WO2014177812A2 - Vitrage de controle solaire comprenant une couche d'un alliage de zinc et de cuivre - Google Patents

Vitrage de controle solaire comprenant une couche d'un alliage de zinc et de cuivre Download PDF

Info

Publication number
WO2014177812A2
WO2014177812A2 PCT/FR2014/051039 FR2014051039W WO2014177812A2 WO 2014177812 A2 WO2014177812 A2 WO 2014177812A2 FR 2014051039 W FR2014051039 W FR 2014051039W WO 2014177812 A2 WO2014177812 A2 WO 2014177812A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
layers
alloy
zinc
stack
Prior art date
Application number
PCT/FR2014/051039
Other languages
English (en)
Other versions
WO2014177812A3 (fr
Inventor
Laura Jane Singh
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Priority to US14/888,634 priority Critical patent/US9458055B2/en
Priority to EP14727604.2A priority patent/EP2991827B1/fr
Priority to CA2910317A priority patent/CA2910317C/fr
Priority to ES14727604.2T priority patent/ES2640109T3/es
Priority to BR112015026873-0A priority patent/BR112015026873B1/pt
Publication of WO2014177812A2 publication Critical patent/WO2014177812A2/fr
Publication of WO2014177812A3 publication Critical patent/WO2014177812A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3613Coatings of type glass/inorganic compound/metal/inorganic compound/metal/other
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3618Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3626Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3639Multilayers containing at least two functional metal layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3642Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating containing a metal layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3652Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the coating stack containing at least one sacrificial layer to protect the metal from oxidation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3681Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating being used in glazing, e.g. windows or windscreens
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/78Coatings specially designed to be durable, e.g. scratch-resistant

Definitions

  • the invention relates to the field of substrates or glass articles, in particular of the glazing type of buildings, comprising on their surface coatings of the thin film type giving them solar control properties.
  • Such glazing can also be applied in the automotive field.
  • Glazing means for the purposes of the present invention any glass product consisting of one or more glass substrates, especially single glazing, double glazing, triple glazing etc.
  • the glazing can also be made of hard plastic material.
  • the stacks according to the invention can be deposited laminated plastic films for example PET type, the assembly then being reported (glued) on the surface of a glass substrate.
  • Such glazings are provided with stacks of thin layers which act on the incident solar radiation by absorption and reflection. They are grouped under the designation of solar control glazing. They are mainly used to provide sun protection (sunscreen function) or essentially to provide thermal insulation of the passenger compartment or dwelling (low emissive function).
  • the meaning of the present invention is the ability of the glazing to limit the energy flow, in particular the Infrared (IR) radiation passing through it from the outside towards the interior of the dwelling or the passenger compartment.
  • IR Infrared
  • low emissivity is meant a glazing unit provided with at least one functional layer conferring on it a normal emissivity ⁇ ⁇ less than 30%, preferably less than 20%, the emissivity being defined by the relation:
  • R n is the infrared reflection factor between 5 and 50 micrometers, according to the normal (according to Annex A of International Standard ISO 10292) of the glazing.
  • These coatings are conventionally deposited by CVD type deposition techniques for the simplest or most often at present by vacuum deposition techniques, often called magnetron in the field, especially when the coating is consisting of a complex stack of successive layers whose thicknesses do not exceed a few nanometers or tens of nanometers.
  • the thin-film stacks have solar control properties essentially by the intrinsic properties of one or more active layers, designated as functional in the present description.
  • active or functional layer is thus meant a layer acting substantially on the flow of solar radiation passing through said glazing.
  • Such an active layer in known manner, can operate either mainly in the infrared radiation reflection mode, or mainly in the Infrared radiation absorption mode.
  • these sunscreen layers work partly by reflection and partly by absorption, as already explained above.
  • the most efficient stacks marketed at present incorporate at least one Silver functional metal functional layer operating essentially in the mode of reflection of a major part of the incident IR (infrared) radiation. Their normal emissivity does not exceed a few percent. These stacks are thus used mainly as glazing type low emissive (or low-e in English) for the thermal insulation of buildings. These layers, however, are very sensitive to moisture and are therefore exclusively used in double glazing, facing 2 or 3 of it to be protected from moisture.
  • the stacks according to the invention do not include such layers of the Silver type, or gold or Platinum type layers or in very negligible quantities, especially in the form of unavoidable impurities.
  • Such glazings comprising functional layers of the Nb, Ta or W type or nitrides of these metals thus have selectivities, as illustrated by the ratio T L / g, close to 1 (light transmittance factor / solar factor g, as determined according to EN 410).
  • the light transmission factor or light transmission T L corresponds to the percentage of the incident light flux, that is, ie in the wavelength range 380 to 780 nm, passing through the glazing, according to the illuminant ⁇ 65.
  • the solar factor g is equal to the ratio of the energy passing through the glazing (that is to say entering the room) and incident solar energy. More particularly, it corresponds to the sum of the flux transmitted directly through the glazing and the flux absorbed by the glazing (by including in particular the stacks of layers present on one of its surfaces) and then reemitted towards the inside (the local).
  • U.S. Patent No. 4,943,484 discloses stacks wherein the at least one functional layer may be one of aluminum, silver, gold or pure copper. Stacks comprising thin layers of pure copper, however, pose the same problem of hydrolytic resistance as the precious metal layers.
  • the object of the present invention is to provide glazings comprising a stack of layers giving them solar control properties as previously described, that is to say a high light transmission T L , typically greater than 30%, preferably greater than 40 ⁇ 6, or even greater than 50%, and a normal emissivity ⁇ ⁇ less than 30%, or even less than 20 ⁇ 6, or even less than 10%, said stack being durable over time , in particular when it is directly disposed on one side of the glazing exposed towards the inside or even the outside of the building or the passenger compartment, without particular precaution.
  • T L high light transmission
  • T L typically greater than 30%, preferably greater than 40 ⁇ 6, or even greater than 50%
  • the object of the present invention is to provide glazings comprising a stack of layers conferring on them antisolar properties and having a high selectivity, in the sense previously described, that is to say a ratio T L / g (often called selectivity in the field) much greater than 1, in particular substantially greater than 1.2, or even greater than 1.3, ideally greater than 1, 4 or even greater than 1.5, said stack being durable in time without special precautions.
  • a glazing unit according to the invention thus advantageously makes it possible to select the radiation passing through it, by promoting the transmission of light waves, that is to say the wavelength of which is between approximately 380 and 780 nm, and by selectively absorbing the majority of infrared radiation, that is to say the wavelength of which is greater than 780 nm, in particular near-infrared radiation, that is to say whose wavelength is between about 780 nm and about 1400 nm.
  • the glazing according to the present invention also has thermal insulation properties thanks to the low-emissive properties of the layer used, making it possible to limit the heat exchanges this time between the inside and the outside of the building.
  • the glazings provided with the stacks according to the invention are simple to produce and also allow a significant reduction in production costs, compared with other known glazings with antisolar properties, in particular those comprising a stack. based on money.
  • the glazings according to the invention can also be used as glazing low emissives, to ensure a thermal insulation of the passenger compartment or dwelling (low emissive function), with regard to the low value of the emissivity coefficient ⁇ ⁇ of the stacks into which they are inserted.
  • Another object of the present invention is to provide sunscreen glazing incorporating a stack capable of undergoing a heat treatment such as quenching, bending or more generally heat treatment at temperatures above 550 ° C, or even greater than 600 ° C, without loss of its optical and energetic properties.
  • the glazing units provided with layers according to the invention preferably retain, after the heat treatment, a high light transmission and preferably have a substantially unchanged color in transmission or in reflection, this color preferably being substantially neutral or alternatively blue-green. , as sought especially in the building sector.
  • they are resistant to moisture and scratch. They can thus advantageously be used as simple glazing (a single glass substrate), the stack advantageously being turned towards the inner face of the building or the passenger compartment to be protected.
  • the present invention relates to a glazing with solar control properties
  • a glazing with solar control properties comprising at least one transparent substrate preferably glass on which is deposited a stack of layers, said stack comprising a layer consisting of an alloy comprising zinc and copper, alloy in which the Zn / (Cu + Zn) atomic ratio is greater than 35% and less than 65%.
  • said atomic ratio is greater than
  • said atomic ratio is less than
  • Said layer consisting of an alloy comprising zinc and copper is preferably the only functional layer of the stack, that is to say that it is at the origin of the solar control properties of the glazing or at least of most of said properties.
  • the stacks according to the invention preferably do not comprise other layers with low-emissive properties.
  • the stacks according to the invention preferably do not comprise layers made from precious metals such as silver or gold.
  • the thickness of said functional layer is between 5 and 35 nanometers, preferably between 8 and 30 nanometers, in particular between 8 and
  • copper and zinc represent at least
  • the alloy consists essentially or only of zinc and copper (the other elements being present only in the form of unavoidable impurities).
  • the stack consists of the succession of the following layers, starting from the surface of the glass substrate: one or more lower protective layers of the alloy layer against the migration of the alkali ions originating from the glass substrate, in particular from dielectric materials such as oxides, nitrides or oxynucleides, in particular from at least one element selected from the group consisting of zinc, tin, silicon, aluminum, titanium, zirconium, said layer or layers having a total physical thickness of between 5 and 150 nm,
  • one or more upper protective layers of the alloy layer against the oxygen of the air in particular during a heat treatment such as quenching or annealing, in particular of dielectric materials such as oxides, nitrides or oxynucleols in particular of at least one element selected from zinc, tin, silicon, aluminum, titanium, zirconium, said layer or layers being of physical thickness, in total between 5 and 150 nm.
  • the lower and upper protective layers are selected from silicon nitride optionally doped with Al, Zr, B, aluminum nitride AIN, tin oxide, a mixed oxide of zinc or tin Sn y Zn z O x , silicon oxide S1O2, titanium oxide T1O2, silicon oxynitrides SiO x N y .
  • the stack comprises the succession of the following layers, starting from the surface of the glass substrate:
  • a lower layer having a thickness of between 5 and 150 nm, preferably between 30 and 70 nm, of silicon nitride optionally doped with Al,
  • silicon nitride optionally doped with Al, Zr, B or aluminum nitride AlN.
  • the stack comprises at least two alloy layers comprising essentially or consisting of zinc and copper as previously described, each of said layers being separated in the stack of the next by at least one intermediate layer of a material dielectric in particular as selected from the previous list.
  • Said intermediate layer comprises at least one layer of a material selected from silicon nitride optionally doped with Al, Zr, B, aluminum nitride AlN, tin oxide, a mixed oxide of zinc or tin Sn y Zn z O x , silicon oxide
  • SiO 2 titanium oxide, silicon oxynitrides SiO x N y .
  • the stack comprises the succession of the following layers, starting from the surface of the glass substrate:
  • one or more lower layers with a total cumulative thickness of less than 150 nm chosen from silicon nitride optionally doped with Al, Zr, B, aluminum nitride AlN, tin oxide, a mixed zinc oxide, or tin
  • a first functional layer based on the zinc and copper alloy such as previously described, the thickness of said functional layer being in particular between 5 and 25 nm, preferably between 5 and 15 nm,
  • an intermediate layer having a thickness of between 5 and 150 nm, preferably between 5 and 50 nm, more particularly between 5 and 15 nm, comprising at least one layer of a material chosen from silicon nitride, optionally doped with Al, Zr, B, aluminum nitride AIN, tin oxide, a mixed oxide of zinc or tin
  • a second functional layer based on zinc alloy and copper the thickness of said functional layer being in particular between 5 and 25 nm, preferably between 5 and 15 nm,
  • one or more upper layers having a total cumulative thickness of less than 150 nm, selected from silicon nitride optionally doped with Al, Zr, B, aluminum nitride AlN, tin oxide, a mixed zinc oxide, or tin Sn y Zn z O x , silicon oxide SiO 2 , titanium oxide, silicon oxynitrides SiO x N y .
  • the stack comprises the succession of the following layers, starting from the surface of the glass substrate:
  • an intermediate layer having a thickness of between 5 and 150 nm, preferably between 5 and 50 nm, more particularly between 5 and 15 nm, comprising at least one layer of a material chosen from silicon nitride, optionally doped with Al,
  • Zr, B aluminum nitride AIN, tin oxide, a mixed oxide of zinc or tin Sn y Zn z O x, silicon oxide S1O 2, titanium oxide T1O 2 the silicon oxynitrides SiO x N y , preferably silicon nitride optionally doped with Al, Zr, B,
  • a second functional alloy layer comprising essentially consisting of or consisting of zinc and copper, the thickness of said functional layer being in particular between 5 and 25 nm, preferably between 5 and 15 nm,
  • top layer of thickness between 5 and 150 nm, preferably between 30 and 70 nm, of silicon nitride optionally doped with Al,
  • the stack further comprises at least one additional protective layer of the alloy layer or layers, said additional layer being made of a material selected from the group consisting of Ti, Mo, Al, Nb, Sn, Zn (or an alloy comprising two of these elements such as Sn and Zn), NiCr, TiN, NbN, said additional protective layers being placed in contact and respectively above and below the functional layer or layers, and having a physical thickness of between about 1 nm and about 3 nm.
  • a protective layer makes it possible in particular according to the invention to limit the variations in the light transmission and the color of the glazing both in reflection and in transmission, when the latter is subjected to be subjected to a heat treatment such as tempering, bending etc.
  • a method of manufacturing an antisolar glazing comprises for example the following steps:
  • the antisolar functional layer being obtained by sputtering a target constituted by an alloy of zinc and copper, the atomic percentage of Zinc in the Zn / (Cu + Zn) alloy being between 35% and 65%, especially between 45 and 55%, in a residual atmosphere of a neutral gas such as argon.
  • the alloy constituting the functional layer comprises only or very predominantly copper and zinc elements, the other elements being then present only in a very minor concentration does not influence or almost not on the desired properties of the material.
  • the term “unavoidable impurities” thus means that the presence in the alloy of zinc and copper of certain additional elements, in particular metal, can not be avoided because of the presence of these elements. impurities in the sources of copper and zinc initially used or because of the mode of deposition of the zinc and copper layer.
  • the atomic proportion of each of the elements considered as impurity in the alloy is less than 1%, preferably less than 0.5% and very preferably less than 0.1% atomic.
  • Example 1 (according to the invention):
  • a stack consisting of the following layer of layers is deposited according to conventional magnetron techniques on a Planilux®-type glass substrate marketed by the applicant company: Glass / Si 3 N 4 / Cu 45 55 * Zn / Si 3 N 4
  • the functional metallic layer of Zinc alloy and copper is obtained by the magnetron sputtering technique from two targets of zinc and copper arranged in the same compartment of the device, each target having a specific power supply to specifically and independently adjust the power applied to each target. It is thus possible to adjust the composition of the layer deposited by adjusting the power applied to each target.
  • the power applied to the zinc target is about 130W and the power applied to the copper target is about 100W.
  • the upper and lower layers of silicon nitride were obtained in the same magnetron device by sputtering a silicon target comprising 8% by weight of aluminum in compartments preceding and succeeding that used for the deposition of the alloy layer. Sputtering of the silicon target is carried out in a nitrogen atmosphere, to obtain the nitride thin layer. No difficulty was observed during the deposition of the different layers by magnetic field assisted sputtering (magnetron) techniques.
  • composition of the metal alloy layer obtained was verified by microprobe analysis of Castaing (also called EPMA or electron probe microanalyser according to the English name) and SIMS (secondary ionization mass spectrometry.
  • the substrate provided with its stack was then subjected to a heat treatment consisting of heating at 550 ° C for 3 minutes.
  • Example 2 it is practiced in the same way as in Example 1, but the powers are varied.
  • the power applied on the zinc target is 110 W and the power applied on the copper target is 120 W.
  • a stack is obtained whose functional layer is this time made of a zinc and copper alloy in proportions respective molars 45/55.
  • the substrate provided with its stack is then subjected to the same heat treatment as for Example 1.
  • Example 2 it is practiced in the same way as in Example 1, but the powers are varied.
  • the power applied on the zinc target is 80 W and the power applied on the copper target is 145 W.
  • a stack is obtained whose functional layer is this time made of a zinc and copper alloy in proportions respective molars 30/70.
  • the substrate provided with its stack is then subjected to the same heat treatment as for Example 1.
  • Example 2 it is practiced in the same way as in Example 1, but the powers are varied.
  • the power applied to the zinc target is 170 W and the power applied to the copper target is 55 W.
  • the substrate provided with its stack is then subjected to the same heat treatment as for Example 1.
  • Example 2 the procedure is identical to Example 1 and a substantially identical stack is obtained by the magnetron sputtering technique, with the exception of the target used for the deposition of the functional layer, which this time consists of copper only.
  • the substrate provided with its stack is then subjected to the same heat treatment as for example 1.
  • the light transmission factor TL is measured, as well as the square resistance of the stack, before and after the heat treatment, by the conventional four-point method.
  • the measurement of R by square is considered as a first indication of the relative expected emissivities of the different stacks.
  • the glazings comprising a functional layer according to the invention exhibit values of the light transmission close to that of the copper layers, especially after annealing.
  • the layer containing predominantly zinc on the contrary has a relatively low light transmission and insufficient for the application.
  • the measurements of electronic conductivity and in particular of R by square are relatively similar and weak, except for the sample according to example 4.
  • the sample according to example 1 on the contrary, has a particularly weak resistance per square, which is close to that of the reference sample according to Example 5 incorporating a pure copper functional layer.
  • the functional metal layer of zinc and copper alloy is obtained by the magnetron sputtering technique from a target consisting of an alloy comprising about 55 atomic% of zinc and about 45 atomic% of copper.
  • the upper and lower layers of silicon nitride were obtained in the same magnetron device by sputtering a silicon target comprising 8% by weight of aluminum in compartments preceding and succeeding that used for depositing the alloy. Sputtering of the silicon target is carried out in a nitrogen atmosphere, to obtain the nitride thin layer.
  • the titanium layer is obtained by the magnetron sputtering technique from a metal titanium target.
  • microprobe analysis of Castaing and SIMS of the layer finally obtained indicates that its composition corresponds to the molar stoichiometry Zn 4 gCusi, a little different from that of the initial target.
  • the substrate provided with its stack is subjected to heat treatment consisting of a heat treatment at 620 ° for 8 minutes and then out of the oven.
  • This treatment is representative of the conditions experienced industrially by the glazing if it must be soaked.
  • the thermal and light characteristics were then measured according to the EN410 standard mentioned above.
  • a very high selectivity is measured, of the order of a glazing provided with the stack according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Vitrage à propriété de contrôle solaire comprenant au moins un substrat verrier sur lequel est déposé un empilement de couches, ledit empilement comprenant une couche constituée dans un alliage comprenant du Zinc et du Cuivre, alliage dans lequel le rapport atomique Zn/(Cu+Zn) est supérieur à 35% et inférieur à 65%.

Description

VITRAGE DE CONTROLE SOLAIRE COMPRENANT
UNE COUCHE D ' UN ALLIAGE DE ZINC ET DE CUIVRE
L' invention se rapporte au domaine des substrats ou articles verriers, en particulier du type vitrage de bâtiments, comprenant à leur surface des revêtements du type couches minces leur conférant des propriétés de contrôle solaire. Un tel vitrage peut également être appliqué dans le domaine de l'automobile. Par vitrage, on entend au sens de la présente invention tout produit verrier constitué par un ou plusieurs substrats verriers, en particulier les simples vitrages, les doubles vitrages, les triples vitrages etc. Sans sortir du cadre de l'invention, les vitrages peuvent également être en matière plastique dure. Alternativement, les empilements selon l'invention peuvent être déposés des films plastiques laminés par exemple du type PET, l'ensemble étant ensuite rapporté (collé) sur la surface d'un substrat verrier.
De tels vitrages sont munis d'empilements de couches minces qui agissent sur le rayonnement solaire incident par absorption et par réflexion. Ils sont regroupés sous la désignation de vitrage de contrôle solaire. Ils sont utilisés soit essentiellement pour assurer une protection solaire (fonction antisolaire) soit essentiellement pour assurer une isolation thermique de l'habitacle ou de l'habitation (fonction bas émissive) .
Par antisolaire, on entend ainsi au sens de la présente invention la faculté du vitrage de limiter le flux énergétique, en particulier le rayonnement Infrarouge (IR) le traversant depuis l'extérieur vers l'intérieur de l'habitation ou de l'habitacle. Par bas émissif, on entend un vitrage muni d'au moins une couche fonctionnelle lui conférant une émissivité normale εη inférieure à 30%, de préférence inférieure à 20%, l' émissivité étant définie par la relation :
εη = 1 - ~Rn,
dans laquelle Rn est le facteur de réflexion des infrarouges entre 5 et 50 micromètres, selon la normale (selon l'annexe A de la norme internationale ISO 10292) du vitrage .
D'une manière générale, toutes les caractéristiques lumineuses et énergétiques présentées dans la présente description sont obtenues selon les principes et méthodes décrits dans les normes internationale ISO 9050 (2003) et ISO 10292 (1994) et des normes européennes correspondantes EN 410 (1998) et EN 673 (1998), se rapportant à la détermination des caractéristiques lumineuses, solaires et énergétiques des vitrages utilisés dans le verre pour la construction . En outre, associés au (x) substrat (s) verrier (s), ces revêtements doivent être esthétiquement plaisants, c'est-à- dire que le vitrage muni de son empilement doit présenter une colorimétrie, en transmission comme en réflexion, suffisamment neutre pour ne pas incommoder les utilisateurs, ou alternativement une teinte bleue ou verte, recherchée notamment dans le domaine du bâtiment. Ces revêtements sont de façon classique déposés par des techniques de dépôt du type CVD pour les plus simples ou le plus souvent à l'heure actuelle par des techniques de dépôt par pulvérisation sous vide, souvent appelé magnétron dans le domaine, notamment lorsque le revêtement est constitué d'un empilement complexe de couches successives dont les épaisseurs ne dépassent pas quelques nanomètres ou quelques dizaines de nanomètres. Le plus souvent les empilements en couches minces présentent des propriétés de contrôle solaire essentiellement par les propriétés intrinsèques d'une ou plusieurs couches actives, désignées comme fonctionnelles dans la présente description. Par couche active ou fonctionnelle, on entend ainsi une couche agissant de manière sensible sur le flux de rayonnement solaire traversant ledit vitrage. Une telle couche active, de façon connue, peut fonctionner soit principalement en mode de réflexion du rayonnement Infrarouge, soit principalement en mode d'absorption du rayonnement Infrarouge. Le plus souvent, ces couches antisolaires fonctionnent pour partie par réflexion et pour partie par absorption, comme déjà expliqué précédemment.
Notamment, les empilements les plus performants commercialisés à l'heure actuelle incorporent au moins une couche fonctionnelle métallique du type Argent fonctionnant essentiellement sur le mode de la réflexion d'une majeure partie du rayonnement IR (infrarouge) incident. Leur émissivité normale ne dépasse pas quelques pourcents. Ces empilements sont ainsi utilisés principalement en tant que vitrages du type bas émissifs (ou low-e en anglais) pour l'isolation thermique des bâtiments. Ces couches sont cependant très sensibles à l'humidité et sont donc exclusivement utilisées dans des doubles vitrages, en face 2 ou 3 de celui-ci pour être protégées de l'humidité. De préférence, les empilements selon l'invention ne comprennent pas de telles couches du type Argent, ou encore de couches du type Or ou Platine ou alors en quantités très négligeables, notamment sous formes d'impuretés inévitables .
D'autres couches métalliques à fonction antisolaire ont également été reportées dans le domaine, comprenant des couches fonctionnelles du type Nb, Ta ou W ou des nitrures de ces métaux, tel que décrit par exemple dans la demande WO01/21540. Au sein de telles couches, le rayonnement solaire est cette fois majoritairement absorbé de manière non sélective par la ou les couches fonctionnelles, c'est- à-dire que le rayonnement IR (c'est-à-dire dont la longueur d'onde est compris entre environ 780 nm et 2500 nm) et le rayonnement visible (dont la longueur d'onde est compris entre environ 380 et 780 nm) sont absorbés sans distinction. Dans de tels vitrages, les valeurs de l'émissivité normale εη sont en général élevées. Des valeurs d'émissivité plus faibles peuvent uniquement être obtenues lorsque la couche fonctionnelle est relativement épaisse, en particulier d'au moins 20 nm pour le niobium métallique. En raison de l'absorption non sélective de cette même couche décrite précédemment, les coefficients de transmission lumineuse TL de tels vitrages sont nécessairement très faibles, généralement très inférieurs à 30%. Au final, au vu de telles caractéristiques, il n' apparaît pas possible d'obtenir à partir de tels empilements des vitrages de contrôle solaire combinant des émissivités normales relativement basses, typiquement inférieures à 30%, et notamment de l'ordre de 25~6 ou même 20%, tout en conservant une transmission lumineuse suffisamment élevée, c'est à dire typiquement supérieure à 30%.
De tels vitrages comprenant des couches fonctionnelles du type Nb, Ta ou W ou des nitrures de ces métaux présentent ainsi des sélectivités, telles qu'illustrées par le ratio TL/g, proche de 1 (facteur de Transmission Lumineuse/ facteur solaire g, tels que déterminés selon la norme EN 410) .
De manière connue et classique, le facteur de transmission lumineuse ou transmission lumineuse TL correspond au pourcentage du flux lumineux incident, c'est- à-dire dans le domaine de longueurs d'onde 380 à 780 nm, traversant le vitrage, selon l'illuminant Û65.
De manière également bien connue, le facteur solaire g est égal au rapport de l'énergie traversant le vitrage (c'est-à-dire entrant dans le local) et de l'énergie solaire incidente. Plus particulièrement, il correspond à la somme du flux transmis directement à travers le vitrage et du flux absorbé par le vitrage (en y incluant en particulier les empilements de couches présents sur l'une de ses surfaces) puis réémis vers l'intérieur (le local) .
La publication de brevet US 4,943,484 décrit des empilements dont la ou les couches fonctionnelles peuvent être constituées par un élément choisi parmi l'aluminium, l'argent, l'or ou le cuivre pur. Les empilements comprenant des couches minces en cuivre pur posent cependant le même problème de résistance hydrolytique que les couches de métaux précieux.
Selon un premier aspect, le but de la présente invention est de fournir des vitrages comprenant un empilement de couches leur conférant des propriétés de contrôle solaire telles que précédemment décrites, c'est-à- dire une transmission lumineuse TL élevée, typiquement supérieure à 30%, de préférence supérieure à 40 ~6 , voire même supérieure à 50%, et une émissivité normale εη inférieure à 30%, voire inférieure à 20 ~6 , ou même inférieure à 10%, ledit empilement étant durable dans le temps, notamment lorsqu'il est directement disposé sur une face du vitrage exposé vers l'intérieur ou même l'extérieur du bâtiment ou de l'habitacle, sans précaution particulière.
Selon un deuxième aspect, le but de la présente invention est de fournir des vitrages comprenant un empilement de couches leur conférant des propriétés antisolaires et présentant une sélectivité élevée, au sens précédemment décrit, c'est-à-dire un rapport TL/g (souvent appelé sélectivité dans le domaine) très supérieur à 1, en particulier sensiblement supérieur à 1,2, voire supérieur à 1,3, idéalement supérieur à 1,4 ou même supérieur à 1,5, ledit empilement étant durable dans le temps sans précaution particulière.
Un vitrage selon l'invention permet ainsi avantageusement de sélectionner le rayonnement le traversant, en favorisant la transmission des ondes lumineuses, c'est-à-dire dont la longueur d'onde est comprise entre environ 380 et 780 nm, et en absorbant sélectivement la majorité des radiations infrarouges, c'est-à-dire dont la longueur d'onde est supérieure à 780 nm, en particulier les infrarouges proches, c'est-à- dire dont la longueur d'onde est comprise entre environ 780nm et environ 1400 nm. Grâce à l'installation d'un vitrage selon la présente invention, il est ainsi possible de maintenir une forte illumination de la pièce ou de l'habitacle protégé par le vitrage tout en minimisant la quantité de chaleur y entrant.
Selon un autre aspect, le vitrage selon la présente invention présente également des propriétés d' isolation thermique grâce aux propriétés bas-émissives de la couche utilisée, permettant de limiter les échanges de chaleur cette fois entre l'intérieur et l'extérieur du bâtiment.
Selon un autre avantage de la présente invention, les vitrages munis des empilements selon l'invention sont simples à produire et permettent également une réduction sensible des coûts de production, par rapport à d'autres vitrages connus à propriétés antisolaires, notamment ceux comprenant un empilement à base d'argent.
Alternativement, les vitrages selon l'invention peuvent également être utilisés en tant que vitrage bas émissifs, pour assurer une isolation thermique de l'habitacle ou de l'habitation (fonction bas émissive) , au regard de la valeur faible du coefficient d'émissivité εη des empilements dans lesquels ils sont insérés.
Un autre but de la présente invention est de fournir des vitrages verriers antisolaires incorporant un empilement capable de subir un traitement thermique tel qu'une trempe, un bombage ou plus généralement un traitement thermique à des températures supérieures à 550°C, voire supérieure à 600°C, sans perte de ses propriétés optiques et énergétiques. En particulier, les vitrages munis de couches selon l'invention conservent de préférence après le traitement thermique, une transmission lumineuse élevée et de préférence présentent une couleur sensiblement inchangée en transmission ou en réflexion, cette couleur étant de préférence sensiblement neutre ou alternativement bleue-verte, telle que recherchée notamment dans le secteur du bâtiment.
En outre, ils sont résistants à l'humidité et à la rayure. Ils peuvent ainsi être avantageusement être utilisés en temps que vitrage simple (un seul substrat verrier), l'empilement étant avantageusement tourné vers la face interne du bâtiment ou de l'habitacle à protéger.
Bien entendu, ils peuvent également être utilisés dans les vitrages multiples, notamment doubles ou triples.
Plus précisément, la présente invention se rapporte à un vitrage à propriétés de contrôle solaire comprenant au moins un substrat transparent de préférence verrier sur lequel est déposé un empilement de couches, ledit empilement comprenant une couche constituée par un alliage comprenant du zinc et du cuivre, alliage dans lequel le rapport atomique Zn/ (Cu+Zn) est supérieur à 35% et inférieur à 65%. De préférence, ledit rapport atomique est supérieur à
45%.
De préférence, ledit rapport atomique est inférieur à
60%.
Ladite couche constituée dans un alliage comprenant du zinc et du cuivre est de préférence la seule couche fonctionnelle de l'empilement, c'est-à-dire qu'elle est à l'origine des propriétés de contrôle solaire du vitrage ou au moins de l'essentiel desdites propriétés. En particulier, les empilements selon l'invention ne comprennent de préférence pas d' autres couches à propriétés bas-émissives . En particulier, les empilements selon l'invention ne comprennent pas de préférence de couches constituées à partir de métaux précieux tels que l'argent ou l'or.
Selon des modes préférés de réalisation de la présente invention, qui peuvent bien évidemment le cas échéant être combinés entre eux :
L'épaisseur de ladite couche fonctionnelle est comprise entre 5 et 35 nanomètres, de préférence entre 8 et 30 nanomètres, en particulier entre 8 et
25 nanomètres, ou même entre 10 et 20 nanomètres.
Le cuivre et le zinc représentent au total, au moins
80% atomique, de préférence au moins 90% atomique, voire au moins 95% atomique des éléments métalliques présents dans l'alliage.
L'alliage est constitué essentiellement, voire uniquement de zinc et de cuivre (les autres éléments n'étant alors présents que sous forme d'impuretés inévitables) .
L'empilement est constitué par la succession des couches suivantes, à partir de la surface du substrat verrier : - une ou plusieurs couches inférieures de protection de la couche d'alliage contre la migration des ions alcalins issus du substrat verrier, en particulier en matériaux diélectriques tels que des oxydes, des nitrures ou des oxynitures notamment d'au moins un élément choisi parmi le zinc, l'étain, le silicium, l'aluminium, le titane, le zirconium, la ou lesdites couches présentant une épaisseur physique, au total, comprise entre 5 et 150 nm,
- ladite couche d'alliage à base de zinc et de cuivre,
- une ou plusieurs couches supérieures de protection de la couche d'alliage contre l'oxygène de l'air, notamment lors d'un traitement thermique tel qu'une trempe ou un recuit, en particulier en matériaux diélectriques tels que des oxydes, des nitrures ou des oxynitures notamment d'au moins un élément choisi parmi le zinc, l'étain, le silicium, l'aluminium, le titane, le zirconium, la ou lesdites couches étant d'épaisseur physique, au total, comprise entre 5 et 150 nm.
La ou les couches de protection inférieures et supérieures sont choisies parmi le nitrure de silicium éventuellement dopé par Al, Zr, B, le nitrure d'aluminium AIN, l'oxyde d'étain, un oxyde mixte de zinc ou d'étain SnyZnzOx, l'oxyde de silicium S1O2, l'oxyde de titane T1O2, les oxynitrures de silicium SiOxNy.
L'empilement comprend la succession des couches suivantes, à partir de la surface du substrat verrier :
une couche inférieure d'épaisseur comprise entre 5 et 150 nm, de préférence entre 30 et 70 nm, de nitrure de Silicium éventuellement dopé par Al,
Zr, B ou de nitrure d'aluminium AIN,
ladite couche d'alliage à base de zinc et de cuivre,
- une couche supérieure d'épaisseur comprise entre
5 et 150 nm, de préférence entre 30 et 70 nm, de nitrure de Silicium éventuellement dopé par Al, Zr, B ou de nitrure d'aluminium AIN.
L'empilement comprend au moins deux couches d'alliage comprenant, constituée essentiellement ou constituée par du zinc et du cuivre tel que précédemment décrit, chacune desdites couches étant séparée dans l'empilement de la suivante par au moins une couche intermédiaire d'un matériau diélectrique en particulier tel que choisi dans la liste précédente.
Ladite couche intermédiaire comprend au moins une couche d'un matériau choisi parmi le nitrure de Silicium éventuellement dopé par Al, Zr, B, le nitrure d'aluminium AIN, l'oxyde d'étain, un oxyde mixte de zinc ou d'étain SnyZnzOx, l'oxyde de silicium
Si02, l'oxyde de titane, les oxynitrures de silicium SiOxNy.
L'empilement comprend la succession des couches suivantes, à partir de la surface du substrat verrier:
- une ou plusieurs couches inférieures d'épaisseur totale cumulée inférieure à 150 nm, choisie parmi le nitrure de Silicium éventuellement dopé par Al, Zr, B, le nitrure d'aluminium AIN, l'oxyde d'étain, un oxyde mixte de zinc ou d'étain
SnyZnzOx, l'oxyde de silicium Si02, l'oxyde de titane, les oxynitrures de silicium SiOxNy,
- une première couche fonctionnelle à base de l'alliage de zinc et de cuivre tel que précédemment décrit, l'épaisseur de ladite couche fonctionnelle étant notamment comprise entre 5 et 25 nm, de préférence entre 5 et 15 nm,
- une couche intermédiaire d'épaisseur comprise entre 5 et 150 nm, de préférence entre 5 et 50 nm, tout particulièrement entre 5 et 15 nm, comprenant au moins une couche d'un matériau choisi parmi le nitrure de Silicium éventuellement dopé par Al, Zr, B, le nitrure d'aluminium AIN, l'oxyde d'étain, un oxyde mixte de zinc ou d'étain
SnyZnzOx, l'oxyde de silicium S1O2, l'oxyde de titane, les oxynitrures de silicium SiOxNy, , de préférence de nitrure de silicium éventuellement dopé par Al, Zr, B,
- une deuxième couche fonctionnelle à base de l'alliage de zinc et du cuivre, l'épaisseur de ladite couche fonctionnelle étant notamment comprise entre 5 et 25 nm, de préférence entre 5 et 15 nm,
- une ou plusieurs couches supérieures d'épaisseur totale cumulée inférieure à 150 nm, choisie parmi le nitrure de Silicium éventuellement dopé par Al, Zr, B, le nitrure d'aluminium AIN, l'oxyde d'étain, un oxyde mixte de zinc ou d'étain SnyZnzOx, l'oxyde de silicium Si02, l'oxyde de titane, les oxynitrures de silicium SiOxNy.
L'empilement comprend la succession des couches suivantes, à partir de la surface du substrat verrier :
- une couche inférieure d'épaisseur comprise entre
5 et 150 nm, de préférence entre 30 et 70 nm, de nitrure de Silicium éventuellement dopé par Al, Zr, B ou de nitrure d'aluminium AIN, - une première couche fonctionnelle constituée par ledit alliage à base de zinc et de cuivre tel que précédemment décrit, l'épaisseur de ladite couche fonctionnelle étant notamment comprise entre 5 et 25 nm, de préférence entre 5 et 15 nm,
- une couche intermédiaire d'épaisseur comprise entre 5 et 150 nm, de préférence entre 5 et 50 nm, tout particulièrement entre 5 et 15 nm, comprenant au moins une couche d'un matériau choisi parmi le nitrure de Silicium éventuellement dopé par Al,
Zr, B, le nitrure d'aluminium AIN, l'oxyde d'étain, un oxyde mixte de zinc ou d'étain SnyZnzOx, l'oxyde de silicium S1O2, l'oxyde de titane T1O2, les oxynitrures de silicium SiOxNy, , de préférence de nitrure de silicium éventuellement dopé par Al, Zr, B,
- une deuxième couche fonctionnelle d'alliage comprenant, constitué essentiellement par ou constitué par du Zinc et du Cuivre, l'épaisseur de ladite couche fonctionnelle étant notamment comprise entre 5 et 25 nm, de préférence entre 5 et 15 nm,
une couche supérieure d'épaisseur comprise entre 5 et 150 nm, de préférence entre 30 et 70 nm, de nitrure de Silicium éventuellement dopé par Al,
Zr, B ou le nitrure d'aluminium AIN.
l'empilement comprend en outre au moins une couche protectrice supplémentaire de la ou des couches d'alliage, ladite couche supplémentaire étant constituée d'un matériau choisi dans le groupe constitué par Ti, Mo, Al, Nb, Sn, Zn (ou d'un alliage comprenant deux de ces éléments tel Sn et Zn) , NiCr, TiN, NbN, lesdites couches protectrices supplémentaires étant disposées au contact et respectivement au dessus et au dessous de la ou des couches fonctionnelles, et ayant une épaisseur physique comprise entre environ 1 nm et environ 3 nm. Une telle couche protectrice permet notamment selon l'invention de limiter les variations de la transmission lumineuse et de la couleur du vitrage aussi bien en réflexion qu'en transmission, lorsque celui-ci est soumis doit être soumis à un traitement thermique tel qu'une trempe, un bombage etc.
Un procédé de fabrication d'un vitrage antisolaire comprend par exemple les étapes suivantes :
fabrication d'un substrat verrier,
dépôt sur le substrat verrier d'un empilement de couches par une technique de pulvérisation cathodique sous vide assistée par magnétron, la couche fonctionnelle antisolaire étant obtenue par pulvérisation d'une cible constituée par un alliage de Zinc et de Cuivre, le pourcentage atomique de Zinc dans l'alliage Zn/ (Cu+Zn) étant compris entre 35% et 65%, notamment entre 45 et 55%, dans une atmosphère résiduelle d'un gaz neutre tel que l'argon.
Par l'expression « constitué par », on entend au sens de la présente description que l'alliage constituant la couche fonctionnelle comprend uniquement ou très majoritairement les éléments cuivre et zinc, les autres éléments n'étant alors présents que dans une concentration très mineure n' influant pas ou quasiment pas sur les propriétés recherchées du matériau. Par le terme « impuretés inévitables » on entend ainsi que la présence dans l'alliage de zinc et de cuivre de certains éléments supplémentaires, en particulier métalliques, ne peut être évitée en raison typiquement de la présence de ces impuretés dans les sources de cuivre et de zinc initialement utilisées ou en raison du mode de dépôt de la couche de zinc et de cuivre. Généralement, la proportion atomique de chacun des éléments considérés comme impureté dans l'alliage est inférieure 1%, de préférence est inférieure à 0,5% et de manière très préférée est inférieure à 0,1% atomique.
Les exemples qui suivent sont donnés à titre purement illustratifs et ne limitent sous aucun des aspects décrits la portée de la présente invention. A des fins de comparaison, tous les empilements des exemples qui suivent sont synthétisés sur le même substrat verrier Planilux®. Toutes les couches des empilements ont été déposées selon les techniques classiques bien connues de dépôts sous vide par pulvérisation magnétron.
Exemple 1 (selon l'invention) :
Dans cet exemple selon l'invention, on dépose, selon les techniques magnétrons classiques, sur un substrat en verre du type Planilux® commercialisé par la société déposante, un empilement constitué par la séquence de couches suivantes: Verre /Si3N4 / Cu45Zn55* /Si3N4
(30nm) (lOnm) (lOnm)
*55% atomique de Zn, 45% atomique de Cuivre La couche métallique fonctionnelle en alliage de Zinc et de Cuivre est obtenue par la technique de pulvérisation magnétron à partir de deux cibles de zinc et de cuivre disposées dans un même compartiment du dispositif, chaque cible ayant une alimentation spécifique permettant de régler spécifiquement et indépendamment la puissance appliquée sur chaque cible. Il est ainsi possible d'ajuster la composition de la couche déposée en réglant la puissance appliquée sur chaque cible. Selon ce premier exemple, à titre d'information et pour l'appareillage utilisé, la puissance appliquée sur la cible de zinc est d'environ 130W et la puissance appliquée sur la cible de cuivre est d'environ 100W. Les couches supérieures et inférieures de nitrure de silicium ont été obtenues dans le même dispositif magnétron par pulvérisation d'une cible de silicium comprenant 8% massique d'aluminium dans des compartiments précédant et succédant celui utilisé pour le dépôt de la couche d'alliage. La pulvérisation de la cible de silicium est effectuée dans une atmosphère d'azote, pour l'obtention de la couche mince de nitrure. Aucune difficulté n'a été observée lors du dépôt des différentes couches par les techniques de pulvérisation assistée par champ magnétique (magnétron) .
La composition de la couche d'alliage métallique obtenue a été vérifié par analyse microsonde de Castaing (aussi appelé EPMA ou électron probe microanalyser selon l'appellation Anglaise) et SIMS ( spectrométrie de masse à ionisation secondaire.
Le substrat muni de son empilement a ensuite été soumis à un traitement thermique consistant en un chauffage à 550°C pendant 3 minutes.
Exemple 2 (selon l'invention) :
Dans cet exemple, on pratique de façon identique à l'exemple 1 mais on fait varier les puissances. La puissance appliquée sur la cible de zinc est de 110 W et la puissance appliquée sur la cible de cuivre est de 120 W. On obtient un empilement dont la couche fonctionnelle est cette fois constituée d'un alliage de zinc et de cuivre dans des proportions molaires respectives 45/55. On obtient au final un empilement constitué par la séquence de couches suivantes :
Verre /Si3N4 / Cu55Zn45 /Si3N4
(30nm) (10 nm) (lOnm)
*55% atomique de cuivre, 45% atomique de zinc
Le substrat muni de son empilement est ensuite soumis au même traitement thermique que pour l'exemple 1.
Exemple 3 (comparatif) :
Dans cet exemple, on pratique de façon identique à l'exemple 1 mais on fait varier les puissances. La puissance appliquée sur la cible de zinc est de 80 W et la puissance appliquée sur la cible de cuivre est de 145 W. On obtient un empilement dont la couche fonctionnelle est cette fois constituée d'un alliage de zinc et de cuivre dans des proportions molaires respectives 30/70.
Plus précisément, on dépose, selon les techniques magnétrons classiques, sur le même substrat en verre du type Planilux®, un empilement constitué par la séquence de couches suivantes:
Verre /Si3N4 /Cu7oZn30* /Si3N4
(30nm) (lOnm) (lOnm)
*70% atomique de cuivre, 30% atomique de zinc
Le substrat muni de son empilement est ensuite soumis au même traitement thermique que pour l'exemple 1.
Exemple 4 (comparatif) :
Dans cet exemple, on pratique de façon identique à l'exemple 1 mais on fait varier les puissances. La puissance appliquée sur la cible de zinc est de 170 W et la puissance appliquée sur la cible de cuivre est de 55 W. On obtient un empilement dont la couche fonctionnelle est cette fois constituée d'un alliage de zinc et de cuivre dans des proportions molaires respectives 70/30.
Plus précisément, on dépose, selon les techniques magnétrons classiques, sur le même substrat en verre du type Planilux®, un empilement constitué par la séquence de couches suivantes:
Verre /Si3N4 /Cu30Zn70* /Si3N4
(30nm) (lOnm) (10 nm)
*30% atomique de cuivre, 70% atomique de zinc
Le substrat muni de son empilement est ensuite soumis au même traitement thermique que pour l'exemple 1.
Exemple 5 (comparatif) :
Dans cet exemple, on pratique de façon identique à l'exemple 1 et on obtient un empilement sensiblement identique par la technique de pulvérisation magnétron, à l'exception de la cible utilisée pour le dépôt de la couche fonctionnelle, qui est cette fois constituée de cuivre uniquement.
Plus précisément, on dépose, selon les techniques magnétrons classiques, sur le même substrat en verre du type Planilux®, un empilement constitué par la séquence de couches suivantes:
Verre /Si3N4 / Cu /Si3N4
(30nm) (lOnm) (lOnm)
Le substrat muni de son empilement est ensuite soumis au même traitement thermique que pour l'exemple 1. Sur les vitrages obtenus selon les exemples 1 à 5, on mesure le facteur de transmission lumineuse TL, ainsi que la résistance par carré de l'empilement, avant et après le traitement thermique, par la méthode classique des quatre pointes. De manière classique, la mesure de la R par carré est considérée comme une première indication des émissivités attendues relatives des différents empilements.
Les valeurs des mesures effectuées sur les échantillons selon les exemples 1 et 2 selon l'invention et selon les exemples comparatifs 3 à 5 sont regroupés dans le tableau 1 ci-dessous :
Figure imgf000019_0001
Tableau 1
Pour vérifier la résistance chimique des couches fonctionnelles déposées selon les exemples précédents et après le traitement thermique, on a soumis chaque échantillon décrit précédemment à un test de résistance hydrolytique (simulation de climat) selon le protocole suivant :
Dans une chambre fermée, le vitrage muni de son empilement est soumis à des conditions d'humidité et température sévères (95% d'humidité relative à 50°C) pendant une durée totale de 28 jours, pour en provoquer le vieillissement accéléré. Les résultats sont donnés dans le tableau 2 qui suit :
Figure imgf000020_0001
Tableau 2
La comparaison des données reportées dans les tableaux 1 et 2 démontre les avantages et la supériorité liés à l'utilisation d'une couche fonctionnelle selon l'invention.
En particulier :
Par comparaison des données reportées dans le tableau 1, les vitrages comprenant une couche fonctionnelle selon l'invention présentent des valeurs de la transmission lumineuse proche de celle des couches en cuivre, notamment après recuit. La couche contenant majoritairement du zinc présente au contraire une transmission lumineuse relativement faible et insuffisante pour l'application.
Les mesures de conductivité électronique et notamment de R par carré sont relativement similaires et faibles, excepté pour l'échantillon selon l'exemple 4. L'échantillon selon l'exemple 1 présente au contraire une résistance par carré particulièrement faible, qui se rapproche de celle de l'échantillon de référence selon l'exemple 5 incorporant une couche fonctionnelle en cuivre pur .
Les résultats des tests reportés dans le tableau 2 indiquent clairement que l'échantillon selon l'exemple 5 de référence est immédiatement dégradé lorsqu'il est soumis à un test de résistance climatique. Les échantillons selon les exemples 3 et 4 présentent une résistance un peu améliorée, mais très nettement insuffisante. Seuls les échantillons selon les exemples 1 et 2, conformes à la présente invention, présentent une bonne résistance hydrolytique, et tout particulièrement l'échantillon selon l'exemple 1, qui ne montre que de très faibles variations de ses propriétés de conduction électronique, même après le trentième jour de test.
Exemple 6 (selon l'invention) :
Par le même procédé magnétron, on synthétise sur un verre
Planilux® l'empilement suivant :
Verre /Si3N4 /Ti /Zn49Cu5i* /Ti /Si3N4
(40nm) (lnm) (27nm) (lnm) (52nm)
*55% atomique de Zn, 45% atomique de Cuivre
La couche métallique fonctionnelle en alliage de Zinc et de Cuivre est obtenue par la technique de pulvérisation magnétron à partir d'une cible constituée par un alliage comprenant environ 55% atomique de Zinc et environ 45% atomique de Cuivre. Les couches supérieures et inférieures de nitrure de silicium ont été obtenues dans le même dispositif magnétron par pulvérisation d'une cible de silicium comprenant 8% massique d'aluminium dans des compartiments précédant et succédant celui utilisé pour le dépôt de l'alliage. La pulvérisation de la cible de silicium est effectuée dans une atmosphère d'azote, pour l'obtention de la couche mince de nitrure.
La couche de titane est obtenue par la technique de pulvérisation magnétron, à partir d'une cible de titane métallique .
L'analyse par microsonde de Castaing et SIMS de la couche finalement obtenue indique que sa composition correspond à la stoechiométrie molaire Zn4gCusi, un peu différente de celle de la cible initiale.
Le substrat muni de son empilement est soumis au traitement thermique consistant en un traitement thermique à 620° pendant 8 minutes puis sortie du four. Ce traitement est représentatif des conditions subies industriellement par le vitrage si celui-ci doit être trempé. Les caractéristiques thermiques et lumineuses ont ensuite été mesurées conformément à la norme EN410 citée précédemment .
Les données mesurées pour l'échantillon selon l'exemple 6 sont regroupées dans le tableau 3 qui suit :
Figure imgf000022_0001
Tableau 3
On mesure une sélectivité très élevée, de l'ordre de pour un vitrage muni de l'empilement selon l'invention.
A titre de comparaison, pour un empilement classique comprenant une couche d'argent de 18 nanomètres dans la succession de couches suivantes :
Planilux /Si3N4 (45nm) /NiCr (2) /Ag (18) /NiCr (1) /Si3N4 (30) /TiOx ( 9) on a mesuré les paramètres suivants :
TL = 51 et g = 33, soit une sélectivité s = 1,54.

Claims

REVENDICATIONS
Vitrage à propriété de contrôle solaire comprenant au moins un substrat de préférence verrier sur lequel est déposé un empilement de couches, ledit empilement comprenant une couche constituée dans un alliage métallique comprenant du Zinc et du Cuivre, alliage dans lequel le rapport atomique Zn/ (Cu+Zn) est supérieur à 35% et inférieur à 65% et dans lequel le cuivre et le zinc représentent au total au moins 80% atomique des éléments métalliques présents dans 1 ' alliage .
Vitrage à propriété de contrôle solaire selon la revendication 1, comprenant une couche constituée dans un alliage comprenant du Zinc et du Cuivre dans lequel le rapport atomique Zn/ (Cu+Zn) est supérieur à 45% et inférieur à 60%.
Vitrage à propriété de contrôle solaire selon l'une des revendications précédentes, dans lequel l'épaisseur de ladite couche d'alliage est comprise entre 5 et 35 nanomètres, de préférence entre 8 et 25 nanomètres.
Vitrage à propriété de contrôle solaire selon l'une des revendications précédentes, dans lequel le cuivre et le zinc représentent au total au moins 90% atomique des éléments métalliques présents dans l'alliage.
Vitrage à propriété de contrôle solaire selon l'une des revendications précédentes, dans lequel l'alliage ne comprend que du zinc, du cuivre et des impuretés inévitables .
6. Vitrage à propriété de contrôle solaire selon l'une des revendications précédentes, dans lequel ledit empilement ne comprend pas de couches constituées à partir de métaux précieux tels que l'argent ou l'or.
7. Vitrage antisolaire selon l'une des revendications précédentes, dans lequel l'empilement est constitué par la succession des couches suivantes, à partir de la surface du substrat verrier:
- une ou plusieurs couches inférieures de protection de la couche fonctionnelle contre la migration des ions alcalins issus du substrat verrier, d'épaisseur géométrique, au total, comprise entre 5 et 150 nm,
- ladite couche d'alliage,
- une ou plusieurs couches supérieures de protection de la couche fonctionnelle contre l'oxygène de l'air, notamment lors d'un traitement thermique tel qu'une trempe ou un recuit, la ou lesdites couches étant d'épaisseur géométrique, au total, comprise entre 5 et 150 nm.
Vitrage à propriété de contrôle solaire selon la revendication précédente, dans lequel la ou les couches de protection inférieures et supérieures sont choisies parmi le nitrure de Silicium éventuellement dopé par Al, Zr, B, le nitrure d'aluminium AIN, l'oxyde d'étain, un oxyde mixte de zinc ou d'étain, l'oxyde de silicium, l'oxyde de titane, les oxynitrures de silicium.
Vitrage à propriété de contrôle solaire selon l'une des revendications précédentes dans lequel l'empilement comprend la succession des couches suivantes, à partir de la surface du substrat verrier: une couche inférieure d'épaisseur comprise entre 5 et 150 nm, de préférence entre 30 et 70 nm, de nitrure de Silicium éventuellement dopé par Al, Zr, B ou de nitrure d' aluminium AIN,
- ladite couche d'alliage,
une couche supérieure d'épaisseur comprise entre 5 et 150 nm, de préférence comprise entre 30 et 70 nm, de nitrure de Silicium éventuellement dopé par Al, Zr, B ou de nitrure d'aluminium AIN.
10. Vitrage à propriété de contrôle solaire selon l'une des revendications précédentes, dans lequel l'empilement comprend au moins deux couches fonctionnelles constituées par ledit alliage, chacune desdites couches étant séparée dans l'empilement de la suivante par au moins une couche intermédiaire d'un matériau diélectrique .
11. Vitrage antisolaire selon la revendication précédente, dans lequel ladite couche intermédiaire comprend au moins une couche d'un matériau choisi parmi le nitrure de silicium éventuellement dopé par Al, Zr, B, le nitrure d'aluminium, l'oxyde d'étain, un oxyde mixte de zinc ou d'étain, l'oxyde de silicium, l'oxyde de titane, un oxynitrure de silicium.
12. Vitrage antisolaire selon l'une des revendications précédentes, dans lequel l'empilement comprend la succession des couches suivantes, à partir de la surface du substrat verrier:
- une couche inférieure d'épaisseur comprise entre 5 et 150 nm, de préférence entre 30 et 70 nm, de nitrure de Silicium éventuellement dopé par Al, Zr, B ou le nitrure d' aluminium AIN, - une première couche fonctionnelle constituée par ledit alliage,
- une couche intermédiaire d'épaisseur comprise entre 5 et 150 nm, comprenant au moins une couche d'un matériau choisi parmi le nitrure de Silicium éventuellement dopé par Al, Zr, B, le nitrure d'aluminium AIN, l'oxyde d'étain, un oxyde mixte de zinc ou d'étain SnyZnzOx, l'oxyde de silicium S1O2, l'oxyde de titane T1O2, les oxynitrures de silicium SiOxNy, , de préférence de nitrure de silicium éventuellement dopé,
- une deuxième couche fonctionnelle constituée par ledit alliage,
une couche supérieure d'épaisseur comprise entre 5 et 150 nm, de préférence entre 30 et 70 nm, de nitrure de Silicium éventuellement dopé par Al, Zr, B ou le nitrure d'aluminium AIN.
Vitrage antisolaire selon l'une des revendications précédentes dans lequel l'empilement comprend en outre au moins une couche protectrice supplémentaire de la ou des couches d'alliage, ladite couche supplémentaire étant constituée d'un matériau choisi dans le groupe constitué par Ti, Mo, Al, Nb, Sn, Zn et leurs alliages, NiCr, TiN, NbN, la ou lesdites couches protectrices supplémentaires étant disposées au contact et respectivement au dessus et/ou au dessous de la ou des couches fonctionnelles, et ayant une épaisseur géométrique comprise entre environ 1 nm et environ 5 nm.
PCT/FR2014/051039 2013-05-03 2014-04-30 Vitrage de controle solaire comprenant une couche d'un alliage de zinc et de cuivre WO2014177812A2 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/888,634 US9458055B2 (en) 2013-05-03 2014-04-30 Solar-control glazing unit comprising a layer of a zinc and copper alloy
EP14727604.2A EP2991827B1 (fr) 2013-05-03 2014-04-30 Vitrage de controle solaire comprenant une couche d'un alliage de zinc et de cuivre
CA2910317A CA2910317C (fr) 2013-05-03 2014-04-30 Vitrage de controle solaire comprenant une couche d'un alliage de zinc et de cuivre
ES14727604.2T ES2640109T3 (es) 2013-05-03 2014-04-30 Acristalamiento de control solar que comprende una capa de una aleación de cinc y de cobre
BR112015026873-0A BR112015026873B1 (pt) 2013-05-03 2014-04-30 Vidraça com propriedade de controle solar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1354094A FR3005313B1 (fr) 2013-05-03 2013-05-03 Vitrage de controle solaire comprenant une couche d'un alliage de zinc et de cuivre
FR1354094 2013-05-03

Publications (2)

Publication Number Publication Date
WO2014177812A2 true WO2014177812A2 (fr) 2014-11-06
WO2014177812A3 WO2014177812A3 (fr) 2015-04-23

Family

ID=49546479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/051039 WO2014177812A2 (fr) 2013-05-03 2014-04-30 Vitrage de controle solaire comprenant une couche d'un alliage de zinc et de cuivre

Country Status (9)

Country Link
US (1) US9458055B2 (fr)
EP (1) EP2991827B1 (fr)
BR (1) BR112015026873B1 (fr)
CA (1) CA2910317C (fr)
ES (1) ES2640109T3 (fr)
FR (1) FR3005313B1 (fr)
PL (1) PL2991827T3 (fr)
PT (1) PT2991827T (fr)
WO (1) WO2014177812A2 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3612867A4 (fr) 2017-04-17 2021-01-06 3e Nano Inc. Revêtements de régulation d'énergie, structures, dispositifs, et procédés de fabrication associés

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943484A (en) 1986-08-20 1990-07-24 Libbey-Owens-Ford Co. Solar control glass assembly and method of making same
WO2001021540A1 (fr) 1999-09-23 2001-03-29 Saint-Gobain Glass France Vitrage muni d'un empilement de couches minces agissant sur le rayonnement solaire

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7572517B2 (en) * 2002-07-08 2009-08-11 Target Technology Company, Llc Reflective or semi-reflective metal alloy coatings
US9263609B2 (en) * 2006-05-24 2016-02-16 Atotech Deutschland Gmbh Metal plating composition and method for the deposition of copper—zinc—tin suitable for manufacturing thin film solar cell
JP4492604B2 (ja) * 2006-11-10 2010-06-30 Tdk株式会社 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリおよびハードディスク装置
CN101830644B (zh) * 2010-05-14 2012-11-14 中国科学院上海技术物理研究所 一种高稳定性汽车镀膜玻璃膜系
CN102453876A (zh) * 2010-10-19 2012-05-16 鸿富锦精密工业(深圳)有限公司 镀膜件及其制备方法
FR2981646B1 (fr) * 2011-10-21 2013-10-25 Saint Gobain Vitrage de controle solaire comprenant une couche d'un alliage nicu
CN102766893B (zh) * 2012-07-24 2014-12-10 上海交通大学 一种可图形化纳米多孔铜的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943484A (en) 1986-08-20 1990-07-24 Libbey-Owens-Ford Co. Solar control glass assembly and method of making same
WO2001021540A1 (fr) 1999-09-23 2001-03-29 Saint-Gobain Glass France Vitrage muni d'un empilement de couches minces agissant sur le rayonnement solaire

Also Published As

Publication number Publication date
US20160068432A1 (en) 2016-03-10
ES2640109T3 (es) 2017-10-31
CA2910317C (fr) 2021-05-04
EP2991827B1 (fr) 2017-06-14
BR112015026873A2 (pt) 2017-07-25
US9458055B2 (en) 2016-10-04
CA2910317A1 (fr) 2014-11-06
EP2991827A2 (fr) 2016-03-09
FR3005313B1 (fr) 2016-05-27
PL2991827T3 (pl) 2017-11-30
WO2014177812A3 (fr) 2015-04-23
FR3005313A1 (fr) 2014-11-07
BR112015026873B1 (pt) 2021-08-10
PT2991827T (pt) 2017-09-11

Similar Documents

Publication Publication Date Title
EP2577368B1 (fr) Vitrage de contrôle solaire à faible facteur solaire
EP2828215B1 (fr) Vitrage de controle solaire
EP1663895B1 (fr) Substrat transparent revetu d un empilement de couches mince s a proprietes de reflexion dans l infrarouge et/ou dans le domaine du rayonnement solaire
EP2768784B1 (fr) VITRAGE DE CONTROLE SOLAIRE COMPRENANT UNE COUCHE D'UN ALLIAGE Ni/Cu
EP1888476A1 (fr) Empilage anti-solaire
EP2603469B1 (fr) Vitrage a proprietes antisolaires
EP2276710A1 (fr) Vitrage a controle solaire
EP3347321B1 (fr) Vitrage comprenant un revetement fonctionnel
EP3645478B1 (fr) Vitrage a proprietes antisolaires comprenant une couche d'oxynitrure de titane
EP2986577B1 (fr) Vitrage de controle solaire comprenant deux couches metalliques a base de nickel
EP3055265B1 (fr) Vitrage de contrôle thermique
EP2991827B1 (fr) Vitrage de controle solaire comprenant une couche d'un alliage de zinc et de cuivre
FR3068031B1 (fr) Vitrage a proprietes antisolaires comprenant une couche d'oxynitrure de titane
EP2768783B1 (fr) Vitrage isolant a fort coefficient de transmission lumineuse
EP4110739A1 (fr) Vitrage de controle solaire comprenant une couche de nitrure de titane
EP3419946B1 (fr) Vitrage de contrôle solaire comprenant une couche d'un alliage nicucr
WO2021004873A1 (fr) Vitrage a double couche de tin pour controle solaire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14727604

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2014727604

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014727604

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2910317

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14888634

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015026873

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015026873

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151022