WO2014196364A1 - 電力安定化システムおよび制御装置 - Google Patents

電力安定化システムおよび制御装置 Download PDF

Info

Publication number
WO2014196364A1
WO2014196364A1 PCT/JP2014/063506 JP2014063506W WO2014196364A1 WO 2014196364 A1 WO2014196364 A1 WO 2014196364A1 JP 2014063506 W JP2014063506 W JP 2014063506W WO 2014196364 A1 WO2014196364 A1 WO 2014196364A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
frequency
compensation
power flow
amount
Prior art date
Application number
PCT/JP2014/063506
Other languages
English (en)
French (fr)
Inventor
智希 佐藤
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2015521379A priority Critical patent/JP6020721B2/ja
Publication of WO2014196364A1 publication Critical patent/WO2014196364A1/ja
Priority to PH12015501299A priority patent/PH12015501299A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/10The dispersed energy generation being of fossil origin, e.g. diesel generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a power stabilization system and a control device.
  • the frequency fluctuation can be suppressed by increasing the frequency adjustment capacity by governor-free control by adding a rotating machine.
  • the power generation efficiency is reduced by the amount of operation of the generator at an output lower than the rated output for frequency adjustment by the governor-free control.
  • the reduction effect of carbon dioxide emissions due to the introduction of natural energy is offset by that amount.
  • Patent Document 1 discloses a frequency fluctuation suppressing device that suppresses fluctuations in the system frequency of the power system by absorbing or discharging power using a flywheel generator motor as a power storage device.
  • a distributed power source such as a wind power generator or a solar cell
  • the power generation output of a distributed power source increases, it can be connected to the power system by reducing the discharge of power by the power storage device or increasing the absorption of power. Frequency fluctuations at the system point can be suppressed.
  • the power generation output of the distributed power supply decreases, the frequency fluctuation at the connection point to the power system is suppressed by reducing the absorption of power by the power storage device or increasing the discharge of power. Can do.
  • power storage devices such as flywheel generator motors and secondary batteries, and power converters that convert power absorbed or released by the power storage device are controlled assuming that the system frequency characteristic constant K hardly changes.
  • a constant is determined. Therefore, in a weak power system such as a remote place or a remote island where the system frequency characteristic constant K may change greatly, the compensation control by the power storage device may be in a state of insufficient compensation or overcompensation.
  • frequency fluctuation larger than expected may occur temporarily.
  • the control constants of the power storage device and the power converter are fixed, sufficient compensation is not performed, and the system frequency may deviate from the target range.
  • the main present invention that solves the above-described problems is a power stabilization system that suppresses fluctuations in the active power of an AC power system, and stores power and absorbs or releases power with the AC power system.
  • a storage device a power converter that mutually converts power absorbed or released between the AC power system and the power storage device; and the power converter is controlled in accordance with an active power fluctuation of the AC power system
  • a control device that extracts a fluctuation component of the system frequency based on the frequency detection unit that detects a system frequency of the AC power system as a frequency measurement value, and the frequency measurement value.
  • a frequency fluctuation compensation calculation unit that obtains an electric energy for compensating the extracted fluctuation component as a frequency fluctuation compensation amount, and a dead band set for the system frequency based on the measured frequency value.
  • a frequency deviation compensation calculating unit that extracts a deviation amount from which the system frequency has deviated and obtains a power deviation amount that compensates for the extracted deviation amount as a frequency deviation compensation amount, and adds the frequency fluctuation compensation amount and the frequency deviation compensation amount.
  • a power converter control unit that controls the power converter according to the frequency compensation amount.
  • the other main present invention that solves the above-mentioned problems is a power stabilization system that suppresses fluctuations in the active power of an AC power system, and stores power and absorbs power with the AC power system or A power storage device that performs discharge, a power converter that mutually converts power absorbed or released between the AC power system and the power storage device, and the power according to fluctuations in active power of the AC power system
  • a control device for controlling the converter, wherein the control device detects a power flow of the AC power system as a power flow measurement value, and the power flow based on the power flow measurement value.
  • a power flow fluctuation compensation calculation unit for obtaining a power flow fluctuation compensation amount as a power flow fluctuation compensation amount, and the power flow based on the measured power flow value.
  • a power flow deviation compensation calculating unit that extracts a deviation amount from which the power flow has deviated from a defined dead zone and obtains a power amount that compensates for the extracted deviation amount as a power flow deviation compensation amount; and A power flow compensation calculation unit that obtains a power flow compensation amount by adding the power flow deviation compensation amount, and a power converter control unit that controls the power converter according to the power flow compensation amount.
  • FIG. 1 It is a schematic diagram which shows an example of the suppression operation of the frequency variation by the control apparatus in 1st Embodiment of this invention. It is a block diagram which shows the structure of the control apparatus in 2nd Embodiment of this invention. It is a block diagram which shows the structure of the control apparatus in 3rd Embodiment of this invention. It is a block diagram which shows the structure of the control apparatus in 4th Embodiment of this invention. It is a figure explaining the setting method of the proportional gain Kff in the proportional gain setting part 1143.
  • FIG. It is a block diagram which shows the structure of the control apparatus in 5th Embodiment of this invention. It is a figure explaining the setting method of the proportional gain Kff in the proportional gain setting part 1144.
  • FIG. It is a block diagram which shows the structure of the control apparatus in 6th Embodiment of this invention. It is a block diagram which shows the structure of the state monitoring part in 6th Embodiment of this invention.
  • FIG. 1 and FIG. 2 the structure of the power stabilization system provided with the control apparatus in the 1st thru
  • the power line is indicated by a solid line
  • the signal line is indicated by a broken line.
  • the power stabilization system 1 shown in FIG. 1 is a system for suppressing the active power fluctuation of the AC power system 9, especially the fluctuation of the system frequency.
  • the AC power system 9 as a distributed power source using natural energy, for example, a solar cell module 50 installed in the solar power plant 5 and a wind power generator 60 installed in the wind power plant 6 are respectively power converters. Interconnected via 51 and 61.
  • a generator (not shown) of another power plant 7 is also connected to the AC power system 9.
  • the other power plants 7 may include thermal power plants, nuclear power plants, hydroelectric power plants and the like that are not accompanied by output fluctuations due to natural conditions such as wind speed and weather.
  • a consumer load 8 is connected to the AC power system 9.
  • the power stabilization system 1 includes a control device 10, an instrument transformer 15, a power storage device 20, and a power converter 21.
  • the power storage device 20 is linked to the AC power system 9 via the power converter 21.
  • the power storage device 20 has the capability of storing power and absorbing or discharging power with the AC power system 9 regardless of the type, such as a flywheel generator motor or a secondary battery. Just do it.
  • the power converter 21 has a function of mutually converting power absorbed / released between the AC power system 9 and the power storage device 20.
  • the control device 10 is connected to the AC power system 9 via an instrument transformer 15.
  • system information indicating the state of the AC power system 9 is input to the control device 10.
  • the control apparatus 10 suppresses the active power fluctuation
  • the power converter 21 is controlled accordingly.
  • FIG. 2 shows an example of specific connection states of the AC power system 9 and the power stabilization system 1.
  • a solar cell module 50 is shown as an example of a distributed power source using natural energy, and the solar cell module 50 is connected to an AC power system 9 via a power converter 51 and a (for power) transformer 52. It is linked to.
  • a diesel generator group 70 including a plurality of small-capacity diesel generators is shown as an example of another generator of the power plant 7, and the diesel generator group 70 is connected to the AC power system 9 via a transformer 72. It is linked to.
  • the customer load 8 is connected to the AC power system 9 via the transformer 82.
  • a storage battery is shown as an example of the power storage device 20, and the storage battery 20 is linked to the AC power system 9 through a power converter 21 and a transformer 22.
  • voltage / current data or power flow data of each node and operation information of the diesel generator group 70 are input to the control device 10 as an example of system information.
  • 3 includes a frequency detection unit 111, a frequency fluctuation compensation calculation unit 112, a frequency deviation compensation calculation unit 113, a frequency compensation calculation unit 114, and a power converter control unit 115. Yes.
  • the frequency detection unit 111 is connected to the AC power system 9 via the instrument transformer 15. Further, a frequency deviation ⁇ f is output from the frequency detection unit 111. The frequency deviation ⁇ f is input to the frequency fluctuation compensation calculation unit 112 and the frequency deviation compensation calculation unit 113. Further, the frequency fluctuation compensation calculation unit 112 outputs a frequency fluctuation compensation amount Wf1. On the other hand, the frequency deviation compensation calculation unit 113 outputs a frequency deviation compensation amount Wf2.
  • the frequency compensation calculation unit 114 receives the frequency variation compensation amount Wf1 and the frequency deviation compensation amount Wf2.
  • the frequency compensation amount Wf is input from the frequency compensation calculation unit 114 to the power converter control unit 115. And from the power converter control part 115, the control signal Cf of the power converter 21 is output.
  • FIG. 4A shows the configuration of the frequency fluctuation compensation calculation unit 112, the frequency deviation compensation calculation unit 113, and the frequency compensation calculation unit 114 in the present embodiment.
  • the frequency deviation compensation calculation unit 113 includes a dead zone control unit 1131 and a proportional gain 1132. Further, the frequency compensation calculation unit 114 is configured as an addition unit.
  • the frequency deviation ⁇ f is input to the high-pass filter 1121 of the frequency fluctuation compensation calculation unit 112.
  • the output value of the high pass filter 1121 is input to the proportional gain 1122.
  • the value of the proportional gain 1122 is set to Kff.
  • the output value of the proportional gain 1122 is input to the phase compensation unit 1123.
  • the phase compensation unit 1123 outputs a frequency fluctuation compensation amount Wf1.
  • the frequency deviation ⁇ f is input to the dead zone control unit 1131 of the frequency deviation compensation calculation unit 113.
  • the output value of the dead zone control unit 1131 is input to the proportional gain 1132.
  • the value of the proportional gain 1132 is set to Kdf. Then, a frequency deviation compensation amount Wf2 is output from the proportional gain 1132.
  • the frequency compensation calculation unit (adding unit) 114 receives the frequency fluctuation compensation amount Wf1 and the frequency deviation compensation amount Wf2. The frequency compensation calculation unit 114 outputs the frequency compensation amount Wf.
  • the frequency detector 111 detects the system frequency of the AC power system 9 as a frequency measurement value f1 based on the voltage waveform of the AC power system 9 obtained by the instrument transformer 15. Then, the frequency detector 111 outputs a frequency deviation ⁇ f between the frequency measurement value f1 and the reference frequency f0. Note that the frequency detection unit 111 may output the frequency measurement value f1 as it is.
  • the frequency fluctuation compensation calculation unit 112 uses the high-pass filter 1121 to extract a fluctuation component of the system frequency from the frequency deviation ⁇ f (or the frequency measurement value f1). Then, the extracted fluctuation component is multiplied by a proportional gain Kff (first proportional gain), and phase compensation (phase lead compensation or phase lag compensation) is performed by the phase compensation unit 1123 to obtain an electric energy for compensating the fluctuation component. A corresponding frequency fluctuation compensation amount Wf1 is obtained.
  • the transfer function of the high-pass filter 1121 is H1 and the transfer function of the phase compensation unit 1123 is H2
  • the frequency fluctuation compensation amount Wf1 is [Equation 4] It is expressed.
  • s is a Laplace transformer
  • Fd (s) is a Laplace transform of the frequency deviation ⁇ f.
  • T f1 , T f2 and T f3 are time constants.
  • the frequency deviation compensation calculation unit 113 causes the dead band control unit 1131 to extract a deviation amount in which the system frequency has deviated from the set dead band from the frequency deviation ⁇ f (or the frequency measurement value f1). For example, if the dead band is set to ⁇ 0.15 Hz when the reference frequency f0 of the system frequency is 60 Hz, the deviation amount from which the frequency deviation ⁇ f deviates from ⁇ 0.15 Hz (or the frequency measurement value f1 is 60 Hz ⁇ 0.15 Hz). The deviation amount deviating) is extracted. Then, the extracted deviation amount is multiplied by a proportional gain Kdf to obtain a frequency deviation compensation amount Wf2 corresponding to the power amount for compensating the deviation amount.
  • the frequency compensation calculation unit (addition unit) 114 adds the frequency variation compensation amount Wf1 and the frequency deviation compensation amount Wf2 to obtain the frequency compensation amount Wf.
  • the power converter control part 115 outputs the control signal Cf according to the frequency compensation amount Wf, and controls the power conversion operation
  • FIG. 5 shows a configuration of a conventional compensation calculation unit that does not perform dead band control by the frequency deviation compensation calculation unit 113 of the present embodiment.
  • the compensation calculation unit 132 shown in FIG. 5 includes a high-pass filter 1021, a proportional gain 1022, and a phase compensation unit 1023, and performs only the variation compensation control similar to the frequency variation compensation calculation unit 112 of the present embodiment.
  • the output value of the phase compensation unit 1023 is output as it is as the frequency compensation amount Wf.
  • FIG. 6 shows an example of frequency fluctuations in the power system due to fluctuations in the output of photovoltaic power generation.
  • the generator capacity in this example, the generator capacity of the diesel generator group 70
  • the output power waveform and power system frequency waveform of the solar cell module 50 when the solar cell module 50 causes 5% output fluctuation are shown.
  • the governor-free control of the diesel generator group 70 cannot sufficiently adjust the frequency, and the system frequency of the AC power system 9 greatly deviates from the target range set to 60 Hz ⁇ 0.2 Hz. Yes.
  • the power converter 21 is controlled in accordance with the output value (frequency compensation amount Wf) of the compensation calculation unit 132 shown in FIG. 5, for example, as shown in FIG. Absorption / emission) is performed, and the frequency variation can be kept within the target range.
  • the frequency fluctuation is targeted with the same control constant as in FIG. It cannot fit within the range.
  • the fluctuation compensation control by the frequency fluctuation compensation calculation unit 112 and the dead zone control by the frequency deviation compensation calculation unit 113 are used in parallel.
  • the power converter 21 is controlled according to the frequency compensation amount Wf obtained by adding the frequency variation compensation amount Wf1 and the frequency deviation compensation amount Wf2.
  • the configuration of the control device according to the second embodiment will be described with reference to FIGS. 13 and 4B.
  • the power line is indicated by a solid line
  • the signal line is indicated by a broken line.
  • the 13 includes a power flow detection unit 121, a power flow fluctuation compensation calculation unit 122, a power flow deviation compensation calculation unit 123, a power flow compensation calculation unit 124, and a power converter control unit 125. It consists of
  • System information of the AC power system 9 is input to the power flow detection unit 121.
  • the power flow detection unit 121 outputs a power flow deviation ⁇ p.
  • the power flow deviation ⁇ p is input to the power flow fluctuation compensation calculation unit 122 and the power flow deviation compensation calculation unit 123.
  • the power flow fluctuation compensation calculation unit 122 outputs a power flow fluctuation compensation amount Wp1.
  • the power flow deviation compensation calculation unit 123 outputs a power flow deviation compensation amount Wp2.
  • the power flow compensation calculation unit 124 receives a power flow fluctuation compensation amount Wp1 and a power flow deviation compensation amount Wp2.
  • the power flow compensation amount Wp is input from the power flow compensation calculation unit 124 to the power converter control unit 125. And from the power converter control part 125, the control signal Cp of the power converter 21 is output.
  • FIG. 4B shows the configuration of the power flow fluctuation compensation calculation unit 122, the power flow deviation compensation calculation unit 123, and the power flow compensation calculation unit 124 in the present embodiment.
  • the power flow fluctuation compensation calculation unit 122 illustrated in FIG. 4B includes a high-pass filter 1221, a proportional gain 1222, and a phase compensation unit 1223, similarly to the frequency fluctuation compensation calculation unit 112 of the first embodiment. It is configured.
  • the power flow deviation compensation calculation unit 123 includes a dead band control unit 1231 and a proportional gain 1232 as in the frequency deviation compensation calculation unit 113 of the first embodiment.
  • the power flow compensation calculation unit 124 is configured as an addition unit, similar to the frequency compensation calculation unit 114 of the first embodiment.
  • the power flow deviation ⁇ p is input to the high-pass filter 1221 of the power flow fluctuation compensation calculation unit 122.
  • the output value of the high pass filter 1221 is input to the proportional gain 1222. Further, the output value of the proportional gain 1222 is input to the phase compensation unit 1223.
  • the phase compensation unit 1223 outputs a power flow fluctuation compensation amount Wp1.
  • the power flow deviation ⁇ p is input to the dead zone control unit 1231 of the power flow deviation compensation calculation unit 123.
  • the output value of the dead zone controller 1231 is input to the proportional gain 1232.
  • the power gain deviation compensation amount Wp2 is output from the proportional gain 1232.
  • a power flow fluctuation compensation amount Wp1 and a power flow deviation compensation amount Wp2 are input to the power flow compensation calculation unit (adder) 124.
  • a power flow compensation amount Wp is output from the power flow compensation calculation unit 124.
  • the power flow detection unit 121 detects the power flow of the AC power system 9 as the power flow measurement value PL1 based on the input system information. For example, voltage / current data of each node is input as system information, and a voltage value, a phase angle, active power, reactive power, and the like are obtained from these data. Further, the power flow data of each node may be directly input to the power flow detection unit 121. Then, the power flow detection unit 121 outputs a power flow deviation ⁇ p between the power flow measurement value PL1 and the power flow target value PL0. The power flow detector 121 may output the power flow measurement value PL1 as it is.
  • the power flow fluctuation compensation calculation unit 122 uses the high-pass filter 1221 to extract a power flow fluctuation component from the power flow deviation ⁇ p (or the power flow measurement value PL1). Then, the extracted fluctuation component is multiplied by a proportional gain Kfp (second proportional gain), phase compensation is performed by the phase compensation unit 1223, and an electric power flow fluctuation compensation amount Wp1 corresponding to the electric energy for compensating the fluctuation component is obtained. Ask.
  • This power flow fluctuation compensation amount Wp1 is similar to the above equation (4). [Equation 5] It is expressed.
  • Pd (s) is Laplace transform of the power flow deviation ⁇ p.
  • T p1 , T p2 and T p3 are time constants.
  • the power flow deviation compensation calculating unit 123 causes the dead band control unit 1231 to extract a deviation amount from which the power flow has deviated from the set dead band from the power flow deviation ⁇ p (or the measured power flow value PL1). Then, the extracted deviation amount is multiplied by a proportional gain Kdp to obtain a power flow deviation compensation amount Wp2 corresponding to the electric energy for compensating the deviation amount.
  • the power flow compensation calculation unit (adding unit) 124 adds the power flow fluctuation compensation amount Wp1 and the power flow deviation compensation amount Wp2 to obtain the power flow compensation amount Wp.
  • the power converter control part 125 outputs the control signal Cp according to the power flow compensation amount Wp, and controls the power conversion operation
  • fluctuation compensation control by the power flow fluctuation compensation calculation unit 112 and dead zone control by the power flow deviation compensation calculation unit 113 are used in parallel. Then, the power converter 21 is controlled according to the power flow compensation amount Wp obtained by adding the power flow fluctuation compensation amount Wp1 and the power flow deviation compensation amount Wp2. As a result, fluctuations in the power flow can be suppressed without undercompensation or overcompensation, and as a result, fluctuations in the system frequency can be suppressed.
  • the control device 10c shown in FIG. 14 has both a configuration for obtaining the frequency compensation amount Wf in the first embodiment and a configuration for obtaining the power flow compensation amount Wp in the second embodiment. That is, the control device 10c includes a frequency detection unit 111, a frequency variation compensation calculation unit 112, a frequency deviation compensation calculation unit 113, a frequency compensation calculation unit 114, a power flow detection unit 121, a power flow variation compensation calculation unit 122, and a power flow deviation compensation. A calculation unit 123 and a power flow compensation calculation unit 124 are included. Control device 10c further includes a command value generation unit 134 and a power converter control unit 135.
  • the command value generation unit 134 obtains the control command value W0 based on the frequency compensation amount Wf and the power flow compensation amount Wp. And the power converter control part 135 outputs the control signal C0 according to the control command value W0, and controls the power conversion operation
  • FIG. 1 The command value generation unit 134 obtains the control command value W0 based on the frequency compensation amount Wf and the power flow compensation amount Wp. And the power converter control part 135 outputs the control signal C0 according to the control command value W0, and controls the power conversion operation
  • the control device 10c of this embodiment controls the power converter 21 according to both the frequency compensation amount Wf of the first embodiment and the power flow compensation amount Wp of the second embodiment. Thereby, the fluctuation
  • the command value generation unit 134 can select and output either the frequency compensation amount Wf or the power flow compensation amount Wp as the control command value W0.
  • the command value generation unit 134 may calculate the control command value W0 by performing operations such as addition, subtraction, multiplication, and division on the frequency compensation amount Wf and the power flow compensation amount Wp.
  • the average value of the frequency compensation amount Wf and the power flow compensation amount Wp can be calculated as the control command value W0.
  • the control command value W0 may be calculated by taking a weighted average of the frequency compensation amount Wf and the power flow compensation amount Wp.
  • FIG. 15A shows only the configuration for obtaining the frequency compensation amount Wf from the frequency deviation ⁇ f, and this configuration can be applied to the control device of the first or third embodiment.
  • FIG. 15B shows only the configuration for obtaining the power flow compensation amount Wp from the power flow deviation ⁇ p, and this configuration can be applied to the control device of the second or third embodiment.
  • the control device of the present embodiment is different from the configuration of the first or third embodiment shown in FIG. 4 (a) in the deviation number counting unit 1141 and the proportional gain setting unit 1143. Is further included. Further, as shown in FIG. 15 (b), a deviation count counting unit 1241 and a proportional gain setting unit 1243 are further included in the configuration of the second or third embodiment shown in FIG. 4 (b). ing.
  • the dead zone controller 1131 outputs a departure flag FL when the system frequency deviates from the dead zone. Further, the departure number counting unit 1141 counts the number of departures as the first departure number CN according to the departure flag FL. Then, the first proportional gain setting unit 1143 sets the first proportional gain Kff according to the first deviation count CN in a predetermined period. For example, as shown in FIG. 16, the proportional gain setting unit 1143 sets the proportional gain Kff with reference to a setting table in which the counted number of deviations CN is associated with the set proportional gain Kff.
  • the dead zone controller 1231 outputs a departure flag FL when the power flow deviates from the dead zone. Further, the departure count unit 1241 counts the number of departures as the second departure number CN according to the departure flag FL. Then, the second proportional gain setting unit 1243 sets the second proportional gain Kfp according to the second deviation number CN in a predetermined period. For example, similarly to the first proportional gain Kff, the proportional gain setting unit 1243 sets the proportional gain Kfp with reference to a setting table in which the counted number of deviations CN and the set proportional gain Kfp are associated with each other.
  • the proportional gain Kff or Kfp of the fluctuation compensation control is set according to the number of deviations CN that deviates from the dead zone.
  • the compensation amount of the fluctuation compensation control can be adjusted by changing the proportional gain Kff or Kfp, for example, in a time zone or a day of the week that frequently deviates from the dead zone.
  • FIG. 17A shows only a configuration for obtaining the frequency compensation amount Wf from the frequency deviation ⁇ f, and this configuration is applicable to the control device of the first or third embodiment.
  • FIG. 17B shows only a configuration for obtaining the power flow compensation amount Wp from the power flow deviation ⁇ p, and this configuration can be applied to the control device of the second or third embodiment.
  • the control device of this embodiment is different from the configuration of the first or third embodiment shown in FIG. 4A in the deviation time measuring unit 1142 and the proportional gain setting unit 1144. Is further included. Further, as shown in FIG. 17 (b), a deviation time measuring unit 1242 and a proportional gain setting unit 1244 are further included in the configuration of the second or third embodiment shown in FIG. 4 (b). ing.
  • the dead zone controller 1131 outputs a departure flag FL when the system frequency deviates from the dead zone.
  • the departure time measuring unit 1142 measures the departure time as the first departure time T according to the departure flag FL.
  • the third proportional gain setting unit 1144 sets the first proportional gain Kff according to the first deviation time T in the predetermined period. For example, as shown in FIG. 18, the proportional gain setting unit 1144 sets the proportional gain Kff with reference to a setting table in which the measured departure time T is associated with the set proportional gain Kff.
  • the dead zone controller 1231 outputs a departure flag FL when the power flow deviates from the dead zone.
  • the departure time measuring unit 1242 measures the departure time as the second departure time T according to the departure flag FL.
  • the fourth proportional gain setting unit 1244 sets the second proportional gain Kfp according to the second deviation time T in the predetermined period. For example, similarly to the first proportional gain Kff, the proportional gain setting unit 1244 sets the proportional gain Kfp with reference to a setting table in which the measured deviation time T and the set proportional gain Kfp are associated with each other.
  • the proportional gain Kff or Kfp of the fluctuation compensation control is set according to the departure time T that deviates from the dead zone.
  • the proportional gain Kff or Kfp is changed to adjust the compensation amount of the fluctuation compensation control, for example, in a time zone or a day of the week that frequently deviates from the dead zone. it can.
  • FIG. 19A shows only the configuration for obtaining the frequency compensation amount Wf from the frequency deviation ⁇ f, and this configuration can be applied to the control device of the first or third embodiment.
  • FIG. 19B shows only the configuration for obtaining the power flow compensation amount Wp from the power flow deviation ⁇ p, and this configuration can be applied to the control device of the second or third embodiment.
  • the control device of the present embodiment is configured to further include a state monitoring unit 101 with respect to the configuration of the first or third embodiment shown in FIG. Yes.
  • System information of the AC power system 9 is input to the state monitoring unit 101.
  • the state monitoring unit 101 outputs setting change command values for changing the control constants to the high-pass filter 1121, the proportional gains 1122 and 1132, the phase compensation unit 1123, and the dead zone control unit 1131.
  • the state monitoring unit 101 is further included in the configuration of the second or third embodiment shown in FIG. 4B.
  • System information of the AC power system 9 is input to the state monitoring unit 101.
  • the state monitoring unit 101 outputs setting change command values for changing the control constants to the high-pass filter 1221, the proportional gains 1222 and 1232, the phase compensation unit 1223, and the dead zone control unit 1231.
  • FIG. 20 shows a configuration of the state monitoring unit 101 in the present embodiment.
  • the state monitoring unit 101 shown in FIG. 20 includes a system frequency characteristic estimation unit 1011 and a control constant selection table 1012.
  • the system frequency characteristic estimation unit 1011 acquires, for example, the frequency measurement value f1, the output value of the diesel generator group 70, the number of operating units, and the like as the system information, and the system frequency characteristic constant of the AC power system 9 from the acquired system information. K is estimated. Then, with reference to the control constant selection table 1012 in which the estimated system frequency characteristic constant K is associated with the control constant of each part to be set, the setting change command value for the control constant of each part is output.
  • the control constants of the fluctuation compensation control and / or the dead zone control are changed according to the system information of the AC power system 9.
  • the compensation amount of the fluctuation compensation control and / or the dead zone control can be adjusted according to the frequency characteristic of the AC power system 9 that changes according to the output value of the diesel generator group 70 and the number of operating units.
  • system information such as the frequency measurement value f 1, the output value of the diesel generator group 70, and the number of operating units is directly associated with the control constant of each unit.
  • a control constant selection table can also be used.
  • the frequency fluctuation compensation amount Wf1 corresponding to the electric energy for compensating the fluctuation component of the system frequency of the AC power system 9 and the set dead band A frequency deviation compensation amount Wf2 corresponding to the power amount for compensating the deviation amount deviated is obtained, and between the AC power system 9 and the power storage device 20 by the power converter 21 according to the frequency compensation amount Wf obtained by adding these.
  • system frequency fluctuations can be suppressed without undercompensation or overcompensation.
  • frequency fluctuations can be reliably kept within the target range, and power loss due to charge / discharge and power conversion can be suppressed.
  • the power flow fluctuation compensation amount Wp1 corresponding to the power quantity for compensating the fluctuation component of the power flow of the AC power system 9 and the set dead band are obtained.
  • a power flow deviation compensation amount Wp2 corresponding to the power amount that compensates the deviation amount from which the power flow has deviated is obtained, and the power conversion operation of the power converter 21 is controlled according to the power flow compensation amount Wp obtained by adding these.
  • the power stabilization system including the control device 10c includes both a configuration for obtaining the frequency compensation amount Wf and a configuration for obtaining the power flow compensation amount Wp, so that one of these is selected as a control command value W0. It is possible to control the power converter 21 according to the above, or to control the power converter 21 according to the control command value W0 calculated by performing operations on these.
  • the dead band is frequently deviated. It is possible to adjust the compensation amount of the fluctuation compensation control by changing the proportional gain Kff or Kfp in a special time zone.
  • the compensation amount of the fluctuation compensation control and / or the dead zone control can be adjusted according to the frequency characteristics.

Abstract

【課題】 系統周波数の変動を抑制する際の補償不足や過補償を防止する。 【解決手段】 電力安定化システムの制御装置は、交流電力系統の系統周波数を周波数計測値として検出する周波数検出部と、周波数計測値に基づいて、系統周波数の変動成分を抽出し、当該抽出した変動成分を補償する電力量を周波数変動補償量として求める周波数変動補償演算部と、周波数計測値に基づいて、系統周波数に設定された不感帯を系統周波数が逸脱した逸脱量を抽出し、当該抽出した逸脱量を補償する電力量を周波数逸脱補償量として求める周波数逸脱補償演算部と、周波数変動補償量と周波数逸脱補償量とを加算して周波数補償量を求める周波数補償演算部と、周波数補償量に応じて、交流電力系統と電力貯蔵装置との間で吸収または放出される電力を相互に変換する電力変換器を制御する電力変換器制御部と、を有する。

Description

電力安定化システムおよび制御装置
 本発明は、電力安定化システムおよび制御装置に関する。
 近年、風力や太陽光などの自然エネルギーを利用した風力発電機や太陽電池などの分散型電源の商用電力系統への連系が増加している。しかしながら、自然エネルギーを利用した分散型電源は、風速や天候などの自然条件に応じて時々刻々と出力が変動するため、特に僻地や離島などの弱い電力系統では系統周波数の変動が生じ、系統運用上の問題となる場合がある。また、強い電力系統においても、自然エネルギーの導入量が増加するにつれて、分散型電源の出力変動により、系統周波数の大きな変動が生じる可能性が懸念される。
 上記のような自然エネルギーによる系統周波数の変動に対しては、例えば回転機を増設して、ガバナフリー制御による周波数調整容量を増加させることによって、周波数変動を抑制することができる。しかしながら、この場合には、ガバナフリー制御により、周波数調整のために定格出力を下回る出力で発電機を運転する分だけ、発電効率が低下する。また、その分だけ、自然エネルギーの導入による二酸化炭素排出量の削減効果は相殺されることとなる。
 そこで、例えば特許文献1では、フライホイール発電電動機を電力貯蔵装置として用いて、電力の吸収または放出を行うことにより、電力系統の系統周波数の変動を抑制する周波数変動抑制装置が開示されている。例えば、分散型電源(風力発電機や太陽電池など)の発電出力が増加した場合には、電力貯蔵装置による電力の放出を減少させる、または電力の吸収を増大させることにより、電力系統への連系点における周波数変動を抑制することができる。一方、分散型電源の発電出力が減少した場合には、電力貯蔵装置による電力の吸収を減少させる、または電力の放出を増大させることにより、電力系統への連系点における周波数変動を抑制することができる。
特許第2660126号公報
 ところで、僻地や離島などの弱い電力系統では、需要家負荷の変動の割合が大きく、発電機の台数や容量も小さいため、需要家負荷の大きさに応じて、自動負荷制御装置により稼働させる発電機の台数を切り替えている。そして、稼働させる発電機の台数が変化することにより、電力系統の周波数特性も変化する。
 ここで、発電機出力の変動分をΔPGとし、系統周波数の変動分をΔFとすると、発電機の周波数特性定数KGは、以下の式(1)のように表される。
[数1]
Figure JPOXMLDOC01-appb-I000001
 
また、需要家負荷の変動分をΔPLとすると、負荷の周波数特性定数KLは、以下の式(2)のように表される。
[数2]
Figure JPOXMLDOC01-appb-I000002
   
したがって、電力系統における電力の変動分をΔPとすると、電力系統の系統周波数特性定数Kは、
[数3]
Figure JPOXMLDOC01-appb-I000003
  
となり、発電機の台数が変化することにより、発電機群全体の周波数特性が変化し、電力系統の周波数特性も変化する。
 一方、フライホイール発電電動機や二次電池などの電力貯蔵装置や、電力貯蔵装置により吸収または放出される電力を変換する電力変換器は、系統周波数特性定数Kがほとんど変化しない状況を想定して制御定数を決定している。そのため、系統周波数特性定数Kが大きく変化する可能性がある僻地や離島などの弱い電力系統では、電力貯蔵装置による補償制御は、補償不足あるいは過補償の状態になる可能性がある。
 例えば、自然エネルギーを利用した分散型電源の出力変動と需要家負荷の変動とが重畳すると、想定以上に大きな周波数変動が一時的に生じる場合がある。このとき、電力貯蔵装置や電力変換器の制御定数が固定されていると、十分な補償が行なわれず、系統周波数が目標範囲を逸脱する可能性がある。
 また、電力貯蔵装置による充放電や、電力変換器による電力の変換では、電力の損失が発生する。そのため、電力貯蔵装置による補償制御が過剰になると、電力の損失が大きくなる。
 前述した課題を解決する主たる本発明は、交流電力系統の有効電力変動を抑制する電力安定化システムであって、電力を貯蔵し、前記交流電力系統との間で電力の吸収または放出を行う電力貯蔵装置と、前記交流電力系統と前記電力貯蔵装置との間で吸収または放出される電力を相互に変換する電力変換器と、前記交流電力系統の有効電力変動に応じて前記電力変換器を制御する制御装置と、を備え、前記制御装置は、前記交流電力系統の系統周波数を周波数計測値として検出する周波数検出部と、前記周波数計測値に基づいて、前記系統周波数の変動成分を抽出し、当該抽出した変動成分を補償する電力量を周波数変動補償量として求める周波数変動補償演算部と、前記周波数計測値に基づいて、前記系統周波数に設定された不感帯を前記系統周波数が逸脱した逸脱量を抽出し、当該抽出した逸脱量を補償する電力量を周波数逸脱補償量として求める周波数逸脱補償演算部と、前記周波数変動補償量と前記周波数逸脱補償量とを加算して周波数補償量を求める周波数補償演算部と、前記周波数補償量に応じて前記電力変換器を制御する電力変換器制御部と、を有することを特徴とする電力安定化システムである。
 また、前述した課題を解決するその他の主たる本発明は、交流電力系統の有効電力変動を抑制する電力安定化システムであって、電力を貯蔵し、前記交流電力系統との間で電力の吸収または放出を行う電力貯蔵装置と、前記交流電力系統と前記電力貯蔵装置との間で吸収または放出される電力を相互に変換する電力変換器と、前記交流電力系統の有効電力変動に応じて前記電力変換器を制御する制御装置と、を備え、前記制御装置は、前記交流電力系統の電力潮流を電力潮流計測値として検出する電力潮流検出部と、前記電力潮流計測値に基づいて、前記電力潮流の変動成分を抽出し、当該抽出した変動成分を補償する電力量を電力潮流変動補償量として求める電力潮流変動補償演算部と、前記電力潮流計測値に基づいて、前記電力潮流に設定された不感帯を前記電力潮流が逸脱した逸脱量を抽出し、当該抽出した逸脱量を補償する電力量を電力潮流逸脱補償量として求める電力潮流逸脱補償演算部と、前記電力潮流変動補償量と前記電力潮流逸脱補償量とを加算して電力潮流補償量を求める電力潮流補償演算部と、前記電力潮流補償量に応じて前記電力変換器を制御する電力変換器制御部と、を有することを特徴とする電力安定化システムである。
 本発明の他の特徴については、添付図面及び本明細書の記載により明らかとなる。
 本発明によれば、系統周波数の変動を抑制する際の補償不足や過補償を防止することができる。
本発明の第1ないし第3実施形態における制御装置を備えた電力安定化システムの構成を示すブロック図である。 交流電力系統および電力安定化システムの具体的な接続状態の一例を示すブロック図である。 本発明の第1実施形態における制御装置の構成を示すブロック図である。 本発明の第1実施形態における周波数変動補償演算部、周波数逸脱補償演算部、および周波数補償演算部の構成を示すブロック図である。 不感帯制御を行わない補償演算部の構成を示すブロック図である。 太陽光発電の出力変動による電力系統の周波数変動の一例を示す模式図である。 図5に示した補償演算部による周波数変動の抑制動作の一例を示す模式図である。 図5に示した補償演算部による周波数変動の抑制動作の一例を示す模式図である。 図5に示した補償演算部による周波数変動の抑制動作の一例を示す模式図である。 図5に示した補償演算部による周波数変動の抑制動作の一例を示す模式図である。 本発明の第1実施形態における制御装置による周波数変動の抑制動作の一例を示す模式図である。 本発明の第1実施形態における制御装置による周波数変動の抑制動作の一例を示す模式図である。 本発明の第2実施形態における制御装置の構成を示すブロック図である。 本発明の第3実施形態における制御装置の構成を示すブロック図である。 本発明の第4実施形態における制御装置の構成を示すブロック図である。 比例ゲイン設定部1143における比例ゲインKffの設定方法を説明する図である。 本発明の第5実施形態における制御装置の構成を示すブロック図である。 比例ゲイン設定部1144における比例ゲインKffの設定方法を説明する図である。 本発明の第6実施形態における制御装置の構成を示すブロック図である。 本発明の第6実施形態における状態監視部の構成を示すブロック図である。
 本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。
===電力安定化システムの構成===
 以下、図1および図2を参照して、後述する第1ないし第3実施形態における制御装置を備えた電力安定化システムの構成について説明する。なお、図1および図2においては、電力線を実線で示し、信号線を破線で示している。
 図1に示されている電力安定化システム1は、交流電力系統9の有効電力変動、特に系統周波数の変動を抑制するためのシステムである。交流電力系統9には、自然エネルギーを利用した分散型電源として、例えば太陽光発電所5に設置された太陽電池モジュール50、および風力発電所6に設置された風力発電機60がそれぞれ電力変換器51および61を介して連系されている。また、交流電力系統9には、その他の発電所7の発電機(不図示)も連系されている。ここで、その他の発電所7としては、風速や天候などの自然条件による出力変動を伴わない火力発電所や原子力発電所、水力発電所などを含み得る。さらに、交流電力系統9には、需要家負荷8が接続されている。
 電力安定化システム1は、制御装置10、計器用変圧器15、電力貯蔵装置20、および電力変換器21を含んで構成されている。
 電力貯蔵装置20は、電力変換器21を介して交流電力系統9に連系されている。ここで、電力貯蔵装置20は、例えばフライホイール発電電動機や二次電池など、種類は問わず、電力を貯蔵し、交流電力系統9との間で電力の吸収または放出を行う能力を有していればよい。また、電力変換器21は、交流電力系統9と電力貯蔵装置20との間で吸収/放出される電力を相互に変換する機能を有している。
 制御装置10は、計器用変圧器15を介して交流電力系統9に接続されている。また、制御装置10には、交流電力系統9の状態を示す系統情報が入力されている。そして、制御装置10は、計器用変圧器15により得られた、または系統情報として得られた交流電力系統9の状態に応じて、交流電力系統9の有効電力変動(系統周波数の変動)を抑制すべく電力変換器21を制御する。
 図2は、交流電力系統9および電力安定化システム1の具体的な接続状態の一例を示している。
 図2においては、自然エネルギーを利用した分散型電源の一例として太陽電池モジュール50が示され、当該太陽電池モジュール50は、電力変換器51および(電力用)変圧器52を介して交流電力系統9に連系されている。また、その他の発電所7の発電機の一例として、複数の小容量ディーゼル発電機からなるディーゼル発電機群70が示され、当該ディーゼル発電機群70は、変圧器72を介して交流電力系統9に連系されている。さらに、需要家負荷8は、変圧器82を介して交流電力系統9に接続されている。
 図2においては、電力貯蔵装置20の一例として蓄電池が示され、当該蓄電池20は、電力変換器21および変圧器22を介して交流電力系統9に連系されている。また、制御装置10には、系統情報の一例として、各ノードの電圧・電流データまたは電力潮流データや、ディーゼル発電機群70の運転情報が入力されている。
<第1実施形態>
===制御装置の構成===
 以下、図3および図4(a)を参照して、第1の実施形態における制御装置の構成について説明する。なお、図3においては、電力線を実線で示し、信号線を破線で示している。
 図3に示されている制御装置10aは、周波数検出部111、周波数変動補償演算部112、周波数逸脱補償演算部113、周波数補償演算部114、および電力変換器制御部115を含んで構成されている。
 周波数検出部111は、計器用変圧器15を介して交流電力系統9に接続されている。また、周波数検出部111からは、周波数偏差Δfが出力されている。そして、周波数偏差Δfは、周波数変動補償演算部112および周波数逸脱補償演算部113に入力されている。さらに、周波数変動補償演算部112からは、周波数変動補償量Wf1が出力されている。一方、周波数逸脱補償演算部113からは、周波数逸脱補償量Wf2が出力されている。
 周波数補償演算部114には、周波数変動補償量Wf1および周波数逸脱補償量Wf2が入力されている。また、周波数補償演算部114から電力変換器制御部115には、周波数補償量Wfが入力されている。そして、電力変換器制御部115からは、電力変換器21の制御信号Cfが出力されている。
 図4(a)は、本実施形態における周波数変動補償演算部112、周波数逸脱補償演算部113、および周波数補償演算部114の構成を示している。
 図4(a)に示されている周波数変動補償演算部112は、ハイパスフィルタ1121、比例ゲイン1122、および位相補償部1123を含んで構成されている。また、周波数逸脱補償演算部113は、不感帯制御部1131および比例ゲイン1132を含んで構成されている。さらに、周波数補償演算部114は、加算部として構成されている。
 周波数変動補償演算部112のハイパスフィルタ1121には、周波数偏差Δfが入力されている。また、ハイパスフィルタ1121の出力値は、比例ゲイン1122に入力されている。ここで、比例ゲイン1122の値をKffとする。さらに、比例ゲイン1122の出力値は、位相補償部1123に入力されている。そして、位相補償部1123からは、周波数変動補償量Wf1が出力されている。
 周波数逸脱補償演算部113の不感帯制御部1131には、周波数偏差Δfが入力されている。また、不感帯制御部1131の出力値は、比例ゲイン1132に入力されている。ここで、比例ゲイン1132の値をKdfとする。そして、比例ゲイン1132からは、周波数逸脱補償量Wf2が出力されている。
 周波数補償演算部(加算部)114には、周波数変動補償量Wf1および周波数逸脱補償量Wf2が入力されている。そして、周波数補償演算部114からは、周波数補償量Wfが出力されている。
===制御装置の動作===
 次に、本実施形態における制御装置の動作について説明する。
 周波数検出部111は、計器用変圧器15により得られる交流電力系統9の電圧波形に基づいて、交流電力系統9の系統周波数を周波数計測値f1として検出する。そして、周波数検出部111は、周波数計測値f1と基準周波数f0との周波数偏差Δfを出力する。なお、周波数検出部111は、周波数計測値f1をそのまま出力してもよい。
 周波数変動補償演算部112は、まず、ハイパスフィルタ1121により、周波数偏差Δf(または周波数計測値f1)から系統周波数の変動成分を抽出する。そして、当該抽出した変動成分に比例ゲインKff(第1の比例ゲイン)を乗算し、位相補償部1123により位相補償(位相進み補償または位相遅れ補償)を行って、変動成分を補償する電力量に相当する周波数変動補償量Wf1を求める。ハイパスフィルタ1121の伝達関数をH1とし、位相補償部1123の伝達関数をH2とすると、周波数変動補償量Wf1は、
[数4]
Figure JPOXMLDOC01-appb-I000004
と表される。ここで、sはラプラス変換子であり、Fd(s)は周波数偏差Δfのラプラス変換である。また、Tf1,Tf2,Tf3は時定数である。
 周波数逸脱補償演算部113は、まず、不感帯制御部1131により、周波数偏差Δf(または周波数計測値f1)から、設定された不感帯を系統周波数が逸脱した逸脱量を抽出する。例えば、系統周波数の基準周波数f0=60Hzの場合に、不感帯を±0.15Hzに設定すると、周波数偏差Δfが±0.15Hzを逸脱した逸脱量(または周波数計測値f1が60Hz±0.15Hzを逸脱した逸脱量)を抽出する。そして、当該抽出した逸脱量に比例ゲインKdfを乗算して、逸脱量を補償する電力量に相当する周波数逸脱補償量Wf2を求める。
 周波数補償演算部(加算部)114は、周波数変動補償量Wf1と周波数逸脱補償量Wf2とを加算して周波数補償量Wfを求める。そして、電力変換器制御部115は、周波数補償量Wfに応じて制御信号Cfを出力し、電力変換器21の電力変換動作を制御する。
===周波数変動の抑制動作の具体例===
 以下、図5ないし図12を適宜参照して、本実施形態における制御装置による周波数変動の抑制動作の具体例について説明する。
 まず、比較例として、本実施形態の周波数逸脱補償演算部113による不感帯制御を行わない従来の補償演算部の構成を図5に示す。図5に示されている補償演算部132は、ハイパスフィルタ1021、比例ゲイン1022、および位相補償部1023を含んで構成され、本実施形態の周波数変動補償演算部112と同様の変動補償制御のみを行って、位相補償部1023の出力値をそのまま周波数補償量Wfとして出力している。
 ここで、太陽光発電の出力変動による電力系統の周波数変動の一例を図6に示す。図6においては、一例として、図2に示すシステムにおいて、時刻t1~t2の期間に交流電力系統に連系されている発電機容量(本例では、ディーゼル発電機群70の発電機容量)に対して5%の出力変動を太陽電池モジュール50が起こした場合の、太陽電池モジュール50の出力電力波形と電力系統周波数波形を示している。この場合において、ディーゼル発電機群70のガバナフリー制御では十分に周波数調整を行うことができず、交流電力系統9の系統周波数は、60Hz±0.2Hzに設定された目標範囲を大きく逸脱している。
 これに対して、図5に示した補償演算部132の出力値(周波数補償量Wf)に応じて電力変換器21を制御すると、例えば図7に示すように、蓄電池20による充放電(電力の吸収/放出)が行われ、周波数変動を目標範囲内に収めることができる。しかしながら、例えば図8に示すように、太陽電池モジュール50の出力変動が生じる前の系統周波数が60.1Hzであった場合には、図7の場合と同じ制御定数のままでは、周波数変動を目標範囲内に収めることができない。
 一方、補償演算部132の制御定数を変更することにより、例えば図9に示すように、系統周波数が60.1Hzの状態から太陽電池モジュール50の出力変動が生じても、周波数変動を目標範囲内に収めることができる。しかしながら、このように制御定数を設定した場合には、例えば図10に示すように、系統周波数が60.0Hzの状態から太陽電池モジュール50の出力変動が生じると、図9の場合と同様の蓄電池20による充放電が行われる。そのため、過剰に周波数変動を抑制することとなり、蓄電池20による充放電や電力変換器21による電力変換に伴う電力の損失が大きくなる。
 本実施形態の制御装置10aでは、周波数変動補償演算部112による変動補償制御と周波数逸脱補償演算部113による不感帯制御とを並列に用いている。そして、周波数変動補償量Wf1と周波数逸脱補償量Wf2とを加算した周波数補償量Wfに応じて電力変換器21を制御する。これにより、例えば図11に示すように、系統周波数が60.0Hzの状態から太陽電池モジュール50の出力変動が生じた場合には、過補償になることなく、周波数変動を抑制することができる。また、例えば図12に示すように、系統周波数が60.1Hzの状態から太陽電池モジュール50の出力変動が生じた場合には、補償不足になることなく、周波数変動を目標範囲内に収めることができる。
<第2実施形態>
===制御装置の構成===
 以下、図13および図4(b)を参照して、第2の実施形態における制御装置の構成について説明する。なお、図13においては、電力線を実線で示し、信号線を破線で示している。
 図13に示されている制御装置10bは、電力潮流検出部121、電力潮流変動補償演算部122、電力潮流逸脱補償演算部123、電力潮流補償演算部124、および電力変換器制御部125を含んで構成されている。
 電力潮流検出部121には、交流電力系統9の系統情報が入力されている。また、電力潮流検出部121からは、電力潮流偏差Δpが出力されている。そして、電力潮流偏差Δpは、電力潮流変動補償演算部122および電力潮流逸脱補償演算部123に入力されている。さらに、電力潮流変動補償演算部122からは、電力潮流変動補償量Wp1が出力されている。一方、電力潮流逸脱補償演算部123からは、電力潮流逸脱補償量Wp2が出力されている。
 電力潮流補償演算部124には、電力潮流変動補償量Wp1および電力潮流逸脱補償量Wp2が入力されている。また、電力潮流補償演算部124から電力変換器制御部125には、電力潮流補償量Wpが入力されている。そして、電力変換器制御部125からは、電力変換器21の制御信号Cpが出力されている。
 図4(b)は、本実施形態における電力潮流変動補償演算部122、電力潮流逸脱補償演算部123、および電力潮流補償演算部124の構成を示している。
 図4(b)に示されている電力潮流変動補償演算部122は、第1実施形態の周波数変動補償演算部112と同様に、ハイパスフィルタ1221、比例ゲイン1222、および位相補償部1223を含んで構成されている。また、電力潮流逸脱補償演算部123は、第1実施形態の周波数逸脱補償演算部113と同様に、不感帯制御部1231および比例ゲイン1232を含んで構成されている。さらに、電力潮流補償演算部124は、第1実施形態の周波数補償演算部114と同様に、加算部として構成されている。
 電力潮流変動補償演算部122のハイパスフィルタ1221には、電力潮流偏差Δpが入力されている。また、ハイパスフィルタ1221の出力値は、比例ゲイン1222に入力されている。さらに、比例ゲイン1222の出力値は、位相補償部1223に入力されている。そして、位相補償部1223からは、電力潮流変動補償量Wp1が出力されている。
 電力潮流逸脱補償演算部123の不感帯制御部1231には、電力潮流偏差Δpが入力されている。また、不感帯制御部1231の出力値は、比例ゲイン1232に入力されている。そして、比例ゲイン1232からは、電力潮流逸脱補償量Wp2が出力されている。
 電力潮流補償演算部(加算部)124には、電力潮流変動補償量Wp1および電力潮流逸脱補償量Wp2が入力されている。そして、電力潮流補償演算部124からは、電力潮流補償量Wpが出力されている。
===制御装置の動作===
 次に、本実施形態における制御装置の動作について説明する。
 電力潮流検出部121は、入力される系統情報に基づいて、交流電力系統9の電力潮流を電力潮流計測値PL1として検出する。例えば、系統情報として各ノードの電圧・電流データが入力され、これらのデータから電圧値,位相角や、さらに有効電力,無効電力などを求める。また、電力潮流検出部121には、各ノードの電力潮流データが直接入力されてもよい。そして、電力潮流検出部121は、電力潮流計測値PL1と電力潮流目標値PL0との電力潮流偏差Δpを出力する。なお、電力潮流検出部121は、電力潮流計測値PL1をそのまま出力してもよい。
 電力潮流変動補償演算部122は、まず、ハイパスフィルタ1221により、電力潮流偏差Δp(または電力潮流計測値PL1)から電力潮流の変動成分を抽出する。そして、当該抽出した変動成分に比例ゲインKfp(第2の比例ゲイン)を乗算し、位相補償部1223により位相補償を行って、変動成分を補償する電力量に相当する電力潮流変動補償量Wp1を求める。この電力潮流変動補償量Wp1は、上記の式(4)と同様に、
[数5]
Figure JPOXMLDOC01-appb-I000005
と表される。ここで、Pd(s)は電力潮流偏差Δpのラプラス変換である。また、Tp1,Tp2,Tp3は時定数である。
 電力潮流逸脱補償演算部123は、まず、不感帯制御部1231により、電力潮流偏差Δp(または電力潮流計測値PL1)から、設定された不感帯を電力潮流が逸脱した逸脱量を抽出する。そして、当該抽出した逸脱量に比例ゲインKdpを乗算して、逸脱量を補償する電力量に相当する電力潮流逸脱補償量Wp2を求める。
 電力潮流補償演算部(加算部)124は、電力潮流変動補償量Wp1と電力潮流逸脱補償量Wp2とを加算して電力潮流補償量Wpを求める。そして、電力変換器制御部125は、電力潮流補償量Wpに応じて制御信号Cpを出力し、電力変換器21の電力変換動作を制御する。
 本実施形態の制御装置10bでは、電力潮流変動補償演算部112による変動補償制御と電力潮流逸脱補償演算部113による不感帯制御とを並列に用いている。そして、電力潮流変動補償量Wp1と電力潮流逸脱補償量Wp2とを加算した電力潮流補償量Wpに応じて電力変換器21を制御する。これにより、補償不足や過補償になることなく、電力潮流の変動を抑制することができ、その結果、系統周波数の変動を抑制することができる。
<第3実施形態>
===制御装置の構成および動作===
 以下、図14を参照して、第3の実施形態における制御装置の構成および動作について説明する。なお、図14においては、電力線を実線で示し、信号線を破線で示している。
 図14に示されている制御装置10cは、第1実施形態における周波数補償量Wfを求める構成と、第2実施形態における電力潮流補償量Wpを求める構成との両方を備えている。すなわち、制御装置10cは、周波数検出部111、周波数変動補償演算部112、周波数逸脱補償演算部113、周波数補償演算部114、電力潮流検出部121、電力潮流変動補償演算部122、電力潮流逸脱補償演算部123、および電力潮流補償演算部124を含んで構成されている。そして、制御装置10cは、指令値生成部134および電力変換器制御部135をさらに含んで構成されている。
 指令値生成部134は、周波数補償量Wfおよび電力潮流補償量Wpに基づいて制御指令値W0を求める。そして、電力変換器制御部135は、制御指令値W0に応じて制御信号C0を出力し、電力変換器21の電力変換動作を制御する。
 本実施形態の制御装置10cでは、第1実施形態の周波数補償量Wfおよび第2実施形態の電力潮流補償量Wpの両方に応じて電力変換器21を制御する。これにより、補償不足や過補償になることなく、系統周波数の変動を抑制することができる。
 なお、指令値生成部134は、周波数補償量Wfまたは電力潮流補償量Wpの何れか一方を制御指令値W0として選択して出力することができる。また、指令値生成部134は、周波数補償量Wfおよび電力潮流補償量Wpに対して加算,減算,乗算,除算などの演算を行って制御指令値W0を算出してもよい。例えば、周波数補償量Wfおよび電力潮流補償量Wpの平均値を制御指令値W0として算出することができる。また、例えば、周波数補償量Wfおよび電力潮流補償量Wpの加重平均をとって制御指令値W0を算出してもよい。
<第4実施形態>
===制御装置の構成および動作===
 以下、図15および図16を参照して、第4の実施形態における制御装置の構成および動作について説明する。なお、図15(a)は、周波数偏差Δfから周波数補償量Wfを求める構成のみを示しており、当該構成は、第1または第3実施形態の制御装置に対して適用可能である。また、図15(b)は、電力潮流偏差Δpから電力潮流補償量Wpを求める構成のみを示しており、当該構成は、第2または第3実施形態の制御装置に対して適用可能である。
 本実施形態の制御装置は、図15(a)に示すように、図4(a)に示した第1または第3実施形態の構成に対して、逸脱回数カウント部1141および比例ゲイン設定部1143をさらに含んで構成されている。また、図15(b)に示すように、図4(b)に示した第2または第3実施形態の構成に対して、逸脱回数カウント部1241および比例ゲイン設定部1243をさらに含んで構成されている。
 不感帯制御部1131は、系統周波数が不感帯を逸脱すると、逸脱フラグFLを出力する。また、逸脱回数カウント部1141は、逸脱フラグFLに応じて、逸脱した回数を第1の逸脱回数CNとしてカウントする。そして、第1の比例ゲイン設定部1143は、所定期間における第1の逸脱回数CNに応じて、第1の比例ゲインKffを設定する。例えば図16に示すように、比例ゲイン設定部1143は、カウントした逸脱回数CNと設定される比例ゲインKffとを対応付けた設定テーブルを参照して、比例ゲインKffを設定する。
 不感帯制御部1231は、電力潮流が不感帯を逸脱すると、逸脱フラグFLを出力する。また、逸脱回数カウント部1241は、逸脱フラグFLに応じて、逸脱した回数を第2の逸脱回数CNとしてカウントする。そして、第2の比例ゲイン設定部1243は、所定期間における第2の逸脱回数CNに応じて、第2の比例ゲインKfpを設定する。例えば上記第1の比例ゲインKffと同様に、比例ゲイン設定部1243は、カウントした逸脱回数CNと設定される比例ゲインKfpとを対応付けた設定テーブルを参照して、比例ゲインKfpを設定する。
 本実施形態の制御装置では、不感帯を逸脱した逸脱回数CNに応じて変動補償制御の比例ゲインKffまたはKfpを設定する。これにより、例えば頻繁に不感帯を逸脱するような時間帯や曜日などに、比例ゲインKffまたはKfpを変更して変動補償制御の補償量を調整することができる。
<第5実施形態>
===制御装置の構成および動作===
 以下、図17および図18を参照して、第5の実施形態における制御装置の構成および動作について説明する。なお、図17(a)は、周波数偏差Δfから周波数補償量Wfを求める構成のみを示しており、当該構成は、第1または第3実施形態の制御装置に対して適用可能である。また、図17(b)は、電力潮流偏差Δpから電力潮流補償量Wpを求める構成のみを示しており、当該構成は、第2または第3実施形態の制御装置に対して適用可能である。
 本実施形態の制御装置は、図17(a)に示すように、図4(a)に示した第1または第3実施形態の構成に対して、逸脱時間計測部1142および比例ゲイン設定部1144をさらに含んで構成されている。また、図17(b)に示すように、図4(b)に示した第2または第3実施形態の構成に対して、逸脱時間計測部1242および比例ゲイン設定部1244をさらに含んで構成されている。
 不感帯制御部1131は、系統周波数が不感帯を逸脱すると、逸脱フラグFLを出力する。また、逸脱時間計測部1142は、逸脱フラグFLに応じて、逸脱した時間を第1の逸脱時間Tとして計測する。そして、第3の比例ゲイン設定部1144は、所定期間における第1の逸脱時間Tに応じて、第1の比例ゲインKffを設定する。例えば図18に示すように、比例ゲイン設定部1144は、計測した逸脱時間Tと設定される比例ゲインKffとを対応付けた設定テーブルを参照して、比例ゲインKffを設定する。
 不感帯制御部1231は、電力潮流が不感帯を逸脱すると、逸脱フラグFLを出力する。また、逸脱時間計測部1242は、逸脱フラグFLに応じて、逸脱した時間を第2の逸脱時間Tとして計測する。そして、第4の比例ゲイン設定部1244は、所定期間における第2の逸脱時間Tに応じて、第2の比例ゲインKfpを設定する。例えば上記第1の比例ゲインKffと同様に、比例ゲイン設定部1244は、計測した逸脱時間Tと設定される比例ゲインKfpとを対応付けた設定テーブルを参照して、比例ゲインKfpを設定する。
 本実施形態の制御装置では、不感帯を逸脱した逸脱時間Tに応じて変動補償制御の比例ゲインKffまたはKfpを設定する。これにより、第4実施形の制御装置と同様に、例えば頻繁に不感帯を逸脱するような時間帯や曜日などに、比例ゲインKffまたはKfpを変更して変動補償制御の補償量を調整することができる。
<第6実施形態>
===制御装置の構成および動作===
 以下、図19および図20を参照して、第6の実施形態における制御装置の構成および動作について説明する。なお、図19(a)は、周波数偏差Δfから周波数補償量Wfを求める構成のみを示しており、当該構成は、第1または第3実施形態の制御装置に対して適用可能である。また、図19(b)は、電力潮流偏差Δpから電力潮流補償量Wpを求める構成のみを示しており、当該構成は、第2または第3実施形態の制御装置に対して適用可能である。
 本実施形態の制御装置は、図19(a)に示すように、図4(a)に示した第1または第3実施形態の構成に対して、状態監視部101をさらに含んで構成されている。状態監視部101には、交流電力系統9の系統情報が入力されている。また、状態監視部101からは、ハイパスフィルタ1121、比例ゲイン1122、1132、位相補償部1123、および不感帯制御部1131の各部に対して、制御定数を変更する設定変更指令値が出力されている。また、図19(b)に示すように、図4(b)に示した第2または第3実施形態の構成に対して、状態監視部101をさらに含んで構成されている。状態監視部101には、交流電力系統9の系統情報が入力されている。また、状態監視部101からは、ハイパスフィルタ1221、比例ゲイン1222、1232、位相補償部1223、および不感帯制御部1231の各部に対して、制御定数を変更する設定変更指令値が出力されている。
 図20は、本実施形態における状態監視部101の構成を示している。図20に示されている状態監視部101は、系統周波数特性推定部1011および制御定数選択テーブル1012を含んで構成されている。系統周波数特性推定部1011は、系統情報として、例えば周波数計測値f1や、ディーゼル発電機群70の出力値、稼働台数などを取得し、当該取得した系統情報から交流電力系統9の系統周波数特性定数Kを推定する。そして、推定した系統周波数特性定数Kと設定される各部の制御定数とを対応付けた制御定数選択テーブル1012を参照して、各部の制御定数に対する設定変更指令値を出力する。
 本実施形態の制御装置では、交流電力系統9の系統情報に応じて、変動補償制御および/または不感帯制御の制御定数を変更する。これにより、例えばディーゼル発電機群70の出力値や稼働台数に応じて変化する交流電力系統9の周波数特性に応じて、変動補償制御および/または不感帯制御の補償量を調整することができる。なお、系統周波数特性推定部1011により系統周波数特性定数Kを推定する代わりに、周波数計測値f1や、ディーゼル発電機群70の出力値、稼働台数などの系統情報を各部の制御定数と直接対応付けた制御定数選択テーブルを用いることもできる。
 前述したように、制御装置10aを備えた電力安定化システムにおいて、交流電力系統9の系統周波数の変動成分を補償する電力量に相当する周波数変動補償量Wf1と、設定された不感帯を系統周波数が逸脱した逸脱量を補償する電力量に相当する周波数逸脱補償量Wf2とを求め、これらを加算した周波数補償量Wfに応じて、電力変換器21による交流電力系統9と電力貯蔵装置20との間での電力変換動作を制御することによって、補償不足や過補償になることなく、系統周波数の変動を抑制することができる。その結果、周波数変動を確実に目標範囲内に収めることができるとともに、充放電や電力変換に伴う電力の損失を抑えることができる。
 また、前述したように、制御装置10bを備えた電力安定化システムにおいて、交流電力系統9の電力潮流の変動成分を補償する電力量に相当する電力潮流変動補償量Wp1と、設定された不感帯を電力潮流が逸脱した逸脱量を補償する電力量に相当する電力潮流逸脱補償量Wp2とを求め、これらを加算した電力潮流補償量Wpに応じて、電力変換器21の電力変換動作を制御することによって、補償不足や過補償になることなく、電力潮流の変動を抑制することができ、その結果、系統周波数の変動を抑制することができる。
 また、制御装置10cを備えた電力安定化システムにおいて、周波数補償量Wfを求める構成と電力潮流補償量Wpを求める構成との両方を備えることによって、これらの何れか一方を選択した制御指令値W0に応じて電力変換器21を制御したり、これらに対して演算を行って算出した制御指令値W0に応じて電力変換器21を制御したりすることができる。
 また、図15に示した制御装置を備えた電力安定化システムにおいて、不感帯を逸脱した逸脱回数CNに応じて変動補償制御の比例ゲインKffまたはKfpを設定することによって、頻繁に不感帯を逸脱するような時間帯などに、比例ゲインKffまたはKfpを変更して変動補償制御の補償量を調整することができる。
 また、図17に示した制御装置を備えた電力安定化システムにおいて、不感帯を逸脱した逸脱時間Tに応じて変動補償制御の比例ゲインKffまたはKfpを設定することによって、頻繁に不感帯を逸脱するような時間帯などに、比例ゲインKffまたはKfpを変更して変動補償制御の補償量を調整することができる。
 また、図19に示した制御装置を備えた電力安定化システムにおいて、交流電力系統9の系統情報に応じて、変動補償制御および/または不感帯制御の制御定数を変更することによって、交流電力系統9の周波数特性に応じて、変動補償制御および/または不感帯制御の補償量を調整することができる。
 なお、上記実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物も含まれる。
  1     電力安定化システム
  5     太陽光発電所
  6     風力発電所
  7     発電所
  8     需要家負荷
  9     交流電力系統
  10(10a~10c) 制御装置
  15    計器用変圧器
  20    電力貯蔵装置(蓄電池)
  50    太陽電池モジュール
  60    風力発電機
  70    ディーゼル発電機群
  21、51、61 電力変換器
  22、52、72、82 (電力用)変圧器
  101   状態監視部
  111   周波数検出部
  112   周波数変動補償演算部
  113   周波数逸脱補償演算部
  114   周波数補償演算部(加算部)
  121   電力潮流検出部
  122   電力潮流変動補償演算部
  123   電力潮流逸脱補償演算部
  124   電力潮流補償演算部
  134   指令値生成部
  115、125、135 電力変換器制御部
  1011  系統周波数特性推定部
  1012  制御定数選択テーブル
  1121、1221 ハイパスフィルタ
  1123、1223 位相補償部
  1131、1231 不感帯制御部
  1122、1132、1222、1232 比例ゲイン
  1141、1241 逸脱回数カウント部
  1142、1242 逸脱時間計測部
  1143、1144、1243、1244 比例ゲイン設定部

Claims (13)

  1.  交流電力系統の有効電力変動を抑制する電力安定化システムであって、
     電力を貯蔵し、前記交流電力系統との間で電力の吸収または放出を行う電力貯蔵装置と、
     前記交流電力系統と前記電力貯蔵装置との間で吸収または放出される電力を相互に変換する電力変換器と、
     前記交流電力系統の有効電力変動に応じて前記電力変換器を制御する制御装置と、
     を備え、
     前記制御装置は、
     前記交流電力系統の系統周波数を周波数計測値として検出する周波数検出部と、
     前記周波数計測値に基づいて、前記系統周波数の変動成分を抽出し、当該抽出した変動成分を補償する電力量を周波数変動補償量として求める周波数変動補償演算部と、
     前記周波数計測値に基づいて、前記系統周波数に設定された不感帯を前記系統周波数が逸脱した逸脱量を抽出し、当該抽出した逸脱量を補償する電力量を周波数逸脱補償量として求める周波数逸脱補償演算部と、
     前記周波数変動補償量と前記周波数逸脱補償量とを加算して周波数補償量を求める周波数補償演算部と、
     前記周波数補償量に応じて前記電力変換器を制御する電力変換器制御部と、
     を有することを特徴とする電力安定化システム。
  2.  交流電力系統の有効電力変動を抑制する電力安定化システムであって、
     電力を貯蔵し、前記交流電力系統との間で電力の吸収または放出を行う電力貯蔵装置と、
     前記交流電力系統と前記電力貯蔵装置との間で吸収または放出される電力を相互に変換する電力変換器と、
     前記交流電力系統の有効電力変動に応じて前記電力変換器を制御する制御装置と、
     を備え、
     前記制御装置は、
     前記交流電力系統の電力潮流を電力潮流計測値として検出する電力潮流検出部と、
     前記電力潮流計測値に基づいて、前記電力潮流の変動成分を抽出し、当該抽出した変動成分を補償する電力量を電力潮流変動補償量として求める電力潮流変動補償演算部と、
     前記電力潮流計測値に基づいて、前記電力潮流に設定された不感帯を前記電力潮流が逸脱した逸脱量を抽出し、当該抽出した逸脱量を補償する電力量を電力潮流逸脱補償量として求める電力潮流逸脱補償演算部と、
     前記電力潮流変動補償量と前記電力潮流逸脱補償量とを加算して電力潮流補償量を求める電力潮流補償演算部と、
     前記電力潮流補償量に応じて前記電力変換器を制御する電力変換器制御部と、
     を有することを特徴とする電力安定化システム。
  3.  請求項1に記載の電力安定化システムであって、
     前記制御装置は、
     前記交流電力系統の電力潮流を電力潮流計測値として検出する電力潮流検出部と、
     前記電力潮流計測値に基づいて、前記電力潮流の変動成分を抽出し、当該抽出した変動成分を補償する電力量を電力潮流変動補償量として求める電力潮流変動補償演算部と、
     前記電力潮流計測値に基づいて、前記電力潮流に設定された不感帯を前記電力潮流が逸脱した逸脱量を抽出し、当該抽出した逸脱量を補償する電力量を電力潮流逸脱補償量として求める電力潮流逸脱補償演算部と、
     前記電力潮流変動補償量と前記電力潮流逸脱補償量とを加算して電力潮流補償量を求める電力潮流補償演算部と、
     をさらに有し、
     前記電力変換器制御部は、前記周波数補償量および前記電力潮流補償量に応じて前記電力変換器を制御することを特徴とする電力安定化システム。
  4.  請求項1または請求項3に記載の電力安定化システムであって、
     前記周波数変動補償演算部は、前記系統周波数の変動成分に第1の比例ゲインを乗算し、位相補償を行って前記周波数変動補償量を求め、
     前記制御装置は、
     前記系統周波数に設定された不感帯を前記系統周波数が逸脱した回数を第1の逸脱回数としてカウントする第1の逸脱回数カウント部と、
     前記第1の逸脱回数に応じて前記第1の比例ゲインを設定する第1の比例ゲイン設定部と、
     をさらに有することを特徴とする電力安定化システム。
  5.  請求項2または請求項3に記載の電力安定化システムであって、
     前記電力潮流変動補償演算部は、前記電力潮流の変動成分に第2の比例ゲインを乗算し、位相補償を行って前記電力潮流変動補償量を求め、
     前記制御装置は、
     前記電力潮流に設定された不感帯を前記電力潮流が逸脱した回数を第2の逸脱回数としてカウントする第2の逸脱回数カウント部と、
     前記第2の逸脱回数に応じて前記第2の比例ゲインを設定する第2の比例ゲイン設定部と、
     をさらに有することを特徴とする電力安定化システム。
  6.  請求項1または請求項3に記載の電力安定化システムであって、
     前記周波数変動補償演算部は、前記系統周波数の変動成分に第1の比例ゲインを乗算し、位相補償を行って前記周波数変動補償量を求め、
     前記制御装置は、
     前記系統周波数に設定された不感帯を前記系統周波数が逸脱した時間を第1の逸脱時間として計測する第1の逸脱時間計測部と、
     前記第1の逸脱時間に応じて前記第1の比例ゲインを設定する第3の比例ゲイン設定部と、
     をさらに有することを特徴とする電力安定化システム。
  7.  請求項2または請求項3に記載の電力安定化システムであって、
     前記電力潮流変動補償演算部は、前記電力潮流の変動成分に第2の比例ゲインを乗算し、位相補償を行って前記電力潮流変動補償量を求め、
     前記制御装置は、
     前記電力潮流に設定された不感帯を前記電力潮流が逸脱した時間を第2の逸脱時間として計測する第2の逸脱時間計測部と、
     前記第2の逸脱時間に応じて前記第2の比例ゲインを設定する第4の比例ゲイン設定部と、
     をさらに有することを特徴とする電力安定化システム。
  8.  請求項1または請求項3に記載の電力安定化システムであって、
     前記制御装置は、前記交流電力系統の状態を示す系統情報を取得し、当該取得した系統情報に基づいて、前記周波数変動補償演算部の制御定数を変更する状態監視部をさらに有することを特徴とする電力安定化システム。
  9.  請求項2または請求項3に記載の電力安定化システムであって、
     前記制御装置は、前記交流電力系統の状態を示す系統情報を取得し、当該取得した系統情報に基づいて、前記電力潮流変動補償演算部の制御定数を変更する状態監視部をさらに有することを特徴とする電力安定化システム。
  10.  請求項1または請求項3に記載の電力安定化システムであって、
     前記制御装置は、前記交流電力系統の状態を示す系統情報を取得し、当該取得した系統情報に基づいて、前記周波数逸脱補償演算部の制御定数を変更する状態監視部をさらに有することを特徴とする電力安定化システム。
  11.  請求項2または請求項3に記載の電力安定化システムであって、
     前記制御装置は、前記交流電力系統の状態を示す系統情報を取得し、当該取得した系統情報に基づいて、前記電力潮流逸脱補償演算部の制御定数を変更する状態監視部をさらに有することを特徴とする電力安定化システム。
  12.  電力を貯蔵し、交流電力系統との間で電力の吸収または放出を行う電力貯蔵装置と、
     前記交流電力系統と前記電力貯蔵装置との間で吸収または放出される電力を相互に変換する電力変換器と、
     ともに用いられ、前記交流電力系統の有効電力変動を抑制すべく前記電力変換器を制御する制御装置であって、
     前記交流電力系統の系統周波数を周波数計測値として検出する周波数検出部と、
     前記周波数計測値に基づいて、前記系統周波数の変動成分を抽出し、当該抽出した変動成分を補償する電力量を周波数変動補償量として求める周波数変動補償演算部と、
     前記周波数計測値に基づいて、前記系統周波数に設定された不感帯を前記系統周波数が逸脱した逸脱量を抽出し、当該抽出した逸脱量を補償する電力量を周波数逸脱補償量として求める周波数逸脱補償演算部と、
     前記周波数変動補償量と前記周波数逸脱補償量とを加算して周波数補償量を求める周波数補償演算部と、
     前記周波数補償量に応じて前記電力変換器を制御する電力変換器制御部と、
     を有することを特徴とする制御装置。
  13.  電力を貯蔵し、交流電力系統との間で電力の吸収または放出を行う電力貯蔵装置と、
     前記交流電力系統と前記電力貯蔵装置との間で吸収または放出される電力を相互に変換する電力変換器と、
     ともに用いられ、前記交流電力系統の有効電力変動を抑制すべく前記電力変換器を制御する制御装置であって、
     前記交流電力系統の電力潮流を電力潮流計測値として検出する電力潮流検出部と、
     前記電力潮流計測値に基づいて、前記電力潮流の変動成分を抽出し、当該抽出した変動成分を補償する電力量を電力潮流変動補償量として求める電力潮流変動補償演算部と、
     前記電力潮流計測値に基づいて、前記電力潮流に設定された不感帯を前記電力潮流が逸脱した逸脱量を抽出し、当該抽出した逸脱量を補償する電力量を電力潮流逸脱補償量として求める電力潮流逸脱補償演算部と、
     前記電力潮流変動補償量と前記電力潮流逸脱補償量とを加算して電力潮流補償量を求める電力潮流補償演算部と、
     前記電力潮流補償量に応じて前記電力変換器を制御する電力変換器制御部と、
     を有することを特徴とする制御装置。
PCT/JP2014/063506 2013-06-05 2014-05-21 電力安定化システムおよび制御装置 WO2014196364A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015521379A JP6020721B2 (ja) 2013-06-05 2014-05-21 電力安定化システムおよび制御装置
PH12015501299A PH12015501299A1 (en) 2013-06-05 2015-06-08 Power stabilization system and control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013118923 2013-06-05
JP2013-118923 2013-06-05

Publications (1)

Publication Number Publication Date
WO2014196364A1 true WO2014196364A1 (ja) 2014-12-11

Family

ID=52008016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063506 WO2014196364A1 (ja) 2013-06-05 2014-05-21 電力安定化システムおよび制御装置

Country Status (3)

Country Link
JP (1) JP6020721B2 (ja)
PH (1) PH12015501299A1 (ja)
WO (1) WO2014196364A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108964025A (zh) * 2018-06-29 2018-12-07 国电南瑞科技股份有限公司 一种含多条直流线路的异步电网agc控制方法
JP2019003454A (ja) * 2017-06-16 2019-01-10 東京電力ホールディングス株式会社 交直変換器制御装置
JPWO2018139004A1 (ja) * 2017-01-24 2019-11-14 住友電気工業株式会社 エネルギー貯蔵システムおよび変動電力安定利用システム
EP3425760A4 (en) * 2016-03-04 2019-11-20 Kabushiki Kaisha Toshiba VOLTAGE BLIND POWER CONTROL DEVICE AND VOLTAGE BLIND POWER CONTROL PROGRAM
JP2021035108A (ja) * 2019-08-21 2021-03-01 東京電力ホールディングス株式会社 慣性推定装置、慣性推定プログラム及び慣性推定方法
JP2021052546A (ja) * 2019-09-26 2021-04-01 東京電力ホールディングス株式会社 ネガワット取引支援装置、ネガワット取引システムおよびネガワット取引方法
JP2021052545A (ja) * 2019-09-26 2021-04-01 東京電力ホールディングス株式会社 ネガワット取引支援装置、ネガワット取引システムおよびネガワット取引方法
WO2022264303A1 (ja) * 2021-06-16 2022-12-22 東芝三菱電機産業システム株式会社 無停電電源装置
JP7411226B2 (ja) 2020-07-29 2024-01-11 ネクストエナジー・アンド・リソース株式会社 出力制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133835A (ja) * 1986-11-21 1988-06-06 株式会社日立製作所 電力系統安定化装置
JP2007129845A (ja) * 2005-11-04 2007-05-24 Mitsubishi Electric Corp 電力品質維持制御装置
JP2007129803A (ja) * 2005-11-01 2007-05-24 Fuji Electric Systems Co Ltd 電力貯蔵装置を用いた電力安定化システム、その制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133835A (ja) * 1986-11-21 1988-06-06 株式会社日立製作所 電力系統安定化装置
JP2007129803A (ja) * 2005-11-01 2007-05-24 Fuji Electric Systems Co Ltd 電力貯蔵装置を用いた電力安定化システム、その制御装置
JP2007129845A (ja) * 2005-11-04 2007-05-24 Mitsubishi Electric Corp 電力品質維持制御装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3425760A4 (en) * 2016-03-04 2019-11-20 Kabushiki Kaisha Toshiba VOLTAGE BLIND POWER CONTROL DEVICE AND VOLTAGE BLIND POWER CONTROL PROGRAM
JP7304010B2 (ja) 2017-01-24 2023-07-06 住友電気工業株式会社 エネルギー貯蔵システムおよび変動電力安定利用システム
JPWO2018139004A1 (ja) * 2017-01-24 2019-11-14 住友電気工業株式会社 エネルギー貯蔵システムおよび変動電力安定利用システム
JP7228126B2 (ja) 2017-01-24 2023-02-24 住友電気工業株式会社 エネルギー貯蔵システムおよび変動電力安定利用システム
JP2022097523A (ja) * 2017-01-24 2022-06-30 住友電気工業株式会社 エネルギー貯蔵システムおよび変動電力安定利用システム
JP2019003454A (ja) * 2017-06-16 2019-01-10 東京電力ホールディングス株式会社 交直変換器制御装置
CN108964025B (zh) * 2018-06-29 2021-07-02 国电南瑞科技股份有限公司 一种含多条直流线路的异步电网agc控制方法
CN108964025A (zh) * 2018-06-29 2018-12-07 国电南瑞科技股份有限公司 一种含多条直流线路的异步电网agc控制方法
JP2021035108A (ja) * 2019-08-21 2021-03-01 東京電力ホールディングス株式会社 慣性推定装置、慣性推定プログラム及び慣性推定方法
JP7358836B2 (ja) 2019-08-21 2023-10-11 東京電力ホールディングス株式会社 慣性推定装置、慣性推定プログラム及び慣性推定方法
JP2021052545A (ja) * 2019-09-26 2021-04-01 東京電力ホールディングス株式会社 ネガワット取引支援装置、ネガワット取引システムおよびネガワット取引方法
JP2021052546A (ja) * 2019-09-26 2021-04-01 東京電力ホールディングス株式会社 ネガワット取引支援装置、ネガワット取引システムおよびネガワット取引方法
JP7331587B2 (ja) 2019-09-26 2023-08-23 東京電力ホールディングス株式会社 ネガワット取引支援装置、ネガワット取引システムおよびネガワット取引方法
JP7412674B2 (ja) 2019-09-26 2024-01-15 東京電力ホールディングス株式会社 ネガワット取引支援装置、ネガワット取引システムおよびネガワット取引方法
JP7411226B2 (ja) 2020-07-29 2024-01-11 ネクストエナジー・アンド・リソース株式会社 出力制御装置
WO2022264303A1 (ja) * 2021-06-16 2022-12-22 東芝三菱電機産業システム株式会社 無停電電源装置
JP7218453B1 (ja) * 2021-06-16 2023-02-06 東芝三菱電機産業システム株式会社 無停電電源装置

Also Published As

Publication number Publication date
JPWO2014196364A1 (ja) 2017-02-23
JP6020721B2 (ja) 2016-11-02
PH12015501299A1 (en) 2015-08-24

Similar Documents

Publication Publication Date Title
JP6020721B2 (ja) 電力安定化システムおよび制御装置
JP4759587B2 (ja) 風力発電所
EP2306001B1 (en) Multi-use energy storage for renewable sources
US8334606B2 (en) Wind power generation system of a type provided with power storage system
RU2597235C2 (ru) Способ управления устройством для ввода электрического тока в сеть электроснабжения
JP5647329B2 (ja) 新エネルギー発電所群の制御システム、およびその制御方法
US20150008743A1 (en) Power Supply System
JP6232899B2 (ja) 電力補償装置
JP5501183B2 (ja) 蓄電装置を備えた自然エネルギー利用発電所
KR101034276B1 (ko) 출력안정화형 풍력발전 시스템 및 그 제어방법
WO2013140916A1 (ja) 系統安定化装置
JP2011055671A (ja) 分散型電源の制御方法
EP3018787A1 (en) Microgrid control device and control method therefor
JPWO2012026014A1 (ja) 風力発電装置及び出力制御方法
KR101092219B1 (ko) 풍력 발전 설비 출력 안정화 방법 및 시스템
AU2011355888A1 (en) Photovoltaic system and power supply system
CN106159980B (zh) 发电系统和能量管理方法
JP2006042458A (ja) 周波数制御装置及び系統周波数制御方法
CN107949968B (zh) 用于馈入电功率的方法
JP5190879B2 (ja) 風力発電機の出力電力変動抑制装置
JP2017099235A (ja) 電力変換システム及び制御装置
JP2016208723A (ja) 電力系統の需給調整方式
JP2011141969A (ja) ナトリウム−硫黄電池システム
JP2018023262A (ja) 電力供給システム
JP6032365B2 (ja) 電力安定化システムおよび制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807531

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12015501299

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 2015521379

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201503483

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14807531

Country of ref document: EP

Kind code of ref document: A1