WO2014180380A1 - 一种电源保护装置 - Google Patents
一种电源保护装置 Download PDFInfo
- Publication number
- WO2014180380A1 WO2014180380A1 PCT/CN2014/077965 CN2014077965W WO2014180380A1 WO 2014180380 A1 WO2014180380 A1 WO 2014180380A1 CN 2014077965 W CN2014077965 W CN 2014077965W WO 2014180380 A1 WO2014180380 A1 WO 2014180380A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- charging
- circuit
- path
- protection device
- isolation
- Prior art date
Links
- 238000002955 isolation Methods 0.000 claims abstract description 49
- 230000005669 field effect Effects 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 9
- 238000004891 communication Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
- H02J1/10—Parallel operation of dc sources
- H02J1/108—Parallel operation of dc sources using diodes blocking reverse current flow
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/0034—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using reverse polarity correcting or protecting circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/40—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries adapted for charging from various sources, e.g. AC, DC or multivoltage
Definitions
- the invention relates to the field of electronic circuit design, and more particularly to a power protection device. Background technique
- FIG. 1 is a schematic diagram of charging related to the charger, wherein the resistor R1 is the line impedance.
- the user inserts the adapter into the charger, and then places the terminal on the charger. Connect the charging circuit and charge it.
- the charging path of the terminal will also increase. It is becoming more and more common for two charging paths or multiple charging paths to be present at the same time.
- FIG. 2 is a schematic diagram of related charging by using two charging paths, wherein the resistor R1 and the resistor R2 are line impedances respectively, and when the charger is used to charge the terminal, if the user connects the data line of the PC to the terminal through the USB The interface is connected to the terminal. Since the output voltage range provided by the USB interface and the adapter to the charger is 4.75 5.25V, the two charging paths will simultaneously charge the terminal. At this time, the total charging current of the terminal is the sum of the two currents. However, when both charging paths are simultaneously charged to the terminal, current sinking may occur between the two charging sources, which may damage the PC or the adapter or even burn the PC or the adapter.
- Figure 3 is a schematic diagram of the circuit for preventing backflow current.
- a diode D1 and a diode D2 are added to each charging path to prevent the occurrence of current backflow.
- the forward voltage of the diode is increased, and the voltage of the charging circuit is lowered, so that the terminal charging requirement cannot be satisfied, and charging cannot be performed.
- the present invention provides a power protection device capable of ensuring the safety of charging of a terminal and improving charging efficiency under a multi-channel charging path.
- the present invention discloses a power protection device, which comprises at least: two or more isolation circuits, which are arranged to be connected between each charging power source and a charging circuit to prevent reverse charging power sources. ; as well as,
- the control circuit is configured to be connected between the charging source and the isolation circuit. When two or more charging paths are simultaneously charged, the charging path is turned off so that only one charging path is charged.
- the isolation circuit is an analog circuit composed of a P-channel FET PMOS and an N-channel FET NMOS; or a digital switch with a control terminal.
- control circuit is an analog circuit composed of an NMOS and a diode; or, a logic control switch.
- the method further comprises: a filter circuit, configured to: be connected between the isolation circuit and the control circuit to filter the operating voltage of the NMOS of the isolation circuit.
- a filter circuit configured to: be connected between the isolation circuit and the control circuit to filter the operating voltage of the NMOS of the isolation circuit.
- the method further comprises: controlling the display circuit, configured to: display the working state of each charging path when two or more charging paths are simultaneously charged;
- the control display circuit is configured to: turn off the charging path so that only one charging path is charged according to the displayed operating state of each charging path.
- control circuit is configured to preferentially select one charging path with a data transmission function for charging when two or more charging paths are simultaneously charged and charged.
- the power protection device provided by the technical solution of the present application includes: two or more isolation circuits connected between each charging power source and a charging circuit for preventing reverse charging of each charging power source; connecting to the charging source and the isolation circuit
- the control circuit is used to turn off the charging path when two or more charging paths are simultaneously connected to charge, so that only one charging path is charged.
- each charging path is isolated and protected by an isolation circuit connected to the charging source and the charging circuit.
- the control circuit determines the selection, and only one charging path is reserved to protect the charging circuit.
- Figure 1 is a schematic diagram of charging associated with a charger
- 2 is a schematic diagram of related charging using two charging paths
- Figure 3 is a schematic diagram of a related anti-current backflow circuit
- FIG. 4 is a schematic diagram of a power protection device according to an embodiment of the present invention.
- FIG. 5 is a schematic diagram showing the circuit connection of the first embodiment of the power protection device of the present invention.
- FIG. 6 is a schematic diagram of the circuit connection of the second embodiment of the power protection device of the present invention.
- FIG. 4 is a schematic diagram of a power protection device according to the present invention. As shown in FIG. 4, at least: two or more isolation circuits are connected between each charging power source and a charging circuit for preventing reverse charging of each charging power source;
- the control circuit is connected between the charging source and the isolation circuit, and is used to turn off the charging path when two or more charging paths are simultaneously connected to charge, so that only one charging path is charged.
- the isolation circuit may be an analog circuit composed of a P-channel field effect transistor (PMOS) and an N-channel field effect transistor (NMOS), or a separately packaged electronic component formed by combining the two, when there is only one charging path. , the PMOS is fully turned on by the NMOS, so that the isolation circuit has a single-conduction, reverse non-conduction isolation effect;
- PMOS P-channel field effect transistor
- NMOS N-channel field effect transistor
- the isolation circuit can also be implemented by a digital switch with a control terminal that turns the digital switch on or off by controlling the control terminal of the digital switch. For example, when there is only one charging path, the charging power supply provides a high level to the control terminal, so that the charging path is completely turned on, so that the switch is turned on for charging.
- the control circuit if implemented by an analog circuit, can be implemented by an analog circuit consisting of an NMOS and a diode for each charging path, and pulled down by NMOS and diodes. Isolating the NMOS drain level in the circuit to achieve charging through the PMOS internal diode; the control circuit can also be implemented as a logic control switch, connecting multiple charging paths through a logic control switch, when more than one charging path is providing the charging circuit When charging, through the logic control switch, when the multi-charge path is connected, only the isolation circuit of one of the charging paths is provided with a high level, that is, only one charging path is turned on at this time, and other charging paths are provided. It is in the off state.
- an analog circuit to implement a power protection device, including an isolation circuit and a control circuit, two or more charging paths can be simultaneously charged through the PMOS internal diode without the safety problem of current backflow.
- the control display circuit is further configured to display the working state of each charging path when two or more charging paths are simultaneously charged, thereby implementing charging control. Specifically, the control display circuit performs the judgment display by measuring the gate voltage of the isolation circuit. When the gate voltage is lower than the voltage required by the charging circuit, the isolation circuit NMOS is turned off, and if the isolation circuits of the multiple charging paths are When the state is off, it indicates that multiple charging paths are supplying power to the charging circuit at the same time. At this time, if the analog circuit is charging, the internal diode of the PMOS is used to supply power to the charging circuit, and the working efficiency is lowered. Therefore, by controlling the display circuit to perform the manual disconnection of the redundant circuit operation, the charging is improved by using a fully charged one-way charging path for charging.
- the invention further comprises a filter circuit when the analog circuit is used for the isolation circuit and the analog control circuit, and is connected between the isolation circuit and the control circuit to filter the voltage supplied to the isolation circuit NMOS, thereby avoiding the NMOS in the isolation circuit. Excessive fluctuations in the operating voltage of the gate cause damage to the power protection circuit.
- the control circuit of the present invention is further configured to preferentially select a charging path having a data communication function as a conductive charging path when simultaneously accessing a plurality of charging paths, wherein the charging path having a data communication function refers to a USB, RS232/485 The charging path for the data connection.
- control circuit pin of the isolation circuit contains a resistor with a value of 100-470 k ⁇ to limit current fluctuations.
- the PMOS gate and drain contain a resistor of 100 470 k ⁇ to limit current ripple.
- FIG. 5 is a schematic diagram showing the circuit connection of the first embodiment of the power protection device of the present invention. As shown in FIG. 5, the resistor R1 and the resistor R2 are line impedances.
- the working process of the circuit is that the charging power source 1 is divided into two paths for operation, and one voltage is divided along the voltage dividing resistors R3 and R4.
- NMOS3 Since NMOS3 is turned on, PMOS1 and NMOS3A are simultaneously operated, and PMOS1 is completely turned on. At this time, the path loss of the charging circuit is small and the efficiency is high. However, since PMOS1 and NMOS3 operate simultaneously to generate a turn-on current from PMOS1 to NMOS3, a 100 470 k ⁇ suppression resistor R6 is connected in parallel with the gate and drain of PMOS1.
- the GPI02 value between R7 and R8 can be numerically seen to be in a low state, so it can be judged that the charging path is at this time.
- an RC filter circuit is further included, which is used to provide a stable charging power supply for the isolation circuit when the charging source passes through the isolation circuit, so that the charging circuit is in a stable working state.
- FIG. 6 is a schematic diagram of circuit connection of a second embodiment of a power protection device according to the present invention, as shown in FIG. Show circuit, where R1 and R2 are line impedances.
- the charging source can be realized between the charging circuit and the charging circuit through the isolation circuit 1.
- the digital switch of the control terminal is passed through the isolation circuit, only the correctly connected charging power source 1 can provide the EN to the control pin.
- the signal of high level causes the isolation circuit 1 to be turned on, so that the charging circuit works normally.
- a resistor R11 is passed to stabilize the working level signal provided to the isolation circuit, and the isolation circuit is not damaged.
- the role of R12 is the same.
- the control circuit connected between the charging source 1 and the charging source 2 provides a high level signal to the isolation circuit of one of the charging paths in the logic control switch of the control circuit, that is, When the isolation circuit 1 obtains a high level signal, the isolation circuit 2 can only obtain a low level signal. On the contrary, when the isolation circuit 2 obtains a high level signal, the isolation circuit 1 can only obtain a low level signal, which can be realized by a logic control switch, only one charging path is turned on, and other charging paths are controlled by a logic control switch. The effect will be off.
- the charging circuit with data communication function such as USB, RS232/485, etc., can be preferentially selected by the control circuit.
- each charging path is isolated and protected by an isolation circuit connected to the charging source and the charging circuit.
- the control circuit determines the selection, and only one charging path is reserved to protect the charging circuit. .
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
一种电源保护装置,至少包括:两个或两个以上隔离电路,设置为:连接于各充电电源和充电电路之间,防止各路充电电源反接;以及,控制电路,设置为:连接于充电源和隔离电路之间,在两路或两路以上充电路径同时接入充电时,关断充电路径使得仅有一路充电路径进行充电。本发明实施例通过连接于充电源和充电电路的隔离电路对每一充电路径进行隔离保护,在多于一路充电路径时,通过控制电路进行判断选择,只保留一路充电路径,使充电电路得到保护。
Description
一种电源保护装置
技术领域
本发明涉及电子电路设计领域, 尤指一种电源保护装置。 背景技术
随着移动设备的广泛应用,人们对其可靠性和安全性提出了更高的要求。 目前, 大量的移动设备都釆用出厂配置的座充充电。 图 1为相关的釆用座充 进行充电的示意图, 其中电阻 R1为线路阻抗, 如图 1所示, 终端需要充电 时, 用户将适配器插到座充上, 再将终端放置于座充上以连接充电电路并进 行充电。
随着终端充电路径的增加, 例如无线充电方式的不断普及, 终端的充电 路径也将不断增加。 两种充电路径或多种充电路径同时存在的情况越来越普 遍。
图 2为相关的釆用两种充电路径进行充电的示意图, 其中, 电阻 R1和 电阻 R2分别为线路阻抗, 当使用座充对终端充电时,如果用户将连接 PC机 的数据线通过终端的 USB接口与终端连接, 由于 USB接口和适配器给座充 提供的输出电压范围都是 4.75 5.25V, 因此, 两个充电路径会同时给终端充 电。 此时, 终端的充电总电流为两路电流之和。 但是, 在两种充电路径同时 向终端进行充电时, 两种充电源之间可能出现电流倒灌现象, 而这种电流倒 灌现象会损坏 PC机或者适配器, 甚至烧坏 PC机或者适配器。
图 3为相关防倒灌电流的电路示意图, 如图 3所示, 在每一条充电路径 上分别添加一个二极管 D1和二极管 D2 , 用于防止电流倒灌现象的发生。 但 是, 图 3所示的方法在充电电流较大时, 二极管的正向导通电压将增大, 造 成充电电路电压降低, 从而不能满足终端充电要求, 无法进行充电。
通过以上描述不难发现, 移动设备在两路或多路充电路径下, 相关方法 不能保证充电过程的安全性。
发明内容
为了解决上述技术问题本发明提供一种电源保护装置, 在多路充电路径 下, 能够保证终端充电的安全性, 同时提高充电效率。
为了达到本发明的目的, 本发明公开了一种电源保护装置, 至少包括: 两个或两个以上隔离电路,设置为: 连接于各充电电源和充电电路之间, 防止各路充电电源反接; 以及,
控制电路, 设置为: 连接于充电源和隔离电路之间, 在两路或两路以上 充电路径同时接入充电时, 关断充电路径使得仅有一路充电路径进行充电。
优选地, 所述隔离电路为 P 沟道场效应管 PMOS 和 N 沟道场效应管 NMOS组成的模拟电路; 或者, 带控制端的数字开关。
优选地, 所述控制电路为由 NMOS和二极管构成的模拟电路; 或者, 逻 辑控制开关。
优选地, 还包括滤波电路, 设置为: 连接于隔离电路和控制电路之间, 对给隔离电路的 NMOS的工作电压进行滤波。
优选地, 还包括控制显示电路, 设置为: 在两路或两路以上充电路径同 时充电时, 显示各充电路径的工作状态;
所述控制显示电路设置为: 按照显示的各充电路径的工作状态, 关断充 电路径使得仅有一路充电路径进行充电。
优选地, 所述控制电路设置为, 在两路或两路以上充电路径同时接入充 电时, 优先选择具有数据传输功能的一路充电路径进行充电。
本申请技术方案提供的电源保护装置, 包括: 连接于各充电电源和充电 电路之间的两个或两个以上隔离电路, 用于防止各路充电电源反接; 连接于 充电源和隔离电路之间的控制电路, 用于在两路或两路以上充电路径同时接 入充电时, 关断充电路径使得仅有一路充电路径进行充电。 本发明实施例通 过连接于充电源和充电电路的隔离电路对每一充电路径进行隔离保护, 在多 于一路充电路径时, 通过控制电路进行判断选择, 只保留一路充电路径, 使 充电电路得到保护。
附图概述
此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中:
图 1为相关的釆用座充进行充电的示意图;
图 2为相关的釆用两种充电路径进行充电的示意图;
图 3为相关防电流倒灌电路示意图;
图 4为本发明实施例电源保护装置的示意图;
图 5为本发明电源保护装置的第一实施例的电路连接示意图; 图 6为本发明电源保护装置的第二实施例的电路连接示意图。 本发明的较佳实施方式
图 4为本发明电源保护装置的示意图, 如图 4所示, 至少包括: 两个或两个以上隔离电路, 连接于各充电电源和充电电路之间, 用于防 止各路充电电源反接;
控制电路, 连接于充电源和隔离电路之间, 用于在两路或两路以上充电 路径同时接入充电时, 关断充电路径使得仅有一路充电路径进行充电。
其中, 隔离电路可以是由 P沟道场效应管 ( PMOS )和 N沟道场效应管 ( NMOS )组成的模拟电路, 或者两者结合在一起形成的一个独立封装的电 子元件, 当只有一路充电路径时, 通过 NMOS使 PMOS单向完全导通, 使 隔离电路具有单向导通, 反向不导通的隔离效果;
隔离电路还可以由带控制端的数字开关来实现, 通过对数字开关的控制 端的控制使得数字开关接通或断开。 比如, 当只有一路充电路径时, 充电电 源给控制端提供高电平, 使得充电路径完全导通, 从而实现开关导通进行充 电。
控制电路, 如果由模拟电路实现的话可以由每一个充电路径都包含一组 由 NMOS和二极管构成的模拟电路实现, 通过 NMOS和二极管反装来拉低
隔离电路中 NMOS漏极电平, 实现通过 PMOS内部二极管进行充电; 控制电路还可以为逻辑控制开关来实现, 通过逻辑控制开关连接多个充 电路径, 当多于一路充电路径在对充电电路进行提供充电时, 通过逻辑控制 开关, 可以实现当多充电路径接入时, 只为其中一路充电路径的隔离电路提 供高电平, 也就是说, 此时只有一路充电路径是导通的, 其他充电路径为关 断状态。
通过模拟电路来实现电源保护装置, 包含隔离电路和控制电路, 就可以 实现两个或多个充电路径通过 PMOS内部二极管进行同时充电, 而不会出现 电流倒灌的安全问题。
本发明实施例电源保护装置通过模拟电路设计实现时, 还进一步包括控 制显示电路, 用于在两路或两路以上充电路径同时充电时, 显示各充电路径 的工作状态, 从而实现充电控制。 具体地, 控制显示电路通过测量隔离电路 栅极电压来进行判断显示, 当栅极电压显示低于充电电路所需电压时, 此时 隔离电路 NMOS 为切断状态, 如果多路充电路径的隔离电路都处于切断状 态, 则表明有多路充电路径正在同时给充电电路提供电源, 此时, 如果是模 拟电路在进行充电, 则依靠 PMOS的内部二极管为充电电路提供电源, 其工 作效率将下降。因此通过控制显示电路的提醒来进行人为切断多余电路操作, 利用完全导通的一路充电路径进行充电, 可以提高充电效率。
本发明在釆用模拟电子方式进行隔离电路和模拟控制电路设计时, 还包 括滤波电路, 连接于隔离电路和控制电路之间,对给隔离电路 NMOS提供电 压进行滤波,从而避免了隔离电路中 NMOS栅极的工作电压波动过大对电源 保护电路造成损坏。
本发明控制电路还用于, 当同时接入多种充电路径时, 优先选择具有数 据通信功能的充电路径作为导通的充电路径, 其中具有数据通信功能的充电 路径是指由 USB、 RS232/485等数据连接的充电路径。
另外在数字电路设计中, 隔离电路的控制管脚端包含一个数值为 100-470千欧的电阻, 用于限制电流波动。 在模拟电路设计中, PMOS的栅 极和漏极, 包含一个一个数值为 100 470千欧的电阻, 用于限制电流波动。
下面结合实际电路对本发明电源保护装置的具体实现进行详细描述。 需
要说明的是, 只要是根据本发明图 4所示的电源保护装置的技术构思, 本领 域技术人员是可以釆用很多种具体电路来实现的, 本发明强调的是, 在两路 或两路以上充电路径同时接入充电时, 关断充电路径使得仅有一路充电路径 进行充电, 从而达到保证终端充电安全性的目的。 因此, 以下具体电路并不 用于限定本发明的保护范围。
图 5为本发明电源保护装置的第一实施例的电路连接示意图, 如图 5所 示, 其中电阻 R1和电阻 R2为线路阻抗。
当只接入充电电源 1一路充电路径时,只有隔离电路在对电路进行保护, 此时电路工作过程为,充电电源 1分为两路进行工作,一路沿着分压电阻 R3、 R4 实现分压, 此时通过分压电阻 R4 电压按照: f/Gprai = f/^TOl xR4 /(R3 + R4) 可以实现 NMOS3 的导通, 其中, ¾¾S1为充电源电压, ί/σρ σι为充电电路所 需电压; 同时另一路电源通过 PMOS1 从源极开始流向漏极, 由于 NMOS3 导通, 使 PMOS1和 NMOS3A同时工作, PMOS1完全导通, 此时充电电路 路径损耗很小, 效率高。 但是, 由于 PMOS1和 NMOS3 同时工作会产生一 个由 PMOS1到 NMOS3的导通电流, 因此, 在 PMOS1的栅极和漏极并联一 个 100 470千欧的抑制电阻 R6。
当同时接入多个充电源时, 如图 5所示, 结合假设两个充电路径会同时 接入, 此时隔离电路由于受到控制电路的影响, NMOS3和 NMOS4 同时因 为控制电路而关断,此时隔离电路中 PMOS1和 PMOS2的内部电阻起到同时 为充电电路提供充电电源的作用,此时,虽然不会产生倒灌电路,但是 PMOS1 和 PMOS2工作效率将产生一定的损耗和影响充电效率。
通过电阻 R4和 R5之间的通用输入输出接口 1 电压值(GPIOl ) , R7 和 R8之间的 GPI02值, 可以从数值上看出都处于低电平状态, 因此可以判 断出此时充电路径上有两个充电路径正在同时给充电电路提供充电电源, 因 此需要通过控制电路关断其中一路充电路径, 避免长时间充电损耗和充电效 率较低的问题。
如图 5所示, 还包括一个 RC滤波电路, 用于在充电源通过隔离电路时, 为隔离电路提供稳定充电电源, 使充电电路工作状态稳定。
图 6为本发明电源保护装置的第二实施例的电路连接示意图, 如图 6所
示电路, 其中 R1和 R2为线路阻抗。
当只有充电电源 1接入时, 通过隔离电路 1可以实现充电源到充电电路 之间, 在经过隔离电路中控制端的数字开关时, 只有是正确连接的充电电源 1才可以给控制管脚提供 EN为高电平的信号, 促使隔离电路 1导通, 使充 电电路正常工作。
在给隔离电路提供高电平信号前经过了一个电阻 Rl 1, 作用是使给隔离 电路提供的工作电平信号稳定, 不会对隔离电路造成损坏, R12的作用同理。
在接入两路充电源时, 通过充电源 1和充电源 2之间连接的控制电路, 在控制电路的逻辑控制开关, 只为其中一路充电路径的隔离电路提供高电平 信号, 也就是说, 当隔离电路 1获得高电平信号时, 隔离电路 2只能得到低 电平信号。 反之, 当隔离电路 2获得高电平信号时, 隔离电路 1只能得到低 电平信号, 通过逻辑控制开关, 可以实现, 只有一路充电路径是导通的, 其 他的充电路径受逻辑控制开关的影响, 将处于断开状态。
另外当接入多于一路充电路径时, 通过控制电路可以优先选择具有数据 通信功能的充电路径, 如 USB、 RS232/485等充电路径。
通过图 6提供的具体实施例, 可以有效的反之电源反插, 多充电路径接 入时, 电流倒灌对设备造成损坏的问题。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成。 可选地, 上述实施例的全部或部分步骤也可以使用一 个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用硬 件的形式实现, 也可以釆用软件功能模块的形式实现。 上述实施例中, 如果 充电路径增加, 只需要增加相应的电路即可以实现拓展。 本申请不限制于任 何特定形式的硬件和软件的结合。
以上所述, 仅为本发明的较佳实例而已, 并非用于限定本发明的保护范 围。 凡在本发明的精神和原则之内, 所做的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
工业实用性
本发明实施例通过连接于充电源和充电电路的隔离电路对每一充电路径 进行隔离保护, 在多于一路充电路径时, 通过控制电路进行判断选择, 只保 留一路充电路径, 使充电电路得到保护。
Claims
1、 一种电源保护装置, 至少包括:
两个或两个以上隔离电路,设置为: 连接于各充电电源和充电电路之间, 防止各路充电电源反接; 以及,
控制电路, 设置为: 连接于充电源和隔离电路之间, 在两路或两路以上 充电路径同时接入充电时, 关断充电路径使得仅有一路充电路径进行充电。
2、根据权利要求 1所述的电源保护装置, 其中, 所述隔离电路为 P沟道 场效应管 PMOS和 N沟道场效应管 NMOS组成的模拟电路; 或者 , 带控制 端的数字开关。
3、根据权利要求 1所述的电源保护装置,其中,所述控制电路为由 NMOS 和二极管构成的模拟电路; 或者, 逻辑控制开关。
4、根据权利要求 2所述电源保护装置,其中,还包括滤波电路,设置为: 连接于隔离电路和控制电路之间,对给隔离电路的 NMOS的工作电压进行滤 波。
5、根据权利要求 1~4任一项所述的电源保护装置, 其中, 还包括控制显 示电路, 设置为: 在两路或两路以上充电路径同时充电时, 显示各充电路径 的工作状态; 所述控制显示电路设置为: 按照显示的各充电路径的工作状态, 关断充 电路径使得仅有一路充电路径进行充电。
6、 根据权利要求 1所述电源保护装置, 其中, 所述控制电路设置为: 在 两路或两路以上充电路径同时接入充电时, 优先选择具有数据传输功能的一 路充电路径进行充电。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310440121.3A CN104467055B (zh) | 2013-09-24 | 2013-09-24 | 一种电源保护装置 |
CN201310440121.3 | 2013-09-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014180380A1 true WO2014180380A1 (zh) | 2014-11-13 |
Family
ID=51866761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/077965 WO2014180380A1 (zh) | 2013-09-24 | 2014-05-21 | 一种电源保护装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104467055B (zh) |
WO (1) | WO2014180380A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11088549B2 (en) * | 2016-03-22 | 2021-08-10 | Intersil Americas LLC | Multiple chargers configuration in one system |
CN105762891A (zh) * | 2016-04-28 | 2016-07-13 | 行科技有限责任公司 | 一种智能移动终端的充电电路及其方法 |
CN105873280A (zh) * | 2016-05-20 | 2016-08-17 | 上海顿格电子贸易有限公司 | 一种灯具切换点亮的系统及方法 |
CN106100014B (zh) * | 2016-06-08 | 2019-03-01 | 北京疯景科技有限公司 | 一种充电电路及充电方法 |
CN106786887B (zh) * | 2016-12-23 | 2019-08-23 | 捷开通讯(深圳)有限公司 | 一种充电控制系统 |
CN109177732B (zh) * | 2018-08-28 | 2020-11-17 | 湖南金杯新能源发展有限公司 | 电动车辆电池管理系统的电源控制电路 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4672241A (en) * | 1985-05-29 | 1987-06-09 | Advanced Micro Devices, Inc. | High voltage isolation circuit for CMOS networks |
CN101371212A (zh) * | 2005-12-13 | 2009-02-18 | 捷讯研究有限公司 | 移动设备的充电和供电 |
CN201878110U (zh) * | 2010-12-17 | 2011-06-22 | 长沙威胜信息技术有限公司 | 用于电能量采集终端的多电源系统防电流倒灌电路 |
CN102222904A (zh) * | 2011-05-31 | 2011-10-19 | 北京交通大学 | 一种直流双路供电电源 |
CN102710134A (zh) * | 2012-06-15 | 2012-10-03 | 北京鼎汉技术股份有限公司 | 一种具有防反功能的模块化供电装置及防反控制电路 |
CN102723771A (zh) * | 2012-06-19 | 2012-10-10 | 山东浪潮华光照明有限公司 | 一种双电源led路灯电源自动切换电路 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202363936U (zh) * | 2011-11-29 | 2012-08-01 | 中兴通讯股份有限公司 | 终端充电保护电路 |
CN202759260U (zh) * | 2012-07-03 | 2013-02-27 | 中兴通讯股份有限公司 | 一种充电电路及终端设备 |
-
2013
- 2013-09-24 CN CN201310440121.3A patent/CN104467055B/zh active Active
-
2014
- 2014-05-21 WO PCT/CN2014/077965 patent/WO2014180380A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4672241A (en) * | 1985-05-29 | 1987-06-09 | Advanced Micro Devices, Inc. | High voltage isolation circuit for CMOS networks |
CN101371212A (zh) * | 2005-12-13 | 2009-02-18 | 捷讯研究有限公司 | 移动设备的充电和供电 |
CN201878110U (zh) * | 2010-12-17 | 2011-06-22 | 长沙威胜信息技术有限公司 | 用于电能量采集终端的多电源系统防电流倒灌电路 |
CN102222904A (zh) * | 2011-05-31 | 2011-10-19 | 北京交通大学 | 一种直流双路供电电源 |
CN102710134A (zh) * | 2012-06-15 | 2012-10-03 | 北京鼎汉技术股份有限公司 | 一种具有防反功能的模块化供电装置及防反控制电路 |
CN102723771A (zh) * | 2012-06-19 | 2012-10-10 | 山东浪潮华光照明有限公司 | 一种双电源led路灯电源自动切换电路 |
Also Published As
Publication number | Publication date |
---|---|
CN104467055B (zh) | 2019-07-05 |
CN104467055A (zh) | 2015-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014180380A1 (zh) | 一种电源保护装置 | |
CN103022996B (zh) | 静电放电保护电路和静电放电保护方法 | |
CN104377670B (zh) | 用于集成电路器件的静电放电保护器件 | |
CN106300314B (zh) | Type-C接口芯片CC管脚的高压保护系统及方法 | |
JP6022582B2 (ja) | 電力アダプタと、電子機器の電力を適応させる方法 | |
CN102047560B (zh) | 具有过压保护的输出驱动器 | |
CN105701046A (zh) | 集成电路 | |
WO2014187018A1 (zh) | 短路保护电路以及具有短路保护电路的电子装置 | |
TW201312889A (zh) | 過電壓保護電路及具有該過電壓保護電路之可攜式電子裝置 | |
TW201337524A (zh) | 電源控制電路及電子設備 | |
US9825480B2 (en) | Apparatus for performing hybrid power control in an electronic device with aid of separated power output nodes for multi-purpose usage of boost | |
US10150378B2 (en) | Apparatus for performing hybrid power control in an electronic device with aid of separated power output nodes for multi-purpose usage of boost | |
CN109739801B (zh) | 一种mcu芯片与soc芯片之间的串口电平转换电路 | |
CN202678968U (zh) | 通讯保护电路及采用该通讯保护电路的空调 | |
US8767365B2 (en) | Protection circuit | |
CN207853916U (zh) | 一种通讯管理机串口测试装置 | |
CN206834441U (zh) | 一种数据线转换电路、一种数据线和一种usb转接头 | |
CN205724876U (zh) | 一种非隔离供电pse设备端口浪涌防护电路 | |
JP5778398B2 (ja) | 電子回路 | |
CN210431388U (zh) | 一种USB Type-C的CC引脚电路 | |
TWI677188B (zh) | 電源電路及其驅動方法 | |
CN209104853U (zh) | 充电电路及电子设备 | |
CN107395192B (zh) | 双向接口电路 | |
CN208062779U (zh) | 一种短路故障保护电路及检测控制电路 | |
TWI539270B (zh) | 可擴充電子裝置及其擴充底座 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14794552 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14794552 Country of ref document: EP Kind code of ref document: A1 |