WO2014196293A1 - Sheet-form resin composition, tape-integrated-sheet-form resin composition for back-surface polishing, dicing-tape-integrated-sheet-form resin composition, method for manufacturing semiconductor device, and semiconductor device - Google Patents

Sheet-form resin composition, tape-integrated-sheet-form resin composition for back-surface polishing, dicing-tape-integrated-sheet-form resin composition, method for manufacturing semiconductor device, and semiconductor device Download PDF

Info

Publication number
WO2014196293A1
WO2014196293A1 PCT/JP2014/062074 JP2014062074W WO2014196293A1 WO 2014196293 A1 WO2014196293 A1 WO 2014196293A1 JP 2014062074 W JP2014062074 W JP 2014062074W WO 2014196293 A1 WO2014196293 A1 WO 2014196293A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
sheet
tape
shaped resin
grinding
Prior art date
Application number
PCT/JP2014/062074
Other languages
French (fr)
Japanese (ja)
Inventor
博行 花園
尚英 高本
浩介 盛田
章洋 福井
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201480031893.4A priority Critical patent/CN105264652A/en
Priority to KR1020157035386A priority patent/KR20160016854A/en
Publication of WO2014196293A1 publication Critical patent/WO2014196293A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/20Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself
    • C09J2301/208Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself the adhesive layer being constituted by at least two or more adjacent or superposed adhesive layers, e.g. multilayer adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2479/00Presence of polyamine or polyimide
    • C09J2479/08Presence of polyamine or polyimide polyimide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68377Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support with parts of the auxiliary support remaining in the finished device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • H01L2221/68386Separation by peeling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/141Disposition
    • H01L2224/1418Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/14181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/27003Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for holding or transferring the layer preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2743Manufacturing methods by blanket deposition of the material of the layer connector in solid form
    • H01L2224/27436Lamination of a preform, e.g. foil, sheet or layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • H01L2224/73104Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83193Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83862Heat curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9211Parallel connecting processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector

Definitions

  • the present invention relates to a sheet-shaped resin composition, a back-grinding tape-integrated sheet-shaped resin composition, a dicing tape-integrated sheet-shaped resin composition, a method for manufacturing a semiconductor device, and a semiconductor device.
  • Au—Sn (solder) bonding or Au—Au bonding has been used as electrical bonding between an adherend and a semiconductor element in flip-chip mounting.
  • Au—Cu is used for the purpose of cost reduction and the like. Bonding using Cu (copper) as an electrode, such as bonding or Cu—Cu bonding, has been studied (for example, see Patent Document 1).
  • the copper electrodes need to be treated at a higher temperature than before. For this reason, when underfilling is performed, durability at high temperatures is also required for materials used for underfilling.
  • the present invention has been made in view of the above-mentioned problems, and the purpose thereof is a sheet-shaped resin composition having high-temperature durability, a tape-integrated sheet-shaped resin composition for backside grinding provided with the sheet-shaped resin composition, A dicing tape-integrated sheet-shaped resin composition comprising the sheet-shaped resin composition, a semiconductor device manufacturing method using the sheet-shaped resin composition, and a semiconductor device manufactured using the sheet-shaped resin composition It is to provide.
  • the inventors of the present application have studied a sheet-shaped resin composition in order to solve the conventional problems. As a result, when the weight loss rate due to heating is within a specific range, the moisture absorption rate is within a specific range, and a specific organic acid is included within a specific range, the durability at high temperature is excellent, and It has been found that the sheet can be suitably used as a fill sheet, and the present invention has been completed.
  • the sheet-shaped resin composition according to the present invention is A sheet-like resin composition used for interface sealing between an adherend and a semiconductor element flip-chip connected on the adherend,
  • the weight loss rate when the temperature is raised from 25 ° C. to 300 ° C. at a rate of temperature increase of 10 ° C./min is 2% or less,
  • the moisture absorption by the Karl Fischer method is 1% or less,
  • An organic acid having an acid dissociation constant in the range of 3.0 to 5.0 is contained in a range of 1 wt% to 10 wt% with respect to the entire sheet-shaped resin composition.
  • the weight reduction rate when the temperature is raised from 25 ° C. to 300 ° C. at a rate of temperature increase of 10 ° C./min is 2% or less, volatile components are suppressed, and voids are generated. Reduced. Therefore, it is excellent in durability at high temperatures.
  • the moisture absorption rate by the Karl Fischer method is 1% or less, the generation of voids between the adherend and the sheet-like resin composition or between the semiconductor element and the sheet-like resin composition is suppressed.
  • the acid dissociation constant contains the organic acid in the range of 3.0 or more and 5.0 or less within the range of 1 to 10 weight% with respect to the whole sheet-like resin composition. To do.
  • an organic acid having an acid dissociation constant of 3.0 or more is used, the acidity in the resin composition is increased, and adverse effects on physical properties such as deterioration in storage stability can be suppressed. Moreover, since an acid dissociation constant of 5.0 or less is used as the organic acid, the acidity is sufficient, and the oxide film or rust preventive film on the electrode surface can be suitably removed. In addition, since the organic acid having an acid dissociation constant in the range of 3.0 or more and 5.0 or less is contained in an amount of 1% by weight or more with respect to the whole sheet-shaped resin composition, the organic acid is sufficiently distributed or the surface is oxidized. A film or a rust preventive film can be suitably removed.
  • the bad influence to physical properties such as a storage stability deterioration, can be suppressed. That is, since an organic acid having an acid dissociation constant in the range of 3.0 to 5.0 is contained in the range of 1 wt% to 10 wt% with respect to the entire sheet-shaped resin composition, An oxide or a rust preventive film can be suitably removed.
  • the weight loss rate by heating exists in the said numerical range
  • a moisture absorption rate exists in the said numerical range
  • an acid dissociation constant exists in the range of 3.0 or more and 5.0 or less. Since an organic acid is contained within the above numerical range, it is excellent in durability at high temperatures and can be suitably used as a sheet for underfill.
  • the sheet-like resin composition has a weight loss rate of 2% or less when the temperature is raised from 25 ° C. to 300 ° C. at a rate of temperature rise of 10 ° C./min, and the moisture absorption rate by the Karl Fischer method is 1%.
  • an organic acid having an acid dissociation constant in the range of 3.0 to 5.0 is contained within the above numerical range, it is excellent in durability at high temperatures and is a sheet for underfill. Can be suitably used. Therefore, if the sheet-shaped resin composition is used, the reliability of the flip chip type semiconductor device using the copper electrode for bonding the adherend and the semiconductor element can be improved.
  • the sheet-shaped resin composition preferably contains a polyimide resin and an inorganic filler.
  • the heat resistance can be further improved.
  • the sheet-shaped resin composition preferably contains a polyimide resin, an epoxy resin, and an inorganic filler.
  • the heat resistance can be further improved in a form having an epoxy resin.
  • the tape-integrated sheet-like resin composition for backside grinding which concerns on this invention is equipped with the sheet-like resin composition and the backside grinding tape as described above, The said backside grinding tape
  • the sheet-shaped resin composition is provided on the top.
  • a dicing tape-integrated sheet-shaped resin composition according to the present invention comprises the sheet-shaped resin composition described above and a dicing tape in order to solve the above-mentioned problems, and the sheet-shaped resin is provided on the dicing tape.
  • a composition is provided.
  • a method for manufacturing a semiconductor device is a method for manufacturing a semiconductor device using the tape-integrated sheet-like resin composition for backside grinding described above, A laminating step of laminating the sheet surface resin composition of the circuit surface on which the connecting member of the semiconductor wafer is formed and the tape-integrated sheet resin composition for back grinding, A grinding step of grinding the back surface of the semiconductor wafer; A wafer fixing step of attaching a dicing tape to the back surface of the semiconductor wafer after back surface grinding; A peeling step for peeling the back surface grinding tape; A dicing step of dicing the semiconductor wafer to form a semiconductor chip with a sheet-shaped resin composition; A pick-up step for peeling the semiconductor chip with the sheet-shaped resin composition from the dicing tape; A connecting step of electrically connecting the semiconductor chip and the adherend via the connecting member while filling a space between the adherend and the semiconductor chip with the sheet-shaped resin composition; and It includes a curing step of curing the sheet-shaped resin composition.
  • a method for manufacturing a semiconductor device is a method for manufacturing a semiconductor device using the dicing tape-integrated sheet-shaped resin composition described above, A laminating step of laminating the semiconductor wafer on which a circuit surface having a connection member is formed and the sheet-like resin composition of the dicing tape-integrated sheet-like resin composition, A dicing step of dicing the semiconductor wafer to form a semiconductor chip with a sheet-shaped resin composition; A pick-up step for peeling the semiconductor chip with the sheet-shaped resin composition from the dicing tape; A connection step of electrically connecting the semiconductor chip and the adherend via the connection member while filling a space between the adherend and the semiconductor chip with a sheet-shaped resin composition; and It includes a curing step of curing the sheet-shaped resin composition.
  • the sheet-like resin composition has a weight loss rate of 2% or less when heated from 25 ° C. to 300 ° C. at a temperature increase rate of 10 ° C./min, and a moisture absorption rate by the Karl Fischer method of 1% or less. And an organic acid having an acid dissociation constant in the range of 3.0 or more and 5.0 or less is contained within the above numerical range. Therefore, since the sheet-shaped resin composition has heat resistance, it is possible to suppress thermal decomposition of the sheet-shaped resin composition due to heat at the time of manufacturing the semiconductor device, and voids caused by outgas Occurrence can be suppressed.
  • the present invention also relates to a semiconductor device manufactured using the sheet-shaped resin composition described above. Moreover, this invention relates to the semiconductor device manufactured using the tape-integrated sheet-like resin composition for back grinding as described above. The present invention also relates to a semiconductor device manufactured using the dicing tape-integrated sheet-shaped resin composition described above.
  • the sheet-like resin composition has a weight loss rate of 2% or less when heated from 25 ° C. to 300 ° C. at a temperature increase rate of 10 ° C./min, and a moisture absorption rate by the Karl Fischer method of 1% or less. And an organic acid having an acid dissociation constant in the range of 3.0 or more and 5.0 or less is contained within the above numerical range. Therefore, since the sheet-shaped resin composition has heat resistance, it is possible to suppress thermal decomposition of the sheet-shaped resin composition due to heat at the time of manufacturing the semiconductor device, and voids caused by outgas Occurrence can be suppressed. As a result, the reliability of the semiconductor device can be improved.
  • a sheet-shaped resin composition that is excellent in durability at high temperatures and can be suitably used as a sheet for underfill, a dicing tape-integrated sheet-shaped resin composition comprising the sheet-shaped resin composition, The manufacturing method of the semiconductor device using the said sheet-like resin composition and the semiconductor device manufactured using the said sheet-like resin composition can be provided.
  • FIG. 1 It is a cross-sectional schematic diagram of the tape-integrated sheet-like resin composition for back surface grinding which concerns on one Embodiment of this invention. It is a figure for demonstrating the manufacturing method of the semiconductor device using the tape-integrated sheet-like resin composition for back grinding shown in FIG. It is a figure for demonstrating the manufacturing method of the semiconductor device using the tape-integrated sheet-like resin composition for back grinding shown in FIG. It is a figure for demonstrating the manufacturing method of the semiconductor device using the tape-integrated sheet-like resin composition for back grinding shown in FIG. It is a figure for demonstrating the manufacturing method of the semiconductor device using the tape-integrated sheet-like resin composition for back grinding shown in FIG. It is a figure for demonstrating the manufacturing method of the semiconductor device using the tape-integrated sheet-like resin composition for back grinding shown in FIG.
  • FIG. 1 is a schematic cross-sectional view of a tape-integrated sheet-like resin composition for backside grinding according to an embodiment of the present invention.
  • the back-grinding tape-integrated sheet-shaped resin composition 10 according to this embodiment has a structure in which a sheet-shaped resin composition 2 is laminated on a back-grinding tape 1.
  • the back grinding tape 1 has a structure in which an adhesive layer 1b is laminated on a substrate 1a.
  • the sheet-like resin composition 2 is laminated on the pressure-sensitive adhesive layer 1 b of the back grinding tape 1.
  • the sheet-like resin composition 2 does not need to be laminated
  • stacked on the tape 1 for back surface grinding is demonstrated about the tape-integrated sheet-like resin composition 10 for back surface grinding
  • the sheet-like resin composition 2 should be used alone.
  • the sheet-shaped resin composition 2 can be used by being bonded onto the pressure-sensitive adhesive layer 1b of the back grinding tape 1.
  • the other surface can be bonded to the pressure-sensitive adhesive layer 1 b of the back surface grinding tape 1 and used.
  • the sheet-like resin composition 2 is used for interface sealing between the adherend 6 and the semiconductor chip 5 flip-chip connected on the adherend 6 (see FIG. 2G).
  • the sheet-like resin composition 2 has a weight reduction rate of 2% or less when the temperature is raised from 25 ° C. to 300 ° C. at a rate of temperature increase of 10 ° C./min, and is 1.0% or less. More preferred. Moreover, although the said weight decreasing rate is so preferable that it is small, it is 0.05% or more and 0.5% or less, for example. Since the weight reduction rate when the temperature is raised from 25 ° C. to 300 ° C. at a rate of temperature increase of 10 ° C./min is 2% or less, the volatile components are suppressed and the generation of voids is reduced. Therefore, it is excellent in durability at high temperatures.
  • the sheet-like resin composition 2 has a moisture absorption rate by the Karl Fischer method of 1% or less, preferably 0.8% or less, and more preferably 0.5% or less. Moreover, although the said moisture absorption rate is so preferable that it is small, it is 0.05% or more, for example. Since the moisture absorption rate by the Karl Fischer method of the sheet-shaped resin composition 2 is 1% or less, it is between the adherend 6 and the sheet-shaped resin composition 2 or between the semiconductor chip 5 and the sheet-shaped resin composition 2. It is possible to suppress the generation of voids.
  • the moisture absorption rate by the Karl Fischer method according to the present invention is a value measured under the conditions described in the examples.
  • the sheet-like resin composition 2 contains an organic acid having an acid dissociation constant in the range of 3.0 or more and 5.0 or less within a range of 1% by weight or more and 10% by weight or less with respect to the entire sheet-like resin composition. To do.
  • the content of the organic acid is preferably 1.5% by weight or more and 6% by weight or less. Since an organic acid having an acid dissociation constant of 3.0 or more is used, the acidity in the resin composition is increased, and adverse effects on physical properties such as deterioration in storage stability can be suppressed. Moreover, since an acid dissociation constant of 5.0 or less is used as the organic acid, the acidity is sufficient, and the oxide film or rust preventive film on the electrode surface can be suitably removed.
  • the organic acid having an acid dissociation constant in the range of 3.0 or more and 5.0 or less is contained in an amount of 1% by weight or more with respect to the whole sheet-shaped resin composition, the organic acid is sufficiently distributed or the surface is oxidized. A film or a rust preventive film can be suitably removed. Moreover, since it contains at 10 weight% or less, the bad influence to physical properties, such as a storage stability deterioration, can be suppressed. That is, since the organic acid having an acid dissociation constant in the range of 3.0 or more and 5.0 or less is contained in the range of 1% by weight or more and 10% by weight or less with respect to the entire sheet-shaped resin composition 2, the electrode surface The oxide or rust preventive film can be suitably removed.
  • the weight reduction rate due to heating is in the above numerical range
  • the moisture absorption rate is in the above numerical range
  • the acid dissociation constant is 3.0 or more and 5.0 or less. Since the organic acid in the range is contained within the above numerical range, it is excellent in durability at high temperatures and can be suitably used as a sheet for underfill.
  • the organic acid is not particularly limited as long as it has an acid dissociation constant in the range of 3.0 or more and 5.0 or less.
  • o-anisic acid (4.09), m-anisic acid ( 4.09), p-anisic acid (4.4), benzylic acid (3.1), acetylsalicylic acid (3.5), 2-phenoxybenzoic acid (3.53), formic acid (3.75), ascorbine
  • examples include acid (4.17), benzoic acid (4.2), fluorescein (4.31), camphoric acid (4.71), and acetic acid (4.75).
  • the parenthesis shows the acid dissociation constant of each organic acid.
  • the sheet-like resin composition 2 has a weight reduction rate due to heating within the above numerical range, a moisture absorption rate within the above numerical range, and an acid dissociation constant within a range of 3.0 to 5.0.
  • the forming material is not particularly limited, but polyimide resin, polyamideimide resin, silicone resin, acrylic resin, fluorine resin, epoxy resin, urethane resin, rubber resin, etc. Can be mentioned.
  • the sheet-like resin composition 2 preferably has an insulating property.
  • the polyimide resin can be generally obtained by imidizing (dehydrating and condensing) a polyamic acid that is a precursor thereof.
  • a method for imidizing the polyamic acid for example, a conventionally known heat imidization method, azeotropic dehydration method, chemical imidization method and the like can be employed. Of these, the heating imidization method is preferable.
  • the heat imidization method it is preferable to perform heat treatment under a nitrogen atmosphere or an inert atmosphere such as a vacuum in order to prevent deterioration of the polyimide resin due to oxidation.
  • the polyamic acid can be obtained by charging an acid dianhydride and a diamine so as to have a substantially equimolar ratio in an appropriately selected solvent and reacting them in an organic solvent.
  • the acid dianhydride examples include pyromellitic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid Dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) propane Dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (2,3
  • diamine to be reacted with the acid dianhydride examples include 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenylmethane, benzidine, 3,3′-dichlorobenzidine, 4,4′-diamino.
  • 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane and bisaminopropyltetramethyldisiloxane are used from the viewpoint of keeping the weight loss rate and moisture absorption rate within the above specific ranges by heating. preferable.
  • the organic solvent used in the reaction of the acid dianhydride and the diamine does not react with the acid dianhydride and the diamine, and at least one of the reaction components, preferably both, and the product polyamic acid.
  • the organic solvent (organic polar solvent) that acts as a solvent is not particularly limited.
  • Examples of the solvent for reacting the acid anhydride with the diamine include N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N, N-dimethylformamide, and cyclopentanone. These may be used alone or in combination. Further, in order to adjust the solubility of raw materials and resins, a nonpolar solvent such as toluene or xylene may be appropriately mixed and used.
  • a curing accelerator (imidation catalyst) may be added to the polyamic acid solution for the purpose of effectively imidizing.
  • the curing accelerator include aliphatic tertiary amines, aromatic tertiary amines, and heterocyclic tertiary amines. Among them, those selected from heterocyclic tertiary amines can be particularly preferably used.
  • quinoline, isoquinoline, ⁇ -picoline, pyridine and the like are preferably used. More specifically, 1-ethyl-3,5-dimethoxycarbonyl-4- (2-nitrophenyl) -1,4-dihumanlopyridine may be mentioned.
  • the curing accelerator may be added in a molar ratio of 0.2 to 2.0 times, more preferably 0.3 to 1.5 times with respect to 1 mol of polyamic acid. If the amount is too small, the imidization rate tends to be smaller than the preferred range, and if the amount is too large, the curing becomes fast and it becomes difficult to cast on the support. Further, an imidization retarder such as acetylacetone may be used in combination as long as the physical properties are not affected.
  • the sheet-like resin composition 2 may contain an epoxy resin.
  • the epoxy resin is not particularly limited as long as it is generally used as an adhesive composition.
  • An epoxy resin such as a nurate type or a glycidylamine type is used. These can be used alone or in combination of two or more.
  • the sheet-like resin composition 2 may contain an inorganic filler.
  • the inorganic filler include silica, clay, gypsum, calcium carbonate, barium sulfate, alumina oxide, beryllium oxide, silicon carbide, silicon nitride, and other ceramics, aluminum, copper, silver, gold, nickel, chromium, lead,
  • examples include various inorganic powders made of metals such as tin, zinc, palladium, solder, alloys, and other carbon.
  • an insulating one it is preferable to use an insulating one.
  • the content of the inorganic filler is preferably 10% by weight or more and 80% by weight or less, and more preferably 30% by weight or more and 60% by weight or less, based on the entire solid content.
  • the content of the inorganic filler is preferably 10% by weight or more and 80% by weight or less, and more preferably 30% by weight or more and 60% by weight or less, based on the entire solid content.
  • the sheet-shaped resin composition 2 is produced as follows, for example. First, a solution containing the polyamic acid and a curing accelerator added as necessary is prepared. Next, it stirs, heating as needed, Then, imide resin is precipitated by throwing in water. Next, the sheet resin composition 2 is obtained by dissolving the imide resin, if necessary, the organic acid, the epoxy resin, and the inorganic filler again in an organic solvent to form a varnish, which is applied and dried. It is done. In addition, the sheet-like resin composition 2 can be obtained by dissolving the polyamic acid, if necessary, the organic acid, the epoxy resin, and the inorganic filler in an organic solvent to form a varnish, and applying and drying the varnish. Can do.
  • the back grinding tape 1 has a structure in which an adhesive layer 1b is laminated on a substrate 1a.
  • an adhesive layer 1b is laminated on a substrate 1a.
  • it demonstrates in order of a base material and an adhesive layer.
  • the base material 1a can use what has ultraviolet transmissivity, and becomes a strength base material of the tape 1 for back surface grinding.
  • polyolefins such as low density polyethylene, linear polyethylene, medium density polyethylene, high density polyethylene, ultra low density polyethylene, random copolymer polypropylene, block copolymer polypropylene, homopolypropylene, polybutene, polymethylpentene, ethylene-acetic acid Vinyl copolymer, ionomer resin, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester (random, alternating) copolymer, ethylene-butene copolymer, ethylene-hexene copolymer, Polyester such as polyurethane, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyetheretherketone, polyimide, polyetherimide, polyamide, wholly aromatic polyamide, polyphenylsulfur De, ara
  • examples of the material of the substrate 1a include polymers such as a crosslinked body of the resin.
  • the plastic film may be used unstretched or may be uniaxially or biaxially stretched as necessary.
  • the surface of the base material 1a is chemically treated by conventional surface treatments such as chromic acid treatment, ozone exposure, flame exposure, high piezoelectric impact exposure, ionizing radiation treatment, etc. in order to improve adhesion and retention with adjacent layers.
  • a physical treatment or a coating treatment with a primer for example, an adhesive substance described later
  • the base material 1a the same kind or different kinds can be appropriately selected and used, and if necessary, a blend of several kinds can be used.
  • the thickness of the substrate 1a is not particularly limited and can be appropriately determined, but is generally about 5 to 200 ⁇ m.
  • the pressure-sensitive adhesive used for forming the pressure-sensitive adhesive layer 1b is not particularly limited, and for example, a general pressure-sensitive pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive or a rubber-based pressure-sensitive adhesive can be used.
  • the pressure-sensitive adhesive is an acrylic pressure-sensitive adhesive based on an acrylic polymer from the standpoint of cleanability with an organic solvent such as ultrapure water or alcohol for electronic components that are difficult to contaminate semiconductor wafers and glass. Is preferred.
  • acrylic polymer examples include (meth) acrylic acid alkyl esters (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, s-butyl ester, t-butyl ester, pentyl ester, Isopentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, hexadecyl ester , Octadecyl esters, eicosyl esters, etc., alkyl groups having 1 to 30 carbon atoms, especially 4 to 18 carbon atoms, such as
  • the acrylic polymer contains units corresponding to other monomer components copolymerizable with the (meth) acrylic acid alkyl ester or cycloalkyl ester, if necessary, for the purpose of modifying cohesive force, heat resistance and the like. You may go out.
  • Such monomer components include, for example, carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid; maleic anhydride Acid anhydride monomers such as itaconic anhydride; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate Hydroxyl group-containing monomers such as 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl (meth) acrylate; Styrene Contains sulfonic acid groups such as phonic acid, allyl sulf
  • a polyfunctional monomer or the like can be included as a monomer component for copolymerization as necessary.
  • examples of such polyfunctional monomers include hexanediol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, Pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meth) An acrylate etc. are mentioned. These polyfunctional monomers can also be used alone or in combination of two or more. The amount of the polyfunctional monomer used is preferably
  • the acrylic polymer can be obtained by subjecting a single monomer or a mixture of two or more monomers to polymerization.
  • the polymerization can be performed by any method such as solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization and the like.
  • the content of the low molecular weight substance is preferably small.
  • the number average molecular weight of the acrylic polymer is preferably 300,000 or more, more preferably about 400,000 to 3 million.
  • an external cross-linking agent can be appropriately employed for the pressure-sensitive adhesive in order to increase the number average molecular weight of an acrylic polymer as a base polymer.
  • the external crosslinking method include a method of adding a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, a melamine crosslinking agent, and reacting them.
  • a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, a melamine crosslinking agent, and reacting them.
  • the amount used is appropriately determined depending on the balance with the base polymer to be cross-linked and further depending on the intended use as an adhesive. Generally, it is preferable to add about 5 parts by weight or less, more preferably 0.1 to 5 parts by weight, with respect to 100 parts by weight of the base polymer.
  • additives such as conventionally well-known various tackifier and anti-aging agent, other than the said component as needed to an adhesive.
  • the pressure-sensitive adhesive layer 1b can be formed of a radiation curable pressure-sensitive adhesive.
  • a radiation-curable pressure-sensitive adhesive can easily reduce its adhesive strength by increasing the degree of crosslinking by irradiation with radiation such as ultraviolet rays. Examples of the radiation include X-rays, ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and neutron rays.
  • the radiation curable pressure-sensitive adhesive those having a radiation curable functional group such as a carbon-carbon double bond and exhibiting adhesiveness can be used without particular limitation.
  • the radiation curable pressure sensitive adhesive for example, an addition type radiation curable pressure sensitive adhesive in which a radiation curable monomer component or an oligomer component is blended with a general pressure sensitive pressure sensitive adhesive such as an acrylic pressure sensitive adhesive or a rubber pressure sensitive adhesive. An agent can be illustrated.
  • Examples of the radiation curable monomer component to be blended include urethane oligomer, urethane (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol.
  • Examples include stall tetra (meth) acrylate, dipentaerystol monohydroxypenta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and 1,4-butanediol di (meth) acrylate.
  • the radiation curable oligomer component examples include urethane, polyether, polyester, polycarbonate, and polybutadiene oligomers, and those having a molecular weight in the range of about 100 to 30000 are suitable.
  • the compounding amount of the radiation-curable monomer component or oligomer component can be appropriately determined in accordance with the type of the pressure-sensitive adhesive layer, and the amount capable of reducing the adhesive strength of the pressure-sensitive adhesive layer. In general, the amount is, for example, about 5 to 500 parts by weight, preferably about 40 to 150 parts by weight with respect to 100 parts by weight of the base polymer such as an acrylic polymer constituting the pressure-sensitive adhesive.
  • the radiation-curable pressure-sensitive adhesive has a carbon-carbon double bond in the polymer side chain, main chain, or main chain terminal as a base polymer.
  • Intrinsic radiation curable pressure sensitive adhesives using Intrinsic radiation curable adhesives do not need to contain oligomer components, which are low molecular components, or do not contain many, so they are stable without the oligomer components moving through the adhesive over time. It is preferable because an adhesive layer having a layered structure can be formed.
  • the base polymer having a carbon-carbon double bond those having a carbon-carbon double bond and having adhesiveness can be used without particular limitation.
  • those having an acrylic polymer as a basic skeleton are preferable.
  • the basic skeleton of the acrylic polymer include the acrylic polymers exemplified above.
  • the method for introducing the carbon-carbon double bond into the acrylic polymer is not particularly limited, and various methods can be adopted.
  • the carbon-carbon double bond can be easily introduced into the polymer side chain for easy molecular design.
  • a compound having a functional group capable of reacting with the functional group and a carbon-carbon double bond is converted into a radiation-curable carbon-carbon double bond.
  • combinations of these functional groups include carboxylic acid groups and epoxy groups, carboxylic acid groups and aziridyl groups, hydroxyl groups and isocyanate groups, and the like.
  • a combination of a hydroxyl group and an isocyanate group is preferable because of easy tracking of the reaction.
  • the functional group may be on either side of the acrylic polymer and the compound as long as the combination of these functional groups generates an acrylic polymer having the carbon-carbon double bond.
  • it is preferable that the acrylic polymer has a hydroxyl group and the compound has an isocyanate group.
  • examples of the isocyanate compound having a carbon-carbon double bond include methacryloyl isocyanate, 2-methacryloyloxyethyl isocyanate, m-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, and the like.
  • the acrylic polymer a copolymer obtained by copolymerizing the above-exemplified hydroxy group-containing monomers, ether compounds of 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, or the like is used.
  • the base polymer (particularly acrylic polymer) having the carbon-carbon double bond can be used alone, but the radiation curable monomer does not deteriorate the characteristics.
  • Components and oligomer components can also be blended.
  • the radiation-curable oligomer component or the like is usually in the range of 30 parts by weight, preferably in the range of 0 to 10 parts by weight, with respect to 100 parts by weight of the base polymer.
  • the radiation curable pressure-sensitive adhesive contains a photopolymerization initiator when cured by ultraviolet rays or the like.
  • the photopolymerization initiator include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, ⁇ -hydroxy- ⁇ , ⁇ '-dimethylacetophenone, 2-methyl-2-hydroxypropio ⁇ -ketol compounds such as phenone and 1-hydroxycyclohexyl phenyl ketone; methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1- [4- ( Acetophenone compounds such as methylthio) -phenyl] -2-morpholinopropane-1; benzoin ether compounds such as benzoin ethyl ether, benzoin isopropyl ether and anisoin methyl ether; ketal compounds such as benzyldimethyl ketal; 2-naphthalene
  • oxygen air
  • a method of covering the surface of the pressure-sensitive adhesive layer 1b with a separator, a method of irradiating radiation such as ultraviolet rays in a nitrogen gas atmosphere, and the like can be mentioned.
  • the thickness of the pressure-sensitive adhesive layer 1b is not particularly limited, but is preferably about 1 to 50 ⁇ m from the viewpoint of preventing chipping of the chip cut surface and compatibility of fixing and holding the adhesive layer.
  • the thickness is preferably 2 to 30 ⁇ m, more preferably 5 to 25 ⁇ m.
  • Back-grinding tape-integrated sheet-shaped resin composition 10 is prepared, for example, by separately preparing back-grinding tape 1 and sheet-shaped resin composition 2 and finally bonding them together. can do. Specifically, it can be produced according to the following procedure.
  • the base material 1a can be formed by a conventionally known film forming method.
  • the film forming method include a calendar film forming method, a casting method in an organic solvent, an inflation extrusion method in a closed system, a T-die extrusion method, a co-extrusion method, and a dry lamination method.
  • an adhesive composition for forming an adhesive layer is prepared. Resin, additive, etc. which were demonstrated by the term of the adhesive layer are mix
  • the coating film is dried under predetermined conditions (heat-crosslinked as necessary) to form the pressure-sensitive adhesive layer 1b.
  • predetermined conditions For example, roll coating, screen coating, gravure coating, etc. are mentioned.
  • drying conditions for example, a drying temperature of 80 to 150 ° C. and a drying time of 0.5 to 5 minutes are performed.
  • the coating film may be dried on the said drying conditions, and the adhesive layer 1b may be formed. Then, the adhesive layer 1b is bonded together with a separator on the base material 1a. Thereby, the tape 1 for back surface grinding provided with the base material 1a and the adhesive layer 1b is produced.
  • the tape 1 for back surface grinding what is necessary is just to provide at least a base material and an adhesive layer, and when it has other elements, such as a separator, it is also called the tape 1 for back surface grinding.
  • the sheet-shaped resin composition 2 is produced as described above.
  • the sheet-shaped resin composition 2 and the pressure-sensitive adhesive layer 1b of the back surface grinding tape 1 are bonded together so that they are bonded surfaces. Bonding can be performed by, for example, pressure bonding.
  • the lamination temperature is not particularly limited, and is preferably 30 to 50 ° C., for example, and more preferably 35 to 45 ° C.
  • the linear pressure is not particularly limited, and is preferably 0.1 to 20 kgf / cm, and more preferably 1 to 10 kgf / cm.
  • FIG. 1 Manufacturing method of semiconductor device using tape-integrated sheet-shaped resin composition for back surface grinding
  • FIG. 2G are views for explaining a method of manufacturing a semiconductor device using the back-grinding tape-integrated sheet-shaped resin composition shown in FIG.
  • the circuit surface 3a on which the connection member 4 of the semiconductor wafer 3 is formed and the sheet-like resin composition 2 of the tape-integrated sheet-like resin composition 10 for back grinding are attached.
  • Bonding step grinding step for grinding the back surface 3b of the semiconductor wafer 3, wafer fixing step for attaching the dicing tape 11 to the back surface 3b of the semiconductor wafer 3 after back grinding, peeling step for peeling the back surface grinding tape 1, semiconductor A dicing process for dicing the wafer 3 to form the semiconductor chip 5 with the sheet-shaped resin composition 2, a pick-up process for peeling the semiconductor chip 5 with the sheet-shaped resin composition 2 from the dicing tape 11, the adherend 6 and the semiconductor chip 5
  • the semiconductor chip 5 and the adherend 6 are electrically connected through the connection member 4 while filling the space between them with the sheet-like resin composition 2.
  • a curing step of curing the sheet-like resin composition 2 are electrically connected through the connection member 4 while filling the space between them with the sheet-like resin composition 2.
  • connection members 4 are formed on the circuit surface 3a of the semiconductor wafer 3 (see FIG. 2A).
  • the height of the connecting member 4 is determined according to the application and is generally about 15 to 100 ⁇ m. Of course, the height of each connection member 4 in the semiconductor wafer 3 may be the same or different.
  • the height X ( ⁇ m) of the connecting member 4 formed on the surface of the semiconductor wafer 3 and the thickness Y ( ⁇ m) of the sheet-like resin composition 2 satisfy the following relationship. 0.5 ⁇ Y / X ⁇ 2
  • the height X ( ⁇ m) of the connection member 4 and the thickness Y ( ⁇ m) of the sheet-like resin composition 2 satisfy the above relationship, the space between the semiconductor chip 5 and the adherend 6 is sufficiently filled.
  • the sheet-like resin composition 2 can be prevented from excessively protruding from the space, and contamination of the semiconductor chip 5 by the sheet-like resin composition 2 can be prevented.
  • the height of each connection member 4 differs, the height of the highest connection member 4 is used as a reference.
  • the separator arbitrarily provided on the sheet-shaped resin composition 2 of the tape-integrated sheet-shaped resin composition 10 for backside grinding is appropriately peeled off, and as shown in FIG.
  • the formed circuit surface 3a and the sheet-shaped resin composition 2 are opposed to each other, and the sheet-shaped resin composition 2 and the semiconductor wafer 3 are bonded (mounting).
  • the method of bonding is not particularly limited, but a method by pressure bonding is preferable.
  • the pressure for pressure bonding is preferably 0.1 MPa or more, more preferably 0.2 MPa or more. When the pressure is 0.1 MPa or more, the unevenness of the circuit surface 3a of the semiconductor wafer 3 can be satisfactorily embedded.
  • the upper limit of the pressure for pressure bonding is not particularly limited, but is preferably 1 MPa or less, more preferably 0.5 MPa or less.
  • the bonding temperature is preferably 60 ° C. or higher, more preferably 70 ° C. or higher. When the temperature is 60 ° C. or higher, the viscosity of the sheet-shaped resin composition 2 is reduced, and the unevenness of the semiconductor wafer 3 can be filled without a gap. Further, the bonding temperature is preferably 100 ° C. or lower, more preferably 80 ° C. or lower. When the temperature is 100 ° C. or lower, the sheet-like resin composition 2 can be bonded while suppressing the curing reaction.
  • Bonding is preferably performed under reduced pressure, for example, 1000 Pa or less, preferably 500 Pa or less.
  • a minimum is not specifically limited, For example, it is 1 Pa or more.
  • the surface (that is, the back surface) 3b opposite to the circuit surface 3a of the semiconductor wafer 3 is ground (see FIG. 2B).
  • the thin processing machine used for back surface grinding of the semiconductor wafer 3 is not particularly limited, and examples thereof include a grinding machine (back grinder) and a polishing pad. Further, the back surface grinding may be performed by a chemical method such as etching. The back surface grinding is performed until the semiconductor wafer 3 has a desired thickness (for example, 700 to 25 ⁇ m).
  • the dicing tape 11 is attached to the back surface 3b of the semiconductor wafer 3 (see FIG. 2C).
  • the dicing tape 11 has a structure in which an adhesive layer 11b is laminated on a substrate 11a.
  • the base material 11a and the pressure-sensitive adhesive layer 11b can be suitably prepared by using the components and the production methods shown in the paragraphs of the base material 1a and the pressure-sensitive adhesive layer 1b of the back grinding tape 1.
  • the pressure sensitive adhesive layer 1b When the back surface grinding tape 1 is peeled off, if the pressure sensitive adhesive layer 1b has radiation curability, the pressure sensitive adhesive layer 1b is irradiated with radiation to harden the pressure sensitive adhesive layer 1b, so that the peeling is easily performed. Can do.
  • the radiation dose may be set as appropriate in consideration of the type of radiation used and the degree of curing of the pressure-sensitive adhesive layer.
  • ⁇ Dicing process> In the dicing process, as shown in FIG. 2E, the semiconductor wafer 5 and the sheet-shaped resin composition 2 are diced to form the diced semiconductor chip 5 with the sheet-shaped resin composition 2. Dicing is performed according to a conventional method from the circuit surface 3a on which the sheet-shaped resin composition 2 of the semiconductor wafer 3 is bonded. For example, a cutting method called full cut that cuts up to the dicing tape 11 can be adopted. It does not specifically limit as a dicing apparatus used at this process, A conventionally well-known thing can be used.
  • the expansion can be performed using a conventionally known expanding apparatus.
  • the semiconductor chip 5 with the sheet-shaped resin composition 2 is peeled from the dicing tape 11 (the semiconductor chip 5 with the sheet-shaped resin composition 2 is picked up).
  • the pickup method is not particularly limited, and various conventionally known methods can be employed.
  • the adhesive layer 11b of the dicing tape 11 is an ultraviolet curable type
  • the pickup is performed after the adhesive layer 11b is irradiated with ultraviolet rays.
  • the adhesive force with respect to the semiconductor chip 5 of the adhesive layer 11b falls, and peeling of the semiconductor chip 5 becomes easy.
  • the semiconductor chip 5 and the adherend 6 are electrically connected via the connecting member 4 while filling the space between the adherend 6 and the semiconductor chip 5 with the sheet-like resin composition 2 (FIG. 2G).
  • the conductive member 7 is melted while being pressed by bringing the connecting member 4 formed on the semiconductor chip 5 into contact with the conductive member 7 for bonding attached to the connection pad of the adherend 6.
  • the semiconductor chip 5 and the adherend 6 are electrically connected. Since the sheet-like resin composition 2 is attached to the circuit surface 3 a of the semiconductor chip 5, the electrical connection between the semiconductor chip 5 and the adherend 6 and at the same time between the semiconductor chip 5 and the adherend 6 are performed. Is filled with the sheet-shaped resin composition 2.
  • the materials of the connection member 4 and the conductive material 7 as electrodes are not particularly limited, but copper is preferable.
  • the connecting member 4 and the conductive material 7 has an electrode made of copper, processing at a higher temperature is required as compared with the conventional case.
  • the sheet-like resin composition 2 has a weight reduction rate due to heating within the above numerical range and a moisture absorption rate within the above numerical range, it is excellent in durability at high temperatures. Therefore, if the sheet-shaped resin composition 2 is used, the reliability of the flip chip type semiconductor device using the copper electrode for bonding the adherend and the semiconductor element can be improved.
  • the heating conditions in the connecting step are not particularly limited, but usually the heating conditions are 100 to 300 ° C., and the pressurizing conditions are 0.5 to 500 N.
  • thermocompression-bonding process in a connection process in multistep.
  • thermocompression treatment in multiple stages, the resin between the connection member 4 and the conductive material 7 can be efficiently removed, and a better metal-to-metal bond can be obtained.
  • the sheet-shaped resin composition 2 is cured by heating. Thereby, the connection reliability between the semiconductor chip 5 and the adherend 6 can be ensured.
  • the heating temperature for curing the sheet-shaped resin composition 2 is not particularly limited, and is, for example, 150 to 200 ° C. for 10 to 120 minutes. In addition, you may harden a sheet-like resin composition by the heat processing in a connection process.
  • a sealing process may be performed to protect the entire semiconductor device 30 including the mounted semiconductor chip 5.
  • the sealing step is performed using a sealing resin.
  • the sealing conditions at this time are not particularly limited.
  • the sealing resin is thermally cured by heating at 175 ° C. for 60 seconds to 90 seconds, but the present invention is not limited to this. For example, it can be cured at 165 ° C. to 185 ° C. for several minutes.
  • an insulating resin (insulating resin) is preferable, and it can be appropriately selected from known sealing resins.
  • the semiconductor chip 5 and the adherend 6 are electrically connected via a connection member 4 formed on the semiconductor chip 5 and a conductive material 7 provided on the adherend 6. . Further, the sheet-like resin composition 2 is disposed between the semiconductor chip 5 and the adherend 6 so as to fill the space.
  • FIG. 3 is a schematic cross-sectional view of a dicing tape-integrated sheet-shaped resin composition according to another embodiment of the present invention.
  • the dicing tape-integrated sheet-shaped resin composition 50 according to the present embodiment has a structure in which a sheet-shaped resin composition 42 is laminated on a dicing tape 41.
  • the dicing tape 41 has a structure in which an adhesive layer 41b is laminated on a base material 41a.
  • the sheet-shaped resin composition 2 is laminated on the pressure-sensitive adhesive layer 41 b of the dicing tape 41.
  • the sheet-like resin composition 42 does not need to be laminated
  • the dicing tape 41 includes a base material 41a and an adhesive layer 41b laminated on the base material 41a.
  • the substrate 41a those exemplified for the substrate 1a can be used.
  • the adhesive layer 41b those exemplified for the adhesive layer 1b can be used.
  • sheet-shaped resin composition 42 those exemplified in the sheet-shaped resin composition 2 described above can be used.
  • FIG. 4A to 4D are views for explaining a method of manufacturing a semiconductor device using the dicing tape-integrated sheet-shaped resin composition shown in FIG. Specifically, in the method for manufacturing the semiconductor device, the semiconductor wafer 43 on which the circuit surface having the connection member 44 is formed and the sheet-shaped resin composition 42 of the dicing tape-integrated sheet-shaped resin composition 50 are bonded to each other.
  • Alignment step dicing step of dicing the semiconductor wafer 43 to form the semiconductor chip 45 with the sheet-like resin composition 42, pick-up step of peeling the semiconductor chip 45 with the sheet-like resin composition 42 from the dicing tape 41, and the adherend 46
  • a curing step of curing 42 Alignment step, dicing step of dicing the semiconductor wafer 43 to form the semiconductor chip 45 with the sheet-like resin composition 42, pick-up step of peeling the semiconductor chip 45 with the sheet-like resin composition 42 from the dicing tape 41, and the adherend 46
  • circuit surface is formed on both sides of the semiconductor wafer and the connection member is formed on both sides will be described, but in the present invention, only on the bonding surface side with the sheet-like resin composition.
  • a semiconductor wafer on which a circuit surface having a connection member is formed may be used.
  • the semiconductor wafer 43 having the circuit surface having the connection member 44 formed on both sides and the sheet-shaped resin composition 42 of the dicing tape-integrated sheet-shaped resin composition 50 are bonded together.
  • the semiconductor wafer 43 since the strength of the semiconductor wafer 43 is weak, the semiconductor wafer 43 may be fixed to a support such as support glass for reinforcement (not shown). In this case, after bonding the semiconductor wafer 43 and the sheet-like resin composition 42, a step of peeling the support may be included. Which circuit surface of the semiconductor wafer 43 and the sheet-shaped resin composition 42 are bonded together may be changed according to the structure of the target semiconductor device.
  • connection members 44 on both surfaces of the semiconductor wafer 43 may be electrically connected or may not be connected. Examples of the electrical connection between the connection members 44 include a connection through a via called a TSV format.
  • the bonding conditions the conditions exemplified in the bonding process of the tape-integrated sheet-like resin composition 10 for back grinding can be employed.
  • ⁇ Dicing process> the semiconductor wafer 43 and the sheet-shaped resin composition 42 are diced to form semiconductor chips 45 with the sheet-shaped resin composition 42 (see FIG. 4B).
  • the dicing conditions the conditions exemplified in the dicing process of the tape-integrated sheet-like resin composition 10 for back grinding can be employed.
  • the semiconductor chip 45 with the sheet-like resin composition 42 is peeled from the dicing tape 41 (see FIG. 4C).
  • the pickup conditions the conditions exemplified in the pickup process of the tape-integrated sheet-like resin composition 10 for back grinding can be employed.
  • connection step the semiconductor chip 45 and the adherend 46 are electrically connected via the connection member 44 while the space between the adherend 46 and the semiconductor chip 45 is filled with the sheet-like resin composition 42 (FIG. 4D).
  • the specific connection method is the same as the content described in the connection step of the tape-integrated sheet-like resin composition 10 for back grinding.
  • the heating conditions in the connecting step the conditions exemplified for the back surface grinding tape-integrated sheet-shaped resin composition 10 can be employed.
  • the curing process and the sealing process are the same as the contents described in the curing process and the sealing process of the back surface grinding tape-integrated sheet-shaped resin composition 10. Thereby, the semiconductor device 60 can be manufactured.
  • the pasting was performed using the sheet-shaped resin composition as a pasting surface. From the above, a chip-mounted substrate for evaluation was produced. This was embedded in a thermosetting resin (manufactured by Marumoto Struers Co., Ltd., trade name: Epofix) for fixing during polishing and used as a sample for evaluation. Next, the evaluation sample was polished using sandpaper or alumina in a direction perpendicular to the substrate surface, and the polished surface after polishing was observed using an optical microscope (up to 1000 times) and SEM (up to 20000 times). . The case where no gap was confirmed between the substrate and the electrode of the chip was evaluated as ⁇ , and the case where it was confirmed was evaluated as x. The results are shown in Tables 2 and 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Dicing (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Wire Bonding (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)

Abstract

 A sheet-form resin composition used for sealing the interface between an adherend and a flip-chip-connected semiconductor element on the adherend, wherein the sheet-form resin composition has a weight decrease of no greater than 2% when the temperature is increased from 25 to 300°C at a rate of 10°C/min and a moisture absorptivity of no greater than 1% using the Karl Fischer method, and, relative to the entire sheet-shaped resin composition, contains 1-10 wt% of an organic acid having an acid dissociation constant of 3.0 to 5.0.

Description

シート状樹脂組成物、裏面研削用テープ一体型シート状樹脂組成物、ダイシングテープ一体型シート状樹脂組成物、半導体装置の製造方法、及び、半導体装置Sheet-shaped resin composition, back-grinding tape-integrated sheet-shaped resin composition, dicing tape-integrated sheet-shaped resin composition, semiconductor device manufacturing method, and semiconductor device
 本発明は、シート状樹脂組成物、裏面研削用テープ一体型シート状樹脂組成物、ダイシングテープ一体型シート状樹脂組成物、半導体装置の製造方法、及び、半導体装置に関する。 The present invention relates to a sheet-shaped resin composition, a back-grinding tape-integrated sheet-shaped resin composition, a dicing tape-integrated sheet-shaped resin composition, a method for manufacturing a semiconductor device, and a semiconductor device.
 従来、フリップチップ実装における被着体と半導体素子との電気的接合としてはAu-Sn(半田)接合やAu-Au接合が用いられてきたが、近年では、コスト低減等を目的にAu-Cu接合やCu-Cu接合といったCu(銅)を電極とした接合が検討されている(例えば、特許文献1参照)。 Conventionally, Au—Sn (solder) bonding or Au—Au bonding has been used as electrical bonding between an adherend and a semiconductor element in flip-chip mounting. However, in recent years, Au—Cu is used for the purpose of cost reduction and the like. Bonding using Cu (copper) as an electrode, such as bonding or Cu—Cu bonding, has been studied (for example, see Patent Document 1).
 一方、近年、フリップチップ実装における被着体と半導体素子との間隙には、接合部(例えば、電極)の補強や信頼性の確保の観点から、樹脂封止(アンダーフィル)が行なわれている(例えば、特許文献2参照)。 On the other hand, in recent years, resin sealing (underfill) is performed in the gap between the adherend and the semiconductor element in flip-chip mounting from the viewpoint of reinforcing the joint (for example, electrode) and ensuring reliability. (For example, refer to Patent Document 2).
特開2012-204501号公報JP 2012-204501 A 特許第4438973号明細書Patent No. 4438973
 しかしながら、銅電極を使用する場合、銅電極の接合には、従来に比して高温での処理が必要となる。そのため、アンダーフィルを行なう場合、アンダーフィルに使用する材料に関しても高温での耐久性が要求される。 However, when copper electrodes are used, the copper electrodes need to be treated at a higher temperature than before. For this reason, when underfilling is performed, durability at high temperatures is also required for materials used for underfilling.
 本発明は前記の問題点に鑑みなされたものであり、その目的は、高温耐久性を有するシート状樹脂組成物、当該シート状樹脂組成物を備える裏面研削用テープ一体型シート状樹脂組成物、当該シート状樹脂組成物を備えるダイシングテープ一体型シート状樹脂組成物、当該シート状樹脂組成物を用いた半導体装置の製造方法、及び、当該シート状樹脂組成物を用いて製造された半導体装置を提供することにある。 The present invention has been made in view of the above-mentioned problems, and the purpose thereof is a sheet-shaped resin composition having high-temperature durability, a tape-integrated sheet-shaped resin composition for backside grinding provided with the sheet-shaped resin composition, A dicing tape-integrated sheet-shaped resin composition comprising the sheet-shaped resin composition, a semiconductor device manufacturing method using the sheet-shaped resin composition, and a semiconductor device manufactured using the sheet-shaped resin composition It is to provide.
 本願発明者等は、前記従来の課題を解決すべく、シート状樹脂組成物について検討した。その結果、加熱による重量減少率を特定の範囲内にし、吸湿率を特定の範囲内にし、且つ、特定の有機酸を特定の範囲内で含有すると、高温での耐久性に優れ、且つ、アンダーフィル用のシートとして好適に使用できることを見出し、本発明を完成させるに至った。 The inventors of the present application have studied a sheet-shaped resin composition in order to solve the conventional problems. As a result, when the weight loss rate due to heating is within a specific range, the moisture absorption rate is within a specific range, and a specific organic acid is included within a specific range, the durability at high temperature is excellent, and It has been found that the sheet can be suitably used as a fill sheet, and the present invention has been completed.
 すなわち、本発明に係るシート状樹脂組成物は、
 被着体と前記被着体上にフリップチップ接続された半導体素子との界面封止に用いられるシート状樹脂組成物であって、
 昇温速度10℃/minにて、25℃から300℃まで昇温した際の重量減少率が2%以下であり、
 カールフィッシャー法による吸湿率が1%以下であり、
 酸解離定数が3.0以上5.0以下の範囲内にある有機酸をシート状樹脂組成物全体に対して1重量%以上10重量%以下の範囲内で含有することを特徴とする。
That is, the sheet-shaped resin composition according to the present invention is
A sheet-like resin composition used for interface sealing between an adherend and a semiconductor element flip-chip connected on the adherend,
The weight loss rate when the temperature is raised from 25 ° C. to 300 ° C. at a rate of temperature increase of 10 ° C./min is 2% or less,
The moisture absorption by the Karl Fischer method is 1% or less,
An organic acid having an acid dissociation constant in the range of 3.0 to 5.0 is contained in a range of 1 wt% to 10 wt% with respect to the entire sheet-shaped resin composition.
 前記構成によれば、昇温速度10℃/minにて、25℃から300℃まで昇温した際の重量減少率が2%以下であるため、揮発成分が抑制されており、ボイドの発生が低減される。従って、高温での耐久性に優れる。また、カールフィッシャー法による吸湿率が1%以下であるため、被着体とシート状樹脂組成物との間や、半導体素子とシート状樹脂組成物との間でのボイドの発生を抑制することができる。
 また、前記構成によれば、酸解離定数が3.0以上5.0以下の範囲内にある有機酸をシート状樹脂組成物全体に対して1重量%以上10重量%以下の範囲内で含有する。有機酸として、酸解離定数が3.0以上のものを用いるため、樹脂組成物中の酸性度が高くなり、保存性の悪化等の物性への悪影響を抑制することができる。また、有機酸として、酸解離定数が5.0以下のものを用いるため、酸性度が充分となり、電極表面の酸化膜もしくは防錆膜の除去を好適に行なうことができる。また、酸解離定数が3.0以上5.0以下の範囲内にある有機酸をシート状樹脂組成物全体に対して1重量%以上含有するため、有機酸が充分に行きわたり、表面の酸化膜もしくは防錆膜を好適に除去できる。また、10重量%以下で含有するため、保存性悪化等の物性への悪影響を抑制することができる。
 すなわち、酸解離定数が3.0以上5.0以下の範囲内にある有機酸をシート状樹脂組成物全体に対して1重量%以上10重量%以下の範囲内で含有するため、電極表面の酸化物もしくは防錆膜を好適に除去することができる。
 このように前記構成によれば、加熱による重量減少率が上記数値範囲内にあり、吸湿率が上記数値範囲内にあり、且つ、酸解離定数が3.0以上5.0以下の範囲内にある有機酸を上記数値範囲内で含有するため、高温での耐久性に優れ、且つ、アンダーフィル用のシートとして好適に使用できる。
According to the above configuration, since the weight reduction rate when the temperature is raised from 25 ° C. to 300 ° C. at a rate of temperature increase of 10 ° C./min is 2% or less, volatile components are suppressed, and voids are generated. Reduced. Therefore, it is excellent in durability at high temperatures. Moreover, since the moisture absorption rate by the Karl Fischer method is 1% or less, the generation of voids between the adherend and the sheet-like resin composition or between the semiconductor element and the sheet-like resin composition is suppressed. Can do.
Moreover, according to the said structure, the acid dissociation constant contains the organic acid in the range of 3.0 or more and 5.0 or less within the range of 1 to 10 weight% with respect to the whole sheet-like resin composition. To do. Since an organic acid having an acid dissociation constant of 3.0 or more is used, the acidity in the resin composition is increased, and adverse effects on physical properties such as deterioration in storage stability can be suppressed. Moreover, since an acid dissociation constant of 5.0 or less is used as the organic acid, the acidity is sufficient, and the oxide film or rust preventive film on the electrode surface can be suitably removed. In addition, since the organic acid having an acid dissociation constant in the range of 3.0 or more and 5.0 or less is contained in an amount of 1% by weight or more with respect to the whole sheet-shaped resin composition, the organic acid is sufficiently distributed or the surface is oxidized. A film or a rust preventive film can be suitably removed. Moreover, since it contains at 10 weight% or less, the bad influence to physical properties, such as a storage stability deterioration, can be suppressed.
That is, since an organic acid having an acid dissociation constant in the range of 3.0 to 5.0 is contained in the range of 1 wt% to 10 wt% with respect to the entire sheet-shaped resin composition, An oxide or a rust preventive film can be suitably removed.
Thus, according to the said structure, the weight loss rate by heating exists in the said numerical range, a moisture absorption rate exists in the said numerical range, and an acid dissociation constant exists in the range of 3.0 or more and 5.0 or less. Since an organic acid is contained within the above numerical range, it is excellent in durability at high temperatures and can be suitably used as a sheet for underfill.
 前記構成において、前記被着体、及び、前記半導体素子の少なくとも一方が銅からなる電極を有することが好ましい。前記被着体、及び、前記半導体素子の少なくとも一方が銅からなる電極を有していると、従来に比して高温での処理が必要となる。しかしながら、前記シート状樹脂組成物は、昇温速度10℃/minにて、25℃から300℃まで昇温した際の重量減少率が2%以下であり、カールフィッシャー法による吸湿率が1%以下であり、且つ、酸解離定数が3.0以上5.0以下の範囲内にある有機酸を上記数値範囲内で含有するため、高温での耐久性に優れ、且つ、アンダーフィル用のシートとして好適に使用できる。従って、前記シート状樹脂組成物を使用すれば、被着体と半導体素子との接合に銅電極を使用したフリップチップ型半導体装置の信頼性を向上させることができる。 In the above structure, it is preferable that at least one of the adherend and the semiconductor element has an electrode made of copper. When at least one of the adherend and the semiconductor element has an electrode made of copper, a treatment at a higher temperature is required as compared with the conventional case. However, the sheet-like resin composition has a weight loss rate of 2% or less when the temperature is raised from 25 ° C. to 300 ° C. at a rate of temperature rise of 10 ° C./min, and the moisture absorption rate by the Karl Fischer method is 1%. In addition, since an organic acid having an acid dissociation constant in the range of 3.0 to 5.0 is contained within the above numerical range, it is excellent in durability at high temperatures and is a sheet for underfill. Can be suitably used. Therefore, if the sheet-shaped resin composition is used, the reliability of the flip chip type semiconductor device using the copper electrode for bonding the adherend and the semiconductor element can be improved.
 前記構成において、前記シート状樹脂組成物は、ポリイミド樹脂と無機フィラーとを含有することが好ましい。前記シート状樹脂組成物が、ポリイミド樹脂と無機フィラーとを含有すると、さらに耐熱性を向上させることができる。 In the above configuration, the sheet-shaped resin composition preferably contains a polyimide resin and an inorganic filler. When the sheet-shaped resin composition contains a polyimide resin and an inorganic filler, the heat resistance can be further improved.
 前記構成において、前記シート状樹脂組成物は、ポリイミド樹脂とエポキシ樹脂と無機フィラーとを含有することが好ましい。前記シート状樹脂組成物が、ポリイミド樹脂とエポキシ樹脂と無機フィラーとを含有すると、エポキシ樹脂を有した形態にて、さらに耐熱性を向上させることができる。 In the above configuration, the sheet-shaped resin composition preferably contains a polyimide resin, an epoxy resin, and an inorganic filler. When the sheet-shaped resin composition contains a polyimide resin, an epoxy resin, and an inorganic filler, the heat resistance can be further improved in a form having an epoxy resin.
 また、本発明に係る裏面研削用テープ一体型シート状樹脂組成物は、前記課題を解決するために、前記に記載のシート状樹脂組成物と裏面研削用テープとを備え、前記裏面研削用テープ上に前記シート状樹脂組成物が設けられていることを特徴とする。 Moreover, in order to solve the said subject, the tape-integrated sheet-like resin composition for backside grinding which concerns on this invention is equipped with the sheet-like resin composition and the backside grinding tape as described above, The said backside grinding tape The sheet-shaped resin composition is provided on the top.
 また、本発明に係るダイシングテープ一体型シート状樹脂組成物は、前記課題を解決するために、前記に記載のシート状樹脂組成物とダイシングテープとを備え、前記ダイシングテープ上に前記シート状樹脂組成物が設けられていることを特徴とする。 Further, a dicing tape-integrated sheet-shaped resin composition according to the present invention comprises the sheet-shaped resin composition described above and a dicing tape in order to solve the above-mentioned problems, and the sheet-shaped resin is provided on the dicing tape. A composition is provided.
 また、本発明に係る半導体装置の製造方法は、前記に記載の裏面研削用テープ一体型シート状樹脂組成物を用いた半導体装置の製造方法であって、
 半導体ウェハの接続部材が形成された回路面と前記裏面研削用テープ一体型シート状樹脂組成物の前記シート状樹脂組成物とを貼り合わせる貼合せ工程、
 前記半導体ウェハの裏面を研削する研削工程、
 裏面研削後の前記半導体ウェハの裏面にダイシングテープを貼りつけるウェハ固定工程、
 前記裏面研削用テープを剥離する剥離工程、
 前記半導体ウェハをダイシングしてシート状樹脂組成物付き半導体チップを形成するダイシング工程、
 前記シート状樹脂組成物付き半導体チップを前記ダイシングテープから剥離するピックアップ工程、
 被着体と前記半導体チップの間の空間を前記シート状樹脂組成物で充填しつつ前記接続部材を介して前記半導体チップと前記被着体とを電気的に接続する接続工程、及び、
 前記シート状樹脂組成物を硬化させる硬化工程を含むことを特徴とする。
A method for manufacturing a semiconductor device according to the present invention is a method for manufacturing a semiconductor device using the tape-integrated sheet-like resin composition for backside grinding described above,
A laminating step of laminating the sheet surface resin composition of the circuit surface on which the connecting member of the semiconductor wafer is formed and the tape-integrated sheet resin composition for back grinding,
A grinding step of grinding the back surface of the semiconductor wafer;
A wafer fixing step of attaching a dicing tape to the back surface of the semiconductor wafer after back surface grinding;
A peeling step for peeling the back surface grinding tape;
A dicing step of dicing the semiconductor wafer to form a semiconductor chip with a sheet-shaped resin composition;
A pick-up step for peeling the semiconductor chip with the sheet-shaped resin composition from the dicing tape;
A connecting step of electrically connecting the semiconductor chip and the adherend via the connecting member while filling a space between the adherend and the semiconductor chip with the sheet-shaped resin composition; and
It includes a curing step of curing the sheet-shaped resin composition.
 また、本発明に係る半導体装置の製造方法は、前記に記載のダイシングテープ一体型シート状樹脂組成物を用いた半導体装置の製造方法であって、
 接続部材を有する回路面が形成された半導体ウェハと前記ダイシングテープ一体型シート状樹脂組成物の前記シート状樹脂組成物とを貼り合わせる貼合せ工程、
 前記半導体ウェハをダイシングしてシート状樹脂組成物付き半導体チップを形成するダイシング工程、
 前記シート状樹脂組成物付き半導体チップを前記ダイシングテープから剥離するピックアップ工程、
 被着体と前記半導体チップの間の空間をシート状樹脂組成物で充填しつつ前記接続部材を介して前記半導体チップと前記被着体とを電気的に接続する接続工程、及び、
 前記シート状樹脂組成物を硬化させる硬化工程を含むことを特徴とする。
A method for manufacturing a semiconductor device according to the present invention is a method for manufacturing a semiconductor device using the dicing tape-integrated sheet-shaped resin composition described above,
A laminating step of laminating the semiconductor wafer on which a circuit surface having a connection member is formed and the sheet-like resin composition of the dicing tape-integrated sheet-like resin composition,
A dicing step of dicing the semiconductor wafer to form a semiconductor chip with a sheet-shaped resin composition;
A pick-up step for peeling the semiconductor chip with the sheet-shaped resin composition from the dicing tape;
A connection step of electrically connecting the semiconductor chip and the adherend via the connection member while filling a space between the adherend and the semiconductor chip with a sheet-shaped resin composition; and
It includes a curing step of curing the sheet-shaped resin composition.
 前記シート状樹脂組成物は、昇温速度10℃/minにて、25℃から300℃まで昇温した際の重量減少率が2%以下であり、カールフィッシャー法による吸湿率が1%以下であり、且つ、酸解離定数が3.0以上5.0以下の範囲内にある有機酸を上記数値範囲内で含有する。従って、前記シート状樹脂組成物は耐熱性を有しているため、半導体装置の製造時の熱によりシート状樹脂組成物が熱分解等することを抑制することができ、アウトガスに起因するボイドの発生を抑制することができる。 The sheet-like resin composition has a weight loss rate of 2% or less when heated from 25 ° C. to 300 ° C. at a temperature increase rate of 10 ° C./min, and a moisture absorption rate by the Karl Fischer method of 1% or less. And an organic acid having an acid dissociation constant in the range of 3.0 or more and 5.0 or less is contained within the above numerical range. Therefore, since the sheet-shaped resin composition has heat resistance, it is possible to suppress thermal decomposition of the sheet-shaped resin composition due to heat at the time of manufacturing the semiconductor device, and voids caused by outgas Occurrence can be suppressed.
 また、本発明は、前記に記載のシート状樹脂組成物を用いて製造された半導体装置に関する。また、本発明は、前記に記載の裏面研削用テープ一体型シート状樹脂組成物を用いて製造された半導体装置に関する。また、本発明は、前記に記載のダイシングテープ一体型シート状樹脂組成物を用いて製造された半導体装置に関する。 The present invention also relates to a semiconductor device manufactured using the sheet-shaped resin composition described above. Moreover, this invention relates to the semiconductor device manufactured using the tape-integrated sheet-like resin composition for back grinding as described above. The present invention also relates to a semiconductor device manufactured using the dicing tape-integrated sheet-shaped resin composition described above.
 前記シート状樹脂組成物は、昇温速度10℃/minにて、25℃から300℃まで昇温した際の重量減少率が2%以下であり、カールフィッシャー法による吸湿率が1%以下であり、且つ、酸解離定数が3.0以上5.0以下の範囲内にある有機酸を上記数値範囲内で含有する。従って、前記シート状樹脂組成物は耐熱性を有しているため、半導体装置の製造時の熱によりシート状樹脂組成物が熱分解等することを抑制することができ、アウトガスに起因するボイドの発生を抑制することができる。その結果、半導体装置の信頼性を向上させることができる。 The sheet-like resin composition has a weight loss rate of 2% or less when heated from 25 ° C. to 300 ° C. at a temperature increase rate of 10 ° C./min, and a moisture absorption rate by the Karl Fischer method of 1% or less. And an organic acid having an acid dissociation constant in the range of 3.0 or more and 5.0 or less is contained within the above numerical range. Therefore, since the sheet-shaped resin composition has heat resistance, it is possible to suppress thermal decomposition of the sheet-shaped resin composition due to heat at the time of manufacturing the semiconductor device, and voids caused by outgas Occurrence can be suppressed. As a result, the reliability of the semiconductor device can be improved.
 本発明によれば、高温での耐久性に優れ、且つ、アンダーフィル用のシートとして好適に使用できるシート状樹脂組成物、当該シート状樹脂組成物を備えるダイシングテープ一体型シート状樹脂組成物、当該シート状樹脂組成物を用いた半導体装置の製造方法、及び、当該シート状樹脂組成物を用いて製造された半導体装置を提供することができる。 According to the present invention, a sheet-shaped resin composition that is excellent in durability at high temperatures and can be suitably used as a sheet for underfill, a dicing tape-integrated sheet-shaped resin composition comprising the sheet-shaped resin composition, The manufacturing method of the semiconductor device using the said sheet-like resin composition and the semiconductor device manufactured using the said sheet-like resin composition can be provided.
本発明の一実施形態に係る裏面研削用テープ一体型シート状樹脂組成物の断面模式図である。It is a cross-sectional schematic diagram of the tape-integrated sheet-like resin composition for back surface grinding which concerns on one Embodiment of this invention. 図1に示した裏面研削用テープ一体型シート状樹脂組成物を用いた半導体装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the semiconductor device using the tape-integrated sheet-like resin composition for back grinding shown in FIG. 図1に示した裏面研削用テープ一体型シート状樹脂組成物を用いた半導体装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the semiconductor device using the tape-integrated sheet-like resin composition for back grinding shown in FIG. 図1に示した裏面研削用テープ一体型シート状樹脂組成物を用いた半導体装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the semiconductor device using the tape-integrated sheet-like resin composition for back grinding shown in FIG. 図1に示した裏面研削用テープ一体型シート状樹脂組成物を用いた半導体装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the semiconductor device using the tape-integrated sheet-like resin composition for back grinding shown in FIG. 図1に示した裏面研削用テープ一体型シート状樹脂組成物を用いた半導体装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the semiconductor device using the tape-integrated sheet-like resin composition for back grinding shown in FIG. 図1に示した裏面研削用テープ一体型シート状樹脂組成物を用いた半導体装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the semiconductor device using the tape-integrated sheet-like resin composition for back grinding shown in FIG. 図1に示した裏面研削用テープ一体型シート状樹脂組成物を用いた半導体装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the semiconductor device using the tape-integrated sheet-like resin composition for back grinding shown in FIG. 本発明の他の実施形態に係るダイシングテープ一体型シート状樹脂組成物の断面模式図である。It is a cross-sectional schematic diagram of the dicing tape integrated sheet-like resin composition which concerns on other embodiment of this invention. 図3に示したダイシングテープ一体型シート状樹脂組成物を用いた半導体装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the semiconductor device using the dicing tape integrated sheet-like resin composition shown in FIG. 図3に示したダイシングテープ一体型シート状樹脂組成物を用いた半導体装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the semiconductor device using the dicing tape integrated sheet-like resin composition shown in FIG. 図3に示したダイシングテープ一体型シート状樹脂組成物を用いた半導体装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the semiconductor device using the dicing tape integrated sheet-like resin composition shown in FIG. 図3に示したダイシングテープ一体型シート状樹脂組成物を用いた半導体装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the semiconductor device using the dicing tape integrated sheet-like resin composition shown in FIG.
 以下、本発明の実施形態につき、図面を参照しつつ説明する。以下では、まず、裏面研削用テープ上にシート状樹脂組成物が設けられている裏面研削用テープ一体型シート状樹脂組成物について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Below, the tape-integrated sheet-like resin composition for backside grinding in which the sheet-like resin composition is provided on the backside grinding tape will be described first.
<裏面研削用テープ一体型シート状樹脂組成物>
 図1は、本発明の一実施形態に係る裏面研削用テープ一体型シート状樹脂組成物の断面模式図である。本実施形態に係る裏面研削用テープ一体型シート状樹脂組成物10は、裏面研削用テープ1上にシート状樹脂組成物2が積層された構造である。裏面研削用テープ1は、基材1a上に粘着剤層1bが積層された構造である。シート状樹脂組成物2は裏面研削用テープ1の粘着剤層1b上に積層されている。なお、シート状樹脂組成物2は、裏面研削用テープ1の全面に積層されていなくてもよく、半導体ウェハ3(図2A参照)との貼り合わせに必要なサイズで設けられていればよい。
<Back-grinding tape-integrated sheet-shaped resin composition>
FIG. 1 is a schematic cross-sectional view of a tape-integrated sheet-like resin composition for backside grinding according to an embodiment of the present invention. The back-grinding tape-integrated sheet-shaped resin composition 10 according to this embodiment has a structure in which a sheet-shaped resin composition 2 is laminated on a back-grinding tape 1. The back grinding tape 1 has a structure in which an adhesive layer 1b is laminated on a substrate 1a. The sheet-like resin composition 2 is laminated on the pressure-sensitive adhesive layer 1 b of the back grinding tape 1. In addition, the sheet-like resin composition 2 does not need to be laminated | stacked on the whole surface of the tape 1 for back surface grinding, and should just be provided by the size required for bonding with the semiconductor wafer 3 (refer FIG. 2A).
 以下では、シート状樹脂組成物2が裏面研削用テープ1上に積層された裏面研削用テープ一体型シート状樹脂組成物10について説明するが、シート状樹脂組成物2は、単体で使用することもできる。例えば、シート状樹脂組成物2は、裏面研削用テープ1の粘着剤層1b上に貼り合わせて使用することができる。また、シート状樹脂組成物2は、半導体ウエハに貼り合わせた後、他の面を裏面研削用テープ1の粘着剤層1bに貼り合わせて使用することができる。 Below, although the sheet-like resin composition 2 laminated | stacked on the tape 1 for back surface grinding is demonstrated about the tape-integrated sheet-like resin composition 10 for back surface grinding, the sheet-like resin composition 2 should be used alone. You can also. For example, the sheet-shaped resin composition 2 can be used by being bonded onto the pressure-sensitive adhesive layer 1b of the back grinding tape 1. Moreover, after bonding the sheet-shaped resin composition 2 to a semiconductor wafer, the other surface can be bonded to the pressure-sensitive adhesive layer 1 b of the back surface grinding tape 1 and used.
<シート状樹脂組成物>
 シート状樹脂組成物2は、被着体6と被着体6上にフリップチップ接続された半導体チップ5との界面封止に用いられる(図2G参照)。
<Sheet-shaped resin composition>
The sheet-like resin composition 2 is used for interface sealing between the adherend 6 and the semiconductor chip 5 flip-chip connected on the adherend 6 (see FIG. 2G).
 また、シート状樹脂組成物2は、昇温速度10℃/minにて、25℃から300℃まで昇温した際の重量減少率が2%以下であり、1.0%以下であることがより好ましい。また、前記重量減少率は、小さいほど好ましいが、例えば、0.05%以上0.5%以下である。昇温速度10℃/minにて、25℃から300℃まで昇温した際の重量減少率が2%以下であるため、揮発成分が抑制されており、ボイドの発生が低減される。従って、高温での耐久性に優れる。 The sheet-like resin composition 2 has a weight reduction rate of 2% or less when the temperature is raised from 25 ° C. to 300 ° C. at a rate of temperature increase of 10 ° C./min, and is 1.0% or less. More preferred. Moreover, although the said weight decreasing rate is so preferable that it is small, it is 0.05% or more and 0.5% or less, for example. Since the weight reduction rate when the temperature is raised from 25 ° C. to 300 ° C. at a rate of temperature increase of 10 ° C./min is 2% or less, the volatile components are suppressed and the generation of voids is reduced. Therefore, it is excellent in durability at high temperatures.
 シート状樹脂組成物2は、カールフィッシャー法による吸湿率が1%以下であり、0.8%以下であることが好ましく、0.5%以下であることがより好ましい。また、前記吸湿率は、小さいほど好ましいが、例えば、0.05%以上である。シート状樹脂組成物2のカールフィッシャー法による吸湿率が1%以下であるため、被着体6とシート状樹脂組成物2との間や、半導体チップ5とシート状樹脂組成物2との間でのボイドの発生を抑制することができる。本発明に係るカールフィッシャー法による吸湿率は、実施例に記載の条件で測定した値である。 The sheet-like resin composition 2 has a moisture absorption rate by the Karl Fischer method of 1% or less, preferably 0.8% or less, and more preferably 0.5% or less. Moreover, although the said moisture absorption rate is so preferable that it is small, it is 0.05% or more, for example. Since the moisture absorption rate by the Karl Fischer method of the sheet-shaped resin composition 2 is 1% or less, it is between the adherend 6 and the sheet-shaped resin composition 2 or between the semiconductor chip 5 and the sheet-shaped resin composition 2. It is possible to suppress the generation of voids. The moisture absorption rate by the Karl Fischer method according to the present invention is a value measured under the conditions described in the examples.
 シート状樹脂組成物2は、酸解離定数が3.0以上5.0以下の範囲内にある有機酸をシート状樹脂組成物全体に対して1重量%以上10重量%以下の範囲内で含有する。前記有機酸の前記含有量は、1.5重量%以上6重量%以下であることが好ましい。有機酸として、酸解離定数が3.0以上のものを用いるため、樹脂組成物中の酸性度が高くなり、保存性の悪化等の物性への悪影響を抑制することができる。また、有機酸として、酸解離定数が5.0以下のものを用いるため、酸性度が充分となり、電極表面の酸化膜もしくは防錆膜の除去を好適に行なうことができる。また、酸解離定数が3.0以上5.0以下の範囲内にある有機酸をシート状樹脂組成物全体に対して1重量%以上含有するため、有機酸が充分に行きわたり、表面の酸化膜もしくは防錆膜を好適に除去できる。また、10重量%以下で含有するため、保存性悪化等の物性への悪影響を抑制することができる。
 すなわち、酸解離定数が3.0以上5.0以下の範囲内にある有機酸をシート状樹脂組成物2全体に対して1重量%以上10重量%以下の範囲内で含有するため、電極表面の酸化物もしくは防錆膜を好適に除去することができる。
The sheet-like resin composition 2 contains an organic acid having an acid dissociation constant in the range of 3.0 or more and 5.0 or less within a range of 1% by weight or more and 10% by weight or less with respect to the entire sheet-like resin composition. To do. The content of the organic acid is preferably 1.5% by weight or more and 6% by weight or less. Since an organic acid having an acid dissociation constant of 3.0 or more is used, the acidity in the resin composition is increased, and adverse effects on physical properties such as deterioration in storage stability can be suppressed. Moreover, since an acid dissociation constant of 5.0 or less is used as the organic acid, the acidity is sufficient, and the oxide film or rust preventive film on the electrode surface can be suitably removed. In addition, since the organic acid having an acid dissociation constant in the range of 3.0 or more and 5.0 or less is contained in an amount of 1% by weight or more with respect to the whole sheet-shaped resin composition, the organic acid is sufficiently distributed or the surface is oxidized. A film or a rust preventive film can be suitably removed. Moreover, since it contains at 10 weight% or less, the bad influence to physical properties, such as a storage stability deterioration, can be suppressed.
That is, since the organic acid having an acid dissociation constant in the range of 3.0 or more and 5.0 or less is contained in the range of 1% by weight or more and 10% by weight or less with respect to the entire sheet-shaped resin composition 2, the electrode surface The oxide or rust preventive film can be suitably removed.
 このようにシート状樹脂組成物2によれば、加熱による重量減少率が上記数値範囲内にあり、吸湿率が上記数値範囲内にあり、且つ、酸解離定数が3.0以上5.0以下の範囲内にある有機酸を上記数値範囲内で含有するため、高温での耐久性に優れ、且つ、アンダーフィル用のシートとして好適に使用できる。 Thus, according to the sheet-shaped resin composition 2, the weight reduction rate due to heating is in the above numerical range, the moisture absorption rate is in the above numerical range, and the acid dissociation constant is 3.0 or more and 5.0 or less. Since the organic acid in the range is contained within the above numerical range, it is excellent in durability at high temperatures and can be suitably used as a sheet for underfill.
 前記有機酸としては、酸解離定数が3.0以上5.0以下の範囲内にあるものであれば、特に限定されず、例えば、o-アニス酸(4.09)、m-アニス酸(4.09)、p-アニス酸(4.4)、ベンジル酸(3.1)、アセチルサリチル酸(3.5)、2-フェノキシ安息香酸(3.53)、ギ酸(3.75)、アスコルビン酸(4.17)、安息香酸(4.2)、フルオレセイン(4.31)、カンファー酸(4.71)、酢酸(4.75)等が挙げられる。なお、括弧内は各有機酸の酸解離定数を示している。 The organic acid is not particularly limited as long as it has an acid dissociation constant in the range of 3.0 or more and 5.0 or less. For example, o-anisic acid (4.09), m-anisic acid ( 4.09), p-anisic acid (4.4), benzylic acid (3.1), acetylsalicylic acid (3.5), 2-phenoxybenzoic acid (3.53), formic acid (3.75), ascorbine Examples include acid (4.17), benzoic acid (4.2), fluorescein (4.31), camphoric acid (4.71), and acetic acid (4.75). In addition, the parenthesis shows the acid dissociation constant of each organic acid.
 シート状樹脂組成物2は、加熱による重量減少率が上記数値範囲内にあり、吸湿率が上記数値範囲内にあり、且つ、酸解離定数が3.0以上5.0以下の範囲内にある有機酸を上記数値範囲内で含有するものであれば、その形成材料は、特に限定されないが、ポリイミド樹脂、ポリアミドイミド樹脂、シリコーン樹脂、アクリル樹脂、フッ素樹脂、エポキシ樹脂、ウレタン樹脂、ゴム樹脂等を挙げることができる。 The sheet-like resin composition 2 has a weight reduction rate due to heating within the above numerical range, a moisture absorption rate within the above numerical range, and an acid dissociation constant within a range of 3.0 to 5.0. As long as the organic acid is contained within the above numerical range, the forming material is not particularly limited, but polyimide resin, polyamideimide resin, silicone resin, acrylic resin, fluorine resin, epoxy resin, urethane resin, rubber resin, etc. Can be mentioned.
 シート状樹脂組成物2は絶縁性を有することが好ましい。 The sheet-like resin composition 2 preferably has an insulating property.
 前記ポリイミド樹脂は、一般的に、その前駆体であるポリアミド酸をイミド化(脱水縮合)することにより得ることができる。ポリアミド酸をイミド化する方法としては、例えば、従来公知の加熱イミド化法、共沸脱水法、化学的イミド化法等を採用することができる。なかでも、加熱イミド化法が好ましい。加熱イミド化法を採用する場合、ポリイミド樹脂の酸化による劣化を防止するため、窒素雰囲気下や、真空中等の不活性雰囲気下にて加熱処理を行なうことが好ましい。 The polyimide resin can be generally obtained by imidizing (dehydrating and condensing) a polyamic acid that is a precursor thereof. As a method for imidizing the polyamic acid, for example, a conventionally known heat imidization method, azeotropic dehydration method, chemical imidization method and the like can be employed. Of these, the heating imidization method is preferable. When the heat imidization method is employed, it is preferable to perform heat treatment under a nitrogen atmosphere or an inert atmosphere such as a vacuum in order to prevent deterioration of the polyimide resin due to oxidation.
 前記ポリアミド酸は、適宜選択した溶媒中で、酸二無水物とジアミンとを実質的に等モル比となるように仕込み、有機溶媒中で反応させて得ることができる。 The polyamic acid can be obtained by charging an acid dianhydride and a diamine so as to have a substantially equimolar ratio in an appropriately selected solvent and reacting them in an organic solvent.
 前記酸二無水物の具体例としては、ピロメリット酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)エタン二無水物、オキシジフタル酸二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、p-フェニレンビス(トリメリット酸モノエステル酸無水物)、エチレンビス(トリメリット酸モノエステル酸無水物 )、ビスフェノールAビス(トリメリット酸モノエステル酸無水物)、ヘキサフルオロプロパンジフタル酸無水物が挙げられる。なかでも、加熱による重量減少率、吸湿率を上記の特定の範囲内にする観点から、ヘキサフルオロプロパンジフタル酸無水物、オキシジフタル酸無水物が好ましい。 Specific examples of the acid dianhydride include pyromellitic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3 ′, 4,4′- biphenyltetracarboxylic dianhydride 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid Dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) propane Dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxy Phenyl) methane Water, bis (3,4-dicarboxyphenyl) ethane dianhydride, oxydiphthalic dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, p-phenylenebis (trimellitic acid monoester acid Anhydride), ethylene bis (trimellitic acid monoester acid anhydride), bisphenol A bis (trimellitic acid monoester acid anhydride), and hexafluoropropane diphthalic acid anhydride. Of these, hexafluoropropane diphthalic anhydride and oxydiphthalic anhydride are preferable from the viewpoint of bringing the weight loss rate and moisture absorption rate by heating into the above specific ranges.
 また、前記酸二無水物と反応させるジアミンの具体例としては、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルメタン、ベンジジン、3,3’-ジクロロベンジジン、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、1,5-ジアミノナフタレン、4,4’-ジアミノジフェニルジエチルシラン、4,4’-ジアミノジフェニルシラン、4,4’-ジアミノジフェニルエチルホスフィンオキシド、4,4’-ジアミノジフェニルN-メチルアミン、4,4’-ジアミノジフェニル N-フェニルアミン、1,4-ジアミノベンゼン(p-フェニレンジアミン)、1,3-ジアミノベンゼン、1,2-ジアミノベンゼン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビスアミノプロピルテトラメチルジシロキサンが挙げられる。なかでも、加熱による重量減少率、吸湿率を上記の特定の範囲内にする観点から、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビスアミノプロピルテトラメチルジシロキサンが好ましい。 Specific examples of the diamine to be reacted with the acid dianhydride include 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenylmethane, benzidine, 3,3′-dichlorobenzidine, 4,4′-diamino. Diphenyl sulfide, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 1,5-diamino Naphthalene, 4,4'-diaminodiphenyldiethylsilane, 4,4'-diaminodiphenylsilane, 4,4'-diaminodiphenylethylphosphine oxide, 4,4'-diaminodiphenyl N-methylamine, 4,4'-diamino Diphenyl N-phenylamine, 1 4-diaminobenzene (p-phenylenediamine), 1,3-diaminobenzene, 1,2-diaminobenzene, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, bisaminopropyltetramethyldi Examples include siloxane. Among these, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane and bisaminopropyltetramethyldisiloxane are used from the viewpoint of keeping the weight loss rate and moisture absorption rate within the above specific ranges by heating. preferable.
 前記酸二無水物とジアミンとを反応させる際に用いられる有機溶媒は、酸二無水物及びジアミンと反応せず、かつ反応成分の少なくとも一方、好ましくは両者、及び生成物であるポリアミド酸に対して溶媒として作用する有機溶媒(有機極性溶媒)であれば特に限定されない。 The organic solvent used in the reaction of the acid dianhydride and the diamine does not react with the acid dianhydride and the diamine, and at least one of the reaction components, preferably both, and the product polyamic acid. The organic solvent (organic polar solvent) that acts as a solvent is not particularly limited.
 前記酸無水物と前記ジアミンを反応させる際の溶媒としては、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、シクロペンタノン等を挙げることができる。これらは、単独で使用してもよく、複数を混合して用いてもよい。また、原材料や樹脂の溶解性を調整するために、トルエンや、キシレン等の非極性の溶媒を適宜、混合して用いてもよい。 Examples of the solvent for reacting the acid anhydride with the diamine include N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N, N-dimethylformamide, and cyclopentanone. These may be used alone or in combination. Further, in order to adjust the solubility of raw materials and resins, a nonpolar solvent such as toluene or xylene may be appropriately mixed and used.
 前記ポリアミド酸溶液には、イミド化を効果的に行なうことを目的として、硬化促進剤(イミド化触媒)を添加してもよい。前記硬化促進剤の具体例としては、脂肪族第三級アミン、芳香族第三級アミン、複素環式第三級アミン等が用いられる。それらのうち複素環式第三級アミンから選択されるものが特に好ましく用い得る。具体的にはキノリン、イソキノリン、β-ピコリン、ピリジン等が好ましく用いられる。より具体的には、1-エチル-3,5-ジメトキシカルボニル-4-(2-ニトロフェニル)-1,4-ジヒトロピリジンが挙げられる。前記硬化促進剤の添加量としては、ポリアミド酸1モルに対してモル比で0.2~2.0倍、さらに好ましくは0.3~1.5倍の割合で用い得る。少なすぎるとイミド化率が好適な範囲より小さくなる傾向があり、多すぎると硬化が速くなり、支持体上に流延するのが困難となる。また、物性に影響を及ぼさない程度であればアセチルアセトン等のイミド化遅延剤を併用しても良い。 A curing accelerator (imidation catalyst) may be added to the polyamic acid solution for the purpose of effectively imidizing. Specific examples of the curing accelerator include aliphatic tertiary amines, aromatic tertiary amines, and heterocyclic tertiary amines. Among them, those selected from heterocyclic tertiary amines can be particularly preferably used. Specifically, quinoline, isoquinoline, β-picoline, pyridine and the like are preferably used. More specifically, 1-ethyl-3,5-dimethoxycarbonyl-4- (2-nitrophenyl) -1,4-dihumanlopyridine may be mentioned. The curing accelerator may be added in a molar ratio of 0.2 to 2.0 times, more preferably 0.3 to 1.5 times with respect to 1 mol of polyamic acid. If the amount is too small, the imidization rate tends to be smaller than the preferred range, and if the amount is too large, the curing becomes fast and it becomes difficult to cast on the support. Further, an imidization retarder such as acetylacetone may be used in combination as long as the physical properties are not affected.
 シート状樹脂組成物2には、エポキシ樹脂が含有されていてもよい。前記エポキシ樹脂としては、接着剤組成物として一般に用いられるものであれば特に限定は無く、例えばビスフェノールA型、ビスフェノールF型、ビスフェノールS型、臭素化ビスフェノールA型、水添ビスフェノールA型、ビスフェノールAF型、ビフェニル型、ナフタレン型、フルオンレン型、フェノールノボラック型、オルソクレゾールノボラック型、トリスヒドロキシフェニルメタン型、テトラフェニロールエタン型等の二官能エポキシ樹脂や多官能エポキシ樹脂、又はヒダントイン型、トリスグリシジルイソシアヌレート型若しくはグリシジルアミン型等のエポキシ樹脂が用いられる。これらは単独で、又は2種以上を併用して用いることができる。 The sheet-like resin composition 2 may contain an epoxy resin. The epoxy resin is not particularly limited as long as it is generally used as an adhesive composition. For example, bisphenol A type, bisphenol F type, bisphenol S type, brominated bisphenol A type, hydrogenated bisphenol A type, bisphenol AF Type, biphenyl type, naphthalene type, fluorene type, phenol novolac type, orthocresol novolak type, trishydroxyphenylmethane type, tetraphenylol ethane type, etc. An epoxy resin such as a nurate type or a glycidylamine type is used. These can be used alone or in combination of two or more.
 シート状樹脂組成物2には、無機フィラーが含有されていてもよい。前記無機フィラーとしては、例えば、シリカ、クレー、石膏、炭酸カルシウム、硫酸バリウム、酸化アルミナ、酸化ベリリウム、炭化珪素、窒化珪素等のセラミック類、アルミニウム、銅、銀、金、ニッケル、クロム、鉛、錫、亜鉛、パラジウム、半田などの金属、又は合金類、その他カーボンなどからなる種々の無機粉末などが挙げられる。ただし、シート状樹脂組成物2に絶縁性を持たせる観点から、絶縁性のものを用いることが好ましい。前記無機フィラーの含有量は、固形分全体に対して、10重量%以上80重量%以下で含有されていることが好ましく、30重量%以上60重量%以下がより好ましい。前記無機フィラーを10重量%以上含有させることにより、シート状樹脂組成物2の線膨張を調整することができ、80重量%以下で含有させることにより、無機フィラーの分散性を向上でき、塗工を容易とすることができる。 The sheet-like resin composition 2 may contain an inorganic filler. Examples of the inorganic filler include silica, clay, gypsum, calcium carbonate, barium sulfate, alumina oxide, beryllium oxide, silicon carbide, silicon nitride, and other ceramics, aluminum, copper, silver, gold, nickel, chromium, lead, Examples include various inorganic powders made of metals such as tin, zinc, palladium, solder, alloys, and other carbon. However, from the viewpoint of imparting insulation to the sheet-shaped resin composition 2, it is preferable to use an insulating one. The content of the inorganic filler is preferably 10% by weight or more and 80% by weight or less, and more preferably 30% by weight or more and 60% by weight or less, based on the entire solid content. By containing the inorganic filler in an amount of 10% by weight or more, the linear expansion of the sheet-like resin composition 2 can be adjusted. By containing the inorganic filler in an amount of 80% by weight or less, the dispersibility of the inorganic filler can be improved. Can be made easy.
 シート状樹脂組成物2は、例えば、次の通りにして作製される。まず、前記ポリアミド酸と必要に応じて添加した硬化促進剤を含む溶液を作製する。次に、必要に応じて加熱しながら攪拌し、その後、水中に投入することによりイミド樹脂を沈殿させる。次に、前記イミド樹脂、必要に応じて前記有機酸、前記エポキシ樹脂、前記無機フィラーを再度有機溶媒に溶解させてワニスとし、これを塗布、乾燥させることにより、シート状樹脂組成物2が得られる。
 なお、前記ポリアミド酸、必要に応じて前記有機酸、前記エポキシ樹脂、前記無機フィラーを有機溶媒に溶解させてワニスとし、これを塗布、乾燥させることによっても、シート状樹脂組成物2を得ることができる。
The sheet-shaped resin composition 2 is produced as follows, for example. First, a solution containing the polyamic acid and a curing accelerator added as necessary is prepared. Next, it stirs, heating as needed, Then, imide resin is precipitated by throwing in water. Next, the sheet resin composition 2 is obtained by dissolving the imide resin, if necessary, the organic acid, the epoxy resin, and the inorganic filler again in an organic solvent to form a varnish, which is applied and dried. It is done.
In addition, the sheet-like resin composition 2 can be obtained by dissolving the polyamic acid, if necessary, the organic acid, the epoxy resin, and the inorganic filler in an organic solvent to form a varnish, and applying and drying the varnish. Can do.
<裏面研削用テープ>
 裏面研削用テープ1は、基材1a上に粘着剤層1bが積層された構造である。以下、基材及び粘着剤層の順で説明する。
<Back grinding tape>
The back grinding tape 1 has a structure in which an adhesive layer 1b is laminated on a substrate 1a. Hereinafter, it demonstrates in order of a base material and an adhesive layer.
(基材)
 基材1aは紫外線透過性を有するものを使用することができ、裏面研削用テープ1の強度母体となるものである。例えば、低密度ポリエチレン、直鎖状ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超低密度ポリエチレン、ランダム共重合ポリプロピレン、ブロック共重合ポリプロピレン、ホモポリプロレン、ポリブテン、ポリメチルペンテン等のポリオレフィン、エチレン-酢酸ビニル共重合体、アイオノマー樹脂、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル(ランダム、交互)共重合体、エチレン-ブテン共重合体、エチレン-ヘキセン共重合体、ポリウレタン、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、ポリアミド、全芳香族ポリアミド、ポリフェニルスルフイド、アラミド(紙)、ガラス、ガラスクロス、フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、セルロース系樹脂、シリコーン樹脂、金属(箔)、紙等が挙げられる。
(Base material)
The base material 1a can use what has ultraviolet transmissivity, and becomes a strength base material of the tape 1 for back surface grinding. For example, polyolefins such as low density polyethylene, linear polyethylene, medium density polyethylene, high density polyethylene, ultra low density polyethylene, random copolymer polypropylene, block copolymer polypropylene, homopolypropylene, polybutene, polymethylpentene, ethylene-acetic acid Vinyl copolymer, ionomer resin, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester (random, alternating) copolymer, ethylene-butene copolymer, ethylene-hexene copolymer, Polyester such as polyurethane, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyetheretherketone, polyimide, polyetherimide, polyamide, wholly aromatic polyamide, polyphenylsulfur De, aramid (paper), glass, glass cloth, fluorine resin, polyvinyl chloride, polyvinylidene chloride, cellulose resin, silicone resin, metal (foil), paper, and the like.
 また基材1aの材料としては、前記樹脂の架橋体等のポリマーが挙げられる。前記プラスチックフィルムは、無延伸で用いてもよく、必要に応じて一軸又は二軸の延伸処理を施したものを用いてもよい。 Further, examples of the material of the substrate 1a include polymers such as a crosslinked body of the resin. The plastic film may be used unstretched or may be uniaxially or biaxially stretched as necessary.
 基材1aの表面は、隣接する層との密着性、保持性等を高める為、慣用の表面処理、例えば、クロム酸処理、オゾン暴露、火炎暴露、高圧電撃暴露、イオン化放射線処理等の化学的又は物理的処理、下塗剤(例えば、後述する粘着物質)によるコーティング処理を施すことができる。前記基材1aは、同種又は異種のものを適宜に選択して使用することができ、必要に応じて数種をブレンドしたものを用いることができる。 The surface of the base material 1a is chemically treated by conventional surface treatments such as chromic acid treatment, ozone exposure, flame exposure, high piezoelectric impact exposure, ionizing radiation treatment, etc. in order to improve adhesion and retention with adjacent layers. Alternatively, a physical treatment or a coating treatment with a primer (for example, an adhesive substance described later) can be performed. As the base material 1a, the same kind or different kinds can be appropriately selected and used, and if necessary, a blend of several kinds can be used.
 基材1aの厚さは、特に制限されず適宜に決定できるが、一般的には5~200μm程度である。 The thickness of the substrate 1a is not particularly limited and can be appropriately determined, but is generally about 5 to 200 μm.
 粘着剤層1bの形成に用いる粘着剤としては特に制限されず、例えば、アクリル系粘着剤、ゴム系粘着剤等の一般的な感圧性粘着剤を用いることができる。前記感圧性粘着剤としては、半導体ウェハやガラス等の汚染をきらう電子部品の超純水やアルコール等の有機溶剤による清浄洗浄性等の点から、アクリル系ポリマーをベースポリマーとするアクリル系粘着剤が好ましい。 The pressure-sensitive adhesive used for forming the pressure-sensitive adhesive layer 1b is not particularly limited, and for example, a general pressure-sensitive pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive or a rubber-based pressure-sensitive adhesive can be used. The pressure-sensitive adhesive is an acrylic pressure-sensitive adhesive based on an acrylic polymer from the standpoint of cleanability with an organic solvent such as ultrapure water or alcohol for electronic components that are difficult to contaminate semiconductor wafers and glass. Is preferred.
 前記アクリル系ポリマーとしては、例えば、(メタ)アクリル酸アルキルエステル(例えば、メチルエステル、エチルエステル、プロピルエステル、イソプロピルエステル、ブチルエステル、イソブチルエステル、s-ブチルエステル、t-ブチルエステル、ペンチルエステル、イソペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、2-エチルヘキシルエステル、イソオクチルエステル、ノニルエステル、デシルエステル、イソデシルエステル、ウンデシルエステル、ドデシルエステル、トリデシルエステル、テトラデシルエステル、ヘキサデシルエステル、オクタデシルエステル、エイコシルエステル等のアルキル基の炭素数1~30、特に炭素数4~18の直鎖状又は分岐鎖状のアルキルエステル等)及び(メタ)アクリル酸シクロアルキルエステル(例えば、シクロペンチルエステル、シクロヘキシルエステル等)の1種又は2種以上を単量体成分として用いたアクリル系ポリマー等が挙げられる。尚、(メタ)アクリル酸エステルとはアクリル酸エステル及び/又はメタクリル酸エステルをいい、本発明の(メタ)とは全て同様の意味である。 Examples of the acrylic polymer include (meth) acrylic acid alkyl esters (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, s-butyl ester, t-butyl ester, pentyl ester, Isopentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, hexadecyl ester , Octadecyl esters, eicosyl esters, etc., alkyl groups having 1 to 30 carbon atoms, especially 4 to 18 carbon atoms, such as linear or branched alkyl esters) (Meth) acrylic acid cycloalkyl esters (e.g., cyclopentyl ester, cyclohexyl ester, etc.) acryl-based polymer such as one or more was used as a monomer component thereof. In addition, (meth) acrylic acid ester means acrylic acid ester and / or methacrylic acid ester, and (meth) of the present invention has the same meaning.
 前記アクリル系ポリマーは、凝集力、耐熱性等の改質を目的として、必要に応じ、前記(メタ)アクリル酸アルキルエステル又はシクロアルキルエステルと共重合可能な他のモノマー成分に対応する単位を含んでいてもよい。この様なモノマー成分として、例えば、アクリル酸、メタクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸等のカルボキシル基含有モノマー;無水マレイン酸、無水イタコン酸等の酸無水物モノマー;(メタ)アクリル酸二-ヒドロキシエチル、(メタ)アクリル酸二-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル、(4-ヒドロキシメチルシクロヘキシル)メチル(メタ)アクリレート等のヒドロキシル基含有モノマー;スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、(メタ)アクリロイルオキシナフタレンスルホン酸等のスルホン酸基含有モノマー;2-ヒドロキシエチルアクリロイルホスフェート等のリン酸基含有モノマー;アクリルアミド、アクリロニトリル等が挙げられる。これら共重合可能なモノマー成分は、1種又は2種以上使用できる。これら共重合可能なモノマーの使用量は、全モノマー成分の40重量%以下が好ましい。 The acrylic polymer contains units corresponding to other monomer components copolymerizable with the (meth) acrylic acid alkyl ester or cycloalkyl ester, if necessary, for the purpose of modifying cohesive force, heat resistance and the like. You may go out. Examples of such monomer components include, for example, carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid; maleic anhydride Acid anhydride monomers such as itaconic anhydride; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate Hydroxyl group-containing monomers such as 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl (meth) acrylate; Styrene Contains sulfonic acid groups such as phonic acid, allyl sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, (meth) acrylamide propane sulfonic acid, sulfopropyl (meth) acrylate, (meth) acryloyloxynaphthalene sulfonic acid Monomers; Phosphoric acid group-containing monomers such as 2-hydroxyethylacryloyl phosphate; acrylamide, acrylonitrile and the like. One or more of these copolymerizable monomer components can be used. The amount of these copolymerizable monomers used is preferably 40% by weight or less based on the total monomer components.
 更に、前記アクリル系ポリマーは、架橋させる為、多官能性モノマー等も、必要に応じて共重合用モノマー成分として含むことができる。この様な多官能性モノマーとして、例えば、ヘキサンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレート等が挙げられる。これらの多官能性モノマーも1種又は2種以上用いることができる。多官能性モノマーの使用量は、粘着特性等の点から、全モノマー成分の30重量%以下が好ましい。 Furthermore, since the acrylic polymer is crosslinked, a polyfunctional monomer or the like can be included as a monomer component for copolymerization as necessary. Examples of such polyfunctional monomers include hexanediol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, Pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meth) An acrylate etc. are mentioned. These polyfunctional monomers can also be used alone or in combination of two or more. The amount of the polyfunctional monomer used is preferably 30% by weight or less of the total monomer components from the viewpoint of adhesive properties and the like.
 前記アクリル系ポリマーは、単一モノマー又は2種以上のモノマー混合物を重合に付すことにより得られる。重合は、溶液重合、乳化重合、塊状重合、懸濁重合等の何れの方式で行うこともできる。清浄な被着体への汚染防止等の点から、低分子量物質の含有量が小さいのが好ましい。この点から、アクリル系ポリマーの数平均分子量は、好ましくは30万以上、更に好ましくは40万~300万程度である。 The acrylic polymer can be obtained by subjecting a single monomer or a mixture of two or more monomers to polymerization. The polymerization can be performed by any method such as solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization and the like. From the viewpoint of preventing contamination of a clean adherend, the content of the low molecular weight substance is preferably small. From this point, the number average molecular weight of the acrylic polymer is preferably 300,000 or more, more preferably about 400,000 to 3 million.
 また、前記粘着剤には、ベースポリマーであるアクリル系ポリマー等の数平均分子量を高める為、外部架橋剤を適宜に採用することもできる。外部架橋方法の具体的手段としては、ポリイソシアネート化合物、エポキシ化合物、アジリジン化合物、メラミン系架橋剤等のいわゆる架橋剤を添加し反応させる方法が挙げられる。外部架橋剤を使用する場合、その使用量は、架橋すべきベースポリマーとのバランスにより、更には、粘着剤としての使用用途によって適宜決定される。一般的には、前記ベースポリマー100重量部に対して、5重量部程度以下、更には0.1~5重量部配合するのが好ましい。更に、粘着剤には、必要により、前記成分のほかに、従来公知の各種の粘着付与剤、老化防止剤等の添加剤を用いてもよい。 In addition, an external cross-linking agent can be appropriately employed for the pressure-sensitive adhesive in order to increase the number average molecular weight of an acrylic polymer as a base polymer. Specific examples of the external crosslinking method include a method of adding a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, a melamine crosslinking agent, and reacting them. When using an external cross-linking agent, the amount used is appropriately determined depending on the balance with the base polymer to be cross-linked and further depending on the intended use as an adhesive. Generally, it is preferable to add about 5 parts by weight or less, more preferably 0.1 to 5 parts by weight, with respect to 100 parts by weight of the base polymer. Furthermore, you may use additives, such as conventionally well-known various tackifier and anti-aging agent, other than the said component as needed to an adhesive.
 粘着剤層1bは放射線硬化型粘着剤により形成することができる。放射線硬化型粘着剤は、紫外線等の放射線の照射により架橋度を増大させてその粘着力を容易に低下させることができる。前記放射線としては、X線、紫外線、電子線、α線、β線、中性子線などが挙げられる。 The pressure-sensitive adhesive layer 1b can be formed of a radiation curable pressure-sensitive adhesive. A radiation-curable pressure-sensitive adhesive can easily reduce its adhesive strength by increasing the degree of crosslinking by irradiation with radiation such as ultraviolet rays. Examples of the radiation include X-rays, ultraviolet rays, electron beams, α rays, β rays, and neutron rays.
 放射線硬化型粘着剤は、炭素-炭素二重結合等の放射線硬化性の官能基を有し、かつ粘着性を示すものを特に制限なく使用することができる。放射線硬化型粘着剤としては、例えば、前記アクリル系粘着剤、ゴム系粘着剤等の一般的な感圧性粘着剤に、放射線硬化性のモノマー成分やオリゴマー成分を配合した添加型の放射線硬化型粘着剤を例示できる。 As the radiation curable pressure-sensitive adhesive, those having a radiation curable functional group such as a carbon-carbon double bond and exhibiting adhesiveness can be used without particular limitation. As the radiation curable pressure sensitive adhesive, for example, an addition type radiation curable pressure sensitive adhesive in which a radiation curable monomer component or an oligomer component is blended with a general pressure sensitive pressure sensitive adhesive such as an acrylic pressure sensitive adhesive or a rubber pressure sensitive adhesive. An agent can be illustrated.
 配合する放射線硬化性のモノマー成分としては、例えば、ウレタンオリゴマー、ウレタン(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリストールテトラ(メタ)アクリレート、ジペンタエリストールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート等が挙げられる。また放射線硬化性のオリゴマー成分はウレタン系、ポリエーテル系、ポリエステル系、ポリカーボネート系、ポリブタジエン系等種々のオリゴマーがあげられ、その分子量が100~30000程度の範囲のものが適当である。放射線硬化性のモノマー成分やオリゴマー成分の配合量は、前記粘着剤層の種類に応じて、粘着剤層の粘着力を低下できる量を、適宜に決定することができる。一般的には、粘着剤を構成するアクリル系ポリマー等のベースポリマー100重量部に対して、例えば5~500重量部、好ましくは40~150重量部程度である。 Examples of the radiation curable monomer component to be blended include urethane oligomer, urethane (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol. Examples include stall tetra (meth) acrylate, dipentaerystol monohydroxypenta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and 1,4-butanediol di (meth) acrylate. Examples of the radiation curable oligomer component include urethane, polyether, polyester, polycarbonate, and polybutadiene oligomers, and those having a molecular weight in the range of about 100 to 30000 are suitable. The compounding amount of the radiation-curable monomer component or oligomer component can be appropriately determined in accordance with the type of the pressure-sensitive adhesive layer, and the amount capable of reducing the adhesive strength of the pressure-sensitive adhesive layer. In general, the amount is, for example, about 5 to 500 parts by weight, preferably about 40 to 150 parts by weight with respect to 100 parts by weight of the base polymer such as an acrylic polymer constituting the pressure-sensitive adhesive.
 また、放射線硬化型粘着剤としては、前記説明した添加型の放射線硬化型粘着剤のほかに、ベースポリマーとして、炭素-炭素二重結合をポリマー側鎖又は主鎖中もしくは主鎖末端に有するものを用いた内在型の放射線硬化型粘着剤が挙げられる。内在型の放射線硬化型粘着剤は、低分子成分であるオリゴマー成分等を含有する必要がなく、又は多くは含まない為、経時的にオリゴマー成分等が粘着剤在中を移動することなく、安定した層構造の粘着剤層を形成することができる為好ましい。 In addition to the additive-type radiation-curable pressure-sensitive adhesive described above, the radiation-curable pressure-sensitive adhesive has a carbon-carbon double bond in the polymer side chain, main chain, or main chain terminal as a base polymer. Intrinsic radiation curable pressure sensitive adhesives using Intrinsic radiation curable adhesives do not need to contain oligomer components, which are low molecular components, or do not contain many, so they are stable without the oligomer components moving through the adhesive over time. It is preferable because an adhesive layer having a layered structure can be formed.
 前記炭素-炭素二重結合を有するベースポリマーは、炭素-炭素二重結合を有し、かつ粘着性を有するものを特に制限なく使用できる。この様なベースポリマーとしては、アクリル系ポリマーを基本骨格とするものが好ましい。アクリル系ポリマーの基本骨格としては、前記例示したアクリル系ポリマーが挙げられる。 As the base polymer having a carbon-carbon double bond, those having a carbon-carbon double bond and having adhesiveness can be used without particular limitation. As such a base polymer, those having an acrylic polymer as a basic skeleton are preferable. Examples of the basic skeleton of the acrylic polymer include the acrylic polymers exemplified above.
 前記アクリル系ポリマーへの炭素-炭素二重結合の導入法は特に制限されず、様々な方法を採用できるが、炭素-炭素二重結合はポリマー側鎖に導入するのが分子設計が容易である。例えば、予め、アクリル系ポリマーに官能基を有するモノマーを共重合した後、この官能基と反応しうる官能基及び炭素-炭素二重結合を有する化合物を、炭素-炭素二重結合の放射線硬化性を維持したまま縮合又は付加反応させる方法が挙げられる。 The method for introducing the carbon-carbon double bond into the acrylic polymer is not particularly limited, and various methods can be adopted. However, the carbon-carbon double bond can be easily introduced into the polymer side chain for easy molecular design. . For example, after a monomer having a functional group is copolymerized in advance with an acrylic polymer, a compound having a functional group capable of reacting with the functional group and a carbon-carbon double bond is converted into a radiation-curable carbon-carbon double bond. A method of performing condensation or addition reaction while maintaining the above.
 これら官能基の組合せの例としては、カルボン酸基とエポキシ基、カルボン酸基とアジリジル基、ヒドロキシル基とイソシアネート基等が挙げられる。これら官能基の組合せのなかでも反応追跡の容易さから、ヒドロキシル基とイソシアネート基との組合せが好適である。また、これら官能基の組み合わせにより、前記炭素-炭素二重結合を有するアクリル系ポリマーを生成するような組合せであれば、官能基はアクリル系ポリマーと前記化合物のいずれの側にあってもよいが、前記の好ましい組み合わせでは、アクリル系ポリマーがヒドロキシル基を有し、前記化合物がイソシアネート基を有する場合が好適である。この場合、炭素-炭素二重結合を有するイソシアネート化合物としては、例えば、メタクリロイルイソシアネート、2-メタクリロイルオキシエチルイソシアネート、m-イソプロペニル-α,α-ジメチルベンジルイソシアネート等が挙げられる。また、アクリル系ポリマーとしては、前記例示のヒドロキシ基含有モノマーや2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、ジエチレングルコールモノビニルエーテルのエーテル系化合物等を共重合したものが用いられる。 Examples of combinations of these functional groups include carboxylic acid groups and epoxy groups, carboxylic acid groups and aziridyl groups, hydroxyl groups and isocyanate groups, and the like. Among these combinations of functional groups, a combination of a hydroxyl group and an isocyanate group is preferable because of easy tracking of the reaction. In addition, the functional group may be on either side of the acrylic polymer and the compound as long as the combination of these functional groups generates an acrylic polymer having the carbon-carbon double bond. In the preferable combination, it is preferable that the acrylic polymer has a hydroxyl group and the compound has an isocyanate group. In this case, examples of the isocyanate compound having a carbon-carbon double bond include methacryloyl isocyanate, 2-methacryloyloxyethyl isocyanate, m-isopropenyl-α, α-dimethylbenzyl isocyanate, and the like. As the acrylic polymer, a copolymer obtained by copolymerizing the above-exemplified hydroxy group-containing monomers, ether compounds of 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, or the like is used.
 前記内在型の放射線硬化型粘着剤は、前記炭素-炭素二重結合を有するベースポリマー(特にアクリル系ポリマー)を単独で使用することができるが、特性を悪化させない程度に前記放射線硬化性のモノマー成分やオリゴマー成分を配合することもできる。放射線硬化性のオリゴマー成分等は、通常ベースポリマー100重量部に対して30重量部の範囲内であり、好ましくは0~10重量部の範囲である。 As the intrinsic radiation curable pressure-sensitive adhesive, the base polymer (particularly acrylic polymer) having the carbon-carbon double bond can be used alone, but the radiation curable monomer does not deteriorate the characteristics. Components and oligomer components can also be blended. The radiation-curable oligomer component or the like is usually in the range of 30 parts by weight, preferably in the range of 0 to 10 parts by weight, with respect to 100 parts by weight of the base polymer.
 前記放射線硬化型粘着剤には、紫外線等により硬化させる場合には光重合開始剤を含有させる。光重合開始剤としては、例えば、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、α-ヒドロキシ-α,α’-ジメチルアセトフェノン、2-メチル-2-ヒドロキシプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン等のα-ケトール系化合物;メトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフエノン、2,2-ジエトキシアセトフェノン、2-メチル-1-[4-(メチルチオ)-フェニル]-2-モルホリノプロパン-1等のアセトフェノン系化合物;ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、アニソインメチルエーテル等のベンゾインエーテル系化合物;ベンジルジメチルケタール等のケタール系化合物;2-ナフタレンスルホニルクロリド等の芳香族スルホニルクロリド系化合物;1-フェノン-1,1―プロパンジオン-2-(o-エトキシカルボニル)オキシム等の光活性オキシム系化合物;ベンゾフェノン、ベンゾイル安息香酸、3,3’-ジメチル-4-メトキシベンゾフェノン等のベンゾフェノン系化合物;チオキサンソン、2-クロロチオキサンソン、2-メチルチオキサンソン、2,4-ジメチルチオキサンソン、イソプロピルチオキサンソン、2,4-ジクロロチオキサンソン、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン等のチオキサンソン系化合物;カンファーキノン;ハロゲン化ケトン;アシルホスフィノキシド;アシルホスフォナート等が挙げられる。光重合開始剤の配合量は、粘着剤を構成するアクリル系ポリマー等のベースポリマー100重量部に対して、例えば0.05~20重量部程度である。 The radiation curable pressure-sensitive adhesive contains a photopolymerization initiator when cured by ultraviolet rays or the like. Examples of the photopolymerization initiator include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, α-hydroxy-α, α'-dimethylacetophenone, 2-methyl-2-hydroxypropio Α-ketol compounds such as phenone and 1-hydroxycyclohexyl phenyl ketone; methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1- [4- ( Acetophenone compounds such as methylthio) -phenyl] -2-morpholinopropane-1; benzoin ether compounds such as benzoin ethyl ether, benzoin isopropyl ether and anisoin methyl ether; ketal compounds such as benzyldimethyl ketal; 2-naphthalenesulfonyl Black Aromatic sulfonyl chloride compounds such as 1; phenone-1,1-propanedione-2- (o-ethoxycarbonyl) oxime and other photoactive oxime compounds; benzophenone, benzoylbenzoic acid, 3,3′-dimethyl Benzophenone compounds such as -4-methoxybenzophenone; thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2 Thioxanthone compounds such as 1,4-diethylthioxanthone and 2,4-diisopropylthioxanthone; camphorquinone; halogenated ketone; acyl phosphinoxide; acyl phosphonate and the like. The blending amount of the photopolymerization initiator is, for example, about 0.05 to 20 parts by weight with respect to 100 parts by weight of the base polymer such as an acrylic polymer constituting the pressure-sensitive adhesive.
 尚、放射線照射の際に、酸素による硬化阻害が起こる場合は、放射線硬化型の粘着剤層1bの表面よりなんらかの方法で酸素(空気)を遮断するのが望ましい。例えば、前記粘着剤層1bの表面をセパレータで被覆する方法や、窒素ガス雰囲気中で紫外線等の放射線の照射を行う方法等が挙げられる。 In addition, when curing inhibition occurs due to oxygen during irradiation, it is desirable to block oxygen (air) from the surface of the radiation curable pressure-sensitive adhesive layer 1b by some method. For example, a method of covering the surface of the pressure-sensitive adhesive layer 1b with a separator, a method of irradiating radiation such as ultraviolet rays in a nitrogen gas atmosphere, and the like can be mentioned.
 粘着剤層1bの厚さは、特に限定されないが、チップ切断面の欠け防止や接着層の固定保持の両立性等の点よりは、1~50μm程度であるのが好ましい。好ましくは2~30μm、更には5~25μmが好ましい。 The thickness of the pressure-sensitive adhesive layer 1b is not particularly limited, but is preferably about 1 to 50 μm from the viewpoint of preventing chipping of the chip cut surface and compatibility of fixing and holding the adhesive layer. The thickness is preferably 2 to 30 μm, more preferably 5 to 25 μm.
<裏面研削用テープ一体型シート状樹脂組成物の製造方法>
 本実施の形態に係る裏面研削用テープ一体型シート状樹脂組成物10は、例えば裏面研削用テープ1及びシート状樹脂組成物2を別々に作製しておき、最後にこれらを貼り合わせることにより作成することができる。具体的には、以下のような手順に従って作製することができる。
<Method for producing tape-integrated sheet-shaped resin composition for back surface grinding>
Back-grinding tape-integrated sheet-shaped resin composition 10 according to the present embodiment is prepared, for example, by separately preparing back-grinding tape 1 and sheet-shaped resin composition 2 and finally bonding them together. can do. Specifically, it can be produced according to the following procedure.
 先ず、基材1aは、従来公知の製膜方法により製膜することができる。当該製膜方法としては、例えばカレンダー製膜法、有機溶媒中でのキャスティング法、密閉系でのインフレーション押出法、Tダイ押出法、共押出し法、ドライラミネート法等が例示できる。 First, the base material 1a can be formed by a conventionally known film forming method. Examples of the film forming method include a calendar film forming method, a casting method in an organic solvent, an inflation extrusion method in a closed system, a T-die extrusion method, a co-extrusion method, and a dry lamination method.
 次に、粘着剤層形成用の粘着剤組成物を調製する。粘着剤組成物には、粘着剤層の項で説明したような樹脂や添加物等が配合されている。調製した粘着剤組成物を基材1a上に塗布して塗布膜を形成した後、該塗布膜を所定条件下で乾燥させ(必要に応じて加熱架橋させて)、粘着剤層1bを形成する。塗布方法としては特に限定されず、例えば、ロール塗工、スクリーン塗工、グラビア塗工等が挙げられる。また、乾燥条件としては、例えば乾燥温度80~150℃、乾燥時間0.5~5分間の範囲内で行われる。また、セパレータ上に粘着剤組成物を塗布して塗布膜を形成した後、前記乾燥条件で塗布膜を乾燥させて粘着剤層1bを形成してもよい。その後、基材1a上に粘着剤層1bをセパレータと共に貼り合わせる。これにより、基材1a及び粘着剤層1bを備える裏面研削用テープ1が作製される。なお、裏面研削用テープ1としては、少なくとも基材及び粘着剤層を備えていればよく、セパレータ等の他の要素を有している場合も裏面研削用テープ1という。 Next, an adhesive composition for forming an adhesive layer is prepared. Resin, additive, etc. which were demonstrated by the term of the adhesive layer are mix | blended with the adhesive composition. After the prepared pressure-sensitive adhesive composition is applied on the substrate 1a to form a coating film, the coating film is dried under predetermined conditions (heat-crosslinked as necessary) to form the pressure-sensitive adhesive layer 1b. . It does not specifically limit as a coating method, For example, roll coating, screen coating, gravure coating, etc. are mentioned. As drying conditions, for example, a drying temperature of 80 to 150 ° C. and a drying time of 0.5 to 5 minutes are performed. Moreover, after apply | coating an adhesive composition on a separator and forming a coating film, the coating film may be dried on the said drying conditions, and the adhesive layer 1b may be formed. Then, the adhesive layer 1b is bonded together with a separator on the base material 1a. Thereby, the tape 1 for back surface grinding provided with the base material 1a and the adhesive layer 1b is produced. In addition, as the tape 1 for back surface grinding, what is necessary is just to provide at least a base material and an adhesive layer, and when it has other elements, such as a separator, it is also called the tape 1 for back surface grinding.
 シート状樹脂組成物2は、上述した通りに作製される。 The sheet-shaped resin composition 2 is produced as described above.
 続いて、シート状樹脂組成物2と裏面研削用テープ1の粘着剤層1bとが貼り合わせ面となる様にして両者を貼り合わせる。貼り合わせは、例えば圧着により行うことができる。このとき、ラミネート温度は特に限定されず、例えば30~50℃が好ましく、35~45℃がより好ましい。また、線圧は特に限定されず、例えば0.1~20kgf/cmが好ましく、1~10kgf/cmがより好ましい。これにより、本実施形態に係る裏面研削用テープ一体型シート状樹脂組成物10が得られる。 Subsequently, the sheet-shaped resin composition 2 and the pressure-sensitive adhesive layer 1b of the back surface grinding tape 1 are bonded together so that they are bonded surfaces. Bonding can be performed by, for example, pressure bonding. At this time, the lamination temperature is not particularly limited, and is preferably 30 to 50 ° C., for example, and more preferably 35 to 45 ° C. The linear pressure is not particularly limited, and is preferably 0.1 to 20 kgf / cm, and more preferably 1 to 10 kgf / cm. Thereby, the tape-integrated sheet-like resin composition 10 for back grinding according to the present embodiment is obtained.
(裏面研削用テープ一体型シート状樹脂組成物を用いる半導体装置の製造方法)
 次に、裏面研削用テープ一体型シート状樹脂組成物10を用いた半導体装置の製造方法について説明する。図2A~図2Gは、図1に示した裏面研削用テープ一体型シート状樹脂組成物を用いた半導体装置の製造方法を説明するための図である。
 具体的には、当該半導体装置の製造方法は、半導体ウェハ3の接続部材4が形成された回路面3aと裏面研削用テープ一体型シート状樹脂組成物10のシート状樹脂組成物2とを貼り合わせる貼合せ工程、半導体ウェハ3の裏面3bを研削する研削工程、裏面研削後の半導体ウェハ3の裏面3bにダイシングテープ11を貼りつけるウェハ固定工程、裏面研削用テープ1を剥離する剥離工程、半導体ウェハ3をダイシングしてシート状樹脂組成物2付き半導体チップ5を形成するダイシング工程、シート状樹脂組成物2付き半導体チップ5をダイシングテープ11から剥離するピックアップ工程、被着体6と半導体チップ5の間の空間をシート状樹脂組成物2で充填しつつ接続部材4を介して半導体チップ5と被着体6とを電気的に接続する接続工程、及び、シート状樹脂組成物2を硬化させる硬化工程を含む。
(Manufacturing method of semiconductor device using tape-integrated sheet-shaped resin composition for back surface grinding)
Next, a method for manufacturing a semiconductor device using the back-grinding tape-integrated sheet-shaped resin composition 10 will be described. 2A to 2G are views for explaining a method of manufacturing a semiconductor device using the back-grinding tape-integrated sheet-shaped resin composition shown in FIG.
Specifically, in the manufacturing method of the semiconductor device, the circuit surface 3a on which the connection member 4 of the semiconductor wafer 3 is formed and the sheet-like resin composition 2 of the tape-integrated sheet-like resin composition 10 for back grinding are attached. Bonding step, grinding step for grinding the back surface 3b of the semiconductor wafer 3, wafer fixing step for attaching the dicing tape 11 to the back surface 3b of the semiconductor wafer 3 after back grinding, peeling step for peeling the back surface grinding tape 1, semiconductor A dicing process for dicing the wafer 3 to form the semiconductor chip 5 with the sheet-shaped resin composition 2, a pick-up process for peeling the semiconductor chip 5 with the sheet-shaped resin composition 2 from the dicing tape 11, the adherend 6 and the semiconductor chip 5 The semiconductor chip 5 and the adherend 6 are electrically connected through the connection member 4 while filling the space between them with the sheet-like resin composition 2. Continued step, and a curing step of curing the sheet-like resin composition 2.
 <貼合せ工程>
 貼合せ工程では、半導体ウェハ3の接続部材4が形成された回路面3aと裏面研削用テープ一体型シート状樹脂組成物10のシート状樹脂組成物2とを貼り合わせる(図2A参照)。
<Lamination process>
In the laminating step, the circuit surface 3a on which the connecting member 4 of the semiconductor wafer 3 is formed and the sheet-shaped resin composition 2 of the back-grinding tape-integrated sheet-shaped resin composition 10 are bonded together (see FIG. 2A).
 半導体ウェハ3の回路面3aには、複数の接続部材4が形成されている(図2A参照)。接続部材4の高さは用途に応じて定められ、一般的には15~100μm程度である。もちろん、半導体ウェハ3における個々の接続部材4の高さは同一でも異なっていてもよい。 A plurality of connection members 4 are formed on the circuit surface 3a of the semiconductor wafer 3 (see FIG. 2A). The height of the connecting member 4 is determined according to the application and is generally about 15 to 100 μm. Of course, the height of each connection member 4 in the semiconductor wafer 3 may be the same or different.
 半導体ウェハ3表面に形成された接続部材4の高さX(μm)とシート状樹脂組成物2の厚さY(μm)とが、下記の関係を満たすことが好ましい。
   0.5≦Y/X≦2
It is preferable that the height X (μm) of the connecting member 4 formed on the surface of the semiconductor wafer 3 and the thickness Y (μm) of the sheet-like resin composition 2 satisfy the following relationship.
0.5 ≦ Y / X ≦ 2
 接続部材4の高さX(μm)とシート状樹脂組成物2の厚さY(μm)とが上記関係を満たすことにより、半導体チップ5と被着体6との間の空間を十分に充填することができると共に、当該空間からのシート状樹脂組成物2の過剰のはみ出しを防止することができ、シート状樹脂組成物2による半導体チップ5の汚染などを防止することができる。なお、各接続部材4の高さが異なる場合は、最も高い接続部材4の高さを基準とする。 When the height X (μm) of the connection member 4 and the thickness Y (μm) of the sheet-like resin composition 2 satisfy the above relationship, the space between the semiconductor chip 5 and the adherend 6 is sufficiently filled. In addition, the sheet-like resin composition 2 can be prevented from excessively protruding from the space, and contamination of the semiconductor chip 5 by the sheet-like resin composition 2 can be prevented. In addition, when the height of each connection member 4 differs, the height of the highest connection member 4 is used as a reference.
 まず、裏面研削用テープ一体型シート状樹脂組成物10のシート状樹脂組成物2上に任意に設けられたセパレータを適宜に剥離し、図2Aに示すように、半導体ウェハ3の接続部材4が形成された回路面3aとシート状樹脂組成物2とを対向させ、シート状樹脂組成物2と半導体ウェハ3とを貼り合わせる(マウント)。 First, the separator arbitrarily provided on the sheet-shaped resin composition 2 of the tape-integrated sheet-shaped resin composition 10 for backside grinding is appropriately peeled off, and as shown in FIG. The formed circuit surface 3a and the sheet-shaped resin composition 2 are opposed to each other, and the sheet-shaped resin composition 2 and the semiconductor wafer 3 are bonded (mounting).
 貼り合わせの方法は特に限定されないが、圧着による方法が好ましい。圧着の圧力は、好ましくは0.1MPa以上、より好ましくは0.2MPa以上である。0.1MPa以上であると、半導体ウェハ3の回路面3aの凹凸を良好に埋め込むことができる。また、圧着の圧力の上限は特に限定されないが、好ましくは1MPa以下、より好ましくは0.5MPa以下である。 The method of bonding is not particularly limited, but a method by pressure bonding is preferable. The pressure for pressure bonding is preferably 0.1 MPa or more, more preferably 0.2 MPa or more. When the pressure is 0.1 MPa or more, the unevenness of the circuit surface 3a of the semiconductor wafer 3 can be satisfactorily embedded. Moreover, the upper limit of the pressure for pressure bonding is not particularly limited, but is preferably 1 MPa or less, more preferably 0.5 MPa or less.
 貼り合わせの温度は、好ましくは60℃以上であり、より好ましくは70℃以上である。60℃以上であると、シート状樹脂組成物2の粘度が低下し、半導体ウェハ3の凹凸を空隙なく充填できる。また、貼り合わせの温度は、好ましくは100℃以下であり、より好ましくは80℃以下である。100℃以下であると、シート状樹脂組成物2の硬化反応を抑制したまま貼り合わせが可能となる。 The bonding temperature is preferably 60 ° C. or higher, more preferably 70 ° C. or higher. When the temperature is 60 ° C. or higher, the viscosity of the sheet-shaped resin composition 2 is reduced, and the unevenness of the semiconductor wafer 3 can be filled without a gap. Further, the bonding temperature is preferably 100 ° C. or lower, more preferably 80 ° C. or lower. When the temperature is 100 ° C. or lower, the sheet-like resin composition 2 can be bonded while suppressing the curing reaction.
 貼り合わせは、減圧下で行うことが好ましく、例えば、1000Pa以下、好ましくは500Pa以下である。下限は特に限定されず、例えば、1Pa以上である。 Bonding is preferably performed under reduced pressure, for example, 1000 Pa or less, preferably 500 Pa or less. A minimum is not specifically limited, For example, it is 1 Pa or more.
 <研削工程>
 研削工程では、半導体ウェハ3の回路面3aとは反対側の面(すなわち、裏面)3bを研削する(図2B参照)。半導体ウェハ3の裏面研削に用いる薄型加工機としては特に限定されず、例えば研削機(バックグラインダー)、研磨パッドなどを例示できる。また、エッチングなどの化学的方法にて裏面研削を行ってもよい。裏面研削は、半導体ウェハ3が所望の厚さ(例えば、700~25μm)になるまで行われる。
<Grinding process>
In the grinding step, the surface (that is, the back surface) 3b opposite to the circuit surface 3a of the semiconductor wafer 3 is ground (see FIG. 2B). The thin processing machine used for back surface grinding of the semiconductor wafer 3 is not particularly limited, and examples thereof include a grinding machine (back grinder) and a polishing pad. Further, the back surface grinding may be performed by a chemical method such as etching. The back surface grinding is performed until the semiconductor wafer 3 has a desired thickness (for example, 700 to 25 μm).
 <ウェハ固定工程>
 研削工程後、半導体ウェハ3の裏面3bにダイシングテープ11を貼りつける(図2C参照)。なお、ダイシングテープ11は、基材11a上に粘着剤層11bが積層された構造を有する。基材11a及び粘着剤層11bとしては、裏面研削用テープ1の基材1a及び粘着剤層1bの項で示した成分及び製法を用いて好適に作製することができる。
<Wafer fixing process>
After the grinding step, the dicing tape 11 is attached to the back surface 3b of the semiconductor wafer 3 (see FIG. 2C). The dicing tape 11 has a structure in which an adhesive layer 11b is laminated on a substrate 11a. The base material 11a and the pressure-sensitive adhesive layer 11b can be suitably prepared by using the components and the production methods shown in the paragraphs of the base material 1a and the pressure-sensitive adhesive layer 1b of the back grinding tape 1.
 <剥離工程>
 次いで、裏面研削用テープ1を剥離する(図2D参照)。これにより、シート状樹脂組成物2が露出した状態となる。
<Peeling process>
Next, the back surface grinding tape 1 is peeled off (see FIG. 2D). Thereby, the sheet-shaped resin composition 2 is exposed.
 裏面研削用テープ1を剥離する際、粘着剤層1bが放射線硬化性を有する場合には、粘着剤層1bに放射線を照射して粘着剤層1bを硬化させることで、剥離を容易に行うことができる。放射線の照射量は、用いる放射線の種類や粘着剤層の硬化度などを考慮して適宜設定すればよい。 When the back surface grinding tape 1 is peeled off, if the pressure sensitive adhesive layer 1b has radiation curability, the pressure sensitive adhesive layer 1b is irradiated with radiation to harden the pressure sensitive adhesive layer 1b, so that the peeling is easily performed. Can do. The radiation dose may be set as appropriate in consideration of the type of radiation used and the degree of curing of the pressure-sensitive adhesive layer.
 <ダイシング工程>
 ダイシング工程では、図2Eに示すように半導体ウェハ3及びシート状樹脂組成物2をダイシングしてダイシングされたシート状樹脂組成物2付き半導体チップ5を形成する。ダイシングは、半導体ウェハ3のシート状樹脂組成物2を貼り合わせた回路面3aから常法に従い行われる。例えば、ダイシングテープ11まで切込みを行うフルカットと呼ばれる切断方式などを採用できる。本工程で用いるダイシング装置としては特に限定されず、従来公知のものを用いることができる。
<Dicing process>
In the dicing process, as shown in FIG. 2E, the semiconductor wafer 5 and the sheet-shaped resin composition 2 are diced to form the diced semiconductor chip 5 with the sheet-shaped resin composition 2. Dicing is performed according to a conventional method from the circuit surface 3a on which the sheet-shaped resin composition 2 of the semiconductor wafer 3 is bonded. For example, a cutting method called full cut that cuts up to the dicing tape 11 can be adopted. It does not specifically limit as a dicing apparatus used at this process, A conventionally well-known thing can be used.
 なお、ダイシング工程に続いてダイシングテープ11のエキスパンドを行う場合、該エキスパンドは従来公知のエキスパンド装置を用いて行うことができる。 In addition, when expanding the dicing tape 11 following the dicing step, the expansion can be performed using a conventionally known expanding apparatus.
 <ピックアップ工程>
 図2Fに示すように、シート状樹脂組成物2付き半導体チップ5をダイシングテープ11から剥離する(シート状樹脂組成物2付き半導体チップ5をピックアップする)。ピックアップの方法としては特に限定されず、従来公知の種々の方法を採用できる。
<Pickup process>
As shown in FIG. 2F, the semiconductor chip 5 with the sheet-shaped resin composition 2 is peeled from the dicing tape 11 (the semiconductor chip 5 with the sheet-shaped resin composition 2 is picked up). The pickup method is not particularly limited, and various conventionally known methods can be employed.
 ここでピックアップは、ダイシングテープ11の粘着剤層11bが紫外線硬化型の場合、粘着剤層11bに紫外線を照射した後に行う。これにより、粘着剤層11bの半導体チップ5に対する粘着力が低下し、半導体チップ5の剥離が容易になる。 Here, when the adhesive layer 11b of the dicing tape 11 is an ultraviolet curable type, the pickup is performed after the adhesive layer 11b is irradiated with ultraviolet rays. Thereby, the adhesive force with respect to the semiconductor chip 5 of the adhesive layer 11b falls, and peeling of the semiconductor chip 5 becomes easy.
 <接続工程>
 接続工程では、被着体6と半導体チップ5の間の空間をシート状樹脂組成物2で充填しつつ接続部材4を介して半導体チップ5と被着体6とを電気的に接続する(図2G参照)。具体的には、半導体チップ5に形成されている接続部材4を、被着体6の接続パッドに被着された接合用の導電材7に接触させて押圧しながら導電材7を溶融させることにより、半導体チップ5と被着体6とを電気的に接続する。半導体チップ5の回路面3aにはシート状樹脂組成物2が貼り付けられているので、半導体チップ5と被着体6との電気的接続と同時に、半導体チップ5と被着体6との間の空間がシート状樹脂組成物2により充填されることになる。ここで、電極としての接続部材4及び導電材7の材質は、特に制限されないが銅であることが好ましい。接続部材4及び導電材7の少なくとも一方が銅からなる電極を有していると、従来に比して高温での処理が必要となる。しかしながら、シート状樹脂組成物2は、加熱による重量減少率が上記数値範囲内にあり、且つ、吸湿率が上記数値範囲内にあるため、高温での耐久性に優れる。従って、シート状樹脂組成物2を使用すれば、被着体と半導体素子との接合に銅電極を使用したフリップチップ型半導体装置の信頼性を向上させることができる。
<Connection process>
In the connecting step, the semiconductor chip 5 and the adherend 6 are electrically connected via the connecting member 4 while filling the space between the adherend 6 and the semiconductor chip 5 with the sheet-like resin composition 2 (FIG. 2G). Specifically, the conductive member 7 is melted while being pressed by bringing the connecting member 4 formed on the semiconductor chip 5 into contact with the conductive member 7 for bonding attached to the connection pad of the adherend 6. Thus, the semiconductor chip 5 and the adherend 6 are electrically connected. Since the sheet-like resin composition 2 is attached to the circuit surface 3 a of the semiconductor chip 5, the electrical connection between the semiconductor chip 5 and the adherend 6 and at the same time between the semiconductor chip 5 and the adherend 6 are performed. Is filled with the sheet-shaped resin composition 2. Here, the materials of the connection member 4 and the conductive material 7 as electrodes are not particularly limited, but copper is preferable. When at least one of the connecting member 4 and the conductive material 7 has an electrode made of copper, processing at a higher temperature is required as compared with the conventional case. However, since the sheet-like resin composition 2 has a weight reduction rate due to heating within the above numerical range and a moisture absorption rate within the above numerical range, it is excellent in durability at high temperatures. Therefore, if the sheet-shaped resin composition 2 is used, the reliability of the flip chip type semiconductor device using the copper electrode for bonding the adherend and the semiconductor element can be improved.
 接続工程における加熱条件は特に限定されないが、通常、加熱条件は100~300℃であり、加圧条件は0.5~500Nである。 The heating conditions in the connecting step are not particularly limited, but usually the heating conditions are 100 to 300 ° C., and the pressurizing conditions are 0.5 to 500 N.
 なお、接続工程での熱圧着処理を多段階で行ってもよい。多段階で熱圧着処理を行うことにより、接続部材4と導電材7間の樹脂を効率よく除去し、より良好な金属間接合を得ることが出来る。 In addition, you may perform the thermocompression-bonding process in a connection process in multistep. By performing the thermocompression treatment in multiple stages, the resin between the connection member 4 and the conductive material 7 can be efficiently removed, and a better metal-to-metal bond can be obtained.
 <硬化工程>
 半導体チップ5と被着体6との電気的接続を行った後は、シート状樹脂組成物2を加熱により硬化させる。これにより、半導体チップ5と被着体6との間の接続信頼性を確保できる。シート状樹脂組成物2の硬化のための加熱温度としては特に限定されず、例えば、150~200℃で10~120分間である。なお、接続工程における加熱処理によりシート状樹脂組成物を硬化させてもよい。
<Curing process>
After the electrical connection between the semiconductor chip 5 and the adherend 6 is made, the sheet-shaped resin composition 2 is cured by heating. Thereby, the connection reliability between the semiconductor chip 5 and the adherend 6 can be ensured. The heating temperature for curing the sheet-shaped resin composition 2 is not particularly limited, and is, for example, 150 to 200 ° C. for 10 to 120 minutes. In addition, you may harden a sheet-like resin composition by the heat processing in a connection process.
 <封止工程>
 次に、実装された半導体チップ5を備える半導体装置30全体を保護するために封止工程を行ってもよい。封止工程は、封止樹脂を用いて行われる。このときの封止条件としては特に限定されないが、通常、175℃で60秒間~90秒間の加熱を行うことにより、封止樹脂の熱硬化が行われるが、本発明はこれに限定されず、例えば165℃~185℃で、数分間キュアすることができる。
<Sealing process>
Next, a sealing process may be performed to protect the entire semiconductor device 30 including the mounted semiconductor chip 5. The sealing step is performed using a sealing resin. The sealing conditions at this time are not particularly limited. Usually, the sealing resin is thermally cured by heating at 175 ° C. for 60 seconds to 90 seconds, but the present invention is not limited to this. For example, it can be cured at 165 ° C. to 185 ° C. for several minutes.
 封止樹脂としては、絶縁性を有する樹脂(絶縁樹脂)が好ましく、公知の封止樹脂から適宜選択して用いることができる。 As the sealing resin, an insulating resin (insulating resin) is preferable, and it can be appropriately selected from known sealing resins.
 <半導体装置>
 半導体装置30では、半導体チップ5と被着体6とが、半導体チップ5上に形成された接続部材4及び被着体6上に設けられた導電材7を介して電気的に接続されている。また、半導体チップ5と被着体6との間には、その空間を充填するようにシート状樹脂組成物2が配置されている。
<Semiconductor device>
In the semiconductor device 30, the semiconductor chip 5 and the adherend 6 are electrically connected via a connection member 4 formed on the semiconductor chip 5 and a conductive material 7 provided on the adherend 6. . Further, the sheet-like resin composition 2 is disposed between the semiconductor chip 5 and the adherend 6 so as to fill the space.
 次に、ダイシングテープ上にシート状樹脂組成物が設けられているダイシングテープ一体型シート状樹脂組成物について説明する。 Next, the dicing tape-integrated sheet-shaped resin composition in which the sheet-shaped resin composition is provided on the dicing tape will be described.
<ダイシングテープ一体型シート状樹脂組成物>
 図3は、本発明の他の実施形態に係るダイシングテープ一体型シート状樹脂組成物の断面模式図である。本実施形態に係るダイシングテープ一体型シート状樹脂組成物50は、ダイシングテープ41上にシート状樹脂組成物42が積層された構造である。ダイシングテープ41は、基材41a上に粘着剤層41bが積層された構造である。シート状樹脂組成物2はダイシングテープ41の粘着剤層41b上に積層されている。なお、シート状樹脂組成物42は、ダイシングテープ41の全面に積層されていなくてもよく、半導体ウェハ43(図4A参照)との貼り合わせに十分なサイズで設けられていればよい。
<Dicing tape integrated sheet-shaped resin composition>
FIG. 3 is a schematic cross-sectional view of a dicing tape-integrated sheet-shaped resin composition according to another embodiment of the present invention. The dicing tape-integrated sheet-shaped resin composition 50 according to the present embodiment has a structure in which a sheet-shaped resin composition 42 is laminated on a dicing tape 41. The dicing tape 41 has a structure in which an adhesive layer 41b is laminated on a base material 41a. The sheet-shaped resin composition 2 is laminated on the pressure-sensitive adhesive layer 41 b of the dicing tape 41. In addition, the sheet-like resin composition 42 does not need to be laminated | stacked on the whole surface of the dicing tape 41, and should just be provided with sufficient size for bonding with the semiconductor wafer 43 (refer FIG. 4A).
 ダイシングテープ41は、基材41aと、基材41a上に積層された粘着剤層41bとを備えている。基材41aとしては、基材1aで例示したものを使用できる。粘着剤層41bとしては、粘着剤層1bで例示したものを使用できる。 The dicing tape 41 includes a base material 41a and an adhesive layer 41b laminated on the base material 41a. As the substrate 41a, those exemplified for the substrate 1a can be used. As the adhesive layer 41b, those exemplified for the adhesive layer 1b can be used.
 シート状樹脂組成物42としては、上記にて説明したシート状樹脂組成物2で例示したものを使用できる。 As the sheet-shaped resin composition 42, those exemplified in the sheet-shaped resin composition 2 described above can be used.
 (ダイシングテープ一体型シート状樹脂組成物を用いる半導体装置の製造方法)
 次に、ダイシングテープ一体型シート状樹脂組成物50を用いる半導体装置の製造方法について説明する。図4A~図4Dは、図3に示したダイシングテープ一体型シート状樹脂組成物を用いた半導体装置の製造方法を説明するための図である。
 具体的には、当該半導体装置の製造方法は、接続部材44を有する回路面が形成された半導体ウェハ43とダイシングテープ一体型シート状樹脂組成物50のシート状樹脂組成物42とを貼り合わせる貼合せ工程、半導体ウェハ43をダイシングしてシート状樹脂組成物42付き半導体チップ45を形成するダイシング工程、シート状樹脂組成物42付き半導体チップ45をダイシングテープ41から剥離するピックアップ工程、被着体46と半導体チップ45の間の空間をシート状樹脂組成物42で充填しつつ接続部材44を介して半導体チップ45と被着体46とを電気的に接続する接続工程、及び、シート状樹脂組成物42を硬化させる硬化工程を含む。
(Manufacturing method of semiconductor device using dicing tape-integrated sheet-shaped resin composition)
Next, a method for manufacturing a semiconductor device using the dicing tape-integrated sheet-shaped resin composition 50 will be described. 4A to 4D are views for explaining a method of manufacturing a semiconductor device using the dicing tape-integrated sheet-shaped resin composition shown in FIG.
Specifically, in the method for manufacturing the semiconductor device, the semiconductor wafer 43 on which the circuit surface having the connection member 44 is formed and the sheet-shaped resin composition 42 of the dicing tape-integrated sheet-shaped resin composition 50 are bonded to each other. Alignment step, dicing step of dicing the semiconductor wafer 43 to form the semiconductor chip 45 with the sheet-like resin composition 42, pick-up step of peeling the semiconductor chip 45 with the sheet-like resin composition 42 from the dicing tape 41, and the adherend 46 A connecting step of electrically connecting the semiconductor chip 45 and the adherend 46 via the connecting member 44 while filling a space between the semiconductor chip 45 and the semiconductor chip 45, and a sheet-shaped resin composition A curing step of curing 42.
 なお、以下では、半導体ウエハの両面に回路面が形成されるとともに、両面に接続部材が形成されている場合について説明するが、本発明においてはシート状樹脂組成物との貼り合わせ面側にのみ接続部材を有する回路面が形成されている半導体ウエハを用いることとしてもよい。 In the following, the case where the circuit surface is formed on both sides of the semiconductor wafer and the connection member is formed on both sides will be described, but in the present invention, only on the bonding surface side with the sheet-like resin composition. A semiconductor wafer on which a circuit surface having a connection member is formed may be used.
 <貼合せ工程>
 貼合せ工程では、図4Aに示すように、接続部材44を有する回路面が両面に形成された半導体ウェハ43とダイシングテープ一体型シート状樹脂組成物50のシート状樹脂組成物42とを貼り合わせる。なお、通常、半導体ウェハ43の強度は弱いことから、補強のために半導体ウェハ43をサポートガラスなどの支持体に固定することがある(図示せず)。この場合は、半導体ウェハ43とシート状樹脂組成物42との貼り合わせ後に、支持体を剥離する工程を含んでいてもよい。半導体ウェハ43のいずれの回路面とシート状樹脂組成物42とを貼り合わせるかは、目的とする半導体装置の構造に応じて変更すればよい。
<Lamination process>
In the laminating step, as shown in FIG. 4A, the semiconductor wafer 43 having the circuit surface having the connection member 44 formed on both sides and the sheet-shaped resin composition 42 of the dicing tape-integrated sheet-shaped resin composition 50 are bonded together. . In general, since the strength of the semiconductor wafer 43 is weak, the semiconductor wafer 43 may be fixed to a support such as support glass for reinforcement (not shown). In this case, after bonding the semiconductor wafer 43 and the sheet-like resin composition 42, a step of peeling the support may be included. Which circuit surface of the semiconductor wafer 43 and the sheet-shaped resin composition 42 are bonded together may be changed according to the structure of the target semiconductor device.
 半導体ウェハ43の両面の接続部材44同士は電気的に接続されていてもよく、接続されていなくてもよい。接続部材44同士の電気的接続には、TSV形式と呼ばれるビアを介しての接続による接続などが挙げられる。貼り合わせ条件としては、裏面研削用テープ一体型シート状樹脂組成物10の貼合せ工程で例示した条件を採用できる。 The connection members 44 on both surfaces of the semiconductor wafer 43 may be electrically connected or may not be connected. Examples of the electrical connection between the connection members 44 include a connection through a via called a TSV format. As the bonding conditions, the conditions exemplified in the bonding process of the tape-integrated sheet-like resin composition 10 for back grinding can be employed.
 <ダイシング工程>
 ダイシング工程では、半導体ウェハ43及びシート状樹脂組成物42をダイシングしてシート状樹脂組成物42付き半導体チップ45を形成する(図4B参照)。ダイシング条件としては、裏面研削用テープ一体型シート状樹脂組成物10のダイシング工程で例示した条件を採用できる。
<Dicing process>
In the dicing process, the semiconductor wafer 43 and the sheet-shaped resin composition 42 are diced to form semiconductor chips 45 with the sheet-shaped resin composition 42 (see FIG. 4B). As the dicing conditions, the conditions exemplified in the dicing process of the tape-integrated sheet-like resin composition 10 for back grinding can be employed.
 <ピックアップ工程>
 ピックアップ工程では、シート状樹脂組成物42付き半導体チップ45をダイシングテープ41から剥離する(図4C参照)。ピックアップ条件としては、裏面研削用テープ一体型シート状樹脂組成物10のピックアップ工程で例示した条件を採用できる。
<Pickup process>
In the pickup process, the semiconductor chip 45 with the sheet-like resin composition 42 is peeled from the dicing tape 41 (see FIG. 4C). As the pickup conditions, the conditions exemplified in the pickup process of the tape-integrated sheet-like resin composition 10 for back grinding can be employed.
 <接続工程>
 接続工程では、被着体46と半導体チップ45の間の空間をシート状樹脂組成物42で充填しつつ接続部材44を介して半導体チップ45と被着体46とを電気的に接続する(図4D参照)。具体的な接続方法は、裏面研削用テープ一体型シート状樹脂組成物10の接続工程で説明した内容と同様である。接続工程の加熱条件としては、裏面研削用テープ一体型シート状樹脂組成物10で例示した条件を採用できる。
<Connection process>
In the connecting step, the semiconductor chip 45 and the adherend 46 are electrically connected via the connection member 44 while the space between the adherend 46 and the semiconductor chip 45 is filled with the sheet-like resin composition 42 (FIG. 4D). The specific connection method is the same as the content described in the connection step of the tape-integrated sheet-like resin composition 10 for back grinding. As the heating conditions in the connecting step, the conditions exemplified for the back surface grinding tape-integrated sheet-shaped resin composition 10 can be employed.
 <硬化工程及び封止工程>
 硬化工程及び封止工程は、裏面研削用テープ一体型シート状樹脂組成物10の硬化工程及び封止工程で説明した内容と同様である。これにより、半導体装置60を製造することができる。
<Curing process and sealing process>
The curing process and the sealing process are the same as the contents described in the curing process and the sealing process of the back surface grinding tape-integrated sheet-shaped resin composition 10. Thereby, the semiconductor device 60 can be manufactured.
 以下に、この発明の好適な実施例を例示的に詳しく説明する。但し、この実施例に記載されている材料や配合量等は、特に限定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではなく、単なる説明例に過ぎない。また、部とあるのは、重量部を意味する。 Hereinafter, preferred embodiments of the present invention will be described in detail by way of example. However, the materials, blending amounts, and the like described in the examples are not intended to limit the scope of the present invention only to them, but are merely illustrative examples, unless otherwise specified. The term “parts” means parts by weight.
 (ポリイミド樹脂の調整)
 表1に記載の配合比に従い、ジアミンをN-メチル-2一ピロリドン(NMP)に溶解させ、これに酸二無水物、及び、硬化促進剤を加えて、室温で1時間撹拌し、次に80℃で4時間撹拌、その後180℃で5時間撹拌した。撹拌終了後、溶液を水3Lに投入し、白色の沈殿したポリマーを得た。
 この沈殿を濾過したのち、水で24時間洗浄したのち、真空乾燥機を用いて、70℃24時間乾燥し、各ポリイミド樹脂(ポリイミドA、ポリイミドB、ポリイミドC)を得た。
(Polyimide resin adjustment)
According to the mixing ratio shown in Table 1, the diamine is dissolved in N-methyl-2-monopyrrolidone (NMP), and acid dianhydride and a curing accelerator are added thereto, and the mixture is stirred at room temperature for 1 hour. The mixture was stirred at 80 ° C. for 4 hours and then at 180 ° C. for 5 hours. After stirring, the solution was poured into 3 L of water to obtain a white precipitated polymer.
The precipitate was filtered, washed with water for 24 hours, and then dried at 70 ° C. for 24 hours using a vacuum dryer to obtain each polyimide resin (Polyimide A, Polyimide B, Polyimide C).
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 実施例で使用した成分について説明する。
(ポリイミド)
 上記ポリイミドA
 上記ポリイミドB
 上記ポリイミドC
(エポキシ樹脂)
 エポキシ樹脂A:商品名「エピコート1004」、JER株式会社製
(フィラー)
 フィラーA:商品名「SO-25R」、株式会社アドマテックス製
(有機酸)
 P-アニス酸
 ベンジル酸
 カンファー酸
 ピルビン酸
 オレイン酸
The components used in the examples will be described.
(Polyimide)
Polyimide A above
Polyimide B
Polyimide C above
(Epoxy resin)
Epoxy resin A: Trade name “Epicoat 1004”, manufactured by JER Corporation (filler)
Filler A: Trade name “SO-25R”, manufactured by Admatechs Co., Ltd. (organic acid)
P-anisic acid benzylic acid camphoric acid pyruvic acid oleic acid
 実施例、及び、比較例
 <シート状樹脂組成物の作製>
 表2、3に記載の配合比に従い、各成分をN-メチル-2一ピロリドン(NMP)に溶解させた後、剥離基材上に塗布し、150℃で5分間乾燥させて、実施例、及び、比較例に係るシート状樹脂組成物を得た。
Examples and Comparative Examples <Preparation of Sheet Resin Composition>
According to the mixing ratios described in Tables 2 and 3, each component was dissolved in N-methyl-2-monopyrrolidone (NMP), and then applied onto a release substrate and dried at 150 ° C. for 5 minutes. And the sheet-like resin composition which concerns on a comparative example was obtained.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 <ダイシングテープ一体型シート状樹脂組成物の作製>
 各実施例、及び、比較例に係るシート状樹脂組成物を、ダイシングテープ(商品名「V-8-T」、日東電工株式会社製)の粘着剤層上に、ハンドローラーを用いて貼り合せ、ダイシングテープ一体型シート状樹脂組成物を得た。
<Preparation of dicing tape integrated sheet-shaped resin composition>
The sheet-like resin composition according to each example and comparative example was bonded to the adhesive layer of a dicing tape (trade name “V-8-T”, manufactured by Nitto Denko Corporation) using a hand roller. A dicing tape-integrated sheet-shaped resin composition was obtained.
 (重量減少率測定)
 示差熱・熱重量(TG-DTA)同時測定装置(Rigaku社製、製品名:thermo plus TG8120)を用い、10℃/minの昇温にて、25℃-500℃の範囲で測定を行い、300℃時点での重量変化量(%)を重量減少率とした。結果を表2、表3に示す。
(Weight reduction rate measurement)
Using a differential thermal and thermogravimetric (TG-DTA) simultaneous measurement device (Rigaku, product name: thermo plus TG8120), the temperature is measured at a temperature increase of 10 ° C./min in the range of 25 ° C.-500 ° C. The weight change (%) at 300 ° C. was defined as the weight reduction rate. The results are shown in Tables 2 and 3.
 (吸湿率測定)
 作製したシート状樹脂組成物を10mgサンプリングし、カールフィッシャー法を用いて、150℃で3分間の条件にて吸湿率を測定した。結果を表2、表3に示す。
(Measurement of moisture absorption rate)
10 mg of the produced sheet-shaped resin composition was sampled, and the moisture absorption rate was measured at 150 ° C. for 3 minutes using the Karl Fischer method. The results are shown in Tables 2 and 3.
 (接合性評価)
 実施例、及び、比較例のシート状樹脂組成物(厚さ:35μm)をそれぞれチップ((株)ウォルツ社製のWALTS-TEG MB50-0101JY)に80-100℃の熱を加えながらロールラミネーターで貼り付けた。この貼り付けは、チップの電極が形成されている面側に行なった。
 次に、シート状樹脂組成物付きのチップを基板((株)ウォルツ社製のWALTS-KIT MB50-0102JY_CR)に貼り付けた。この貼り付けには、パナソニックファクトリーソリューションズ(株)社製のフリップチップボンダーFCB3を用い、300℃、100N、10分の条件にて行なった。なお、貼り付けは、シート状樹脂組成物を貼り合わせ面にして行なった。以上より、評価用のチップ実装済み基板を作製した。これを研磨時の固定のために熱硬化性樹脂(丸本ストルアス社製、商品名:エポフィックス)に埋め込み評価用サンプルとした。次に、基板面に対して直交方向にサンドペーパーやアルミナを用いて評価用サンプルを研磨し、研磨後の研磨面を光学顕微鏡(~1000倍)及びSEM(~20000倍)を用いて観察した。基板とチップの電極との間に間隙が確認されなかった場合を○、確認された場合を×として評価した。結果を表2、表3に示す。
(Jointness evaluation)
The sheet-shaped resin compositions (thickness: 35 μm) of the examples and comparative examples were respectively applied to chips (WALTS-TEG MB50-0101JY manufactured by Waltz Co., Ltd.) with a roll laminator while applying heat of 80-100 ° C. Pasted. This affixing was performed on the surface side where the electrode of the chip was formed.
Next, a chip with a sheet-shaped resin composition was attached to a substrate (WALTS-KIT MB50-0102JY_CR manufactured by Waltz Co., Ltd.). For this pasting, a flip chip bonder FCB3 manufactured by Panasonic Factory Solutions Co., Ltd. was used, and the conditions were 300 ° C., 100 N, and 10 minutes. The pasting was performed using the sheet-shaped resin composition as a pasting surface. From the above, a chip-mounted substrate for evaluation was produced. This was embedded in a thermosetting resin (manufactured by Marumoto Struers Co., Ltd., trade name: Epofix) for fixing during polishing and used as a sample for evaluation. Next, the evaluation sample was polished using sandpaper or alumina in a direction perpendicular to the substrate surface, and the polished surface after polishing was observed using an optical microscope (up to 1000 times) and SEM (up to 20000 times). . The case where no gap was confirmed between the substrate and the electrode of the chip was evaluated as ◯, and the case where it was confirmed was evaluated as x. The results are shown in Tables 2 and 3.
 (ボイド評価)
 上記接合性評価と同様にして、実施例、及び、比較例に係る評価用サンプルを得た。次に、基板面に対して平行方向にサンドペーパーやアルミナを用いて評価用サンプルを研磨し、研磨後の研磨面を光学顕微鏡(~1000倍)を用いて観察した。基板とチップとの間に介在するシート状樹脂組成物にボイドが確認されなかった場合を○、確認された場合を×として評価した。結果を表2、表3に示す。
(Void evaluation)
In the same manner as the evaluation of the bondability, samples for evaluation according to examples and comparative examples were obtained. Next, the sample for evaluation was polished using sandpaper or alumina in a direction parallel to the substrate surface, and the polished surface after polishing was observed using an optical microscope (up to 1000 times). The case where a void was not confirmed in the sheet-like resin composition interposed between a board | substrate and a chip | tip was evaluated as x, and the case where it confirmed was evaluated as x. The results are shown in Tables 2 and 3.
    1  裏面研削用テープ
    1a 基材
    1b 粘着剤層
    2  シート状樹脂組成物
    3  半導体ウェハ
    3a 半導体ウェハの回路面
    3b 半導体ウェハの回路面とは反対側の面
    4  接続部材(バンプ)
    5  半導体チップ
    6  被着体
    7  導通材
    10 裏面研削用テープ一体型シート状樹脂組成物
    11  ダイシングテープ
    11a 基材
    11b 粘着剤層
    30 半導体装置
    41  ダイシングテープ
    41a 基材
    41b 粘着剤層
    42  シート状樹脂組成物
    43  半導体ウェハ
    44  接続部材(バンプ)
    45  半導体チップ
    46  被着体
    47  導通材
    50 ダイシングテープ一体型シート状樹脂組成物
    60 半導体装置
DESCRIPTION OF SYMBOLS 1 Back surface grinding tape 1a Base material 1b Adhesive layer 2 Sheet-like resin composition 3 Semiconductor wafer 3a Circuit surface of a semiconductor wafer 3b Surface opposite to the circuit surface of a semiconductor wafer 4 Connection member (bump)
DESCRIPTION OF SYMBOLS 5 Semiconductor chip 6 Adhering body 7 Conductive material 10 Tape-integrated sheet-like resin composition for back grinding 11 Dicing tape 11a Base material 11b Adhesive layer 30 Semiconductor device 41 Dicing tape 41a Base material 41b Adhesive layer 42 Sheet-like resin composition Object 43 Semiconductor wafer 44 Connection member (bump)
45 Semiconductor chip 46 Substrate 47 Conducting material 50 Dicing tape-integrated sheet-shaped resin composition 60 Semiconductor device

Claims (11)

  1.  被着体と前記被着体上にフリップチップ接続された半導体素子との界面封止に用いられるシート状樹脂組成物であって、
     昇温速度10℃/minにて、25℃から300℃まで昇温した際の重量減少率が2%以下であり、
     カールフィッシャー法による吸湿率が1%以下であり、
     酸解離定数が3.0以上5.0以下の範囲内にある有機酸をシート状樹脂組成物全体に対して1重量%以上10重量%以下の範囲内で含有することを特徴とするシート状樹脂組成物。
    A sheet-like resin composition used for interface sealing between an adherend and a semiconductor element flip-chip connected on the adherend,
    The weight loss rate when the temperature is raised from 25 ° C. to 300 ° C. at a rate of temperature increase of 10 ° C./min is 2% or less,
    The moisture absorption by the Karl Fischer method is 1% or less,
    An organic acid having an acid dissociation constant in the range of 3.0 or more and 5.0 or less is contained in a range of 1 to 10% by weight with respect to the entire sheet-shaped resin composition. Resin composition.
  2.  前記被着体、及び、前記半導体素子の少なくとも一方が銅からなる電極を有することを特徴とする請求項1に記載のシート状樹脂組成物。 The sheet-shaped resin composition according to claim 1, wherein at least one of the adherend and the semiconductor element has an electrode made of copper.
  3.  ポリイミド樹脂と無機フィラーとを含有することを特徴とする請求項1又は2に記載のシート状樹脂組成物。 3. A sheet-like resin composition according to claim 1 or 2, comprising a polyimide resin and an inorganic filler.
  4.  ポリイミド樹脂とエポキシ樹脂と無機フィラーとを含有することを特徴とする請求項1又は2のいずれか1に記載のシート状樹脂組成物。 The sheet-like resin composition according to claim 1, comprising a polyimide resin, an epoxy resin, and an inorganic filler.
  5.  請求項1~4のいずれか1に記載のシート状樹脂組成物と裏面研削用テープとを備え、
     前記裏面研削用テープ上に前記シート状樹脂組成物が設けられている裏面研削用テープ一体型シート状樹脂組成物。
    A sheet-like resin composition according to any one of claims 1 to 4 and a back surface grinding tape,
    A tape-integrated sheet-shaped resin composition for back grinding, wherein the sheet-shaped resin composition is provided on the back-grinding tape.
  6.  請求項1~4のいずれか1に記載のシート状樹脂組成物とダイシングテープとを備え、
     前記ダイシングテープ上に前記シート状樹脂組成物が設けられているダイシングテープ一体型シート状樹脂組成物。
    A sheet-like resin composition according to any one of claims 1 to 4 and a dicing tape,
    A dicing tape-integrated sheet-shaped resin composition in which the sheet-shaped resin composition is provided on the dicing tape.
  7.  請求項5に記載の裏面研削用テープ一体型シート状樹脂組成物を用いた半導体装置の製造方法であって、
     半導体ウェハの接続部材が形成された回路面と前記裏面研削用テープ一体型シート状樹脂組成物の前記シート状樹脂組成物とを貼り合わせる貼合せ工程、
     前記半導体ウェハの裏面を研削する研削工程、
     裏面研削後の前記半導体ウェハの裏面にダイシングテープを貼りつけるウェハ固定工程、
     前記裏面研削用テープを剥離する剥離工程、
     前記半導体ウェハをダイシングしてシート状樹脂組成物付き半導体チップを形成するダイシング工程、
     前記シート状樹脂組成物付き半導体チップを前記ダイシングテープから剥離するピックアップ工程、
     被着体と前記半導体チップの間の空間を前記シート状樹脂組成物で充填しつつ前記接続部材を介して前記半導体チップと前記被着体とを電気的に接続する接続工程、及び、
     前記シート状樹脂組成物を硬化させる硬化工程を含むことを特徴とする半導体装置の製造方法。
    A method of manufacturing a semiconductor device using the tape-integrated sheet-like resin composition for back grinding according to claim 5,
    A laminating step of laminating the sheet surface resin composition of the circuit surface on which the connecting member of the semiconductor wafer is formed and the tape-integrated sheet resin composition for back grinding,
    A grinding step of grinding the back surface of the semiconductor wafer;
    A wafer fixing step of attaching a dicing tape to the back surface of the semiconductor wafer after back surface grinding;
    A peeling step for peeling the back surface grinding tape;
    A dicing step of dicing the semiconductor wafer to form a semiconductor chip with a sheet-shaped resin composition;
    A pick-up step for peeling the semiconductor chip with the sheet-shaped resin composition from the dicing tape;
    A connecting step of electrically connecting the semiconductor chip and the adherend via the connecting member while filling a space between the adherend and the semiconductor chip with the sheet-shaped resin composition; and
    The manufacturing method of the semiconductor device characterized by including the hardening process which hardens the said sheet-like resin composition.
  8.  請求項6に記載のダイシングテープ一体型シート状樹脂組成物を用いた半導体装置の製造方法であって、
     接続部材を有する回路面が形成された半導体ウェハと前記ダイシングテープ一体型シート状樹脂組成物の前記シート状樹脂組成物とを貼り合わせる貼合せ工程、
     前記半導体ウェハをダイシングしてシート状樹脂組成物付き半導体チップを形成するダイシング工程、
     前記シート状樹脂組成物付き半導体チップを前記ダイシングテープから剥離するピックアップ工程、
     被着体と前記半導体チップの間の空間をシート状樹脂組成物で充填しつつ前記接続部材を介して前記半導体チップと前記被着体とを電気的に接続する接続工程、及び、
     前記シート状樹脂組成物を硬化させる硬化工程を含むことを特徴とする半導体装置の製造方法。
    A manufacturing method of a semiconductor device using the dicing tape-integrated sheet-shaped resin composition according to claim 6,
    A laminating step of laminating the semiconductor wafer on which a circuit surface having a connection member is formed and the sheet-like resin composition of the dicing tape-integrated sheet-like resin composition,
    A dicing step of dicing the semiconductor wafer to form a semiconductor chip with a sheet-shaped resin composition;
    A pick-up step for peeling the semiconductor chip with the sheet-shaped resin composition from the dicing tape;
    A connection step of electrically connecting the semiconductor chip and the adherend via the connection member while filling a space between the adherend and the semiconductor chip with a sheet-shaped resin composition; and
    The manufacturing method of the semiconductor device characterized by including the hardening process which hardens the said sheet-like resin composition.
  9.  請求項1~4のいずれか1に記載のシート状樹脂組成物を用いて製造された半導体装置。 A semiconductor device manufactured using the sheet-like resin composition according to any one of claims 1 to 4.
  10.  請求項5に記載の裏面研削用テープ一体型シート状樹脂組成物を用いて製造された半導体装置。 A semiconductor device manufactured using the back-grinding tape-integrated sheet-shaped resin composition according to claim 5.
  11.  請求項6に記載のダイシングテープ一体型シート状樹脂組成物を用いて製造された半導体装置。 A semiconductor device manufactured using the dicing tape-integrated sheet-shaped resin composition according to claim 6.
PCT/JP2014/062074 2013-06-04 2014-05-01 Sheet-form resin composition, tape-integrated-sheet-form resin composition for back-surface polishing, dicing-tape-integrated-sheet-form resin composition, method for manufacturing semiconductor device, and semiconductor device WO2014196293A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480031893.4A CN105264652A (en) 2013-06-04 2014-05-01 Sheet-form resin composition, tape-integrated-sheet-form resin composition for back-surface polishing, dicing-tape-integrated-sheet-form resin composition, method for manufacturing semiconductor device, and semiconductor device
KR1020157035386A KR20160016854A (en) 2013-06-04 2014-05-01 Sheet-form resin composition, tape-integrated-sheet-form resin composition for back-surface polishing, dicing-tape-integrated-sheet-form resin composition, method for manufacturing semiconductor device, and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-118009 2013-06-04
JP2013118009A JP6193627B2 (en) 2013-06-04 2013-06-04 Sheet-shaped resin composition, back-grinding tape-integrated sheet-shaped resin composition, dicing tape-integrated sheet-shaped resin composition, semiconductor device manufacturing method, and semiconductor device

Publications (1)

Publication Number Publication Date
WO2014196293A1 true WO2014196293A1 (en) 2014-12-11

Family

ID=52007946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062074 WO2014196293A1 (en) 2013-06-04 2014-05-01 Sheet-form resin composition, tape-integrated-sheet-form resin composition for back-surface polishing, dicing-tape-integrated-sheet-form resin composition, method for manufacturing semiconductor device, and semiconductor device

Country Status (5)

Country Link
JP (1) JP6193627B2 (en)
KR (1) KR20160016854A (en)
CN (1) CN105264652A (en)
TW (1) TW201504345A (en)
WO (1) WO2014196293A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015002542B4 (en) 2015-02-27 2023-07-20 Disco Corporation wafer division process
JP2017088758A (en) * 2015-11-11 2017-05-25 リンテック株式会社 Adhesive sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338932A (en) * 2001-05-14 2002-11-27 Sony Chem Corp Adhesive
JP2009239138A (en) * 2008-03-28 2009-10-15 Sumitomo Bakelite Co Ltd Film for semiconductor, method for manufacturing semiconductor device, and semiconductor device
JP2012160668A (en) * 2011-02-02 2012-08-23 Sumitomo Bakelite Co Ltd Method for manufacturing electric component
JP2013065888A (en) * 2012-12-25 2013-04-11 Hitachi Chemical Co Ltd Semiconductor device manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338932A (en) * 2001-05-14 2002-11-27 Sony Chem Corp Adhesive
JP2009239138A (en) * 2008-03-28 2009-10-15 Sumitomo Bakelite Co Ltd Film for semiconductor, method for manufacturing semiconductor device, and semiconductor device
JP2012160668A (en) * 2011-02-02 2012-08-23 Sumitomo Bakelite Co Ltd Method for manufacturing electric component
JP2013065888A (en) * 2012-12-25 2013-04-11 Hitachi Chemical Co Ltd Semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP6193627B2 (en) 2017-09-06
CN105264652A (en) 2016-01-20
KR20160016854A (en) 2016-02-15
TW201504345A (en) 2015-02-01
JP2014236152A (en) 2014-12-15

Similar Documents

Publication Publication Date Title
TWI642120B (en) Reinforced sheet and method of manufacturing secondary mounted semiconductor device
WO2014171404A1 (en) Thermosetting resin composition and semiconductor device manufacturing method
WO2009090817A1 (en) Dicing/die bonding film
TWI759375B (en) Tape for semiconductor processing
KR101999856B1 (en) Laminated sheet and method for manufacturing semiconductor device using laminated sheet
JP2011102383A (en) Thermosetting die-bonding film
JP5944155B2 (en) LAMINATED SHEET AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE USING LAMINATED SHEET
JP2013030766A (en) Laminate film and use thereof
JP5580730B2 (en) Dicing die bond film and semiconductor element
JP2013030765A (en) Method of manufacturing semiconductor device
TW201305306A (en) Adhesive sheet and use thereof
JP2015082563A (en) Method for manufacturing semiconductor device, sheet-like resin composition, and dicing tape integrated sheet-like resin composition
JP2012186361A (en) Dicing/die-bonding film and semiconductor element
WO2014162974A1 (en) Underfill adhesive film, underfill adhesive film with integrated backgrinding tape, underfill adhesive film with integrated dicing tape, and semiconductor device
JP5961015B2 (en) Underfill material and method for manufacturing semiconductor device
JP5911284B2 (en) LAMINATED SHEET AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE USING LAMINATED SHEET
TW201546917A (en) Method for producing semiconductor device
TWI614322B (en) Adhesive sheet and use thereof
WO2014083973A1 (en) Semiconductor-device manufacturing method
JP5827878B2 (en) Manufacturing method of semiconductor device
JP6193627B2 (en) Sheet-shaped resin composition, back-grinding tape-integrated sheet-shaped resin composition, dicing tape-integrated sheet-shaped resin composition, semiconductor device manufacturing method, and semiconductor device
JP6407684B2 (en) Sheet-like resin composition, laminated sheet, and method for manufacturing semiconductor device
JP6502026B2 (en) Sheet-like resin composition, laminated sheet and method of manufacturing semiconductor device
JP2017092365A (en) Dicing tape integrated adhesive sheet, and manufacturing method of semiconductor device
JP6587519B2 (en) Sheet-like resin composition, laminated sheet, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480031893.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157035386

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14807901

Country of ref document: EP

Kind code of ref document: A1