WO2015005073A1 - Raman spectroscopy device - Google Patents

Raman spectroscopy device Download PDF

Info

Publication number
WO2015005073A1
WO2015005073A1 PCT/JP2014/066017 JP2014066017W WO2015005073A1 WO 2015005073 A1 WO2015005073 A1 WO 2015005073A1 JP 2014066017 W JP2014066017 W JP 2014066017W WO 2015005073 A1 WO2015005073 A1 WO 2015005073A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sample
detection unit
raman spectroscopic
optical system
Prior art date
Application number
PCT/JP2014/066017
Other languages
French (fr)
Japanese (ja)
Inventor
森谷 直司
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2015526231A priority Critical patent/JP6176327B2/en
Publication of WO2015005073A1 publication Critical patent/WO2015005073A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Definitions

  • the present invention relates to a component analyzer using Raman scattered light.
  • the present invention relates to a Raman spectroscopic analyzer that detects light scattered backward from a sample.
  • An apparatus for analyzing components contained in a sample by performing Raman spectroscopic measurement includes a light source that emits light (excitation light) that irradiates the sample, an incident optical system that collects the excitation light and irradiates the sample, and the sample A spectroscopic optical system that condenses and separates light scattered by Raman scattering by interaction with a substance contained therein, and a detector that detects light separated in wavelength in the spectroscopic optical system.
  • Raman scattering spectra are obtained on both sides of the wavelength of the excitation light.
  • the longer wavelength side than the excitation light wavelength is called a Stokes line, and the shorter wavelength side is called an anti-Stokes line.
  • the energy corresponding to the difference between the wavelength of the excitation light and the wavelength of the Stokes line or anti-Stokes line reflects the energy of the natural vibration of the molecule. Therefore, the substance contained in the sample can be specified by obtaining the energy. Further, the substance corresponding to the Stokes line or anti-Stokes line can be quantified from the intensity of each Stokes line or anti-Stokes line appearing in the Raman scattering spectrum.
  • Patent Documents 1 and 2 describe gas component analyzers that measure components contained in a gas generated in a coal gasifier and the concentration of each component by performing Raman spectroscopic measurement.
  • excitation light emitted from a laser light source 101 is collected by a lens 102, passes through a beam splitter 103 and a sample chamber window 104, and is supplied to a predetermined gas in the sample gas introduced into the sample chamber 105. Irradiate the spot.
  • Light that has been Raman-scattered from the irradiated gas toward the irradiation side (backward) of the excitation light (hereinafter referred to as “backward Raman scattered light”) is extracted from the sample chamber window 104, reflected by the beam splitter 103, and collected by the lens 106.
  • the light is introduced into a detection unit 107 having a spectroscopic optical system.
  • a Raman scattering spectrum of the sample gas is created from the detection result of the Raman scattered light in the detection unit 107, the component contained in the sample gas is specified, and the concentration of each component is determined.
  • a material having a high light transmittance at the wavelength of the excitation light is used for the beam splitter 103 and the sample chamber window 104, but the light transmittance is not 100%, but reflection of about 1% occurs. Therefore, a part of the excitation light that has passed through the beam splitter 103 is reflected without passing through the sample chamber window 104, and a part of the excitation light is further reflected at the beam splitter 103 and travels toward the lens 106. Since the reflectance of the beam splitter 103 is also about 1%, light about 10 ⁇ 4 times the excitation light emitted from the light source is incident on the lens 106.
  • the lens used in the lens 106 and the detection unit 107 a material in which a plurality of glass types are combined is used in order to obtain good imaging performance in a wide wavelength band. Since these lens materials are often added with a large amount of metal ions, when the excitation light passes through these lenses, fluorescence having a wavelength different from the wavelength of the excitation light is generated.
  • the antireflection film provided on the lens surface also emits fluorescence depending on the constituent materials. This fluorescence is detected by the detection unit 107 together with the Raman scattered light. As described above, although the intensity of the excitation light incident on the lens 106 and the subsequent lenses is low, the intensity of the fluorescence excited in them is still not negligible with respect to the intensity of the Raman scattered light to be measured.
  • the beam splitter 103 also emits fluorescence depending on the coating constituent material. Constraining the coating design to use only materials that do not generate fluorescence can degrade the spectral performance of the coating. Since the intensity of the excitation light incident on the beam splitter is large, the intensity of the generated fluorescence is also strong and cannot be ignored with respect to the intensity of the Raman scattered light to be measured.
  • the sample is a gas (gas)
  • its scattering cross section is as small as 10 ⁇ 31 cm 2 .
  • the intensity of the Raman scattered light detected is low, and it is used in the lens 106 and the detection unit 107 by the light reflected by the sample chamber window 104 and the beam splitter 103.
  • the intensity of the fluorescence generated in the lens to be used is approximately the same. Therefore, the fluorescence becomes a noise factor in the Raman scattered light analysis, and there is a problem that the accuracy in determining the components contained in the sample gas and the concentration of each component is lowered.
  • the sample is a gas (gas)
  • the same problem occurs when the sample is a liquid or a solid.
  • the problem to be solved by the present invention is to reduce noise due to fluorescence in a Raman spectroscopic analyzer that detects backward Raman scattered light from a sample.
  • the Raman spectroscopic analyzer which has been made to solve the above problems, a) a reflecting member that reflects the light beam emitted from the light source toward the sample surface in a direction perpendicular to the sample surface; b) an irradiation condensing unit for condensing the luminous flux on the sample; c) a detection unit that detects scattered light emitted from the sample and backscattered around the reflection member.
  • the detection unit is disposed on the opposite side of the sample surface with the reflection member interposed therebetween.
  • sample When the sample is a gas or a liquid, the sample is generally introduced into a sample chamber having a light transmission window, and the sample is irradiated with a light beam through the light transmission window.
  • sample when the sample is solid, there are a case where the sample chamber is used and a case where the sample chamber is not used and the exposed sample is irradiated with a light beam. Therefore, the above-mentioned “sample surface” becomes a light transmission window of the sample chamber when the sample is introduced into the sample chamber, and incident light flux on the surface of the sample when the sample is exposed. Becomes the surface to be irradiated.
  • the reflecting member includes, for example, a reflecting mirror
  • the irradiation condensing unit includes, for example, a condensing lens disposed on the optical path from the light source to the reflecting unit.
  • the light beam emitted from the light source is incident on the sample surface from a direction perpendicular to the sample surface by the reflecting member, and is condensed on a predetermined site in the sample by the irradiation condensing unit.
  • Scattered light is generated from the portion of the sample irradiated with the light beam from the light source.
  • the detection unit outputs a signal corresponding to the detected light and sends it to an appropriate analysis device.
  • the analysis device creates a Raman scattering spectrum based on this detection signal, and analyzes it to identify and quantify the substance contained in the sample.
  • the Raman spectroscopic analyzer since the light beam is incident on the sample surface perpendicularly, the light beam reflected by the sample surface (reflected light beam) travels in the reverse direction of the optical path of the incident light beam and is detected by the reflecting member. Is reflected in a different direction (light source side). Therefore, the reflected light beam is incident on the detection unit and fluorescence is not generated by a lens or the like provided in the detection unit, and noise can be reduced as compared with the conventional Raman spectroscopic device.
  • the Raman spectroscopic analyzer further includes: It is desirable to provide a detection condensing unit that is disposed between the sample surface and the detection unit and guides the scattered light to the detection unit.
  • the detection condensing unit is an optical system that includes one or a plurality of lenses and reduces the divergence angle of scattered light that is emitted from the sample and diverges.
  • the detection condensing unit is disposed between the sample surface and the reflecting member, one having an opening on the optical path of a light beam incident on the sample surface is used. This prevents the detection condensing part from being irradiated with incident light flux or reflected light flux to generate fluorescence.
  • By disposing the detection condensing unit more scattered light emitted from the sample and diverging at a wide angle can be incident on the detector.
  • the light beam reflected by the sample surface (reflected light beam) is separated from the back scattered light from the sample so that only the back scattered light is incident on the detection unit. Noise can be reduced as compared with the spectroscopic device.
  • the schematic block diagram of the gas component analyzer of a prior art. 1 is a schematic configuration diagram of an optical system of a Raman spectroscopic analyzer that is one embodiment of the present invention.
  • the perspective view of the surface mirror type combine optical system used with the Raman spectroscopic analyzer of an Example.
  • the perspective view of the back mirror type combine optical system used with the Raman spectroscopic analyzer of an Example.
  • the perspective view of another example of the back mirror type combine optical system used with the Raman spectroscopic analyzer of an Example.
  • a laser light source 201 that generates visible light is used as a light source.
  • a solid-state laser such as a YAG laser or a YVO 4 laser, or a gas laser such as an Ar laser is used.
  • the light beam emitted from the laser light source 201 is condensed on a predetermined portion in the sample 205 by the irradiation condensing optical system 202 through the excitation optical fiber 208.
  • the light beam that has passed through the irradiation and condensing optical system 202 is reflected by the reflection unit 203 and enters the sample surface from a direction perpendicular to the sample surface.
  • the sample surface is a light transmission window 204 of the sample chamber when the sample 205 is introduced into the sample chamber, and is incident on the surface of the sample 205 when the sample is exposed. It is the surface that is irradiated with the luminous flux.
  • a quartz material is used for the light transmission window 204.
  • the sample surface When the sample surface is irradiated with a light beam (excitation light) from the laser light source 201, scattered light such as Rayleigh scattered light or Raman scattered light is generated from the sample 205. Further, a part of the incident light beam is reflected on the sample surface. Of the scattered light scattered (backscattered) in the direction opposite to the incident direction of the excitation light, that is, the direction in which the reflecting portion 203 is disposed, the light scattered around the reflecting portion 203 is supported to support the reflecting portion 203. The light passes through the body 210, is collected by the detection condensing optical system 206, and is received by the detection unit 207 through the spectral optical fiber 209.
  • the reflection unit 203 functions as a shielding unit that excludes a part of the detection range for the detection unit 207, and blocks the reflected light flux that reaches the reflection unit 203.
  • the reflecting portion 203 and the support 210 are constituted by a surface mirror type combine optical system 300 shown in FIG.
  • the surface mirror type combine optical system 300 is a combination of both optical systems in which the optical axes of the excitation light and the Raman scattered light coincide with each other.
  • the reflecting portion 203 having the reflecting surface 301 in FIG. 3 and the support 210 correspond to the reflecting member of the present invention.
  • a mirror such as a total reflection mirror is used as the reflection unit 203.
  • the support 210 in FIG. 3 is composed of a transparent parallel plate 303.
  • the support 210 is installed substantially perpendicular to the Raman scattered light receiving optical axis.
  • the reflection portion 203 has a cylindrical or quadrangular prism shape, and is joined to the support 210 so that the reflection surface 301 is installed at 45 degrees with respect to the Raman scattered light receiving optical axis with respect to the support 210. ing.
  • d the diameter of the mirror of the reflecting portion 203 and D is the diameter of the transparent parallel plate 303.
  • the reflection unit 203 can sufficiently receive the Raman scattered excitation light, and the signal loss of the Raman scattered light shielded by the reflection unit 203 is negligible.
  • the Raman scattered light that has passed through the support 210 is condensed by the detection condensing optical system 206 that guides the scattered light to the detection unit 207, and is received by the detection unit 207 via the spectral optical fiber 209.
  • the detection condensing optical system 206 includes a collimating unit 206A and a condensing unit 206B. These are optical systems that are composed of one or a plurality of lenses and reduce the divergence angle of scattered light emitted from the sample and diverge. For example, an achromatic lens is used. Further, as the detection unit 207, for example, a photoelectric conversion device such as a CCD detector is used.
  • the Raman spectroscopic analysis apparatus 200 since the light beam is incident on the sample surface perpendicularly, the light beam reflected by the sample surface (reflected light beam) travels in the opposite direction of the optical path of the incident light beam, and is reflected by the reflection unit 203. Reflected to the laser light source 201 side. Accordingly, the reflected light beam is incident on the detection unit 207 and fluorescence is not generated by a lens or the like provided in the detection unit 207, and noise can be reduced as compared with the conventional Raman spectroscopic device.
  • a Raman scattering spectrum is created and displayed as appropriate by the analysis device.
  • the substance contained in the sample 205 is specified and quantified.
  • the collimating portion 206A of the detection condensing optical system 206 is disposed between the reflecting portion 203 and the detecting portion 207 .
  • a gap between the sample surface and the reflecting portion 203 is described.
  • a collimating portion 206C of the detection condensing optical system 206 may be disposed.
  • the detection light collecting optical system 206 it is possible to prevent the detection light collecting optical system 206 from being irradiated with an incident light beam or a reflected light beam and generating fluorescence. Further, by arranging the detection condensing optical system 206 including the collimating portion 206C between the sample surface and the reflecting portion 203, more scattered light emitted from the sample and diverging at a wide angle can be incident on the detector. it can.
  • a surface mirror type combine optical system 400 shown in FIG. 4 is used instead of the surface mirror type combine optical system 300 shown in FIG.
  • the surface mirror type combine optical system 400 in FIG. 4 includes a mirror 402 having a reflecting surface 401 and a support 410 as in FIG.
  • the support 410 shown in FIG. 4 is made of a single plate, and includes three spokes (support bars) and a frame (outer frame) 404 having an annular structure.
  • the structure is not limited to the illustrated structure as long as the support body 410 is sufficiently strong in structure and has an opening area surrounded by a spoke and an annular structure having necessary transmission characteristics. Therefore, the spokes may be joined to the annular structure by means such as welding or adhesion, and the number of spokes may be two or four or more.
  • the back mirror type combine optical system 500 shown in FIG. 5 includes a rod 501 having a reflecting surface 502 and a transparent support plate 503 fixed to the back surface side (the side opposite to the sample surface). Excitation light enters the rod 501 from the direction of the arrow shown in the figure, and is emitted to the sample surface side by the reflecting surface 502 provided at a lower end of the rod 501 with an inclination of 45 degrees.
  • a fluorescent shielding film 504 functioning as a light reflecting film or a light absorbing film is provided on the surface (back surface) of the rod 501 in contact with the transparent support plate 503. Preferably it is formed.
  • the back mirror type combine optical system 600 in FIG. 6 is configured by only the rod 601 except for the transparent support plate 503 from the back mirror type combine optical system 500 in FIG.
  • the other configuration is the same as that of the back mirror type combine optical system of FIG. 5. Is formed on the fluorescent light shielding film 604 so as not to face the detection unit 207 side.
  • a fourth modification of the optical system of the Raman spectroscopic gas analyzer of the embodiment of the present invention will be described with reference to FIG. 2 and FIG.
  • a back mirror type combine optical system 700 shown in FIG. 7 is used in place of the front side mirror type combine optical system shown in FIG. 3 of the Raman spectroscopic analyzer of the above-described embodiment.
  • a back mirror type combine optical system 700 shown in FIG. 7 includes a transparent plate 701 having a first reflecting surface 702 and a second reflecting surface 704.
  • the first reflecting surface 702 is provided at one end of the transparent plate 701, and a window 703 is opened only in a portion where excitation light incident from the direction of the arrow shown in the drawing is incident.
  • the first reflecting surface 702 is provided to prevent unnecessary light from entering the transparent plate 701, but particularly when other measures are taken for that purpose. There is no need.
  • the second reflecting surface 704 is provided inside the transparent plate 701 with an inclination of 45 degrees, and the excitation light passing through the transparent plate 701 is bent at a right angle and emitted toward the sample surface.
  • a fluorescent shielding film that functions as a light reflection film or a light absorption film on the back surface of the transparent plate 701 (surface on the detection unit 207 side) corresponding to the window 703 705 is preferably formed.
  • DESCRIPTION OF SYMBOLS 100 Gas component analyzer 101 ... Laser light source 102 ... Lens 103 ... Beam splitter 104 ... Sample chamber window 105 ... Sample chamber 106 ... Lens 107 ... Detection part 108 ... Data analyzer 200 ... Raman spectroscopic analyzer 201 ... Laser light source 202 ... Irradiation condensing optical system 203... Reflecting section 204. Light transmitting window 205... Sample 206... Detection condensing optical system 206 A, 206 C. , 410, 610... Support 300, 400... Front mirror type combined optical system 301, 401, 502, 602... Reflecting surface 303. 501, 601 ... Rod 503 ... Transparent support plates 504, 604, 05 ... fluorescent shielding film 701 ... transparent plate 702 ... first reflecting surface 703 ... window 704 ... second reflecting surface

Abstract

The objective of the present invention is, in a Raman spectroscopy device, to prevent fluorescent light from a light-emitting element such as a lens and deriving from reflected light from a sample surface from being added to Raman scattering light as noise. The Raman spectroscopy device is provided with: a reflecting unit (203) that reflects an excitation light beam emitted from a light source (201) towards a sample surface in a direction perpendicular to the sample surface; an illumination focusing optical system (202) that focuses the light beam at the sample; a detection unit (207) that detects the scattered light back-scattered in the vicinity of the reflecting unit (203) and emitted by the sample. The portion of the excitation light beam reflected at the sample surface is shielded by the reflecting unit (203) and so does not head towards to the detection unit (207) side, and thus the entry of the excitation light to the detection unit (207) is prevented.

Description

ラマン分光分析装置Raman spectrometer
 本発明は、ラマン散乱光を用いた成分分析装置に関する。特に、試料から後方に散乱される光を検出するラマン分光分析装置に関する。 The present invention relates to a component analyzer using Raman scattered light. In particular, the present invention relates to a Raman spectroscopic analyzer that detects light scattered backward from a sample.
 ラマン分光測定を行うことによって試料に含まれる成分を分析する装置は、試料に照射する光(励起光)を発する光源、該励起光を集光して試料に照射するための入射光学系、試料中に含まれる物質との相互作用によりラマン散乱した光を集光し、分光する分光光学系、及び該分光光学系において波長分離された光を検出する検出器を備えている。 An apparatus for analyzing components contained in a sample by performing Raman spectroscopic measurement includes a light source that emits light (excitation light) that irradiates the sample, an incident optical system that collects the excitation light and irradiates the sample, and the sample A spectroscopic optical system that condenses and separates light scattered by Raman scattering by interaction with a substance contained therein, and a detector that detects light separated in wavelength in the spectroscopic optical system.
 横軸を波長、縦軸を強度として試料からの光の強度をプロットすると、励起光の波長を中心として、その両側にラマン散乱スペクトルが得られる。励起光波長よりも長波長側をストークス線、短波長側を反ストークス線と呼ぶ。
 励起光の波長と、ストークス線あるいは反ストークス線の波長の差に対応するエネルギーは、分子の固有振動のエネルギーを反映している。従って、そのエネルギーを求めることにより、試料に含まれる物質を特定することができる。また、ラマン散乱スペクトルに現れる各ストークス線や反ストークス線の強度から、該ストークス線あるいは反ストークス線に対応する物質を定量することができる。
When the intensity of light from the sample is plotted with the horizontal axis representing wavelength and the vertical axis representing intensity, Raman scattering spectra are obtained on both sides of the wavelength of the excitation light. The longer wavelength side than the excitation light wavelength is called a Stokes line, and the shorter wavelength side is called an anti-Stokes line.
The energy corresponding to the difference between the wavelength of the excitation light and the wavelength of the Stokes line or anti-Stokes line reflects the energy of the natural vibration of the molecule. Therefore, the substance contained in the sample can be specified by obtaining the energy. Further, the substance corresponding to the Stokes line or anti-Stokes line can be quantified from the intensity of each Stokes line or anti-Stokes line appearing in the Raman scattering spectrum.
 特許文献1及び2には、ラマン分光測定を行うことにより、石炭ガス化炉において生成されたガスに含まれる成分や各成分の濃度を測定するガス成分分析装置が記載されている。 Patent Documents 1 and 2 describe gas component analyzers that measure components contained in a gas generated in a coal gasifier and the concentration of each component by performing Raman spectroscopic measurement.
 この装置の要部構成を図1に示す。このガス成分分析装置100では、レーザ光源101から発せられた励起光をレンズ102により集光し、ビームスプリッタ103及び試料室窓104を通過させて、試料室105内に導入した試料ガス中の所定箇所に照射する。この照射されたガスから励起光の照射側(後方)にラマン散乱した光(以下、「後方ラマン散乱光」という。)を試料室窓104から取り出し、ビームスプリッタ103で反射させ、レンズ106で集光して分光光学系を備えた検出部107に導入する。さらに、データ解析装置108を用いて、検出部107におけるラマン散乱光の検出結果から試料ガスのラマン散乱スペクトルを作成し、試料ガスに含まれる成分を特定するとともに各成分の濃度を決定する。 The main configuration of this device is shown in FIG. In this gas component analyzer 100, excitation light emitted from a laser light source 101 is collected by a lens 102, passes through a beam splitter 103 and a sample chamber window 104, and is supplied to a predetermined gas in the sample gas introduced into the sample chamber 105. Irradiate the spot. Light that has been Raman-scattered from the irradiated gas toward the irradiation side (backward) of the excitation light (hereinafter referred to as “backward Raman scattered light”) is extracted from the sample chamber window 104, reflected by the beam splitter 103, and collected by the lens 106. The light is introduced into a detection unit 107 having a spectroscopic optical system. Furthermore, using the data analysis device 108, a Raman scattering spectrum of the sample gas is created from the detection result of the Raman scattered light in the detection unit 107, the component contained in the sample gas is specified, and the concentration of each component is determined.
 ビームスプリッタ103や試料室窓104には、励起光の波長において高い光透過率を有する材料が用いられるが、その光透過率は100%ではなく、1%程度の反射が起こる。そのため、ビームスプリッタ103を透過した励起光の一部は試料室窓104を透過せずに反射し、ビームスプリッタ103においても更に一部が反射され、レンズ106に向かう。ビームスプリッタ103における反射率も1%程度であるため、光源から発せられた励起光の10-4倍程度の光がレンズ106に入射することとなる。 A material having a high light transmittance at the wavelength of the excitation light is used for the beam splitter 103 and the sample chamber window 104, but the light transmittance is not 100%, but reflection of about 1% occurs. Therefore, a part of the excitation light that has passed through the beam splitter 103 is reflected without passing through the sample chamber window 104, and a part of the excitation light is further reflected at the beam splitter 103 and travels toward the lens 106. Since the reflectance of the beam splitter 103 is also about 1%, light about 10 −4 times the excitation light emitted from the light source is incident on the lens 106.
特開平11-173989号公報Japanese Patent Laid-Open No. 11-173989 特開2004-325458号公報JP 2004-325458 A
 レンズ106や検出部107内で使用されるレンズには、広い波長帯域において良好な結像性能を得るために、複数の硝種を組み合わせた材料が用いられる。これらのレンズ材料には、金属イオンが多量に添加されることが多いため、励起光がこれらのレンズを通過すると、励起光の波長と異なる波長を有する蛍光が発生する。またレンズ表面に付与される反射防止膜も構成物質によっては蛍光を発する。この蛍光は、ラマン散乱光とともに検出部107で検出される。上述のとおり、レンズ106やそれ以降のレンズ等に入射する励起光の強度は低いが、それでも、それらにおいて励起される蛍光の強度は、測定すべきラマン散乱光の強度に対して無視し得ないものとなる。
 一方、同様にビームスプリッタ103においても、そのコーティング構成物質によっては蛍光を発する。蛍光を発生しない物質のみを使うようコーティングの設計を制約すると、コーティングの分光性能が低下することもある。ビームスプリッタに入射する励起光強度は大きいため、発生する蛍光強度も強くなり、測定すべきラマン散乱光の強度に対して無視し得ないものとなる。
For the lens used in the lens 106 and the detection unit 107, a material in which a plurality of glass types are combined is used in order to obtain good imaging performance in a wide wavelength band. Since these lens materials are often added with a large amount of metal ions, when the excitation light passes through these lenses, fluorescence having a wavelength different from the wavelength of the excitation light is generated. The antireflection film provided on the lens surface also emits fluorescence depending on the constituent materials. This fluorescence is detected by the detection unit 107 together with the Raman scattered light. As described above, although the intensity of the excitation light incident on the lens 106 and the subsequent lenses is low, the intensity of the fluorescence excited in them is still not negligible with respect to the intensity of the Raman scattered light to be measured. It will be a thing.
On the other hand, the beam splitter 103 also emits fluorescence depending on the coating constituent material. Constraining the coating design to use only materials that do not generate fluorescence can degrade the spectral performance of the coating. Since the intensity of the excitation light incident on the beam splitter is large, the intensity of the generated fluorescence is also strong and cannot be ignored with respect to the intensity of the Raman scattered light to be measured.
 試料がガス(気体)である場合、その散乱断面積は10-31cm2程度と小さい。入射光束の焦点位置におけるガス分子の数を勘案しても、検出されるラマン散乱光の強度は低く、試料室窓104及びビームスプリッタ103で反射した光により、レンズ106や検出部107内で使用されるレンズにおいて発生する蛍光の強度と同程度となる場合がある。従って、これらの蛍光はラマン散乱光分析におけるノイズ要因になり、試料ガスに含まれる成分や各成分の濃度を決定する際の精度を低下させるという問題があった。
 ここでは、試料がガス(気体)である場合を例に説明したが、試料が液体、固体である場合にも同様の問題が生じる。
When the sample is a gas (gas), its scattering cross section is as small as 10 −31 cm 2 . Even if the number of gas molecules at the focal position of the incident light beam is taken into account, the intensity of the Raman scattered light detected is low, and it is used in the lens 106 and the detection unit 107 by the light reflected by the sample chamber window 104 and the beam splitter 103. In some cases, the intensity of the fluorescence generated in the lens to be used is approximately the same. Therefore, the fluorescence becomes a noise factor in the Raman scattered light analysis, and there is a problem that the accuracy in determining the components contained in the sample gas and the concentration of each component is lowered.
Although the case where the sample is a gas (gas) has been described as an example here, the same problem occurs when the sample is a liquid or a solid.
 本発明が解決しようとする課題は、試料からの後方ラマン散乱光を検出するラマン分光分析装置において、上記蛍光によるノイズを低減することである。 The problem to be solved by the present invention is to reduce noise due to fluorescence in a Raman spectroscopic analyzer that detects backward Raman scattered light from a sample.
 上記課題を解決するために成された本発明に係るラマン分光分析装置は、
 a) 光源から発せられる光束を、試料面に向けて、該試料面に対して垂直な方向に反射する反射部材と、
 b) 前記光束を試料に集光する照射集光部と、
 c) 前記試料から放出され、前記反射部材の周囲に後方散乱される散乱光を検出する検出部と、を備える。
 ここで、前記検出部は前記反射部材を挟んで前記試料面の反対側に配置されている。
The Raman spectroscopic analyzer according to the present invention, which has been made to solve the above problems,
a) a reflecting member that reflects the light beam emitted from the light source toward the sample surface in a direction perpendicular to the sample surface;
b) an irradiation condensing unit for condensing the luminous flux on the sample;
c) a detection unit that detects scattered light emitted from the sample and backscattered around the reflection member.
Here, the detection unit is disposed on the opposite side of the sample surface with the reflection member interposed therebetween.
 試料が気体や液体である場合には、一般に光透過窓を有する試料室内にその試料が導入され、該光透過窓を通して試料に光束が照射される。一方、試料が固体である場合には、試料室を使用する場合と、試料室を使用せず、露出した試料に光束を照射する場合とがある。従って、上記の「試料面」は、試料室内に試料が導入される場合には該試料室が有する光透過窓となり、試料が露出している場合には、該試料の表面のうちの入射光束が照射される面となる。
 反射部材は、例えば、反射ミラーを含み、照射集光部は、例えば、光源から反射部までの光路上に配置された集光レンズを含む。あるいは、反射部材と照射集光部を兼用する凹面ミラーを用いてもよい。
When the sample is a gas or a liquid, the sample is generally introduced into a sample chamber having a light transmission window, and the sample is irradiated with a light beam through the light transmission window. On the other hand, when the sample is solid, there are a case where the sample chamber is used and a case where the sample chamber is not used and the exposed sample is irradiated with a light beam. Therefore, the above-mentioned “sample surface” becomes a light transmission window of the sample chamber when the sample is introduced into the sample chamber, and incident light flux on the surface of the sample when the sample is exposed. Becomes the surface to be irradiated.
The reflecting member includes, for example, a reflecting mirror, and the irradiation condensing unit includes, for example, a condensing lens disposed on the optical path from the light source to the reflecting unit. Or you may use the concave surface mirror which combines a reflection member and an irradiation condensing part.
 上記構成のラマン分光分析装置では、光源から発せられた光束は、反射部材により試料面に対して垂直な方向から該試料面に入射し、照射集光部により試料内の所定の部位に集光する。試料の、光源からの光束が照射された箇所からは、散乱光が発生する。そして、反射部材が配置された方向に散乱(後方散乱)した光のうち、該反射部材の周囲に散乱した光のみが、検出部により受光される。検出部は、検出した光に対応した信号を出力し、適宜の解析装置に送る。解析装置はこの検出信号に基づきラマン散乱スペクトルを作成し、それを解析することにより、試料に含まれる物質を特定、定量する。 In the Raman spectroscopic analyzer having the above-described configuration, the light beam emitted from the light source is incident on the sample surface from a direction perpendicular to the sample surface by the reflecting member, and is condensed on a predetermined site in the sample by the irradiation condensing unit. To do. Scattered light is generated from the portion of the sample irradiated with the light beam from the light source. Of the light scattered (backscattered) in the direction in which the reflecting member is disposed, only the light scattered around the reflecting member is received by the detection unit. The detection unit outputs a signal corresponding to the detected light and sends it to an appropriate analysis device. The analysis device creates a Raman scattering spectrum based on this detection signal, and analyzes it to identify and quantify the substance contained in the sample.
 上記過程において、試料面に入射した光束の一部は試料面で反射される。本発明に係るラマン分光分析装置では、光束が試料面に対して垂直に入射するため、試料面で反射した光束(反射光束)は、入射光束の光路を逆方向に進み、反射部材によって検出部とは異なる方向(光源側)に反射される。従って、反射光束が検出部に入射して該検出部が備えるレンズ等によって蛍光が発生することがなく、従来のラマン分光装置よりもノイズを低減することができる。 In the above process, a part of the light beam incident on the sample surface is reflected by the sample surface. In the Raman spectroscopic analyzer according to the present invention, since the light beam is incident on the sample surface perpendicularly, the light beam reflected by the sample surface (reflected light beam) travels in the reverse direction of the optical path of the incident light beam and is detected by the reflecting member. Is reflected in a different direction (light source side). Therefore, the reflected light beam is incident on the detection unit and fluorescence is not generated by a lens or the like provided in the detection unit, and noise can be reduced as compared with the conventional Raman spectroscopic device.
 本発明に係るラマン分光分析装置は、さらに、
 前記試料面と前記検出部の間に配置され、前記散乱光を該検出部に導く検出集光部
を備えることが望ましい。
The Raman spectroscopic analyzer according to the present invention further includes:
It is desirable to provide a detection condensing unit that is disposed between the sample surface and the detection unit and guides the scattered light to the detection unit.
 上記の検出集光部は、1枚あるいは複数枚のレンズで構成され、試料から放出され発散する散乱光の発散角を小さくする光学系である。
 前記検出集光部を前記試料面と前記反射部材の間に配置する場合には、該試料面に入射する光束の光路上に開口を有するものを用いる。これにより、検出集光部に入射光束や反射光束が照射されて蛍光が発生することを防ぐ。
 この検出集光部を配置することにより、試料から放出され広角に発散する散乱光を、より多く検出器に入射させることができる。
The detection condensing unit is an optical system that includes one or a plurality of lenses and reduces the divergence angle of scattered light that is emitted from the sample and diverges.
When the detection condensing unit is disposed between the sample surface and the reflecting member, one having an opening on the optical path of a light beam incident on the sample surface is used. This prevents the detection condensing part from being irradiated with incident light flux or reflected light flux to generate fluorescence.
By disposing the detection condensing unit, more scattered light emitted from the sample and diverging at a wide angle can be incident on the detector.
 本発明に係るラマン分光分析装置では、試料面で反射した光束(反射光束)を、試料からの後方散乱光と分離して、後方散乱光のみが検出部に入射するようにしたため、従来のラマン分光装置よりもノイズを低減することができる。 In the Raman spectroscopic analyzer according to the present invention, the light beam reflected by the sample surface (reflected light beam) is separated from the back scattered light from the sample so that only the back scattered light is incident on the detection unit. Noise can be reduced as compared with the spectroscopic device.
従来技術のガス成分分析装置の概略構成図。The schematic block diagram of the gas component analyzer of a prior art. 本発明の一実施例であるラマン分光分析装置の光学系の概略構成図。1 is a schematic configuration diagram of an optical system of a Raman spectroscopic analyzer that is one embodiment of the present invention. 実施例のラマン分光分析装置で用いられる表面ミラー型コンバイン光学系の斜視図。The perspective view of the surface mirror type combine optical system used with the Raman spectroscopic analyzer of an Example. 実施例のラマン分光分析装置で用いられる表面ミラー型コンバイン光学系の別の例の斜視図。The perspective view of another example of the surface mirror type combine optical system used with the Raman spectroscopic analyzer of an Example. 実施例のラマン分光分析装置で用いられる裏面ミラー型コンバイン光学系の斜視図。The perspective view of the back mirror type combine optical system used with the Raman spectroscopic analyzer of an Example. 実施例のラマン分光分析装置で用いられる裏面ミラー型コンバイン光学系の別の例の斜視図。The perspective view of another example of the back mirror type combine optical system used with the Raman spectroscopic analyzer of an Example. 実施例のラマン分光分析装置で用いられる裏面ミラー型コンバイン光学系の別の例の斜視図。The perspective view of another example of the back mirror type combine optical system used with the Raman spectroscopic analyzer of an Example.
 本発明の一実施例のラマン分光ガス分析装置を図2および図3を参照して説明する。本実施例のラマン分光分析装置200では、光源として可視光を生成するレーザ光源201が用いられる。たとえば、YAGレーザやYVOレーザなどの固体レーザやArレーザなどの気体レーザが用いられる。 A Raman spectroscopic gas analyzer according to an embodiment of the present invention will be described with reference to FIGS. In the Raman spectroscopic analysis apparatus 200 of the present embodiment, a laser light source 201 that generates visible light is used as a light source. For example, a solid-state laser such as a YAG laser or a YVO 4 laser, or a gas laser such as an Ar laser is used.
 レーザ光源201から発せられた光束は、励起光ファイバ208を経て、照射集光光学系202により試料205内の所定の部位に集光される。照射集光光学系202を通過した光束は、反射部203で反射し、試料面に対して垂直な方向から該試料面に入射する。ここで試料面とは、試料室内に試料205が導入される場合には該試料室が有する光透過窓204であり、試料が露出している場合には、該試料205の表面のうちの入射光束が照射される面のことである。光透過窓204は、たとえば、石英材料が用いられる。なお、反射部203と照射集光光学系202は、両者を兼用する凹面ミラーに置き換えてもよい。 The light beam emitted from the laser light source 201 is condensed on a predetermined portion in the sample 205 by the irradiation condensing optical system 202 through the excitation optical fiber 208. The light beam that has passed through the irradiation and condensing optical system 202 is reflected by the reflection unit 203 and enters the sample surface from a direction perpendicular to the sample surface. Here, the sample surface is a light transmission window 204 of the sample chamber when the sample 205 is introduced into the sample chamber, and is incident on the surface of the sample 205 when the sample is exposed. It is the surface that is irradiated with the luminous flux. For the light transmission window 204, for example, a quartz material is used. In addition, you may replace the reflection part 203 and the irradiation condensing optical system 202 with the concave mirror which combines both.
 レーザ光源201からの光束(励起光)が試料面に照射されると、試料205からレイリー散乱光やラマン散乱光などの散乱光が発生する。また、試料面では入射光束の一部が反射する。励起光の入射方向と対向する方向、すなわち、反射部203が配置された方向に散乱(後方散乱)した散乱光のうち該反射部203の周囲に散乱した光は、反射部203を支持する支持体210を透過し、検出集光光学系206によって集光され、分光光ファイバ209を経て、検出部207に受光される。
 試料面で反射された入射光束の一部は、反射部203にのみ入射し、そこで反射されるため、検出集光光学系206には向かわない。つまり、反射部203は検出部207にとって、検出範囲を一部除外する遮蔽手段として機能し、該反射部203に到達する反射光束を遮断する。
When the sample surface is irradiated with a light beam (excitation light) from the laser light source 201, scattered light such as Rayleigh scattered light or Raman scattered light is generated from the sample 205. Further, a part of the incident light beam is reflected on the sample surface. Of the scattered light scattered (backscattered) in the direction opposite to the incident direction of the excitation light, that is, the direction in which the reflecting portion 203 is disposed, the light scattered around the reflecting portion 203 is supported to support the reflecting portion 203. The light passes through the body 210, is collected by the detection condensing optical system 206, and is received by the detection unit 207 through the spectral optical fiber 209.
A part of the incident light beam reflected by the sample surface is incident only on the reflection portion 203 and is reflected there, so that it does not go to the detection condensing optical system 206. That is, the reflection unit 203 functions as a shielding unit that excludes a part of the detection range for the detection unit 207, and blocks the reflected light flux that reaches the reflection unit 203.
 本実施例において、反射部203および支持体210は、図3に示す表面ミラー型コンバイン光学系300で構成されている。当該表面ミラー型コンバイン光学系300は、励起光とラマン散乱光の光軸を一致させ、両光学系をコンバインさせたものである。図3の反射面301を有する反射部203および支持体210が本発明の反射部材に対応する。反射部203として、全反射ミラーなどのミラーが用いられる。図3の支持体210は透明平行平板303で構成されている。支持体210はラマン散乱光受光光軸に対して、ほぼ垂直に設置されている。反射部203は円柱形もしくは四角柱形の形状をしており、支持体210に対して反射面301がラマン散乱光受光光軸に対して45度で設置されるように支持体210に接合されている。 In the present embodiment, the reflecting portion 203 and the support 210 are constituted by a surface mirror type combine optical system 300 shown in FIG. The surface mirror type combine optical system 300 is a combination of both optical systems in which the optical axes of the excitation light and the Raman scattered light coincide with each other. The reflecting portion 203 having the reflecting surface 301 in FIG. 3 and the support 210 correspond to the reflecting member of the present invention. A mirror such as a total reflection mirror is used as the reflection unit 203. The support 210 in FIG. 3 is composed of a transparent parallel plate 303. The support 210 is installed substantially perpendicular to the Raman scattered light receiving optical axis. The reflection portion 203 has a cylindrical or quadrangular prism shape, and is joined to the support 210 so that the reflection surface 301 is installed at 45 degrees with respect to the Raman scattered light receiving optical axis with respect to the support 210. ing.
 反射部203のミラーの直径をd、透明平行平板303の直径をDとする時、d:D=1:10程度の比を有していることが好ましい。たとえば、d=5mm、D=50mmのものを用いることができる。このような大きさとすることで、受光開口全体に対してミラーによる遮蔽面積を十分に小さくできる。したがって、反射部203はラマン散乱励起光を十分に受け取ることができ、かつ、反射部203で遮蔽されるラマン散乱光の信号ロスが無視できる程度となる。 It is preferable to have a ratio of d: D = 1: 10, where d is the diameter of the mirror of the reflecting portion 203 and D is the diameter of the transparent parallel plate 303. For example, d = 5 mm and D = 50 mm can be used. By setting it as such a magnitude | size, the shielding area by a mirror can fully be made small with respect to the whole light reception opening. Therefore, the reflection unit 203 can sufficiently receive the Raman scattered excitation light, and the signal loss of the Raman scattered light shielded by the reflection unit 203 is negligible.
 支持体210を透過したラマン散乱光は、該散乱光を検出部207に導く検出集光光学系206によって集光され、分光光ファイバ209を経て、検出部207に受光される。検出集光光学系206は、コリメート部206Aおよび集光部206Bからなる。これらは、1枚あるいは複数枚のレンズで構成され、試料から放出され発散する散乱光の発散角を小さくする光学系であり、たとえば、アクロマートレンズが用いられる。また、検出部207として、たとえば、CCD検出器などの光電変換装置が用いられる。 The Raman scattered light that has passed through the support 210 is condensed by the detection condensing optical system 206 that guides the scattered light to the detection unit 207, and is received by the detection unit 207 via the spectral optical fiber 209. The detection condensing optical system 206 includes a collimating unit 206A and a condensing unit 206B. These are optical systems that are composed of one or a plurality of lenses and reduce the divergence angle of scattered light emitted from the sample and diverge. For example, an achromatic lens is used. Further, as the detection unit 207, for example, a photoelectric conversion device such as a CCD detector is used.
 本発明に係るラマン分光分析装置200では、光束が試料面に対して垂直に入射するため、試料面で反射した光束(反射光束)は、入射光束の光路を逆方向に進み、反射部203によってレーザ光源201側に反射される。従って、反射光束が検出部207に入射して該検出部207が備えるレンズ等によって蛍光が発生することがなく、従来のラマン分光装置よりもノイズを低減することができる。 In the Raman spectroscopic analysis apparatus 200 according to the present invention, since the light beam is incident on the sample surface perpendicularly, the light beam reflected by the sample surface (reflected light beam) travels in the opposite direction of the optical path of the incident light beam, and is reflected by the reflection unit 203. Reflected to the laser light source 201 side. Accordingly, the reflected light beam is incident on the detection unit 207 and fluorescence is not generated by a lens or the like provided in the detection unit 207, and noise can be reduced as compared with the conventional Raman spectroscopic device.
 検出部207で検出された信号から、適宜、解析装置によってラマン散乱スペクトルが作成および表示される。ラマン散乱スペクトルのラマンシフト、ラマン散乱光強度、スペクトル幅などの情報を解析することにより、試料205に含まれる物質が特定、定量される。 From the signal detected by the detection unit 207, a Raman scattering spectrum is created and displayed as appropriate by the analysis device. By analyzing information such as the Raman shift, Raman scattered light intensity, and spectrum width of the Raman scattering spectrum, the substance contained in the sample 205 is specified and quantified.
 本発明は上述した実施例に限定されるものではなく、発明の趣旨を逸脱しない範囲で適宜、変形、追加、改良等を行うことが可能である。 The present invention is not limited to the above-described embodiments, and appropriate modifications, additions, improvements, and the like can be made without departing from the spirit of the invention.
 上記例では反射部203と検出部207の間に前記検出集光光学系206のコリメート部206Aを配置した場合を説明したが、該コリメート部206Aに替えて、試料面と反射部203の間に前記検出集光光学系206のコリメート部206Cを配置しても良い。試料面と反射部203の間に前記検出集光光学系206のコリメート部206Cを配置する場合には、該試料面に入射する光束の光路上に開口を有するものを用いる。これにより、検出集光光学系206に入射光束や反射光束が照射されて蛍光が発生することを防ぐことができる。また、このコリメート部206Cを含む検出集光光学系206を試料面と反射部203の間に配置することにより、試料から放出され広角に発散する散乱光を、より多く検出器に入射させることができる。 In the above example, the case where the collimating portion 206A of the detection condensing optical system 206 is disposed between the reflecting portion 203 and the detecting portion 207 has been described. However, instead of the collimating portion 206A, a gap between the sample surface and the reflecting portion 203 is described. A collimating portion 206C of the detection condensing optical system 206 may be disposed. When the collimating portion 206C of the detection condensing optical system 206 is disposed between the sample surface and the reflecting portion 203, the one having an opening on the optical path of the light beam incident on the sample surface is used. As a result, it is possible to prevent the detection light collecting optical system 206 from being irradiated with an incident light beam or a reflected light beam and generating fluorescence. Further, by arranging the detection condensing optical system 206 including the collimating portion 206C between the sample surface and the reflecting portion 203, more scattered light emitted from the sample and diverging at a wide angle can be incident on the detector. it can.
 本発明の実施例のラマン分光分析装置の光学系の第一の変形例を図4を参照して説明する。上述の実施例のラマン分光分析装置の図3に示す表面ミラー型コンバイン光学系300に替えて、第一の変形例では図4に示す表面ミラー型コンバイン光学系400を用いる。図4の表面ミラー型コンバイン光学系400は、図3と同様に反射面401を有するミラー402、支持体410からなる。図4の支持体410は1枚の板から作製され、3本のスポーク(支持棒)および円環構造を有するフレーム(外枠)404から成る。支持体410が構造上十分に強固であり、かつ、スポークおよび円環構造で囲まれた開口面積が必要な透過特性を有していれば例示の構造に限定されない。したがって、スポークは円環構造に溶接や接着などの手段で接合されていても良いし、スポークの本数は2本もしくは4本以上でも良い。 A first modification of the optical system of the Raman spectroscopic analyzer according to the embodiment of the present invention will be described with reference to FIG. In the first modification, a surface mirror type combine optical system 400 shown in FIG. 4 is used instead of the surface mirror type combine optical system 300 shown in FIG. The surface mirror type combine optical system 400 in FIG. 4 includes a mirror 402 having a reflecting surface 401 and a support 410 as in FIG. The support 410 shown in FIG. 4 is made of a single plate, and includes three spokes (support bars) and a frame (outer frame) 404 having an annular structure. The structure is not limited to the illustrated structure as long as the support body 410 is sufficiently strong in structure and has an opening area surrounded by a spoke and an annular structure having necessary transmission characteristics. Therefore, the spokes may be joined to the annular structure by means such as welding or adhesion, and the number of spokes may be two or four or more.
 本発明の実施例のラマン分光分析装置の光学系の第二の変形例を図5を参照して説明する。上述の実施例のラマン分光分析装置の図3に示す表面ミラー型コンバイン光学系に替えて、第二の変形例では図5に示す裏面ミラー型コンバイン光学系500を用いる。図5の裏面ミラー型コンバイン光学系500は、反射面502を有するロッド501及びその裏面側(試料面とは反対の側)に固定された透明支持板503からなる。励起光は、図中に示した矢印の方向からロッド501に入射し、ロッド501の下端に45度の傾きで設けられた反射面502により試料面側に出射される。 A second modification of the optical system of the Raman spectroscopic analyzer according to the embodiment of the present invention will be described with reference to FIG. In the second modification, the back mirror type combine optical system 500 shown in FIG. 5 is used instead of the front side mirror type combine optical system shown in FIG. The back mirror type combined optical system 500 shown in FIG. 5 includes a rod 501 having a reflecting surface 502 and a transparent support plate 503 fixed to the back surface side (the side opposite to the sample surface). Excitation light enters the rod 501 from the direction of the arrow shown in the figure, and is emitted to the sample surface side by the reflecting surface 502 provided at a lower end of the rod 501 with an inclination of 45 degrees.
 図5に示す裏面ミラー型コンバイン光学系500を用いる場合、励起光がロッド501中を通過する間にロッド501に起因する蛍光が生じてしまう。そこで、該ロッド501起因の蛍光が検出部207側に向かうことを防ぐために、ロッド501の透明支持板503と接する面(裏面)には光反射膜もしくは光吸収膜として機能する蛍光遮蔽膜504が形成されていることが好ましい。 When the back mirror type combine optical system 500 shown in FIG. 5 is used, fluorescence due to the rod 501 is generated while the excitation light passes through the rod 501. Therefore, in order to prevent the fluorescence caused by the rod 501 from moving toward the detection unit 207 side, a fluorescent shielding film 504 functioning as a light reflecting film or a light absorbing film is provided on the surface (back surface) of the rod 501 in contact with the transparent support plate 503. Preferably it is formed.
 本発明の実施例のラマン分光分析装置の光学系の第三の変形例を図6を参照して説明する。図6の裏面ミラー型コンバイン光学系600は、図5の裏面ミラー型コンバイン光学系500から透明支持板503を除き、ロッド601のみで構成したものである。その他の構成は図5の裏面ミラー型コンバイン光学系と同様であり、ロッド601の下端には励起光を試料面側に反射する反射面602が、ロッド601の背面にはロッド601で発生した蛍光が検出部207側に向かわないようにするための蛍光遮蔽膜604が形成されている。 A third modification of the optical system of the Raman spectroscopic analyzer according to the embodiment of the present invention will be described with reference to FIG. The back mirror type combine optical system 600 in FIG. 6 is configured by only the rod 601 except for the transparent support plate 503 from the back mirror type combine optical system 500 in FIG. The other configuration is the same as that of the back mirror type combine optical system of FIG. 5. Is formed on the fluorescent light shielding film 604 so as not to face the detection unit 207 side.
 本発明の実施例のラマン分光ガス分析装置の光学系の第四の変形例を図2および図7を参照して説明する。上述の実施例のラマン分光分析装置の図3に示す表面ミラー型コンバイン光学系に替えて、第四の変形例では図7に示す裏面ミラー型コンバイン光学系700を用いる。図7に示す裏面ミラー型コンバイン光学系700は、第1の反射面702および第2の反射面704を有する透明板701からなる。第1の反射面702は透明板701の一方の端部に設けられ、図中に示した矢印の方向から入射する励起光が入射する部分のみに窓703が空けられている。第1の反射面702は、不要な光が本透明板701に入射することを防止するために設けられているものであるが、その目的で他の措置が施されている場合には、特に必要はない。第2の反射面704は、透明板701の内部に45度の傾きで設けられ、透明板701中を通過する励起光を直角に曲げて試料面に向けて出射するようになっている。 A fourth modification of the optical system of the Raman spectroscopic gas analyzer of the embodiment of the present invention will be described with reference to FIG. 2 and FIG. In the fourth modification, a back mirror type combine optical system 700 shown in FIG. 7 is used in place of the front side mirror type combine optical system shown in FIG. 3 of the Raman spectroscopic analyzer of the above-described embodiment. A back mirror type combine optical system 700 shown in FIG. 7 includes a transparent plate 701 having a first reflecting surface 702 and a second reflecting surface 704. The first reflecting surface 702 is provided at one end of the transparent plate 701, and a window 703 is opened only in a portion where excitation light incident from the direction of the arrow shown in the drawing is incident. The first reflecting surface 702 is provided to prevent unnecessary light from entering the transparent plate 701, but particularly when other measures are taken for that purpose. There is no need. The second reflecting surface 704 is provided inside the transparent plate 701 with an inclination of 45 degrees, and the excitation light passing through the transparent plate 701 is bent at a right angle and emitted toward the sample surface.
 図7に示す裏面ミラー型コンバイン光学系700を用いる場合、励起光が透明板701を通過する間に透明板701に起因する蛍光が生じてしまう。この蛍光が検出部207側に向かうことを防ぐために、透明板701の背面(検出部207側の面)の、窓703に対応する部分には光反射膜もしくは光吸収膜として機能する蛍光遮蔽膜705が形成されていることが好ましい。 When the back mirror type combine optical system 700 shown in FIG. 7 is used, fluorescence due to the transparent plate 701 is generated while the excitation light passes through the transparent plate 701. In order to prevent this fluorescence from going to the detection unit 207 side, a fluorescent shielding film that functions as a light reflection film or a light absorption film on the back surface of the transparent plate 701 (surface on the detection unit 207 side) corresponding to the window 703 705 is preferably formed.
100…ガス成分分析装置
101…レーザ光源
102…レンズ
103…ビームスプリッタ
104…試料室窓
105…試料室
106…レンズ
107…検出部
108…データ解析装置
200…ラマン分光分析装置
201…レーザ光源
202…照射集光光学系
203…反射部
204…光透過窓
205…試料
206…検出集光光学系
206A、206C…コリメート部
206B…集光部
207…検出部
208…励起光ファイバ
209…分光光ファイバ
210、410、610…支持体
300、400…表面ミラー型コンバイン光学系
301、401、502、602…反射面
303…透明平行平板
402…ミラー
404…フレーム
500、600、700…裏面ミラー型コンバイン光学系
501、601…ロッド
503…透明支持板
504、604、705…蛍光遮蔽膜
701…透明板
702…第1の反射面
703…窓
704…第2の反射面
DESCRIPTION OF SYMBOLS 100 ... Gas component analyzer 101 ... Laser light source 102 ... Lens 103 ... Beam splitter 104 ... Sample chamber window 105 ... Sample chamber 106 ... Lens 107 ... Detection part 108 ... Data analyzer 200 ... Raman spectroscopic analyzer 201 ... Laser light source 202 ... Irradiation condensing optical system 203... Reflecting section 204. Light transmitting window 205... Sample 206... Detection condensing optical system 206 A, 206 C. , 410, 610... Support 300, 400... Front mirror type combined optical system 301, 401, 502, 602... Reflecting surface 303. 501, 601 ... Rod 503 ... Transparent support plates 504, 604, 05 ... fluorescent shielding film 701 ... transparent plate 702 ... first reflecting surface 703 ... window 704 ... second reflecting surface

Claims (6)

  1.  a) 光源から発せられる光束を、試料面に向けて、該試料面に対して垂直な方向に反射する反射部材と、
     b) 前記光束を試料に集光する照射集光部と、
     c) 前記試料から放出され、前記反射部材の周囲に後方散乱される散乱光を検出する検出部と、
    を備え、前記検出部が前記反射部材を挟んで前記試料面の反対側に配置されており、前記試料面で反射した前記光束は、前記反射部材によって前記検出部とは異なる方向に反射され、前記検出部には入射しないラマン分光分析装置。
    a) a reflecting member that reflects the light beam emitted from the light source toward the sample surface in a direction perpendicular to the sample surface;
    b) an irradiation condensing unit for condensing the luminous flux on the sample;
    c) a detector that detects scattered light emitted from the sample and backscattered around the reflecting member;
    The detection unit is disposed on the opposite side of the sample surface across the reflection member, and the light beam reflected by the sample surface is reflected in a direction different from the detection unit by the reflection member, A Raman spectroscopic analyzer that does not enter the detector.
  2.  前記反射部材が、前記散乱光を透過させる透明な支持板と、該支持板に固定された反射鏡とを含む、請求項1に記載のラマン分光分析装置。 The Raman spectroscopic analyzer according to claim 1, wherein the reflecting member includes a transparent support plate that transmits the scattered light and a reflecting mirror fixed to the support plate.
  3.  前記反射部材が、外枠と、該外枠から内側に突出した支持棒と、該支持棒に固定された反射鏡とを含む、請求項1に記載のラマン分光分析装置。 The Raman spectroscopic analysis apparatus according to claim 1, wherein the reflecting member includes an outer frame, a support rod protruding inward from the outer frame, and a reflecting mirror fixed to the support rod.
  4.  前記反射部材が、一端に反射面が形成された導光棒を含み、該導光棒の前記検出部側の面が蛍光遮蔽面とされている、請求項1に記載のラマン分光分析装置。 The Raman spectroscopic analysis apparatus according to claim 1, wherein the reflection member includes a light guide bar having a reflection surface formed at one end, and a surface of the light guide bar on the detection unit side is a fluorescent shielding surface.
  5.  前記反射部材が、前記導光棒の前記検出部側に固定された、前記散乱光について透明な背板を有し、前記蛍光遮蔽面が該導光棒と該背板の間の面に形成されている、請求項4に記載のラマン分光分析装置。 The reflection member has a back plate that is fixed to the detection unit side of the light guide rod and is transparent with respect to the scattered light, and the fluorescent shielding surface is formed on a surface between the light guide rod and the back plate. The Raman spectroscopic analyzer according to claim 4.
  6.  前記反射部材が、内部に反射面を有する、前記散乱光について透明な板を含み、前記光源からの光束が通過する部分の前記検出部側の面が蛍光遮蔽面とされている、請求項1に記載のラマン分光分析装置。 The surface of the detection part side of the part through which the said reflection member has a reflective surface in the inside and is transparent about the said scattered light and the light beam from the said light source passes is made into the fluorescence shielding surface. The Raman spectroscopic analyzer described in 1.
PCT/JP2014/066017 2013-07-11 2014-06-17 Raman spectroscopy device WO2015005073A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015526231A JP6176327B2 (en) 2013-07-11 2014-06-17 Raman spectrometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013145358 2013-07-11
JP2013-145358 2013-07-11

Publications (1)

Publication Number Publication Date
WO2015005073A1 true WO2015005073A1 (en) 2015-01-15

Family

ID=52279759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066017 WO2015005073A1 (en) 2013-07-11 2014-06-17 Raman spectroscopy device

Country Status (2)

Country Link
JP (1) JP6176327B2 (en)
WO (1) WO2015005073A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU194268U1 (en) * 2019-08-07 2019-12-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" (СГУГиТ) Detector for the detection and control of drugs, drugs and toxic agents

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10501071A (en) * 1995-03-23 1998-01-27 ベックマン インスツルメンツ インコーポレーテッド Automated optical alignment device and method using Raman scattering of capillary contents
JP2002525651A (en) * 1998-09-15 2002-08-13 ライカ ミクロジュステムス ハイデルベルク ゲーエムベーハー Optics in the beam path of a confocal fluorescence microscope
JP2002543370A (en) * 1999-02-26 2002-12-17 ジーエスアイ・ルモニクス,インコーポレイテッド Image forming system for optical scanner
JP2007232374A (en) * 2006-02-27 2007-09-13 Shikoku Res Inst Inc Hydrogen gas visualization method and system by raman scattering light
JP2010156557A (en) * 2008-12-26 2010-07-15 Horiba Ltd Incident optical system and raman scattering measurement apparatus
JP2011232107A (en) * 2010-04-26 2011-11-17 Jasco Corp Spectrometry, spectrometer and cylindrical member
WO2014077158A1 (en) * 2012-11-15 2014-05-22 シャープ株式会社 Fluorescence detection device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4343076C2 (en) * 1993-12-16 1997-04-03 Phototherm Dr Petry Gmbh Device for photothermal testing of a surface of an object in particular being moved
JP2007271529A (en) * 2006-03-31 2007-10-18 Soma Kougaku:Kk Microscopic fluorescence observation device
JP5425131B2 (en) * 2011-03-29 2014-02-26 三菱電機株式会社 Raman spectroscopic device and identification device using the same
JP5542789B2 (en) * 2011-12-19 2014-07-09 三菱電機株式会社 Recycled plastic identification device, sorting device, identification method and manufacturing method
JP2013246030A (en) * 2012-05-25 2013-12-09 Asahi Kasei Electronics Co Ltd Position detector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10501071A (en) * 1995-03-23 1998-01-27 ベックマン インスツルメンツ インコーポレーテッド Automated optical alignment device and method using Raman scattering of capillary contents
JP2002525651A (en) * 1998-09-15 2002-08-13 ライカ ミクロジュステムス ハイデルベルク ゲーエムベーハー Optics in the beam path of a confocal fluorescence microscope
JP2002543370A (en) * 1999-02-26 2002-12-17 ジーエスアイ・ルモニクス,インコーポレイテッド Image forming system for optical scanner
JP2007232374A (en) * 2006-02-27 2007-09-13 Shikoku Res Inst Inc Hydrogen gas visualization method and system by raman scattering light
JP2010156557A (en) * 2008-12-26 2010-07-15 Horiba Ltd Incident optical system and raman scattering measurement apparatus
JP2011232107A (en) * 2010-04-26 2011-11-17 Jasco Corp Spectrometry, spectrometer and cylindrical member
WO2014077158A1 (en) * 2012-11-15 2014-05-22 シャープ株式会社 Fluorescence detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU194268U1 (en) * 2019-08-07 2019-12-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" (СГУГиТ) Detector for the detection and control of drugs, drugs and toxic agents

Also Published As

Publication number Publication date
JP6176327B2 (en) 2017-08-09
JPWO2015005073A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
KR20110127122A (en) Sample analyzing apparatus
JP5975175B2 (en) Raman spectrometer
JP2011013167A (en) Spectrofluorometer and sample cell
JP5272965B2 (en) Fluorescence detector
CN112414992A (en) Raman spectrum excitation enhancement module
CN105784643B (en) A kind of devices and methods therefor reducing gas Raman spectrum fluorescence background
JP2012037344A (en) Optical type gas sensor and gas concentration measuring method
KR20170052256A (en) Apparatus and method for measuring concentration of material
US10458917B2 (en) Method of measuring Raman scattering and related spectrometers and laser sources
JP2008542771A (en) Spectrometer for measuring shift spectrum distribution
US8525988B2 (en) Miniaturized confocal spectrometer
KR20150051579A (en) Laser induced plazma spectroscopic analyzer
JP6176327B2 (en) Raman spectrometer
JP2012526972A5 (en)
CN212059104U (en) Wide-spectrum high-sensitivity Raman spectrometer
JP4141985B2 (en) Spectrofluorometer and sample cell
JP2008026127A (en) Spectral unit, and meteorological observation lidar system
JP2021051074A (en) Spectroscopic analyzer
JP6129014B2 (en) Fluorescence detection apparatus and fluorescence detection method
JP2016114532A (en) Photothermal conversion spectroscopic analyzer
JP4013868B2 (en) Fluorescence detection device
JP4136891B2 (en) Fluorescence measurement device for measuring fluorescence image / spectrum
US20150015878A1 (en) Raman spectroscopic analyzing apparatus
JP2000329682A (en) Analyzer for simultaneous execution of raman spectroscopic analysis and particle size distribution measurement
JP2009294392A (en) Laser scanning type microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14822652

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015526231

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14822652

Country of ref document: EP

Kind code of ref document: A1