用いられた。このため、例えば、大容量の定置用蓄電池やEV内の大容量の蓄電池の充電タイミングが集中することを抑制することが可能になる。 In each of the above embodiments, a storage battery is used as a power supply target. For this reason, it becomes possible to suppress that the charging timing of the large capacity stationary storage battery or the large capacity storage battery in the EV is concentrated, for example.
 なお、定置用蓄電池が電力供給対象として用いられた場合には、接続時間帯としては、例えば、定置用蓄電池が他の機器に電力を供給するための放電を行っていない時間帯が用いられる。 In addition, when a stationary storage battery is used as a power supply target, for example, a time period in which the stationary storage battery is not discharged to supply power to other devices is used.
 また、電力供給対象としては、家電機器等の電力負荷(負荷)が用いられてもよい。なお、電力の供給が中断することで家電機器の機能を発揮できなくなる機器(例えば、炊飯器)は、電力供給対象として用いられないことが望ましい。その場合には充電制御システムが管理する家電機器をユーザが選択する、または希望する充電パターンを登録しそれに合うように充電スケジュールを作成するようにしてもよい。 Also, as a power supply target, a power load (load) such as a home appliance may be used. In addition, it is desirable that a device (for example, a rice cooker) that cannot function as a home appliance due to interruption of power supply is not used as a power supply target. In that case, the user may select a home electric appliance managed by the charge control system, or a desired charge pattern may be registered and a charge schedule may be created so as to match it.
 また、接続終了時刻入手部104a2は、EV110が充電制御システム101に接続するごとに、ユーザから接続終了予定時刻を受け付けたが、毎日同じ時刻にEV110の利用が開始される場合には、EV110の利用開始時刻が予め接続終了時刻入手部104a2に設定され、接続終了時刻入手部104a2が、その設定された利用開始時刻を、接続終了予定時刻として保持してもよい。 The connection end time acquisition unit 104a2 receives the connection end scheduled time from the user every time the EV 110 is connected to the charging control system 101. However, when the use of the EV 110 starts at the same time every day, The use start time may be set in advance in the connection end time acquisition unit 104a2, and the connection end time acquisition unit 104a2 may hold the set use start time as the connection end scheduled time.
 また、接続検出部104a1がEV110と充電制御システム101との接続の終了を検出する機能も有している場合、確率密度関数算出部105aが、接続検出部104a1の検出結果を利用して、EV110と充電制御システム101との接続が終了する時刻の履歴を曜日単位で記憶部103に記憶し、その履歴を用いて、曜日ごとに接続終了予定時刻を予測してもよい。 When the connection detection unit 104a1 also has a function of detecting the end of the connection between the EV 110 and the charging control system 101, the probability density function calculation unit 105a uses the detection result of the connection detection unit 104a1 to output the EV 110. May be stored in the storage unit 103 for each day of the week, and the estimated connection end time may be predicted for each day of the week using the history.
 また、第1実施形態において、信号送信装置4は、プライス信号の代わりに、目標EV負荷曲線y(t)を送信してもよい。この場合、目標EV負荷曲線y(t)は推奨度情報の一例となる。 In the first embodiment, the signal transmission device 4 may transmit the target EV load curve y (t) instead of the price signal. In this case, the target EV load curve y (t) is an example of recommendation level information.
 また、充電制御システム101や信号送信装置4、4Aは、コンピュータにて実現されてもよい。この場合、コンピュータは、コンピュータにて読み取り可能なCD-ROM(Compact Disk Read Only Memory)のような記録媒体に記録されたプログラムを読込み実行して、充電制御システムや信号送信装置が有する各機能を実行する。記録媒体は、CD-ROMに限らず適宜変更可能である。 Further, the charging control system 101 and the signal transmission devices 4 and 4A may be realized by a computer. In this case, the computer reads and executes a program recorded on a recording medium such as a CD-ROM (Compact Disk Read Only Memory) that can be read by the computer, and performs each function of the charge control system and the signal transmission device. Execute. The recording medium is not limited to the CD-ROM and can be changed as appropriate.
 また、このプログラムが通信回線によってコンピュータに配信され、この配信を受けたコンピュータがこのプログラムを実行してもよい。また、このプログラムは、上述した機能の一部を実現するためのものであってもよい。さらに、このプログラムは、上述した機能をコンピュータにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。 Further, this program may be distributed to a computer via a communication line, and the computer that has received this distribution may execute this program. This program may be for realizing a part of the functions described above. Further, this program may be a so-called difference file (difference program) that can realize the above-described functions in combination with a program already recorded in the computer.
 以上説明した各実施形態において、図示した構成は単なる一例であって、本発明はその構成に限定されるものではない。 In each of the embodiments described above, the illustrated configuration is merely an example, and the present invention is not limited to the configuration.
 実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。この出願は、2013年7月19日に出願された日本出願特願2013-150785を基礎とする優先権を主張し、その開示の全てをここに取り込む。 Although the present invention has been described with reference to the embodiments, the present invention is not limited to the above-described embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention. This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2013-150785 for which it applied on July 19, 2013, and takes in those the indications of all here.
   1a~1d HEMS機器
   2a  BEMS機器
   3a~3c 充電スタンド3a~3c
   4、4A 信号送信装置
   4A1 生成部
   4A2 通信部
   5   電力配電線網
   6   変電所
   7   電力系統
   8a~8j EV
   9a~9c 定置型エネルギーストレージ
  10   管理システム
 101   充電制御システム
 102   情報入手部
 103   記憶部
 104、104X EVデータ入手部
 104a  接続時間情報入手部
 104a1 接続検出部
 104a2 接続終了時刻入手部
 104b  必要充電量入手部
 105、105A 実行部
 105a  確率密度関数算出部
 105b  スケジュール算出部
 105c  充電制御部
 110   EV
 111   蓄電池
 201   充電制御装置
 202   通信制御部
 203A  主記憶部
 203A-1、203B-1 メモリ制御インタフェース部
 204   入力部
 204-1 I/Oインタフェース部
 205   演算部
 206   スイッチ制御部
1a to 1d HEMS device 2a BEMS device 3a to 3c Charging stand 3a to 3c
4, 4A signal transmission device 4A1 generator 4A2 communication unit 5 power distribution network 6 substation 7 power system 8a-8j EV
9a to 9c Stationary energy storage 10 Management system 101 Charge control system 102 Information acquisition unit 103 Storage unit 104, 104X EV data acquisition unit 104a Connection time information acquisition unit 104a1 Connection detection unit 104a2 Connection end time acquisition unit 104b Required charge amount acquisition unit 105, 105A Execution unit 105a Probability density function calculation unit 105b Schedule calculation unit 105c Charge control unit 110 EV
DESCRIPTION OF SYMBOLS 111 Storage battery 201 Charge control apparatus 202 Communication control part 203A Main memory part 203A-1, 203B-1 Memory control interface part 204 Input part 204-1 I / O interface part 205 Operation part 206 Switch control part

Claims (9)

  1.  負荷または蓄電池への電力の供給を制御する電力制御システムであって、
     前記負荷または前記蓄電池に供給する電力量と、前記負荷または前記蓄電池に電力を供給する供給許容時間と、を取得する供給時間情報入手手段と、
     前記供給許容時間を分割した単位時間帯の少なくとも一以上の時間帯を電力供給時間帯として選定し、各電力供給時間帯で一定の電力量を供給する実行手段と、を有する電力制御システム。
    A power control system for controlling power supply to a load or a storage battery,
    Supply time information obtaining means for obtaining the amount of power to be supplied to the load or the storage battery, and the supply allowable time for supplying power to the load or the storage battery,
    A power control system comprising: execution means for selecting at least one or more time zones of the unit time zones obtained by dividing the supply allowable time as power supply time zones and supplying a constant amount of power in each power supply time zone.
  2.  前記実行手段は、複数の前記単位時間帯の各々に対応づけられた複数の要素のいずれかをランダムに発生し、前記ランダムに発生した要素に対応する前記単位時間帯を、前記電力供給時間帯として選定する、請求項1に記載の電力制御システム。 The execution means randomly generates any one of a plurality of elements associated with each of the plurality of unit time zones, and sets the unit time zone corresponding to the randomly generated elements to the power supply time zone. The power control system according to claim 1, which is selected as follows.
  3.  前記実行手段は、前記負荷または前記蓄電池に供給する電力量を、前記単位時間帯における電力の出力値で除算した数、前記電力供給時間帯を選定する、請求項1または2に記載の電力制御システム。 3. The power control according to claim 1, wherein the execution unit selects the power supply time zone by dividing the amount of power supplied to the load or the storage battery by the output value of power in the unit time zone. system.
  4.  前記電力の供給を推奨する度合いを表す電力供給推奨度を時刻ごとに特定するための推奨情報を受け付ける推奨情報受付手段をさらに含み、
     前記実行手段は、さらに前記推奨情報を用いて前記電力供給時間帯を決定する、請求項1から3のいずれか1項に記載の電力制御システム。
    A recommended information receiving means for receiving recommended information for specifying a power supply recommendation level indicating a degree of recommending the supply of power for each time;
    4. The power control system according to claim 1, wherein the execution unit further determines the power supply time period using the recommended information. 5.
  5.  前記電力供給推奨度は、電力価格が安価な時刻ほど高くなる、または、電力系統と接続する電気機器の数の推定値が小さい時刻ほど高くなる、または、前記電力系統と接続する蓄電池が必要とする充電量が小さい時刻ほど高くなる、請求項4に記載の電力制御システム。 The power supply recommendation level increases at a time when the power price is low, or increases at a time when the estimated value of the number of electric devices connected to the power system is small, or a storage battery connected to the power system is required. The power control system according to claim 4, wherein the charge amount to be increased is higher at a smaller time.
  6.  前記蓄電池は、移動体に搭載された蓄電池である、請求項1から5のいずれか1項に記載の電力制御システム。 The power storage system according to any one of claims 1 to 5, wherein the storage battery is a storage battery mounted on a moving body.
  7.  前記推奨情報を生成する生成手段と、
     前記推奨情報を前記推奨情報受付手段に送信する通信手段と、を含む請求項1から6のいずれか1項に記載の電力制御システム。
    Generating means for generating the recommended information;
    The power control system according to claim 1, further comprising a communication unit that transmits the recommended information to the recommended information receiving unit.
  8.  負荷または蓄電池への電力の供給を制御する電力制御システムが行う電力制御方法であって、
     前記負荷または前記蓄電池に供給する電力量と、前記負荷または前記蓄電池に電力を供給する供給許容時間と、を取得し、
     前記供給許容時間を分割した単位時間帯の少なくとも一以上の時間帯を電力供給時間帯として選定し、各電力供給時間帯で一定の電力量を供給する、電力制御方法。
    A power control method performed by a power control system that controls supply of power to a load or a storage battery,
    Obtaining an amount of electric power to be supplied to the load or the storage battery, and an allowable supply time to supply electric power to the load or the storage battery,
    A power control method, wherein at least one or more time zones of the unit time zones obtained by dividing the supply allowable time are selected as power supply time zones, and a constant amount of power is supplied in each power supply time zone.
  9.  コンピュータに、
     負荷または蓄電池に供給する電力量と、前記負荷または前記蓄電池に電力を供給する供給許容時間と、を取得する供給時間情報入手手順と、
     前記供給許容時間を分割した単位時間帯の少なくとも一以上の時間帯を電力供給時間帯として選定し、各電力供給時間帯で一定の電力量を供給する実行手順と、を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
    On the computer,
    A supply time information obtaining procedure for obtaining an amount of power to be supplied to a load or a storage battery and a supply allowable time for supplying power to the load or the storage battery;
    A program for selecting at least one or more of the unit time zones obtained by dividing the allowable supply time as a power supply time zone, and executing an execution procedure for supplying a constant amount of power in each power supply time zone. A recorded computer-readable recording medium.
PCT/JP2014/067647 2013-07-19 2014-07-02 Power control system, power control method, and recording medium WO2015008625A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013150785 2013-07-19
JP2013-150785 2013-07-19

Publications (1)

Publication Number Publication Date
WO2015008625A1 true WO2015008625A1 (en) 2015-01-22

Family

ID=52346094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067647 WO2015008625A1 (en) 2013-07-19 2014-07-02 Power control system, power control method, and recording medium

Country Status (1)

Country Link
WO (1) WO2015008625A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067418A (en) * 2006-09-04 2008-03-21 Nippon Telegr & Teleph Corp <Ntt> Charging control method, electricity accumulator and charging control system
JP2010288345A (en) * 2009-06-10 2010-12-24 Toshiba Corp Charge control device
JP2011024325A (en) * 2009-07-15 2011-02-03 Shikoku Electric Power Co Inc Method and device for averaging electricity-carrying load
WO2012046269A1 (en) * 2010-10-05 2012-04-12 三菱電機株式会社 Charging control apparatus
JP2013121304A (en) * 2011-12-09 2013-06-17 Mitsubishi Electric Corp On-vehicle power management system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067418A (en) * 2006-09-04 2008-03-21 Nippon Telegr & Teleph Corp <Ntt> Charging control method, electricity accumulator and charging control system
JP2010288345A (en) * 2009-06-10 2010-12-24 Toshiba Corp Charge control device
JP2011024325A (en) * 2009-07-15 2011-02-03 Shikoku Electric Power Co Inc Method and device for averaging electricity-carrying load
WO2012046269A1 (en) * 2010-10-05 2012-04-12 三菱電機株式会社 Charging control apparatus
JP2013121304A (en) * 2011-12-09 2013-06-17 Mitsubishi Electric Corp On-vehicle power management system

Similar Documents

Publication Publication Date Title
Caron et al. Incentive-based energy consumption scheduling algorithms for the smart grid
JP6137497B2 (en) Power supply management system
EP2824789B1 (en) Frequency control method
US8880355B2 (en) Emission factor calculating apparatus and emission factor calculating method
Vrettos et al. Combined load frequency control and active distribution network management with thermostatically controlled loads
US10298056B2 (en) Power control system, power control method, and recording medium
JP6249895B2 (en) Power control system, method, and power control apparatus
JP6334785B2 (en) Power management system, power management method, and control apparatus
WO2015041010A1 (en) Device for adjusting demand and supply of power, power system, and method for adjusting demand and supply of power
WO2013136839A1 (en) Power system control device and power system control method
WO2016017424A1 (en) Control device, apparatus control device, reporting method, and recording medium
WO2016002346A1 (en) Power control system, and power control device
JP2015107041A (en) Energy management system, energy management method, program, server, and client device
JP2013099174A (en) Energy management system, method and program
WO2015008624A1 (en) Power control system, power control method, and recording medium
Herath et al. Comparison of optimization-and rule-based EMS for domestic PV-Battery installation with time-Varying local SoC limits
JPWO2016158900A1 (en) CONTROL DEVICE, DEVICE CONTROL DEVICE, CONTROL SYSTEM, CONTROL METHOD, AND PROGRAM
Qazi et al. Synergetic frequency response from multiple flexible loads
Molitor et al. Decentralized coordination of the operation of residential heating units
KR101517395B1 (en) Method for controlling power usage of building and appratus for managing building energy
JP6210419B2 (en) Power control method and power control apparatus
WO2015008625A1 (en) Power control system, power control method, and recording medium
JP2014168343A (en) Power storage system, controller of power storage system, control method of power storage system, and control program of power storage system
JP7117546B2 (en) Power control device, power control method
Arikiez et al. Minimizing the electricity cost of coordinating houses on microgrids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14826578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP