WO2014207817A1 - Vehicle headlight - Google Patents

Vehicle headlight Download PDF

Info

Publication number
WO2014207817A1
WO2014207817A1 PCT/JP2013/067349 JP2013067349W WO2014207817A1 WO 2014207817 A1 WO2014207817 A1 WO 2014207817A1 JP 2013067349 W JP2013067349 W JP 2013067349W WO 2014207817 A1 WO2014207817 A1 WO 2014207817A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
reflector
upper side
light
vehicle
Prior art date
Application number
PCT/JP2013/067349
Other languages
French (fr)
Japanese (ja)
Inventor
安部 俊也
大久保 泰宏
Original Assignee
市光工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 市光工業株式会社 filed Critical 市光工業株式会社
Priority to PCT/JP2013/067349 priority Critical patent/WO2014207817A1/en
Publication of WO2014207817A1 publication Critical patent/WO2014207817A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/40Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • F21S41/148Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device the main emission direction of the LED being perpendicular to the optical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/265Composite lenses; Lenses with a patch-like shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/321Optical layout thereof the reflector being a surface of revolution or a planar surface, e.g. truncated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • F21S45/47Passive cooling, e.g. using fins, thermal conductive elements or openings
    • F21S45/48Passive cooling, e.g. using fins, thermal conductive elements or openings with means for conducting heat from the inside to the outside of the lighting devices, e.g. with fins on the outer surface of the lighting device

Definitions

  • the present invention relates to a vehicle headlamp including a semiconductor light source, a reflector, and a lens having a plurality of regions.
  • a conventional vehicle headlamp includes an LED, a reflector, and a lens having a first lens cut portion and a second lens cut portion.
  • the LED When the LED is turned on, the light from the LED is reflected by the reflector, and the reflected light is a light distribution pattern that is focused from the first lens cut portion and a light distribution pattern that is diffused from the second lens cut portion. Irradiates in front of the vehicle.
  • the upper side of the lens may be set below the upper side of the reflector from the viewpoint of the vehicle body design.
  • the upper side of the lens since the upper side of the lens is set to be positioned below the upper side of the reflector, a part of the reflected light from the reflector is part of the first lens cut portion and the second lens cut portion of the lens. It does not enter. For this reason, a part of the light distribution pattern may be insufficient.
  • the problem to be solved by the present invention is that a part of the light distribution pattern may be insufficient in the conventional vehicle headlamp.
  • the present invention (the invention according to claim 1) includes a semiconductor-type light source, a reflector, and a lens, the semiconductor-type light source has a downward light emitting surface, and the reflector reflects light from the semiconductor-type light source. And the lens is partitioned into a plurality of areas for controlling the light distribution of the reflected light from the reflecting surface, and the upper side of the lens is located below the upper side of the reflector and located above the upper side of the lens At least a part of the reflecting surface of the reflector is set so that light from the semiconductor-type light source enters the lens region.
  • the upper side of the lens is inclined from the lower side to the upper side of the vehicle from the inner side to the outer side of the vehicle in a front view of the vehicle, and the reflector is positioned above the upper side of the lens.
  • a portion of the reflective surface outside the vehicle is set so that light from the semiconductor-type light source is directed downward and incident on the lens region, and the reflective surface of the reflector located above the upper side of the lens.
  • at least a part of the inner portion of the vehicle is set so that light from the semiconductor-type light source is incident on the lens region toward the lower side and toward the outer side of the vehicle.
  • This invention (the invention according to claim 3) is characterized in that the light emitting surface of the semiconductor-type light source is inclined rearward of the vehicle with respect to the reference optical axis of the reflector.
  • the reflecting surface of the reflector located above the upper side of the lens is set so that light from the semiconductor-type light source enters the lens region. For this reason, even if the upper side of the lens is located below the upper side of the reflector, at least part of the reflected light from the reflecting surface of the reflector located above the upper side of the lens is incident on the lens area. can do. Thereby, it is possible to make up for a partial shortage of the light distribution pattern when the upper side of the lens is positioned below the upper side of the reflector, and the partial light distribution pattern is improved. In addition, since the upper side of the lens is positioned below the upper side of the reflector, the vertical width of the lens can be made smaller than the vertical width of the reflector.
  • FIG. 1 shows a first embodiment of a vehicle headlamp according to the present invention, and is a plan view of a vehicle equipped with left and right vehicle headlamps.
  • FIG. 2 is a front view showing the left lamp unit.
  • 3 is a cross-sectional view taken along line III-III in FIG.
  • FIG. 4 is a front view showing the relative positional relationship between the semiconductor light source, the reflector, and the lens of the left lamp unit.
  • FIG. 5 is a perspective view showing the relative positional relationship between the semiconductor light source, the reflector, and the lens of the left lamp unit.
  • FIG. 6 is a front view showing the relative positional relationship between the semiconductor light source and the reflector of the left lamp unit.
  • FIG. 7 is a perspective view showing the relative positional relationship between the semiconductor light source and the reflector of the left lamp unit.
  • FIG. 8 is a longitudinal sectional view (vertical sectional view) showing the relative positional relationship of the semiconductor light source, reflector, and lens of the left lamp unit, and corresponds to the sectional view taken along the line III-III in FIG. 2 (FIG. 3). It is sectional drawing.
  • FIG. 9 is a cross-sectional view (horizontal cross-sectional view) showing the relative positional relationship between the semiconductor light source, the reflector, and the lens of the left lamp unit.
  • FIG. 10 is an explanatory diagram showing the operation of the auxiliary reflecting surface.
  • FIG. 11 is an explanatory diagram showing an outline of a low beam light distribution pattern irradiated in front of the vehicle.
  • FIG. 12 is an explanatory diagram showing a low beam light distribution pattern irradiated in front of the vehicle.
  • FIG. 13 is a longitudinal sectional view (vertical sectional view) showing Embodiment 2 of the vehicle headlamp according to the present invention, and is a sectional view corresponding to FIG.
  • front, rear, upper, lower, left, right are front, rear, upper, lower, left, right when the vehicle headlamp according to the present invention is mounted on a vehicle. It is.
  • the symbol “F” indicates the front side of the vehicle (the forward direction side of the vehicle).
  • the symbol “B” indicates the rear side of the vehicle.
  • the symbol “U” indicates the upper side when the front side is viewed from the driver side.
  • the symbol “D” indicates the lower side when the front side is viewed from the driver side.
  • the symbol “L” indicates the left side when the front side is viewed from the driver side.
  • the symbol “R” indicates the right side when the front side is viewed from the driver side.
  • the symbol “VU-VD” indicates vertical lines on the top and bottom of the screen.
  • the left side of the screen means the left side of the vertical line VU-VD.
  • the right side of the screen means the right side of the vertical line VU-VD.
  • the symbol “HL-HR” indicates a horizontal line on the left and right of the screen.
  • the lower side of the screen means the lower side of the left and right horizontal lines HL-HR.
  • FIG. 12 is an explanatory diagram of an isoluminous curve showing the light distribution pattern on the screen drawn by computer simulation in a simplified manner.
  • the central isoluminous curve is a high luminous intensity band, and the other curves are It is a light intensity zone that decreases as you go outside.
  • FIG. 1 shows Embodiment 1 of a vehicle headlamp according to the present invention.
  • vehicle headlamps 1L and 1R denote vehicle headlamps (for example, a headlamp) in the first embodiment.
  • the vehicle headlamps 1L and 1R are mounted on both left and right ends of the front portion of the vehicle C for left-hand traffic.
  • the left vehicle headlamp 1L mounted on the left side L of the vehicle C will be described.
  • the right vehicle headlamp 1R mounted on the right side R of the vehicle C has substantially the same configuration as the left vehicle headlamp 1L, and a description thereof will be omitted.
  • the vehicle headlamp 1 ⁇ / b> L includes a lamp housing (not shown), a lamp lens (not shown), a semiconductor light source 2, a reflector 3, and a lens 4. And a heat sink member 5 and a cover member 6.
  • the semiconductor light source 2, the reflector 3, the lens 4, the heat sink member 5, and the cover member 6 constitute a lamp unit.
  • the lamp housing and the lamp lens define a lamp chamber (not shown).
  • the lamp units 2, 3, 4, 5, 6 are disposed in the lamp chamber, and include an up / down direction optical axis adjustment mechanism (not shown) and a left / right direction optical axis adjustment mechanism (not shown). And is attached to the lamp housing.
  • the semiconductor light source 2 is a self-luminous semiconductor light source such as an LED or an EL (organic EL) in this example.
  • the semiconductor light source 2 includes a light emitting chip (LED chip) 20, a package (LED package) in which the light emitting chip 20 is sealed with a sealing resin member, a substrate 21 on which the package is mounted, and an attachment to the substrate 21. And a connector 22 for supplying a current from a power source (battery) to the light emitting chip 20.
  • the substrate 21 is fixed to the heat sink member 5 with screws (not shown). As a result, the semiconductor light source 2 is fixed to the heat sink member 5.
  • the light emitting chip 20 has a planar rectangular shape (planar rectangular shape). That is, four square chips are arranged in the X-axis direction (horizontal direction). Two, three, or five or more square chips, one rectangular chip, or one square chip may be used.
  • a surface (lower surface) on the lower side D of the light emitting chip 20 forms a light emitting surface. As a result, the light emitting surface faces the lower side D.
  • the center O of the light emitting surface of the light emitting chip 20 is located at or near the reference focal point F1 of the reflector 3 and on or near the reference optical axis (reference axis) Z of the reflector 3.
  • X, Y, and Z constitute an orthogonal coordinate (XYZ orthogonal coordinate system).
  • the X axis is a horizontal axis in the horizontal direction passing through the center O of the light emitting surface of the light emitting chip 20.
  • the inside of the vehicle C, that is, the right side R in the first embodiment is the + direction
  • the outside of the vehicle C, that is, the left side L in the first embodiment is the ⁇ direction.
  • the Y axis is a vertical axis (vertical axis, normal line, perpendicular line) passing through the center O of the light emitting surface of the light emitting chip 20.
  • the upper side U is the + direction and the lower side D is the ⁇ direction in the first embodiment.
  • the Z-axis is a reference optical axis Z of the reflector 3, and is a longitudinal axis that passes through the center O of the light-emitting surface of the light-emitting chip 20 and is orthogonal to the X-axis and the Y-axis.
  • the front side F is a positive direction and the rear side B is a negative direction in the first embodiment.
  • the reflector 3 includes a reflecting portion 30 and an attachment portion (not shown).
  • the attachment portion is fixed to the heat sink member 5 by a screw (not shown).
  • the reflector 3 is fixed to the heat sink member 5.
  • a reflective surface 32 is provided on the front surface (inner surface) of the reflective portion 30.
  • the reflection surface 32 is a reflection surface made of a parabolic free-form surface.
  • the reflection surface 32 (the reflector 3) has the reference focal point F1 and the reference optical axis Z.
  • the reflection surface 32 has a basic light distribution pattern having light from the semiconductor-type light source 2 having an oblique cut-off line, a horizontal cut-off line, and an elbow point (a crossing point between the oblique cut-off line and the horizontal cut-off line or a point in the vicinity thereof). It is a free-form reflecting surface that is reflected as a low beam basic light distribution pattern (not shown).
  • the lens 4 includes a lens portion 40 having a rectangular shape in front view and an attachment portion (not shown).
  • the attachment portion is fixed to the heat sink member 5 by a screw (not shown).
  • the lens 4 is fixed to the heat sink member 5.
  • the lens unit 40 is a lens (thin lens, prism lens) divided into a plurality of regions (prism, prism cut, cut, prism surface, prism cut surface, cut surface) 41.
  • the lens portion 40 of the lens 4 is slanted from the lower side D to the upper side U of the vehicle C from the inner side (right side R) to the outer side (left side L) of the vehicle C in a front view of the vehicle C ( Lifted).
  • both the upper and lower sides of the lens 4 are slanted from the lower side D to the upper side U of the vehicle C from the inner side (right side R) to the outer side (left side L) of the vehicle C in the front view of the vehicle C ( Lifted).
  • the upper and lower sides of the lens 4 are parallel to each other and form a straight line.
  • An incident surface is provided on the inner surface (the rear B surface) of the lens portion 40 of the lens 4.
  • the incident surface is a flat surface or a compound quadratic curved surface.
  • the exit surface is a plurality of the regions 41 and forms a convex free-form surface.
  • the plurality of regions 41 of the lens 4 have a cylindrical shape whose axis is in the vertical direction.
  • the plurality of regions 41 four in the middle of the upper side U constitute a large diffusion region 42.
  • four in the middle of the lower side U constitute a region 43 (hereinafter referred to as a “small diffusion region”) that is small diffusion or plain or a combination of small diffusion and plain.
  • the two on the left side L and the two on the right side R constitute an intermediate diffusion region 44.
  • the lens portion 40 of the lens 4 controls the light distribution of the basic light distribution pattern from the reflection surface 32 of the reflector 3 as a low beam light distribution pattern LP shown in FIG. It is a lens part.
  • the low beam light distribution pattern LP has an oblique cut-off line CL1, a horizontal cut-off line CL2, and an elbow point E (intersection of the oblique cut-off line CL1 and the horizontal cut-off line CL2 or a point in the vicinity thereof).
  • the vertical width of the lens 4 is smaller than the vertical width of the reflector 3.
  • the upper side 45 of the lens 4 is positioned on the lower side D of the upper side 31 of the reflector 3.
  • the upper U portions 33 and 34 of the reflecting surface 32 of the reflector 3 located above the upper side 45 of the lens 4 protrude above the upper side 45 of the lens 4.
  • the first protruding reflection surface 33 on the outer side (left side L) of the vehicle C with respect to the reference optical axis Z is from the light emitting surface of the light emitting chip 20 of the semiconductor light source 2.
  • the light L1 is set so as to enter the large diffusion region 42 of the plurality of regions 41 of the lens 4 toward the lower side D. That is, the first protruding reflection surface 33 is formed on the lens 4 while the light L1 from the light emitting chip 20 of the semiconductor-type light source 2 is aimed at the lower side D of the screen as the lower supplementary light distribution pattern PD (see FIG. 11). Is set so as to be incident on the large diffusion region 42.
  • the upper side 45 of the lens 4 is inclined from the lower side D to the upper side U of the vehicle C from the inner side to the outer side of the vehicle C in a front view of the vehicle C.
  • the upper side 31 of the reflector 3 is substantially horizontal.
  • the first protruding reflection surface 33 is located outside the vehicle C with respect to the reference optical axis Z. For this reason, the amount of overlap between the first protrusion reflection surface 33 and the lens 4 is equal to the amount of overlap between the second protrusion reflection surface 34 located on the inner side of the vehicle C with respect to the reference optical axis Z and the lens 4. Big in comparison.
  • the angle at which the reflected light L3 is directed downward D may be small.
  • the first protruding reflection surface 33 only needs to be directed to the lower side D.
  • the second protruding reflection surface 34 a part of the second protruding reflection surface 34 that is inside (right side R) of the vehicle C with respect to the reference optical axis Z is the light emitting chip 20 of the semiconductor-type light source 2. Is set so as to be incident on the large diffusion region 42 of the region 41 of the lens 4 toward the left side L and the lower side D.
  • the second protruding reflection surface 34 is configured such that the light L2 from the light emitting chip 20 of the semiconductor-type light source 2 is aimed at the left side L and the lower side D of the screen as the left side supplementary light distribution pattern PL (see FIG. 11). It is set so as to be incident on the large diffusion region 42 of the lens 4.
  • the left supplemental light distribution pattern PL is a light distribution pattern irradiated to the front of the vehicle C from the left vehicle headlamp 1L. From the right vehicle headlamp 1R, a right supplementary light distribution pattern PR is irradiated in front of the vehicle C as shown in FIG.
  • the second protruding reflection surface 34 is located inside the vehicle C with respect to the first protruding reflection surface 33. For this reason, the amount of overlap between the second protrusion reflection surface 34 and the lens 4 is smaller than the amount of overlap between the first protrusion reflection surface 33 and the lens 4. As a result, since the reflected light L4 from the second protruding reflection surface 34 is incident on the lens 4, the angle at which the reflected light L4 is directed downward D is increased, and the reflected light L4 is diffused by the lens 4 in the large diffusion. In some cases, the light enters the small diffusion region 43 as well.
  • the second protruding reflecting surface 34 by directing the second protruding reflecting surface 34 to the outside of the vehicle C, the reflected light L4 is incident only on the large diffusion region 42 of the lens 4 toward the outside of the vehicle C and toward the lower side D. Can do. Thus, the second protruding reflection surface 34 only needs to be directed to the outside of the vehicle C and to the lower side D.
  • the second protruding reflection surface 34 is a portion on the upper side U of the reflection surface 32 of the reflector 3 located on the upper side U of the upper side 45 of the lens 4, And it is comprised from a part of part inside a vehicle rather than the said reference
  • the range in which the second protruding reflection surface 34 is provided can ensure a sufficient amount of light of the left supplemental light distribution pattern PL, and can be applied to the reflection surface 32 that is generated by a step of the second protruding reflection surface 34. The range that can suppress the influence of the shadow as much as possible. Specifically, as shown in FIG.
  • the first protruding reflection surface 33 is connected to other surrounding reflection surfaces 32 and 34 in a state of continuous curvature.
  • the second protruding reflection surface 34 is divided from the other reflection surfaces 32 and 33 in the vicinity, as indicated by a solid line.
  • the heat sink member 5 includes a horizontal plate portion 50, fin portions 51, an attachment portion, and a shade portion 53.
  • the semiconductor-type light source 2 and the reflector 3 are attached to one surface (the lower D surface) of the horizontal plate portion 50 by the screws.
  • a plurality of fin portions 51 each having a vertical plate shape are integrally provided on the other surface (upper U surface) of the horizontal plate portion 50.
  • the fin portion 51 releases heat generated in the light emitting chip 20 of the semiconductor light source 2 to the outside.
  • the mounting portions are integrally provided at both left and right end portions of the front side F edge of one surface of the horizontal plate portion 50.
  • the lens 4 is attached to the attachment portion by the screw.
  • the shade portion 53 is integrally provided at the center of the edge of the front side F of one surface of the horizontal plate portion 50.
  • the shade portion 53 prevents light from the light emitting surface of the semiconductor light source 2 from directly entering the lens portion 40 of the lens 4.
  • cover member 6 (Description of cover member 6) As shown in FIGS. 2 and 3, the cover member 6 has a front F portion with a small vertical width, a rear B portion with a large vertical width, and a vertical width from the front F portion to the rear B. It forms a divergent shape over this part.
  • the cover member 6 is composed of a light impermeable member.
  • An insertion opening 60 having a rectangular shape is provided on the front side F of the cover member 6.
  • the lens portion 40 of the lens 4 is inserted into the insertion opening 60.
  • Attachment portions are integrally provided on the left and right edges of the inside of the insertion opening 60 in the front F portion of the cover member 6.
  • the attachment portion is attached to the attachment portion of the lens 4.
  • a ventilation opening 62 is provided at the center of the upper and lower edges of the opening on the rear side B of the cover member 6.
  • the vehicle headlamps 1L and 1R in the first embodiment are configured as described above, and the operation thereof will be described below.
  • the light emitting chip 20 of the semiconductor type light source 2 is turned on. Then, most of the light emitted from the light emitting surface of the light emitting chip 20 is reflected to the lens 4 side by the reflecting surface 32 of the reflector 3.
  • the reflected light reflected by the reflecting surface 32 is subjected to light distribution control in a basic light distribution pattern (not shown) having an oblique cut-off line, a horizontal cut-off line, and an elbow point.
  • a basic light distribution pattern (not shown) having an oblique cut-off line, a horizontal cut-off line, and an elbow point.
  • the emitted light emitted from the lens unit is distributed to a low beam light distribution pattern LP having an oblique cut-off line CL1, a horizontal cut-off line CL2, and an elbow point E, and is emitted to the front of the vehicle C. Is done.
  • the light L1 from the light emitting chip 20 of the semiconductor light source 2 is reflected toward the lower side D so as to enter the large diffusion region 42 of the lens 4 at the first protruding reflection surface 33 of the reflector 3.
  • the reflected light L3 is irradiated from the large diffusion region 42 of the lens 4 as a lower supplementary light distribution pattern PD to a range from the lower D portion of the low beam light distribution pattern LP to the lower side D of the screen. Illuminate.
  • the light L2 from the light emitting chip 20 of the semiconductor light source 2 is directed to the outside of the vehicle C and to the lower side D so as to enter the large diffusion region 42 of the lens 4 at the second protruding reflection surface 34 of the reflector 3. And reflected.
  • At least a part of the protruding reflection surfaces 33 and 34 of the reflector 3 positioned above the upper side 45 of the lens 4 is light L1 from the semiconductor-type light source 2.
  • L2 is set to enter the region 41 of the lens 4. For this reason, even if the upper side 45 of the lens 4 is located below the upper side 31 of the reflector 3, the reflected light from the reflecting surfaces 33 and 34 protruding from the reflector 3 located above the upper side 45 of the lens 4.
  • At least a part of L3 and L4 can enter the region 41 of the lens 4.
  • the light distribution pattern that is, a part of the low beam light distribution pattern LP (the lower D portion, the left L portion).
  • the right side R portion can be compensated for, and a partially insufficient light distribution pattern, that is, the low beam light distribution pattern LP (see FIG. 12A) is an ideal low beam distribution shown in FIG.
  • the light pattern LP1 is improved.
  • the vertical width of the lens 4 can be made smaller than the vertical width of the reflector 3.
  • the reflecting surface 35 of the reflector 3 located above the upper side 45 of the lens 4 is set like the protruding reflecting surfaces 33 and 34 in the first embodiment. This will be described in the case where it is not. That is, as indicated by a two-dot chain line in FIG. 10, the light L1 and L2 from the light emitting chip 20 of the semiconductor-type light source 2 is reflected by the reflection surface 35 (a protruding reflection surface that is not set at all). Does not enter the region 41 of the lens 4 through the upper side U of the upper side 45 of the lens 4.
  • the light distribution pattern LP for low beam (see FIG. 12A) in which the light distribution PR1 is insufficient is irradiated in front of the vehicle C. If the vertical width of the lens 4 and the vertical width of the reflector 3 are substantially equal, the reflected light L5 from the reflecting surface 35 is incident on the lens 4, so that an ideal low beam light distribution pattern LP1 with no light distribution shortage. Is obtained. However, since the vertical width of the lens 4 is smaller than the vertical width of the reflector 3, the reflected light L5 from the reflecting surface 35 does not enter the lens 4, and thus the low beam light distribution pattern LP with insufficient light distribution is irradiated.
  • the vehicle headlamps 1L and 1R in the first embodiment are parts of the outer surface of the vehicle C among the reflecting surfaces 33 and 34 of the reflector 3 located on the upper side U of the upper side 45 of the lens 4.
  • the first protruding reflection surface 33 is set so that the light L1 from the light emitting chip 20 of the semiconductor-type light source 2 enters the large diffusion region 42 of the lens 4 downward.
  • the light L ⁇ b> 1 from the light emitting chip 20 of the semiconductor light source 2 is reflected toward the lower side D so as to enter the large diffusion region 42 of the lens 4 at the first protruding reflection surface 33 of the reflector 3.
  • the reflected light L3 is irradiated from the large diffusion region 42 of the lens 4 as a lower supplementary light distribution pattern PD to a range from the lower D portion of the low beam light distribution pattern LP to the lower side D of the screen. Illuminate.
  • the vehicle headlamps 1L and 1R according to the first embodiment are at least a part of the inner part of the vehicle C among the reflecting surfaces 33 and 34 of the reflector 3 positioned above the upper side 45 of the lens 4.
  • the second protrusion reflecting surface 34 is set so that the light L2 from the light emitting chip 20 of the semiconductor-type light source 2 enters the large diffusion region 42 of the lens 4 toward the lower side and toward the outside of the vehicle C. Yes.
  • the light L2 from the light emitting chip 20 of the semiconductor-type light source 2 is placed outside the vehicle C and on the lower side D so as to enter the large diffusion region 42 of the lens 4 at the second protruding reflection surface 34 of the reflector 3. Reflected towards.
  • the vehicle headlamps 1L and 1R according to the first embodiment superimpose a low beam light distribution pattern LP, a lower supplementary light distribution pattern PD, a left supplementary light distribution pattern PL, and a right supplementary light distribution pattern PR.
  • a low beam light distribution pattern LP1 shown in FIG. 12B is obtained.
  • the vehicle headlamps 1L and 1R according to the first embodiment are reflected from the reflecting surfaces 33 and 34 of the reflector 3 located on the upper side U of the upper side 45 of the lens 4 that has not been incident on the lens 4 until now. Since the lights L3 and L4 are incident on the large diffusion region 42 of the lens 4, the light from the semiconductor light source 2 can be used effectively.
  • the upper side 45 of the lens 4 is inclined from the lower side D to the upper side U of the vehicle C from the inner side to the outer side of the vehicle C in the front view of the vehicle C.
  • the first protruding reflection surface 33 is located outside the vehicle C with respect to the second protruding reflection surface 34.
  • the amount of overlap between the first protrusion reflection surface 33 and the lens 4 is larger than the amount of overlap between the second protrusion reflection surface 34 and the lens 4.
  • the angle at which the reflected light L3 is directed to the lower side D may be small in order to cause the reflected light L3 from the first protruding reflection surface 33 to enter the large diffusion region 42 of the lens 4.
  • the 1st protrusion reflective surface 33 is suitable for forming lower supplementary light distribution pattern PD.
  • the second protruding reflection surface 34 is located inside the vehicle C with respect to the first protruding reflection surface 33. For this reason, the amount of overlap between the second protrusion reflection surface 34 and the lens 4 is smaller than the amount of overlap between the first protrusion reflection surface 33 and the lens 4. As a result, since the reflected light L4 from the second protruding reflecting surface 34 is incident on the lens 4, the angle at which the reflected light L4 is directed downward D is increased, and the reflected light L4 is only in the large diffusion region 42 of the lens 4. In some cases, the light also enters the small diffusion region 43.
  • the 2nd protrusion reflective surface 34 is suitable for forming the left side supplementary light distribution pattern PL and the right side supplementary light distribution pattern PR.
  • FIG. 13 shows Embodiment 2 of the vehicle headlamp according to the present invention.
  • the vehicle headlamp according to the second embodiment will be described.
  • the same reference numerals as those in FIGS. 1 to 12 denote the same components.
  • the light emitting surface of the light emitting chip 20 of the semiconductor light source 2 faces the lower side D.
  • the light emitting surface of the light emitting chip 20 of the semiconductor light source 2 is inclined to the rear side B of the vehicle C with respect to the reference optical axis Z of the reflector 3. Is. That is, the light emitting surface of the light emitting chip 20 of the semiconductor light source 2 is inclined from the lower side D to the upper side U from the front side F to the rear side B.
  • the angle ⁇ ° for inclining the light emitting surface of the light emitting chip 20 can be arbitrarily determined using the following formula as a guide.
  • ⁇ ° tan-1 (H1 / L1)
  • H1 is a dimension between the upper side 31 of the reflector 3 and the upper side 45 of the lens 4
  • L1 is a dimension from the center of the light emitting surface of the light emitting chip 20 of the semiconductor light source 2 to the inner surface of the lens 4.
  • reference sign “Z ⁇ b> 1” is a horizontal line parallel to the light emitting surface from the center of the light emitting surface of the light emitting chip 20, and is inclined ⁇ ° below D with respect to the reference optical axis Z.
  • Reference sign “Y1” is a vertical line perpendicular to the light emitting surface from the center of the light emitting surface of the light emitting chip 20 and is inclined ⁇ ° front side F with respect to the Y axis.
  • the vehicle headlamp according to the second embodiment is configured as described above, it is possible to achieve substantially the same operational effects as the vehicle headlamps 1L and 1R according to the first embodiment.
  • the vehicle headlamp according to the second embodiment has a light emitting surface of the light emitting chip 20 inclined toward the rear side of the vehicle C with respect to the reference optical axis Z of the reflector 3.
  • the light emitted from the light emitting surface of the light emitting chip 20 relatively strong light enters the reflecting surface 32, the first protruding reflecting surface 33, and the second protruding reflecting surface 34 of the reflector 3.
  • the light of the semiconductor-type light source 2 can be used more effectively.
  • the angle ⁇ ° for inclining the light emitting surface of the light emitting chip 20 is equal to the dimension H1 between the upper side 31 of the reflector 3 on the Z axis and the upper side 45 of the lens 4.
  • the angle corresponding to the vertical width of the lens 4 on the Z axis smaller than the vertical width of the reflector 3 can be set. For this reason, even if the vertical width of the lens 4 is smaller than the vertical width of the reflector 3, the light from the light emitting chip 20 of the semiconductor light source 2 can be used effectively.
  • the vehicle headlamp according to the present embodiment includes the semiconductor light source 2, the reflector 3, and the lens 4, and the semiconductor light source 2 has a downward light emitting surface
  • the reflector 3 has a reflection surface 32 that reflects light from the semiconductor-type light source 2
  • the lens 4 is partitioned into a plurality of regions 41 that control light distribution of the reflection light from the reflection surface 32
  • the upper side of the lens 4 is located below the upper side of the reflector 3, and at least a part of the reflecting surface 32 of the reflector 3 located above the upper side of the lens 4 is the semiconductor type. It is set so that light from the light source 2 is incident on the region 41 of the lens 4.
  • the upper side of the lens 4 is inclined from the lower side to the upper side of the vehicle from the inner side to the outer side of the vehicle in the front view of the vehicle.
  • the portion outside the vehicle has the light from the semiconductor-type light source 2 downward.
  • the reflecting surfaces 33 and 34 of the reflector 3 which are set so as to be incident on the region 41 of the lens 4 and are located above the upper side of the lens 4. At least a part is set so that light from the semiconductor-type light source 2 enters the region 41 of the lens 4 toward the lower side and toward the outside of the vehicle.
  • the light emitting surface of the semiconductor light source 2 is inclined to the rear side of the vehicle with respect to the reference optical axis of the reflector 3.
  • the reflector 3 includes the protruding reflection surfaces 33 and 34 positioned above the upper side of the lens 4, and the protruding reflection surfaces 33 and 34 are the reflectors.
  • the light from the semiconductor-type light source 2 disposed above 3 is directed downward and is incident on the region 41 located below the protruding reflection surfaces 33 and 34 of the lens 4. .
  • the protruding reflection surfaces 33 and 34 have a large diffusion of the light from the semiconductor light source 2 in the plurality of regions 41 of the lens 4. It is configured to enter the diffusion region 42.
  • the large diffusion region 42 of the lens 4 is provided in the vicinity of the upper side of the lens 4.
  • At least a part of the protruding reflection surfaces 33 and 34 is bent so as to reflect the light from the semiconductor-type light source 2 toward the outside of the vehicle. (See FIG. 9).
  • the semiconductor type light source 2 includes the semiconductor light source 2, the reflector 3, the lens 4, and the cover member 6.
  • the semiconductor light source 2 has a light emitting surface.
  • the reflector 3 has a reflection surface 32 that reflects light from the semiconductor-type light source 2, and the lens 4 is partitioned into a plurality of regions 41 that control light distribution from the reflection surface 32.
  • the cover member 6 has an opening 60 into which the lens 4 is inserted and is made of a light-impermeable member.
  • the upper side of the lens 4 is located below the upper side of the reflector 3,
  • the reflective surfaces (first and second protruding reflective surfaces) 33 and 34 of the reflector 3 that are connected to the opening 60 of the cover member 6 and are located above the upper side of the lens 4 are
  • the cover member connected to the upper side At least a part of the reflecting surfaces 33 and 34 of the reflector 3 located above the upper side of the lens 4 is located in the region 41 of the lens 4. It is set so that light from
  • At least a part of the reflecting surfaces 33 and 34 of the reflector 3 positioned above the upper side of the lens 4 is the facing cover member. 6 does not reflect the light from the semiconductor-type light source 2.
  • vehicle headlamps 1L and 1R when the vehicle C is on the left side will be described.
  • the present invention can also be applied to a vehicle headlamp when the vehicle C is right-hand traffic.
  • the entrance surface of the lens 4 is a flat surface or a compound quadratic curved surface
  • the exit surface of the lens 4 is a plurality of regions 41 (a large diffusion region 42, a small diffusion region 43, a medium diffusion region).
  • a diffusion region 44) which forms a convex free-form surface.
  • the incident surface of the lens 4 is a plurality of regions 41 (a large diffusion region 42, a small diffusion region 43, and a medium diffusion region 44), which forms a convex free-form surface.
  • the exit surface may be a flat surface or a compound quadratic curved surface.
  • the exit surface and the entrance surface of the lens 4 form a plurality of regions 41 (a large diffusion region 42, a small diffusion region 43, and a medium diffusion region 44), which form a convex free-form surface. May be.
  • the low beam light distribution pattern LP is irradiated.
  • the light distribution pattern for fog lamps or the light distribution pattern having a cut-off line may be irradiated.
  • the upper side 45 of the lens 4 is inclined from the lower side D to the upper side U of the vehicle C from the inner side to the outer side in the front view of the vehicle C.
  • the upper side of the lens 4 may be substantially horizontal, like the upper side 31 of the reflector 3.
  • the vertical width of the lens 4 is smaller than the vertical width of the reflector 3.
  • the vertical width of the lens 4 may be substantially equal to the vertical width of the reflector 3, or the vertical width of the lens 4 may be larger than the vertical width of the reflector 3.
  • the upper side 45 of the lens 4 is located on the lower side D of the upper side 31 of the reflector 3.

Abstract

[Problem] To address the problem that a conventional vehicle headlight lacks a part of a light distribution pattern. [Solution] A vehicle headlight of the invention comprises a semiconductor light source (2), a reflector (3), and a lens (4). The semiconductor light source (2) has a downward light-emitting surface. The reflector (3) has a reflective surface (32) for reflecting light from the semiconductor light source (2). The lens (4) is sectioned into a plurality of regions (41) for performing a light distribution control on the light reflected from the reflective surface (32). The vertical width of the lens (4) is smaller than the vertical width of the reflector (3). The upper side (45) of the lens (4) is located on the side below the upper side (31) of the reflector (3). At least parts of reflective surfaces (33, 34) of the reflector (3) located on the side above the upper side (45) of the lens (4) are set so that the light (L1, L2) from the semiconductor light source (2) is made incident on regions (42) of the lens (4). Consequently, the vehicle headlight of the invention can complement an insufficient light distribution.

Description

車両用前照灯Vehicle headlamp
この発明は、半導体型光源とリフレクタと複数の領域を有するレンズとを備える車両用前照灯に関するものである。 The present invention relates to a vehicle headlamp including a semiconductor light source, a reflector, and a lens having a plurality of regions.
この種の車両用前照灯は、従来からある(たとえば、特許文献1)。以下、従来の車両用前照灯について説明する。 This type of vehicle headlamp has been conventionally used (for example, Patent Document 1). Hereinafter, a conventional vehicle headlamp will be described.
従来の車両用前照灯は、LEDと、リフレクタと、第一のレンズカット部と第二のレンズカット部を有するレンズと、を備えるものである。LEDを点灯させると、LEDからの光がリフレクタで反射して、その反射光が第一のレンズカット部から集束された配光パターンとしてまた第二のレンズカット部から拡散された配光パターンとして車両の前方に照射される。 A conventional vehicle headlamp includes an LED, a reflector, and a lens having a first lens cut portion and a second lens cut portion. When the LED is turned on, the light from the LED is reflected by the reflector, and the reflected light is a light distribution pattern that is focused from the first lens cut portion and a light distribution pattern that is diffused from the second lens cut portion. Irradiates in front of the vehicle.
特許第4895831号公報Japanese Patent No. 4895831
かかる車両用前照灯においては、車体デザイン上から、レンズの上辺がリフレクタの上辺よりも下側に位置するように設定される場合がある。この場合においては、レンズの上辺がリフレクタの上辺よりも下側に位置するように設定されるので、リフレクタからの反射光の一部がレンズの第一のレンズカット部と第2のレンズカット部に入射しない。このために、配光パターンの一部が不足することがある。 In such a vehicle headlamp, the upper side of the lens may be set below the upper side of the reflector from the viewpoint of the vehicle body design. In this case, since the upper side of the lens is set to be positioned below the upper side of the reflector, a part of the reflected light from the reflector is part of the first lens cut portion and the second lens cut portion of the lens. It does not enter. For this reason, a part of the light distribution pattern may be insufficient.
この発明が解決しようとする課題は、従来の車両用前照灯では、配光パターンの一部が不足することがあるという点にある。 The problem to be solved by the present invention is that a part of the light distribution pattern may be insufficient in the conventional vehicle headlamp.
この発明(請求項1にかかる発明)は、半導体型光源と、リフレクタと、レンズと、を備え、半導体型光源が下向きの発光面を有し、リフレクタが半導体型光源からの光を反射させる反射面を有し、レンズが反射面からの反射光を配光制御する複数の領域に区画されていて、レンズの上辺がリフレクタの上辺よりも下側に位置し、レンズの上辺よりも上側に位置するリフレクタの反射面のうち少なくとも一部が、半導体型光源からの光をレンズの領域に入射させるように設定されている、ことを特徴とする。 The present invention (the invention according to claim 1) includes a semiconductor-type light source, a reflector, and a lens, the semiconductor-type light source has a downward light emitting surface, and the reflector reflects light from the semiconductor-type light source. And the lens is partitioned into a plurality of areas for controlling the light distribution of the reflected light from the reflecting surface, and the upper side of the lens is located below the upper side of the reflector and located above the upper side of the lens At least a part of the reflecting surface of the reflector is set so that light from the semiconductor-type light source enters the lens region.
この発明(請求項2にかかる発明)は、レンズの上辺が車両の正面視において車両の内側から外側にかけて車両の下側から上側に傾斜していて、レンズの上辺よりも上側に位置するリフレクタの反射面のうち車両の外側の部分が、半導体型光源からの光を下側に向けてレンズの領域に入射させるように設定されていて、レンズの上辺よりも上側に位置するリフレクタの反射面のうち車両の内側の部分の少なくとも一部が、半導体型光源からの光を下側に向けかつ車両の外側に向けてレンズの領域に入射させるように設定されている、ことを特徴とする。 According to the present invention (the invention according to claim 2), the upper side of the lens is inclined from the lower side to the upper side of the vehicle from the inner side to the outer side of the vehicle in a front view of the vehicle, and the reflector is positioned above the upper side of the lens. A portion of the reflective surface outside the vehicle is set so that light from the semiconductor-type light source is directed downward and incident on the lens region, and the reflective surface of the reflector located above the upper side of the lens. Of these, at least a part of the inner portion of the vehicle is set so that light from the semiconductor-type light source is incident on the lens region toward the lower side and toward the outer side of the vehicle.
この発明(請求項3にかかる発明)は、半導体型光源の発光面がリフレクタの基準光軸に対して車両の後側に傾斜している、ことを特徴とする。 This invention (the invention according to claim 3) is characterized in that the light emitting surface of the semiconductor-type light source is inclined rearward of the vehicle with respect to the reference optical axis of the reflector.
この発明の車両用前照灯は、レンズの上辺よりも上側に位置するリフレクタの反射面のうち少なくとも一部が、半導体型光源からの光をレンズの領域に入射させるように設定されている。このために、レンズの上辺がリフレクタの上辺よりも下側に位置していても、レンズの上辺よりも上側に位置するリフレクタの反射面からの反射光のうち少なくとも一部がレンズの領域に入射することができる。これにより、レンズの上辺がリフレクタの上辺よりも下側に位置している場合における配光パターンの一部の不足を補うことができ、一部不足の配光パターンが改善される。しかも、レンズの上辺がリフレクタの上辺よりも下側に位置するので、レンズの上下幅をリフレクタの上下幅よりも小さくすることができる。 In the vehicle headlamp according to the present invention, at least a part of the reflecting surface of the reflector located above the upper side of the lens is set so that light from the semiconductor-type light source enters the lens region. For this reason, even if the upper side of the lens is located below the upper side of the reflector, at least part of the reflected light from the reflecting surface of the reflector located above the upper side of the lens is incident on the lens area. can do. Thereby, it is possible to make up for a partial shortage of the light distribution pattern when the upper side of the lens is positioned below the upper side of the reflector, and the partial light distribution pattern is improved. In addition, since the upper side of the lens is positioned below the upper side of the reflector, the vertical width of the lens can be made smaller than the vertical width of the reflector.
図1は、この発明にかかる車両用前照灯の実施形態1を示し、左右両側の車両用前照灯を搭載した車両の平面図である。FIG. 1 shows a first embodiment of a vehicle headlamp according to the present invention, and is a plan view of a vehicle equipped with left and right vehicle headlamps. 図2は、左側のランプユニットを示す正面図である。FIG. 2 is a front view showing the left lamp unit. 図3は、図2におけるIII-III線断面図である。3 is a cross-sectional view taken along line III-III in FIG. 図4は、左側のランプユニットの半導体型光源、リフレクタ、レンズの相対位置関係を示す正面図である。FIG. 4 is a front view showing the relative positional relationship between the semiconductor light source, the reflector, and the lens of the left lamp unit. 図5は、左側のランプユニットの半導体型光源、リフレクタ、レンズの相対位置関係を示す斜視図である。FIG. 5 is a perspective view showing the relative positional relationship between the semiconductor light source, the reflector, and the lens of the left lamp unit. 図6は、左側のランプユニットの半導体型光源、リフレクタの相対位置関係を示す正面図である。FIG. 6 is a front view showing the relative positional relationship between the semiconductor light source and the reflector of the left lamp unit. 図7は、左側のランプユニットの半導体型光源、リフレクタの相対位置関係を示す斜視図である。FIG. 7 is a perspective view showing the relative positional relationship between the semiconductor light source and the reflector of the left lamp unit. 図8は、左側のランプユニットの半導体型光源、リフレクタ、レンズの相対位置関係を示す縦断面図(垂直断面図)であって、図2におけるIII-III線断面図(図3)に対応する断面図である。FIG. 8 is a longitudinal sectional view (vertical sectional view) showing the relative positional relationship of the semiconductor light source, reflector, and lens of the left lamp unit, and corresponds to the sectional view taken along the line III-III in FIG. 2 (FIG. 3). It is sectional drawing. 図9は、左側のランプユニットの半導体型光源、リフレクタ、レンズの相対位置関係を示す横断面図(水平断面図)である。FIG. 9 is a cross-sectional view (horizontal cross-sectional view) showing the relative positional relationship between the semiconductor light source, the reflector, and the lens of the left lamp unit. 図10は、補助反射面の作用を示す説明図である。FIG. 10 is an explanatory diagram showing the operation of the auxiliary reflecting surface. 図11は、車両の前方に照射されるロービーム用配光パターンの概略を示す説明図である。FIG. 11 is an explanatory diagram showing an outline of a low beam light distribution pattern irradiated in front of the vehicle. 図12は、車両の前方に照射されるロービーム用配光パターンを示す説明図である。FIG. 12 is an explanatory diagram showing a low beam light distribution pattern irradiated in front of the vehicle. 図13は、この発明にかかる車両用前照灯の実施形態2を示す縦断面図(垂直断面図)であって、図8に対応する断面図である。FIG. 13 is a longitudinal sectional view (vertical sectional view) showing Embodiment 2 of the vehicle headlamp according to the present invention, and is a sectional view corresponding to FIG.
以下、この発明にかかる車両用前照灯の実施形態(実施例)の2例を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。この明細書および特許請求の範囲において、前、後、上、下、左、右は、この発明にかかる車両用前照灯を車両に搭載した際の前、後、上、下、左、右である。 Hereinafter, two examples of embodiments (examples) of a vehicle headlamp according to the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. In this specification and claims, front, rear, upper, lower, left, right are front, rear, upper, lower, left, right when the vehicle headlamp according to the present invention is mounted on a vehicle. It is.
図面において、符号「F」は、車両の前側(車両の前進方向側)を示す。符号「B」は、車両の後側を示す。符号「U」は、ドライバー側から前側を見た上側を示す。符号「D」は、ドライバー側から前側を見た下側を示す。符号「L」は、ドライバー側から前側を見た場合の左側を示す。符号「R」は、ドライバー側から前側を見た場合の右側を示す。また、符号「VU-VD」は、スクリーンの上下の垂直線を示す。スクリーンの左側とは、上下の垂直線VU-VDより左側を言う。スクリーンの右側とは、上下の垂直線VU-VDより右側を言う。符号「HL-HR」は、スクリーンの左右の水平線を示す。スクリーンの下側とは、左右の水平線HL-HRより下側を言う。 In the drawings, the symbol “F” indicates the front side of the vehicle (the forward direction side of the vehicle). The symbol “B” indicates the rear side of the vehicle. The symbol “U” indicates the upper side when the front side is viewed from the driver side. The symbol “D” indicates the lower side when the front side is viewed from the driver side. The symbol “L” indicates the left side when the front side is viewed from the driver side. The symbol “R” indicates the right side when the front side is viewed from the driver side. The symbol “VU-VD” indicates vertical lines on the top and bottom of the screen. The left side of the screen means the left side of the vertical line VU-VD. The right side of the screen means the right side of the vertical line VU-VD. The symbol “HL-HR” indicates a horizontal line on the left and right of the screen. The lower side of the screen means the lower side of the left and right horizontal lines HL-HR.
図12は、コンピュータシミュレーションにより作図されたスクリーン上の配光パターンを簡略化して示す等光度曲線の説明図であって、中央の等光度曲線は、高光度帯であって、その他の曲線は、外に行くにしたがって低くなる光度帯である。 FIG. 12 is an explanatory diagram of an isoluminous curve showing the light distribution pattern on the screen drawn by computer simulation in a simplified manner. The central isoluminous curve is a high luminous intensity band, and the other curves are It is a light intensity zone that decreases as you go outside.
(実施形態1の構成の説明)
図1~図12は、この発明にかかる車両用前照灯の実施形態1を示す。以下、この実施形態1における車両用前照灯の構成について説明する。図1中、符号1L、1Rは、この実施形態1における車両用前照灯(たとえば、ヘッドランプなど)である。前記車両用前照灯1L、1Rは、左側通行用の車両Cの前部の左右両端部に搭載されている。以下、車両Cの左側Lに搭載される左側の車両用前照灯1Lについて説明する。なお、車両Cの右側Rに搭載される右側の車両用前照灯1Rは、左側の車両用前照灯1Lとほぼ同様の構成をなすので、説明を省略する。
(Description of Configuration of Embodiment 1)
1 to 12 show Embodiment 1 of a vehicle headlamp according to the present invention. Hereinafter, the configuration of the vehicle headlamp in the first embodiment will be described. In FIG. 1, reference numerals 1 </ b> L and 1 </ b> R denote vehicle headlamps (for example, a headlamp) in the first embodiment. The vehicle headlamps 1L and 1R are mounted on both left and right ends of the front portion of the vehicle C for left-hand traffic. Hereinafter, the left vehicle headlamp 1L mounted on the left side L of the vehicle C will be described. The right vehicle headlamp 1R mounted on the right side R of the vehicle C has substantially the same configuration as the left vehicle headlamp 1L, and a description thereof will be omitted.
(車両用前照灯1Lの説明)
前記車両用前照灯1Lは、図2、図3、に示すように、ランプハウジング(図示せず)と、ランプレンズ(図示せず)と、半導体型光源2と、リフレクタ3と、レンズ4と、ヒートシンク部材5と、カバー部材6と、を備えるものである。
(Description of vehicle headlamp 1L)
As shown in FIGS. 2 and 3, the vehicle headlamp 1 </ b> L includes a lamp housing (not shown), a lamp lens (not shown), a semiconductor light source 2, a reflector 3, and a lens 4. And a heat sink member 5 and a cover member 6.
前記半導体型光源2、前記リフレクタ3、前記レンズ4、前記ヒートシンク部材5、前記カバー部材6は、ランプユニットを構成する。前記ランプハウジングおよび前記ランプレンズは、灯室(図示せず)を画成する。前記ランプユニット2、3、4、5、6は、前記灯室内に配置されていて、かつ、上下方向用光軸調整機構(図示せず)および左右方向用光軸調整機構(図示せず)を介して前記ランプハウジングに取り付けられている。 The semiconductor light source 2, the reflector 3, the lens 4, the heat sink member 5, and the cover member 6 constitute a lamp unit. The lamp housing and the lamp lens define a lamp chamber (not shown). The lamp units 2, 3, 4, 5, 6 are disposed in the lamp chamber, and include an up / down direction optical axis adjustment mechanism (not shown) and a left / right direction optical axis adjustment mechanism (not shown). And is attached to the lamp housing.
(半導体型光源2の説明)
前記半導体型光源2は、図3に示すように、この例では、たとえば、LED、EL(有機EL)などの自発光半導体型光源である。前記半導体型光源2は、発光チップ(LEDチップ)20と、前記発光チップ20を封止樹脂部材で封止したパッケージ(LEDパッケージ)と、前記パッケージを実装した基板21と、前記基板21に取り付けられていて前記発光チップ20に電源(バッテリー)からの電流を供給するコネクタ22と、から構成されている。前記基板21は、スクリュー(図示せず)により、前記ヒートシンク部材5に固定されている。この結果、前記半導体型光源2は、前記ヒートシンク部材5に固定されている。
(Description of semiconductor light source 2)
As shown in FIG. 3, the semiconductor light source 2 is a self-luminous semiconductor light source such as an LED or an EL (organic EL) in this example. The semiconductor light source 2 includes a light emitting chip (LED chip) 20, a package (LED package) in which the light emitting chip 20 is sealed with a sealing resin member, a substrate 21 on which the package is mounted, and an attachment to the substrate 21. And a connector 22 for supplying a current from a power source (battery) to the light emitting chip 20. The substrate 21 is fixed to the heat sink member 5 with screws (not shown). As a result, the semiconductor light source 2 is fixed to the heat sink member 5.
前記発光チップ20は、平面矩形形状(平面長方形状)をなす。すなわち、4個の正方形のチップをX軸方向(水平方向)に配列してなるものである。なお、2個もしくは3個もしくは5個以上の正方形のチップ、あるいは、1個の長方形のチップ、あるいは、1個の正方形のチップ、を使用しても良い。前記発光チップ20の長方形の下側Dの面(下面)は、発光面をなす。この結果、前記発光面は、下側Dに向いている。前記発光チップ20の前記発光面の中心Oは、前記リフレクタ3の基準焦点F1もしくはその近傍に位置し、かつ、前記リフレクタ3の基準光軸(基準軸)Z上もしくはその近傍に位置する。 The light emitting chip 20 has a planar rectangular shape (planar rectangular shape). That is, four square chips are arranged in the X-axis direction (horizontal direction). Two, three, or five or more square chips, one rectangular chip, or one square chip may be used. A surface (lower surface) on the lower side D of the light emitting chip 20 forms a light emitting surface. As a result, the light emitting surface faces the lower side D. The center O of the light emitting surface of the light emitting chip 20 is located at or near the reference focal point F1 of the reflector 3 and on or near the reference optical axis (reference axis) Z of the reflector 3.
図3、図4、図6~図10において、X、Y、Zは、直交座標(X-Y-Z直交座標系)を構成する。前記X軸は、前記発光チップ20の前記発光面の中心Oを通る左右方向の水平軸である。前記X軸は、車両Cの内側、すなわち、この実施形態1において、右側Rが+方向であり、車両Cの外側、すなわち、この実施形態1において、左側Lが-方向である。また、前記Y軸は、前記発光チップ20の前記発光面の中心Oを通る上下方向の鉛直軸(垂直軸、法線、垂線)である。前記Y軸は、この実施形態1において、上側Uが+方向であり、下側Dが-方向である。さらに、前記Z軸は、前記リフレクタ3の基準光軸Zであり、前記発光チップ20の前記発光面の中心Oを通り、かつ、前記X軸および前記Y軸と直交する前後方向の軸である。前記Z軸は、この実施形態1において、前側Fが+方向であり、後側Bが-方向である。 In FIG. 3, FIG. 4, and FIG. 6 to FIG. 10, X, Y, and Z constitute an orthogonal coordinate (XYZ orthogonal coordinate system). The X axis is a horizontal axis in the horizontal direction passing through the center O of the light emitting surface of the light emitting chip 20. In the X axis, the inside of the vehicle C, that is, the right side R in the first embodiment is the + direction, and the outside of the vehicle C, that is, the left side L in the first embodiment is the − direction. The Y axis is a vertical axis (vertical axis, normal line, perpendicular line) passing through the center O of the light emitting surface of the light emitting chip 20. In the first embodiment, the upper side U is the + direction and the lower side D is the − direction in the first embodiment. Further, the Z-axis is a reference optical axis Z of the reflector 3, and is a longitudinal axis that passes through the center O of the light-emitting surface of the light-emitting chip 20 and is orthogonal to the X-axis and the Y-axis. . In the first embodiment, the front side F is a positive direction and the rear side B is a negative direction in the first embodiment.
(リフレクタ3の説明)
前記リフレクタ3は、図3に示すように、反射部30と、取付部(図示せず)と、から構成されている。前記取付部は、スクリュー(図示せず)により、前記ヒートシンク部材5に固定されている。この結果、前記リフレクタ3は、前記ヒートシンク部材5に固定されている。前記反射部30の前側Fの面(内面)には、反射面32が設けられている。
(Description of reflector 3)
As shown in FIG. 3, the reflector 3 includes a reflecting portion 30 and an attachment portion (not shown). The attachment portion is fixed to the heat sink member 5 by a screw (not shown). As a result, the reflector 3 is fixed to the heat sink member 5. A reflective surface 32 is provided on the front surface (inner surface) of the reflective portion 30.
前記反射面32は、パラボラ系の自由曲面からなる反射面である。この結果、前記反射面32(前記リフレクタ3)は、前記基準焦点F1および前記基準光軸Zを有する。前記反射面32は、前記半導体型光源2からの光を、斜めカットオフラインと水平カットオフラインとエルボー点(斜めカットオフラインと水平カットオフラインとの交点もしくはその近傍の点)とを有する基本配光パターン(ロービーム用基本配光パターン、図示せず)として反射させる自由曲面の反射面である。 The reflection surface 32 is a reflection surface made of a parabolic free-form surface. As a result, the reflection surface 32 (the reflector 3) has the reference focal point F1 and the reference optical axis Z. The reflection surface 32 has a basic light distribution pattern having light from the semiconductor-type light source 2 having an oblique cut-off line, a horizontal cut-off line, and an elbow point (a crossing point between the oblique cut-off line and the horizontal cut-off line or a point in the vicinity thereof). It is a free-form reflecting surface that is reflected as a low beam basic light distribution pattern (not shown).
(レンズ4の説明)
前記レンズ4は、図2~図5に示すように、正面視長方形形状をなすレンズ部40と、取付部(図示せず)と、から構成されている。前記取付部は、スクリュー(図示せず)により、前記ヒートシンク部材5に固定されている。この結果、前記レンズ4は、前記ヒートシンク部材5に固定されている。
(Description of lens 4)
As shown in FIGS. 2 to 5, the lens 4 includes a lens portion 40 having a rectangular shape in front view and an attachment portion (not shown). The attachment portion is fixed to the heat sink member 5 by a screw (not shown). As a result, the lens 4 is fixed to the heat sink member 5.
前記レンズ部40は、複数の領域(プリズム、プリズムカット、カット、プリズム面、プリズムカット面、カット面)41に区画されているレンズ(薄肉レンズ、プリズムレンズ)である。前記レンズ4の前記レンズ部40は、車両Cの正面視において、車両Cの内側(右側R)から外側(左側L)にかけて車両Cの下側Dから上側Uに傾斜(スラント)している(つり上がっている)。 The lens unit 40 is a lens (thin lens, prism lens) divided into a plurality of regions (prism, prism cut, cut, prism surface, prism cut surface, cut surface) 41. The lens portion 40 of the lens 4 is slanted from the lower side D to the upper side U of the vehicle C from the inner side (right side R) to the outer side (left side L) of the vehicle C in a front view of the vehicle C ( Lifted).
すなわち、前記レンズ4の上下両辺は、車両Cの正面視において、車両Cの内側(右側R)から外側(左側L)にかけて車両Cの下側Dから上側Uに傾斜(スラント)している(つり上がっている)。前記レンズ4の上下両辺は、相互に平行をなし、かつ、直線をなす。 In other words, both the upper and lower sides of the lens 4 are slanted from the lower side D to the upper side U of the vehicle C from the inner side (right side R) to the outer side (left side L) of the vehicle C in the front view of the vehicle C ( Lifted). The upper and lower sides of the lens 4 are parallel to each other and form a straight line.
前記レンズ4の前記レンズ部40の内面(後側Bの面)には、入射面が設けられている。前記レンズ4の前記レンズ部40の外面(前側Fの面)には、出射面が設けられている。前記入射面は、平面もしくは複合2次曲面をなす。前記出射面は、複数の前記領域41であって、凸状自由曲面をなす。前記レンズ4の複数の前記領域41は、軸が上下方向のシリンドリカル形状をなす。 An incident surface is provided on the inner surface (the rear B surface) of the lens portion 40 of the lens 4. On the outer surface (front F surface) of the lens portion 40 of the lens 4, an exit surface is provided. The incident surface is a flat surface or a compound quadratic curved surface. The exit surface is a plurality of the regions 41 and forms a convex free-form surface. The plurality of regions 41 of the lens 4 have a cylindrical shape whose axis is in the vertical direction.
複数の前記領域41のうち、上側Uの中間の4個は、大拡散の領域42を構成する。複数の前記領域41のうち、下側Uの中間の4個は、小拡散もしくは素通しもしくは小拡散と素通しとの組み合わせの領域(以下、「小拡散の領域」と称する)43を構成する。左側Lの2個および右側Rの2個は、中拡散の領域44を構成する。 Among the plurality of regions 41, four in the middle of the upper side U constitute a large diffusion region 42. Among the plurality of regions 41, four in the middle of the lower side U constitute a region 43 (hereinafter referred to as a “small diffusion region”) that is small diffusion or plain or a combination of small diffusion and plain. The two on the left side L and the two on the right side R constitute an intermediate diffusion region 44.
前記レンズ4の前記レンズ部40は、前記リフレクタ3の前記反射面32からの前記基本配光パターンを、図11に示すロービーム用配光パターンLPとして配光制御して車両Cの前方に照射するレンズ部である。前記ロービーム用配光パターンLPは、斜めカットオフラインCL1と水平カットオフラインCL2とエルボー点E(斜めカットオフラインCL1と水平カットオフラインCL2との交点もしくはその近傍の点)とを有する。 The lens portion 40 of the lens 4 controls the light distribution of the basic light distribution pattern from the reflection surface 32 of the reflector 3 as a low beam light distribution pattern LP shown in FIG. It is a lens part. The low beam light distribution pattern LP has an oblique cut-off line CL1, a horizontal cut-off line CL2, and an elbow point E (intersection of the oblique cut-off line CL1 and the horizontal cut-off line CL2 or a point in the vicinity thereof).
前記レンズ4の上下幅は、前記リフレクタ3の上下幅よりも小さい。前記レンズ4の上辺45は、前記リフレクタ3の上辺31よりも下側Dに位置する。この結果、前記レンズ4の前記上辺45よりも上側Uに位置する前記リフレクタ3の前記反射面32の上側Uの部分33、34は、前記レンズ4の前記上辺45よりも上側Uにはみ出す。 The vertical width of the lens 4 is smaller than the vertical width of the reflector 3. The upper side 45 of the lens 4 is positioned on the lower side D of the upper side 31 of the reflector 3. As a result, the upper U portions 33 and 34 of the reflecting surface 32 of the reflector 3 located above the upper side 45 of the lens 4 protrude above the upper side 45 of the lens 4.
(はみ出し反射面33、34の説明)
前記はみ出し反射面33、34のうち、前記基準光軸Zよりも車両Cの外側(左側L)の部分の第1はみ出し反射面33は、前記半導体型光源2の前記発光チップ20の発光面からの光L1を下側Dに向けて前記レンズ4の複数の前記領域41の前記大拡散の領域42に入射させるように、設定されている。すなわち、前記第1はみ出し反射面33は、前記半導体型光源2の前記発光チップ20からの光L1が下側補足配光パターンPD(図11参照)としてスクリーンの下側Dを狙いながら前記レンズ4の前記大拡散の領域42に入射するように設定されている。
(Explanation of the protruding reflection surfaces 33 and 34)
Of the protruding reflection surfaces 33, 34, the first protruding reflection surface 33 on the outer side (left side L) of the vehicle C with respect to the reference optical axis Z is from the light emitting surface of the light emitting chip 20 of the semiconductor light source 2. The light L1 is set so as to enter the large diffusion region 42 of the plurality of regions 41 of the lens 4 toward the lower side D. That is, the first protruding reflection surface 33 is formed on the lens 4 while the light L1 from the light emitting chip 20 of the semiconductor-type light source 2 is aimed at the lower side D of the screen as the lower supplementary light distribution pattern PD (see FIG. 11). Is set so as to be incident on the large diffusion region 42.
ここで、前記レンズ4の前記上辺45は、車両Cの正面視において、車両Cの内側から外側にかけて、車両Cの下側Dから上側Uに傾斜している。これに対して、前記リフレクタ3の上辺31は、ほぼ水平である。また、前記第1はみ出し反射面33は、前記基準光軸Zよりも車両Cの外側に位置する。このために、前記第1はみ出し反射面33と前記レンズ4との重なり量は、前記基準光軸Zよりも車両Cの内側に位置する第2はみ出し反射面34と前記レンズ4との重なり量と比較して大きい。この結果、前記第1はみ出し反射面33からの反射光L3を前記レンズ4の前記大拡散の領域42に入射させるために、反射光L3を下側Dに向ける角度が小さくてよい。これにより、前記第1はみ出し反射面33を下側Dに小さく向けるだけでよい。 Here, the upper side 45 of the lens 4 is inclined from the lower side D to the upper side U of the vehicle C from the inner side to the outer side of the vehicle C in a front view of the vehicle C. On the other hand, the upper side 31 of the reflector 3 is substantially horizontal. The first protruding reflection surface 33 is located outside the vehicle C with respect to the reference optical axis Z. For this reason, the amount of overlap between the first protrusion reflection surface 33 and the lens 4 is equal to the amount of overlap between the second protrusion reflection surface 34 located on the inner side of the vehicle C with respect to the reference optical axis Z and the lens 4. Big in comparison. As a result, in order for the reflected light L3 from the first protruding reflection surface 33 to enter the large diffusion region 42 of the lens 4, the angle at which the reflected light L3 is directed downward D may be small. Thereby, the first protruding reflection surface 33 only needs to be directed to the lower side D.
前記はみ出し反射面33、34のうち、前記基準光軸Zよりも車両Cの内側(右側R)の部分の前記第2はみ出し反射面34の一部は、前記半導体型光源2の前記発光チップ20からの光L2を左側Lかつ下側Dに向けて前記レンズ4の前記領域41の前記大拡散の領域42に入射させるように、設定されている。すなわち、前記第2はみ出し反射面34は、前記半導体型光源2の前記発光チップ20からの光L2が左側補足配光パターンPL(図11参照)としてスクリーンの左側Lかつ下側Dを狙いながら前記レンズ4の前記大拡散の領域42に入射するように設定されている。なお、前記左側補足配光パターンPLは、左側の前記車両用前照灯1Lから車両Cの前方に照射される配光パターンである。右側の前記車両用前照灯1Rからは、図11に示すように、右側補足配光パターンPRが車両Cの前方に照射される。 Of the protruding reflection surfaces 33, 34, a part of the second protruding reflection surface 34 that is inside (right side R) of the vehicle C with respect to the reference optical axis Z is the light emitting chip 20 of the semiconductor-type light source 2. Is set so as to be incident on the large diffusion region 42 of the region 41 of the lens 4 toward the left side L and the lower side D. In other words, the second protruding reflection surface 34 is configured such that the light L2 from the light emitting chip 20 of the semiconductor-type light source 2 is aimed at the left side L and the lower side D of the screen as the left side supplementary light distribution pattern PL (see FIG. 11). It is set so as to be incident on the large diffusion region 42 of the lens 4. Note that the left supplemental light distribution pattern PL is a light distribution pattern irradiated to the front of the vehicle C from the left vehicle headlamp 1L. From the right vehicle headlamp 1R, a right supplementary light distribution pattern PR is irradiated in front of the vehicle C as shown in FIG.
ここで、前記第2はみ出し反射面34は、前記第1はみ出し反射面33よりも車両Cの内側に位置する。このために、前記第2はみ出し反射面34と前記レンズ4との重なり量は、前記第1はみ出し反射面33と前記レンズ4との重なり量と比較して小さい。この結果、前記第2はみ出し反射面34からの反射光L4を前記レンズ4に入射させるために、反射光L4を下側Dに向ける角度が大きくなり、反射光L4が前記レンズ4の前記大拡散の領域42のみならず前記小拡散の領域43にも入射する場合がある。そこで、前記第2はみ出し反射面34を車両Cの外側に向けることにより、反射光L4を車両Cの外側にかつ下側Dに向けて前記レンズ4の前記大拡散の領域42にのみ入射させることができる。これにより、前記第2はみ出し反射面34を車両Cの外側にかつ下側Dに小さく向けるだけでよい。 Here, the second protruding reflection surface 34 is located inside the vehicle C with respect to the first protruding reflection surface 33. For this reason, the amount of overlap between the second protrusion reflection surface 34 and the lens 4 is smaller than the amount of overlap between the first protrusion reflection surface 33 and the lens 4. As a result, since the reflected light L4 from the second protruding reflection surface 34 is incident on the lens 4, the angle at which the reflected light L4 is directed downward D is increased, and the reflected light L4 is diffused by the lens 4 in the large diffusion. In some cases, the light enters the small diffusion region 43 as well. Therefore, by directing the second protruding reflecting surface 34 to the outside of the vehicle C, the reflected light L4 is incident only on the large diffusion region 42 of the lens 4 toward the outside of the vehicle C and toward the lower side D. Can do. Thus, the second protruding reflection surface 34 only needs to be directed to the outside of the vehicle C and to the lower side D.
前記第2はみ出し反射面34は、図4~図7に示すように、前記レンズ4の前記上辺45よりも上側Uに位置する前記リフレクタ3の前記反射面32の上側Uの部分であって、かつ、前記基準光軸Z(前記第1はみ出し反射面33)よりも車両内側の部分の一部から構成されている。前記第2はみ出し反射面34を設ける範囲は、前記左側補足配光パターンPLの光量を十分に確保することができ、かつ、前記第2はみ出し反射面34の段差により発生する前記反射面32への影の影響を極力抑制できる範囲とする。具体的には、図6に示すように、前記第2はみ出し反射面34のX軸方向の長さaと、前記反射面32のX軸方向の長さbとの比が、a:b=3:2となる範囲、および、図7に示すように、前記第2はみ出し反射面34の段差cが約6mmとなる範囲である。 As shown in FIGS. 4 to 7, the second protruding reflection surface 34 is a portion on the upper side U of the reflection surface 32 of the reflector 3 located on the upper side U of the upper side 45 of the lens 4, And it is comprised from a part of part inside a vehicle rather than the said reference | standard optical axis Z (the said 1st protrusion reflective surface 33). The range in which the second protruding reflection surface 34 is provided can ensure a sufficient amount of light of the left supplemental light distribution pattern PL, and can be applied to the reflection surface 32 that is generated by a step of the second protruding reflection surface 34. The range that can suppress the influence of the shadow as much as possible. Specifically, as shown in FIG. 6, the ratio of the length a of the second protruding reflective surface 34 in the X-axis direction and the length b of the reflective surface 32 in the X-axis direction is a: b = The range is 3: 2, and as shown in FIG. 7, the step c of the second protruding reflection surface 34 is about 6 mm.
前記第1はみ出し反射面33は、破線にて示すように、周囲の他の反射面32、34と曲率連続の状態で接続されている。前記第2はみ出し反射面34は、実線にて示すように、周囲の他の反射面32、33と分割されている。 As shown by a broken line, the first protruding reflection surface 33 is connected to other surrounding reflection surfaces 32 and 34 in a state of continuous curvature. The second protruding reflection surface 34 is divided from the other reflection surfaces 32 and 33 in the vicinity, as indicated by a solid line.
(ヒートシンク部材5の説明)
前記ヒートシンク部材5は、図2、図3に示すように、水平板部50と、フィン部51と、取付部と、シェード部53と、から構成されている。前記水平板部50の一面(下側Dの面)には、前記半導体型光源2および前記リフレクタ3が前記スクリューにより取り付けられている。
(Description of heat sink member 5)
As shown in FIGS. 2 and 3, the heat sink member 5 includes a horizontal plate portion 50, fin portions 51, an attachment portion, and a shade portion 53. The semiconductor-type light source 2 and the reflector 3 are attached to one surface (the lower D surface) of the horizontal plate portion 50 by the screws.
前記水平板部50の他面(上側Uの面)には、複数枚の垂直板形状の前記フィン部51が一体に設けられている。前記フィン部51は、前記半導体型光源2の前記発光チップ20で発生する熱を外部に放出するものである。 On the other surface (upper U surface) of the horizontal plate portion 50, a plurality of fin portions 51 each having a vertical plate shape are integrally provided. The fin portion 51 releases heat generated in the light emitting chip 20 of the semiconductor light source 2 to the outside.
前記水平板部50の一面の前側Fの縁の左右両端部には、前記取付部が一体に設けられている。前記取付部には、前記レンズ4が前記スクリューにより取り付けられている。 The mounting portions are integrally provided at both left and right end portions of the front side F edge of one surface of the horizontal plate portion 50. The lens 4 is attached to the attachment portion by the screw.
前記水平板部50の一面の前側Fの縁の中央部には、前記シェード部53が一体に設けられている。前記シェード部53は、前記半導体型光源2の前記発光面からの光が前記レンズ4の前記レンズ部40に直接入射するのを防ぐものである。 The shade portion 53 is integrally provided at the center of the edge of the front side F of one surface of the horizontal plate portion 50. The shade portion 53 prevents light from the light emitting surface of the semiconductor light source 2 from directly entering the lens portion 40 of the lens 4.
(カバー部材6の説明)
前記カバー部材6は、図2、図3に示すように、前側Fの部分の上下幅が小さく、かつ、後側Bの部分の上下幅が大きく、上下幅が前側Fの部分から後側Bの部分にかけて末広がり形状をなすものである。前記カバー部材6は、光不透過性部材から構成されている。
(Description of cover member 6)
As shown in FIGS. 2 and 3, the cover member 6 has a front F portion with a small vertical width, a rear B portion with a large vertical width, and a vertical width from the front F portion to the rear B. It forms a divergent shape over this part. The cover member 6 is composed of a light impermeable member.
前記カバー部材6の前側Fの部分には、長方形形状をなす挿入開口部60が設けられている。前記挿入開口部60には、前記レンズ4の前記レンズ部40が挿入されている。前記カバー部材6の前側Fの部分の前記挿入開口部60の内側の左右両側の縁には、取付部が一体に設けられている。前記取付部は、前記レンズ4の前記取付部に取り付けられている。この結果、前記カバー部材6は、前記レンズ4を介して前記ヒートシンク部材5に固定されている。前記カバー部材6の後側Bの開口部の上下の縁の中央部には、通気開口部62が設けられている。 An insertion opening 60 having a rectangular shape is provided on the front side F of the cover member 6. The lens portion 40 of the lens 4 is inserted into the insertion opening 60. Attachment portions are integrally provided on the left and right edges of the inside of the insertion opening 60 in the front F portion of the cover member 6. The attachment portion is attached to the attachment portion of the lens 4. As a result, the cover member 6 is fixed to the heat sink member 5 via the lens 4. A ventilation opening 62 is provided at the center of the upper and lower edges of the opening on the rear side B of the cover member 6.
(実施形態1の作用の説明)
この実施形態1における車両用前照灯1L、1Rは、以上のごとき構成からなり、以下、その作用について説明する。
(Description of the operation of the first embodiment)
The vehicle headlamps 1L and 1R in the first embodiment are configured as described above, and the operation thereof will be described below.
半導体型光源2の発光チップ20を点灯する。すると、発光チップ20の発光面から放射される光の大部分は、リフレクタ3の反射面32でレンズ4側に反射される。 The light emitting chip 20 of the semiconductor type light source 2 is turned on. Then, most of the light emitted from the light emitting surface of the light emitting chip 20 is reflected to the lens 4 side by the reflecting surface 32 of the reflector 3.
反射面32で反射された反射光は、斜めカットオフラインと水平カットオフラインとエルボー点とを有する基本配光パターン(図示せず)に配光制御されて、レンズ4のレンズ部40を、入射面から出射面の複数の領域41へと、透過する。レンズ部から出射する出射光は、図11に示すように、斜めカットオフラインCL1と水平カットオフラインCL2とエルボー点Eとを有するロービーム用配光パターンLPに配光制御されて車両Cの前方に照射される。 The reflected light reflected by the reflecting surface 32 is subjected to light distribution control in a basic light distribution pattern (not shown) having an oblique cut-off line, a horizontal cut-off line, and an elbow point. To the plurality of regions 41 on the exit surface. As shown in FIG. 11, the emitted light emitted from the lens unit is distributed to a low beam light distribution pattern LP having an oblique cut-off line CL1, a horizontal cut-off line CL2, and an elbow point E, and is emitted to the front of the vehicle C. Is done.
一方、半導体型光源2の発光チップ20からの光L1は、リフレクタ3の第1はみ出し反射面33でレンズ4の大拡散の領域42に入射するように下側Dに向けて反射される。その反射光L3は、レンズ4の大拡散の領域42から、下側補足配光パターンPDとして、ロービーム用配光パターンLPの下側Dの部分からスクリーンの下側Dにかけての範囲に照射されて照明する。 On the other hand, the light L1 from the light emitting chip 20 of the semiconductor light source 2 is reflected toward the lower side D so as to enter the large diffusion region 42 of the lens 4 at the first protruding reflection surface 33 of the reflector 3. The reflected light L3 is irradiated from the large diffusion region 42 of the lens 4 as a lower supplementary light distribution pattern PD to a range from the lower D portion of the low beam light distribution pattern LP to the lower side D of the screen. Illuminate.
また、半導体型光源2の発光チップ20からの光L2は、リフレクタ3の第2はみ出し反射面34でレンズ4の大拡散の領域42に入射するように車両Cの外側にかつ下側Dに向けて反射される。その反射光L4は、レンズ4の大拡散の領域42から、左側補足配光パターンPL、右側補足配光パターンPRとして、ロービーム用配光パターンLPの左側L、右側Rの部分からスクリーンの下側Dにかけての範囲に照射されて照明する。 Further, the light L2 from the light emitting chip 20 of the semiconductor light source 2 is directed to the outside of the vehicle C and to the lower side D so as to enter the large diffusion region 42 of the lens 4 at the second protruding reflection surface 34 of the reflector 3. And reflected. The reflected light L4 from the large diffusion region 42 of the lens 4 as the left supplemental light distribution pattern PL and the right supplemental light distribution pattern PR, from the left L and right R portions of the low beam light distribution pattern LP to the lower side of the screen. Illuminates by irradiating the area up to D.
前記のロービーム用配光パターンLPと、前記の下側補足配光パターンPDと、前記の左側補足配光パターンPLと、前記の右側補足配光パターンPRとを、重畳(合成)することにより、図12(B)に示す理想のロービーム用配光パターンLP1が得られる。 By superimposing (combining) the low beam light distribution pattern LP, the lower supplementary light distribution pattern PD, the left supplementary light distribution pattern PL, and the right supplementary light distribution pattern PR, An ideal low beam light distribution pattern LP1 shown in FIG. 12B is obtained.
(実施形態1の効果の説明)
この実施形態1における車両用前照灯1L、1Rは、以上のごとき構成および作用からなり、以下、その効果について説明する。
(Description of the effect of Embodiment 1)
The vehicle headlamps 1L and 1R in the first embodiment are configured and operated as described above, and the effects thereof will be described below.
この実施形態1における車両用前照灯1L、1Rは、レンズ4の上辺45よりも上側に位置するリフレクタ3のはみ出し反射面33、34のうち少なくとも一部が、半導体型光源2からの光L1、L2をレンズ4の領域41に入射させるように設定されている。このために、レンズ4の上辺45がリフレクタ3の上辺31よりも下側に位置していても、レンズ4の上辺45よりも上側に位置するリフレクタ3のはみ出す反射面33、34からの反射光L3、L4のうち少なくとも一部がレンズ4の領域41に入射することができる。これにより、レンズ4の上辺45がリフレクタ3の上辺31よりも下側Dに位置している場合における配光パターンすなわちロービーム用配光パターンLPの一部(下側Dの部分、左側Lの部分、右側Rの部分)の不足を補うことができ、一部不足の配光パターンすなわちロービーム用配光パターンLP(図12(A)参照)が、図12(B)に示す理想のロービーム用配光パターンLP1に改善される。しかも、レンズ4の上辺45がリフレクタ3の上辺31よりも下側Dに位置するので、レンズ4の上下幅をリフレクタ3の上下幅よりも小さくすることができる。 In the vehicle headlamps 1L and 1R according to the first embodiment, at least a part of the protruding reflection surfaces 33 and 34 of the reflector 3 positioned above the upper side 45 of the lens 4 is light L1 from the semiconductor-type light source 2. , L2 is set to enter the region 41 of the lens 4. For this reason, even if the upper side 45 of the lens 4 is located below the upper side 31 of the reflector 3, the reflected light from the reflecting surfaces 33 and 34 protruding from the reflector 3 located above the upper side 45 of the lens 4. At least a part of L3 and L4 can enter the region 41 of the lens 4. Thereby, when the upper side 45 of the lens 4 is located below the upper side 31 of the reflector 3, the light distribution pattern, that is, a part of the low beam light distribution pattern LP (the lower D portion, the left L portion). , The right side R portion) can be compensated for, and a partially insufficient light distribution pattern, that is, the low beam light distribution pattern LP (see FIG. 12A) is an ideal low beam distribution shown in FIG. The light pattern LP1 is improved. In addition, since the upper side 45 of the lens 4 is positioned on the lower side D of the upper side 31 of the reflector 3, the vertical width of the lens 4 can be made smaller than the vertical width of the reflector 3.
ここで、レンズ4の上辺45よりも上側に位置するリフレクタ3の反射面35(図10中の二点鎖線を参照)が、この実施形態1におけるはみ出し反射面33、34のような設定がなれていない場合において説明する。すなわち、図10中の二点鎖線にて示すように、半導体型光源2の発光チップ20からの光L1、L2が反射面35(なんら設定されていないはみ出し反射面)で反射された反射光L5は、レンズ4の上辺45の上側Uを通過してレンズ4の領域41に入射しない。 Here, the reflecting surface 35 of the reflector 3 located above the upper side 45 of the lens 4 (see the two-dot chain line in FIG. 10) is set like the protruding reflecting surfaces 33 and 34 in the first embodiment. This will be described in the case where it is not. That is, as indicated by a two-dot chain line in FIG. 10, the light L1 and L2 from the light emitting chip 20 of the semiconductor-type light source 2 is reflected by the reflection surface 35 (a protruding reflection surface that is not set at all). Does not enter the region 41 of the lens 4 through the upper side U of the upper side 45 of the lens 4.
この結果、図12(B)に示す理想のロービーム用配光パターンLP1に対して、図12(A)中の破線にて示す下側部分の配光PD1、左側部分の配光PL1、右側部分の配光PR1がそれぞれ不足するロービーム用配光パターンLP(図12(A)参照)が車両Cの前方に照射される。なお、レンズ4の上下幅とリフレクタ3の上下幅とがほぼ同等であれば、反射面35からの反射光L5はレンズ4に入射するので、配光不足がない理想のロービーム用配光パターンLP1が得られる。ところが、レンズ4の上下幅がリフレクタ3の上下幅よりも小さいので、反射面35からの反射光L5はレンズ4に入射しないので、配光不足のロービーム用配光パターンLPが照射される。 As a result, with respect to the ideal low-beam light distribution pattern LP1 shown in FIG. 12B, the light distribution PD1 in the lower part, the light distribution PL1 in the left part, and the right part shown in broken lines in FIG. The light distribution pattern LP for low beam (see FIG. 12A) in which the light distribution PR1 is insufficient is irradiated in front of the vehicle C. If the vertical width of the lens 4 and the vertical width of the reflector 3 are substantially equal, the reflected light L5 from the reflecting surface 35 is incident on the lens 4, so that an ideal low beam light distribution pattern LP1 with no light distribution shortage. Is obtained. However, since the vertical width of the lens 4 is smaller than the vertical width of the reflector 3, the reflected light L5 from the reflecting surface 35 does not enter the lens 4, and thus the low beam light distribution pattern LP with insufficient light distribution is irradiated.
これに対して、この実施形態1における車両用前照灯1L、1Rは、レンズ4の上辺45よりも上側Uに位置するリフレクタ3の反射面33、34のうち、車両Cの外側の部分の第1はみ出し反射面33が、半導体型光源2の発光チップ20からの光L1を下側に向けてレンズ4の大拡散の領域42に入射させるように、設定されている。この結果、半導体型光源2の発光チップ20からの光L1は、リフレクタ3の第1はみ出し反射面33でレンズ4の大拡散の領域42に入射するように下側Dに向けて反射される。その反射光L3は、レンズ4の大拡散の領域42から、下側補足配光パターンPDとして、ロービーム用配光パターンLPの下側Dの部分からスクリーンの下側Dにかけての範囲に照射されて照明する。 On the other hand, the vehicle headlamps 1L and 1R in the first embodiment are parts of the outer surface of the vehicle C among the reflecting surfaces 33 and 34 of the reflector 3 located on the upper side U of the upper side 45 of the lens 4. The first protruding reflection surface 33 is set so that the light L1 from the light emitting chip 20 of the semiconductor-type light source 2 enters the large diffusion region 42 of the lens 4 downward. As a result, the light L <b> 1 from the light emitting chip 20 of the semiconductor light source 2 is reflected toward the lower side D so as to enter the large diffusion region 42 of the lens 4 at the first protruding reflection surface 33 of the reflector 3. The reflected light L3 is irradiated from the large diffusion region 42 of the lens 4 as a lower supplementary light distribution pattern PD to a range from the lower D portion of the low beam light distribution pattern LP to the lower side D of the screen. Illuminate.
また、この実施形態1における車両用前照灯1L、1Rは、レンズ4の上辺45よりも上側に位置するリフレクタ3の反射面33、34のうち、車両Cの内側の部分の少なくとも一部の第2はみ出し反射面34が、半導体型光源2の発光チップ20からの光L2を下側に向けかつ車両Cの外側に向けてレンズ4の大拡散の領域42に入射させるように、設定されている。この結果、半導体型光源2の発光チップ20からの光L2は、リフレクタ3の第2はみ出し反射面34でレンズ4の大拡散の領域42に入射するように車両Cの外側にかつ下側Dに向けて反射される。その反射光L4は、レンズ4の大拡散の領域42から、左側補足配光パターンPL、右側補足配光パターンPRとして、ロービーム用配光パターンLPの左側L、右側Rの部分からスクリーンの下側Dにかけての範囲に照射されて照明する。 Further, the vehicle headlamps 1L and 1R according to the first embodiment are at least a part of the inner part of the vehicle C among the reflecting surfaces 33 and 34 of the reflector 3 positioned above the upper side 45 of the lens 4. The second protrusion reflecting surface 34 is set so that the light L2 from the light emitting chip 20 of the semiconductor-type light source 2 enters the large diffusion region 42 of the lens 4 toward the lower side and toward the outside of the vehicle C. Yes. As a result, the light L2 from the light emitting chip 20 of the semiconductor-type light source 2 is placed outside the vehicle C and on the lower side D so as to enter the large diffusion region 42 of the lens 4 at the second protruding reflection surface 34 of the reflector 3. Reflected towards. The reflected light L4 from the large diffusion region 42 of the lens 4 as the left supplemental light distribution pattern PL and the right supplemental light distribution pattern PR, from the left L and right R portions of the low beam light distribution pattern LP to the lower side of the screen. Illuminates by irradiating the area up to D.
この実施形態1における車両用前照灯1L、1Rは、ロービーム用配光パターンLPと、下側補足配光パターンPDと、左側補足配光パターンPLと、右側補足配光パターンPRとを、重畳(合成)することにより、図12(B)に示す理想のロービーム用配光パターンLP1が得られる。また、この実施形態1における車両用前照灯1L、1Rは、今まで、レンズ4に入射しなかったレンズ4の上辺45よりも上側Uに位置するリフレクタ3の反射面33、34からの反射光L3、L4を、レンズ4の大拡散の領域42に入射させるものであるから、半導体型光源2からの光を有効に利用することができる。 The vehicle headlamps 1L and 1R according to the first embodiment superimpose a low beam light distribution pattern LP, a lower supplementary light distribution pattern PD, a left supplementary light distribution pattern PL, and a right supplementary light distribution pattern PR. By (combining), an ideal low beam light distribution pattern LP1 shown in FIG. 12B is obtained. In addition, the vehicle headlamps 1L and 1R according to the first embodiment are reflected from the reflecting surfaces 33 and 34 of the reflector 3 located on the upper side U of the upper side 45 of the lens 4 that has not been incident on the lens 4 until now. Since the lights L3 and L4 are incident on the large diffusion region 42 of the lens 4, the light from the semiconductor light source 2 can be used effectively.
この実施形態1における車両用前照灯1L、1Rは、レンズ4の上辺45が車両Cの正面視において、車両Cの内側から外側にかけて、車両Cの下側Dから上側Uに傾斜していて、第1はみ出し反射面33が第2はみ出し反射面34よりも車両Cの外側に位置する。このために、第1はみ出し反射面33とレンズ4との重なり量が第2はみ出し反射面34とレンズ4との重なり量と比較して大きい。この結果、第1はみ出し反射面33からの反射光L3をレンズ4の大拡散の領域42に入射させるために、反射光L3を下側Dに向ける角度が小さくてよい。これにより、第1はみ出し反射面33は、下側補足配光パターンPDを形成するのに適している。 In the vehicle headlamps 1L and 1R according to the first embodiment, the upper side 45 of the lens 4 is inclined from the lower side D to the upper side U of the vehicle C from the inner side to the outer side of the vehicle C in the front view of the vehicle C. The first protruding reflection surface 33 is located outside the vehicle C with respect to the second protruding reflection surface 34. For this reason, the amount of overlap between the first protrusion reflection surface 33 and the lens 4 is larger than the amount of overlap between the second protrusion reflection surface 34 and the lens 4. As a result, the angle at which the reflected light L3 is directed to the lower side D may be small in order to cause the reflected light L3 from the first protruding reflection surface 33 to enter the large diffusion region 42 of the lens 4. Thereby, the 1st protrusion reflective surface 33 is suitable for forming lower supplementary light distribution pattern PD.
一方、第2はみ出し反射面34が第1はみ出し反射面33よりも車両Cの内側に位置する。このために、第2はみ出し反射面34とレンズ4との重なり量が第1はみ出し反射面33とレンズ4との重なり量と比較して小さい。この結果、第2はみ出し反射面34からの反射光L4をレンズ4に入射させるために、反射光L4を下側Dに向ける角度が大きくなり、反射光L4がレンズ4の大拡散の領域42のみならず小拡散の領域43にも入射する場合がある。そこで、第2はみ出し反射面34を車両Cの外側に向けることにより、反射光L4を車両Cの外側にかつ下側Dに向けてレンズ4の大拡散の領域42にのみ入射させることができる。これにより、第2はみ出し反射面34は、左側補足配光パターンPL、右側補足配光パターンPRを形成するのに適している。 On the other hand, the second protruding reflection surface 34 is located inside the vehicle C with respect to the first protruding reflection surface 33. For this reason, the amount of overlap between the second protrusion reflection surface 34 and the lens 4 is smaller than the amount of overlap between the first protrusion reflection surface 33 and the lens 4. As a result, since the reflected light L4 from the second protruding reflecting surface 34 is incident on the lens 4, the angle at which the reflected light L4 is directed downward D is increased, and the reflected light L4 is only in the large diffusion region 42 of the lens 4. In some cases, the light also enters the small diffusion region 43. Therefore, by directing the second protruding reflection surface 34 to the outside of the vehicle C, the reflected light L4 can be incident only on the large diffusion region 42 of the lens 4 toward the outside of the vehicle C and downward D. Thereby, the 2nd protrusion reflective surface 34 is suitable for forming the left side supplementary light distribution pattern PL and the right side supplementary light distribution pattern PR.
(実施形態2の説明)
図13は、この発明にかかる車両用前照灯の実施形態2を示す。以下、この実施形態2における車両用前照灯について説明する。図中、図1~図12と同符号は、同一のものを示す。
(Description of Embodiment 2)
FIG. 13 shows Embodiment 2 of the vehicle headlamp according to the present invention. Hereinafter, the vehicle headlamp according to the second embodiment will be described. In the figure, the same reference numerals as those in FIGS. 1 to 12 denote the same components.
前記の実施形態1における車両用前照灯1L、1Rは、半導体型光源2の発光チップ20の発光面が下側Dに向くものである。これに対して、この実施形態2の車両用前照灯は、半導体型光源2の発光チップ20の発光面を、リフレクタ3の基準光軸Zに対して車両Cの後側Bに傾斜させたものである。すなわち、半導体型光源2の発光チップ20の発光面が前側Fから後側Bにかけて下側Dから上側Uに傾斜するものである。 In the vehicle headlamps 1L and 1R in the first embodiment, the light emitting surface of the light emitting chip 20 of the semiconductor light source 2 faces the lower side D. In contrast, in the vehicle headlamp according to the second embodiment, the light emitting surface of the light emitting chip 20 of the semiconductor light source 2 is inclined to the rear side B of the vehicle C with respect to the reference optical axis Z of the reflector 3. Is. That is, the light emitting surface of the light emitting chip 20 of the semiconductor light source 2 is inclined from the lower side D to the upper side U from the front side F to the rear side B.
発光チップ20の発光面を傾斜させる角度θ°は、下記式を目安として任意に決定することができる。
θ°=tan-1(H1/L1)
但し、H1は、リフレクタ3の上辺31とレンズ4の上辺45との間の寸法、L1は、半導体型光源2の発光チップ20の発光面の中心からレンズ4の内面までの寸法である。ここで、図13において、符号「Z1」は、発光チップ20の発光面の中心から発光面と平行な水平線であって、基準光軸Zに対してθ°下側Dに傾斜している。また、符号「Y1」は、発光チップ20の発光面の中心から発光面と垂直な鉛直線であって、Y軸に対してθ°前側Fに傾斜している。
The angle θ ° for inclining the light emitting surface of the light emitting chip 20 can be arbitrarily determined using the following formula as a guide.
θ ° = tan-1 (H1 / L1)
However, H1 is a dimension between the upper side 31 of the reflector 3 and the upper side 45 of the lens 4, and L1 is a dimension from the center of the light emitting surface of the light emitting chip 20 of the semiconductor light source 2 to the inner surface of the lens 4. Here, in FIG. 13, reference sign “Z <b> 1” is a horizontal line parallel to the light emitting surface from the center of the light emitting surface of the light emitting chip 20, and is inclined θ ° below D with respect to the reference optical axis Z. Reference sign “Y1” is a vertical line perpendicular to the light emitting surface from the center of the light emitting surface of the light emitting chip 20 and is inclined θ ° front side F with respect to the Y axis.
この実施形態2における車両用前照灯は、以上のごとき構成からなるので、前記の実施形態1における車両用前照灯1L、1Rとほぼ同様の作用効果を達成することができる。特に、この実施形態2における車両用前照灯は、発光チップ20の発光面をリフレクタ3の基準光軸Zに対して車両Cの後側に傾斜させたものである。この結果、発光チップ20の発光面から放射される光のうち、比較的強い光がリフレクタ3の反射面32および第1はみ出し反射面33、第2はみ出し反射面34に入射することとなる。これにより、半導体型光源2の光をさらに有効に利用することができる。 Since the vehicle headlamp according to the second embodiment is configured as described above, it is possible to achieve substantially the same operational effects as the vehicle headlamps 1L and 1R according to the first embodiment. In particular, the vehicle headlamp according to the second embodiment has a light emitting surface of the light emitting chip 20 inclined toward the rear side of the vehicle C with respect to the reference optical axis Z of the reflector 3. As a result, of the light emitted from the light emitting surface of the light emitting chip 20, relatively strong light enters the reflecting surface 32, the first protruding reflecting surface 33, and the second protruding reflecting surface 34 of the reflector 3. Thereby, the light of the semiconductor-type light source 2 can be used more effectively.
また、この実施形態2における車両用前照灯は、発光チップ20の発光面を傾斜させる角度θ°が、Z軸上のリフレクタ3の上辺31とレンズ4の上辺45と間の寸法H1分すなわちZ軸上のレンズ4の上下幅をリフレクタ3の上下幅よりも小さくした分に相当する角度とすることができる。このために、レンズ4の上下幅をリフレクタ3の上下幅よりも小さくしても、半導体型光源2の発光チップ20からの光を有効に利用することができる。 Further, in the vehicle headlamp according to the second embodiment, the angle θ ° for inclining the light emitting surface of the light emitting chip 20 is equal to the dimension H1 between the upper side 31 of the reflector 3 on the Z axis and the upper side 45 of the lens 4. The angle corresponding to the vertical width of the lens 4 on the Z axis smaller than the vertical width of the reflector 3 can be set. For this reason, even if the vertical width of the lens 4 is smaller than the vertical width of the reflector 3, the light from the light emitting chip 20 of the semiconductor light source 2 can be used effectively.
 上述の通り、本実施形態における車両用前照灯によれば、半導体型光源2と、リフレクタ3と、レンズ4と、を備え、前記半導体型光源2は、下向きの発光面を有し、前記リフレクタ3は、前記半導体型光源2からの光を反射させる反射面32を有し、前記レンズ4は、前記反射面32からの反射光を配光制御する複数の領域41に区画されていて、前記レンズ4の上辺は、前記リフレクタ3の上辺よりも下側に位置し、前記レンズ4の上辺よりも上側に位置する前記リフレクタ3の前記反射面32のうち、少なくとも一部は、前記半導体型光源2からの光を前記レンズ4の前記領域41に入射させるように、設定されている。 As described above, the vehicle headlamp according to the present embodiment includes the semiconductor light source 2, the reflector 3, and the lens 4, and the semiconductor light source 2 has a downward light emitting surface, The reflector 3 has a reflection surface 32 that reflects light from the semiconductor-type light source 2, and the lens 4 is partitioned into a plurality of regions 41 that control light distribution of the reflection light from the reflection surface 32, The upper side of the lens 4 is located below the upper side of the reflector 3, and at least a part of the reflecting surface 32 of the reflector 3 located above the upper side of the lens 4 is the semiconductor type. It is set so that light from the light source 2 is incident on the region 41 of the lens 4.
 また、本実施形態における車両用前照灯によれば、前記レンズ4の上辺は、車両の正面視において、車両の内側から外側にかけて、車両の下側から上側に傾斜していて、前記レンズ4の上辺よりも上側に位置する前記リフレクタ3の前記反射面(第1及び第2はみ出し反射面)33,34のうち、車両の外側の部分は、前記半導体型光源2からの光を下側に向けて前記レンズ4の前記領域41に入射させるように、設定されていて、前記レンズ4の上辺よりも上側に位置する前記リフレクタ3の前記反射面33,34のうち、車両の内側の部分の少なくとも一部は、前記半導体型光源2からの光を下側に向けかつ車両の外側に向けて前記レンズ4の前記領域41に入射させるように、設定されている。 Further, according to the vehicle headlamp in the present embodiment, the upper side of the lens 4 is inclined from the lower side to the upper side of the vehicle from the inner side to the outer side of the vehicle in the front view of the vehicle. Of the reflecting surfaces (first and second projecting reflecting surfaces) 33 and 34 of the reflector 3 positioned above the upper side of the vehicle, the portion outside the vehicle has the light from the semiconductor-type light source 2 downward. Of the reflecting surfaces 33 and 34 of the reflector 3 which are set so as to be incident on the region 41 of the lens 4 and are located above the upper side of the lens 4. At least a part is set so that light from the semiconductor-type light source 2 enters the region 41 of the lens 4 toward the lower side and toward the outside of the vehicle.
 また、本実施形態における車両用前照灯によれば、前記半導体型光源2の前記発光面は、前記リフレクタ3の基準光軸に対して車両の後側に傾斜している。 Further, according to the vehicle headlamp in the present embodiment, the light emitting surface of the semiconductor light source 2 is inclined to the rear side of the vehicle with respect to the reference optical axis of the reflector 3.
 また、本実施形態における車両用前照灯によれば、前記リフレクタ3は、前記レンズ4上辺よりも上側に位置するはみ出し反射面33,34を備え、該はみ出し反射面33,34は、当該リフレクタ3の上方に配置された前記半導体型光源2からの光を下側に向けて、前記レンズ4の当該はみ出し反射面33,34より下側に位置する前記領域41に入射させるよう構成されている。 Further, according to the vehicle headlamp in the present embodiment, the reflector 3 includes the protruding reflection surfaces 33 and 34 positioned above the upper side of the lens 4, and the protruding reflection surfaces 33 and 34 are the reflectors. The light from the semiconductor-type light source 2 disposed above 3 is directed downward and is incident on the region 41 located below the protruding reflection surfaces 33 and 34 of the lens 4. .
 また、本実施形態における車両用前照灯によれば、前記はみ出し反射面33,34は、前記半導体型光源2からの光を、前記レンズ4の複数の領域41のうち光の拡散が大きい大拡散の領域42に入射させるよう構成されている。 In addition, according to the vehicle headlamp in the present embodiment, the protruding reflection surfaces 33 and 34 have a large diffusion of the light from the semiconductor light source 2 in the plurality of regions 41 of the lens 4. It is configured to enter the diffusion region 42.
 また、本実施形態における車両用前照灯によれば、前記レンズ4の前記大拡散の領域42は、前記レンズ4の上辺の近傍に設けられている。 Further, according to the vehicle headlamp in the present embodiment, the large diffusion region 42 of the lens 4 is provided in the vicinity of the upper side of the lens 4.
 また、本実施形態における車両用前照灯によれば、前記はみ出し反射面33,34の少なくとも一部は、前記半導体型光源2からの光を車両の外側に向けて反射するように屈曲形成されている(図9参照)。 Further, according to the vehicle headlamp in the present embodiment, at least a part of the protruding reflection surfaces 33 and 34 is bent so as to reflect the light from the semiconductor-type light source 2 toward the outside of the vehicle. (See FIG. 9).
 また、本実施形態における車両用前照灯によれば、半導体型光源2と、リフレクタ3と、レンズ4と、カバー部材6と、を備え、前記半導体型光源2は、発光面を有し、前記リフレクタ3は、前記半導体型光源2からの光を反射させる反射面32を有し、前記レンズ4は、前記反射面32からの反射光を配光制御する複数の領域41に区画されていて、前記カバー部材6は、前記レンズ4を挿入する開口部60を有し、光不透過性部材で構成され、前記レンズ4の上辺は、前記リフレクタ3の上辺よりも下側に位置し、前記カバー部材6の開口部60に接続されており、前記レンズ4の上辺よりも上側に位置する前記リフレクタ3の前記反射面(第1及び第2はみ出し反射面)33,34は、前記レンズ4の上辺に接続する前記カバー部材6に対向して配置されおり、前記レンズ4の上辺よりも上側に位置する前記リフレクタ3の前記反射面33,34のうち、少なくとも一部は、前記レンズ4の前記領域41に前記半導体型光源2からの光を入射させるように、設定されている。 Moreover, according to the vehicle headlamp in the present embodiment, the semiconductor type light source 2 includes the semiconductor light source 2, the reflector 3, the lens 4, and the cover member 6. The semiconductor light source 2 has a light emitting surface. The reflector 3 has a reflection surface 32 that reflects light from the semiconductor-type light source 2, and the lens 4 is partitioned into a plurality of regions 41 that control light distribution from the reflection surface 32. The cover member 6 has an opening 60 into which the lens 4 is inserted and is made of a light-impermeable member. The upper side of the lens 4 is located below the upper side of the reflector 3, The reflective surfaces (first and second protruding reflective surfaces) 33 and 34 of the reflector 3 that are connected to the opening 60 of the cover member 6 and are located above the upper side of the lens 4 are The cover member connected to the upper side At least a part of the reflecting surfaces 33 and 34 of the reflector 3 located above the upper side of the lens 4 is located in the region 41 of the lens 4. It is set so that light from
 また、本実施形態における車両用前照灯によれば、前記レンズ4の上辺よりも上側に位置する前記リフレクタ3の前記反射面33,34のうち、少なくとも一部は、該対向する前記カバー部材6に前記半導体型光源2からの光を反射させない。 Moreover, according to the vehicle headlamp in the present embodiment, at least a part of the reflecting surfaces 33 and 34 of the reflector 3 positioned above the upper side of the lens 4 is the facing cover member. 6 does not reflect the light from the semiconductor-type light source 2.
(実施形態1、2以外の例の説明)
この実施形態1、2においては、車両Cが左側通行の場合の車両用前照灯1L、1Rについて説明するものである。ところが、この発明においては、車両Cが右側通行の場合の車両用前照灯にも適用することができる。
(Description of examples other than Embodiments 1 and 2)
In the first and second embodiments, vehicle headlamps 1L and 1R when the vehicle C is on the left side will be described. However, the present invention can also be applied to a vehicle headlamp when the vehicle C is right-hand traffic.
また、この実施形態1、2においては、レンズ4の入射面が平面もしくは複合2次曲面をなし、レンズ4の出射面が複数の領域41(大拡散の領域42、小拡散の領域43、中拡散の領域44)であって、凸状自由曲面をなすものである。ところが、この発明においては、レンズ4の入射面が複数の領域41(大拡散の領域42、小拡散の領域43、中拡散の領域44)であって、凸状自由曲面をなし、レンズ4の出射面が平面もしくは複合2次曲面をなすものであっても良い。また、レンズ4の出射面および入射面が複数の領域41(大拡散の領域42、小拡散の領域43、中拡散の領域44)をなすものであって、凸状自由曲面をなすものであっても良い。 In the first and second embodiments, the entrance surface of the lens 4 is a flat surface or a compound quadratic curved surface, and the exit surface of the lens 4 is a plurality of regions 41 (a large diffusion region 42, a small diffusion region 43, a medium diffusion region). A diffusion region 44) which forms a convex free-form surface. However, in the present invention, the incident surface of the lens 4 is a plurality of regions 41 (a large diffusion region 42, a small diffusion region 43, and a medium diffusion region 44), which forms a convex free-form surface. The exit surface may be a flat surface or a compound quadratic curved surface. Further, the exit surface and the entrance surface of the lens 4 form a plurality of regions 41 (a large diffusion region 42, a small diffusion region 43, and a medium diffusion region 44), which form a convex free-form surface. May be.
さらに、この実施形態1、2においては、ロービーム用配光パターンLPを照射するものである。ところが、この発明においては、フォグランプ用配光パターンを照射するもの、あるいは、カットオフラインを有する配光パターンを照射するものであっても良い。 Furthermore, in the first and second embodiments, the low beam light distribution pattern LP is irradiated. However, in the present invention, the light distribution pattern for fog lamps or the light distribution pattern having a cut-off line may be irradiated.
さらにまた、この実施形態1、2においては、レンズ4の上辺45が車両Cの正面視において車両Cの内側から外側にかけて車両Cの下側Dから上側Uに傾斜している。ところが、この発明においては、レンズ4の上辺をリフレクタ3の上辺31と同様にほぼ水平としても良い。 Furthermore, in the first and second embodiments, the upper side 45 of the lens 4 is inclined from the lower side D to the upper side U of the vehicle C from the inner side to the outer side in the front view of the vehicle C. However, in the present invention, the upper side of the lens 4 may be substantially horizontal, like the upper side 31 of the reflector 3.
さらにまた、この実施形態1、2においては、レンズ4の上下幅がリフレクタ3の上下幅よりも小さいものである。ところが、この発明においては、レンズ4の上下幅がリフレクタ3の上下幅とほぼ同等のもの、もしくは、レンズ4の上下幅がリフレクタ3の上下幅よりも大きいものであっても良い。ただし、レンズ4の上辺45がリフレクタ3の上辺31よりも下側Dに位置していることが必要である。 Furthermore, in Embodiments 1 and 2, the vertical width of the lens 4 is smaller than the vertical width of the reflector 3. However, in the present invention, the vertical width of the lens 4 may be substantially equal to the vertical width of the reflector 3, or the vertical width of the lens 4 may be larger than the vertical width of the reflector 3. However, it is necessary that the upper side 45 of the lens 4 is located on the lower side D of the upper side 31 of the reflector 3.
1L     左側の車両用前照灯
1R     右側の車両用前照灯
2      半導体型光源
20     発光チップ
21     基板
22     コネクタ
3      リフレクタ
30     反射部
31     上辺
32     反射面
33     第1はみ出し反射面
34     第2はみ出し反射面
35     反射面
4      レンズ
40     レンズ部
41     領域
42     大拡散の領域
43     小拡散の領域
44     中拡散の領域
45     上辺
5      ヒートシンク部材
50     水平板部
51     フィン部
53     シェード部
6      カバー部材
60     挿入開口部
62     通気開口部
C      車両
F      前側
B      後側
U      上側
D      下側
L      左側(車両外側)
R      右側(車両内側)
HL-HR  スクリーンの左右の水平線
VU-VD  スクリーンの上下の垂直線
LP1    理想のロービーム用配光パターン
LP     ロービーム用配光パターン
CL1    斜めカットオフライン
CL2    水平カットオフライン
E      エルボー点
F1     基準焦点
O      発光面の中心
X      X軸
Y      Y軸
Z      基準光軸(Z軸)
L1、L2  発光チップからの光
L3     第1はみ出し反射面からの反射光
L4     第2はみ出し反射面からの反射光
L5     反射面からの反射光
PD     下側補足配光パターン
PL     左側補足配光パターン
PR     右側補足配光パターン
PD1    下側部分の配光
PL1    左側部分の配光
PR1    右側部分の配光
a      第2はみ出し反射面のX軸方向の長さ
b      反射面のX軸方向の長さ
c      第2はみ出し反射面の段差
H1     寸法
L1     寸法
θ°     傾斜角度
1L Left vehicle headlamp 1R Right vehicle headlamp 2 Semiconductor light source 20 Light emitting chip 21 Substrate 22 Connector 3 Reflector 30 Reflector 31 Upper side 32 Reflective surface 33 First protruding reflective surface 34 Second protruding reflective surface 35 Reflective surface 4 Lens 40 Lens portion 41 Region 42 Large diffusion region 43 Small diffusion region 44 Medium diffusion region 45 Upper side 5 Heat sink member 50 Horizontal plate portion 51 Fin portion 53 Shade portion 6 Cover member 60 Insertion opening portion 62 Ventilation opening portion C vehicle F front side B rear side U upper side D lower side L left side (vehicle outer side)
R right side (vehicle inside)
HL-HR Horizontal lines on the left and right of the screen VU-VD Vertical lines on the upper and lower sides of the screen LP1 Ideal low-beam light distribution pattern LP Low-beam light distribution pattern CL1 Oblique cut-off line CL2 Horizontal cut-off line E Elbow point F1 Reference focus O Center of light emitting surface X X axis Y Y axis Z Reference optical axis (Z axis)
L1, L2 Light L3 from the light emitting chip Reflected light L4 from the first protruding reflection surface L4 Reflected light from the second protruding reflection surface L5 Reflected light from the reflecting surface Lower supplementary light distribution pattern PL Left supplementary light distribution pattern PR Right Supplementary light distribution pattern PD1 Light distribution PL1 in the lower part Light distribution PR1 in the left part Light distribution in the right part a Length b in the X-axis direction of the second protrusion reflecting surface Length c in the X-axis direction of the reflection surface Second protrusion Reflection surface step H1 Dimension L1 Dimension θ ° Inclination angle

Claims (9)

  1. 半導体型光源と、リフレクタと、レンズと、を備え、
    前記半導体型光源は、発光面を有し、
    前記リフレクタは、前記半導体型光源からの光を反射させる反射面を有し、
    前記レンズは、前記反射面からの反射光を配光制御する複数の領域に区画されていて、
    前記レンズの上辺は、前記リフレクタの上辺よりも下側に位置し、
    前記レンズの上辺よりも上側に位置する前記リフレクタの前記反射面のうち、少なくとも一部は、前記半導体型光源からの光を前記レンズの前記領域に入射させるように、設定されている、
    ことを特徴とする車両用前照灯。
    A semiconductor-type light source, a reflector, and a lens;
    The semiconductor light source has a light emitting surface,
    The reflector has a reflecting surface that reflects light from the semiconductor-type light source,
    The lens is divided into a plurality of regions for controlling light distribution of reflected light from the reflecting surface,
    The upper side of the lens is located below the upper side of the reflector,
    At least a part of the reflecting surface of the reflector located above the upper side of the lens is set so that light from the semiconductor-type light source is incident on the region of the lens.
    A vehicle headlamp characterized by that.
  2. 前記レンズの上辺は、車両の正面視において、車両の内側から外側にかけて、車両の下側から上側に傾斜していて、
    前記レンズの上辺よりも上側に位置する前記リフレクタの前記反射面のうち、車両の外側の部分は、前記半導体型光源からの光を下側に向けて前記レンズの前記領域に入射させるように、設定されていて、
    前記レンズの上辺よりも上側に位置する前記リフレクタの前記反射面のうち、車両の内側の部分の少なくとも一部は、前記半導体型光源からの光を下側に向けかつ車両の外側に向けて前記レンズの前記領域に入射させるように、設定されている、
    ことを特徴とする請求項1に記載の車両用前照灯。
    The upper side of the lens is inclined from the lower side of the vehicle to the upper side from the inner side to the outer side of the vehicle in a front view of the vehicle,
    Of the reflecting surface of the reflector located on the upper side of the upper side of the lens, the outer portion of the vehicle causes light from the semiconductor-type light source to enter the region of the lens facing downward. Is set,
    Of the reflecting surface of the reflector located above the upper side of the lens, at least a part of the inner part of the vehicle has the light from the semiconductor-type light source directed downward and toward the outside of the vehicle. Set to enter the area of the lens,
    The vehicle headlamp according to claim 1.
  3. 前記半導体型光源の前記発光面は、前記リフレクタの基準光軸に対して車両の後側に傾斜している、
    ことを特徴とする請求項1に記載の車両用前照灯。
    The light emitting surface of the semiconductor-type light source is inclined to the rear side of the vehicle with respect to a reference optical axis of the reflector.
    The vehicle headlamp according to claim 1.
  4.  前記リフレクタは、前記レンズ上辺よりも上側に位置するはみ出し反射面を備え、
     該はみ出し反射面は、当該リフレクタの上方に配置された前記半導体光源からの光を下側に向けて、前記レンズの当該はみ出し反射面より下側に位置する前記領域に入射させるよう構成されている、ことを特徴とする請求項1の車両用前照灯。
    The reflector includes an overhanging reflecting surface located above the upper side of the lens,
    The protruding reflection surface is configured to direct light from the semiconductor light source disposed above the reflector toward the lower side and to enter the region located below the protruding reflection surface of the lens. The vehicle headlamp according to claim 1, wherein:
  5.  前記はみ出し反射面は、前記半導体型光源からの光を、前記レンズの複数の領域のうち光の拡散が大きい大拡散の領域に入射させるよう構成されている、ことを特徴とする請求項4に記載の車両用前照灯。 5. The protruding reflection surface is configured to make light from the semiconductor-type light source enter a large diffusion region where light diffusion is large among a plurality of regions of the lens. The vehicle headlamp described.
  6.  前記レンズの前記大拡散の領域は、前記レンズの上辺の近傍に設けられている、ことを特徴とする請求項4に記載の車両用前照灯。 The vehicular headlamp according to claim 4, wherein the large diffusion region of the lens is provided in the vicinity of an upper side of the lens.
  7.  前記はみ出し反射面の少なくとも一部は、前記半導体型光源からの光を車両の外側に向けて反射するように屈曲形成されている、ことを特徴とする請求項4に記載の車両用前照灯。 5. The vehicle headlamp according to claim 4, wherein at least a part of the protruding reflection surface is bent so as to reflect light from the semiconductor-type light source toward the outside of the vehicle. .
  8.   半導体型光源と、リフレクタと、レンズと、カバー部材と、を備え、
     前記半導体型光源は、発光面を有し、
     前記リフレクタは、前記半導体型光源からの光を反射させる反射面を有し、
     前記レンズは、前記反射面からの反射光を配光制御する複数の領域に区画されていて、
     前記カバー部材は、前記レンズを挿入する開口部を有し、光不透過性部材で構成され、
     前記レンズの上辺は、前記リフレクタの上辺よりも下側に位置し、前記カバー部材の開口部に接続されており、
     前記レンズの上辺よりも上側に位置する前記リフレクタの前記反射面は、前記レンズの上辺に接続する前記カバー部材に対向して配置されおり、
     前記レンズの上辺よりも上側に位置する前記リフレクタの前記反射面のうち、少なくとも一部は、前記レンズの前記領域に前記半導体型光源からの光を入射させるように、設定されている、
    ことを特徴とする車両用前照灯。
    A semiconductor light source, a reflector, a lens, and a cover member;
    The semiconductor light source has a light emitting surface,
    The reflector has a reflecting surface that reflects light from the semiconductor-type light source,
    The lens is divided into a plurality of regions for controlling light distribution of reflected light from the reflecting surface,
    The cover member has an opening for inserting the lens, and is composed of a light-impermeable member.
    The upper side of the lens is located below the upper side of the reflector, and is connected to the opening of the cover member,
    The reflecting surface of the reflector located above the upper side of the lens is disposed to face the cover member connected to the upper side of the lens,
    At least a part of the reflecting surface of the reflector located above the upper side of the lens is set so that light from the semiconductor-type light source is incident on the region of the lens.
    A vehicle headlamp characterized by that.
  9.  前記レンズの上辺よりも上側に位置する前記リフレクタの前記反射面のうち、少なくとも一部は、該対向する前記カバー部材に前記半導体型光源からの光を反射させない、ことを特徴とする請求項8に記載の車両用前照灯。
     
    9. The reflecting surface of the reflector located above the upper side of the lens, at least a part of the reflecting surface does not reflect light from the semiconductor-type light source to the facing cover member. The vehicle headlamp described in 1.
PCT/JP2013/067349 2013-06-25 2013-06-25 Vehicle headlight WO2014207817A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/067349 WO2014207817A1 (en) 2013-06-25 2013-06-25 Vehicle headlight

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/067349 WO2014207817A1 (en) 2013-06-25 2013-06-25 Vehicle headlight

Publications (1)

Publication Number Publication Date
WO2014207817A1 true WO2014207817A1 (en) 2014-12-31

Family

ID=52141224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067349 WO2014207817A1 (en) 2013-06-25 2013-06-25 Vehicle headlight

Country Status (1)

Country Link
WO (1) WO2014207817A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020025171A1 (en) * 2018-07-31 2020-02-06 Valeo Vision Luminous module that images the illuminated surface of a collector
US11415287B2 (en) * 2020-08-13 2022-08-16 Hyundai Mobis Co., Ltd. Lamp for automobile and automobile including the same
US11698178B1 (en) * 2022-10-07 2023-07-11 Wen-Sung Lee Illuminating device and a method for optimizing the light pattern

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343114A (en) * 2001-05-11 2002-11-29 Stanley Electric Co Ltd Multi-eye projector lamp
JP2005056704A (en) * 2003-08-05 2005-03-03 Koito Mfg Co Ltd Vehicular lamp
JP2011243474A (en) * 2010-05-20 2011-12-01 Koito Mfg Co Ltd Lighting fixture for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343114A (en) * 2001-05-11 2002-11-29 Stanley Electric Co Ltd Multi-eye projector lamp
JP2005056704A (en) * 2003-08-05 2005-03-03 Koito Mfg Co Ltd Vehicular lamp
JP2011243474A (en) * 2010-05-20 2011-12-01 Koito Mfg Co Ltd Lighting fixture for vehicle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020025171A1 (en) * 2018-07-31 2020-02-06 Valeo Vision Luminous module that images the illuminated surface of a collector
FR3084728A1 (en) * 2018-07-31 2020-02-07 Valeo Vision LIGHT MODULE IMAGING THE ILLUMINATED SURFACE OF A COLLECTOR
CN112513522A (en) * 2018-07-31 2021-03-16 法雷奥照明公司 Illumination module for imaging an illuminated surface of a light collector
JP2021533537A (en) * 2018-07-31 2021-12-02 ヴァレオ ビジョンValeo Vision Light emitting module that projects the illuminated surface of the concentrator
US11280464B2 (en) 2018-07-31 2022-03-22 Valeo Vision Luminous module that images the illuminated surface of a collector
US11719406B2 (en) 2018-07-31 2023-08-08 Valeo Vision Luminous module that images the illuminated surface of a collector
JP7384899B2 (en) 2018-07-31 2023-11-21 ヴァレオ ビジョン Light-emitting module that reflects the illuminated surface of the condenser
US11415287B2 (en) * 2020-08-13 2022-08-16 Hyundai Mobis Co., Ltd. Lamp for automobile and automobile including the same
US11698178B1 (en) * 2022-10-07 2023-07-11 Wen-Sung Lee Illuminating device and a method for optimizing the light pattern

Similar Documents

Publication Publication Date Title
JP5935507B2 (en) Vehicle headlamp
JP4735664B2 (en) Vehicle lighting
US20120206931A1 (en) Vehicle lighting device
JP2009277481A (en) Lighting fixture for vehicle
JP2007227228A (en) Lighting fixture unit of vehicular headlight
KR20080092275A (en) Vehicular lamp unit
JP2010118241A (en) Vehicular lighting fixture
JP2005141917A (en) Vehicular headlight
JP2011165600A (en) Vehicular illumination lamp
JP2011171121A (en) Headlight for vehicle
WO2019230703A1 (en) Vehicular lamp
JP5033530B2 (en) Light source unit for vehicle lamp
JP6070105B2 (en) Vehicle headlamp
JP6019643B2 (en) Vehicle headlamp
US8256942B2 (en) Vehicle headlamp
JP6318705B2 (en) Vehicle headlamp
JP6064439B2 (en) Vehicle headlamp
WO2014207817A1 (en) Vehicle headlight
JP5982986B2 (en) Vehicle headlamp
JP2013246944A (en) Vehicle headlight
JP2008243476A (en) Vehicular lighting fixture
JP2018045838A (en) Light emitting module and vehicular lighting fixture
JP5513975B2 (en) Vehicle headlamp
JP2022022493A (en) Vehicular lighting fixture
JP6019644B2 (en) Vehicle headlamp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP