WO2014192360A1 - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
WO2014192360A1
WO2014192360A1 PCT/JP2014/056389 JP2014056389W WO2014192360A1 WO 2014192360 A1 WO2014192360 A1 WO 2014192360A1 JP 2014056389 W JP2014056389 W JP 2014056389W WO 2014192360 A1 WO2014192360 A1 WO 2014192360A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
control device
deceleration
vehicle control
motor
Prior art date
Application number
PCT/JP2014/056389
Other languages
French (fr)
Japanese (ja)
Inventor
太雪 谷道
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2015519698A priority Critical patent/JP6253646B2/en
Publication of WO2014192360A1 publication Critical patent/WO2014192360A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/10Measuring distances in line of sight; Optical rangefinders using a parallactic triangle with variable angles and a base of fixed length in the observation station, e.g. in the instrument
    • G01C3/14Measuring distances in line of sight; Optical rangefinders using a parallactic triangle with variable angles and a base of fixed length in the observation station, e.g. in the instrument with binocular observation at a single point, e.g. stereoscopic type
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • B60L2240/16Acceleration longitudinal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • B60L2240/622Vehicle position by satellite navigation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/68Traffic data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • B60T2201/022Collision avoidance systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/20Road profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle for navigation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2754/00Output or target parameters relating to objects
    • B60W2754/10Spatial relation or speed relative to objects
    • B60W2754/30Longitudinal distance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a regenerative control device using an external recognition sensor of a hybrid vehicle.
  • the motor when accelerating, the motor assists with the torque of the engine and accelerates or accelerates only with the motor, and when decelerating, energy is recovered by generating electricity with the motor.
  • the motor when accelerating, the motor assists with the torque of the engine and accelerates or accelerates only with the motor, and when decelerating, energy is recovered by generating electricity with the motor.
  • it is possible to improve the fuel efficiency by assisting torque with the motor or using only the motor to improve the energy efficiency and using the energy recovered during deceleration. be able to.
  • an automatic braking control device and an automobile speed control device using an external recognition device for reducing the impact at the time of collision and reducing the driving load on the driver have been proposed.
  • an inter-vehicle distance and a relative speed with an obstacle can be detected by an external recognition device, an appropriate deceleration timing can be calculated from the detection result, and braking can be automatically applied.
  • Patent Document 1 proposes a drive control apparatus for a hybrid vehicle that measures a distance between vehicles using a laser radar and calculates a target deceleration (regeneration amount) of the own vehicle from the result. is doing.
  • the drive control device of Patent Document 1 when the actual deceleration is insufficient with respect to the target deceleration, it is assumed to downshift (shift down).
  • a vehicle control apparatus calculates a maximum deceleration that can be generated by regeneration from a gear ratio of an automatic transmission of a vehicle and a maximum torque of a motor, and calculates a target inter-vehicle distance by the deceleration.
  • the start timing of deceleration and the method of changing the deceleration are changed in advance, so that the vehicle is decelerated by regenerative force before the driver of the vehicle steps on the brake.
  • the motor is controlled.
  • the vehicle control device of the present invention can start deceleration more quickly or start stronger deceleration earlier by changing the control characteristics by predicting inadequate deceleration in advance. A feeling of delay is not given to the driver, so that it is possible to prevent or minimize the occurrence of energy loss due to the driver stepping on the foot brake.
  • FIG. 1 shows an overall configuration diagram of an embodiment of a vehicle control device according to the present invention.
  • FIG. A control block diagram of the inter-vehicle distance control device 108 according to the present invention is shown.
  • the control block diagram of the following deceleration calculating part which concerns on this invention is shown.
  • the control block diagram of the own vehicle speed control part which concerns on this invention is shown.
  • the flowchart of the substitution method of map data in the case of using a navigation system together is shown.
  • the control block diagram of the inter-vehicle distance control device according to the present invention when model predictive control is used is shown.
  • the image figure when the vehicle has stopped ahead by the red light is shown.
  • the image figure in the case of rushing into a red light with no vehicle ahead is shown.
  • the flowchart which judges the deceleration tendency in the vehicle control apparatus which concerns on this invention is shown.
  • This vehicle control device includes an inter-vehicle distance sensor 102 mounted in front of the vehicle 101, an inter-vehicle control device 108 that performs control according to the distance from the preceding vehicle or an obstacle measured by the inter-vehicle distance sensor, and instructions from the inter-vehicle distance control device 108.
  • Motor control device 104 for controlling the deceleration according to the above, motor 107 whose torque is controlled by the motor control device 104, and automatic transmission (AT) control device for transmitting the gear ratio of the automatic transmission 106 to the inter-vehicle control device 108 Consists of 105.
  • the vehicle 101 also includes a brake device that decelerates the vehicle when the deceleration by the control device according to the present invention is insufficient, and a battery 121 that stores electric power regenerated by the motor 107.
  • the brake caliper 113, the brake rotor 114, the brake booster 111, and the brake pedal 115 are included.
  • the torque generated by the motor 107 generates deceleration by transmitting force to the road surface through the automatic transmission 106, the final gear 122 and the tire 123.
  • the deceleration that can be generated by the motor 107 varies depending on the gear ratio of the automatic transmission 106. Therefore, the loss of kinetic energy is suppressed as much as possible by changing the control characteristic of the inter-vehicle distance controller 108 using the AT gear ratio that can be acquired from the AT controller 105.
  • the target inter-vehicle distance calculation unit 210 calculates the target inter-vehicle distance 209 from the control parameter 208 and the relative speed 221. If the target inter-vehicle distance 209 is d t , d t is calculated by Equation 1.
  • TTC rg Parameter 208.
  • TTC rg is calculated by Expression 2 in the control parameter setting unit 211.
  • the target inter-vehicle distance 209 By calculating the target inter-vehicle distance 209 by such a calculation method, the target inter-vehicle distance can be adjusted to the inter-vehicle distance that can be decelerated at the maximum deceleration obtained by regeneration, so that all kinetic energy can be collected by regeneration. .
  • the following deceleration calculation unit 202 calculates a target deceleration 203 for setting the inter-vehicle distance 201 detected by the inter-vehicle distance sensor 102 to the target inter-vehicle distance 209.
  • the own vehicle speed control unit 206 calculates a target torque 207 for making the deceleration 215 detected by the vehicle state sensing unit 204 coincide with the target deceleration 203.
  • the target torque 207 is transmitted to the motor control device 104, and regenerative control is performed so as to generate this torque.
  • the regeneration deceleration upper limit calculation unit 213 calculates the maximum deceleration 212 from the gear ratio 214 transmitted from the AT control device 105.
  • the maximum deceleration a max is calculated by Equation 4.
  • T mtr is the motor maximum torque
  • g at AT gear ratio 214
  • g f final gear ratio
  • m v vehicle weight
  • r t tire radius
  • the brake lamp lighting control unit 223 outputs a lighting request 226 to the brake lamp 224 when the target deceleration 203 falls below the deceleration due to engine braking. As a result, the brake lamp is turned on.
  • the vehicle state sensing unit 204 monitors the lighting state 227 of the brake lamp and sends a brake lamp lighting signal 216 to the following deceleration calculation unit 202.
  • the following deceleration calculation unit 202 suppresses the output of the target deceleration 203 to the own vehicle speed control unit 206 until the brake lamp lighting signal 216 indicates a lighting state.
  • the deceleration tendency determination unit 225 determines that there is a high possibility that the preceding vehicle is decelerating and the host vehicle is also decelerating, and transmits a deceleration tendency flag 226 to the following deceleration calculation unit 202.
  • the deceleration tendency flag 226 is a flag that indicates a high possibility that the host vehicle will continue to decelerate.
  • the following deceleration calculation unit 202 sets the target deceleration to a negative value (acceleration (The value shown) is limited. By doing so, it is possible to prevent the automatic transmission 106 from being unlocked due to a change in the deceleration-acceleration state, and then making it impossible to decelerate due to regeneration when the operation proceeds to deceleration.
  • FIG. 9 is a flowchart showing a true / false setting method of the deceleration tendency flag.
  • step 802 it is confirmed that the throttle is closed. If true, it is confirmed in step 803 that the host vehicle speed is positive. If the host vehicle speed is positive, it is determined in step 804 whether or not the relative speed is less than the threshold value (a state in which the object detected by the inter-vehicle distance sensor 102 is approaching the host vehicle).
  • step 804 If it is determined in step 804 that the relative speed is less than the threshold value, it is determined in step 807 whether or not the state has continued for a predetermined time or more. If step 807 becomes true, it is determined that the vehicle is in a deceleration tendency, and the deceleration tendency flag 226 is made true by the processing in step 808.
  • step 804 determines whether or not the relative speed is greater than or equal to the threshold value. If it is determined in step 805 whether or not the state has passed for a certain period of time, and if true, it is determined that there is no tendency to decelerate. In step 806, the deceleration tendency flag 226 is set to false.
  • a difference between the target inter-vehicle distance 209 input from the target inter-vehicle distance calculation unit 210 and the inter-vehicle distance 201 input from the inter-vehicle distance sensor 102 is acquired at the addition point 301, and the inter-vehicle deviation 302 is calculated.
  • the product of the transfer function (Gd) 306 and the transfer function (Gv) 307 is calculated for the inter-vehicular deviation 302 and its differential (s) value, respectively, and added at the addition point 308.
  • the target deceleration 203 is calculated by adding the upper / lower limiter processing 311 to the total value.
  • a deceleration tendency flag 226 is input to the limiter process 311 from the deceleration tendency determination unit 225.
  • a value at which the vehicle does not accelerate the lower limit value of the upper / lower limiter process 311, for example, traveling Setting the deceleration corresponding to the resistance prevents the automatic transmission 106 from releasing the lockup.
  • the brake lamp lighting signal 216 is input from the vehicle state sensing unit 204 to the limiter process 311.
  • the limiter process 311 When the brake lamp lighting signal 216 indicates the brake lamp lighting, the limiter process 311 generates the upper limit limiter and generates regenerative torque. By setting it to a value that is not, for example, 0 (zero), regenerative torque is generated when the brake lamp is not lit, and the vehicle is prevented from decelerating. Note that this limiter processing may be performed not on the target deceleration 203 but on the target torque 207 in FIG.
  • the own vehicle speed control unit 206 calculates the deceleration deviation 402 by taking the difference between the target deceleration 203 input from the following deceleration calculation unit 202 and the deceleration 215 input from the vehicle state sensing unit 204 at the addition point 401. . Next, the product of the deceleration deviation 402 and the transfer function (Ga) 403 is taken, and further the target deceleration 203 is added, and the product of the coefficient (K) 406 is taken as the target torque 207.
  • the inter-vehicle distance sensor 102 may be any sensor that can detect the distance to an object in front of the host vehicle, such as a laser radar, a radar, or a stereo camera. In the embodiment shown here, a stereo camera is used. ing.
  • the vehicles 702 and 703 are stopped in front.
  • a stereo camera is used, an object existing in the front with the color and shape of the vehicle. Since it is possible to determine that the vehicle is a vehicle, it is possible to detect the distance from the object when the distance from the recognized object is further away, and it is possible to regenerate more energy. In this regard, it is preferable to use a stereo camera as the inter-vehicle distance sensor 102.
  • a navigation system map as the inter-vehicle distance sensor 102.
  • FIG. 8 when there is no object before, regeneration cannot be performed only from the inter-vehicle distance sensor. If a map is used in such a case, for example, as shown in FIG. 5, it is determined whether or not the throttle is closed in step 502. If it is closed, the intersection calculated from the map is reached. By substituting this distance into the inter-vehicle distance 201 (step 503), regeneration can be performed even in the situation shown in FIG.
  • FIG. 6 shows a block diagram when model predictive control is used for the follow-up deceleration calculation unit 202.
  • model predictive control is used, a model predictive control unit 601 is used instead of the following deceleration calculation unit 202.
  • An example of evaluation terms and constraints using model predictive control is shown in Equation 5.

Abstract

In a vehicle control device for controlling deceleration due to regenerative force, energy loss caused by the application of the brake by a driver because of a sense of delay in deceleration is minimized. The vehicle control device computes a maximum deceleration that can be produced by regeneration on the basis of an automatic transmission gear ratio and a maximum torque of a motor of the vehicle, and adjusts a parameter for a target vehicle-to-vehicle distance computing unit depending on the deceleration so as to modify, in advance, the way in which the deceleration start timing and deceleration are changed, whereby the motor is controlled such that the vehicle is decelerated with regenerative force before the driver of the vehicle applies the brake.

Description

車両制御装置Vehicle control device
 本発明は、ハイブリッド車の外界認識センサを利用した回生制御の装置に関するものである。 The present invention relates to a regenerative control device using an external recognition sensor of a hybrid vehicle.
 近年、車輪をエンジン及びモータ(電動機)により駆動して走行するハイブリッド車両が開発されている。 In recent years, hybrid vehicles have been developed in which wheels are driven by an engine and a motor (electric motor).
 このハイブリッド車両においては、加速時にはモータによりエンジンのトルクをアシストして加速するか若しくはモータのみにより加速し、減速時においてはモータで発電することによりエネルギーを回収する。これにより、エンジンのエネルギー効率が悪い領域で、モータでトルクをアシスト若しくはモータのみを用いてエネルギー効率を向上させること、減速時に回収したエネルギーを加速時に使用することができるので、燃費の改善を行うことができる。 In this hybrid vehicle, when accelerating, the motor assists with the torque of the engine and accelerates or accelerates only with the motor, and when decelerating, energy is recovered by generating electricity with the motor. As a result, in a region where the energy efficiency of the engine is poor, it is possible to improve the fuel efficiency by assisting torque with the motor or using only the motor to improve the energy efficiency and using the energy recovered during deceleration. be able to.
 また、衝突時の衝撃の軽減や、ドライバーの運転負荷を低減するための外界認識装置を利用した自動制動制御装置や自動車速制御装置も提案されている。これらの装置においては、外界認識装置によって障害物との車間距離と相対速度を検出し、その検出結果から適切な減速タイミングを算出し、自動的にブレーキをかけることができる。 In addition, an automatic braking control device and an automobile speed control device using an external recognition device for reducing the impact at the time of collision and reducing the driving load on the driver have been proposed. In these devices, an inter-vehicle distance and a relative speed with an obstacle can be detected by an external recognition device, an appropriate deceleration timing can be calculated from the detection result, and braking can be automatically applied.
 上記の従来技術の中の一例として、特許文献1は、レーザレーダを用いて車間距離を計測し、その結果から自車の目標減速度(回生量)を演算するハイブリッド車両の駆動制御装置を提案している。特許文献1の駆動制御装置では、目標減速度に対して実際の減速度が不足する場合は、ダウンシフト(シフトダウン)するとしている。 As an example of the above-described prior art, Patent Document 1 proposes a drive control apparatus for a hybrid vehicle that measures a distance between vehicles using a laser radar and calculates a target deceleration (regeneration amount) of the own vehicle from the result. is doing. In the drive control device of Patent Document 1, when the actual deceleration is insufficient with respect to the target deceleration, it is assumed to downshift (shift down).
特開平10-73161号公報JP-A-10-73161
 しかし、実際の減速度が不足する場合にシフトダウンしたとしても、摩擦ブレーキ(フットブレーキ)による減速度には及ばず、実際の減速度がなお不足する場合がある。また、減速度の不足が検出されてからシフトダウンを行うまでには時間がかかるため、減速度の遅れ感をドライバーに与え、その遅れ感が違和感になる場合がある。その結果、ドライバーがフットブレーキを踏んでしまうことにより、エネルギーのロス(廃却)が発生する。 However, even if shifting down when the actual deceleration is insufficient, the actual deceleration may still be insufficient, not reaching the deceleration by the friction brake (foot brake). In addition, since it takes time until the shift down is performed after the lack of deceleration is detected, the driver may be given a feeling of delay in the deceleration, and the feeling of delay may be uncomfortable. As a result, when the driver steps on the foot brake, energy loss (removal) occurs.
 上記の課題を解決するため、本発明による車両制御装置は、車両の自動変速機のギヤ比とモータの最大トルクから回生によって発生可能の最大減速度を演算し、その減速度により目標車間距離演算部のパラメータを調整することにより、減速の開始タイミング及び減速度の変化のさせ方を予め変更することにより、前記車両のドライバーがブレーキを踏む前に、回生力により前記車両を減速させるように前記モータを制御することを特徴とする。 In order to solve the above problems, a vehicle control apparatus according to the present invention calculates a maximum deceleration that can be generated by regeneration from a gear ratio of an automatic transmission of a vehicle and a maximum torque of a motor, and calculates a target inter-vehicle distance by the deceleration. By adjusting the parameter of the unit, the start timing of deceleration and the method of changing the deceleration are changed in advance, so that the vehicle is decelerated by regenerative force before the driver of the vehicle steps on the brake. The motor is controlled.
 本発明の車両制御装置は、減速度の不足をあらかじめ予測して制御特性を変更することにより、早めに減速を開始すること、もしくは早めに強めの減速を開始することができるので、減速度の遅れ感をドライバーに与えることがなく、そのため、ドライバーがフットブレーキを踏んでしまうことによるエネルギーのロスの発生を防止若しくは最小限とすることができる。 The vehicle control device of the present invention can start deceleration more quickly or start stronger deceleration earlier by changing the control characteristics by predicting inadequate deceleration in advance. A feeling of delay is not given to the driver, so that it is possible to prevent or minimize the occurrence of energy loss due to the driver stepping on the foot brake.
本発明に係る車両制御装置の実施例の全体の構成図を示す。1 shows an overall configuration diagram of an embodiment of a vehicle control device according to the present invention. FIG. 本発明に係る車間制御装置108の制御ブロック図を示す。A control block diagram of the inter-vehicle distance control device 108 according to the present invention is shown. 本発明に係る追従減速度演算部の制御ブロック図を示す。The control block diagram of the following deceleration calculating part which concerns on this invention is shown. 本発明に係る自車速制御部の制御ブロック図を示す。The control block diagram of the own vehicle speed control part which concerns on this invention is shown. ナビゲーションシステムを併用する場合の地図データの代入方法のフローチャートを示す。The flowchart of the substitution method of map data in the case of using a navigation system together is shown. モデル予測制御を使用した場合の本発明に係る車間制御装置の制御ブロック図を示す。The control block diagram of the inter-vehicle distance control device according to the present invention when model predictive control is used is shown. 赤信号で前方に車両が停止している場合のイメージ図を示す。The image figure when the vehicle has stopped ahead by the red light is shown. 前方に車両が居ない状態で、赤信号に突入する場合のイメージ図を示す。The image figure in the case of rushing into a red light with no vehicle ahead is shown. 本発明に係る車両制御装置において減速傾向を判断するフローチャートを示す。The flowchart which judges the deceleration tendency in the vehicle control apparatus which concerns on this invention is shown.
 まず、図1を用いて本発明に係る車両制御装置の実施例の全体の構成を説明する。この車両制御装置は、車両101前方に取り付けられる車間距離センサ102と、車間距離センサによって計測された前方車両若しくは障害物との距離によって制御を行う車間制御装置108と、車間距離制御装置108の指示に従って減速度を制御するモータ制御装置104と、前記モータ制御装置104によってトルクが制御されるモータ107と、自動変速機106のギヤ比を車間制御装置108に伝達する自動変速機(AT)制御装置105により構成される。 First, the overall configuration of an embodiment of the vehicle control apparatus according to the present invention will be described with reference to FIG. This vehicle control device includes an inter-vehicle distance sensor 102 mounted in front of the vehicle 101, an inter-vehicle control device 108 that performs control according to the distance from the preceding vehicle or an obstacle measured by the inter-vehicle distance sensor, and instructions from the inter-vehicle distance control device 108. Motor control device 104 for controlling the deceleration according to the above, motor 107 whose torque is controlled by the motor control device 104, and automatic transmission (AT) control device for transmitting the gear ratio of the automatic transmission 106 to the inter-vehicle control device 108 Consists of 105.
 また、車両101には、本発明に係る制御装置による減速度が足らない場合に車両を減速させるブレーキ装置と、モータ107で回生された電力を蓄電するバッテリ121も具備されており、ブレーキ装置は、ブレーキキャリパ113と、ブレーキロータ114と、ブレーキブースタ111と、ブレーキペダル115により構成されている。 The vehicle 101 also includes a brake device that decelerates the vehicle when the deceleration by the control device according to the present invention is insufficient, and a battery 121 that stores electric power regenerated by the motor 107. The brake caliper 113, the brake rotor 114, the brake booster 111, and the brake pedal 115 are included.
 この様な構成により、ドライバーがブレーキペダル115を踏み込むと、ブレーキキャリパ113とブレーキロータ114の摩擦により車両の運動エネルギーを捨てることになるが、その前に、車間距離センサ102で計測した車間距離から車間制御装置108でドライバーのブレーキ踏込を予測し、モータ制御装置104を制御して減速を開始することにより、ドライバーのブレーキペダル115の踏込を抑制し、摩擦による運動エネルギーの消失を減少させることができる。 With such a configuration, when the driver depresses the brake pedal 115, the kinetic energy of the vehicle is discarded due to friction between the brake caliper 113 and the brake rotor 114, but before that, from the inter-vehicle distance measured by the inter-vehicle distance sensor 102, By predicting the driver's brake depression by the inter-vehicle control device 108 and controlling the motor control device 104 to start deceleration, the driver's brake pedal 115 can be suppressed and the loss of kinetic energy due to friction can be reduced. it can.
 モータ107で発生させるトルクは、自動変速機106、ファイナルギヤ122及びタイヤ123を解して路面に力が伝わることによって減速度を発生させる。ここで、ファイナルギヤ比とタイヤ半径は固定であるため、モータ107で発生させることができる減速度は、自動変速機106のギヤ比によって変化する。そこで、AT制御装置105より取得できるATギヤ比を使用して車間制御装置108の制御特性を変化させることにより、できるだけ運動エネルギーの消失を抑えている。 The torque generated by the motor 107 generates deceleration by transmitting force to the road surface through the automatic transmission 106, the final gear 122 and the tire 123. Here, since the final gear ratio and the tire radius are fixed, the deceleration that can be generated by the motor 107 varies depending on the gear ratio of the automatic transmission 106. Therefore, the loss of kinetic energy is suppressed as much as possible by changing the control characteristic of the inter-vehicle distance controller 108 using the AT gear ratio that can be acquired from the AT controller 105.
 次に、図2を用いて車間制御装置108の構成について説明する。目標車間距離演算部210では、制御パラメータ208と相対速度221から目標車間距離209を計算する。目標車間距離209をdtとすると、dtは、式1によって算出される。 Next, the configuration of the inter-vehicle distance controller 108 will be described with reference to FIG. The target inter-vehicle distance calculation unit 210 calculates the target inter-vehicle distance 209 from the control parameter 208 and the relative speed 221. If the target inter-vehicle distance 209 is d t , d t is calculated by Equation 1.
〔式1〕
Figure JPOXMLDOC01-appb-I000001
ここで、vr:相対速度221、
    TTCrg:パラメータ208、である。
 TTCrgは、制御パラメータ設定部211において、式2によって算出される。
[Formula 1]
Figure JPOXMLDOC01-appb-I000001
Where v r : relative speed 221,
TTC rg : Parameter 208.
TTC rg is calculated by Expression 2 in the control parameter setting unit 211.
〔式2〕
Figure JPOXMLDOC01-appb-I000002
ここで、amax:最大減速度212、
    vt:先行車速、
    ve:自車速222、である。
 先行車速vtは、式3によって算出される。
[Formula 2]
Figure JPOXMLDOC01-appb-I000002
Where a max is the maximum deceleration 212,
v t : preceding vehicle speed,
v e : The vehicle speed is 222.
The preceding vehicle speed v t is calculated by Equation 3.
〔式3〕
Figure JPOXMLDOC01-appb-I000003
[Formula 3]
Figure JPOXMLDOC01-appb-I000003
 この様な計算方法で目標車間距離209を求めることにより、回生によって得られる最大減速度で減速できる車間距離に目標車間距離を調整できるので、運動エネルギーを全て回生による回収の対象とすることができる。 By calculating the target inter-vehicle distance 209 by such a calculation method, the target inter-vehicle distance can be adjusted to the inter-vehicle distance that can be decelerated at the maximum deceleration obtained by regeneration, so that all kinetic energy can be collected by regeneration. .
 追従減速度演算部202では、車間距離センサ102で検出された車間距離201を目標車間距離209にするための目標減速度203を算出する。 The following deceleration calculation unit 202 calculates a target deceleration 203 for setting the inter-vehicle distance 201 detected by the inter-vehicle distance sensor 102 to the target inter-vehicle distance 209.
 自車速制御部206は、車両状態センシング部204で検出される減速度215を目標減速度203に一致させるための目標トルク207を算出する。前記目標トルク207は、モータ制御装置104に送信され、このトルクを発生させるように回生制御が行われる。 The own vehicle speed control unit 206 calculates a target torque 207 for making the deceleration 215 detected by the vehicle state sensing unit 204 coincide with the target deceleration 203. The target torque 207 is transmitted to the motor control device 104, and regenerative control is performed so as to generate this torque.
 回生減速度上限算出部213では、AT制御装置105から送信されるギヤ比214から最大減速度212を算出する。最大減速度amaxは、式4により算出される。 The regeneration deceleration upper limit calculation unit 213 calculates the maximum deceleration 212 from the gear ratio 214 transmitted from the AT control device 105. The maximum deceleration a max is calculated by Equation 4.
〔式4〕
Figure JPOXMLDOC01-appb-I000004
ここで、Tmtr:モータ最大トルク、
    gat:ATギヤ比214、
    gf:ファイナルギヤ比、
    mv:車重、
    rt:タイヤ半径、である。
[Formula 4]
Figure JPOXMLDOC01-appb-I000004
Where T mtr is the motor maximum torque,
g at : AT gear ratio 214,
g f : final gear ratio,
m v : vehicle weight,
r t : tire radius.
 ブレーキランプ点灯制御部223では、目標減速度203がエンジンブレーキによる減速度を下回った場合、点灯要求226をブレーキランプ224に出力する。これによりブレーキランプが点灯する。車両状態センシング部204は、このブレーキランプの点灯状態227をモニタし、ブレーキランプ点灯信号216を追従減速度演算部202に送る。 The brake lamp lighting control unit 223 outputs a lighting request 226 to the brake lamp 224 when the target deceleration 203 falls below the deceleration due to engine braking. As a result, the brake lamp is turned on. The vehicle state sensing unit 204 monitors the lighting state 227 of the brake lamp and sends a brake lamp lighting signal 216 to the following deceleration calculation unit 202.
 追従減速度演算部202は、ブレーキランプ点灯信号216が点灯中を示す状態となるまで、目標減速度203の自車速制御部206への出力を抑制する。この様な目標減速度203の抑制機構を設けることにより、ブレーキランプが点灯していないにもかかわらず、回生による減速が発生するのを防ぐことができる。 The following deceleration calculation unit 202 suppresses the output of the target deceleration 203 to the own vehicle speed control unit 206 until the brake lamp lighting signal 216 indicates a lighting state. By providing such a suppression mechanism for the target deceleration 203, it is possible to prevent deceleration due to regeneration even when the brake lamp is not lit.
 減速傾向判断部225は、先行車が減速しており自車も減速し続ける可能性が高いことを判断し、減速傾向フラグ226を追従減速度演算部202に送信する。減速傾向フラグ226は、自車が減速し続ける可能性が高い状態を示すフラグであり、この減速傾向フラグ226が真の場合は、追従減速度演算部202は目標減速度が負値(加速を示す値)とならないように制限する。この様にすることにより、減速-加速の状態変化によって自動変速機106のロックアップが外れて、次に減速に移ったときに回生による減速が不可能になることを防ぐ。 The deceleration tendency determination unit 225 determines that there is a high possibility that the preceding vehicle is decelerating and the host vehicle is also decelerating, and transmits a deceleration tendency flag 226 to the following deceleration calculation unit 202. The deceleration tendency flag 226 is a flag that indicates a high possibility that the host vehicle will continue to decelerate. When the deceleration tendency flag 226 is true, the following deceleration calculation unit 202 sets the target deceleration to a negative value (acceleration (The value shown) is limited. By doing so, it is possible to prevent the automatic transmission 106 from being unlocked due to a change in the deceleration-acceleration state, and then making it impossible to decelerate due to regeneration when the operation proceeds to deceleration.
 図9は、減速傾向フラグの真、偽のセット方法を示すフローチャートである。まず、ステップ802においてスロットルが閉じられていることを確認し、真である場合、ステップ803において自車速が正であることを確認する。自車速が正である場合は、ステップ804において相対速度が閾値未満(車間距離センサ102が検出した物体が自車に近づいている状態)であるか否かを判断する。 FIG. 9 is a flowchart showing a true / false setting method of the deceleration tendency flag. First, in step 802, it is confirmed that the throttle is closed. If true, it is confirmed in step 803 that the host vehicle speed is positive. If the host vehicle speed is positive, it is determined in step 804 whether or not the relative speed is less than the threshold value (a state in which the object detected by the inter-vehicle distance sensor 102 is approaching the host vehicle).
 ステップ804において、相対速度が閾値未満であると判断された場合、ステップ807において、その状態が一定時間以上継続しているか否かを判断する。そして、ステップ807が真になった場合は減速傾向にあると判断し、ステップ808の処理により減速傾向フラグ226を真にする。 If it is determined in step 804 that the relative speed is less than the threshold value, it is determined in step 807 whether or not the state has continued for a predetermined time or more. If step 807 becomes true, it is determined that the vehicle is in a deceleration tendency, and the deceleration tendency flag 226 is made true by the processing in step 808.
 他方、ステップ804において、相対速度が閾値以上であると判断された場合は、ステップ805において、その状態が一定時間以上経過しているか否かを判断し、真の場合は減速傾向に無いと判断し、ステップ806の処理により減速傾向フラグ226を偽にする。 On the other hand, if it is determined in step 804 that the relative speed is greater than or equal to the threshold value, it is determined in step 805 whether or not the state has passed for a certain period of time, and if true, it is determined that there is no tendency to decelerate. In step 806, the deceleration tendency flag 226 is set to false.
 次に図3を用いて、追従減速度演算部202の処理について説明する。目標車間距離演算部210から入力される目標車間距離209と車間距離センサ102から入力される車間距離201の差を加算点301において取得し、車間偏差302を算出する。次に、車間偏差302とその微分(s)値に、それぞれ伝達関数(Gd)306と伝達関数(Gv)307との積を取り、加算点308において合計する。この合計値に上下限リミッタ処理311を加えて、目標減速度203を算出する。 Next, processing of the following deceleration calculation unit 202 will be described with reference to FIG. A difference between the target inter-vehicle distance 209 input from the target inter-vehicle distance calculation unit 210 and the inter-vehicle distance 201 input from the inter-vehicle distance sensor 102 is acquired at the addition point 301, and the inter-vehicle deviation 302 is calculated. Next, the product of the transfer function (Gd) 306 and the transfer function (Gv) 307 is calculated for the inter-vehicular deviation 302 and its differential (s) value, respectively, and added at the addition point 308. The target deceleration 203 is calculated by adding the upper / lower limiter processing 311 to the total value.
 このリミッタ処理311に減速傾向判断部225から減速傾向フラグ226が入力されるが、この減速傾向フラグ226が真である場合、上下限リミッタ処理311の下限リミッタ値を車両が加速しない値、例えば走行抵抗相当の減速度に設定することにより、自動変速機106でロックアップが外れることを防止する。 A deceleration tendency flag 226 is input to the limiter process 311 from the deceleration tendency determination unit 225. When the deceleration tendency flag 226 is true, a value at which the vehicle does not accelerate the lower limit value of the upper / lower limiter process 311, for example, traveling Setting the deceleration corresponding to the resistance prevents the automatic transmission 106 from releasing the lockup.
 リミッタ処理311には車両状態センシング部204からブレーキランプ点灯信号216が入力されるが、このブレーキランプ点灯信号216がブレーキランプ点灯を示す状態の時は、リミッタ処理311では上限リミッタを回生トルクが発生しない値、例えば0(零)に設定することにより、ブレーキランプが点灯していないときに回生トルクが発生して、車両が減速することを防止する。なお、このリミッタ処理は、目標減速度203ではなく、図4の目標トルク207に施しても良い。 The brake lamp lighting signal 216 is input from the vehicle state sensing unit 204 to the limiter process 311. When the brake lamp lighting signal 216 indicates the brake lamp lighting, the limiter process 311 generates the upper limit limiter and generates regenerative torque. By setting it to a value that is not, for example, 0 (zero), regenerative torque is generated when the brake lamp is not lit, and the vehicle is prevented from decelerating. Note that this limiter processing may be performed not on the target deceleration 203 but on the target torque 207 in FIG.
 次に図4を用いて自車速制御部206について説明する。自車速制御部206は、追従減速度演算部202から入力される目標減速度203と車両状態センシング部204から入力される減速度215の差を加算点401で取って減速度偏差402を算出する。次に減速度偏差402と伝達関数(Ga)403との積を取り、さらに目標減速度203を加えて、係数(K)406との積を取って目標トルク207とする。 Next, the own vehicle speed control unit 206 will be described with reference to FIG. The own vehicle speed control unit 206 calculates the deceleration deviation 402 by taking the difference between the target deceleration 203 input from the following deceleration calculation unit 202 and the deceleration 215 input from the vehicle state sensing unit 204 at the addition point 401. . Next, the product of the deceleration deviation 402 and the transfer function (Ga) 403 is taken, and further the target deceleration 203 is added, and the product of the coefficient (K) 406 is taken as the target torque 207.
 車間距離センサ102は、レーザレーダ、レーダ、ステレオカメラ等、自車前方の物体との距離が検出できるセンサであれば何を用いてもよいが、ここに示す実施例では、ステレオカメラを使用している。 The inter-vehicle distance sensor 102 may be any sensor that can detect the distance to an object in front of the host vehicle, such as a laser radar, a radar, or a stereo camera. In the embodiment shown here, a stereo camera is used. ing.
 図7に示すような状況では、信号701が赤であるため、前方に車両702及び703が停止している場合であるが、ステレオカメラを用いると、車両の色や形状で前方に存在する物体が車両であることを判断できるため、認識している物体との距離がより離れているときから物体との距離を検出することができ、より多くのエネルギーを回生することができる。この点については、車間距離センサ102としてステレオカメラを用いることが好ましい。 In the situation shown in FIG. 7, since the signal 701 is red, the vehicles 702 and 703 are stopped in front. However, when a stereo camera is used, an object existing in the front with the color and shape of the vehicle. Since it is possible to determine that the vehicle is a vehicle, it is possible to detect the distance from the object when the distance from the recognized object is further away, and it is possible to regenerate more energy. In this regard, it is preferable to use a stereo camera as the inter-vehicle distance sensor 102.
 また、車間距離センサ102としてナビゲーションシステムの地図を併用することも考えられる。図8に示すように、前に物体が何も無い場合は車間距離センサ102のみから回生を行うことができない。このような場合に地図を併用すると、例えば図5に示すように、ステップ502においてスロットルが閉じられているか否かを判断し、もし、閉じられている場合は、地図から算出された、交差点までの距離を車間距離201に代入(ステップ503の処理)を行うことにより、図8に示すような状況でも回生を行うことができる。 It is also conceivable to use a navigation system map as the inter-vehicle distance sensor 102. As shown in FIG. 8, when there is no object before, regeneration cannot be performed only from the inter-vehicle distance sensor. If a map is used in such a case, for example, as shown in FIG. 5, it is determined whether or not the throttle is closed in step 502. If it is closed, the intersection calculated from the map is reached. By substituting this distance into the inter-vehicle distance 201 (step 503), regeneration can be performed even in the situation shown in FIG.
 図6には、追従減速度演算部202にモデル予測制御を用いた場合のブロック図を示す。モデル予測制御を用いる場合は、追従減速度演算部202の代わりに、モデル予測制御部601を用いる。モデル予測制御を用いる評価項及び制約の例を式5に示す。 FIG. 6 shows a block diagram when model predictive control is used for the follow-up deceleration calculation unit 202. When model predictive control is used, a model predictive control unit 601 is used instead of the following deceleration calculation unit 202. An example of evaluation terms and constraints using model predictive control is shown in Equation 5.
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000005
〔式5〕
Figure JPOXMLDOC01-appb-I000006
[Formula 5]
Figure JPOXMLDOC01-appb-I000006
201車間距離
202追従減速度演算部
203目標減速度
204車両状態センシング部
206自車速制御部
207目標トルク
208パラメータ
209目標車間距離
210目標車間距離演算部
211制御パラメータ設定部
212最大減速度
213回生減速度上限算出部
214ギヤ比
215減速度
216ブレーキランプ点灯
221相対速度
222自車速
223ブレーキランプ点灯制御部
224ブレーキランプ
225減速傾向判断部
226減速傾向フラグ
227点灯状態
201 inter-vehicle distance
202 following deceleration calculation unit
203 Target deceleration
204 Vehicle state sensing unit
206 Vehicle speed controller
207 target torque
208 parameters
209 Target inter-vehicle distance
210 Target vehicle distance calculator
211 Control parameter setting section
212 Maximum deceleration
213 Regeneration deceleration upper limit calculation part
214 gear ratio
215 deceleration
216 Brake lamp lights
221 relative speed
222 Vehicle speed
223 Brake lamp lighting control unit
224 brake lamp
225 Deceleration tendency judgment part
226 Deceleration tendency flag
227 lighting status

Claims (9)

  1.  車間距離センサと、モータと、自動変速機制御装置とを備えて、前記車間距離センサによって計測された前方車両若しくは障害物との距離及び相対速度に基づいて前記モータを制御する車両に搭載するための車両制御装置であって、
     前記車両のドライバーがブレーキを踏む前に、回生力により前記車両を減速させるように前記モータを制御することを特徴とする車両制御装置。
    A vehicle distance sensor, a motor, and an automatic transmission control device, which are mounted on a vehicle that controls the motor based on the distance and relative speed with respect to a preceding vehicle or an obstacle measured by the vehicle distance sensor. Vehicle control apparatus,
    A vehicle control device that controls the motor to decelerate the vehicle by regenerative force before the driver of the vehicle steps on a brake.
  2.  請求項1に記載された車両制御装置において、
     前記距離及び相対速度に基づいて目標減速度を演算する手段と、前記目標減速度に基づいて前記モータを制御する手段を備えることを特徴とする車両制御装置。
    In the vehicle control device according to claim 1,
    A vehicle control apparatus comprising: means for calculating a target deceleration based on the distance and relative speed; and means for controlling the motor based on the target deceleration.
  3.  請求項2に記載された車両制御装置において、
     前記距離情報に基づいて目標減速度を演算する手段の特性を、前記回生力により発生できる最大減速度に基づいて変更することを特徴とする車両制御装置。
    In the vehicle control device according to claim 2,
    The vehicle control apparatus characterized by changing the characteristic of the means for calculating the target deceleration based on the distance information based on the maximum deceleration that can be generated by the regenerative force.
  4.  請求項3に記載された車両制御装置において、
     前記最大減速度を、前記自動変速機制御装置が設定するギヤ比に基づいて算出することを特徴とする車両制御装置。
    In the vehicle control device according to claim 3,
    The vehicle control device, wherein the maximum deceleration is calculated based on a gear ratio set by the automatic transmission control device.
  5.  請求項2に記載された車両制御装置において、
     前記目標減速度がエンジンブレーキによる減速度を下回った場合にブレーキランプを点灯するブレーキランプ点灯制御部と、
     モータ制御装置に目標トルクを与える自車速制御部を備えて、
     前記ブレーキランプが点灯するまで前記目標減速度の前記自車速制御部への出力を抑制して、回生力を発生しないことを特徴とする車両制御装置。
    In the vehicle control device according to claim 2,
    A brake lamp lighting control unit for lighting a brake lamp when the target deceleration is lower than the deceleration by the engine brake;
    A self-vehicle speed control unit that gives a target torque to the motor control device,
    A vehicle control device that suppresses output of the target deceleration to the own vehicle speed control unit until the brake lamp is lit and does not generate regenerative force.
  6.  請求項1に記載された車両制御装置において、
     前記車間距離センサとして、ステレオカメラを用いたことを特徴とする車両制御装置。
    In the vehicle control device according to claim 1,
    A vehicle control apparatus using a stereo camera as the inter-vehicle distance sensor.
  7.  請求項1に記載された車両制御装置において、
     前記車間距離センサはナビゲーションシステムの地図を併用し、前記前方車両若しくは障害物がない場合には、前記地図を利用して特定の地形まで距離及び速度に基づいて前記モータを制御することを特徴とする車両制御装置。
    In the vehicle control device according to claim 1,
    The inter-vehicle distance sensor is used in combination with a map of a navigation system, and when there is no preceding vehicle or obstacle, the motor is controlled based on the distance and speed to a specific terrain using the map. Vehicle control device.
  8.  請求項2に記載された車両制御装置において、
     自動変速機のロックアップ状態をできるだけ維持するように前記目標減速度を制限することを特徴とする車両制御装置。
    In the vehicle control device according to claim 2,
    A vehicle control device that limits the target deceleration so as to maintain the lockup state of the automatic transmission as much as possible.
  9.  請求項1ないし8に記載された車両制御装置によって制御される車両。 A vehicle controlled by the vehicle control device according to claim 1.
PCT/JP2014/056389 2013-05-30 2014-03-12 Vehicle control device WO2014192360A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015519698A JP6253646B2 (en) 2013-05-30 2014-03-12 Vehicle control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-114191 2013-05-30
JP2013114191 2013-05-30

Publications (1)

Publication Number Publication Date
WO2014192360A1 true WO2014192360A1 (en) 2014-12-04

Family

ID=51988404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056389 WO2014192360A1 (en) 2013-05-30 2014-03-12 Vehicle control device

Country Status (2)

Country Link
JP (1) JP6253646B2 (en)
WO (1) WO2014192360A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018506249A (en) * 2014-12-10 2018-03-01 ゴゴロ インク Adaptive braking and collision avoidance system and method for electric vehicles
CN108657150A (en) * 2018-07-21 2018-10-16 华东交通大学 A kind of electric vehicle brake control system with active safety
CN110758357A (en) * 2019-10-23 2020-02-07 奇瑞汽车股份有限公司 Automatic emergency braking system and method for vehicle reversing
DE102021205614A1 (en) 2021-06-02 2022-12-08 Psa Automobiles Sa Method for controlling a deceleration of a motor vehicle

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10250542A (en) * 1997-03-13 1998-09-22 Mitsubishi Motors Corp Deceleration adding control device
JPH11348746A (en) * 1998-06-15 1999-12-21 Mitsubishi Motors Corp Driving controlling device for vehicle
JP2000346191A (en) * 1999-06-09 2000-12-12 Nissan Motor Co Ltd Deceleration time driving force control device for vehicle
JP2005219529A (en) * 2004-02-03 2005-08-18 Toyota Motor Corp Traveling control device for vehicle
JP2006285731A (en) * 2005-04-01 2006-10-19 Xanavi Informatics Corp Control device of automobile system
JP2007050886A (en) * 2006-09-01 2007-03-01 Toyota Motor Corp Control device for vehicle
JP2007238037A (en) * 2006-03-10 2007-09-20 Nissan Motor Co Ltd Inter-vehicle maintenance support device
JP2010004670A (en) * 2008-06-20 2010-01-07 Toyota Motor Corp Traveling control device
JP2010187500A (en) * 2009-02-13 2010-08-26 Nissan Motor Co Ltd Vehicular regeneration controller and vehicular regeneration controlling method
JP2012086802A (en) * 2010-10-22 2012-05-10 Nissan Motor Co Ltd Control device of hybrid vehicle
JP2012091697A (en) * 2010-10-27 2012-05-17 Nissan Motor Co Ltd Vehicle travel control device
JP2012250693A (en) * 2011-06-07 2012-12-20 Denso Corp Vehicle control device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001213232A (en) * 2000-02-04 2001-08-07 Toyota Motor Corp Vehicular deceleration controller
JP3799983B2 (en) * 2000-10-12 2006-07-19 日産自動車株式会社 Braking position approach warning device and automatic braking device
JP5455596B2 (en) * 2009-12-14 2014-03-26 Udトラックス株式会社 Collision damage reduction device
JP5423565B2 (en) * 2010-04-28 2014-02-19 トヨタ自動車株式会社 Regenerative braking control device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10250542A (en) * 1997-03-13 1998-09-22 Mitsubishi Motors Corp Deceleration adding control device
JPH11348746A (en) * 1998-06-15 1999-12-21 Mitsubishi Motors Corp Driving controlling device for vehicle
JP2000346191A (en) * 1999-06-09 2000-12-12 Nissan Motor Co Ltd Deceleration time driving force control device for vehicle
JP2005219529A (en) * 2004-02-03 2005-08-18 Toyota Motor Corp Traveling control device for vehicle
JP2006285731A (en) * 2005-04-01 2006-10-19 Xanavi Informatics Corp Control device of automobile system
JP2007238037A (en) * 2006-03-10 2007-09-20 Nissan Motor Co Ltd Inter-vehicle maintenance support device
JP2007050886A (en) * 2006-09-01 2007-03-01 Toyota Motor Corp Control device for vehicle
JP2010004670A (en) * 2008-06-20 2010-01-07 Toyota Motor Corp Traveling control device
JP2010187500A (en) * 2009-02-13 2010-08-26 Nissan Motor Co Ltd Vehicular regeneration controller and vehicular regeneration controlling method
JP2012086802A (en) * 2010-10-22 2012-05-10 Nissan Motor Co Ltd Control device of hybrid vehicle
JP2012091697A (en) * 2010-10-27 2012-05-17 Nissan Motor Co Ltd Vehicle travel control device
JP2012250693A (en) * 2011-06-07 2012-12-20 Denso Corp Vehicle control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018506249A (en) * 2014-12-10 2018-03-01 ゴゴロ インク Adaptive braking and collision avoidance system and method for electric vehicles
CN108657150A (en) * 2018-07-21 2018-10-16 华东交通大学 A kind of electric vehicle brake control system with active safety
CN110758357A (en) * 2019-10-23 2020-02-07 奇瑞汽车股份有限公司 Automatic emergency braking system and method for vehicle reversing
DE102021205614A1 (en) 2021-06-02 2022-12-08 Psa Automobiles Sa Method for controlling a deceleration of a motor vehicle

Also Published As

Publication number Publication date
JP6253646B2 (en) 2017-12-27
JPWO2014192360A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6286192B2 (en) Drive control device for moving body
JP6204865B2 (en) Vehicle motion control system, vehicle, and program
US10239526B2 (en) Adaptive cruise control system
US10293817B2 (en) Control unit for a vehicle
CN109318893B (en) Safe driving assistance method and system based on license plate pixel height change
EP3521594B1 (en) Vehicle control device
WO2011101949A1 (en) Vehicle control device
CN108025750B (en) Vehicle control device
JP4710529B2 (en) Travel control device
WO2013072995A1 (en) Driving assistance device
CN109649389B (en) Acceleration-adjustable self-adaptive cruise control system and control method
JP6375034B2 (en) Vehicle motion control system
CN114274783A (en) Single pedal driving
JP6253646B2 (en) Vehicle control device
WO2011121700A1 (en) Vehicle control device
JP7205383B2 (en) vehicle controller
JP2004301833A (en) Intervehicular distance controller
WO2015004699A1 (en) Inter-vehicle distance maintaining control device
JP2004299593A (en) Inter-vehicle distance keeping automatic controller
JP2014000900A (en) Vehicle control device
WO2018025631A1 (en) Vehicle control device
WO2022196205A1 (en) Vehicle control device and vehicle control method
JP3630124B2 (en) Leading vehicle tracking control device
JP2013099978A (en) Control device for vehicle deceleration
JP6948149B2 (en) Driving support device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804109

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015519698

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14804109

Country of ref document: EP

Kind code of ref document: A1