WO2014185232A1 - 露光装置 - Google Patents

露光装置 Download PDF

Info

Publication number
WO2014185232A1
WO2014185232A1 PCT/JP2014/061382 JP2014061382W WO2014185232A1 WO 2014185232 A1 WO2014185232 A1 WO 2014185232A1 JP 2014061382 W JP2014061382 W JP 2014061382W WO 2014185232 A1 WO2014185232 A1 WO 2014185232A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
mask
scanning
interval
exposure
Prior art date
Application number
PCT/JP2014/061382
Other languages
English (en)
French (fr)
Inventor
水村 通伸
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Priority to CN201480026926.6A priority Critical patent/CN105209977B/zh
Priority to KR1020157031084A priority patent/KR20160006683A/ko
Publication of WO2014185232A1 publication Critical patent/WO2014185232A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/703Gap setting, e.g. in proximity printer

Definitions

  • the present invention relates to an exposure apparatus that projects and exposes a mask pattern onto a substrate.
  • Patent Document 1 As an exposure apparatus for projecting and exposing a mask pattern onto a substrate, a device in which a microlens array is interposed between the mask and the substrate is known (see Patent Document 1 below).
  • this prior art includes a substrate stage J1 that supports a substrate W and a mask M on which a pattern to be exposed on the substrate W is formed, and the substrate W and the mask M arranged at a set interval. Between them, a microlens array MLA in which microlenses are two-dimensionally arranged is arranged.
  • the exposure light L is irradiated from above the mask M, the light passing through the mask M is projected onto the substrate W by the microlens array MLA, and the pattern formed on the mask M is an erect life-size image. Is transferred to the substrate surface.
  • the microlens array MLA and the exposure light source (not shown) are fixedly arranged, and the microlens array MLA is moved relative to the integrated mask M and the substrate W in the scanning direction Sc perpendicular to the paper surface.
  • the exposure light L scans the substrate W.
  • a fixed-focus microlens array MLA is used on the assumption that the distance between the mask M and the substrate W is kept constant.
  • the mask M and the substrate stage J1 that supports the substrate W are mechanically fixed at a constant interval, if the thickness of the substrate W is not constant, the interval between the mask M and the substrate W is not constant.
  • the mask pattern cannot be accurately imaged on the surface of the substrate W by the fixed-focus microlens array MLA.
  • a substrate W used for a liquid crystal panel or the like tends to have a large area in recent years, and it is difficult to manufacture a large area substrate W with a uniform thickness.
  • an object of the present invention is that, in an exposure apparatus that projects and exposes a mask pattern onto a substrate, the mask pattern can be accurately imaged on the substrate surface even when the thickness of the substrate is not uniform.
  • the exposure apparatus according to the present invention has at least the following configuration.
  • An exposure apparatus that projects and exposes a mask pattern onto a substrate with light that has passed through the mask, the substrate having a non-uniform thickness along a uniaxial direction, a support unit that supports the mask, and the mask and the substrate.
  • a microlens array disposed therebetween is moved relative to the substrate and the mask, and a part of the mask pattern is imaged in a partial exposure region extending in a direction intersecting the uniaxial direction on the substrate.
  • Scanning exposure means for scanning the partial exposure region along the uniaxial direction
  • mask / substrate spacing adjusting means for adjusting the distance between the mask and the substrate, and the partial exposure for the distance along the uniaxial direction.
  • the mask / substrate interval measuring means for measuring prior to scanning the area, the measurement result of the mask / substrate interval measuring means, and the scanning position of the scanning exposure means It controls disk-substrate gap adjusting means and to align the spacing of the partial exposure area on the imaging interval of the microlens array.
  • the scanning exposure is performed when the partial exposure region is scanned along the uniaxial direction. Since the interval between the mask and the substrate is always adjusted to the imaging interval of the microlens array, the mask pattern can be imaged on the substrate surface with high accuracy.
  • an exposure apparatus 1 projects and exposes a mask pattern onto a substrate 3 with light that has passed through a mask 2.
  • the substrate 3 has a non-uniform thickness t along the uniaxial direction (the x direction in the drawing), and in the drawing, the thickness t of the substrate is t1 ⁇ t2.
  • the mask 2 is supported by a mask support part (support part) 2S, and the substrate 3 is supported by a substrate support part (support part) 3S.
  • the interval h between the support surface 2Sa of the mask support portion 2S and the support surface 3Sa of the substrate support portion 3S is set to be uniform across the entire support surfaces 2Sa and 3Sa.
  • the thickness t of the mask 2 and the substrate 3 is uniform, the distance s between the mask 2 and the substrate 3 is uniform.
  • the thickness t (t1 ⁇ t2) of the substrate 3 is nonuniform along the uniaxial direction, the interval s (s1> s2) is also nonuniform along the uniaxial direction (the x direction in the drawing).
  • the exposure apparatus 1 includes a scanning exposure unit 10, a mask / substrate interval adjusting unit 20, a mask / substrate interval measuring unit 30, a mask / substrate interval adjusting unit in addition to the above-described supporting units (mask supporting unit 2S and substrate supporting unit 3S).
  • Control means 40 for controlling the means 20 is provided.
  • the scanning exposure means 10 scans a partial exposure region Ep extending in a direction (perpendicular to the paper surface) intersecting a uniaxial direction (x direction in the drawing) on the substrate 3 along the uniaxial direction. Is scanned in the scanning direction Sc (the x direction in the drawing) to expose the entire effective surface on the substrate 3.
  • the scanning exposure means 10 projects a light source 11 that emits exposure light L and light that has passed through the mask 2 onto the substrate 3 and forms a part of the mask pattern on the partial exposure area Ep on the substrate 3.
  • a lens array 12 is provided, and the microlens array 12 disposed between the mask 2 and the substrate 3 is moved relative to the substrate 3 and the mask 2.
  • the microlens array 12 is preferably a 1 ⁇ double telecentric lens.
  • the mask / substrate distance adjusting means 20 adjusts the distance between the mask 2 and the substrate 3. Specifically, the mask / substrate distance adjusting means 20 adjusts the support surface 2Sa of the mask support portion 2S and the substrate support portion 3S according to a signal from the control means 40. A mechanism for moving the distance from the support surface 3Sa close to or away from the support surface 3Sa is provided.
  • the mask / substrate distance measuring means 30 measures the distance s between the mask 2 and the substrate 3 along the uniaxial direction (the x direction in the drawing) prior to scanning the partial exposure region Ep.
  • the mask / substrate distance measuring means 30 measures the change in the distance along the uniaxial direction by measuring the distance between the mask 2 and the substrate 3 while the mask / substrate distance measuring means 30 itself moves along the uniaxial direction. measure.
  • laser light is obliquely applied to the surface of the substrate 3 and the surface of the mask 2, and the interval is determined by the shift of the light receiving position for receiving the light reflected on the surface of the mask 2 and the light reflected on the substrate 3.
  • a laser displacement meter that measures s can be used.
  • the mask / substrate distance measuring means 30 may sequentially measure the distance between the mask 2 and the substrate 3 immediately before scanning the partial exposure region Ep, or before the scanning exposure means 10 performs scanning exposure.
  • the distance between the mask 2 and the substrate 3 may be measured over the entire uniaxial direction of the substrate 3, and the measurement result may be stored corresponding to the scanning position of the scanning exposure means 10.
  • control unit 40 controls the mask / substrate interval adjusting unit 20 based on the measurement result of the mask / substrate interval measuring unit 30 and the scanning position of the scanning exposure unit 10, and the partial exposure region Ep.
  • the interval between the mask 2 and the substrate 3 is adjusted to the imaging interval of the microlens array 12.
  • the mask / substrate interval measuring unit 30 moves in the scanning direction (the x direction in the drawing) together with the scanning exposure unit 10, and precedes the scanning of the partial exposure region Ep of the scanning exposure unit 10. Then, the distance between the mask 2 and the substrate 3 is measured. Then, when the partial exposure area Ep moves to a position that has already been measured, the mask is set so that the distance between the mask 2 and the substrate 3 in the partial exposure area Ep becomes the set interval (image formation interval of the microlens array 12). The operation of the substrate interval adjusting means 20 is controlled.
  • the distance s1 between the mask 2 and the substrate 3 is s1 at the position of the scanning exposure shown in (a), and along the uniaxial direction (the x direction in the drawing) according to the change in the thickness t of the substrate 3.
  • the interval s becomes narrower (s2 ⁇ s1).
  • Prior to scanning exposure such a change in the interval s is measured by the mask / substrate interval measuring unit 30 and the mask / substrate interval adjusting unit 20 is controlled to move the mask support portion 2S in the z direction shown in FIG. ),
  • the interval s in the partial exposure area Ep is always controlled to the set interval s1.
  • the exposure apparatus 1 targets a substrate 3 whose thickness is mainly nonuniform along a uniaxial direction, and matches the direction of nonuniform thickness with the scanning direction of scanning exposure.
  • the interval between the mask 2 and the substrate 3 is adjusted to the set interval in accordance with the progress of scanning exposure. According to this, it is possible to project and expose on the substrate 3 an image of a mask pattern which is always out of focus even on a substrate having a non-uniform thickness along a uniaxial direction.
  • the substrate 3 supported by the substrate support portion 3S is provided with an alignment mark 3a.
  • the mask supported by the mark support portion 2S. 2 is also provided with an alignment mark 2a.
  • the partial exposure region Ep extending in the direction (y direction) intersecting the uniaxial direction (x direction) is set in a range covering the alignment marks 2a and 3a formed outside the mask pattern formation region 2m in the y direction. By scanning the exposure area Ep along the uniaxial direction (x direction: scanning direction Sc), the entire surface of the substrate 3 is exposed.
  • an alignment process between the mask 2 and the substrate 3 is performed as shown in FIG.
  • the detection camera 4 simultaneously detects the alignment mark 2a of the mask 2 and the alignment mark 3a of the mask 3, and the planar position of the mask 2 and the substrate 3 so that the planar positions of the alignment marks 2a and 3a coincide. Adjustments are made.
  • the detection camera 4 emits alignment light coaxially with the imaging optical system, and the detection camera 4 detects the light reflected by the alignment mark 2 a of the mask 2 and the light reflected by the alignment mark 3 a of the substrate 3.
  • the exposure microlens array 12 is interposed between the alignment marks 2 a and 3 a, whereby an erecting equal-magnification image reflected from the alignment mark 3 a of the substrate 3 is placed on the alignment mark 2 a of the mask 2. Imaged. Then, the planar position adjustment of the substrate 3 and the mask 2 is performed based on the detected image of the alignment mark 3a of the substrate 3 imaged on the alignment mark 2a of the mask 2.
  • the planar position adjustment between the mask 2 and the substrate 3 is performed, and at the same time, the focusing adjustment of the alignment mark 3a of the substrate 3 imaged on the alignment mark 2a of the mask 2 is performed as described above.
  • This is performed by the adjusting means 20, and the interval between the mask 2 and the substrate 3 is initially set.
  • the mask / substrate interval measuring means 30 is moved in the uniaxial direction (x direction), the change in the interval s along the uniaxial direction is measured, and this is related to the scanning position.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 露光装置1は、一軸方向に沿って厚さが不均一な基板3とマスク2をそれぞれ支持する支持部(2S,3S)と、マスク2と基板3の間に配置されたマイクロレンズアレイ12を基板3及びマスク2に対して相対的に移動させ、部分露光領域Epにマスクパターンの一部を結像させ、部分露光領域Epを一軸方向に沿って走査する走査露光手段10と、マスク2と基板3との間隔sを調整するマスク・基板間隔調整手段20と、一軸方向に沿った間隔sを部分露光領域Epの走査に先立って計測するマスク・基板間隔計測手段30と、マスク・基板間隔計測手段30の計測結果と走査露光手段10の走査位置に基づいてマスク・基板間隔調整手段20を制御し、部分露光領域Ep内の間隔sをマイクロレンズアレイ12の結像間隔に合わせる。

Description

露光装置
 本発明は、マスクパターンを基板に投影露光する露光装置に関するものである。
 マスクパターンを基板に投影露光する露光装置として、マスクと基板の間にマイクロレンズアレイを介在させたものが知られている(下記特許文献1参照)。この従来技術は、図1に示すように、基板Wを支持する基板ステージJ1と基板Wに露光されるパターンが形成されたマスクMを備え、設定間隔に配置された基板WとマスクMとの間に、マイクロレンズを2次元的に配置したマイクロレンズアレイMLAが配置されている。この従来技術によると、マスクMの上方から露光光Lが照射され、マスクMを通過した光がマイクロレンズアレイMLAによって基板W上に投影され、マスクMに形成されたパターンが正立等倍像として基板表面に転写される。ここで、マイクロレンズアレイMLAと図示省略した露光光源が固定配置され、一体にしたマスクMと基板Wに対して紙面に垂直な走査方向ScにマイクロレンズアレイMLAを相対的に移動させることにより、露光光Lが基板W上を走査するようになっている。
特開2012-216728号公報
 前述した従来の露光装置では、マスクMと基板Wとの間隔が一定に保持されることを前提として、固定焦点のマイクロレンズアレイMLAが用いられている。しかしながら、マスクMと基板Wを支持する基板ステージJ1とを一定間隔で機械的に固定したとしても、基板Wの厚さが一定でない場合にはマスクMと基板Wとの間隔が一定にならず、固定焦点のマイクロレンズアレイMLAでマスクパターンを精度良く基板Wの表面に結像させることができない。特に、液晶パネルなどに用いられる基板Wは近年大面積化される傾向があり、大面積の基板Wを均一厚さで製造することは困難であるから、従来の露光装置は、厚さが不均一になりやすい大面積基板に対してマスクパターンを精度良く結像させることが困難な問題があった。
 本発明は、このような問題に対処することを課題の一例とするものである。すなわち、マスクパターンを基板に投影露光する露光装置において、基板の厚さが不均一な場合にも、マスクパターンを基板面に精度良く結像させることができること、等が本発明の目的である。
 このような目的を達成するために、本発明による露光装置は、以下の構成を少なくとも具備するものである。
 マスクを通過した光によってマスクパターンを基板に投影露光する露光装置であって、一軸方向に沿って厚さが不均一な前記基板と前記マスクをそれぞれ支持する支持部と、前記マスクと前記基板の間に配置されたマイクロレンズアレイを前記基板及び前記マスクに対して相対的に移動させ、前記基板上の前記一軸方向に交差する方向に延びる部分露光領域に前記マスクパターンの一部を結像させ、前記部分露光領域を前記一軸方向に沿って走査する走査露光手段と、前記マスクと前記基板との間隔を調整するマスク・基板間隔調整手段と、前記一軸方向に沿った前記間隔を前記部分露光領域の走査に先立って計測するマスク・基板間隔計測手段と、前記マスク・基板間隔計測手段の計測結果と前記走査露光手段の走査位置に基づいて前記マスク・基板間隔調整手段を制御し、前記部分露光領域内の前記間隔を前記マイクロレンズアレイの結像間隔に合わせることを特徴とする。
 このような特徴を有する本発明は、基板の厚さが一軸方向に沿って不均一な場合にも、部分的露光領域を一軸方向に沿って走査する走査露光を行う際に、走査露光時のマスクと基板の間隔が常にマイクロレンズアレイの結像間隔に調整されるので、マスクパターンを基板面に精度良く結像させることができる。
従来技術の説明図である。 本発明の一実施形態に係る露光装置の全体構成を示した説明図であり、(a),(b)はそれぞれ基板上の異なる位置を走査露光している状態を示している。 本発明の実施形態に係る露光装置の使用に際した準備工程を説明する説明図である。(a)は基板の平面設置状態を示しており、(b)はマスクの平面設置状態を示している。 本発明の実施形態に係る露光装置の使用に際した準備工程を説明する説明図である。(a)は基板とマスクのアライメント工程を示しており、(b)は基板とマスクの間隔計測工程を示している。
 以下、図面を参照しながら、本発明の実施形態を説明する。図2において、露光装置1は、マスク2を通過した光によってマスクパターンを基板3に投影露光するものである。ここで基板3は、一軸方向(図示x方向)に沿って厚さtが不均一になっており、図においては基板の厚さtがt1<t2になっている。マスク2はマスク支持部(支持部)2Sに支持されており、基板3は基板支持部(支持部)3Sに支持されている。ここで、マスク支持部2Sの支持面2Saと基板支持部3Sの支持面3Saの間隔hは支持面2Sa,3Saの全面で均一な間隔になるように設定されている。このような支持面2Sa,3Saにそれぞれマスク2と基板3を支持した場合、マスク2と基板3の厚さtが均一であれば、マスク2と基板3との間隔sは均一になるが、基板3の厚さt(t1<t2)が一軸方向に沿って不均一になっている場合には、それによって間隔s(s1>s2)も一軸方向(図示x方向)に沿って不均一になる。
 露光装置1は、前述した支持部(マスク支持部2S及び基板支持部3S)に加えて、走査露光手段10、マスク・基板間隔調整手段20、マスク・基板間隔計測手段30、マスク・基板間隔調整手段20を制御する制御手段40を備えている。
 走査露光手段10は、基板3上の一軸方向(図示x方向)に交差する方向(紙面に垂直な方向)に延びる部分露光領域Epを一軸方向に沿って走査するものであり、部分露光領域Epを走査方向Sc(図示x方向)に走査して、基板3上の有効面全面を露光する。
 この走査露光手段10は、露光光Lを出射する光源11と、マスク2を通った光を基板3上に投影し、基板3上の部分露光領域Epにマスクパターンの一部を結像させるマイクロレンズアレイ12を備えており、マスク2と基板3の間に配置されたマイクロレンズアレイ12を基板3及びマスク2に対して相対的に移動させる。マイクロレンズアレイ12は、等倍の両側テレセントリックレンズであることが好ましい。
 マスク・基板間隔調整手段20は、マスク2と基板3との間隔を調整するものであり、具体的には、制御手段40からの信号によってマスク支持部2Sの支持面2Saと基板支持部3Sの支持面3Saとの間隔を近接又は離間させる機構を備えている。
 マスク・基板間隔計測手段30は、一軸方向(図示x方向)に沿ったマスク2と基板3の間隔sを部分露光領域Epの走査に先立って計測するものである。このマスク・基板間隔計測手段30は、マスク・基板間隔計測手段30自身が一軸方向に沿って移動しながらマスク2と基板3との間隔を計測することで、一軸方向に沿った間隔の変化を計測する。具体的には、レーザー光を基板3の表面及びマスク2の表面に対して斜めに照射し、マスク2の表面で反射した光と基板3上で反射した光を受光する受光位置のずれによって間隔sを計測するレーザー変位計などを用いることができる。
 このマスク・基板間隔計測手段30は、マスク2と基板3との間隔の計測を部分露光領域Epの走査直前に逐次行うものであってもよいし、走査露光手段10が走査露光を行う前にマスク2と基板3との間隔の計測を基板3の一軸方向全体に亘って行い、この計測の結果を走査露光手段10の走査位置に対応して記憶するものであってもよい。
 このような露光装置1によると、制御手段40は、マスク・基板間隔計測手段30の計測結果と走査露光手段10の走査位置に基づいてマスク・基板間隔調整手段20を制御し、部分露光領域Ep内のマスク2と基板3との間隔をマイクロレンズアレイ12の結像間隔に合わせる。
 図2に示した例では、マスク・基板間隔計測手段30が走査露光手段10と共に走査方向(図示x方向)に移動するようになっており、走査露光手段10の部分露光領域Epの走査に先行してマスク2と基板3との間隔が計測される。そして、既に計測された位置に部分露光領域Epが移動する際に部分露光領域Ep内におけるマスク2と基板3との間隔が設定間隔(マイクロレンズアレイ12の結像間隔)になるようにマスク・基板間隔調整手段20の動作が制御される。図示の例では、(a)に示した走査露光の位置ではマスク2と基板3との間隔sがs1であり、基板3の厚さt変化に応じて一軸方向(図示x方向)に沿って間隔sが狭くなる(s2<s1)。このような間隔sの変化を走査露光に先立ってマスク・基板間隔計測手段30が計測してマスク・基板間隔調整手段20を制御しマスク支持部2Sを図示z方向に移動させることで、(b)に示すように、部分露光領域Ep内における間隔sが常に設定間隔s1に制御される。
 本発明の実施形態に係る露光装置1は、一軸方向に沿って主に厚さが不均一な基板3を対象にしており、この厚さが不均一な方向と走査露光の走査方向を一致させて、走査露光の進行に合わせてマスク2と基板3との間隔を設定間隔に合わせるものである。これによると、一軸方向に沿って不均一な厚さを有する基板に対しても常に焦点ぼけのないマスクパターンの像を基板3上に投影露光することができる。
 図3及び図4によって、本発明の実施形態に係る露光装置の使用に際した準備工程を説明する。図3(a)に示すように、基板支持部3Sに支持された基板3にはアライメントマーク3aが付与されており、図3(b)に示すように、マーク支持部2Sに支持されたマスク2にもアライメントマーク2aが付与されている。一軸方向(x方向)に交差する方向(y方向)に延びる部分露光領域Epは、y方向においてはマスクパターン形成領域2mの外に形成されるアライメントマーク2a,3aを覆う範囲に設定され、部分露光領域Epを一軸方向(x方向:走査方向Sc)に沿って走査することで、基板3の全面が露光される。
 露光処理に先立っては、図4(a)に示すように、マスク2と基板3のアライメント工程が行われる。アライメント工程では、検知カメラ4によってマスク2のアライメントマーク2aとマスク3のアライメントマーク3aが同時に検知され、アライメントマーク2a,3aの平面位置が一致するようにマスク2と基板3との平面的な位置調整が行われる。検知カメラ4は、アライメント用の光を撮像光学系と同軸に出射し、マスク2のアライメントマーク2aで反射した光と基板3のアライメントマーク3aで反射した光が検知カメラ4によって検知される。この際、露光用のマイクロレンズアレイ12は、アライメントマーク2a,3aの間に介在しており、これによって基板3のアライメントマーク3aから反射した正立等倍像がマスク2のアライメントマーク2a上に結像される。そして、マスク2のアライメントマーク2a上に結像された基板3のアライメントマーク3aの検知画像に基づいて基板3とマスク2の平面的な位置調整が行われる。
 アライメント工程では、マスク2と基板3との平面的な位置調整が行われると同時に、マスク2のアライメントマーク2a上に結像される基板3のアライメントマーク3aのフォーカシング調整を前述したマスク・基板間隔調整手段20によって行い、マスク2と基板3との間隔の初期設定を行う。その後、図4(a)に示すように、マスク・基板間隔計測手段30を一軸方向(x方向)に移動させながら、一軸方向に沿った間隔sの変化を計測し、これを走査位置に関連させて記憶させる。このように、露光処理に先立って、間隔sを一軸方向に全体に亘って予め計測しておくことで、露光時のマスク・基板間隔の計測を省くことができ、走査露光を円滑に行うことができる。
 以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。
1:露光装置,2:マスク,2S:マスク支持部(支持部),
3:基板,3S:基板支持部(支持部),4:検知カメラ,
10:走査露光手段,11:光源,12:マイクロレンズアレイ,
20:マスク・基板間隔調整手段,30:マスク・基板間隔計測手段,
40:制御手段,Ep:部分露光領域,Sc:走査方向

Claims (3)

  1.  マスクを通過した光によってマスクパターンを基板に投影露光する露光装置であって、
     一軸方向に沿って厚さが不均一な前記基板と前記マスクをそれぞれ支持する支持部と、
     前記マスクと前記基板の間に配置されたマイクロレンズアレイを前記基板及び前記マスクに対して相対的に移動させ、前記基板上の前記一軸方向に交差する方向に延びる部分露光領域に前記マスクパターンの一部を結像させ、前記部分露光領域を前記一軸方向に沿って走査する走査露光手段と、
     前記マスクと前記基板との間隔を調整するマスク・基板間隔調整手段と、
     前記一軸方向に沿った前記間隔を前記部分露光領域の走査に先立って計測するマスク・基板間隔計測手段と、
     前記マスク・基板間隔計測手段の計測結果と前記走査露光手段の走査位置に基づいて前記マスク・基板間隔調整手段を制御し、前記部分露光領域内の前記間隔を前記マイクロレンズアレイの結像間隔に合わせることを特徴とする露光装置。
  2.  前記マスク・基板間隔計測手段は、前記間隔の計測を前記部分露光領域の走査直前に逐次行うことを特徴とする請求項1記載の露光装置。
  3.  前記マスク・基板間隔計測手段は、前記走査露光手段が走査露光を行う前に前記間隔の計測を前記基板の一軸方向全体に亘って行い、当該計測の結果を前記走査露光手段の走査位置に対応して記憶することを特徴とする請求項1記載の露光装置。
PCT/JP2014/061382 2013-05-13 2014-04-23 露光装置 WO2014185232A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480026926.6A CN105209977B (zh) 2013-05-13 2014-04-23 曝光装置
KR1020157031084A KR20160006683A (ko) 2013-05-13 2014-04-23 노광 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013101735A JP2014222292A (ja) 2013-05-13 2013-05-13 露光装置
JP2013-101735 2013-05-13

Publications (1)

Publication Number Publication Date
WO2014185232A1 true WO2014185232A1 (ja) 2014-11-20

Family

ID=51898212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061382 WO2014185232A1 (ja) 2013-05-13 2014-04-23 露光装置

Country Status (5)

Country Link
JP (1) JP2014222292A (ja)
KR (1) KR20160006683A (ja)
CN (1) CN105209977B (ja)
TW (1) TW201506995A (ja)
WO (1) WO2014185232A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159200A1 (ja) * 2015-03-31 2016-10-06 株式会社ニコン 露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び露光方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6189984B2 (ja) * 2016-02-12 2017-08-30 Ckd株式会社 三次元計測装置
JP6342570B1 (ja) * 2016-12-27 2018-06-13 株式会社アルバック ギャップ計測方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043218A (ja) * 2000-07-31 2002-02-08 Nikon Corp 露光方法
JP2004184994A (ja) * 2002-11-19 2004-07-02 Advanced Lcd Technologies Development Center Co Ltd 露光方法および露光装置ならびに処理装置
JP2006337999A (ja) * 2005-05-31 2006-12-14 Asml Netherlands Bv リソグラフィ装置及びfpdチャックz位置測定を利用したデバイス製造方法
JP2007078764A (ja) * 2005-09-12 2007-03-29 Fujifilm Corp 露光装置および露光方法
JP2012199553A (ja) * 2012-04-03 2012-10-18 Fujifilm Corp 画像記録方法、および画像記録システム
JP2013057894A (ja) * 2011-09-09 2013-03-28 V Technology Co Ltd 露光装置用のアライメント装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216728A (ja) 2011-04-01 2012-11-08 V Technology Co Ltd 露光装置のアライメント装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043218A (ja) * 2000-07-31 2002-02-08 Nikon Corp 露光方法
JP2004184994A (ja) * 2002-11-19 2004-07-02 Advanced Lcd Technologies Development Center Co Ltd 露光方法および露光装置ならびに処理装置
JP2006337999A (ja) * 2005-05-31 2006-12-14 Asml Netherlands Bv リソグラフィ装置及びfpdチャックz位置測定を利用したデバイス製造方法
JP2007078764A (ja) * 2005-09-12 2007-03-29 Fujifilm Corp 露光装置および露光方法
JP2013057894A (ja) * 2011-09-09 2013-03-28 V Technology Co Ltd 露光装置用のアライメント装置
JP2012199553A (ja) * 2012-04-03 2012-10-18 Fujifilm Corp 画像記録方法、および画像記録システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159200A1 (ja) * 2015-03-31 2016-10-06 株式会社ニコン 露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び露光方法
CN107533303A (zh) * 2015-03-31 2018-01-02 株式会社尼康 曝光装置、平面显示器的制造方法、元件制造方法、及曝光方法
JPWO2016159200A1 (ja) * 2015-03-31 2018-02-01 株式会社ニコン 露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び露光方法

Also Published As

Publication number Publication date
CN105209977B (zh) 2017-12-15
TW201506995A (zh) 2015-02-16
KR20160006683A (ko) 2016-01-19
JP2014222292A (ja) 2014-11-27
CN105209977A (zh) 2015-12-30

Similar Documents

Publication Publication Date Title
KR102191685B1 (ko) 투영식 노광 장치 및 방법
TWI698662B (zh) 圖案描繪裝置及圖案描繪方法
KR101698150B1 (ko) 기준마크를 포함하는 마이크로 렌즈 어레이와 이를 포함하는 마스크리스 노광장치 및 그 교정방법
KR20110072440A (ko) 마스크리스 노광 장치 및 그 멀티 헤드의 교정 방법
JP6422246B2 (ja) 計測装置、リソグラフィ装置、および物品の製造方法
WO2016107798A1 (en) A maskless exposure apparatus with alignment
JP2010191127A (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法
WO2014185232A1 (ja) 露光装置
US9041907B2 (en) Drawing device and drawing method
JP2012242630A (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法、並びに露光装置の検査方法
JP5280305B2 (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法
JP2008058477A (ja) 描画装置
JP2006226719A (ja) 面形状計測方法、姿勢計測方法、及び露光方法
TWI759621B (zh) 描繪裝置以及描繪方法
KR102189048B1 (ko) 검출 장치, 검출 방법, 컴퓨터 프로그램, 리소그래피 장치 및 물품 제조 방법
JP2007127566A (ja) 基板測定装置
JP2006234769A (ja) 位置測定方法および位置測定装置
TW201913238A (zh) 曝光裝置
JP2019035813A (ja) 露光装置、露光方法及び物品の製造方法
JPH08227845A (ja) 投影光学系の検査方法、及び該方法を実施するための投影露光装置
JP2004146670A (ja) マスクのパターン位置の誤差測定方法及びこれに使用される露光装置
JP2006260068A (ja) 処理装置の調整方法及び装置
JP2008250147A (ja) アライメントマーク測定方法および装置並びに描画方法および装置
KR20100083459A (ko) 노광 장치 및 그 직각도 측정방법
JP5928032B2 (ja) キャリブレーション用マスクおよびキャリブレーション方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14797043

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157031084

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14797043

Country of ref document: EP

Kind code of ref document: A1