WO2014196525A1 - 計測装置及び計測方法 - Google Patents

計測装置及び計測方法 Download PDF

Info

Publication number
WO2014196525A1
WO2014196525A1 PCT/JP2014/064725 JP2014064725W WO2014196525A1 WO 2014196525 A1 WO2014196525 A1 WO 2014196525A1 JP 2014064725 W JP2014064725 W JP 2014064725W WO 2014196525 A1 WO2014196525 A1 WO 2014196525A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
magnet
subject
static magnetic
gradient coil
Prior art date
Application number
PCT/JP2014/064725
Other languages
English (en)
French (fr)
Inventor
英雄 内海
竜馬 小林
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to JP2015521454A priority Critical patent/JPWO2014196525A1/ja
Priority to US14/895,847 priority patent/US20160116562A1/en
Publication of WO2014196525A1 publication Critical patent/WO2014196525A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
    • G01R33/56375Intentional motion of the sample during MR, e.g. moving table imaging
    • G01R33/56383Intentional motion of the sample during MR, e.g. moving table imaging involving motion of the sample as a whole, e.g. multistation MR or MR with continuous table motion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/70Means for positioning the patient in relation to the detecting, measuring or recording means
    • A61B5/704Tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • G01R33/3858Manufacture and installation of gradient coils, means for providing mechanical support to parts of the gradient-coil assembly
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/62Arrangements or instruments for measuring magnetic variables involving magnetic resonance using double resonance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging

Definitions

  • the present invention relates to a measurement apparatus and a measurement method for acquiring a nuclear magnetic resonance (NMR) signal or further acquiring a magnetic resonance imaging (MRI) image.
  • NMR nuclear magnetic resonance
  • MRI magnetic resonance imaging
  • a magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus) measures nuclear spin density distribution, relaxation time distribution, etc. in a subject using a nuclear magnetic resonance phenomenon, and based on the measurement data, obtains an image of a cross section of the subject.
  • a device that generates and displays.
  • the nuclear spin contained in a subject precesses around the direction of the main magnetic field at a frequency (Larmor frequency) determined by the strength of the main magnetic field in a uniform static magnetic field (main magnetic field).
  • Larmor frequency a frequency determined by the strength of the main magnetic field in a uniform static magnetic field (main magnetic field).
  • RF pulse high-frequency electromagnetic wave
  • the nuclear spin is excited and transitions to a high energy state (nuclear magnetic resonance phenomenon).
  • the nuclear spin returns to the original low energy state with a time constant corresponding to each state.
  • a nuclear magnetic resonance signal is emitted from the nucleus.
  • This NMR signal is received by a high-frequency receiving coil tuned to that frequency. This NMR signal is also called an echo signal.
  • a triaxial gradient magnetic field is applied to the main magnetic field space.
  • the application of the gradient magnetic field is performed for the purpose of adding position information to the detected NMR signal, and the direction of the gradient corresponds to the slice direction, the encode direction, and the readout direction.
  • the MRI apparatus can generate a two-dimensional image inside the subject by performing two-dimensional Fourier analysis on the received echo signal sequence.
  • Non-Patent Document 1 discloses a technique for moving a subject that is moving by a technique called TimCT (Continuous Table Move). An example of acquiring an MRI image of a specimen is shown. According to the TimCT technology, it is possible to obtain an MRI image of the whole body from the head to the foot of the subject such as a patient by continuously moving the table on which the subject is placed in the main magnetic field of the MRI apparatus. It can be done.
  • TimCT Continuous Table Move
  • Patent Document 1 shows an example of a fusion MRI apparatus characterized by acquiring an ESR (Electron Spin Resonance) / NMR fusion image of a subject.
  • the fusion MRI apparatus includes a first magnet that forms a static magnetic field for ESR, a second magnet that forms a static magnetic field for NMR, and the static magnetic field for ESR described above.
  • a moving means for moving the subject between the static magnetic field for NMR is provided. Then, after exciting the electron spin contained in the subject in the static magnetic field for ESR, the subject is moved into the static magnetic field for NMR, and the MRI image is acquired.
  • the magnitude of the electron spin excited by the static magnetic field for ESR can be measured as an NMR signal greatly amplified by the so-called Overhauser effect in the static magnetic field for NMR. Therefore, by subtracting the MRI image of the subject generated based on the normal NMR signal with only the static magnetic field for NMR from the MRI image of the subject generated based on the NMR signal thus obtained, high sensitivity, High resolution electron spin magnetic resonance images (ESRI) can be obtained.
  • ESRI electron spin magnetic resonance images
  • an ESR / NMR fused image generated by superimposing this ESRI image on a normal MRI-based MRI image is displayed, the electron spin intensity distribution is visualized in the morphological image of the subject.
  • a fusion MRI apparatus Since many of electron spins are derived from unpaired electrons of free radicals such as active oxygen in living organisms, such a fusion MRI apparatus has many physiological phenomena and disease causes. It has an excellent effect in visualizing the state of redox metabolism including free radicals that are closely involved.
  • Such a fusion MRI apparatus is called an OMRI (Overhauser effect MRI) apparatus, a PEDRI (Proton Electron Double Resonance Imaging) apparatus, a ReMI (Redox Molecular Imaging) apparatus, or the like.
  • the moving means on which the subject is mounted is an ESR so that the time transition of the electron spin intensity distribution (ie, the distribution of free radicals) can be easily acquired. It can be repeatedly moved between a static magnetic field for NMR and a static magnetic field for NMR.
  • a large acceleration is generated when the moving means is moved or stopped. At this time, a large load is applied to the living body of the subject.
  • a subject is stopped by rotating a first magnet that forms a static magnetic field for ESR and a second magnet that forms a static magnetic field for NMR along a predetermined circular orbit.
  • An example of a fusion MRI apparatus is disclosed that is configured so that a subject can repeatedly pass (relatively pass) through a static magnetic field for ESR and a static magnetic field for NMR in an as-is state.
  • the NMR signal is measured in a state where the subject is stopped, so that the load problem such as acceleration applied to the subject such as a living body is solved.
  • an MRI image of the whole body of a person can be obtained by passing the main magnetic field through a table on which the subject is mounted.
  • This is an example of successful imaging of a moving subject, which is impossible with a normal MRI apparatus.
  • the moving speed for moving the table that is, the subject is slow (this moving speed is about several centimeters / second and is sufficiently slow compared with the NMR signal detection time). There was a limit to improvement.
  • the magnetic field gradient coil is composed of at least three independent coils, and each coil forms a gradient magnetic field in three axial directions of x, y, and z.
  • the three independent coils require at least six power cables for supplying power.
  • the magnetic field gradient coil is fixed to a second magnet that forms a static magnetic field for NMR, and repeatedly rotates in the same direction together with the second magnet. Therefore, if the power cable is simply connected to the magnetic field gradient coil, the power cable is twisted with the rotation of the magnetic field gradient coil.
  • various devices are required for the connecting power feeding unit to the magnetic field gradient coil, and as a result, the configuration of the connecting power feeding unit is complicated.
  • the present invention can acquire a good MRI image even when a subject or a magnet forming a main magnetic field (static magnetic field) is moved at a high speed, and the connection power feeding unit to the magnetic field gradient coil can be configured with a simple configuration.
  • An object of the present invention is to provide a measurement apparatus and a measurement method that can be completed and that can be easily adjusted for MRI imaging.
  • the object of the invention described above is basically achieved by making the magnetic field gradient coil relatively movable with respect to the magnet forming the static magnetic field (main magnetic field) for NMR. That is, the measuring device according to the present invention is disposed so as to be relatively movable with respect to a magnet that forms a static magnetic field in a predetermined region space and the magnet that forms the static magnetic field, and applies a gradient magnetic field to the static magnetic field.
  • a magnetic field gradient coil that radiates a high-frequency signal that excites a nuclear spin contained in the subject, and a resonance coil that receives a nuclear magnetic resonance signal generated by the nuclear spin.
  • the measurement apparatus irradiates the subject with the high-frequency signal through the resonance coil while the magnetic field gradient coil is relatively moving in the region space where the static magnetic field is formed, and the nucleus.
  • the magnetic resonance signal is received and acquired, or a magnetic resonance image of the subject is acquired based on the acquired nuclear magnetic resonance signal.
  • an MRI image can be acquired even when a subject or a magnet that forms a main magnetic field (static magnetic field) is moved at high speed, and a connection power feeding unit to a magnetic field gradient coil can be simply configured.
  • a connection power feeding unit to a magnetic field gradient coil can be simply configured.
  • adjustment for MRI imaging is facilitated.
  • mold MRI apparatus which concerns on the 2nd Embodiment of this invention The figure which showed the example of the cross-section from the side of the ESR / NMR fusion type
  • FIG. 1 is a diagram schematically showing an example of a cross-sectional structure from the side of the MRI apparatus 100 for whole body imaging of a subject according to the first embodiment of the present invention
  • FIG. 2 is a front view of the MRI apparatus 100
  • FIG. 3 is a diagram illustrating an example of a cross-sectional structure of FIG. 3
  • FIG. 3 is a diagram illustrating an example of a top view of the MRI apparatus 100.
  • the MRI apparatus 100 for subject whole-body imaging is a so-called open type MRI apparatus. Accordingly, the main magnetic field for NMR is formed in a space sandwiched between two magnets 11 that are spaced apart from each other and disposed substantially horizontally. Then, the subject 16 as the subject is inserted into the space where the main magnetic field is formed while being placed on the table 15.
  • the size of the main magnetic field space formed by the upper and lower two magnets 11 is sufficiently large to accommodate the entire table 15 and the subject 16.
  • the subject 16 is inserted into the main magnetic field space so that the body axis direction is along the longitudinal direction of the upper and lower two magnets 11.
  • one magnetic field gradient coil 13 is provided between each of the upper and lower two magnets 11 and the subject 16.
  • the two upper and lower magnetic field gradient coils 13 are fixedly connected to each other and configured to be movable back and forth along the longitudinal direction of the magnet 11 (the body axis direction of the subject 16).
  • the x direction, y direction, or A gradient magnetic field in the z direction is formed.
  • a mechanism for moving the upper and lower magnetic field gradient coils 13 along the longitudinal direction of the magnet 16 is, for example, as shown in FIGS. 2 and 3 on the floors on both sides of the lower magnet 11. This can be realized by two carriages 18 traveling on two tracks 19 provided along the longitudinal direction. In this case, the upper and lower two magnetic field gradient coils 13 are firmly supported by the two carriages 18 and move back and forth as the two carriages 18 travel.
  • a high-frequency signal (electromagnetic wave) that excites a nuclear spin contained in the subject (subject 16) is generated, and a resonance signal (magnetic) due to the nuclear spin is generated.
  • a resonance coil for receiving (resonance signal: NMR signal) is fixedly attached to the magnetic field gradient coil 13. That is, a resonance coil (not shown) moves together with the magnetic field gradient coil 13.
  • the MRI apparatus 100 has a control device (not shown).
  • the control device controls the movement of the carriage 18, that is, the magnetic field gradient coil 13, controls the current to flow through the magnetic field gradient coil 13, forms a gradient magnetic field, and resonates.
  • a high-frequency signal is output from a coil (not shown), and control for receiving an NMR signal is executed.
  • the control device first drives the carriage 18 and moves the magnetic field gradient coil 13 to one end of the main magnetic field space sandwiched between the upper and lower two magnets 11 (for example, at the end on the head side of the subject 16).
  • the control device commands the carriage 18 to travel at a constant speed to the other end of the main magnetic field, and based on a predetermined imaging sequence for the magnetic field gradient coil 13 and the resonance coil. It repeatedly commands the generation of high-frequency signals, the generation of gradient magnetic fields, and the reception of NMR signals.
  • control device repeatedly performs a predetermined imaging sequence while moving the magnetic field gradient coil 13 and the resonance coil in a uniform main magnetic field. Therefore, the control device can acquire the MRI image of the subject 16 sliced in the vicinity of the center position of the magnetic field gradient coil 13 every time the imaging sequence is executed.
  • the magnetic field gradient coil is integrally formed with the magnet that forms the main magnetic field, and the magnetic field gradient coil is structurally separated from the magnet that forms the main magnetic field.
  • a structure that moves independently is not assumed. This is because the magnetic field gradient coil plays a role of improving the uniformity of the magnetic field called shim adjustment.
  • shim adjustment plays a role of improving the uniformity of the magnetic field.
  • the magnetic field gradient coil moves relative to the magnet that forms the main magnetic field, even if shim adjustment is performed at a certain relative position to improve the uniformity of the magnetic field, if the relative position changes, the adjustment becomes invalid and readjustment is possible. It is necessary.
  • Faraday's law of electromagnetic induction an induced current is generated when the magnetic flux passing through the gradient coil changes, and the induced current becomes a noise source.
  • the gradient coil 13 is a separate structure from the magnet 11 that forms the main magnetic field, and moves back and forth along the longitudinal direction of the magnet 11. It is possible. That is, the MRI apparatus 100 according to the present embodiment has a structure in which the magnet 11 and the subject 16 are stationary and the gradient magnetic field coil 13 is moved instead, so that the subject 16 moves substantially (that is, moves relatively). It is possible to acquire MRI images of the whole body. In a preliminary experiment by the inventors of the present invention, an MRI image that is good enough to withstand practical use is obtained even when the gradient magnetic field coil 13 is moved at high speed.
  • the MRI image when the subject 16 is substantially moved at high speed can be obtained by moving the gradient magnetic field coil 13 at a high speed, the problem of the acceleration received by the subject 16 does not occur. . Furthermore, in this embodiment, since the gradient magnetic field coil 13 does not rotate, the problem that the power cable connected to the gradient magnetic field coil 13 twists does not arise.
  • the imaging parameters from the nuclear spin excitation to the NMR signal reception are adjusted so that the signal acquisition time at one time is several tens of milliseconds or less. Therefore, even if the gradient magnetic field coil 13 is moved at a very high speed of about several meters per second, for example, NMR signals can be acquired and an MRI image that can be practically used can be obtained.
  • the gradient magnetic field coil 13 that defines the center position of the FOV can be matched with the center of the position of the subject to be imaged, it is possible to image the area to be imaged at the center of the FOV with high sensitivity.
  • FIG. 4 schematically shows an example of a perspective view of an ESR / NMR fusion MRI apparatus 200 according to the second embodiment of the present invention
  • FIG. 5 shows an upper surface of the ESR / NMR fusion MRI apparatus 200
  • FIG. 6 is a diagram showing an example of a cross-sectional structure from the side of the ESR / NMR fusion MRI apparatus 200
  • FIG. 7 is a diagram showing an example of the ESR / NMR fusion MRI apparatus 200. It is the figure which showed the example of the position which arrange
  • the ESR / NMR fusion MRI apparatus 200 is assumed to be used for research of redox metabolism including active oxygen and free radicals (free radicals) in a small animal or a part of a human body.
  • the first magnet 21 separated into the upper and lower parts and the upper and lower parts are similarly separated into the upper and lower parts.
  • the second magnet 22 is disposed on an upper portion of a cylindrical base 30 having a substantially horizontal upper surface.
  • Each of the first magnet 21 and the second magnet 22 each having two upper and lower portions is provided with a support member (not shown) on a rotating column 32 disposed coaxially with the central axis of the columnar base 30. It is attached integrally through. Therefore, when the rotating column 32 rotates, the first magnet 21 and the second magnet 22 rotate together with the rotating column 32. Therefore, when a point included on the first magnet 21 and the second magnet 22 is projected onto the upper surface of the base 30, the projected point draws a circular locus.
  • a static magnetic field (main magnetic field) for NMR of 0.3 T (Tesla) is formed in the space between the two first magnets 21, and the two second magnets
  • a static magnetic field for ESR of 0.013 T is formed in the space between 22.
  • the planar shape of the second magnet 22 is a “C” shape having a width in order to secure a time for sufficiently exciting the electron spin.
  • the vertical distance between the two first magnets 21 is substantially the same as the vertical distance between the two second magnets 22.
  • the subject 26 is inserted in a state of being placed on the table 25 in a space sandwiched between the two first magnets 21 (or a space sandwiched between the two second magnets 22).
  • Magnetic field gradient coils 23 are respectively disposed between the magnets 22).
  • the table 25 on which the subject 26 is placed is supported by a support base 33, and the support base 33 is near the floor on which the base 30 is installed. Is installed.
  • the two upper and lower magnetic field gradient coils 23 are firmly connected to each other by a connecting member 29 (see FIG. 7), and are fixed to a part of the table 25 or the upper surface of the base 30 (not shown).
  • the subject 26 and the magnetic field gradient coil 23 remain stationary. That is, in this embodiment, when the rotating column 32 rotates, the space in which the static magnetic field for NMR is formed and the space in which the static magnetic field for ESR is formed cross the subject 26 and the magnetic field gradient coil 23 alternately. become. Conversely, the subject 26 and the magnetic field gradient coil 23 move (relatively move) one after another in the space where the static magnetic field for NMR is formed and the space where the static magnetic field for ESR is formed. .
  • the NMR resonance coil 27 and the ESR resonance coil 28 are fixed to the magnetic field gradient coil 23 or the connecting member 29. Therefore, the NMR resonance coil 27 and the ESR resonance coil 28 are rotated. Even if the pillar 32 rotates, it is stationary.
  • the resonance frequency of the resonance coil 28 for ESR is 370 MHz when the static magnetic field for ESR is about 0.013 T
  • the resonance frequency of the resonance coil 27 for NMR is 0.3 T for the static magnetic field for NMR. When it is about, it is about 12 MHz.
  • the table 25 on which the subject 26 is placed is supported by the support base 33 so as to be movable in the diameter direction of the base 30. Therefore, the user can place the subject 26 on the table 25 in a state where the table 25 is pulled out from the space sandwiched between the first magnet 21 or the second magnet 22. The placed subject 26 can be inserted into a space sandwiched between the first magnet 21 or the second magnet 22.
  • the ESR / NMR fusion MRI apparatus 200 configured as described above is used as the OMRI (overhauser effect MRI) apparatus described above.
  • OMRI overhauser effect MRI
  • the electron spin of unpaired electrons contained in the subject 26 moves while the subject 26 is relatively moving in the static magnetic field for ESR formed by the second magnet 22. Excited by a high frequency signal (electromagnetic wave) irradiated from. At this time, the nuclear spin including the unpaired electron is excited by the Overhauser effect.
  • a high-frequency signal electromagnet resonance
  • the specimen 26 is irradiated, nuclear spins are excited, a gradient magnetic field is appropriately applied by the magnetic field gradient coil 23, and an NMR signal from the subject 26 is received by the NMR resonance coil 27.
  • the NMR signal received in this way includes a resonance signal from a nuclear spin excited by the Overhauser effect. Therefore, the MRI image generated from the NMR signal includes nuclear spins excited by the Overhauser effect, that is, distribution information of electron spins of unpaired electrons. That is, an OMRI image is obtained.
  • the ESR / NMR fusion MRI apparatus 200 has a control device (not shown) as in the case of the first embodiment. Then, the control device controls the rotation of the rotating column 32, that is, the first magnet 21 and the second magnet 22, detects the rotational position of the first magnet 21, and sends a current to the magnetic field gradient coil 13 to tilt the magnetic field gradient coil 13. Control for forming a magnetic field, detection of the rotational position of the first magnet 21 or the second magnet, output of a high frequency signal from the NMR resonance coil 27 or ESR resonance coil 28, and control for receiving an NMR signal, etc. .
  • the ESR / NMR fusion MRI apparatus 200 can also be used as a normal MRI apparatus. In that case, it is only necessary to stop the rotation of the first magnet 21 and the second magnet 22 in a state where the subject 26 is positioned at the approximate center of the static magnetic field for NMR formed by the first magnet 21. Good. At this time, an MRI image in a state of being stationary with respect to the first magnet 21 of the subject 26 can be obtained.
  • a normal MRI image can be obtained even when the first magnet 21 and the second magnet 22 are rotating. That is, if the high frequency signal is not irradiated from the ESR resonance coil 28 when the subject 26 is relatively moving in the ESR static magnetic field formed by the second magnet 22, the Overhauser effect is obtained. Since this does not occur, a normal MRI image can be obtained while the subject 26 is relatively moving in the static magnetic field for NMR formed by the first magnet 21.
  • an MRI image (OMRI image) of the subject 26 including electron spin distribution information of unpaired electrons and an MRI image of the normal subject 26 are taken.
  • an MRI image of the subject 26 including electron spin distribution information of unpaired electrons can be obtained.
  • an image obtained by superimposing the MRI image (ESRI image) of the subject 26 including only the distribution information of the electron spins of unpaired electrons obtained as described above on the normal MRI image of the same subject 26 is displayed.
  • the distribution information of electron spins of unpaired electrons is displayed on a normal MRI image that is also a morphological image of the subject 26.
  • the electron spin distribution information of the unpaired electrons can be continuously obtained. It is possible to visualize the time transition of the spin distribution. Since the time transition of the electron spin distribution of the unpaired electrons can be said to represent the dynamics of active oxygen and free radicals (free radicals), this deepens the understanding of the redox reaction.
  • the ESR / NMR fusion MRI apparatus 200 has almost the same function as the OMRI (fusion MRI) disclosed in Patent Document 2.
  • the magnetic field gradient coil 23 since the magnetic field gradient coil 23 has a separate structure separated from the first magnet 21, even if the first magnet 21 and the second magnet 22 rotate due to the rotation of the rotating column 32.
  • the magnetic field gradient coil 23 does not rotate and is stationary with the subject 26.
  • the connection power supply unit of the power cable to the magnetic field gradient coil 23 can be simply configured. That is, according to the present embodiment, the problem that occurs in OMRI disclosed in Patent Document 2 is solved.
  • the separate structure in which the magnetic field gradient coil 23 is separated from the first magnet 21 cannot be derived from the conventional common sense. This is because, as described above, it seems difficult to ensure the uniformity of the static magnetic field for NMR formed by the first magnet 21.
  • the inventors of the present invention made a prototype of a separate structure in which the magnetic field gradient coil 23 was separated from the first magnet 21 without being caught by the above-mentioned common sense idea. Good tolerable MRI and OMRI images were obtained.
  • the relative speed with respect to the stationary subject 26 when the first magnet 21 rotates is 1 to 2 m / sec. This is because redox metabolism research requires obtaining time-sequential images of the electron spin intensity distribution (ie, the distribution of active oxygen and free radicals) at as short an interval as possible (for example, at intervals of 1 to 2 seconds). Because it is.
  • the relative speed with respect to the subject 26 when the first magnet 21 rotates is 1 to 2 m / second, and the length of the uniform region of the static magnetic field for NMR formed by the first magnet 21 is 10 cm.
  • the imaging sequence from nuclear spin excitation to MRI signal acquisition must be completed within tens of milliseconds.
  • the imaging sequence takes too much time in the conventional spin echo method or gradient echo method, and the subject 26 comes out of the uniform region of the static magnetic field for NMR before the imaging sequence is completed.
  • FIG. 8 is a diagram showing an MRI image acquired by the ESR / NMR fusion MRI apparatus 200 according to the second embodiment of the present invention compared with an MRI image acquired by a conventional MRI apparatus.
  • the image on the left is a picture of a pig foot used as the subject 26.
  • the central image is an MRI image of a pig foot acquired by a general MRI apparatus having a static magnetic field for NMR of 1.5T.
  • the right image is obtained by the ESR / NMR fusion MRI apparatus 200 according to the present embodiment (the intensity of the static magnetic field for NMR: 0.3 T, the relative movement speed of the subject 26 and the magnetic field gradient coil 23: 1 m / second). It is the acquired MRI image of a pig leg.
  • the ESR / NMR fusion MRI apparatus 200 can obtain an MRI image that is generally good enough to withstand practical use.
  • the subject can be imaged at the center of the FOV without particularly adjusting the imaging timing.
  • the ESR / NMR fusion MRI apparatus 200 does not acquire the MRI image or the OMRI image of the subject 26, the DNP (Dynamic It is clear that it can be used as a measuring device for acquiring and analyzing NMR signals including the “Nuclear-Polarization” effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Vascular Medicine (AREA)
  • Signal Processing (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

MRI装置(100)は、所定の静磁場を形成する磁石(11)と、その静磁場に傾斜磁場を付与する磁場勾配コイル(13)と、を備え、磁場勾配コイル(13)は、磁石(11)から切り離された構造体で、磁石(11)に対して相対移動可能に構成されている。そして、MRI装置(100)は、磁場勾配コイル(13)が磁石(11)に対して相対移動しているときに被験者(16)のMRI画像を取得することを特徴とする。

Description

計測装置及び計測方法
 本発明は、核磁気共鳴(NMR:Nuclear Magnetic Resonance)信号を取得する、又は、さらに磁気共鳴イメージング(MRI:Magnetic Resonance Imaging)画像を取得する計測装置及び計測方法に関する。
 磁気共鳴イメージング装置(以下、MRI装置という)は、核磁気共鳴現象を利用して被検体における原子核スピンの密度分布、緩和時間分布などを計測し、その計測データに基づき被検体の断面の画像を生成し、表示する装置である。
 一般に、被検体の中に含まれる原子核スピンは、均一な静磁場(主磁場)の中では、その主磁場の強さによって定まる周波数(ラーモア周波数)で主磁場の方向を軸として歳差運動を行う。このような状態の原子核スピンに、ラーモア周波数に等しい周波数の高周波の電磁波(RFパルス)が照射されると、原子核スピンは励起され、高いエネルギー状態に遷移する(核磁気共鳴現象)。続いて、この電磁波の照射が打ち切られると、原子核スピンは、それぞれの状態に応じた時定数で、原子核スピンはもとの低いエネルギー状態に戻る。このとき原子核から核磁気共鳴信号が放出される。このNMR信号は、その周波数に同調した高周波受信コイルで受信される。なお、このNMR信号は、エコー信号とも呼ばれる。
 さらに、MRI装置では、主磁場空間に3軸の傾斜磁場が印加される。この傾斜磁場の印加は、検出されるNMR信号に位置情報を付加する目的で行われ、その傾斜の方向は、スライス方向、エンコード方向、リードアウト方向に対応している。その結果、MRI装置は、受信したエコー信号列を2次元フーリエ分析することにより、被検体内部の2次元画像を生成することが可能になる。
 ところで、MRI装置は、各種医療用の診断装置として盛んに用いられるようになったばかりでなく、さらに新たな展開が図られようとしている。従来の多くのMRI装置は、静止した状態の被検体のMRI画像を取得するものであったが、例えば、非特許文献1には、TimCT(Continuous Table move)と称する技術で、移動中の被検体のMRI画像を取得する例が示されている。そのTimCT技術によれば、被検体を載置したテーブルをMRI装置の主磁場の中を連続して移動させることにより、患者などの被検体の頭から足までの全身のMRI画像を得ることができるという。
 また、特許文献1には、被検体のESR(Electron Spin Resonance)/NMR融合型画像を取得することを特徴とする融合型MRI装置の例が示されている。特許文献1によれば、その融合型MRI装置は、ESR用の静磁場を形成する第1の磁石、NMR用の静磁場を形成する第2の磁石、及び、前記のESR用の静磁場とNMR用の静磁場との間で被検体を移動させる移動手段を備えている。そして、ESR用の静磁場の中で被検体に含まれる電子スピンを励起したうえで、その被検体をNMR用の静磁場の中へ移動させ、そのMRI画像を取得する。
 このような融合型MRI装置では、ESR用の静磁場で励起された電子スピンの大きさをNMR用の静磁場では、いわゆるオーバーハウザー効果によって大きく増幅されたNMR信号として計測することができる。従って、こうして得られたNMR信号に基づき生成された被検体のMRI画像から、NMR用の静磁場だけでの通常のNMR信号に基づき生成された被検体のMRI画像を差し引くことにより、高感度、高解像度の電子スピン磁気共鳴画像(ESRI)を得ることができる。
 さらに、このESRI画像を通常のNMRに基づくMRI画像に重ね合わせて生成したESR/NMR融合型画像を表示すれば、電子スピンの強度分布などが被検体の形態画像の中で可視化されたものになる。電子スピンは、生体の中では、その多くが活性酸素など遊離基(フリーラジカル)の不対電子に由来するものであるため、このような融合型MRI装置は、多くの生理現象や疾患成因などに密接に関与する遊離基を含むレドックス代謝の状況の可視化に優れた効果を奏する。なお、このような融合型MRI装置は、OMRI(オーバーハウザー効果MRI)装置、PEDRI(Proton Electron Double Resonance Imaging)装置、ReMI(Redox Molecular Imaging)装置などと呼ばれている。
 特許文献1に開示された融合型MRI装置では、電子スピンの強度分布(すなわち、遊離基の分布など)の時間推移を容易に取得可能なように、被検体を搭載した前記移動手段は、ESR用の静磁場とNMR用の静磁場との間で繰り返して反復移動可能なように構成されている。しかしながら、この融合型MRI装置では、被検体が停止してからNMR信号の計測が行われるため、移動手段の移動、停止時には大きな加速度を生じる。このとき、被検体の生体などには大きな負荷がかかる。
 特許文献2には、ESR用の静磁場を形成する第1の磁石及びNMR用の静磁場を形成する第2の磁石を所定の円軌道に沿って回転移動させることにより、被検体を停止させたままの状態で、被検体がESR用の静磁場及びNMR用の静磁場の中を繰り返して通過(相対通過)できるように構成された融合型MRI装置の例が開示されている。この融合型MRI装置では、被検体が停止したままの状態でNMR信号が計測されるので、生体などの被検体にかかる加速度などの負荷の問題は解決される。
特開2006-204551号公報 特表2011-527222号公報
諸井貴,"Step up MRI 2010-技術開発最前線:MTI-TimCT-Timを基礎とした最先端撮像技術",[online],2010年9月,[平成26年5月23日検索],インターネット<URL:http://www.innervision.co.jp/suite/siemens/technote/100966/>
 非特許文献1に示されたTimCT技術を用いたMRI装置では、その主磁場の中を、被検体を搭載したテーブルを通過させることにより、例えば、人の全身のMRI画像を得ることができる。これは、通常のMRI装置では不可能とされる移動中の被検体の撮像に成功している事例である。しかしながら、そのMRI装置では、テーブルすなわち被検体を移動させる移動速度が遅いため(この移動速度は、数cm/秒程度であり、NMR信号検出時間に比して十分に遅い)、例えば撮像速度の向上に限界があった。
 ここで、撮像時間のさらなる短縮のために被検体の移動速度を速くした場合、人に与える加速度の問題などさまざまな問題の解決をしなければならない。例えば、移動速度が速い場合には、撮像対象部位がNMRの主磁場の均一な領域を通過する時間が短くなるので、原子核スピンの励起からNMR信号の受信に到るまでの撮像シーケンス時間内に、磁石の磁場均一度の高い領域を通り過ぎてしまうことも想定される。そのような場合には、磁気共鳴信号が乱れ、良好なMRI画像の取得ができなくなることが考えられる。
 また、特許文献2に示された融合型MRIでは、特許文献1に示された融合型MRIにおける被検体が受ける加速度の問題は解決されているが、代わりに、傾斜磁場を生成する磁場勾配コイルへの接続給電部の構成が複雑になるという問題と、傾斜磁場コイルと被検体の中心位置を撮像シーケンス中で適切に合わせなければ画像のずれが生じるという問題がある。
 磁場勾配コイルは、少なくとも3つの独立したコイルからなり、それぞれのコイルにより、x,y,zの3軸方向の傾斜磁場が形成される。そして、その3つの独立したコイルには、給電するための電源ケーブルが少なくとも6本必要となる。特許文献2に示された融合型MRIでは、磁場勾配コイルは、NMR用の静磁場を形成する第2の磁石に固定され、第2の磁石とともに繰り返し同じ方向に回転移動する。従って、電源ケーブルを磁場勾配コイルへ単純に接続すると、電源ケーブルは、磁場勾配コイルの回転とともにねじれてしまう。この電源ケーブルのねじれを防止するためには、磁場勾配コイルへの接続給電部にさまざまな工夫が必要となり、その結果、接続給電部の構成が複雑になる。
 そこで、本発明は、被検体又は主磁場(静磁場)を形成する磁石を高速に移動させても良好なMRI画像を取得することができ、磁場勾配コイルへの接続給電部を簡単な構成で済ませることができ、また、MRI撮像のための調整が容易な計測装置及び計測方法を提供すること、を目的とする。
 以上の発明の目的は、基本的には、NMR用の静磁場(主磁場)を形成する磁石に対して、磁場勾配コイルを相対移動可能な構成にすることによって達成される。すなわち、本発明に係る計測装置は、所定の領域空間に静磁場を形成する磁石と、前記静磁場を形成する磁石に対して相対移動可能に配設されて、前記静磁場に傾斜磁場を付与する磁場勾配コイルと、被検体に含まれる原子核スピンを励起させる高周波信号を照射するとともに、前記原子核スピンによる核磁気共鳴信号を受信する共振コイルと、を備えることを特徴とする。
 また、前記計測装置は、前記静磁場が形成された領域空間を前記磁場勾配コイルが相対移動している間に、前記共振コイルを介して前記被検体に前記高周波信号を照射するとともに、前記核磁気共鳴信号を受信し、取得すること、又は、前記取得した核磁気共鳴信号に基づき、前記被検体の磁気共鳴画像を取得することを特徴とする。
 本発明によれば、被検体又は主磁場(静磁場)を形成する磁石を高速に移動させてもMRI画像を取得することができ、磁場勾配コイルへの接続給電部を簡単な構成で済ませることができ、また、MRI撮像のための調整が容易になる。なお、発明の構成とその効果との関係については、実施形態の説明の中で詳しく論じる。
本発明の第1の実施形態に係る被験者全身撮像用のMRI装置の側方からの断面構造の例を模式的に示した図。 本発明の第1の実施形態に係る被験者全身撮像用のMRI装置の前方からの断面構造の例を示した図。 本発明の第1の実施形態に係る被験者全身撮像用のMRI装置の上面図の例を示した図。 本発明の第2の実施形態に係るESR/NMR融合型MRI装置の斜視図の例を模式的に示した図。 本発明の第2の実施形態に係るESR/NMR融合型MRI装置の上面図の例を示した図。 本発明の第2の実施形態に係るESR/NMR融合型MRI装置の側方からの断面構造の例を示した図。 本発明の第2の実施形態に係るESR/NMR融合型MRI装置において、磁場勾配コイルを配置する位置の例を示した図。 本発明の第2の実施形態に係るESR/NMR融合型MRI装置によって取得されたMRI画像を、従来のMRI装置によって取得されたMRI画像と比較して示した図。
 以下、本発明の実施形態について、図面を参照して詳細に説明する。
<第1の実施形態>
 図1は、本発明の第1の実施形態に係る被験者全身撮像用のMRI装置100の側方からの断面構造の例を模式的に示した図、図2は、同MRI装置100の前方からの断面構造の例を示した図、図3は、同MRI装置100の上面図の例を示した図である。
 図1、図2及び図3に示すように、第1の実施形態に係る被験者全身撮像用のMRI装置100は、いわゆるオープン型のMRI装置である。従って、NMR用の主磁場は、互いに上下に離間して略水平に配設された2つの磁石11で挟まれた空間に形成される。そして、被検体である被験者16は、テーブル15に載置された状態で、その主磁場が形成された空間に挿入される。
 ここで、上下2つの磁石11によって形成される主磁場空間の大きさは、テーブル15及び被験者16の全体を収容可能な程度十分に大きいものとする。そして、被験者16は、その体軸方向が上下2つの磁石11の長尺方向に沿うように主磁場空間の中に挿入される。
 また、上下2つの磁石11と被験者16とのそれぞれの間には、磁場勾配コイル13がそれぞれ1つずつ配設される。そして、この上下2つの磁場勾配コイル13は、互いに固定して連結され、磁石11の長尺方向(被験者16の体軸方向)に沿って前後に移動可能に構成される。そして、上下2つ磁場勾配コイル13に挟まれた空間(被験者16が挿入される空間)には、原子核スピンの励起からNMR信号受信までの撮像シーケンスの中で、適宜、x方向、y方向又はz方向の傾斜磁場が形成される。
 ここで、上下2つの磁場勾配コイル13を磁石16の長尺方向に沿って移動させる機構は、例えば、図2及び図3に示すように、下部の磁石11の両脇の床などに、その長尺方向に沿って設けられた2つの軌道19上を走行する2つの台車18によって実現することができる。この場合、上下2つの磁場勾配コイル13は、2つの台車18によって強固に支持されるとともに、2つの台車18の走行とともに前後に移動する。
 なお、図1~図3のいずれにも図示されていないが、被検体(被験者16)の中に含まれる原子核スピンを励起させる高周波信号(電磁波)を発生するとともに、原子核スピンによる共鳴信号(磁気共鳴信号:NMR信号)を受信するための共振コイルが磁場勾配コイル13に固定して取り付けられている。すなわち、図示しない共振コイルは、磁場勾配コイル13と一体となって移動する。
 続いて、以上のように構成された被験者全身撮像用のMRI装置100を用いて、被験者16の頭から足先までの全身のMRI画像を取得する手順について説明する。ここで、MRI装置100は、図示しない制御装置を有し、その制御装置は、台車18すなわち磁場勾配コイル13を移動させる制御、磁場勾配コイル13に電流を流し、傾斜磁場を形成する制御、共振コイル(図示省略)から高周波信号を出力するとともに、NMR信号を受信する制御などを実行する。
 最初に、テーブル15に載置された被験者16が上下2つの磁石11に挟まれた主磁場空間に挿入される。その後、テーブル15及び被験者16が静止した状態で被験者16の全身のMRI撮像が行われる。このとき、制御装置は、まず、台車18を駆動して、磁場勾配コイル13を上下2つの磁石11に挟まれた主磁場空間の一方の端部(例えば、被験者16の頭側の端部に寄せる。次に、制御装置は、台車18に対し、前記主磁場の他方の端部までの一定速度での走行を指令するとともに、磁場勾配コイル13及び共振コイルに対し、所定の撮像シーケンスに基づく高周波信号の発生、傾斜磁場の発生、NMR信号の受信を繰り返し指令する。
 すなわち、制御装置は、磁場勾配コイル13及び共振コイルを均一な主磁場の中で移動させながら所定の撮像シーケンスを繰り返し実施する。従って、制御装置は、その撮像シーケンスが実施されるたびに、磁場勾配コイル13の中心位置の近傍でスライスされた被験者16のMRI画像を取得することができる。
 ところで、従来の一般的なMRI装置では、磁場勾配コイルは、主磁場を形成する磁石と一体的に構成されており、磁場勾配コイルが主磁場を形成する磁石から構造的に切り離され、その磁石に対して独立に移動するような構造は全く想定されていなかった。これは磁場勾配コイルがシム調整と呼ばれる磁場の均一度を向上させる役割も担っているからである。つまり、磁場勾配コイルが主磁場を形成する磁石に対して移動すると、ある相対位置でシム調整をして磁場の均一度を向上させても、相対位置が変われば調整が無効になり再調整が必要になるからである。さらに、ファラデーの電磁誘導の法則によれば、傾斜磁場コイルを貫く磁束が変化すると誘導電流が生じ、その誘導電流がノイズ源となってしまうからでもある。
 以上の従来の常識的な考えに対し、本実施形態では、勾配磁場コイル13を、主磁場を形成する磁石11とは別体の構造体とし、磁石11の長尺方向に沿って前後に移動可能なものとしている。すなわち、本実施形態に係るMRI装置100は、磁石11及び被験者16を静止させ、代わりに勾配磁場コイル13を移動させる構造とすることにより、実質的に移動する(つまり、相対移動する)被験者16の全身のMRI画像を取得することが可能な構成となっている。そして、本発明の発明者らの予備的な実験では、勾配磁場コイル13を高速移動させても実用に耐え得る程度に良好なMRI画像が得られている。
 また、本実施形態では、勾配磁場コイル13を高速移動させることにより、実質的に被験者16を高速移動させたときのMRI画像の取得が可能になるので、被験者16が受ける加速度の問題も生じない。さらに、本実施形態では、勾配磁場コイル13は回転しないので、勾配磁場コイル13に接続する電源ケーブルがねじれる問題も生じない。
 また、本実施形態では、原子核スピンの励起からNMR信号受信までの撮像パラメータを調整し、一度の信号取得時間が数10ミリ秒以下になるようにしている。従って、勾配磁場コイル13を、例えば、毎秒数m程度の非常に速い速度で移動させたとしても、NMR信号取得は可能であり、実用に耐えうるMRI画像を得ることが可能になった。
 さらに、FOVの中心位置を定義する傾斜磁場コイル13が被検体の撮像したい箇所位置の中心と一致させることができるため、感度の高いFOVの中心で、撮像したい箇所を撮像することが出来る。
<第2の実施形態>
 図4は、本発明の第2の実施形態に係るESR/NMR融合型MRI装置200の斜視図の例を模式的に示した図、図5は、同ESR/NMR融合型MRI装置200の上面図の例を示した図、図6は、同ESR/NMR融合型MRI装置200の側方からの断面構造の例を示した図、図7は、同ESR/NMR融合型MRI装置200において、磁場勾配コイルを配置する位置の例を示した図である。なお、このESR/NMR融合型MRI装置200は、小動物や人体の一部などにおける活性酸素や遊離基(フリーラジカル)を含むレドックス代謝の研究用に用いられることを想定している。
 図4~図7に示すように、第2の実施形態に係るESR/NMR融合型MRI装置200では、上下2つに分離された第1の磁石21、及び、同様に上下2つに分離された第2の磁石22は、略水平な上面を有する円柱形状の基台30の上部に配設される。これら上下2つずつの第1の磁石21及び第2の磁石22は、いずれも、円柱形状の基台30の中心軸と同軸上に配設された回転柱32に、支持部材(図示省略)を介して、一体的に取り付けられている。従って、回転柱32が回転すると、第1の磁石21及び第2の磁石22は、回転柱32と一体となって回転する。そのため、第1の磁石21及び第2の磁石22上に含まれる点を基台30上面へ投影すると、その投影点は円の軌跡を描く。
 なお、本実施形態では、2つの第1の磁石21に挟まれた空間には、例えば、0.3T(テスラ)のNMR用の静磁場(主磁場)が形成され、2つの第2の磁石22に挟まれた空間には、例えば、0.013TのESR用の静磁場が形成されるとしている。一般的に、NMR用の静磁場としては大きな磁場強度が求められるので、第1の磁石21は、どうしても大きく重くなるため、回転柱32に強固に支持される。また、ESR用の静磁場では、電子スピンを十分に励起する時間を確保するため、第2の磁石22の平面形状は、幅を持った「C」字形状となっている。
 また、図7に示されているように、2つの第1の磁石21の上下の離間距離は、2つの第2の磁石22の上下の離間距離と略同じである。そして、被検体26は、2つの第1の磁石21で挟まれた空間(又は、2つの第2の磁石22で挟まれた空間でもよい)に、テーブル25に載置された状態で挿入される。このとき、被検体26の上部で上側の第1の磁石21(又は、第2の磁石22)との間、及び、被検体26の下部で下側の第1の磁石21(又は、第2の磁石22)との間には、それぞれ磁場勾配コイル23が配設されている。
 また、図4及び図6に示されているように、被検体26を載置したテーブル25は、支持台33によって支持され、さらに、支持台33は、基台30が据え付けられた床の近傍に据え付けられている。また、上下2つの磁場勾配コイル23は、連結部材29により互いに強固に連結されるとともに(図7参照)、テーブル25の一部又は基台30の上面に固定されている(図示省略)。
 従って、本実施形態では、回転柱32が回転し、第1の磁石21及び第2の磁石22が回転しても、被検体26及び磁場勾配コイル23は、静止したままの状態にある。すなわち、本実施形態では、回転柱32が回転したときには、NMR用の静磁場が形成された空間及びESR用の静磁場が形成された空間が交互に被検体26及び磁場勾配コイル23を横切ることになる。逆にいえば、被検体26及び磁場勾配コイル23は、NMR用の静磁場が形成された空間及びESR用の静磁場が形成された空間の中を次々に移動(相対移動)することになる。
 さらに、本実施形態では、NMR用共振コイル27及びESR用共振コイル28は、磁場勾配コイル23又は連結部材29に固定されており、従って、NMR用共振コイル27及びESR用共振コイル28は、回転柱32が回転しても静止している。ここで、ESR用共振コイル28の共振周波数は、ESR用の静磁場が0.013Tの程度のとき370MHzであり、NMR用共振コイル27の共振周波数は、NMR用の静磁場が0.3Tの程度のとき12MHz程度である。
 また、本実施形態では、ユーザの利便性を図るために、被検体26を載置するテーブル25は、基台30の直径方向に移動可能に支持台33に支持されている。従って、ユーザは、テーブル25が第1の磁石21又は第2の磁石22で挟まれた空間から引き出された状態で被検体26をテーブル25上に載置することができ、そのテーブル25に載置された被検体26を第1の磁石21又は第2の磁石22で挟まれた空間の中へ挿入することができる。
 以上のように構成されたESR/NMR融合型MRI装置200は、前記したOMRI(オーバーハウザー効果MRI)装置として用いられる。すなわち、被検体26に含まれる不対電子の電子スピンは、被検体26が第2の磁石22によって形成されたESR用の静磁場の中を相対移動している間に、ESR用共振コイル28から照射される高周波信号(電磁波)によって励起される。このとき、その不対電子を含む原子核スピンは、オーバーハウザー効果によって励起される。次に、被検体26が第1の磁石21によって形成されたNMR用の静磁場の中を移動(相対移動)すると、所定のNMR撮像シーケンスに従ってNMR用共振コイル27から高周波信号(電磁波)が被検体26に照射され、原子核スピンが励起されるとともに、適宜、磁場勾配コイル23によって傾斜磁場が印加され、NMR用共振コイル27によって被検体26からのNMR信号が受信される。
 こうして受信されるNMR信号には、オーバーハウザー効果によって励起された原子核スピンからの共鳴信号も含まれる。従って、そのNMR信号から生成されるMRI画像には、オーバーハウザー効果によって励起された原子核スピン、すなわち、不対電子の電子スピンの分布情報などが含まれることになる。すなわち、OMRI画像が得られる。
 なお、ESR/NMR融合型MRI装置200は、第1の実施形態の場合と同様に、図示しない制御装置を有している。そして、その制御装置は、回転柱32すなわち第1の磁石21及び第2の磁石22を回転させる制御、第1の磁石21の回転位置を検知して、磁場勾配コイル13に電流を流し、傾斜磁場を形成する制御、第1の磁石21又は第2の磁石の回転位置を検知して、NMR共振コイル27又はESR共振コイル28から高周波信号を出力するとともに、NMR信号を受信する制御などを行う。
 本実施形態に係るESR/NMR融合型MRI装置200は、通常のMRI装置として利用こともできる。その場合には、第1の磁石21及び第2の磁石22の回転を、被検体26が第1の磁石21によって形成されるNMR用の静磁場の略中心に位置する状態で停止さえすればよい。このときには、被検体26の第1の磁石21に対して静止した状態でのMRI画像を得ることができる。
 また、本実施形態に係るESR/NMR融合型MRI装置200では、第1の磁石21及び第2の磁石22が回転している状態でも、通常いうようなMRI画像を得ることができる。すなわち、被検体26が第2の磁石22によって形成されたESR用の静磁場の中を相対移動しているときにESR用共振コイル28から高周波信号を照射しないようにすれば、オーバーハウザー効果が生じないので、被検体26が第1の磁石21によって形成されたNMR用の静磁場の中を相対移動している間に通常のMRI画像を得ることができる。
 さらに、本実施形態に係るESR/NMR融合型MRI装置200では、不対電子の電子スピンの分布情報などを含む被検体26のMRI画像(OMRI画像)と通常の被検体26のMRI画像をと比較することにより、不対電子の電子スピンの分布情報を含む被検体26のMRI画像を得ることができる。
 さらに、以上のようにして得られた不対電子の電子スピンの分布情報だけを含む被検体26のMRI画像(ESRI画像)を同じ被検体26の通常のMRI画像に重ね合わせて表示した画像は、被検体26の形態画像でもある通常のMRI画像上に不対電子の電子スピンの分布情報が表されたものとなる。しかも、本実施形態では、第1の磁石21及び第2の磁石22を継続して回転させていれば、不対電子の電子スピンの分布情報が継続して得られるので、不対電子の電子スピン分布の時間推移の可視化が可能となる。この不対電子の電子スピン分布の時間推移は、活性酸素や遊離基(フリーラジカル)の動態を表したものといえるため、これにより、レドックス反応の理解が深められる。
 以上のような本実施形態に係るESR/NMR融合型MRI装置200は、特許文献2に開示されているOMRI(融合型MRI)とほとんど同様の機能を有している。しかしながら、本実施形態では、磁場勾配コイル23が第1の磁石21から切り離された別体構造であるため、回転柱32の回転によって第1の磁石21及び第2の磁石22が回転しても、磁場勾配コイル23は、回転することはなく、被検体26とともに静止している。
 従って、本実施形態では、磁場勾配コイル23が回転しないので、磁場勾配コイル23へ接続する電源ケーブルがねじれることはない。そのため、磁場勾配コイル23への電源ケーブルの接続給電部は、簡単な構成で済ませることができる。すなわち、本実施形態により、特許文献2に開示されたOMRIにおける生じる問題が解決される。
 また、第1の実施形態の説明でも触れたように、磁場勾配コイル23が第1の磁石21から切り離された別体構造は、従来の常識的な考えからは導出できるものではない。その理由は、前記したように、第1の磁石21により形成されるNMR用の静磁場の均一性の確保が困難と思われるからである。しかしながら、本発明の発明者らは、以上の常識的な考えに捉われずに、磁場勾配コイル23を第1の磁石21から切り離した別体の構造体としたものを試作したところ、実用に耐えうる良好なMRI画像及びOMRI画像が得られた。
 また、本実施形態では、第1の磁石21が回転するときの静止した被検体26に対する相対速度は、1~2m/秒である。これは、レドックス代謝の研究では、可能な限り短い間隔(例えば、1~2秒間隔)で電子スピンの強度分布(すなわち、活性酸素や遊離基の分布)の時間推移画像を取得することが求められているからである。
 ここで、第1の磁石21が回転するときの被検体26に対する相対速度を1~2m/秒とし、第1の磁石21によって形成されるNMR用静磁場の均一領域の長さが10cmとすると、原子核スピンの励起からMRI信号取得までの撮像シーケンスは、数10ミリ秒のうちに完了しなければならない。撮像シーケンスが従来のスピンエコー法やグラディエントエコー法などでは時間が掛かり過ぎ、その撮像シーケンスが完了する前に被検体26は、NMR用静磁場の均一領域から出てしまう。
 図8は、本発明の第2の実施形態に係るESR/NMR融合型MRI装置200によって取得されたMRI画像を、従来のMRI装置によって取得されたMRI画像と比較して示した図である。図8において、左側の画像は、被検体26として用いた豚足の写真である。また、中央の画像は、NMR用静磁場が1.5Tの一般的なMRI装置によって取得された豚足のMRI画像である。また、右側の画像は、本実施形態に係るESR/NMR融合型MRI装置200(NMR用静磁場の強度:0.3T、被検体26及び磁場勾配コイル23の相対移動速度:1m/秒)によって取得された豚足のMRI画像である。
 図8からわかるように、本実施形態に係るESR/NMR融合型MRI装置200でも、概ね実用に耐えうる程度に良好なMRI画像が得られていることが分かる。
 以上の通り、第2の実施形態に係るESR/NMR融合型MRI装置200では、第1の磁石22を、静止した被検体26及び磁場勾配コイル23に対して高速で移動させても、被検体26の良好なMRI画像を取得することができる。また、磁場勾配コイル23が静止しているため、磁場勾配コイル23への接続給電部を簡単な構成で済ませることができる。また、撮像シーケンス中で、磁場勾配コイル23と被検体26との相対位置が変化しないので、とくに撮像タイミングを調整する必要なしに、FOVの中心で被検体を撮像することが出来るようになる。
 なお、以上に説明した第2の実施形態に係るESR/NMR融合型MRI装置200が被検体26のMRI画像又はOMRI画像を取得せずとも、単に、NMR信号又はオーバーハウザー効果などのDNP(Dynamic Nuclear Polarization)効果を含んだNMR信号を取得し、分析する計測装置として用いることが可能なことは明らかである。
  11  磁石
  13  磁場勾配コイル
  15  テーブル
  16  被験者(被検体)
  18  台車
  19  軌道
  100 MRI装置
  200 ESR/NMR融合型MRI装置(MRI装置)
  21  第1の磁石
  22  第2の磁石
  23  磁場勾配コイル
  25  テーブル
  26  被検体
  27  NMR用共振コイル
  28  ESR用共振コイル
  29  連結部材
  30  基台
  32  回転柱
  33  支持台
  100 MRI装置
  200 ESR/NMR融合型MRI装置

Claims (11)

  1.  所定の領域空間に静磁場を形成する磁石と、
     前記静磁場を形成する磁石に対して相対移動可能に配設されて、前記静磁場に傾斜磁場を付与する磁場勾配コイルと、
     被検体に含まれる原子核スピンを励起させる高周波信号を照射するとともに、前記原子核スピンによる核磁気共鳴信号を受信する共振コイルと、
     を備えること
     を特徴とする計測装置。
  2.  請求項1に記載の計測装置において、
     前記静磁場が形成された領域空間を前記磁場勾配コイルが相対移動している間に、前記共振コイルを介して前記被検体に前記高周波信号を照射するとともに、前記核磁気共鳴信号を受信し、取得すること
     を特徴とする計測装置。
  3.  請求項2に記載の計測装置において、
     前記取得した核磁気共鳴信号に基づき、さらに、前記被検体の磁気共鳴画像を生成すること
     を特徴とする計測装置。
  4.  請求項1に記載の計測装置において、
     前記静磁場が形成された領域空間に近隣する第2の領域空間に前記静磁場と異なる第2の静磁場を形成する第2の磁石をさらに備え、
     前記磁場勾配コイルは、前記磁石及び前記第2の磁石の両方に対して相対移動可能に配設され、
     前記第2の静磁場が形成された第2の領域空間を前記磁場勾配コイルが相対移動している間に、前記共振コイルを介して前記被検体に含まれる電子スピンを励起する高周波信号を照射し、
     前記静磁場が形成された領域空間を前記磁場勾配コイルが相対移動している間に、前記共振コイルを介して前記被検体に含まれる原子核スピンを励起する高周波信号を前記被検体に照射するとともに、前記核磁気共鳴信号を受信し、取得すること
     を特徴とする計測装置。
  5.  請求項4に記載の計測装置において、
     前記取得した核磁気共鳴信号に基づき、さらに、前記被検体の磁気共鳴画像を生成すること
     を特徴とする計測装置。
  6.  請求項4に記載の計測装置において、
     前記磁場勾配コイルは、円柱状の基台に固定して配設され、
     前記磁石及び前記第2の磁石は、前記円柱状の基台の円形上面の周縁部に沿って回動可能に配設され、
     前記磁場勾配コイルは、前記磁石及び前記第2の磁石が前記円柱状の基台の円形上面の周縁部に沿って回動するとき、前記磁石及び前記第2の磁石それぞれによってそれぞれ形成される前記静磁場及び前記第2の静磁場の中を相対的に移動すること
     を特徴とする計測装置。
  7.  所定の領域空間に静磁場を形成する磁石と、
     前記静磁場を形成する磁石に対して相対移動可能に配設されて、前記静磁場に傾斜磁場を付与する磁場勾配コイルと、
     被検体に含まれる原子核スピンを励起させる高周波信号を照射するとともに、前記原子核スピンによる核磁気共鳴信号を受信する共振コイルと、
     を少なくとも備えた計測装置によって行われる計測方法において、
     前記計測装置は、
     前記静磁場が形成された領域空間を前記磁場勾配コイルが相対移動している間に、前記共振コイルを介して前記被検体に前記高周波信号を照射するとともに、前記核磁気共鳴信号を受信し、取得すること
     を特徴とする計測方法。
  8.  請求項7に記載の計測方法において、
     前記計測装置は、前記取得した核磁気共鳴信号に基づき、さらに、前記被検体の磁気共鳴画像を生成すること
     を特徴とする計測方法。
  9.  請求項7に記載の計測方法において、
     前記計測装置は、前記静磁場が形成された領域空間に近隣する第2の領域空間に前記静磁場と異なる第2の静磁場を形成する第2の磁石をさらに備え、
     前記磁場勾配コイルは、前記磁石及び前記第2の磁石の両方に対して相対移動可能に配設され、
     前記計測装置は、
     前記第2の静磁場が形成された第2の領域空間を前記磁場勾配コイルが相対移動している間に、前記共振コイルを介して前記被検体に含まれる電子スピンを励起する高周波信号を前記被検体に照射し、
     前記静磁場が形成された領域空間を前記磁場勾配コイルが相対移動している間に、前記共振コイルを介して前記被検体に含まれる原子核スピンを励起する高周波信号を前記被検体に照射するとともに、前記核磁気共鳴信号を受信し、取得すること
     を特徴とする計測方法。
  10.  請求項9に記載の計測方法において、
     前記計測装置は、前記取得した核磁気共鳴信号に基づき、さらに、前記被検体の磁気共鳴画像を生成すること
     を特徴とする計測方法。
  11.  請求項9に記載の計測方法において、
     前記磁場勾配コイルは、円柱状の基台に固定して配設され、
     前記磁石及び前記第2の磁石は、前記円柱状の基台の円形上面の周縁部に沿って回動可能に配設され、
     前記磁場勾配コイルは、前記磁石及び前記第2の磁石が前記円柱状の基台の円形上面の周縁部に沿って回動するとき、前記磁石及び前記第2の磁石それぞれによってそれぞれ形成される前記静磁場及び前記第2の静磁場の中を相対的に移動すること
     を特徴とする計測方法。
PCT/JP2014/064725 2013-06-03 2014-06-03 計測装置及び計測方法 WO2014196525A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015521454A JPWO2014196525A1 (ja) 2013-06-03 2014-06-03 計測装置及び計測方法
US14/895,847 US20160116562A1 (en) 2013-06-03 2014-06-03 Measurement Apparatus and Measurement Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361830461P 2013-06-03 2013-06-03
US61/830,461 2013-06-03

Publications (1)

Publication Number Publication Date
WO2014196525A1 true WO2014196525A1 (ja) 2014-12-11

Family

ID=52008164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064725 WO2014196525A1 (ja) 2013-06-03 2014-06-03 計測装置及び計測方法

Country Status (3)

Country Link
US (1) US20160116562A1 (ja)
JP (1) JPWO2014196525A1 (ja)
WO (1) WO2014196525A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106772157A (zh) * 2015-11-24 2017-05-31 上海联影医疗科技有限公司 一种磁共振成像的方法和装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013123A1 (ja) * 2018-07-08 2020-01-16 株式会社 マトリックス細胞研究所 磁性体検出装置
DE102020211327A1 (de) * 2020-09-09 2022-03-10 Siemens Healthcare Gmbh DC-Motor, Liege mit DC-Motor und Verfahren zum Betreiben eines DC-Motors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228125A (ja) * 1992-02-21 1993-09-07 Toshiba Corp 磁気共鳴イメージング装置
US5304933A (en) * 1991-08-01 1994-04-19 General Electric Company Surgical local gradient coil
JP2010227247A (ja) * 2009-03-26 2010-10-14 Kyushu Univ 計測装置および計測方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5600245A (en) * 1993-10-08 1997-02-04 Hitachi, Ltd. Inspection apparatus using magnetic resonance
DE10056807A1 (de) * 2000-11-16 2002-05-23 Philips Corp Intellectual Pty HF-Flächenresonator für Magnetresonanz-Bildgerät
JP4810368B2 (ja) * 2006-09-11 2011-11-09 株式会社日立製作所 電子スピン共鳴ct装置
DE102007053429B4 (de) * 2007-11-09 2011-09-22 Siemens Ag Lokalspulenanordnung mit Magnetfeldsensor und Magnetresonanzanlage mit derartiger Lokalspulenanordnung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304933A (en) * 1991-08-01 1994-04-19 General Electric Company Surgical local gradient coil
JPH05228125A (ja) * 1992-02-21 1993-09-07 Toshiba Corp 磁気共鳴イメージング装置
JP2010227247A (ja) * 2009-03-26 2010-10-14 Kyushu Univ 計測装置および計測方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106772157A (zh) * 2015-11-24 2017-05-31 上海联影医疗科技有限公司 一种磁共振成像的方法和装置
CN106772157B (zh) * 2015-11-24 2019-11-19 上海联影医疗科技有限公司 一种磁共振成像的方法和装置

Also Published As

Publication number Publication date
JPWO2014196525A1 (ja) 2017-02-23
US20160116562A1 (en) 2016-04-28

Similar Documents

Publication Publication Date Title
JP5662420B2 (ja) 磁性粒子に影響し及び/又は磁性粒子を検出し、磁気共鳴撮像のための装置及び方法
US6600319B2 (en) Magnetic resonance imaging device
US10222438B2 (en) System and apparatus for combined magnetic resonance imaging with magnetic spectroscopy of brownian motion and/or magnetic nanoparticle imaging
US9305376B2 (en) Magnetic resonance imaging apparatus and method of acquiring functional image
JP5718228B2 (ja) 磁気共鳴イメージング装置及び渦電流補償方法
US10330758B2 (en) Magnetic resonance imaging using zero echo time puse sequences
US9927500B2 (en) Device for generating a magnetic field profile which meets the requirements for MPI and for MRI
US10191130B2 (en) Device for sequential examination of a measurement object by means of MPI and MRI methods
US20130278262A1 (en) Passive b1 field shimming
US20130113483A1 (en) Magnetic resonance imaging apparatus and control method thereof
US9523755B2 (en) Method and magnetic resonance apparatus for non-selective excitation of nuclear spin signals in an examination subject
WO2006080417A1 (ja) 生体計測装置及びその方法
WO2014196525A1 (ja) 計測装置及び計測方法
JP5238445B2 (ja) 磁性微粒子イメージング装置
US20120165654A1 (en) Means and method for performing hyperpolarizing gas imaging
US9945921B2 (en) Magnetic resonance imaging device and control method thereof
US9575152B1 (en) Magnetic resonance imaging
US20080214924A1 (en) Magnetic Resonance Spectroscopy
JP5555081B2 (ja) 磁気共鳴イメージング装置
JP4685456B2 (ja) 磁気共鳴イメージング装置
JP2006014751A (ja) 磁気共鳴イメージング装置
JP2021126206A (ja) 医用画像データ処理装置
JPH10137213A (ja) 磁気共鳴画像の取得方法および磁気共鳴画像の処理方法ならびに磁気共鳴画像の取得装置
JP4648686B2 (ja) 手術用受信コイルおよびこれを用いた磁気共鳴イメージング装置
JP2014030505A (ja) 磁気共鳴イメージング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14808264

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015521454

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14895847

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14808264

Country of ref document: EP

Kind code of ref document: A1