WO2014207834A1 - Al-Sc合金の製造方法 - Google Patents

Al-Sc合金の製造方法 Download PDF

Info

Publication number
WO2014207834A1
WO2014207834A1 PCT/JP2013/067503 JP2013067503W WO2014207834A1 WO 2014207834 A1 WO2014207834 A1 WO 2014207834A1 JP 2013067503 W JP2013067503 W JP 2013067503W WO 2014207834 A1 WO2014207834 A1 WO 2014207834A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
molten
reaction
metal
molten salt
Prior art date
Application number
PCT/JP2013/067503
Other languages
English (en)
French (fr)
Inventor
杉田 薫
政仁 谷津倉
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to US14/424,348 priority Critical patent/US9422611B2/en
Priority to JP2013544960A priority patent/JP5445725B1/ja
Priority to PCT/JP2013/067503 priority patent/WO2014207834A1/ja
Publication of WO2014207834A1 publication Critical patent/WO2014207834A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining
    • C22B21/062Obtaining aluminium refining using salt or fluxing agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium

Definitions

  • the present invention relates to an Al—Sc alloy production method suitable for producing an Al—Sc alloy, and an Al—Sc alloy obtained by the production method.
  • Patent Document 1 discloses that by including 0.05 to 0.3% by mass of Sc and 0.1 to 0.4% by mass of Zr in a pure Al matrix, electrical conductivity is good and mechanical properties are improved. It has been introduced that an aluminum alloy material having high strength and excellent heat resistance can be obtained as an aluminum-based alloy wiring material.
  • an aluminum-based alloy containing Sc is expected to be industrially useful, conventionally, its use has been extremely limited. This is because the metal Sc is easily oxidized and the reduction in obtaining the metal Sc from a scandium compound (Sc compound) such as a halide or a chalcogenide of Sc is accompanied by difficulty. That is, in order to obtain Sc as a metal, an alkali metal such as Na, which is more easily oxidized than Sc, or an alkaline earth metal such as Ca or Mg is used as a reducing agent, and the Sc compound is reduced or melted under heating. This is because it is necessary to reduce by salt electrolysis.
  • Sc compound scandium compound
  • Ca or Mg alkaline earth metal
  • Patent Document 2 Sc halide is charged into a vacuum reaction vessel together with metal Ca, metal Zn, etc., and the Sc halide is reduced with metal Ca to obtain a Sc—Zn alloy.
  • the Sc—Zn alloy phase is separated from the halide phase containing Ca oxide and pulverized, and the alloy powder obtained by pulverization is oxidized to form a thin oxide film on the powder surface.
  • a technique is disclosed in which a metal Sc powder is obtained by charging the inside of a vacuum vessel having an inert gas atmosphere and heating it under vacuum to volatilize and evaporate Zn or the like as an alloy component.
  • a molten metal Al floated in an upper layer in a molten salt electrolytic bath mainly composed of an alkali metal or alkaline earth metal fluoride and a fluoride of a rare earth element such as Sc, Y, or a lanthanoid.
  • a cathode Is used as a cathode, and the anode is protected with an insulator so as not to come into contact with the molten metal Al in the upper layer, and an electrolytic reduction is performed to manufacture an aluminum-based alloy containing a rare earth element.
  • aluminum containing Sc is allowed to react with the metal Al as it is without using a step of reducing Sc from the compound to a metal.
  • Several techniques for obtaining a base alloy have been proposed.
  • Patent Document 4 discloses a technique in which a rare earth element compound is reacted with aluminum in the presence of a calcium chloride flux to obtain an aluminum-based alloy containing the rare earth element.
  • a halogenated Sc such as ScF 3 and a metal Al are charged into a reaction vessel together with a metal Ca serving as a reducing agent, LiF serving as a flux, and CaCl 2.
  • a metal Ca serving as a reducing agent
  • LiF serving as a flux
  • CaCl 2 serving as a flux
  • the solidification temperature of Al or 100 ° C. lower than the solidification temperature By cooling the range up to the temperature at a cooling rate of 10 to 70 ° C. per minute, Sc high density precipitates and low density precipitates are formed in the Al—Sc alloy.
  • rare earth element oxide or halide powder such as Sc is mixed with powder of light metal such as Al, Mg, etc., and the resulting mixture is formed into a pellet by compression molding, and then the surface of the pellet Disclosure of a technology for obtaining a light metal alloy containing a rare earth element by increasing the wettability of the light metal in the molten metal and then putting it into a molten light metal bath and reducing the rare earth oxide or halide with the light metal Has been.
  • Patent Document 7 discloses a technique for reacting an oxide of a rare earth element with a metal Al as a method for producing an aluminum-based alloy containing Y and a lanthanoid rare earth element.
  • Patent Document 4 a rare earth element compound as a raw material is reduced with metal Al, and the reaction temperature at that time is required to be 1200 ° C. or higher.
  • AlCl 3 , HCl, etc. which are reaction products and have a high vapor pressure, volatilize, and such gas is very corrosive, and it is necessary to use an expensive corrosion-resistant material as a crucible material.
  • there are limitations in handling such as environmental pollution countermeasures and there is a problem that the oxidation consumption of Al and the required heat energy are enormous, which is not economical.
  • Patent Document 5 since the halogenated Sc is reduced under an inert gas atmosphere with a metal Ca serving as a reducing agent, the residual portion of the metal Ca is evaporated and removed under a vacuum atmosphere.
  • metal Ca serving as a reducing agent
  • Patent Document 6 a rare earth element oxide or halide powder such as Sc is mixed with a light metal powder and then formed into a pellet by compression molding. Further, the pellet surface is wetted with respect to the melt of the light metal. As in the case of Patent Document 5, it is difficult to reduce costs and improve economy, because the manufacturing process is multi-stage, such as the need to improve performance.
  • the rare earth element is Y and lanthanoid and Sc is not contained, but the melt of the aluminum-based alloy containing the rare earth element produced in the reaction process is the other reaction product. It is located above the aluminum oxide powder that is exposed to the outside atmosphere, so the reaction system must be maintained in an inert gas atmosphere, and the raw material is heated and melted in an inert gas atmosphere. Therefore, even in the technique of Patent Document 7, there is a problem that it is difficult to reduce cost and improve economy.
  • the present invention has been devised in view of such a viewpoint, and is a method suitable for manufacturing an Al—Sc alloy, including equipment for heating in an inert gas atmosphere or a vacuum atmosphere.
  • reducing agents such as metal Ca and equipment and power for molten salt electrolysis are not required, and heating up to 1050 ° C. is sufficient, and the manufacturing process is simple and simple.
  • An object of the present invention is to provide a method for producing an Al—Sc alloy that can reduce the risk of occurrence and can be continuously operated, and can easily improve the economy.
  • the present invention relates to metal aluminum (Al), one or more metal fluoride salts selected from the group consisting of alkali metal fluorides, alkaline earth metal fluorides and aluminum fluorides, scandium ( (Sc) oxide and / or a scandium compound comprising a fluoride salt is charged into a reaction vessel, and the reaction system comprises the metal aluminum (Al), the metal fluoride salt and the scandium compound in the reaction vessel.
  • reaction temperature of the reaction system is in the range of 700 to 1050 ° C., and the metal fluoride salt has a melting point lower than the reaction temperature and a density of molten metal aluminum at the reaction temperature of the reaction system.
  • a metal fluoride salt having a density in the range of 70 to 95% is used, and in the reaction system in the reaction vessel, the molten salt layer is an upper layer and the molten metal layer is a lower layer. This is a method for producing an Al—Sc alloy.
  • the present invention is an Al—Sc alloy manufactured by the above-described method.
  • the metal fluoride salt charged into the reaction vessel to form the molten salt layer is selected from the group consisting of alkali metal fluorides, alkaline earth metal fluorides, and aluminum fluoride (AlF 3 ).
  • the alkali metal fluorides include lithium fluoride (LiF), sodium fluoride (NaF), potassium fluoride (KF), cesium fluoride (CsF), etc.
  • Examples of alkaline earth metal fluorides include beryllium fluoride (BeF 2 ), magnesium fluoride (MgF 2 ), and calcium fluoride (CaF 2 ).
  • the reaction temperature of the reaction system in the range of 700 to 1050 ° C.
  • the desired density at the reaction temperature in the range of 70 to 95% of the density of the molten metal Al at the reaction temperature of the reaction system.
  • it is a mixture of LiF and NaF. More preferably, the mixture of LiF and NaF is in a mass ratio (LiF: NaF) in the range of 7: 5 to 8: 5.
  • Metal fluoride salt comprising such mixtures, an a melting point 652 ⁇ 675 ° C., a 1.99kg / dm 3 when its density is 760 °C, 1.88kg / dm 3 when 980 ° C. In the molten state, it is not compatible with the molten metal Al or the molten Al—Sc alloy forming the molten metal layer.
  • the scandium compound (Sc compound) that is charged into the molten salt layer and generates scandium ions (Sc 3+ ) during the reaction is an oxide (Sc 2 O 3 ) and / or fluoride salt of scandium (Sc).
  • a (ScF 3) according to the production of a continuous Al-Sc based alloys aspect, preferably scandium oxide (Sc 2 O 3).
  • the reaction system in the reaction vessel it is necessary that the molten salt layer is an upper layer and the molten metal layer is a lower layer, and the molten metal layer is not in contact with air, and the reaction system is left standing.
  • the reaction may be allowed to proceed, and as long as the molten metal layer does not come into contact with air, the reaction system may be stirred as necessary, thereby further promoting the chemical reaction.
  • the reaction temperature of this reaction system is usually in the range of 700 ° C. or higher and 1050 ° C. or lower, and when it is lower than 700 ° C., it approaches the melting point of Al (660 ° C.), and Al 3 Sc is locally generated and reacted.
  • the product Al-Sc alloy may become inhomogeneous, and when using scandium (Sc) oxide (Sc 2 O 3 ) as a scandium compound (Sc compound) Since the solubility of scandium oxide (Sc 2 O 3 ) is low, there is a problem that the chemical reaction rate is limited. On the other hand, when the temperature is higher than 1050 ° C., the required heat energy becomes large and expensive heat-resistant material. Must be used as a reaction vessel, and the vapor pressure of the molten salt becomes high, resulting in a large evaporation loss. This increases the cost and causes problems such as environmental pollution countermeasures. .
  • the density of the molten salt at the reaction temperature of the reaction system is the reaction of the reaction system. It should be in the range of 70% or more and 95% or less of the density of molten metal aluminum at a temperature, and in order to make it less than 70%, the blending ratio of expensive lithium fluoride (mp: 848 ° C) having a high melting point is required. On the other hand, there is a problem that the economy is lowered because it is necessary to increase the density.
  • the density of the molten salt increases with the dissolution of the Sc compound, and the density of the molten salt layer is reduced.
  • the molten metal layer is exposed on the upper part of the molten salt layer and comes into contact with air, and the molten metal reacts with oxygen in the air to oxidize, thereby reducing the recovery rate of the Al—Sc alloy for manufacturing purposes. The problem arises.
  • metal aluminum (Al), metal fluoride salt and Sc compound are placed in the reaction vessel. Then, the reaction system may be formed by raising the temperature to the reaction temperature, but the metal aluminum (Al) and the metal fluoride salt are charged into the reaction vessel and the temperature is raised to the reaction temperature in advance. A molten metal layer and a molten salt layer may be formed, and then an Sc compound may be added into the molten salt layer to generate scandium ions (Sc 3+ ) in the molten salt layer.
  • equipment for heating under an inert gas atmosphere or vacuum atmosphere equipment for reducing agent such as metal Ca, molten salt electrolysis, and power
  • heating up to 1050 ° C is sufficient, the manufacturing process is simple and simple, there is little risk of molten salt depletion and environmental contamination, and continuous operation is also possible. The economy can be improved.
  • FIG. 1 is an explanatory view showing an example of a manufacturing apparatus used for carrying out the present invention.
  • metal Al, metal fluoride salt, and Sc compound are charged into a reaction vessel, and the reaction system in the reaction vessel is heated so that the reaction temperature is in the range of 700 to 1050 ° C. Melting and forming a molten metal layer and a molten salt layer, and adjusting the density of the metal fluoride salt to be 70 to 95% of the density of the molten metal Al at the reaction temperature, The molten metal Al layer having a low Sc concentration is formed in the lower part of the reaction system, and the molten salt layer is formed in contact with the upper part of the reaction system. The interface between the molten salt layer and the molten metal layer at this time The following chemical reaction represented by the reaction formula (1) occurs.
  • the reaction direction at the interface between the molten salt layer and the molten metal layer shown in the reaction formula (1) is not only the difference in free energy of formation of Sc salt and Al salt, but also Sc 3+ ions and Al in the molten salt layer. It is determined by the activity of 3+ ions and the activity of Sc in the molten metal Al.
  • the activity of Sc 3+ ions in the molten salt layer is large, the activity of Al 3+ ions in the molten salt layer and the activity of Sc in the molten metal are small, and the reaction is caused by the difference in the activities.
  • the number of moles of Sc that is reduced and alloyed to the molten metal Al is equal to the number of moles of Al 3+ ions that are oxidized from the molten metal Al, ionized, and dissolved in the molten salt layer, Accompanying the reaction, the concentration of Sc metal in the molten metal Al increases and at the same time the concentration of Al 3+ ions in the molten salt layer also increases.
  • Such an activity change is a change in a direction in which the reaction stops, and finally, each of the activities reaches an equilibrium state, and the reaction stops, but within the scope of the present invention,
  • the activity of each ion involved in the reaction formula (1) is substantially proportional to the concentration of each ion. Accordingly, in order to efficiently produce the Al—Sc alloy by proceeding the reaction of the reaction formula (1) to the right, the Sc 3 in the molten salt layer before the reaction expressed in mol percentage (mol%). + The ion concentration (Sc 3+ concentration) is kept high, while the Al 3+ ion concentration (Al 3+ concentration) is kept low, and the molten metal before the reaction expressed in mol percentage (mol%). It is necessary to keep the Sc concentration (Sc concentration) in the layer low.
  • the reaction temperature of the reaction system is set to 700 to 1050 ° C., and a molten salt layer having a melting point lower than the reaction temperature is provided in the reaction vessel.
  • a molten metal layer in a molten state at the reaction temperature is provided in contact with the molten salt layer at the bottom of the molten salt layer in the reaction vessel, and an Sc compound is charged into the molten salt layer, dissolved, and melted.
  • the molten salt layer exists above the molten metal layer, oxidation of the reaction product Al—Sc alloy is prevented without making the reaction system an inert gas atmosphere or a vacuum atmosphere.
  • the reaction temperature of the reaction system is 700 to 1050 ° C., evaporation from the molten salt layer can be suppressed as much as possible, and the risk of depletion of the molten salt and environmental pollution is reduced.
  • the reaction to the right side of the reaction formula (1) is such that the Sc 3+ concentration in the molten salt layer is maintained high, the Sc concentration in the molten metal Al is maintained low, and the molten salt layer If the formed Al 3+ ions form a compound having low solubility in the molten salt, the concentration of Al 3+ in the molten salt layer does not increase, so that the Al 3+ ion continuously turns to the right.
  • the reaction formula (1) depends on the Al 3+ concentration and the Sc 3+ concentration in the molten salt layer, but the type of molten salt and Sc as a raw material Since the concentration varies depending on the type of compound, reaction temperature, and the like, even if the concentration of these ions is the same, the Sc concentration finally transferred into the molten metal layer and incorporated as an alloy element is different.
  • the target Sc of the alloy element Sc in the Al—Sc alloy after the reaction which is the production purpose, is used.
  • the following relational expression (2) shows the relationship between the concentration F Sc , the Sc 3+ concentration P Sc in the molten salt layer as the raw material, and the Sc concentration C Sc of the rare earth metal in the molten metal Al before the reaction. It is necessary to maintain it. That is, in the reaction system of the present invention, by adopting the conditions as shown in the following relational expression (2), the Sc compound in the molten salt layer is efficiently reacted with the molten metal Al and alloyed. An Al—Sc alloy can be produced. 0.3 ⁇ (F Sc ⁇ C Sc ) / P Sc ⁇ 1.5 (2)
  • FIG. 1 shows a schematic view of an example of a production apparatus for carrying out the method for producing an Al—Sc alloy of the present invention.
  • This production apparatus comprises a reaction vessel 14 and a heating furnace 10 that surrounds the reaction vessel 14 and incorporates a heater 12, and the heater 12 can heat the reaction vessel 14 to at least 1050 ° C.
  • the reaction vessel 14 and the heating furnace 10 are made of a material capable of withstanding a temperature of at least 1050 ° C., and the reaction vessel 14 is provided with a reaction vessel 14 for stirring the reaction system so that the molten metal layer does not come into contact with air if necessary. Further, a stirring means (not shown) such as a stirring blade is provided.
  • a metal fluoride salt made of a mixture containing the above LiF and NaF in a weight ratio (LiF: NaF) in the range of 7: 5 to 8: 5 is placed in the reaction vessel 14.
  • the mixture is heated to a reaction temperature selected from 700 to 1050 ° C. and melted to form a molten salt layer 16, and metal Al is charged into the reaction vessel 14 and heated to the reaction temperature and melted.
  • a molten metal layer 18 is made to coexist with the molten salt layer 16.
  • the melting point of the metal Al is 660 ° C., and the densities of the molten metal Al at 760 ° C. and 980 ° C.
  • the density of the molten mixed salt obtained by melting [1.99 kg / dm 3 (760 ° C.), 1.88 kg / dm 3 (980 ° C.)] is 84% and 82% of the molten metal Al, respectively.
  • the molten salt layer 16 and the molten metal layer 18 are separated, and the molten salt layer 16 becomes the upper layer and the molten metal layer 18 becomes the lower layer.
  • the Sc compound is charged into the reaction vessel 14 and dissolved in the molten salt layer 16, and Sc 3+ ions are introduced into the molten salt layer 16.
  • the recovery-purpose Al—Sc alloy is an Al-1.2 mol% Sc alloy, the recovery amount of the alloy is 1.0 mol, and no Sc is contained in the molten metal layer 18 as a raw material.
  • the Sc 3+ concentration in the molten salt layer 16 increases as the Sc compound charged in the reaction vessel 14 is dissolved, and at the same time, the density of the molten salt layer 16 increases. If the concentration of Sc 3+ is up to about 5 mol%, the increase in density is up to about 0.02 kg / dm 3 , and this increase in density (0.02 kg / dm 3 ) is the density of molten metal Al. Since the density of the molten salt layer 16 is 70 to 95% of the density of the molten metal layer 18, the density of the molten salt layer 16 exceeds the density of the molten metal layer 18, Inside the reaction vessel 14, the molten metal layer 18 is not exposed to the upper part of the molten salt layer 16 and comes into contact with air.
  • the Al 3+ ions generated by the chemical reaction of the reaction formula (1) are dissolved in the molten salt layer 16, thereby increasing the concentration of Al 3+ in the molten salt layer 16.
  • the molten metal layer 18 that is in the lower part and is in contact with the molten salt layer is within the range up to its solubility limit and satisfies the relational expression (2) with respect to the Al 3+ concentration in the molten salt layer 16. Sc is melted to such a value that a molten Al—Sc alloy is formed, and the molten metal Al gradually becomes a molten Al—Sc alloy.
  • such a chemical reaction occurs at 700 to 1050 ° C., and the density of the molten salt is lower than the density of the molten metal Al within a predetermined range.
  • the surface of the metal layer 18 is protected by the molten salt layer 16, and oxidation of the reaction product Al—Sc alloy can be prevented without using an inert gas atmosphere or a vacuum atmosphere.
  • the density of the molten salt layer 16 decreases with the progress of the reaction, and on the other hand, the density of the molten metal layer 18 increases. There is no need to take measures such as stopping energization to adjust the density (or specific gravity) of each layer during the chemical reaction, and the operation is simple and easy.
  • the molten metal layer 18 is sampled from the reaction vessel.
  • the molten metal layer 18 is external to the reaction vessel 14. As long as it can be transported to the surface, it is not particularly limited, and it can be appropriately carried out by a conventionally known method or the like.
  • a molten Al—Sc alloy can be continuously produced.
  • the metal Al and the Sc compound are newly charged into the reaction vessel 14 while keeping the reaction vessel 14 within a predetermined reaction temperature range.
  • the molten salt layer 16 remaining in the reaction vessel 14 may be melted.
  • the Sc compound newly charged in the reaction vessel 14 dissolves in the molten salt of the molten salt layer 16 to generate Sc 3+ ions, and these Sc 3+ ions are simultaneously charged into the reaction vessel 14.
  • reaction formula (1) proceeds again to alloy the molten metal Al to form a molten Al-Sc alloy.
  • the Al 3+ concentration in the molten salt layer 16 gradually increases.
  • the molten salt layer 16 Al 3+ ions are oxidized to Al 2 O 3 , reacting with almost no dissolution in both the molten metal layer 18 which is a molten Al-Sc alloy and the molten salt layer 16 which is a molten metal fluoride salt. Since it is separated from both the molten metal layer 18 and the molten salt layer 16 inside the container 14, it can be easily discharged out of the reaction system. In other words, if Sc 2 O 3 is used as the Sc compound, the side reaction product Al 2 O 3 can be easily discharged out of the reaction system, making it easier to operate continuous production of Al—Sc alloys. Can be.
  • Example 1 A metal fluoride salt obtained by mixing LiF and NaF in the amounts shown in Table 1 was charged into a reaction vessel, heated to 960 ° C., melted to form a molten salt layer, and then shown in Table 2. An amount of metal Al was charged into the reaction vessel and melted to form a molten metal layer. These molten salt layer and molten metal layer existed in the reaction vessel in a state where they were in contact with each other while the molten metal layer was separated into the lower layer and the molten salt layer was separated into the upper layer.
  • the molten metal layer was collected and analyzed. As shown in Table 3, the molten metal layer contained 0.063 mol of Sc. According to the comparison with the amount of Al, This corresponds to an Al-1.57 mass% Sc alloy, and the value of (F Sc -C Sc ) / P Sc at this time was 0.790. After the chemical reaction, solid Al 2 O 3 was formed on the upper surface of the molten salt layer.
  • Example 2 After the reaction system was configured in the same manner as in Example 1, it was held at 960 ° C. for 15 minutes, then cooled to 760 ° C., and then held at 760 ° C. for 180 minutes with stirring to such an extent that the molten metal layer did not come into contact with air. Then, the reaction was performed in the same manner as in Example 1 except that the chemical reaction of the reaction formula (1) was performed. After completion of the reaction, a molten metal layer was collected and analyzed in the same manner as in Example 1.
  • the molten metal layer contained 0.070 mol of Sc, and the amount of Al By comparison, this corresponds to an Al-1.74 mass% Sc alloy and the value of (F Sc —C Sc ) / P Sc was 0.878. After the chemical reaction, solid Al 2 O 3 was formed on the upper surface of the molten salt layer.
  • Example 3 Example 1 except that the molten salt layer is half the amount of Example 1, the metal Al is the same amount as Example 1, and Sc 2 O 3 as the Sc compound is half the amount of Example 1.
  • the molten metal layer was collected and analyzed under the same conditions as in Table 3, as shown in Table 3, the molten metal layer contained 0.027 mol of Sc. According to the comparison with the Al amount, This corresponds to an Al-0.68 mass% Sc alloy, and the value of (F Sc -C Sc ) / P Sc was 0.339. After the chemical reaction, solid Al 2 O 3 was formed on the upper surface of the molten salt layer.
  • Example 4 The metal fluoride salt obtained by mixing LiF and NaF in the amounts shown in Table 1 was charged into the reaction vessel to form a molten salt layer. As shown in Table 2, 6.671 moles of metal Al. Was added to the reaction vessel to form a molten metal layer, and as shown in Table 2, the reaction system was constructed by charging 0.160 mol of ScF 3 as the Sc compound. The reaction of reaction formula (1) was carried out. After completion of the reaction, a molten metal layer was collected and analyzed in the same manner as in Example 1. As shown in Table 3, the molten metal layer contained 0.079 mol Sc, By comparison, this corresponds to an Al-1.95 mass% Sc alloy and the value of (F Sc —C Sc ) / P Sc was 1.469. Furthermore, no solid suspension was observed on the upper surface of the molten salt layer after the chemical reaction.
  • Example 1 The reaction system was constructed and reacted under the same conditions as in Example 1 except that the metal Al in Example 1 was changed to an Al-3.00 mass% Sc alloy consisting of 6.471 mol of Al and 0.120 mol of Sc. It was.
  • the Sc amount was 0.098 mol, which was less than the content before the reaction, By comparison, this corresponds to Al-2.45 mass% Sc, and the value of (F Sc -C Sc ) / P Sc was -0.323.
  • solid Al 2 O 3 was formed on the upper surface of the molten salt layer. The reason why (F Sc -C Sc ) / P Sc became negative was that the Sc concentration in the molten metal layer was already high when 0.080 mol of Sc 2 O 3 was charged as the Sc compound. it is conceivable that.
  • Example 5 The reaction system was used under the same conditions as in Example 1 except that LiF and NaF in the amounts shown in Table 1 and metal Al in the amounts shown in Table 2 were used, and 0.160 mol of Sc 2 O 3 was used as the Sc compound. Was made to react.
  • the molten metal layer after completion of the reaction was collected and analyzed. As shown in Table 3, the molten metal layer contained 0.127 mol of Sc, which was compared with the amount of Al. For example, this corresponds to an Al-3.10 mass% Sc alloy and the value of (F Sc —C Sc ) / P Sc was 0.980.
  • solid Al 2 O 3 was formed on the upper surface of the molten salt layer.
  • Example 6 As shown in Tables 1 and 2, first, the reaction system was constituted and reacted under the same conditions as in Example 5, and as shown in Table 3, 0.124 mol of Sc was contained in the molten metal layer. Thus, a molten Al—Sc alloy layer corresponding to the Al-3.02 mass% Sc alloy was formed. At this time, the value of (F Sc -C Sc ) / P Sc was 0.957, and solid Al 2 O 3 was formed on the upper surface of the molten salt layer after completion of the chemical reaction.
  • the obtained molten metal layer was collected and analyzed. As shown in Table 3, the third molten metal layer contained 0.076 mol of Sc. According to the comparison with the Al content, this corresponds to the Al-1.89 mass% Sc alloy, and the value of (F Sc -C Sc ) / P Sc was 0.893. After the completion of the third chemical reaction, solid Al 2 O 3 was formed on the upper surface of the molten salt layer.
  • Example 7 A metal fluoride salt obtained by mixing LiF and NaF in the amounts shown in Table 1 was heated to 960 ° C. in a reaction vessel and melted to form a molten salt layer. Subsequently, as shown in Table 2, 6 .671 mol of metal Al was charged into the reaction vessel and melted to form a molten metal layer, and 0.080 mol of Sc 2 O 3 was charged as the Sc compound while maintaining the reaction vessel at 960 ° C. Then, the mixture was held at 960 ° C. for 15 minutes with stirring to such an extent that the molten metal layer did not come into contact with air, and the chemical reaction of reaction formula (1) was carried out.
  • Example 8 As shown in Table 1, a metal fluoride salt consisting of a mixture of 1.700 moles NaF, 0.104 moles CaF 2 and 0.831 moles AlF 3 was used and heated to 960 ° C. in a reaction vessel, As shown in Table 2, 6.671 mol of metal Al was charged into the reaction vessel and melted to form a molten metal layer, and the reaction vessel was further heated to 960 ° C. While being held, 0.094 mol of Sc 2 O 3 was charged as the Sc compound, and held at 980 ° C. for 180 minutes with stirring to such an extent that the molten metal layer did not come into contact with air. Carried out.
  • a metal fluoride salt consisting of a mixture of 2.316 moles LiF, 1.252 moles NaF, 0.323 moles KF and 0.321 moles BaF 2 was used in a reaction vessel. The mixture was heated to 960 ° C. and melted to form a molten salt layer. Subsequently, as shown in Table 2, 6.671 mol of metal Al was charged into the reaction vessel and melted to form a molten metal layer. In the reaction vessel, the molten metal layer and the molten salt layer were separated from each other, but the molten metal layer was exposed as an upper layer above the molten salt layer and was in contact with air.
  • the metal layer was collected and analyzed. As shown in Table 3, the metal layer contained 0.032 mol of Sc. According to the comparison with the Al amount, This corresponds to an Al-0.87 mass% Sc alloy, and the value of (F Sc -C Sc ) / P Sc was 0.283. The reason why the value of (F Sc -C Sc ) / P Sc was less than 0.3 is considered to be that the molten metal layer was exposed to the upper part of the molten salt layer and contacted with air to be oxidized.
  • the metal layer contained 0.011 mol of Sc. According to the comparison with the amount of Al, Corresponds to an Al-0.28 mass% Sc alloy, and the value of (F Sc -C Sc ) / P Sc was 0.216. The reason why the value of (F Sc -C Sc ) / P Sc was less than 0.3 is considered to be because the Al 3+ concentration in the molten salt layer was high.
  • the metal layer contained 0.013 mol of Sc.
  • the metal layer contained 0.013 mol of Sc.
  • the value of (F Sc -C Sc ) / P Sc was 0.229.
  • the value of (F Sc -C Sc ) / P Sc was less than 0.3 because the Sc compound charged in the molten salt layer was ScF 3 , so that it was soluble in the molten salt by a chemical reaction. This is considered to be because the AlF 3 was produced as a side reaction product and the Sc 3+ concentration in the molten salt layer was relatively lowered by the production of the AlF 3 .
  • the present invention does not require equipment for heating in an inert gas atmosphere or a vacuum atmosphere, a reducing agent such as metal Ca, equipment for molten salt electrolysis, and electric power, and heating up to 1050 ° C.
  • a reducing agent such as metal Ca
  • the manufacturing process is simple and simple, and can be suitably used as a method for manufacturing an Al—Sc alloy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

 不活性ガス雰囲気又は真空雰囲気での加熱のための設備を始めとして、金属Ca等の還元剤や溶融塩電解のための設備及び電力を必要とせず、しかも、1050℃までの加熱で十分であって連続的な操業も可能なAl-Sc系合金の製造に適した方法を提供する。 金属アルミニウム(Al)と、融点が反応温度よりも低くて密度が反応温度で溶融金属アルミニウムの密度の70~95%の範囲内である金属フッ化物塩と、スカンジウム化合物とを反応容器内に装入し、反応系を反応温度700~1050℃まで昇温させて溶融金属アルミニウムからなる下層の溶融金属層と金属フッ化物塩及びスカンジウム化合物が溶融した上層の溶融塩層とを形成し、溶融塩層側に生成したスカンジウムイオン(Sc3+)を溶融金属層側に移行させてAl-Sc系合金を製造する方法である。

Description

Al-Sc合金の製造方法
 この発明は、Al-Sc系合金を製造するのに適したAl-Sc系合金の製造方法、及び当該製造方法により得られたAl-Sc系合金に関する。
 アルミニウム(Al)又はその合金中に、合金元素としてスカンジウム(Sc)を添加すると、耐熱性が顕著に改善されることから、このようなアルミニウム基合金(Al-Sc系合金)について、近年、産業上多方面での有効利用が期待されている。すなわち、合金元素としてScを添加したアルミニウム基合金は、その希土類元素の添加量が0.1質量%であっても、200℃を超える温度で長時間保持しても、その機械的強度がほとんど低下しない。これは、合金元素としてScを添加したアルミニウム基合金においては、塑性変形加工により変化した機械的性質について、加熱による回復、再結晶が起こり難くなるためと考えられている。例えば、特許文献1には、純Alマトリックス中に0.05~0.3質量%のSc及び0.1~0.4質量%のZrを含有させることにより、導電性が良好で、機械的強度が高く、かつ、耐熱性に優れていて、アルミニウム基合金配線材として有用なアルミニウム合金材が得られることが紹介されている。
 しかしながら、Scを含有するアルミニウム基合金は、産業上の有用性が期待されるものの、従来においては、その利用が極めて限定的であった。これは、金属Scが酸化され易く、また、Scのハロゲン化物、カルコゲン化物等のスカンジウム化合物(Sc化合物)から金属Scを得る際の還元に困難が伴うためである。すなわちScを金属として得るには、Scよりも酸化され易いNa等のアルカリ金属や、Ca、Mg等のアルカリ土類金属等を還元剤として使用し、Sc化合物を加熱下に還元する、又は溶融塩電解により還元する必要があるからである。
 例えば、特許文献2においては、Scのハロゲン化物を金属Ca、金属Zn等と共に真空反応容器内に装入し、金属Caにより前記Scのハロゲン化物を還元してSc-Zn合金とし、得られたSc-Zn合金相を、Caの酸化物を含むハロゲン化物相から分離して粉砕し、更に、粉砕して得られた合金粉末を酸化処理して粉末表面に薄い酸化物被膜を形成した後、内部を不活性ガス雰囲気とした真空容器に装入し、真空下に加熱して合金成分のZn等を揮発蒸発させ、金属Sc粉末を得る技術が開示されている。また、特許文献3においては、アルカリ金属又はアルカリ土類金属のふっ化物とSc、Y及びランタノイド等の希土類元素のふっ化物とを主体とする溶融塩電解浴中で、上層に浮遊した溶融金属Alを陰極とし、また、陽極を上層の溶融金属Alと接触しないように絶縁物で保護し、電解還元を行って希土類元素を含有するアルミニウム基合金を製造する技術が開示されている。
 前者の加熱下の還元方法においては、還元剤として用いるアルカリ金属やアルカリ土類金属が高価であるばかりでなく、その反応性が著しくて取扱に細心の注意が必要であり、還元の実施に必要な還元剤を簡便かつ低廉に大量生産することができないという問題があった。また、後者の溶融塩電解により還元する方法においては、Alの融点(660℃)を超える高温に耐える電解還元容器の利用が必須であるうえ、容器等からの不純物等の混入が懸念されることから高温での操業が難しく、1500℃を超えるScの融点以下の温度(具体的には、1000℃以下の温度)で電解還元を行う必要があり、また、還元されて析出したScが固体の金属となって樹枝状に成長しないように還元条件を調整することや、他の金属と低融点の合金を形成するようにして析出したScが固体にならないようにすること等の工夫が必要であり、しかも、電解のための設備及び電力が必要であるほか、上層の溶融金属Al(陰極)が酸化されないように外部加熱の電解槽をアルゴンガス(Arガス)等の不活性ガス雰囲気下で操業しなければならず、加えて、生成したアルミニウム合金の比重(実質的に「密度」と同じ。)が溶融塩の比重を超えないように、電解時間を考慮しなければならない等、労力及びコストが増加し、低廉に大量生産することは容易でなかった。
 このような中、Scを含有するアルミニウム基合金の製造を目的として、Scを、その化合物から金属へと還元する工程を経ずに、Sc化合物のまま金属Alと反応させ、Scを含有するアルミニウム基合金を得る幾つかの技術が提案されている。
 例えば、特許文献4においては、塩化カルシウム系フラックスの存在下に希土類元素の化合物をアルミニウムと反応させ、希土類元素を含有するアルミニウム基合金を得る技術が開示されている。
 また、特許文献5においては、ScF3のようなハロゲン化Scと金属Alとを、還元剤となる金属Ca、フラックスとなるLiF、CaCl2等と共に反応容器に装入し、不活性ガス雰囲気下で800~1000℃に加熱して金属Caによりハロゲン化Scを還元すると同時に、金属Alと合金化させてAl-Sc合金とし、その後の冷却において、Alの凝固温度若しくは該凝固温度より100℃低い温度までの範囲を毎分10~70℃の冷却速度で冷却することにより、前記Al-Sc合金内にScの高密度析出部と低密度析出部が生じるようにし、冷却後に高密度析出部を低密度析出部から分離し、該高密度析出部を真空溶解することにより、前記還元剤である金属Caの残留分を揮発蒸発させ、Sc含有量が高いAl-Sc合金を製造する技術が開示されている。
 更に、特許文献6においては、Sc等の希土類元素の酸化物又はハロゲン化物の粉末をAl、Mg等の軽金属の粉末と混合し、得られた混合物を圧縮成型によりペレットとし、次いで該ペレットの表面における前記軽金属の溶融物に対する濡れ性を高めてから溶融した軽金属の浴に投入し、前記希土類元素の酸化物又はハロゲン化物を前記軽金属によって還元し、希土類元素を含有する軽金属合金を得る技術が開示されている。
 また、特許文献7においては、Y及びランタノイドである希土類元素を含有するアルミニウム基合金を製造する方法として、該希土類元素の酸化物を金属Alと反応させる技術が開示されている。
特開2001-348,637号公報 特開平04-131,308号公報 特開平06-172,887号公報 特開昭48-015,708号公報 特開2003-171,724号公報 特開平04-235,231号公報 フランス共和国特許第2,555,611号公報
 しかしながら、特許文献4の技術では、原料である希土類元素の化合物を金属Alで還元しているが、その際の反応温度については1200℃以上であることが必要とされており、そのような温度においては、反応生成物であって蒸気圧の高いAlCl3、HCl等が揮発し、また、このようなガスは非常に腐食性が高く、坩堝材料として高価な耐食性素材を使用する必要があると共に、環境汚染対策等の取扱上の制約があり、しかも、Alの酸化消耗及び所要熱エネルギーが多大であって経済的でないという問題がある。
 また、特許文献5においては、還元剤となる金属Caにより不活性ガス雰囲気下でハロゲン化Scを還元した後、前記金属Caの残留分を真空雰囲気下で蒸発させて除去する技術であるため、還元剤となる金属Caが多量に必要であるほか、不活性ガス雰囲気下で原料を反応させ、また反応生成物であるAl-Sc合金のSc高密度析出部を真空雰囲気下で蒸発させる必要があり、不活性ガス雰囲気下において原料を加熱、溶融する設備、Sc高密度析出部を真空雰囲気下で加熱する設備が不可欠であって、コストの低減、経済性の向上が困難であるという問題がある。
 更に、特許文献6の技術では、Sc等の希土類元素の酸化物又はハロゲン化物の粉末を軽金属の粉末と混合した後に圧縮成型によりペレットとし、更に、該ペレット表面について、前記軽金属の溶融物に対する濡れ性を高める必要がある等、製造工程が多段階に亘り、特許文献5の場合と同様に、コストの低減、経済性の向上が困難であるという問題がある。
 更にまた、特許文献7の技術においては、希土類元素がY及びランタノイドであってScは含まれていないが、反応過程で生成した希土類元素を含有するアルミニウム基合金の溶融物が他方の反応生成物であるアルミニウムの酸化物の粉末の上方に位置して外部雰囲気に露出するので、反応系を不活性ガス雰囲気下に維持する必要があり、原料を不活性ガス雰囲気下で加熱し、溶融する設備が必要になり、この特許文献7の技術においてもコストの低減、経済性の向上が困難であるという問題がある。
 本発明は、かかる観点に鑑みて創案されたものであり、Al-Sc系合金を製造するのに適した方法であって、不活性ガス雰囲気又は真空雰囲気での加熱のための設備を始めとして、金属Ca等の還元剤や溶融塩電解のための設備及び電力を必要とせず、しかも、1050℃までの加熱で十分であって、製造工程も簡便かつ簡潔で、溶融塩の減耗及び環境汚染の虞も低減でき、更には連続的な操業も可能であって、容易に経済性を向上させることのできるAl-Sc系合金の製造方法を提供することを目的とする。
 すなわち、本発明は、金属アルミニウム(Al)と、アルカリ金属ふっ化物、アルカリ土類金属ふっ化物及びふっ化アルミニウムからなる群から選ばれた1種又は2種以上の金属フッ化物塩と、スカンジウム(Sc)の酸化物及び/又はふっ化物塩からなるスカンジウム化合物とを反応容器内に装入し、反応容器内の前記金属アルミニウム(Al)と前記金属ふっ化物塩と前記スカンジウム化合物とからなる反応系を反応温度まで昇温させて溶融金属アルミニウムからなる溶融金属層と前記金属フッ化物塩及びスカンジウム化合物が溶融した溶融塩層とを形成し、前記溶融塩層側に生成したスカンジウムイオン(Sc3+)を溶融金属層側に移行させてAl-Sc系合金を製造する方法であって、
 前記反応系の反応温度を700~1050℃の範囲内とし、また、前記金属フッ化物塩として、その融点が前記反応温度よりも低く、かつ、その密度が前記反応系の反応温度において溶融金属アルミニウムの密度の70~95%の範囲内である金属フッ化物塩を使用し、前記反応容器内の反応系において、前記溶融塩層が上層で前記溶融金属層が下層となるようにしたことを特徴とするAl-Sc系合金の製造方法である。
 また、本発明は、前述の方法によって製造されたAl-Sc系合金である。
 本発明において、溶融塩層を形成するために反応容器内に装入される金属フッ化物塩は、アルカリ金属ふっ化物、アルカリ土類金属ふっ化物及びふっ化アルミニウム(AlF3)からなる群から選ばれた1種又は2種以上の混合物であり、前記アルカリ金属ふっ化物としては、ふっ化リチウム(LiF)、ふっ化ナトリウム(NaF)、ふっ化カリウム(KF)、ふっ化セシウム(CsF)等を挙げることができ、また、アルカリ土類金属ふっ化物としては、例えばふっ化ベリリウム(BeF2)、ふっ化マグネシウム(MgF2)、ふっ化カルシウム(CaF2)等を挙げることができるが、所望の反応系の反応温度(700~1050℃の範囲)を確保し、また、当該反応温度での所望の密度(反応系の反応温度で溶融金属Alの密度の70~95%の範囲)を得る上で、好ましくは、LiFとNaFとの混合物であるのがよく、より好ましくは、LiFとNaFとが質量比(LiF:NaF)で7:5~8:5の範囲内の混合物であるのがよい。このような混合物からなる金属フッ化物塩は、その融点が652~675℃であって、その密度が760℃のとき1.99kg/dm3であって、980℃のとき1.88kg/dm3であって、溶融状態において、溶融金属層を形成する溶融金属Alや溶融Al-Sc合金とは相溶性がない。
 また、溶融塩層中に装入されて反応時にスカンジウムイオン(Sc3+)を生成するスカンジウム化合物(Sc化合物)は、スカンジウム(Sc)の酸化物(Sc2O3)及び/又はふっ化物塩(ScF3)であり、連続的なAl-Sc系合金の製造の観点によれば、好ましくは酸化スカンジウム(Sc2O3)である。
 本発明においては、前記反応容器内の反応系において、前記溶融塩層が上層で前記溶融金属層が下層となり、溶融金属層が空気と接触しないことが必要であり、反応系を静置した状態で反応を進めてもよく、また、この溶融金属層が空気と接触しない限り、必要により反応系を撹拌してもよく、これによって化学反応をより促進させることができる。また、この反応系の反応温度については、通常700℃以上1050℃以下の範囲であり、700℃より低いと、Alの融点(660℃)に近づき、局所的にAl3Scが生成して反応生成物であるAl-Sc系合金が不均質となる虞があるほか、スカンジウム化合物(Sc化合物)としてスカンジウム(Sc)の酸化物(Sc2O3)を利用する際には、溶融塩層中のスカンジウム酸化物(Sc2O3)の溶解度が低いため、化学反応速度に限度があるという問題があり、反対に、1050℃より高くなると、所要熱エネルギーが多大となるほか、高価な耐熱材料を反応容器として使用しなければならなくなるとともに、溶融塩の蒸気圧が高くなって蒸発ロスが多大となるため、コストが増大すると共に、環境汚染対策等の取扱上の制約が生じるという問題が生じる。
 また、上記反応系の反応温度において反応容器内に形成される前記金属フッ化物塩及びスカンジウム化合物が溶融した溶融塩層については、当該反応系の反応温度における溶融塩の密度が当該反応系の反応温度における溶融金属アルミニウムの密度の70%以上95%以下の範囲内であるのがよく、70%未満にするためには融点が高くて高価なふっ化リチウム(mp:848℃)の配合比率を高くする必要があって経済性が低下するという問題があり、反対に、95%より高くなると、溶融塩の密度がSc化合物の溶解に伴って増加し、溶融塩層の密度が溶融金属層の密度より高くなり、溶融金属層が溶融塩層の上部に露出して空気と接触し、溶融金属が空気中の酸素と反応して酸化し、製造目的のAl-Sc合金の回収率が低下するという問題が生じる。
 そして、前記反応容器内に形成された反応系の溶融塩層側にスカンジウムイオン(Sc3+)を生成させるに際しては、金属アルミニウム(Al)、金属フッ化物塩及びSc化合物を反応容器内に装入し、その後に反応温度まで昇温させて反応系を形成してもよいが、金属アルミニウム(Al)と金属フッ化物塩とを反応容器内に装入し、反応温度まで昇温させて予め溶融金属層と溶融塩層とを形成し、その後に、前記溶融塩層内にSc化合物を添加し、この溶融塩層内にスカンジウムイオン(Sc3+)を生成させてもよい。
 本発明のAl-Sc合金の製造方法によれば、不活性ガス雰囲気下又は真空雰囲気下での加熱のための設備を始めとして、金属Ca等の還元剤や溶融塩電解のための設備及び電力が不要であるほか、1050℃までの加熱で十分であって、製造工程も簡便かつ簡潔で、溶融塩の減耗及び環境汚染の虞が少なく、かつ、連続的な操業も可能であって、容易に経済性を向上させることができる。
図1は、本発明の実施に利用される製造装置の一例を示す説明図である。
 本発明においては、金属Alと、金属ふっ化物塩と、Sc化合物とを反応容器に装入し、この反応容器内の反応系を反応温度が700~1050℃の範囲内となるように加熱し、溶融して溶融金属層と溶融塩層とを形成すると共に、前記金属ふっ化物塩としてその密度が前記反応温度での溶融金属Alの密度の70~95%となるように調整し、反応系の下部にScの濃度の低い溶融金属Al層が、また、反応系の上部に前記溶融塩層が互いに接触して形成されており、この際の前記溶融塩層と前記溶融金属層との界面においては、反応式(1)で示される下記の化学反応が生じている。
    Sc3+/(s)+Al/(m) ⇔ Sc/(m)+Al3+/(s)……(1)
〔ただし、反応式(1)において、溶融塩層内の元素又はイオンを/(s)と示し、また、溶融金属層内のもの元素又はイオンを/(m)と示す。〕
 前記反応式(1)に示される溶融塩層と溶融金属層の界面での反応の向きは、Sc塩とAl塩の生成自由エネルギーの差のほか、溶融塩層中のSc3+イオン及びAl3+イオンの活量と、溶融金属Al中のScの活量により決定される。そして、溶融塩層中のSc3+イオンの活量が大きく、かつ、溶融塩層中のAl3+イオンの活量及び溶融金属中のScの活量が小さく、それらの活量差によって反応が右向きとなるとき、還元されて溶融金属Alに合金化するScのモル数は、溶融金属Alから酸化され、イオン化して溶融塩層中に溶解するAl3+イオンのモル数に等しくなり、前記反応に伴って溶融金属Al中のSc金属の濃度が高くなると同時に溶融塩層中のAl3+イオンの濃度も高くなる。
 このような活量変化は、反応が停止する方向への変化であり、最終的には前記の各活量が平衡状態に達し、前記反応は停止するが、本発明の範囲内においては、前記反応式(1)に関与する各イオンの活量は、当該各イオンの濃度にほぼ比例する。従って、前記反応式(1)の反応を右向きに進めて効率的にAl-Sc系合金を製造するためには、モル百分率(mol%)で表された反応前の溶融塩層内のSc3+イオンの濃度(Sc3+濃度)を高く保持する一方、Al3+イオンの濃度(Al3+濃度)を低く保持し、また、モル百分率(mol%)で表された反応前の溶融金属層中のScの濃度(Sc濃度)を低く保持する必要がある。
 本発明は、前記反応式(1)の反応を右向きに進めるに際し、反応系の反応温度を700~1050℃とし、この反応温度よりも融点が低い溶融塩層を反応容器内に設けると共に、前記反応容器内の溶融塩層の下部には前記反応温度で溶融状態の溶融金属層を前記溶融塩層と接触させて設け、前記溶融塩層にはSc化合物を装入し、溶解させて当該溶融塩層中のSc3+イオン濃度を増加させ、該溶融塩層と接触して設けられた前記Sc濃度の低い溶融金属層との間で反応させ、前記溶融金属層を合金化させるものである。そして、本発明によれば、溶融金属層の上部に溶融塩層が存在することから反応系を不活性ガス雰囲気又は真空雰囲気とすることなく反応生成物であるAl-Sc合金の酸化を防止することができ、また、反応系の反応温度が700~1050℃であることから前記溶融塩層からの蒸発を可及的に抑制することができ、前記溶融塩の減耗及び環境汚染の虞を低減し、更には連続的な操業を可能にして製品を連続的に得ることが可能になり、容易に経済性を向上させることができる。
 本発明において、反応式(1)の右側への反応は、溶融塩層中のSc3+濃度が高く維持されると共に、溶融金属Al中のSc濃度が低く維持され、かつ、溶融塩層中に生成するAl3+イオンがこの溶融塩に対して溶解度の低い化合物を形成するのであれば、溶融塩層中のAl3+濃度が大きくならないため、継続的に右向きとなる。ここで、溶融金属層中のSc濃度が一定であれば、反応式(1)は溶融塩層中のAl3+濃度及びSc3+濃度に依存するが、溶融塩の種類、原料となるSc化合物の種類、反応温度等によっても変化するので、これらイオンの濃度が同一であっても最終的に溶融金属層中に移行し合金元素として取り込まれるSc濃度は異なる。
 また、本発明において、反応式(1)に示される化学反応によりAl-Sc合金を連続的に製造するためには、製造目的である反応後のAl-Sc合金中の合金元素Scの目標Sc濃度FScと、原料となる溶融塩層中のSc3+濃度PScと、反応前の溶融金属Al中の希土類金属のSc濃度CScとの関係を、下記の関係式(2)に示されるように維持することが必要である。すなわち、本発明の反応系において、下記の関係式(2)に示されるような条件を採用することにより、溶融塩層中のSc化合物を効率的に溶融金属Alと反応させ、合金化させてAl-Sc合金を製造することができる。
      0.3≦(FSc-CSc)/PSc≦1.5……(2)
 以下、添付図面を参照しつつ、本発明のAl-Sc系合金の製造方法についてより具体的に説明する。
 図1に、本発明のAl-Sc系合金の製造方法を実施する製造装置の一例に係る模式図が示されている。この製造装置は、反応容器14と、前記反応容器14を囲繞し、加熱器12を内蔵する加熱炉10とからなり、加熱器12は反応容器14を少なくとも1050℃まで加熱することができ、また、反応容器14及び加熱炉10は少なくとも1050℃の温度に耐えられる材質で形成されているほか、反応容器14には、必要により、溶融金属層が空気と接触しない程度に反応系を撹拌するために、攪拌翼等の図示外の撹拌手段が設けられている。
 本発明においては、例えば、前記のLiFとNaFとを重量比(LiF:NaF)7:5~8:5の範囲で含む混合物からなる金属ふっ化物塩(混合塩)を反応容器14内に装入し、700~1050℃から選ばれた反応温度に加熱し、溶融させて溶融塩層16を形成すると共に、金属Alを反応容器14内に装入し、前記反応温度に加熱し溶融させて溶融金属層18とし、前記溶融塩層16と共存させる。ここで、金属Alの融点が660℃であって、760℃及び980℃のときの溶融金属Alの密度がそれぞれ2.36kg/dm3及び2.28kg/dm3であるから、前記混合塩を溶融して得られた溶融混合塩の密度〔1.99kg/dm3(760℃)、1.88kg/dm3(980℃)〕は、それぞれ溶融金属Alの84%及び82%となり、反応容器14内において溶融塩層16と溶融金属層18とは分離し、溶融塩層16が上層となって溶融金属層18が下層になる。
 続いて、前記反応容器14を前記反応温度に保持しつつ、Sc化合物を前記反応容器14に装入し、前記溶融塩層16内に溶解させ、この溶融塩層16内にSc3+イオンを生成させる。例えば、回収目的とするAl-Sc系合金がAl-1.2mol%Sc合金であって、その合金の回収量が1.0モルであり、原料となる溶融金属層18中にScが含まれない場合には、原料となる溶融金属層18に必要となるAlの量は反応式(1)より1.0モルであり、関係式(2)を満たすためには、FSc=0.012及びCSc=0であるから、原料となる溶融塩層16中のSc3+濃度を(0.012/1.5)≦PSc≦(0.012/0.3、すなわち0.008≦PSc≦0.04とする必要があり、この場合には、前記溶融塩層16内のSc3+濃度を0.8~4.0mol%とする必要がある。
 前記溶融塩層16中のSc3+濃度は、反応容器14に装入されたSc化合物の溶解に伴って上昇し、それと同時に溶融塩層16の密度も増加するが、この溶融塩層16内のSc3+濃度が5mol%程度迄であれば、その密度の増加は0.02kg/dm3程度迄であって、この密度の増加分(0.02kg/dm3)は溶融金属Alの密度の1%程度迄であるから、溶融塩層16の密度が溶融金属層18の密度の70~95%であれば、前記溶融塩層16の密度が前記溶融金属層18の密度を上回って、前記反応容器14の内部において、前記溶融金属層18が前記溶融塩層16の上部に露出して空気と接触することはない。
 前記反応容器14を前記反応温度の範囲内に保持し続けると、溶融塩層16中のSc3+イオンは、前記反応容器14の内部において、前記溶融塩層16の下部に形成された溶融金属層18との界面において溶融金属Alと化学反応し、還元されて、前記溶融金属Alを合金化する。このとき、前記溶融金属層18が空気と接触しない程度に反応系を撹拌することは、反応式(1)に示す化学反応を促進するので好適であるが、特に撹拌することなく静置してもよい。
 この反応式(1)の化学反応により発生したAl3+イオンは溶融塩層16中に溶解し、それによって溶融塩層16中のAl3+濃度が増加し、他方、前記溶融塩層16の下部にあって該溶融塩層と接触する溶融金属層18においては、その溶解限度までの範囲内であって、前記溶融塩層16中のAl3+濃度に対して関係式(2)を満足する値までScが溶解し、溶融Al-Sc系合金が形成され、前記溶融金属Alが次第に溶融Al-Sc系合金となる。
 本発明者らの研究によれば、このような化学反応は700~1050℃で起こり、また、溶融金属Alの密度に対して溶融塩の密度を所定の範囲でより低くしているので、溶融金属層18の表面が溶融塩層16で保護されることになり、不活性ガス雰囲気又は真空雰囲気とすることなく反応生成物であるAl-Sc系合金の酸化を防止することができる。しかも、反応式(1)の化学反応によれば、反応の進行と共に溶融塩層16の密度が減少し、他方、溶融金属層18の密度が増加するので、前記特許文献3の場合のように、化学反応の途中で各層の密度(あるいは比重)を調整するための通電を停止する等の対応をする必要がなく、操業が簡便かつ容易である。
 反応式(1)の化学反応により溶融Al-Sc系合金が形成された後、溶融金属層18を反応容器から採取するが、この採取の方法については、溶融金属層18を反応容器14の外部に移送することができれば特に限定されず、従来公知の方法等により適宜実施できる。すなわち、反応容器14を傾動させて溶融金属層18を選択的に滴下させる方法、杓によって溶融金属層18を選択的に掬い取る方法、真空ポンプで溶融金属層18を選択的に吸引する方法、あるいは反応容器14の底部に予め設けた図示外の取出口から溶融金属層18を選択的に排出させる方法等から選ばれた方法を採用することができる。
 また、本発明においては、反応系が上記の関係式(2)に示される関係を満足するように操業すれば、連続的に溶融Al-Sc系合金を製造することができるが、この際には、生成した溶融Al-Sc系合金を採取した後、反応容器14を所定の反応温度の範囲内に保持したまま、新たに金属AlとSc化合物とを反応容器14内に装入し、これらを反応容器14内に残存している溶融塩層16と共に溶融させればよい。すると、新たに反応容器14内に装入されたSc化合物は溶融塩層16の溶融塩に溶解してSc3+イオンを生成し、このSc3+イオンは、同時に反応容器14に装入され溶融して溶融金属層18となった溶融金属Alと反応し、再び反応式(1)の化学反応が進行して溶融金属Alを合金化させ、溶融Al-Sc系合金が形成される。この製造工程を繰り返すことにより、連続的に溶融Al-Sc系合金を製造することができる。
 このようなAl-Sc系合金の製造を連続的に繰り返すと、溶融塩層16中のAl3+濃度が徐々に上昇するが、Sc化合物としてSc23を使用すると、溶融塩層16中のAl3+イオンは酸化されてAl23となり、溶融Al-Sc系合金である溶融金属層18及び溶融金属ふっ化物塩である溶融塩層16のいずれにも殆ど溶解することなく、反応容器14の内部において溶融金属層18及び溶融塩層16のいずれからも分離するので、容易に反応系外に排出させることができる。すなわち、Sc化合物としてSc23を使用すれば、副反応生成物であるAl23の反応系外への排出が容易になり、連続的なAl-Sc系合金製造の操業をより容易にすることができる。
 以下、実施例及び比較例に基づいて本発明をより具体的に示すが、本発明はこれらの実施例及び比較例に限定されるものではない。
〔実施例1〕
 表1に示す量のLiFとNaFとを混合して得られた金属ふっ化物塩を反応容器内に装入し、960℃に加熱し、溶融させて溶融塩層とし、続いて表2に示す量の金属Alを反応容器内に装入し、溶融させて溶融金属層とした。これら溶融塩層と溶融金属層は、前記反応容器内に溶融金属層が下層に、また、溶融塩層が上層に分離しつつ互いに接触した状態で存在していた。
 更に、反応容器内を960℃に保持しつつ、表2に示すように、Sc化合物として0.080モルのSc23を装入し、溶融塩層に溶解させ、反応式(1)の反応系を構成した。この反応系を前記溶融金属層が空気に接触しない程度に撹拌しながら960℃で180分間保持し、反応式(1)の化学反応をさせてから、この反応によって生成するAl23の生成量が一定となることを目視により確認して、この反応を停止させた。
 反応終了後、前記溶融金属層を採取し、分析したところ、表3に示すように、前記溶融金属層には0.063モルのScが含有されており、Al量との対比によれば、これはAl-1.57mass%Sc合金に相当し、また、このときの(FSc-CSc)/PScの値は0.790であった。化学反応終了後、溶融塩層の上部表面には固体のAl23が生成していた。
〔実施例2〕
 実施例1と同様にして反応系を構成した後、960℃で15分保持し、次いで760℃まで冷却した後、溶融金属層が空気に接触しない程度に撹拌しながら760℃で180分間保持して反応式(1)の化学反応をさせた以外は、実施例1と同様に実施した。
 反応終了後、実施例1と同様に溶融金属層を採取し、分析したところ、表3に示すように、前記溶融金属層には0.070モルのScが含有されており、Al量との対比によれば、これはAl-1.74mass%Sc合金に相当し、また、(FSc-CSc)/PScの値は0.878であった。化学反応終了後、溶融塩層の上部表面には固体のAl23が生成していた。
〔実施例3〕
 溶融塩層を実施例1の半分の量とし、金属Alを実施例1と同じ量とし、また、Sc化合物としてのSc23を実施例1の半分の量とした以外は、実施例1と同じ条件で反応させ、溶融金属層を採取、分析したところ、表3に示すように、前記溶融金属層には0.027モルのScが含有されており、Al量との対比によれば、これはAl-0.68mass%Sc合金に相当し、また、(FSc-CSc)/PScの値は0.339であった。化学反応終了後、溶融塩層の上部表面には固体のAl23が生成していた。
〔実施例4〕
 表1に示す量のLiFとNaFとを混合して得られた金属ふっ化物塩を反応容器内に装入して溶融塩層とし、また、表2に示すように6.671モルの金属Alを反応容器内に装入して溶融金属層とし、更に、表2に示すようにSc化合物として0.160モルのScF3を装入して反応系を構成した以外は、実施例1と同様にして反応式(1)の反応を行った。
 反応終了後、実施例1と同様に溶融金属層を採取し、分析したところ、表3に示すように、前記溶融金属層には0.079モルのScが含有されており、Al量との対比によれば、これはAl-1.95mass%Sc合金に相当し、また、(FSc-CSc)/PScの値は1.469であった。更に、化学反応終了後の溶融塩層の上部表面に固体の浮遊物は観察されなかった。
〔比較例1〕
 実施例1の金属Alを6.471モルのAlと0.120モルのScからなるAl-3.00mass%Sc系合金に変更した以外は、実施例1と同じ条件で反応系を構成し反応させた。
 反応終了後の溶融金属層を採取し、分析したところ、表3に示されているように、Sc量は0.098モルであって反応前の含有量より減少しており、Al量との対比によれば、これはAl-2.45mass%Scに相当し、また、(FSc-CSc)/PScの値は-0.323であった。化学反応終了後、溶融塩層の上部表面には、固体のAl23が生成していた。(FSc-CSc)/PScが負の値となったのは、Sc化合物として0.080モルのSc23を装入した時点において、溶融金属層内のSc濃度が既に高かったためと考えられる。
〔実施例5〕
 表1に示す量のLiF及びNaFと表2に示す量の金属Alを用い、また、Sc化合物として0.160モルのSc23を用いた以外は、実施例1と同じ条件で反応系を構成し反応させた。
 反応終了後の溶融金属層を採取し、分析したところ、表3に示されているように、前記溶融金属層には0.127モルのScが含有されており、Al量との対比によれば、これはAl-3.10mass%Sc合金に相当し、また、(FSc-CSc)/PScの値は0.980であった。化学反応終了後、溶融塩層の上部表面には固体のAl23が生成していた。
〔実施例6〕
 表1及び表2に示すように、初めに、上記実施例5と同じ条件で反応系を構成して反応させ、表3に示すように、溶融金属層に0.124モルのScが含有されてAl-3.02mass%Sc合金に相当する溶融Al-Sc系合金層を形成させた。このとき、(FSc-CSc)/PScの値は0.957であり、化学反応終了後の溶融塩層の上部表面には固体のAl23が生成していた。
 上記第1回目の化学反応終了後の溶融塩層中には0.196モルのSc3+イオンが残存しているはずであり、そこで、前記溶融塩層の上部表面に生成したAl23を除去し、950℃まで冷却した後に、得られたAl23除去後の溶融塩中に新規に6.671モルの金属Alを装入し、溶融させて溶融金属層とし、反応温度を950℃とした以外は第1回目と同じ条件で第2回目の化学反応を実施し、表3に示すように、第2回目の溶融金属層に0.082モルのScが含有されてAl-2.02mass%Sc合金に相当する溶融Al-Sc系合金層を形成させた。このとき、(FSc-CSc)/PScの値は0.983であり、第2回目の化学反応終了後の溶融塩層の上部表面には固体のAl23が生成していた。
 更に、上記の第2回目の化学反応終了後の溶融塩層中には、0.114モルのSc3+イオンが残存しているはずであり、そこで、この溶融塩層を950℃に保持したまま、溶融塩層上部表面のAl23を除去し、新規に6.671モルの金属Alを装入し溶融させて第3回目の溶融金属層を形成すると共に、Sc化合物として新たに0.043モルのSc23を装入し、溶融塩層中のSc量が0.200モルに調整された反応系を構成し、第2回目と同じ条件で第3回目の化学反応を実施した。
 この第3回目の化学反応終了後に、得られた溶融金属層を採取し、分析したところ、表3に示すように、第3回目の溶融金属層には0.076モルのScが含有されており、Al量との対比によれば、これはAl-1.89mass%Sc合金に相当し、また、(FSc-CSc)/PScの値は0.893であった。この第3回目の化学反応終了後、溶融塩層の上部表面には固体のAl23が生成していた。
〔実施例7〕
 表1に示す量のLiFとNaFとを混合して得られた金属ふっ化物塩を反応容器内で960℃に加熱し、溶融して溶融塩層とし、続いて表2に示すように、6.671モルの金属Alを反応容器内に装入し、溶融させて溶融金属層とし、更に、反応容器内を960℃に保持しつつSc化合物として0.080モルのSc23を装入し、前記溶融金属層が空気に接触しない程度に撹拌しながら960℃に15分間保持し、反応式(1)の化学反応を実施した。
 反応終了後に溶融金属層を採取し、分析したところ、表3に示すように、溶融金属層には0.053モルのScが含有されており、Al量との対比によれば、これはAl-1.31mass%Sc合金に相当し、また、(FSc-CSc)/PScの値は0.596であった。化学反応終了後、溶融塩層の上部表面には固体のAl23が生成していた。
〔実施例8〕
 表1に示すように、1.700モルのNaF、0.104モルのCaF2及び0.831モルのAlF3の混合物からなる金属ふっ化物塩を用い、反応容器内で960℃に加熱し、溶融して溶融塩層とし、続いて表2に示すように、6.671モルの金属Alを反応容器内に装入して溶融させ、溶融金属層とし、更に、反応容器内を960℃に保持しつつSc化合物として0.094モルのSc23を装入し、前記溶融金属層が空気に接触しない程度に撹拌しながら980℃で180分間保持し、反応式(1)の化学反応を実施した。
 反応終了後に溶融金属層を採取し、分析したところ、表3に示すように、溶融金属層には0.055モルのScが含有されており、Al量との対比によれば、これはAl-1.36mass%Sc合金に相当し、また、(FSc-CSc)/PScの値は0.329であった。化学反応終了後、溶融塩層の上部表面には固体のAl23が生成していた。
〔比較例2〕
 表1に示すように、2.316モルのLiF、1.252モルのNaF、0.323モルのKF及び0.321モルのBaF2の混合物からなる金属ふっ化物塩を用い、反応容器内で960℃に加熱し、溶融して溶融塩層とし、続いて表2に示すように、6.671モルの金属Alを反応容器内に装入し、溶融させて溶融金属層とした。前記反応容器内において、前記溶融金属層と溶融塩層は互いに分離したが、溶融金属層が溶融塩層の上部に上層として露出し、空気と接触していた。
 次に、前記反応容器内を960℃に保持しつつ、Sc化合物として0.080モルのSc23を装入し、下層の溶融塩層に溶解させ、反応式(1)の反応系を構成した。この反応系をそのまま980℃に180分間保持して反応式(1)の化学反応をさせてから、この反応によって生成するAl23の生成量が一定となることを目視により確認して、この反応を停止させた。
 反応終了後、前記金属層を採取し、分析したところ、表3に示すように、前記金属層には0.032モルのScが含有されており、Al量との対比によれば、これはAl-0.87mass%Sc合金に相当し、また、(FSc-CSc)/PScの値は0.283であった。(FSc-CSc)/PScの値が0.3未満となったのは、溶融金属層が、溶融塩層の上部に露出して空気と接触し、酸化したためと考えられる。
〔比較例3〕
 表1に示すように、2.333モルのNaF、2.091モルのCaF2及び2.333モルのAlF3の混合物からなる金属ふっ化物塩を用い、反応容器内で960℃に加熱し、溶融して溶融塩層とし、続いて表2に示すように、6.671モルの金属Alを反応容器内に装入し、溶融させて溶融金属層とした。前記反応容器内において、前記溶融金属層と溶融塩層は互いに分離し、溶融金属層が下層として溶融塩層の下部に該溶融塩層と接触して存在していた。
 更に、反応容器内を960℃に保持しつつ、Sc化合物として0.160モルのScF3を装入し、上層の溶融塩層に溶解させ、反応式(1)の反応系を構成した。この反応系を前記溶融金属層が空気に接触しない程度に撹拌しながら900℃で180分間保持し、反応式(1)の化学反応をさせた。この反応においてはAl23が生成しないので、保持時間を実施例1と同一の時間とした。
 反応終了後、前記溶融金属層を採取し、分析したところ、表3に示すように、前記金属層には0.011モルのScが含有されており、Al量との対比によれば、これはAl-0.28mass%Sc合金に相当し、また、(FSc-CSc)/PScの値は0.216であった。(FSc-CSc)/PScの値が0.3未満となったのは、溶融塩層中のAl3+濃度が高かったためと考えられる。
〔比較例4〕
 表1に示すように、2.203モルのLiF、1.478モルのNaF及び0.428モルのAlF3の混合物からなる金属ふっ化物塩を用い、反応容器内で960℃に加熱し、溶融して溶融塩層とし、続いて表2に示すように、6.671モルの金属Alを反応容器内に装入し、溶融させて溶融金属層とした。前記反応容器内において、前記溶融金属層と溶融塩層は互いに分離し、溶融金属層が下層として溶融塩層の下部に該溶融塩層と接触して存在していた。
 更に、反応容器内を960℃に保持しつつ、Sc化合物として0.080モルのScF3を装入し、上層の溶融塩層に溶解させ、反応式(1)の反応系を構成した。この反応系を前記溶融金属層が空気に接触しない程度に撹拌しながら960℃で180分間保持し、反応式(1)の化学反応をさせた。この反応においてはAl23が生成しないので、保持時間を実施例1と同一の時間とした。
 反応終了後、前記溶融金属層を採取し、分析したところ、表3に示すように、前記金属層には0.013モルのScが含有されており、Al量との対比によれば、これはAl-0.67mass%Sc合金に相当し、また、(FSc-CSc)/PScの値は0.229であった。(FSc-CSc)/PScの値が0.3未満となったのは、溶融塩層中に装入したSc化合物がScF3であったことにより、化学反応によって溶融塩に可溶なAlF3が副反応生成物として生成し、当該AlF3の生成によって、相対的に溶融塩層中のSc3+濃度が低下したためと考えられる。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
 本発明は、不活性ガス雰囲気又は真空雰囲気での加熱のための設備を始めとして、金属Ca等の還元剤や溶融塩電解のための設備及び電力を必要とせず、しかも、1050℃までの加熱で十分であって、製造工程も簡便かつ簡潔なものであり、Al-Sc系合金の製造方法として好適に利用できるものである。
 10…加熱炉、12…加熱器、14…反応容器、16…溶融塩層、18…溶融金属層。

Claims (5)

  1.  金属アルミニウム(Al)と、アルカリ金属ふっ化物、アルカリ土類金属ふっ化物及びふっ化アルミニウムからなる群から選ばれた1種又は2種以上の金属ふっ化物塩と、スカンジウム(Sc)の酸化物及び/又はふっ化物塩からなるスカンジウム化合物とを反応容器内に装入し、反応容器内の前記金属アルミニウム(Al)と前記金属ふっ化物塩と前記スカンジウム化合物とからなる反応系を反応温度まで昇温させて溶融金属アルミニウムからなる溶融金属層と前記金属ふっ化物塩及びスカンジウム化合物が溶融した溶融塩層とを形成し、前記溶融塩層側に生成したスカンジウムイオン(Sc3+)を溶融金属層側に移行させてAl-Sc系合金を製造する方法であって、
     前記反応系の反応温度を700~1050℃の範囲内とし、また、
     前記金属ふっ化物塩として、その融点が前記反応温度よりも低く、かつ、その密度が前記反応系の反応温度において溶融金属アルミニウムの密度の70~95%の範囲内である金属フッ化物塩を使用し、
     前記反応容器内の反応系において、前記溶融塩層が上層で前記溶融金属層が下層となるようにしたことを特徴とするAl-Sc系合金の製造方法。
  2.  金属アルミニウム(Al)と金属フッ化物塩とを反応容器内に装入し、反応温度まで昇温させて溶融金属層と溶融塩層とを形成した後に、前記溶融塩層内にスカンジウム化合物を添加し、この溶融塩層内にスカンジウムイオン(Sc3+)を生成させることを特徴とする請求項1に記載のAl-Sc系合金の製造方法。
  3.  前記金属フッ化物塩が、ふっ化リチウムとふっ化ナトリウムとの混合物であることを特徴とする請求項1又は2に記載のAl-Sc系合金を製造方法。
  4.  モル百分率(mol%)で表されたAl-Sc系合金中の目標Sc濃度をFScとし、モル百分率で表された溶融塩層中のSc3+濃度をPScとし、また、モル百分率で表された溶融金属層中のSc濃度をCScとしたとき、反応容器内の反応系が0.3≦(FSc-CSc)/PSc≦1.5の関係を満たすことを特徴とする請求項1~3のいずれかに記載のAl-Sc系合金の製造方法。
  5.  請求項1~4のいずれか1項に記載のAl-Sc系合金の製造方法によって得られたAl-Sc系合金。
PCT/JP2013/067503 2013-06-26 2013-06-26 Al-Sc合金の製造方法 WO2014207834A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/424,348 US9422611B2 (en) 2013-06-26 2013-06-26 Al—Sc alloy manufacturing method
JP2013544960A JP5445725B1 (ja) 2013-06-26 2013-06-26 Al−Sc合金の製造方法
PCT/JP2013/067503 WO2014207834A1 (ja) 2013-06-26 2013-06-26 Al-Sc合金の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/067503 WO2014207834A1 (ja) 2013-06-26 2013-06-26 Al-Sc合金の製造方法

Publications (1)

Publication Number Publication Date
WO2014207834A1 true WO2014207834A1 (ja) 2014-12-31

Family

ID=50614405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067503 WO2014207834A1 (ja) 2013-06-26 2013-06-26 Al-Sc合金の製造方法

Country Status (3)

Country Link
US (1) US9422611B2 (ja)
JP (1) JP5445725B1 (ja)
WO (1) WO2014207834A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928507A (zh) * 2015-07-01 2015-09-23 广西冶金研究院 一种混合熔盐体系中铝热还原制备铝钪中间合金的方法
KR20180058426A (ko) * 2016-11-24 2018-06-01 연세대학교 산학협력단 스칸듐 합금 및 이의 제조방법
CN110306072A (zh) * 2019-07-29 2019-10-08 中国恩菲工程技术有限公司 铝钪合金及其制备方法
JP2021515851A (ja) * 2018-03-15 2021-06-24 インフィニアム インコーポレイテッド アルミニウム−スカンジウム合金の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013201572B2 (en) * 2013-03-15 2014-12-11 Commonwealth Scientific And Industrial Research Organisation Production of Aluminium-Scandium Alloys
JP5907186B2 (ja) * 2014-01-27 2016-04-26 住友金属鉱山株式会社 スカンジウム濃縮物回収方法
RU2593246C1 (ru) * 2015-04-22 2016-08-10 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Способ получения лигатуры алюминий-скандий
KR101724288B1 (ko) * 2015-07-17 2017-04-10 재단법인 포항산업과학연구원 고순도 알루미늄-스칸듐 합금 제조 방법
KR102562722B1 (ko) * 2016-02-01 2023-08-03 재단법인 포항산업과학연구원 전해용 양극, 이를 포함하는 전해조, 및 상기 전해조를 이용한 전해 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235231A (ja) * 1991-01-05 1992-08-24 Aluminum Co Of America <Alcoa> 軽金属−希土類金属合金を製造する方法
JPH1150170A (ja) * 1997-08-05 1999-02-23 Showa Alum Corp アルミニウム合金の製造装置およびこれを用いたアルミニウム合金の製造方法
JP2003171724A (ja) * 2001-12-07 2003-06-20 Aomori Prefecture Al−Sc母合金の製造法およびその方法によって得られたAl−Sc母合金
JP2007254822A (ja) * 2006-03-23 2007-10-04 Taiheiyo Kinzoku Kk スカンジウム含有合金の製造方法およびこの方法により得られたスカンジウム含有合金

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2555611B1 (fr) 1983-11-25 1986-04-18 Rhone Poulenc Spec Chim Procede de preparation d'alliages d'aluminium et de terres rares
JP2876761B2 (ja) 1990-09-21 1999-03-31 三菱マテリアル株式会社 希土類金属の粉末を製造する方法
JPH06172887A (ja) 1992-12-08 1994-06-21 Mitsubishi Kasei Corp アルミニウム合金の製造方法
JP2001348637A (ja) 2000-06-05 2001-12-18 Hitachi Cable Ltd アルミニウム合金材及びそれを用いた配線材の製造方法
RU2213795C1 (ru) * 2001-11-12 2003-10-10 Махов Сергей Владимирович Способ получения лигатуры алюминий-скандий (варианты)
CN100410400C (zh) * 2004-11-09 2008-08-13 湖南稀土金属材料研究院 铝热还原制备铝钪合金的方法
FR2978060B1 (fr) * 2011-07-21 2016-02-12 Commissariat Energie Atomique Procede et dispositif de mise en contact sans melange et a haute temperature de deux liquides non miscibles avec chauffage et brassage par induction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235231A (ja) * 1991-01-05 1992-08-24 Aluminum Co Of America <Alcoa> 軽金属−希土類金属合金を製造する方法
JPH1150170A (ja) * 1997-08-05 1999-02-23 Showa Alum Corp アルミニウム合金の製造装置およびこれを用いたアルミニウム合金の製造方法
JP2003171724A (ja) * 2001-12-07 2003-06-20 Aomori Prefecture Al−Sc母合金の製造法およびその方法によって得られたAl−Sc母合金
JP2007254822A (ja) * 2006-03-23 2007-10-04 Taiheiyo Kinzoku Kk スカンジウム含有合金の製造方法およびこの方法により得られたスカンジウム含有合金

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928507A (zh) * 2015-07-01 2015-09-23 广西冶金研究院 一种混合熔盐体系中铝热还原制备铝钪中间合金的方法
KR20180058426A (ko) * 2016-11-24 2018-06-01 연세대학교 산학협력단 스칸듐 합금 및 이의 제조방법
KR101927379B1 (ko) * 2016-11-24 2019-03-12 연세대학교 산학협력단 스칸듐 합금 및 이의 제조방법
JP2021515851A (ja) * 2018-03-15 2021-06-24 インフィニアム インコーポレイテッド アルミニウム−スカンジウム合金の製造方法
JP7361058B2 (ja) 2018-03-15 2023-10-13 エフイーエー マテリアルズ エルエルシー アルミニウム-スカンジウム合金の製造方法
US11970782B2 (en) 2018-03-15 2024-04-30 Fea Materials Llc Method of aluminum-scandium alloy production
CN110306072A (zh) * 2019-07-29 2019-10-08 中国恩菲工程技术有限公司 铝钪合金及其制备方法
CN110306072B (zh) * 2019-07-29 2021-05-11 中国恩菲工程技术有限公司 铝钪合金及其制备方法

Also Published As

Publication number Publication date
JPWO2014207834A1 (ja) 2017-02-23
US20150232965A1 (en) 2015-08-20
JP5445725B1 (ja) 2014-03-19
US9422611B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
JP5445725B1 (ja) Al−Sc合金の製造方法
CN108138343B (zh) 利用电解还原和电解精炼工序的金属精炼方法
KR101163375B1 (ko) 원광 금속환원 및 전해정련 일관공정에 의한 원자로급 지르코늄 친환경 신 제련공정
WO2010137555A1 (ja) 精製された金属又は半金属の製造方法
EP3368477A1 (en) Method for the enrichment and separation of silicon crystals from a molten metal for the purification of silicon
AU2019236275B2 (en) Method of aluminum-scandium alloy production
KR101878652B1 (ko) 전해환원 및 전해정련 일관공정에 의한 금속 정련 방법
WO2022092231A1 (ja) 再生アルミニウムの製造方法、製造装置、製造システム、再生アルミニウム、及び、アルミニウム加工物
US20240026555A1 (en) Reduction system and method for high-melting point metal oxides, using liquid metal crucible
RU2401874C2 (ru) Способ волкова для производства химически активных металлов и устройство для его осуществления
JP2022058350A (ja) 反応性金属の電解生成
JP2926280B2 (ja) 稀土類−鉄合金の製造方法
CN111187916A (zh) 一种利用工业钛渣制备高纯钛的方法
CN103132108B (zh) 熔盐体系中电解制备耐热镁铝钕合金的方法
JP5236897B2 (ja) シリコンの製造方法
US20240002974A1 (en) Reduction method and system for high-melting-point metal oxide, using fluoride-based electrolytes
JP2013036075A (ja) インジウム又はインジウム合金の精製方法
JPS63118089A (ja) チタン,チタン合金の製造方法
Sokhanvaran et al. Advances in Electrometallurgy for Sustainable Metal Production
JP2024011006A (ja) 高融点金属薄膜の製造方法
JP2008290908A (ja) 固体シリコンの製造方法
JPS59104441A (ja) Ca−Al合金の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013544960

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887776

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14424348

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13887776

Country of ref document: EP

Kind code of ref document: A1