WO2014202883A1 - Vanne, notamment pour moteur thermique - Google Patents
Vanne, notamment pour moteur thermique Download PDFInfo
- Publication number
- WO2014202883A1 WO2014202883A1 PCT/FR2014/051465 FR2014051465W WO2014202883A1 WO 2014202883 A1 WO2014202883 A1 WO 2014202883A1 FR 2014051465 W FR2014051465 W FR 2014051465W WO 2014202883 A1 WO2014202883 A1 WO 2014202883A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flap
- shaft
- closed position
- contact
- valve
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K1/00—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
- F16K1/16—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members
- F16K1/18—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps
- F16K1/22—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation crossing the valve member, e.g. butterfly valves
- F16K1/222—Shaping of the valve member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D9/00—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
- F02D9/08—Throttle valves specially adapted therefor; Arrangements of such valves in conduits
- F02D9/10—Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
- F02D9/1005—Details of the flap
- F02D9/101—Special flap shapes, ribs, bores or the like
- F02D9/1015—Details of the edge of the flap, e.g. for lowering flow noise or improving flow sealing in closed flap position
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/65—Constructional details of EGR valves
- F02M26/70—Flap valves; Rotary valves; Sliding valves; Resilient valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K1/00—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
- F16K1/16—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members
- F16K1/18—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps
- F16K1/20—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation arranged externally of valve member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K1/00—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
- F16K1/16—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members
- F16K1/18—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps
- F16K1/20—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation arranged externally of valve member
- F16K1/2014—Shaping of the valve member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K1/00—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
- F16K1/16—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members
- F16K1/18—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps
- F16K1/22—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation crossing the valve member, e.g. butterfly valves
Definitions
- the present invention relates to a valve, in particular for a heat engine.
- the invention applies in particular when the heat engine is used for the propulsion of a vehicle, for example a motor vehicle. It can be an engine whose fuel is gasoline or diesel.
- the valve can be integrated in the air circuit of the engine.
- the term "thermal engine air circuit” designates the circuit between the intake inlet and the exhaust outlet of the engine.
- the valve can be arranged in the intake circuit, the exhaust circuit, or a recirculation loop through which the exhaust gases fed back to the inlet (EGR in English) pass.
- a flap mounted movably in the body between an open position and a closed position in which it must close the duct
- the body 102 has a joint plane P coming into contact with a joint plane P 'of the flap 105 when the flap is in the closed position to close the duct formed in the body 102. Because of the rigid nature contacts between the flap and the body, it is found that the jamming of the flap 105 against the wall of the body 102 is avoided when the distance Dv, measured between the center of the shaft 107 for pivoting the flap 105 in the body 102 and the joint plane P 'of the flap 105 is less than or equal to the distance De, measured between the center of the housing 108 of the body 102 in which the shaft 107 is received and the joint plane P of the body 102.
- This dimensional constraint must also be increased, to take into account the inaccuracies on the dimensions of the different parts of the valve during the manufacture thereof. Because of this increase, relatively large empty sections can exist between the body and the flap when the flap is in the closed position, these empty sections, also called “sections of leakage ", which may cause leakage greater than can be tolerated when the flap is in the closed position.
- the radial displacement tends to move the shaft away from one of the walls of the duct, so that in the closed position, leakage sections of relatively large size appear between the flap and the duct wall, thus affecting the duct. sealing the shutter in the closed position.
- the radial displacement may be any radius.
- the compensation of any differences between distances De and Dv above may be accompanied by a displacement of the shaft having the effect of increasing the leakage sections existing between the shutter and the body of the valve when the flap is in the closed position.
- the invention responds to this need with the aid of a valve, particularly for a heat engine, comprising:
- a body in which are formed: a housing in which is disposed at least one bearing, and a conduit adapted to be traversed by a fluid, and
- a drive member configured to move the shaft so that the flap pivots between:
- a closed position in which it comes into contact with the body by a first contact area of the flap located on a first side of the shaft and by a second contact zone of the flap located on a second side of the shaft opposite said first side, the bearing being configured to allow radial displacement of the shaft in the bearing when the flap is moved from the open position to the closed position, and
- the drive member being configured to guide said radial displacement of the shaft in a predetermined direction.
- the drive member is a drive wheel of the shaft, configured to guide said radial displacement of the shaft in the direction
- the drive member is a drive wheel of a wheel integral with the shaft.
- the valve comprises an actuator flap, said actuator comprising an electric motor whose torque is transmitted to the shaft to move the flap at least through the drive member.
- the drive wheel being a part already present in the assembly consisting of an actuator and a gear train.
- the position of the drive wheel which meshes directly with the wheel secured to the shaft may be chosen relative to this integral wheel so that the direction of the tangential force transmitted to the shaft is such as to guide the radial displacement. of the tree in the predetermined direction.
- This position can be combined with the direction of rotation of the drive wheel to close the flap to provide the direction of the tangential force in a direction to guide the radial displacement of the shaft in the predetermined direction.
- the body may have a body joint plane contacting the first and second contact zone of the flap when the flap is in the closed position and the first and second contact zone of the flap may belong to a flap joint plane .
- each contact zone of the shutter then forming with the joint plane of the body a plane contact when the shutter is in the closed position.
- the shutter can then be self-centering, because the contacts between the shutter and the body are effected in one and the same plane when the shutter is in the closed position and a radial clearance exists in the bearing or bearings.
- the contacts between the flap and the body can allow the immobilization of the shaft perpendicular to the single joint plane, without the shaft being in contact with the bearings.
- the component comprises:
- a first part having a first surface, a portion of which defines the first contact zone when the flap is in the closed position
- the first surface and the second surface being partially in contact with each other and being coplanar, the first portion having a length measured along the axis of the upper shaft; that of the second part, and the guidance in the predefined direction to prevent the first part of the flap away from the area of the body coming into contact with the second contact zone.
- the first and second contact areas belong in this example to opposite surfaces of the shutter while being in the same plane.
- the drive member contributes to imposing a predefined direction to the radial displacement.
- This predefined direction makes it possible to avoid that, in the closed position, too large leakage sections exist because of the distance of the first part of the shutter from the zone of the body coming into contact with the second contact zone. distance being likely to be caused by the displacement of the tree through play in the bearing or bearings.
- the flap being according to this example formed by two parts of different length, the relative lengths of the first and second parts that there is a portion of the duct in the joint plane of the body which is not closed by the body , nor by the shutter although the latter is in the closed position, thus forming a leakage section.
- the predefined direction can even bring the first part of the body part door closer to the second contact area.
- the valve can be arranged to define an angle, measured between:
- Such an angle can be used to orient the resulting tangential force transmitted to the shaft so that it is likely to guide the radial displacement of the shaft in the predetermined direction.
- the angle can be chosen so that its value is substantially equal to 110 °.
- the radial guide of the shutter according to the predefined direction can then have two beneficial effects: the one mentioned above in connection with the respect of dimensional constraints and that of reducing the leakage sections in the closed position.
- the first and second parts may each be a separate part, said parts being rigidly coupled together to form the shutter.
- Each of these parts is for example a plate.
- Said parts are in particular rigidly coupled together at the joint plane of the flap.
- the portion of the duct in which the flap moves can be formed in two parts of the body rigidly coupled to each other at the joint plane of the body.
- a part of the joint plane of the body may be defined by a second surface of one of these body parts which then comes into contact with the part of the second surface of the second part of the shutter forming the second contact zone when the shutter is in the closed position while another part of the joint plane of the body may be defined by the first surface of another part of the body which then comes into contact with the part of the first surface of the first part of the shutter forming the first contact zone when the flap is in the closed position.
- the valve may be a valve arranged in the intake circuit of the engine, in the exhaust circuit of the engine, or in an exhaust gas recirculation loop allowing the latter to be reinjected at the intake of the engine.
- This recirculation loop can be "low pressure” or "high pressure”.
- the valve is in particular a so-called "two-way" valve.
- the valve may be a so-called "three-way” valve.
- the valve can then be placed at the inlet of the recirculation loop, that is to say at the location of the exhaust circuit where the recirculation loop originates.
- the so-called "three-way” valve may alternatively be disposed at the outlet of the recirculation loop, that is to say at the location of the intake circuit where the exhaust gases are reinjected at the inlet.
- the valve is advantageously devoid of flexible element interposed between the flap and the body when the flap is in the closed position.
- Flexible is used here as opposed to “rigid”, the body and the shutter being then rigid.
- Such a flexible element is for example a seal.
- the flap and the shaft may be connected by a support extending along at least a portion of the shaft.
- the valve thus has a shaft offset relative to the flap, unlike the valves in which the shaft and the flap are arranged in the same planes.
- the shaft and the flap can be arranged in the same planes.
- the distance between the center of the housing and the joint plane of the body may be greater than the distance between the center of the shaft and the joint plane of the flap.
- This dimensional constraint generally imposed, avoids jamming of the flap against the duct wall when the flap passes into the closed position.
- the clearance of the bearing is not necessary to prevent jamming of the flap against the wall of the duct.
- the second zone of contact of the flap against the body can prevent excessive displacement of the shaft in the bearing, and thus prevent too large leakage sections exist when the flap is in the closed position . This reduces the use of the radial clearance available in the or the bearings, since the movement of the shutter due to this game to avoid jamming is not necessary.
- the distance between the center of the housing and the joint plane of the body may be less than the distance between the center of the shaft and the joint plane of the flap.
- the clearance in the bearing or bearings may be sized to be greater than or equal to a predefined global imprecision rate for the flap and the part of the duct in which the flap moves, this predefined overall imprecision rate resulting in particular from the combination linear predefined unit rate of inaccuracy for each dimension of the flap and the portion of the duct in which the flap moves.
- Each predefined unit inaccuracy rate is for example set according to the experience feedback on the technique used to manufacture the corresponding part of the valve.
- the flap may have a rectangular section in section and the first contact zone and the second contact zone may be located at opposite ends of the flap.
- the flap may have a section in the form of a half-moon whose diameter is extended by a rectangle and the first contact zone may be located on the circle of the half moon while the second contact zone is borne by the side of the rectangle opposite the side of the rectangle coinciding with the diameter of the half-moon.
- FIGS. 1 and 2 have already been described
- FIGS. 3 to 12 relate to a valve according to the invention, FIGS. 3 and 4 showing in elevation the valve, FIG. 5 showing the shutter and the shaft in isolation, FIG. 6 being a front view of the valve of FIG. FIG. 3, FIGS. 7 to 9 each showing in section along A-A, BB and CC a valve similar to that of FIG. 6, FIG. 10 representing the valve of FIG. 6 in an exaggerated manner, FIGS. 11 and 12; partially represent, respectively in rear view and face view, a drive member according to the invention.
- FIG. 3 shows a valve 1 according to a first embodiment of the invention. In this figure, the valve 1 is a valve called “two ways" but the invention is not limited thereto, as will be seen later.
- the valve 1 which will be described is a valve used in an air circuit of a heat engine, for example used to propel a motor vehicle.
- the valve 1 comprises a body 2, for example made of aluminum, steel, plastic or stainless steel in which is formed a conduit 3. It is for example an intake duct, exhaust or a conduit forming an exhaust gas recirculation loop (also called EGR loop), this loop can be a high pressure or low pressure loop.
- the body 2 of the valve can be made by assembling two parts 2a and 2b, these two parts contacting a plane P, a wall defines a portion of the conduit 3, as will be seen later.
- the plane P will be called "joint plane" of the body 2 thereafter.
- the part 2b is not shown.
- the duct 3 is in the example in question covered by gases that can reach a high temperature, for example up to 700 ° C.
- the valve 1 comprises a flap 5 disposed in the body and pivotally mounted through a shaft 7 received in a housing 8 of the body 2 by means of one or more bearings not shown.
- the shaft 7 has two ends represented by E1 and E2.
- the shaft 7 extends in a direction X and the bearing or bearings have a radial clearance relative to the direction X allowing the shaft 7 to move radially in the bearing and in the housing 8.
- the shaft 7 can be in the form of a cylinder of circular cross section.
- a support 9 extends radially with respect to the shaft 7 and connects the shaft 7 and the flap 5.
- the flap 5 is generally plane and extends perpendicular to the direction in which it extends the support 9.
- the flap 5 comprises two parts 30 and 31 formed by separate pieces joined together. Each of these parts is in the form of a plate and the upper face 32 of the plate 30 is attached to the lower face 33 of the plate 31 without these plates 30 and 31 are exactly superimposed.
- the upper face 32 of the plate 30 and the lower face 33 of the plate 31 are coplanar and belong to the joint plane P 'of the flap 5. Screws 35 are for example used to fix the plate 31 with the plate 30.
- the plate 30 is in the example shown closer to the axis 7 than the plate 31, and the plate 30 is here connected to the support 9.
- the upper face of the flap 5 is here defined by the portion of the upper face 32 of the plate 30 not facing the plate 31 and the upper face of the plate 31 while the face lower part of the flap 5 is defined by the underside of the plate 30 and the part of the lower face 33 of the plate 31 not facing the plate 30.
- the length L1 measured along the X direction of the plate 30 is greater than the length L2 of the plate 31.
- the two parts 2a and 2b of the body are rigidly coupled together at the joint plane P of the body 2.
- the distance between the center of the housing 8 and the joint plane P of the body 2 is designated by “De” and the distance between the center of the shaft 7 and the plane P 'is designated by “Dv”.
- Figures 7 to 9 each show three sectional views of a position of the flap 5 when the distance De is less than Dv, that is to say that the joint plane of the flap P 'is located from the shaft 7 beyond the joint plane of the body P.
- the upper face 32 of the plate 30 is about to come into contact with the joint plane P of the body 2, this contact causing, according to the prior art, jamming of the flap 5 in the duct 3.
- the shaft 7 can move radially, allowing the plate 30 to move away from the joint plane P of the body 2.
- the shutter 5 can continue its movement until reaching the closed position in which it comes into contact with the joint plane P of the body 2 by the first zone 11 and the second zone 12.
- the first zone 11 belongs to the upper face 32 of the plate 30 while the second zone 12 belongs to the lower face 33 of the plate 31.
- the first zone 11 and the second zone 12 are part of the same plane, namely the joint plane P 'of the flap 5.
- the contact between the flap 5 and the body 2 via the first 11 and second 12 areas is here plane, being exclusively between the respective joint plane P and P '.
- FIG. 10 which represents the valve 1 according to the first example of implementation of the invention seen from the front by exaggerating the difference between the length L1 of the plate 30 and the length L2 of the plate 31, due to these lengths L1 and L2 different, in the closed position, two leakage sections S exist on either side of the plate 31.
- the radial displacement may be any radius.
- the compensation for any differences between the distances De and Dv may be accompanied by a displacement of the shaft having the effect of moving the flap away from the body of the body. valve therefore to increase the area of the leakage sections S with respect to the surface they would have had if the radial displacement had been in a less unfavorable direction.
- Figures 11 and 12 show respectively in rear view and face, the drive member according to the invention.
- the shaft 7 has at its end El, a wheel 41, integral with it.
- This integral wheel 41 is a toothed sector.
- a drive wheel 40 is mounted on a pivot mounted parallel to the axis of rotation of the shaft 7.
- This drive wheel 40 has 2 coaxial teeth, the two teeth being coaxial with the axis of rotation of the wheel 40.
- the first 46 of its two teeth meshes with the integral wheel 41 and the other 45 of its two teeth meshes with the pinion 42 of a DC motor 43.
- the pinion 42 drives in rotation the drive wheel 40, which in turn rotates the integral wheel 41.
- An axis Y orthogonal to the axis of rotation of the shaft 7, passing through this axis of rotation and by the axis of rotation of the drive wheel 40 is defined.
- An axis Z orthogonal to the axis of rotation of the shaft 7, passing through this axis of rotation and parallel to the plane P.
- the angle 44 defines by the axes Y and Z is substantially equal to 110 °. More generally, this angle is 90 ° ⁇ 30 °.
- the shutter passes from the open position to the closed position by a rotation in the direction represented by the arrow 47.
- the tangential force induced when the flap 5 passes from the open position to the closed position is represented by the arrow 70 in FIGS. 10 to 12. This tangential force contributes to imposing a predefined direction on the radial displacement of the shaft 7. to the game in the bearings.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Lift Valve (AREA)
- Mechanically-Actuated Valves (AREA)
Abstract
Vanne (1), notamment pour moteur thermique, comprenant: -un corps (2) dans lequel sont ménagés: un logement (8) dans lequel est disposé au moins un palier, et un conduit (3) apte à être parcouru par un fluide, et -un volet (5) monté pivotant dans le corps (2) par un arbre (7) reçu avec jeu radial dans le palier, -un organe d'entraînement configuré pour déplacer l'arbre (7) de manière à ce que le volet (5) pivote entre: -une position ouverte, et - une position fermée dans laquelle il vient en contact avec le corps (2) par une première zone de contact du volet située d'un premier côté de l'arbre (7) et par une deuxième zone de contact du volet située d'une deuxième côté de l'arbre (7) opposé audit premier côté, le palier étant configuré pour permettre un déplacement radial de l'arbre (7) dans le palier lors du passage du volet (5) de la position ouverte à la position fermée, et l'organe d'entraînement étant configurée pour guider ledit déplacement radial de l'arbre (7) selon une direction prédéterminée.
Description
Vanne, notamment pour moteur thermique
La présente invention concerne une vanne, notamment pour moteur thermique.
L'invention s'applique notamment lorsque le moteur thermique est utilisé pour la propulsion d'un véhicule, par exemple d'un véhicule automobile. Il peut s'agir d'un moteur dont le carburant est de l'essence ou du diesel. La vanne peut être intégrée au circuit d'air du moteur thermique. Au sens de l'invention, on désigne par « circuit d'air de moteur thermique » le circuit entre l'entrée d'admission et la sortie d'échappement du moteur thermique. La vanne peut être disposée dans le circuit d'admission, le circuit d'échappement, ou une boucle de recirculation par laquelle transitent les gaz d'échappement réinjectés à l'admission (EGR en anglais).
Dans le cas d'une vanne comprenant :
un corps dans lequel est ménagé un conduit dans lequel transite un fluide, et
un volet monté mobile dans le corps entre une position ouverte et une position fermée dans lequel il doit obturer le conduit,
des problèmes de fuite de la vanne lorsque le volet est en position fermée existent. Pour y remédier, il est connu d'utiliser un joint interposé entre le corps et le volet lorsque ce dernier est dans la position fermée. Néanmoins, un tel joint est susceptible de se dilater du fait des fortes températures pouvant être atteintes dans l'environnement dans lequel il se trouve.
Une autre solution pour remédier à ce problème lié à l'emploi d'un joint est d'amener directement le volet en contact avec le corps lorsque le volet est en position fermée. Néanmoins, une contrainte dimensionnelle entre le volet et la partie du conduit dans laquelle il se déplace doit être respectée pour éviter que le volet ne vienne se coincer contre la paroi de ladite partie du conduit avant d'avoir atteint la position fermée, comme cela va être décrit en référence aux figures 1 et 2.
Sur ces figures, le corps 102 présente un plan de joint P venant au contact d'un plan de joint P' du volet 105 lorsque le volet est dans la position fermée pour obturer le conduit ménagé dans le corps 102. Du fait du caractère rigide des contacts entre le volet et le corps, on constate que le coincement du volet 105 contre la paroi du corps 102 est évité lorsque la distance Dv, mesurée entre le centre de l'arbre 107 permettant le pivotement du volet 105 dans le corps 102 et le plan de joint P' du volet 105, est inférieure ou égale à la distance De, mesurée entre le centre du logement 108 du corps 102 dans lequel est reçu l'arbre 107 et le plan de joint P du corps 102.
Cette contrainte dimensionnelle doit en outre être majorée, pour tenir compte des imprécisions sur les cotes des différentes pièces de la vanne lors de la fabrication de celle-ci. Du fait de cette majoration, des sections vides relativement importantes peuvent exister entre le corps et le volet lorsque le volet est dans la position fermée, ces sections vides, encore appelées « sections de
fuite », pouvant occasionner des fuites supérieures à ce qui peut être toléré lorsque le volet est dans la position fermée.
La demande déposée en France le 10 octobre 2012 par la Demanderesse sous le numéro 1259688 enseigne de ménager du jeu dans le ou les paliers par l'intermédiaire desquels l'arbre est reçu dans le logement et d'utiliser ce jeu pour permettre un déplacement radial de l'arbre dans le logement lorsque le volet passe de la position ouverte à la position fermée.
Néanmoins, ce déplacement radial tend à éloigner l'arbre de l'une des parois du conduit, de sorte qu'en position fermée, des sections de fuite de taille relativement importante apparaissent entre le volet et la paroi du conduit, affectant alors l'étanchéité du volet en position fermée. Par exemple, dans le cas où le logement recevant l'arbre a une section transversale circulaire, le déplacement radial peut se faire selon un rayon quelconque. En fonction du rayon selon lequel a lieu ce déplacement, la compensation des différences éventuelles entre les distances De et Dv ci- dessus peut s'accompagner d'un déplacement de l'arbre ayant pour effet d'augmenter les sections de fuite existant entre le volet et le corps de la vanne lorsque le volet est en position fermée.
II existe un besoin pour bénéficier d'une vanne remédiant aux inconvénients ci-dessus.
Selon l'un de ses aspects, l'invention répond à ce besoin à l'aide d'une vanne, notamment pour moteur thermique, comprenant :
un corps dans lequel sont ménagés : un logement dans lequel est disposé au moins un palier, et un conduit apte à être parcouru par un fluide, et
- un volet monté pivotant dans le corps par un arbre reçu avec jeu radial dans le palier,
un organe d'entraînement configuré pour déplacer l'arbre de manière à ce que le volet pivote entre :
une position ouverte, et
- une position fermée dans laquelle il vient en contact avec le corps par une première zone de contact du volet située d'un premier côté de l'arbre et par une deuxième zone de contact du volet située d'un deuxième côté de l'arbre opposé audit premier côté, le palier étant configuré pour permettre un déplacement radial de l'arbre dans le palier lors du passage du volet de la position ouverte à la position fermée, et
l'organe d'entraînement étant configurée pour guider ledit déplacement radial de l'arbre selon une direction prédéterminée.
La direction prédéfinie permet d'éviter le coincement du volet contre la paroi du conduit lorsque le volet passe dans la position fermée sans qu'il soit nécessaire de respecter des contraintes dimensionnelles trop exigeantes entre le volet et la partie du conduit dans laquelle il se déplace tout en évitant l'augmentation des sections de fuite lorsque le volet est en position fermée.
Selon un premier mode de réalisation, l'organe d'entraînement est une roue d'entraînement de l'arbre, configurée pour guider ledit déplacement radial de l'arbre selon la direction
prédéterminée.
En variante, l'organe d'entraînement est une roue d'entraînement d'une roue solidaire de l'arbre.
Avantageusement, la vanne comprend un actionneur du volet, ledit actionneur comprenant un moteur électrique dont le couple est transmis à l'arbre pour déplacer le volet au moins par l'intermédiaire de l'organe d'entraînement. Ainsi, il n'est pas nécessaire d'avoir recours à une pièce additionnelle pour guider le déplacement radial de l'arbre selon une direction
prédéterminée, la roue d'entraînement étant une pièce déjà présente dans l'ensemble composé d'un actionneur et d'un train d'engrenages.
La position de la roue d'entraînement qui engrène directement sur la roue solidaire de l'arbre peut être choisie relativement à cette roue solidaire pour que la direction de l'effort tangentiel résultant transmis à l'arbre soit de nature à guider le déplacement radial de l'arbre selon la direction prédéterminée. Cette position peut être combinée au sens de rotation de la roue d'entraînement pour fermer le volet afin d'assurer la direction de l'effort tangentiel dans un sens de nature à guider le déplacement radial de l'arbre selon la direction prédéterminée.
Le corps peut présenter un plan de joint du corps venant contacter la première et la deuxième zone de contact du volet lorsque le volet est dans la position fermée et la première et la deuxième zone de contact du volet peut appartenir à un plan de joint du volet.
Lorsque le volet est dans la position fermée, le plan de joint du corps et le plan de joint du volet peuvent être confondus, chaque zone de contact du volet formant alors avec le plan de joint du corps un contact plan lorsque le volet est dans la position fermée. Le volet peut alors être auto- centreur, du fait que les contacts entre le volet et le corps s'effectuent dans un seul et même plan lorsque le volet est dans la position fermée et qu'un jeu radial existe dans le ou les paliers. Avec une telle vanne, lorsque le volet est dans la position fermée, les contacts entre le volet et le corps peuvent permettre l'immobilisation de l'arbre perpendiculairement au plan de joint unique, sans que l'arbre ne soit au contact du ou des paliers.
Avantageusement, le volet comprend :
- une première partie ayant une première surface dont une portion définit la première zone de contact lorsque le volet est en position fermée,
une deuxième partie ayant une deuxième surface dont une portion définit la deuxième zone de contact lorsque le volet est en position fermée,
la première surface et la deuxième surface étant partiellement en contact l'une avec l'autre et étant coplanaires, la première partie ayant une longueur mesurée le long de l'axe de l'arbre supérieure à
celle de la deuxième partie, et le guidage selon la direction prédéfinie permettant d'éviter que la première partie du volet s'éloigne de la zone du corps venant en contact avec la deuxième zone de contact.
Autrement dit, la première et la deuxième zone de contact appartiennent dans cet exemple à des surfaces opposées du volet tout en étant dans le même plan.
Ainsi, l'organe d'entraînement contribue à imposer une direction prédéfinie au déplacement radial. Cette direction prédéfinie permet d'éviter qu'en position fermée, des sections de fuite trop importantes n'existent du fait de l'éloignement de la première partie du volet de la zone du corps venant en contact avec la deuxième zone de contact, cet éloignement étant susceptible d'être occasionné par le déplacement de l'arbre grâce au jeu dans le ou les paliers.
En effet, le volet étant selon cet exemple formé par deux parties de longueur différente, les longueurs relatives des première et deuxième parties font qu'il existe une portion du conduit dans le plan de joint du corps qui n'est ni obturée par le corps, ni par le volet bien que ce dernier soit dans la position fermée, formant ainsi une section de fuite.
La direction prédéfinie peut même rapprocher la première partie du volet de la zone du corps venant en contact avec la deuxième zone de contact.
La vanne peut être agencée pour définir un angle, mesuré entre :
un premier axe, orthogonal à l'axe de rotation de l'arbre, passant par cet axe de rotation et par l'axe de rotation de la roue d'entraînement qui engrène directement sur la roue solidaire de l'arbre, et
un deuxième axe, orthogonal à l'axe de rotation de l'arbre, passant par cet axe de rotation et parallèle au plan de joint du corps,
et dont la valeur est comprise entre 50° et 130°, par exemple entre 60° et 120°, notamment entre 70° et 110°. Un tel angle peut permettre d'orienter l'effort tangentiel résultant transmis à l'arbre pour qu'il soit de nature à guider le déplacement radial de l'arbre selon la direction prédéterminée.
L'angle peut être choisi pour que sa valeur soit sensiblement égale à 110°.
Le guidage radial du volet selon la direction prédéfinie peut avoir alors deux effets bénéfiques : celui mentionné ci-dessus en rapport avec le respect de contraintes dimensionnelles et celui de réduire les sections de fuite dans la position fermée.
La première et la deuxième partie peuvent être chacune une pièce distincte, lesdites pièces étant rigidement couplées entre elles pour former le volet. Chacune de ces pièces est par exemple une plaque. Lesdites pièces sont notamment rigidement couplées entre elles au niveau du plan de joint du volet.
Avantageusement, la partie du conduit dans laquelle le volet se déplace peut être ménagée dans deux pièces du corps rigidement couplées entre elles au niveau du plan de joint du corps. Une partie du plan de joint du corps peut être définie par une deuxième surface d'une de ces pièces du corps qui vient alors en contact avec la partie de la deuxième surface de la deuxième partie du volet formant la deuxième zone de contact lorsque le volet est dans la position fermée tandis qu'une autre partie du plan de joint du corps peut être définie par la première surface d'une autre des pièces du corps qui vient alors en contact avec la partie de la première surface de la première partie du volet formant la première zone de contact lorsque le volet est dans la position fermée.
La vanne peut être une vanne disposée dans le circuit d'admission du moteur thermique, dans le circuit d'échappement du moteur thermique, ou dans une boucle de recirculation des gaz d'échappement permettant à ces derniers d'être réinjectés à l'admission du moteur thermique. Cette boucle de recirculation peut être « basse pression » ou « haute pression ».
La vanne est notamment une vanne dite « deux voies ».
En variante, la vanne peut être une vanne dite « trois voies ». La vanne peut alors être disposée à l'entrée de la boucle de recirculation, c'est-à-dire à l'endroit du circuit d'échappement où prend naissance la boucle de recirculation. La vanne dite « trois voies » peut en variante être disposée à la sortie de la boucle de recirculation, c'est-à-dire à l'endroit du circuit d'admission où les gaz d'échappement sont réinjectés à l'admission.
La vanne est avantageusement dépourvue d'élément flexible interposé entre le volet et le corps lorsque le volet est dans la position fermée. « Flexible » est ici utilisé par opposition à « rigide », le corps et le volet étant alors rigides.
Un tel élément flexible est par exemple un joint d'étanchéité.
Le volet et l'arbre peuvent être reliés par un support s'étendant le long d'au moins une portion de l'arbre. La vanne présente ainsi un arbre déporté par rapport au volet, contrairement aux vannes dans lesquels l'arbre et le volet sont disposés dans de mêmes plans.
En variante, l'arbre et le volet peuvent être disposés dans de mêmes plans.
La distance entre le centre du logement et le plan de joint du corps peut être supérieure à la distance entre le centre de l'arbre et le plan de joint du volet. Cette contrainte dimensionnelle, généralement imposée, permet d'éviter le coincement du volet contre la paroi du conduit lorsque le volet passe dans la position fermée. Lorsque cette contrainte est respectée, le jeu du palier n'est pas nécessaire pour éviter le coincement du volet contre la paroi du conduit. La deuxième zone de contact du volet contre le corps peut permettre d'empêcher un déplacement trop important de l'arbre dans le palier, et ainsi d'empêcher que de trop grandes sections de fuite n'existent lorsque le volet est dans la position fermée. On réduit ainsi l'utilisation du jeu radial disponible dans le ou
les paliers, étant donné que le déplacement du volet du fait de ce jeu pour éviter le coincement n'est alors pas nécessaire.
En variante, la distance entre le centre du logement et le plan de joint du corps peut être inférieure à la distance entre le centre de l'arbre et le plan de joint du volet. Ce cas peut se produire bien que l'on ait cherché à respecter la contrainte dimensionnelle ci-dessus, en raison des imprécisions sur les cotes des pièces de la vanne lors de la fabrication de celles-ci. En l'absence d'utilisation du jeu du ou des paliers, ce cas conduit au coincement du volet contre la paroi du conduit lorsque le volet passe dans la position fermée, ce qui empêche normalement d'utiliser une telle vanne. L'utilisation du jeu dans le ou les paliers permet de se ramener au cas précédent dans lequel il n'y a pas de coincement.
Le jeu dans le ou les paliers peut être dimensionné pour être supérieur ou égal à un taux d'imprécision global prédéfini pour le volet et la partie du conduit dans laquelle le volet se déplace, ce taux d'imprécision global prédéfini résultant notamment de la combinaison linéaire de taux d'imprécision unitaires prédéfinis pour chaque cote du volet et de la partie du conduit dans laquelle le volet se déplace. Chaque taux d'imprécision unitaire prédéfini est par exemple fixé en fonction du retour d'expérience sur la technique utilisée pour fabriquer la pièce correspondante de la vanne.
Le volet peut avoir en section une forme rectangulaire et la première zone de contact et la deuxième zone de contact peuvent être situées à des extrémités opposées du volet.
Par exemple, le volet peut avoir en section la forme d'une demi-lune dont le diamètre est prolongé par un rectangle et la première zone de contact peut être située sur le cercle de la demi- lune tandis que la deuxième zone de contact est portée par le côté du rectangle opposé au côté du rectangle confondu avec le diamètre de la demi- lune.
L'invention pourra être mieux comprise à la lecture de la description qui va suivre d'exemples non limitatifs de mise en œuvre de celle-ci et à l'examen du dessin annexé sur lequel :
les figures 1 et 2 ont déjà été décrites,
les figures 3 à 12 se rapportent à une vanne selon l'invention, les figures 3 et 4 représentant en élévation la vanne, la figure 5 représentant le volet et l'arbre isolément, la figure 6 étant une vue de face de la vanne de la figure 3, les figures 7 à 9 représentant chacune en coupe selon A- A, B-B et C-C une vanne similaire à celle de la figure 6, la figure 10 représentant la vanne de la figure 6 de façon exagérée, les figures 11 et 12 représentent partiellement, respectivement en vue de derrière et de face, un organe d'entraînement selon l'invention.
On a représenté sur la figure 3 une vanne 1 selon un premier mode de réalisation de l'invention. Sur cette figure, la vanne 1 est une vanne dite « deux voies » mais l'invention n'y est pas limitée, comme on le verra par la suite.
La vanne 1 qui va être décrite est une vanne utilisée dans un circuit d'air d'un moteur thermique, par exemple utilisé pour propulser un véhicule automobile.
La vanne 1 comprend un corps 2, par exemple réalisé en aluminium, en acier, en plastique ou en inox dans lequel est ménagé un conduit 3. Il s'agit par exemple d'un conduit d'admission, d'échappement ou d'un conduit formant une boucle de recirculation des gaz d'échappement (encore appelée boucle EGR), cette boucle pouvant être une boucle haute pression ou basse pression. Le corps 2 de la vanne peut être réalisé par l'assemblage de deux pièces 2a et 2b, ces deux pièces se contactant selon un plan P dont une paroi définit une partie du conduit 3, comme on le verra par la suite. Le plan P sera appelé « plan de joint » du corps 2 par la suite. Sur la figure 4, la pièce 2b n'est pas représentée.
Le conduit 3 est dans l'exemple considéré parcouru par des gaz pouvant atteindre une température élevée, par exemple jusqu'à 700°C.
Comme représenté sur les figures 3 et 4, la vanne 1 comprend un volet 5 disposé dans le corps et monté pivotant grâce à un arbre 7 reçu dans un logement 8 du corps 2 par l'intermédiaire d'un ou plusieurs paliers non représentés. L'arbre 7 a deux extrémités représentées par El et E2.
L'arbre 7 s'étend selon une direction X et le ou les paliers présentent un jeu radial par rapport à la direction X permettant à l'arbre 7 de se déplacer radialement dans le palier et dans le logement 8. L'arbre 7 peut se présenter sous la forme d'un cylindre de section transversale circulaire.
Comme représenté sur la figure 5, un support 9 s'étend radialement par rapport à l'arbre 7 et relie l'arbre7 et le volet 5. Le volet 5 est globalement plan et il s'étend perpendiculairement à la direction selon laquelle s'étend le support 9.
Le volet 5 comprend deux parties 30 et 31 formées par des pièces distinctes solidarisées entre elles. Chacune de ces parties se présente sous la forme d'une plaque et la face supérieure 32 de la plaque 30 est rapportée sur la face inférieure 33 de la plaque 31 sans que ces plaques 30 et 31 ne soient exactement superposées. Dans cet exemple, la face supérieure 32 de la plaque 30 et la face inférieure 33 de la plaque 31 sont coplanaires et appartiennent au plan de joint P' du volet 5. Des vis 35 sont par exemple utilisées pour fixer la plaque 31 avec la plaque 30.
La plaque 30 est dans l'exemple représenté plus proche de l'axe 7 que la plaque 31, et la plaque 30 est ici raccordée au support 9.
La face supérieure du volet 5 est ici définie par la partie de la face supérieure 32 de la plaque 30 non en regard de la plaque 31 et par la face supérieure de la plaque 31 tandis que la face
inférieure du volet 5 est définie par la face inférieure de la plaque 30 et par la partie de la face inférieure 33 de la plaque 31 non en regard de la plaque 30.
Toujours dans cet exemple, comme on peut le voir sur la figure 5, la longueur Ll mesurée le long de la direction X de la plaque 30 est supérieure à la longueur L2 de la plaque 31.
Selon ce premier exemple de mise en œuvre de l'invention, les deux pièces 2a et 2b du corps sont rigidement couplées entre elles au niveau du plan de joint P du corps 2.
La distance entre le centre du logement 8 et le plan de joint P du corps 2 est désignée par « De » et la distance entre le centre de l'arbre 7 et le plan P' est désignée par « Dv ».
Sur la figure 6, la plaque 31 du volet 5 est représentée en position fermée. Des lignes de coupes A-A, B-B et C-C sont représentées au niveau des extrémités du volet 5 et en son centre.
Les figures 7 à 9 représentent chacune trois vues en coupe d'une position du volet 5 lorsque la distance De est inférieure à Dv, c'est-à-dire que le plan de joint du volet P' est situé depuis l'arbre 7 au-delà du plan de joint du corps P.
Sur la figure 7, le volet 5 est en position ouverte et il n'est pas en contact avec le corps 2. Sur la figure 8, le volet 5 est en cours de passage de la position ouverte vers la position fermée.
La face supérieure 32 de la plaque 30 est sur le point de venir en contact avec le plan de joint P du corps 2, ce contact provoquant selon l'art antérieur le coincement du volet 5 dans le conduit 3.
Comme on peut le voir sur la figure 9, grâce au jeu radial existant dans le ou les paliers, l'arbre 7 peut se déplacer radialement, permettant à la plaque 30 de s'éloigner du plan de joint P du corps 2. Le volet 5 peut poursuivre son déplacement jusqu'à atteindre la position fermée dans laquelle il vient en contact avec le plan de joint P du corps 2 par la première zone 11 et la deuxième zone 12. La première zone 11 appartient à la face supérieure 32 de la plaque 30 tandis que la deuxième zone 12 appartient à la face inférieure 33 de la plaque 31. La première zone 11 et la deuxième zone 12 font ainsi partie d'un même plan, à savoir le plan de joint P' du volet 5. Le contact entre le volet 5 et le corps 2 via les première 11 et deuxième 12 zones est ici plan, se faisant exclusivement entre les plans de joint P et P' respectifs.
Comme représenté sur la figure 10 qui représente la vanne 1 selon le premier exemple de mise en œuvre de l'invention vue de face en exagérant la différence entre la longueur Ll de la plaque 30 et la longueur L2 de la plaque 31, du fait de ces longueurs Ll et L2 différentes, en position fermée, deux sections de fuite S existent de part et d'autre de la plaque 31.
Dans le cas où le logement 8 recevant l'arbre 7 a une section transversale circulaire, le déplacement radial peut se faire selon un rayon quelconque. En fonction du rayon selon lequel a lieu ce déplacement, la compensation des différences éventuelles entre les distances De et Dv peut s'accompagner d'un déplacement de l'arbre ayant pour effet d'écarter le volet du corps de la
vanne donc d'augmenter la surface des sections de fuites S par rapport à la surface qu'elles auraient eu si le déplacement radial avait été dans une direction moins défavorable.
Les figures 11 et 12 représentent respectivement en vue de derrière et de face, l'organe d'entraînement selon l'invention. L'arbre 7 comporte à son extrémité El, une roue 41, solidaire de celui-ci. Cette roue solidaire 41 est un secteur denté. Une roue d'entraînement 40 est montée sur un pivot monté parallèle à l'axe de rotation de l'arbre 7. Cette roue d'entraiment 40 comporte 2 dentures coaxiales, les deux dentures étant coaxiales avec l'axe de rotation de la roue 40.
La première 46 de ses deux dentures engrène sur la roue solidaire 41 et l'autre 45 de ses deux dentures engrène sur le pignon 42 d'un moteur à courant continu 43.
Ainsi, le pignon 42 entraine en rotation la roue d'entraînement 40, qui entraine à son tour en rotation la roue solidaire 41.
On définit un axe Y, orthogonal à l'axe de rotation de l'arbre 7, passant par cet axe de rotation et par l'axe de rotation de la roue d'entraînement 40. On définit par ailleurs un axe Z, orthogonal à l'axe de rotation de l'arbre 7, passant par cet axe de rotation et parallèle au plan P.
L'angle 44 définit par les axes Y et Z est sensiblement égal à 110°. Plus généralement, cet angle est de 90° ± 30°.
Le volet passe de la position ouverte à la position fermée par une rotation dans le sens représenté par la flèche 47.
L'effort tangentiel induit, lorsque le volet 5 passe de la position ouverte à la position fermée est représenté par la flèche 70 sur les figures 10 à 12. Cet effort tangentiel contribue à imposer une direction prédéfinie au déplacement radial de l'arbre 7 grâce au jeu dans les paliers.
Claims
Revendications
Vanne (1), notamment pour moteur thermique, comprenant :
un corps (2) dans lequel sont ménagés : un logement (8) dans lequel est disposé au moins un palier, et un conduit (3) apte à être parcouru par un fluide, et un volet (5) monté pivotant dans le corps (2) par un arbre (7) reçu avec jeu radial dans le palier,
un organe d'entraînement (40 ; 41) configuré pour déplacer l'arbre (7) de manière à ce que
le volet (5) pivote entre :
une position ouverte, et
une position fermée dans laquelle il vient en contact avec le corps (2) par une première zone de contact (11) du volet (5) située d'un premier côté de l'arbre (7) et par une deuxième zone de contact (12) du volet (5) située d'une deuxième côté de l'arbre (7) opposé audit premier côté,
le palier étant configuré pour permettre un déplacement radial de l'arbre (7) dans le palier lors du passage du volet (5) de la position ouverte à la position fermée, et
l'organe d'entraînement (40 ; 41) étant configurée pour guider ledit déplacement radial de l'arbre selon une direction prédéterminée.
Vanne selon la revendication 1, l'organe d'entraînement (41) étant une roue
d'entraînement de l'arbre (7), configurée pour guider le déplacement radial de l'arbre (7) selon la direction prédéterminée.
Vanne selon la revendication 1, l'organe d'entraînement (40) étant une roue
d'entraînement (40) d'une roue solidaire (41) de l'arbre (7).
Vanne selon l'une quelconque des revendications 1 à 3, comprenant un actionneur (42 ; 43) du volet (5), ledit actionneur comprenant un moteur électrique (43) dont le couple est transmis à l'arbre (7) pour déplacer le volet (5) au moins par l'intermédiaire de l'organe d'entraînement (40 ; 41).
Vanne selon l'une quelconque des revendications précédentes, le volet (5) comprenant : une première partie (30) ayant une première surface dont une portion définit la première zone de contact (11) lorsque le volet (5) est en position fermée,
une deuxième partie (31) ayant une deuxième surface dont une portion définit la deuxième zone de contact (12) lorsque le volet (5) est en position fermée,
la première surface et la deuxième surface étant partiellement en contact l'une avec l'autre et étant coplanaires, la première partie (30) ayant une longueur (Ll) mesurée le long de l'axe de l'arbre (7) supérieure la longueur (L2) de la deuxième partie (31), et le guidage
selon la direction prédéfinie permettant d'éviter que la première partie (30) du volet (5) s'éloigne de la zone du corps (2) venant en contact avec la deuxième zone de contact (12). Vanne selon la revendication 5, le guidage selon la direction prédéfinie permettant de rapprocher la première partie (30) du volet (5) de la zone du corps (2) venant en contact avec la deuxième zone de contact (12).
Vanne selon l'une quelconque des revendications précédentes étant dépourvue d'élément flexible interposé entre le volet (5) et le corps (2) lorsque le volet (5) est dans la position fermée.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14735627.3A EP3017217A1 (fr) | 2013-06-20 | 2014-06-13 | Vanne, notamment pour moteur thermique |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1355820 | 2013-06-20 | ||
FR1355820A FR3007487B1 (fr) | 2013-06-20 | 2013-06-20 | Vanne notamment pour moteur thermique |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014202883A1 true WO2014202883A1 (fr) | 2014-12-24 |
Family
ID=49054806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2014/051465 WO2014202883A1 (fr) | 2013-06-20 | 2014-06-13 | Vanne, notamment pour moteur thermique |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3017217A1 (fr) |
FR (1) | FR3007487B1 (fr) |
WO (1) | WO2014202883A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117704080A (zh) * | 2024-02-06 | 2024-03-15 | 中国空气动力研究与发展中心空天技术研究所 | 一种迷宫动密封活动关节 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2439861A (en) * | 1945-01-02 | 1948-04-20 | Western Precipitation Corp | Alternate tipping valve for handling fluent materials |
DE2427995A1 (de) * | 1974-06-10 | 1976-01-02 | Standard Elektrik Lorenz Ag | Klappenventil |
FR2838801A1 (fr) * | 2002-04-15 | 2003-10-24 | Visteon Global Tech Inc | Dispositif de changement de direction pour fluides en circulation |
US20040060541A1 (en) * | 2002-03-28 | 2004-04-01 | Hitachi, Ltd. | Throttle valve opening and closing device |
EP1426589A2 (fr) * | 2002-11-20 | 2004-06-09 | Denso Corporation | Dispositif de commande de recirculation de gaz d'échappement |
WO2004067931A1 (fr) * | 2003-01-31 | 2004-08-12 | Honeywell International Inc. | Vanne 3 voies particulierement destinee a un turbocompresseur |
WO2010000752A1 (fr) * | 2008-07-01 | 2010-01-07 | Valeo Systemes De Controle Moteur | Ensemble d'un corps de vanne |
WO2012001286A1 (fr) * | 2010-06-30 | 2012-01-05 | Valeo Systemes De Controle Moteur | Vanne de circulation de fluide |
WO2012001282A1 (fr) * | 2010-06-30 | 2012-01-05 | Valeo Systemes De Controle Moteur | Vanne de circulation de fluide |
WO2012030222A1 (fr) * | 2010-09-02 | 2012-03-08 | The Jekill & Hyde Company B.V. | Échappement, logement de soupape, véhicule automobile, et procédé de montage |
-
2013
- 2013-06-20 FR FR1355820A patent/FR3007487B1/fr not_active Expired - Fee Related
-
2014
- 2014-06-13 EP EP14735627.3A patent/EP3017217A1/fr not_active Ceased
- 2014-06-13 WO PCT/FR2014/051465 patent/WO2014202883A1/fr active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2439861A (en) * | 1945-01-02 | 1948-04-20 | Western Precipitation Corp | Alternate tipping valve for handling fluent materials |
DE2427995A1 (de) * | 1974-06-10 | 1976-01-02 | Standard Elektrik Lorenz Ag | Klappenventil |
US20040060541A1 (en) * | 2002-03-28 | 2004-04-01 | Hitachi, Ltd. | Throttle valve opening and closing device |
FR2838801A1 (fr) * | 2002-04-15 | 2003-10-24 | Visteon Global Tech Inc | Dispositif de changement de direction pour fluides en circulation |
EP1426589A2 (fr) * | 2002-11-20 | 2004-06-09 | Denso Corporation | Dispositif de commande de recirculation de gaz d'échappement |
WO2004067931A1 (fr) * | 2003-01-31 | 2004-08-12 | Honeywell International Inc. | Vanne 3 voies particulierement destinee a un turbocompresseur |
WO2010000752A1 (fr) * | 2008-07-01 | 2010-01-07 | Valeo Systemes De Controle Moteur | Ensemble d'un corps de vanne |
WO2012001286A1 (fr) * | 2010-06-30 | 2012-01-05 | Valeo Systemes De Controle Moteur | Vanne de circulation de fluide |
WO2012001282A1 (fr) * | 2010-06-30 | 2012-01-05 | Valeo Systemes De Controle Moteur | Vanne de circulation de fluide |
WO2012030222A1 (fr) * | 2010-09-02 | 2012-03-08 | The Jekill & Hyde Company B.V. | Échappement, logement de soupape, véhicule automobile, et procédé de montage |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117704080A (zh) * | 2024-02-06 | 2024-03-15 | 中国空气动力研究与发展中心空天技术研究所 | 一种迷宫动密封活动关节 |
CN117704080B (zh) * | 2024-02-06 | 2024-04-05 | 中国空气动力研究与发展中心空天技术研究所 | 一种迷宫动密封活动关节 |
Also Published As
Publication number | Publication date |
---|---|
FR3007487B1 (fr) | 2015-06-26 |
FR3007487A1 (fr) | 2014-12-26 |
EP3017217A1 (fr) | 2016-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2850298B1 (fr) | Vanne pour commander la circulation de fluide, a moyen d'obturation rotatif | |
EP2906859B1 (fr) | Vanne, notamment pour moteur thermique | |
EP2850297B1 (fr) | Vanne de circulation de fluide, notamment pour véhicule automobile, et dispositif de conditionnement thermique comprenant une telle vanne | |
EP3017217A1 (fr) | Vanne, notamment pour moteur thermique | |
EP3126720B1 (fr) | Vanne à corps de vanne perfectionné et procédé de fabrication d'une telle vanne | |
EP2962019B1 (fr) | Vanne, notamment pour moteur thermique | |
EP3134629B1 (fr) | Vanne de circulation de fluide | |
WO2016012710A1 (fr) | Vanne de circulation de fluide, notamment pour véhicule automobile, à rondelle de butée et procédé de fabrication d'une telle vanne | |
EP3044487B1 (fr) | Vanne, notamment pour moteur thermique | |
EP3025079B1 (fr) | Vanne, notamment pour moteur thermique | |
EP3090168B1 (fr) | Élément de vanne, notamment pour moteur thermique | |
WO2016170292A1 (fr) | Vanne pour canalisation d'air de moteur de véhicule automobile | |
EP2917617B1 (fr) | Vanne, notamment pour circuit d'air de moteur thermique | |
EP3134630B1 (fr) | Vanne de circulation de fluide | |
FR2802269A1 (fr) | Obturateur de reglage progressif du debit de fluide dans une canalisation, en particulier du type papillon | |
FR3019248A1 (fr) | Vanne a montage facilite d'un attelage dans une came | |
FR2998027A1 (fr) | Vanne, notamment pour circuit d'air de moteur thermique | |
FR2996259A1 (fr) | Vanne de controle moteur dotee d'un volet simplifie | |
FR2924780A1 (fr) | Conduit d'ecoulement de gaz avec obturateur pour vehicule automobile | |
FR2990243A1 (fr) | Vanne de controle moteur dotee d'un volet optimise |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14735627 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014735627 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |