WO2014176480A1 - User equipment and method for feedback of user equipment performance metrics during dynamic radio switching - Google Patents
User equipment and method for feedback of user equipment performance metrics during dynamic radio switching Download PDFInfo
- Publication number
- WO2014176480A1 WO2014176480A1 PCT/US2014/035409 US2014035409W WO2014176480A1 WO 2014176480 A1 WO2014176480 A1 WO 2014176480A1 US 2014035409 W US2014035409 W US 2014035409W WO 2014176480 A1 WO2014176480 A1 WO 2014176480A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radio
- performance metrics
- user equipment
- rat
- radios
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000004891 communication Methods 0.000 claims abstract description 22
- 238000005516 engineering process Methods 0.000 claims abstract description 14
- GVVPGTZRZFNKDS-JXMROGBWSA-N geranyl diphosphate Chemical compound CC(C)=CCC\C(C)=C\CO[P@](O)(=O)OP(O)(O)=O GVVPGTZRZFNKDS-JXMROGBWSA-N 0.000 claims description 9
- 238000012546 transfer Methods 0.000 claims description 9
- 230000015654 memory Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000005291 magnetic effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000004931 aggregating effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/10—Architectures or entities
- H04L65/1016—IP multimedia subsystem [IMS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W68/00—User notification, e.g. alerting and paging, for incoming communication, change of service or the like
- H04W68/02—Arrangements for increasing efficiency of notification or paging channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
- H04J11/0023—Interference mitigation or co-ordination
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
- H04J11/0023—Interference mitigation or co-ordination
- H04J11/005—Interference mitigation or co-ordination of intercell interference
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/1607—Details of the supervisory signal
- H04L1/1671—Details of the supervisory signal the supervisory signal being transmitted together with control information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1812—Hybrid protocols; Hybrid automatic repeat request [HARQ]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/14—Charging, metering or billing arrangements for data wireline or wireless communications
- H04L12/1403—Architecture for metering, charging or billing
- H04L12/1407—Policy-and-charging control [PCC] architecture
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/16—Threshold monitoring
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/12—Avoiding congestion; Recovering from congestion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0032—Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0032—Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
- H04L5/0033—Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation each allocating device acting autonomously, i.e. without negotiation with other allocating devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/005—Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0058—Allocation criteria
- H04L5/0073—Allocation arrangements that take into account other cell interferences
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/10—Architectures or entities
- H04L65/1045—Proxies, e.g. for session initiation protocol [SIP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/1066—Session management
- H04L65/1069—Session establishment or de-establishment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/1066—Session management
- H04L65/1073—Registration or de-registration
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/1066—Session management
- H04L65/1101—Session protocols
- H04L65/1104—Session initiation protocol [SIP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/40—Support for services or applications
- H04L65/403—Arrangements for multi-party communication, e.g. for conferences
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/60—Network streaming of media packets
- H04L65/65—Network streaming protocols, e.g. real-time transport protocol [RTP] or real-time control protocol [RTCP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/60—Network streaming of media packets
- H04L65/75—Media network packet handling
- H04L65/762—Media network packet handling at the source
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/80—Responding to QoS
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/02—Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/08—Protocols for interworking; Protocol conversion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/14—Systems for two-way working
- H04N7/141—Systems for two-way working between two video terminals, e.g. videophone
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/14—Systems for two-way working
- H04N7/141—Systems for two-way working between two video terminals, e.g. videophone
- H04N7/147—Communication arrangements, e.g. identifying the communication as a video-communication, intermediate storage of the signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/14—Systems for two-way working
- H04N7/15—Conference systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/06—Testing, supervising or monitoring using simulated traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0231—Traffic management, e.g. flow control or congestion control based on communication conditions
- H04W28/0236—Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0055—Transmission or use of information for re-establishing the radio link
- H04W36/0066—Transmission or use of information for re-establishing the radio link of control information between different types of networks in order to establish a new radio link in the target network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/70—Services for machine-to-machine communication [M2M] or machine type communication [MTC]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/18—Selecting a network or a communication service
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0212—Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0212—Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
- H04W52/0216—Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/08—Closed loop power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/32—TPC of broadcast or control channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W60/00—Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W68/00—User notification, e.g. alerting and paging, for incoming communication, change of service or the like
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/52—Allocation or scheduling criteria for wireless resources based on load
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/542—Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/14—Direct-mode setup
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/27—Transitions between radio resource control [RRC] states
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/28—Discontinuous transmission [DTX]; Discontinuous reception [DRX]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/005—Discovery of network devices, e.g. terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/22—Processing or transfer of terminal data, e.g. status or physical capabilities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1861—Physical mapping arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Arrangements for allocating sub-channels of the transmission path allocation of payload
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
- H04L5/0055—Physical resource allocation for ACK/NACK
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/47—End-user applications
- H04N21/472—End-user interface for requesting content, additional data or services; End-user interface for interacting with content, e.g. for content reservation or setting reminders, for requesting event notification, for manipulating displayed content
- H04N21/4728—End-user interface for requesting content, additional data or services; End-user interface for interacting with content, e.g. for content reservation or setting reminders, for requesting event notification, for manipulating displayed content for selecting a Region Of Interest [ROI], e.g. for requesting a higher resolution version of a selected region
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/47—End-user applications
- H04N21/478—Supplemental services, e.g. displaying phone caller identification, shopping application
- H04N21/4788—Supplemental services, e.g. displaying phone caller identification, shopping application communicating with other users, e.g. chatting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/60—Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client
- H04N21/63—Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
- H04N21/643—Communication protocols
- H04N21/6437—Real-time Transport Protocol [RTP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/02—Access restriction performed under specific conditions
- H04W48/06—Access restriction performed under specific conditions based on traffic conditions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
- H04W52/146—Uplink power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/242—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/32—TPC of broadcast or control channels
- H04W52/325—Power control of control or pilot channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/18—Management of setup rejection or failure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/30—Connection release
- H04W76/38—Connection release triggered by timers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/06—Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- Embodiments described herein generally relate to wireless networks. Some embodiments relate generally to user equipment feedback in a wireless network.
- Wireless, radio access networks enable mobile devices (e.g., radiotelephones, cellular telephones, user equipment (UE)) to communicate within that network with a fixed landline infrastructure (e.g., base station, evolved node B (eNodeB)).
- a fixed landline infrastructure e.g., base station, evolved node B (eNodeB)
- these radio access networks can include WiFiTM, 3 rd Generation Partnership Projects (3 GPP), or BluetoothTM.
- Typical UEs may be equipped with multiple radios. While it may be desirable to actively transmit on only one radio during an active session due to hardware limitations, energy efficiency considerations, and an overall system performance perspective, it may also be desirable to move the active session across multiple radio access technologies (RATs) in a seamless fashion.
- RATs radio access technologies
- FIG. 1 illustrates a plot of percent of users versus data rate in accordance with a method for feedback of user equipment performance metrics.
- FIG. 2 illustrates an embodiment of a signal flow diagram in accordance with the method for feedback of user equipment performance metrics.
- FIG. 3 illustrates a diagram of an embodiment of a communication system.
- FIG. 4 illustrates a block diagram of an embodiment of user equipment.
- Radio access technology may refer to a radio dedicated to a particular wireless technology.
- a RAT refers to an underlying physical connection method for a radio based communication network.
- Each radio may be configured to support a different RAT (e.g., WiFiTM, 3 GPP, BluetoothTM, 4G, Long Term Evolution (LTE)).
- the WiFiTM may be part of an IEEE 802.1 1 standard.
- base station may be used subsequently to refer to any fixed transceiver apparatus that may communicate using one or more particular radio technologies.
- base station can refer to an access point, an eNodeB, or a cell site.
- User equipment may include a plurality of radios each associated with a different RAT of multiple RATs that may select various networks or be "steered" to those networks.
- the UE RATs can employ network selection or traffic steering between different radio access networks (RAN) such as WiFiTM, 3 GPP, BluetoothTM, 4G, LTE, or other wireless networks.
- RAN radio access networks
- Several solutions, based on UE-centric and network centric techniques may be used for load balancing between one network using a first radio technology (e.g., 3GPP) and second network using a second radio technology (e.g., wireless local area network (WLAN)).
- a first radio technology e.g., 3GPP
- WLAN wireless local area network
- While the UE may be equipped with multiple radios, often it is still desirable to actively transmit on only one radio at a time due to hardware limitations, energy efficiency considerations, and/or an overall system performance perspective. It may also be desirable to move a given active session across one or more (RATs) in a seamless fashion such that minimal disruption to application performance may be observed by the user. For example, this may be true when moving a real-time application flow across RATs or when the channel or interference environment across RATs is changing dynamically.
- One example of moving a real-time application flow across RATs may be when the UE is using a WiFi RAT in a WiFi network for video streaming may have the flexibility to switch to LTE to receive the remainder of the video stream using an LTE RAT.
- the overall user application state at the time of the session transfer is still unavailable at the new radio network at the time of the transfer.
- the state and metrics associated with the application may be useful for the radio network in allocating radio resources to better maintain application quality of service (QoS).
- QoS application quality of service
- MAC proportional fair media access control
- MAC proportional fair media access control
- Unavailability of a user's past throughput knowledge may degrade user/system performance until the system achieves steady state again.
- the user or application performance indicator may be fed back along with the message used to trigger the switching to the new radio network.
- the performance indicator may also be fed back in a separate message following the message used to trigger the switching. In such an embodiment, the delay between the session transfer and the feedback of the performance indicator should be reduced as much as possible.
- the past performance indicators may be part of the metric that the scheduler uses to determine how to efficiently and fairly allocate resources to its users (e.g., UEs). Therefore, with UE feedback of such performance indicators to their new radio, the schedulers may allocate the resources based on more accurate metrics and, hence, improve the overall performance.
- the UE may also feedback certain QoS metrics per application.
- the network can then allocate resources to maintain a desired QoS of the application without interruption.
- Examples of UE/application performance metrics may include: UE time-averaged throughput for a proportional- fair scheduler, video buffer size for streaming data, and/or quality of experience (QoE) metrics. These performance metrics are for purposes of illustration only. The present embodiments are not limited to any certain performance metrics.
- the UE may feedback its past time-averaged throughput measured over a certain time window (i.e., latency time scale of the scheduler) to the new RAT.
- a proportional- fair scheduler aims to optimize the sum log throughput of its users.
- the sum log throughput may be a metric that balances between total data rate and UE fairness.
- a proportional- fair scheduler may compare the metric, instantaneous rate divided by smooth- throughput, and selects the UE with the highest value of the metric to be scheduled.
- the overall performance for proportional- fair schedulers may be improved and network- wide sum log throughput can be improved without disruption due to session transfer.
- FIG. 1 illustrates a plot of percent of users versus data rate (Mbps). The figure shows that, with feedback of the time- averaged throughput metric, the overall fairness may be improved for two different UE-centric RAT selection rules.
- throughput-based metrics may include measurements related to "on-time" throughput.
- On-time throughput may capture the probability of receiving a packet before its delay deadline. This metric may be useful for a scheduler that has maximized a number of UE receiving their targeted on-time throughput.
- the UE may also feedback their video buffer size for streaming data.
- the buffer size may be fed back to the new radio if the UE is receiving streaming video from the base station.
- the scheduler may have a reasonable estimate of the buffer size based on acknowledgement messages from the UE.
- the scheduler may no longer have an estimate on the buffer size of the video. Though such information may be exchanged among the schedulers through a backbone, the UE feedback can be a more timely approach to ensure a smooth transition between RATs.
- the UE may also feedback QoE metrics to the new RAT.
- QoE metrics include, but are not limited to, throughput, metrics indicating acceptable video viewing quality (e.g., few dropped frames, low jittering), or metrics indicating acceptable voice over internet protocol (VoIP) conversation (e.g., short packet delay, no interruption of the conversation).
- VoIP voice over internet protocol
- FIG. 2 illustrates a signal flow diagram for a session transfer between RATs with UE feedback of performance metrics.
- the UE receives an indication 201 from a first base station (BS1), associated with a first RAT, that the UE should switch its session to a second base station (BS2).
- the UE transmits a message 203 to the second base station to trigger the switch.
- the UE transmits its performance metrics to the second base station.
- the UE also switches its internal radio from the RAT associated with the first base station to the RAT associated with the second base station.
- the first base station may be a 3 GPP eNodeB and the second base station may be a WiFi access point.
- the UE may be running a session wherein it is streaming video from the first base station.
- the first base station instructs the UE to switch.
- the UE determines that the second base station is the closest base station and switches its session to the second base station necessitating switching from the 3GPP RAT to the WiFi RAT.
- the UE feedback of performance metrics during dynamic RAT switching may improve RAT switching in multi-RAT networks.
- the UE feedback indicators/metrics of application performance to overcome the lack of information exchange between schedulers of uncoordinated RATs.
- the performance indicators may provide useful information to the new scheduler to improve the proportional fair throughput as well as the QoE performance across applications. By aggregating the performance indicator feedback with the RAT selection decision, the information may be immediately used and performance disruption may be reduced.
- FIG. 3 illustrates a diagram of an embodiment of a wireless communication system comprising the UE in a multiple base station
- the illustrated communication system includes a plurality of antennas 302, 303 for communicating with the UE 301.
- the antennas 302, 303 may be eNodeB's and/or base stations for communicating in a cellular environment.
- the antennas 302, 303 may also be access points (AP) for communicating in a WiFi environment.
- AP access points
- the first antenna 302 may be an eNodeB with a base station to enable the UE 301 to communicate in a 3 GPP environment while the second antenna 303 may be an access point to enable the UE 301 to communicate in a WiFi environment.
- the method for UE feedback of performance metrics may be used in the communication system to enable it to seamlessly switch between the 3 GPP environment to the WiFi environment.
- the UE 301 may be executing an application that is interfacing with the 3GPP antenna 302 by streaming video.
- the UE transmits its performance metrics to the WiFi AP 303 RAT prior to switching to the UE 301 switching from using its 3 GPP RAT to its WiFi RAT.
- Such a switch may be accomplished using the signaling method illustrated in FIG. 2.
- the UE 301 may thus switch from a first radio associated with a first RAT of the communication system to a second radio associated with a second RAT of the communication system.
- Each of the RATs may be associated with a different network or communication system.
- the first antenna 302 may be part of a first network or communication system and the second antenna 303 may be part of a second network or communication system.
- the user performance metric may be fed back to the base station/access point (BS/AP) to help in making scheduling decisions.
- the user performance metric can be exchanged across RATs within UEs and UEs may then feed back this information to their BS/AP through the new UE RAT. Additionally, the user performance metric can be fed back through the old RAT and exchanged between BS's/AP's over a backbone or between schedulers for different RATs if the two RATs are located in the same AP.
- FIG. 4 is a block diagram illustrating a machine in the example form of user equipment 400, within which a set or sequence of instructions may be executed to cause the machine to perform any one of the methodologies discussed herein, according to an example embodiment.
- the machine operates as a standalone device or may be connected (e.g., networked) to other machines.
- the machine may operate in the capacity of either a server or a client machine in server-client network environments, or it may act as a peer machine in peer-to-peer (or distributed) network environments.
- the machine may be a mobile
- a communication device e.g., cellular telephone
- a computer e.g., cellular telephone
- PC personal computer
- PDA personal digital assistant
- any machine capable of executing instructions (sequential or otherwise) that specify actions to be taken by that machine.
- machine shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.
- processor-based system shall be taken to include any set of one or more machines that are controlled by or operated by a processor (e.g., a computer) to individually or jointly execute instructions to perform any one or more of the methodologies discussed herein.
- Example user equipment 400 includes at least one processor 402 (e.g., a central processing unit (CPU), a graphics processing unit (GPU) or both, processor cores, compute nodes, etc.), a main memory 404 and a static memory 406, which communicate with each other via a link 408 (e.g., bus).
- the user equipment 400 may further include a video display unit 410 and an
- the alphanumeric input device 412 e.g., a keypad
- the video display unit 410 and input device 412 are incorporated into a touch screen display.
- the user equipment 400 may additionally include a storage device 416 (e.g., a drive unit), a signal generation device 418 (e.g., a speaker), a network interface device 420, and one or more sensors (not shown).
- the storage device 416 includes a machine-readable medium 422 on which is stored one or more sets of data structures and instructions 424 (e.g., software) embodying or utilized by any one or more of the methodologies or functions described herein.
- the instructions 424 may also reside, completely or at least partially, within the main memory 404, static memory 406, and/or within the processor 402 during execution thereof by the user equipment 400, with the main memory 404, static memory 406, and the processor 402 also constituting machine-readable media.
- machine-readable medium 422 is illustrated in an example embodiment to be a single medium, the term “machine-readable medium” may include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more instructions 424.
- the term “machine-readable medium” shall also be taken to include any tangible medium that is capable of storing, encoding or carrying instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present disclosure or that is capable of storing, encoding or carrying data structures utilized by or associated with such instructions.
- the term “machine-readable medium” shall accordingly be taken to include, but not be limited to, solid-state memories, and optical and magnetic media. Specific examples of machine-readable media include nonvolatile memory, including but not limited to, by way of example,
- semiconductor memory devices e.g., electrically programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM)
- EPROM electrically programmable read-only memory
- EEPROM electrically erasable programmable read-only memory
- flash memory devices e.g., magnetic disks such as internal hard disks and removable disks; magneto-optical disks; and CD-ROM and DVD- ROM disks.
- the instructions 424 may further be transmitted or received over a communications network 426 using a transmission medium via the network interface device 420 utilizing any one of a number of well-known transfer protocols (e.g., HTTP).
- Examples of communication networks include a local area network (LAN), a wide area network (WAN), a wireless local area network (WLAN) the Internet, mobile telephone networks, plain old telephone (POTS) networks, and wireless data networks (e.g., WI-FITM (IEEE 802.1 1), 3 GPP, 4G LTE/LTE-A or WiMAX networks).
- transmission medium shall be taken to include any intangible medium that is capable of storing, encoding, or carrying instructions for execution by the machine, and includes digital or analog communications signals or other intangible medium to facilitate communication of such software.
- the network interface device may include one or more antennas for communicating with the wireless network.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Multimedia (AREA)
- Business, Economics & Management (AREA)
- General Business, Economics & Management (AREA)
- Databases & Information Systems (AREA)
- Computer Security & Cryptography (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
- Telephonic Communication Services (AREA)
- Communication Control (AREA)
- Computer And Data Communications (AREA)
- Human Computer Interaction (AREA)
- General Engineering & Computer Science (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
An embodiment of a method for user equipment feedback of performance metrics during dynamic radio switching is disclosed. The method may include the UE receiving an indication to switch from a first radio associated with a first radio access technology (RAT) of a communication system to a second radio associated with a second RAT of the communication system. The UE transmits the performance metrics to the second radio and switches from a first radio of the plurality of radios to a second radio of the plurality of radios, the first radio associated with the first RAT and the second radio associated with the second RAT.
Description
USER EQUIPMENT AND METHOD FOR FEEDBACK OF USER EQUIPMENT PERFORMANCE METRICS DURING DYNAMIC RADIO
SWITCHING
RELATED APPLICATION
[0001] This application claims the benefit of priority to U.S. Patent Application Serial No. 14/107,400, filed December 16, 2013, which claims the benefit of priority to U.S. Provisional Patent Application Serial No. 61/816,662, filed April 26, 2013, each of which is incorporated herein by reference in its entirety.
TECHNICAL FIELD
[0002] Embodiments described herein generally relate to wireless networks. Some embodiments relate generally to user equipment feedback in a wireless network.
BACKGROUND
[0003] Wireless, radio access networks (RAN) enable mobile devices (e.g., radiotelephones, cellular telephones, user equipment (UE)) to communicate within that network with a fixed landline infrastructure (e.g., base station, evolved node B (eNodeB)). For example, these radio access networks can include WiFi™, 3rd Generation Partnership Projects (3 GPP), or Bluetooth™.
[0004] Typical UEs may be equipped with multiple radios. While it may be desirable to actively transmit on only one radio during an active session due to hardware limitations, energy efficiency considerations, and an overall system performance perspective, it may also be desirable to move the active session across multiple radio access technologies (RATs) in a seamless fashion.
[0005] There are general needs for dynamic radio switching in user equipment.
BRIEF DESCRIPTION OF THE DRAWINGS
[0006] FIG. 1 illustrates a plot of percent of users versus data rate in accordance with a method for feedback of user equipment performance metrics.
[0007] FIG. 2 illustrates an embodiment of a signal flow diagram in accordance with the method for feedback of user equipment performance metrics.
[0008] FIG. 3 illustrates a diagram of an embodiment of a communication system.
[0009] FIG. 4 illustrates a block diagram of an embodiment of user equipment.
DETAILED DESCRIPTION
[0010] Subsequent use of the term radio access technology (RAT) may refer to a radio dedicated to a particular wireless technology. As is known by one of ordinary skill in the art, a RAT refers to an underlying physical connection method for a radio based communication network. Each radio may be configured to support a different RAT (e.g., WiFi™, 3 GPP, Bluetooth™, 4G, Long Term Evolution (LTE)). The WiFi™ may be part of an IEEE 802.1 1 standard.
[0011] The term "base station" may be used subsequently to refer to any fixed transceiver apparatus that may communicate using one or more particular radio technologies. For example, base station can refer to an access point, an eNodeB, or a cell site.
[0012] User equipment (UE) may include a plurality of radios each associated with a different RAT of multiple RATs that may select various networks or be "steered" to those networks. For example, the UE RATs can employ network selection or traffic steering between different radio access networks (RAN) such as WiFi™, 3 GPP, Bluetooth™, 4G, LTE, or other wireless networks. Several solutions, based on UE-centric and network centric techniques may be used for load balancing between one network using a first radio technology (e.g., 3GPP) and second network using a second radio technology (e.g., wireless local area network (WLAN)).
[0013] While the UE may be equipped with multiple radios, often it is still desirable to actively transmit on only one radio at a time due to hardware limitations, energy efficiency considerations, and/or an overall system performance perspective. It may also be desirable to move a given active session across one or more (RATs) in a seamless fashion such that minimal disruption to application performance may be observed by the user. For example, this may be true when moving a real-time application flow across RATs or when the channel or interference environment across RATs is changing dynamically. One example of moving a real-time application flow across RATs may be when the UE is using a WiFi RAT in a WiFi network for video streaming may have the flexibility to switch to LTE to receive the remainder of the video stream using an LTE RAT.
[0014] While several architectures and mobility protocols support fast session transfer, the overall user application state at the time of the session transfer is still unavailable at the new radio network at the time of the transfer. The state and metrics associated with the application may be useful for the radio network in allocating radio resources to better maintain application quality of service (QoS). For example, a proportional fair media access control (MAC) scheduler for a given RAT may rely on past throughput of the user to make its scheduling decisions across users. Unavailability of a user's past throughput knowledge may degrade user/system performance until the system achieves steady state again.
[0015] When UEs are allowed to dynamically switch between different radios, there may be a temporary performance degradation during the RAT transition. For example, cooperation between two or more radio networks may not be available because the two radios on the network side may not be collocated in the same physical devices or a backhaul interface cannot support high signaling overhead for RAT coordination.
[0016] These and other problems may be solved by the UE feeding back its application state/performance metrics to the new RAT at the time a session is transferred to the new RAT. There may be a performance improvement when such feedback is made available to the new radio network. Thus, it may be
important for the UE to feedback the past user performance indicator(s) (e.g., throughput) of their past application performance to the new network controller/scheduler in order to assist the scheduler of the new RAT.
[0017] The user or application performance indicator may be fed back along with the message used to trigger the switching to the new radio network. The performance indicator may also be fed back in a separate message following the message used to trigger the switching. In such an embodiment, the delay between the session transfer and the feedback of the performance indicator should be reduced as much as possible.
[0018] The past performance indicators may be part of the metric that the scheduler uses to determine how to efficiently and fairly allocate resources to its users (e.g., UEs). Therefore, with UE feedback of such performance indicators to their new radio, the schedulers may allocate the resources based on more accurate metrics and, hence, improve the overall performance.
[0019] The UE may also feedback certain QoS metrics per application. The network can then allocate resources to maintain a desired QoS of the application without interruption.
[0020] Examples of UE/application performance metrics may include: UE time-averaged throughput for a proportional- fair scheduler, video buffer size for streaming data, and/or quality of experience (QoE) metrics. These performance metrics are for purposes of illustration only. The present embodiments are not limited to any certain performance metrics.
[0021] The UE may feedback its past time-averaged throughput measured over a certain time window (i.e., latency time scale of the scheduler) to the new RAT. A proportional- fair scheduler aims to optimize the sum log throughput of its users. The sum log throughput may be a metric that balances between total data rate and UE fairness. When performing resource allocation, a proportional- fair scheduler may compare the metric, instantaneous rate divided by smooth- throughput, and selects the UE with the highest value of the metric to be scheduled. By providing the smooth-throughput metric, the overall performance for proportional- fair schedulers may be improved and network- wide sum log throughput can be improved without disruption due to session transfer.
[0022] FIG. 1 illustrates a plot of percent of users versus data rate (Mbps). The figure shows that, with feedback of the time- averaged throughput metric, the overall fairness may be improved for two different UE-centric RAT selection rules.
[0023] Other examples of throughput-based metrics may include measurements related to "on-time" throughput. On-time throughput may capture the probability of receiving a packet before its delay deadline. This metric may be useful for a scheduler that has maximized a number of UE receiving their targeted on-time throughput.
[0024] The UE may also feedback their video buffer size for streaming data. The buffer size may be fed back to the new radio if the UE is receiving streaming video from the base station. When the UE connects to only one radio, the scheduler may have a reasonable estimate of the buffer size based on acknowledgement messages from the UE. However, when the UE is switched to a different RAT, the scheduler may no longer have an estimate on the buffer size of the video. Though such information may be exchanged among the schedulers through a backbone, the UE feedback can be a more timely approach to ensure a smooth transition between RATs.
[0025] The UE may also feedback QoE metrics to the new RAT. QoE metrics include, but are not limited to, throughput, metrics indicating acceptable video viewing quality (e.g., few dropped frames, low jittering), or metrics indicating acceptable voice over internet protocol (VoIP) conversation (e.g., short packet delay, no interruption of the conversation).
[0026] FIG. 2 illustrates a signal flow diagram for a session transfer between RATs with UE feedback of performance metrics. The UE receives an indication 201 from a first base station (BS1), associated with a first RAT, that the UE should switch its session to a second base station (BS2). The UE transmits a message 203 to the second base station to trigger the switch. As part of that message or in an optional separate message 207, the UE transmits its performance metrics to the second base station. During this session switch, the UE also switches its internal radio from the RAT associated with the first base station to the RAT associated with the second base station.
[0027] As an example of operation, the first base station may be a 3 GPP eNodeB and the second base station may be a WiFi access point. The UE may be running a session wherein it is streaming video from the first base station. As the UE moves away from the first base station and closer to the second base station, the first base station instructs the UE to switch. The UE determines that the second base station is the closest base station and switches its session to the second base station necessitating switching from the 3GPP RAT to the WiFi RAT.
[0028] The UE feedback of performance metrics during dynamic RAT switching may improve RAT switching in multi-RAT networks. The UE feedback indicators/metrics of application performance to overcome the lack of information exchange between schedulers of uncoordinated RATs. The performance indicators may provide useful information to the new scheduler to improve the proportional fair throughput as well as the QoE performance across applications. By aggregating the performance indicator feedback with the RAT selection decision, the information may be immediately used and performance disruption may be reduced.
[0029] FIG. 3 illustrates a diagram of an embodiment of a wireless communication system comprising the UE in a multiple base station
environment. The illustrated communication system includes a plurality of antennas 302, 303 for communicating with the UE 301.
[0030] The antennas 302, 303 may be eNodeB's and/or base stations for communicating in a cellular environment. The antennas 302, 303 may also be access points (AP) for communicating in a WiFi environment. For example, the first antenna 302 may be an eNodeB with a base station to enable the UE 301 to communicate in a 3 GPP environment while the second antenna 303 may be an access point to enable the UE 301 to communicate in a WiFi environment.
[0031] The method for UE feedback of performance metrics may be used in the communication system to enable it to seamlessly switch between the 3 GPP environment to the WiFi environment. In such a scenario, the UE 301 may be executing an application that is interfacing with the 3GPP antenna 302 by streaming video. As the UE 3012 moves away from the 3GPP antenna 302 and
gets within range of the WiFi AP 303, the UE transmits its performance metrics to the WiFi AP 303 RAT prior to switching to the UE 301 switching from using its 3 GPP RAT to its WiFi RAT. This switches the UE 301 from communicating with the 3GPP eNodeB 302 to the WiFi access point 303. Such a switch may be accomplished using the signaling method illustrated in FIG. 2.
[0032] The UE 301 may thus switch from a first radio associated with a first RAT of the communication system to a second radio associated with a second RAT of the communication system. Each of the RATs may be associated with a different network or communication system. For example, the first antenna 302 may be part of a first network or communication system and the second antenna 303 may be part of a second network or communication system.
[0033] In the above embodiments, the user performance metric may be fed back to the base station/access point (BS/AP) to help in making scheduling decisions. The user performance metric can be exchanged across RATs within UEs and UEs may then feed back this information to their BS/AP through the new UE RAT. Additionally, the user performance metric can be fed back through the old RAT and exchanged between BS's/AP's over a backbone or between schedulers for different RATs if the two RATs are located in the same AP.
[0034] FIG. 4 is a block diagram illustrating a machine in the example form of user equipment 400, within which a set or sequence of instructions may be executed to cause the machine to perform any one of the methodologies discussed herein, according to an example embodiment. In alternative embodiments, the machine operates as a standalone device or may be connected (e.g., networked) to other machines. In a networked deployment, the machine may operate in the capacity of either a server or a client machine in server-client network environments, or it may act as a peer machine in peer-to-peer (or distributed) network environments. The machine may be a mobile
communication device (e.g., cellular telephone), a computer, a personal computer (PC), a tablet PC, a hybrid tablet, a personal digital assistant (PDA), or any machine capable of executing instructions (sequential or otherwise) that specify actions to be taken by that machine. Further, while only a single machine
is illustrated, the term "machine" shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein. Similarly, the term "processor-based system" shall be taken to include any set of one or more machines that are controlled by or operated by a processor (e.g., a computer) to individually or jointly execute instructions to perform any one or more of the methodologies discussed herein.
[0035] Example user equipment 400 includes at least one processor 402 (e.g., a central processing unit (CPU), a graphics processing unit (GPU) or both, processor cores, compute nodes, etc.), a main memory 404 and a static memory 406, which communicate with each other via a link 408 (e.g., bus). The user equipment 400 may further include a video display unit 410 and an
alphanumeric input device 412 (e.g., a keypad). In one embodiment, the video display unit 410 and input device 412 are incorporated into a touch screen display. The user equipment 400 may additionally include a storage device 416 (e.g., a drive unit), a signal generation device 418 (e.g., a speaker), a network interface device 420, and one or more sensors (not shown).
[0036] The storage device 416 includes a machine-readable medium 422 on which is stored one or more sets of data structures and instructions 424 (e.g., software) embodying or utilized by any one or more of the methodologies or functions described herein. The instructions 424 may also reside, completely or at least partially, within the main memory 404, static memory 406, and/or within the processor 402 during execution thereof by the user equipment 400, with the main memory 404, static memory 406, and the processor 402 also constituting machine-readable media.
[0037] While the machine-readable medium 422 is illustrated in an example embodiment to be a single medium, the term "machine-readable medium" may include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more instructions 424. The term "machine-readable medium" shall also be taken to include any tangible medium that is capable of storing, encoding or carrying instructions for execution by the machine and that cause the machine to perform
any one or more of the methodologies of the present disclosure or that is capable of storing, encoding or carrying data structures utilized by or associated with such instructions. The term "machine-readable medium" shall accordingly be taken to include, but not be limited to, solid-state memories, and optical and magnetic media. Specific examples of machine-readable media include nonvolatile memory, including but not limited to, by way of example,
semiconductor memory devices (e.g., electrically programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM)) and flash memory devices; magnetic disks such as internal hard disks and removable disks; magneto-optical disks; and CD-ROM and DVD- ROM disks.
[0038] The instructions 424 may further be transmitted or received over a communications network 426 using a transmission medium via the network interface device 420 utilizing any one of a number of well-known transfer protocols (e.g., HTTP). Examples of communication networks include a local area network (LAN), a wide area network (WAN), a wireless local area network (WLAN) the Internet, mobile telephone networks, plain old telephone (POTS) networks, and wireless data networks (e.g., WI-FI™ (IEEE 802.1 1), 3 GPP, 4G LTE/LTE-A or WiMAX networks). The term "transmission medium" shall be taken to include any intangible medium that is capable of storing, encoding, or carrying instructions for execution by the machine, and includes digital or analog communications signals or other intangible medium to facilitate communication of such software. The network interface device may include one or more antennas for communicating with the wireless network.
Claims
1. A method for dynamic radio switching with user equipment (UE)
feedback of performance metrics, the UE having a plurality of radios, the method comprising:
the UE receiving an indication to switch from a first radio associated with a first radio access technology (RAT) of a communication system to a second radio associated with a second RAT of the communication system;
the UE transmitting the performance metrics to the second radio; and the UE switching from a first radio of the plurality of radios to a second radio of the plurality of radios, the first radio associated with the first RAT and the second radio associated with the second RAT.
2. The method of claim 1 wherein the UE transmitting the performance metrics to at least one of the base station or the access point associated with the second communication technology comprises the UE transmitting one or more of throughput, UE time-averaged throughput for a proportional- fair scheduler, video buffer size for streaming data, and/or quality of experience (QoE) metrics.
3. The method of claim 2 wherein the QoE metrics comprise throughput, metrics indicating acceptable video viewing quality (e.g., few dropped frames, low jittering), or metrics indicating acceptable voice over internet protocol (VoIP) conversation (e.g., short packet delay, no interruption of the conversation).
4. The method of claim 1 wherein the UE transmitting the performance metrics to at least one of the base station or the access point associated with the second communication technology comprises the UE
transmitting the performance metrics to a first radio associated with the first RAT.
5. The method of claim 1 wherein the performance metrics comprise past application performance of an application being executed by the UE.
6. The method of claim 1 wherein the UE transmitting the performance metrics to the second radio comprises the UE transmitting the performance metrics with the indication used to trigger the switch from the first radio to the second radio.
7. The method of claim 1 wherein the UE transmitting the performance metrics to the second radio comprises the UE transmitting the performance metrics during session transfer.
8. The method of claim 1 wherein the performance metrics are part of a metric used by a scheduler of the communication system to determine how to allocate resources to different UEs.
9. User equipment (UE) for operating in a plurality of wireless networks, the user equipment comprising:
a network interface device to communicate with a plurality of base
stations each having an antenna, the network interface device to receive a transfer session indication from a first base station of the plurality of base stations wherein the first base station communicates with a radio associated with a first radio access technology and the second base station communicates with a radio associated with a second radio access technology;
a plurality of radios, each radio to operate on a different radio access technology; and
a processor coupled to the network interface and the plurality of radios to control operation of the user equipment and dynamically switch
from a first radio of the plurality of radios to a second radio of the plurality of radios, the operation including determining UE performance metrics that are transmitted to a second base station of the plurality of base stations.
10. The user equipment of claim 9 wherein the plurality of radios each
operate on one of IEEE 802.1 1, 3 GPP, 4G LTE/LTE-A or WiMAX network radio access technology.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480017237.9A CN105052202B (en) | 2013-04-26 | 2014-04-25 | User equipment and method during dynamic radio switching for feedback user equipment performance measurement |
EP14788674.1A EP2989827B1 (en) | 2013-04-26 | 2014-04-25 | User equipment and method for feedback of user equipment performance metrics during dynamic radio switching |
HK16105109.9A HK1217145A1 (en) | 2013-04-26 | 2016-05-04 | User equipment and method for feedback of user equipment performance metrics during dynamic radio switching |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361816662P | 2013-04-26 | 2013-04-26 | |
US61/816,662 | 2013-04-26 | ||
US14/107,400 US9392539B2 (en) | 2013-04-26 | 2013-12-16 | User equipment and method for feedback of user equipment performance metrics during dynamic radio switching |
US14/107,400 | 2013-12-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014176480A1 true WO2014176480A1 (en) | 2014-10-30 |
Family
ID=51788911
Family Applications (14)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/062455 WO2014175919A1 (en) | 2013-04-26 | 2013-09-27 | Shared spectrum reassignment in a spectrum sharing context |
PCT/US2013/074692 WO2014175923A1 (en) | 2013-04-26 | 2013-12-12 | Hybrid reference signals for wireless communication |
PCT/US2014/023744 WO2014175968A1 (en) | 2013-04-26 | 2014-03-11 | Uplink enhancements for efficient operation in small cell environments |
PCT/US2014/023022 WO2014175967A1 (en) | 2013-04-26 | 2014-03-11 | Wireless local area network (wlan) selection rules |
PCT/US2014/032032 WO2014175990A1 (en) | 2013-04-26 | 2014-03-27 | Systems, methods, and devices for distributed scheduling for device-to-device interference mitigation |
PCT/US2014/032227 WO2014175997A1 (en) | 2013-04-26 | 2014-03-28 | Systems and methods using a centralized node to collect ran user plane congestion information |
PCT/US2014/032268 WO2014175999A1 (en) | 2013-04-26 | 2014-03-28 | Diameter/xml protocol conversion |
PCT/US2014/033965 WO2014176058A1 (en) | 2013-04-26 | 2014-04-14 | User equipment and methods for adapting system parameters based on extended paging cycles |
PCT/US2014/034337 WO2014176089A1 (en) | 2013-04-26 | 2014-04-16 | Architecture for web-based real-time communications (webrtc) to access internet protocol multimedia subsystem (ims) |
PCT/US2014/034307 WO2014176087A1 (en) | 2013-04-26 | 2014-04-16 | Interactive zooming in video conferencing |
PCT/US2014/034480 WO2014176106A1 (en) | 2013-04-26 | 2014-04-17 | Radio access technology information storage in a mobile network |
PCT/US2014/034966 WO2014176245A1 (en) | 2013-04-26 | 2014-04-22 | System and method for interference cancellation and/or supression on physical downlink shared channel at the user equipment |
PCT/US2014/034879 WO2014176200A1 (en) | 2013-04-26 | 2014-04-22 | An apparatus and method for congestion control in wireless communication networks |
PCT/US2014/035409 WO2014176480A1 (en) | 2013-04-26 | 2014-04-25 | User equipment and method for feedback of user equipment performance metrics during dynamic radio switching |
Family Applications Before (13)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/062455 WO2014175919A1 (en) | 2013-04-26 | 2013-09-27 | Shared spectrum reassignment in a spectrum sharing context |
PCT/US2013/074692 WO2014175923A1 (en) | 2013-04-26 | 2013-12-12 | Hybrid reference signals for wireless communication |
PCT/US2014/023744 WO2014175968A1 (en) | 2013-04-26 | 2014-03-11 | Uplink enhancements for efficient operation in small cell environments |
PCT/US2014/023022 WO2014175967A1 (en) | 2013-04-26 | 2014-03-11 | Wireless local area network (wlan) selection rules |
PCT/US2014/032032 WO2014175990A1 (en) | 2013-04-26 | 2014-03-27 | Systems, methods, and devices for distributed scheduling for device-to-device interference mitigation |
PCT/US2014/032227 WO2014175997A1 (en) | 2013-04-26 | 2014-03-28 | Systems and methods using a centralized node to collect ran user plane congestion information |
PCT/US2014/032268 WO2014175999A1 (en) | 2013-04-26 | 2014-03-28 | Diameter/xml protocol conversion |
PCT/US2014/033965 WO2014176058A1 (en) | 2013-04-26 | 2014-04-14 | User equipment and methods for adapting system parameters based on extended paging cycles |
PCT/US2014/034337 WO2014176089A1 (en) | 2013-04-26 | 2014-04-16 | Architecture for web-based real-time communications (webrtc) to access internet protocol multimedia subsystem (ims) |
PCT/US2014/034307 WO2014176087A1 (en) | 2013-04-26 | 2014-04-16 | Interactive zooming in video conferencing |
PCT/US2014/034480 WO2014176106A1 (en) | 2013-04-26 | 2014-04-17 | Radio access technology information storage in a mobile network |
PCT/US2014/034966 WO2014176245A1 (en) | 2013-04-26 | 2014-04-22 | System and method for interference cancellation and/or supression on physical downlink shared channel at the user equipment |
PCT/US2014/034879 WO2014176200A1 (en) | 2013-04-26 | 2014-04-22 | An apparatus and method for congestion control in wireless communication networks |
Country Status (12)
Country | Link |
---|---|
US (19) | US10306589B2 (en) |
EP (12) | EP2989833B1 (en) |
JP (3) | JP6272984B2 (en) |
KR (4) | KR20150121110A (en) |
CN (13) | CN105144768B (en) |
BR (1) | BR112015024631A2 (en) |
ES (2) | ES2666554T3 (en) |
HK (10) | HK1217140A1 (en) |
HU (2) | HUE037091T2 (en) |
PL (1) | PL2989777T3 (en) |
TW (15) | TWI523555B (en) |
WO (14) | WO2014175919A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105245919A (en) * | 2015-10-08 | 2016-01-13 | 清华大学 | Energy-consumption-optimization adaptive streaming media distribution method for intelligent terminal |
US9288434B2 (en) | 2013-04-26 | 2016-03-15 | Intel IP Corporation | Apparatus and method for congestion control in wireless communication networks |
Families Citing this family (196)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9363133B2 (en) | 2012-09-28 | 2016-06-07 | Avaya Inc. | Distributed application of enterprise policies to Web Real-Time Communications (WebRTC) interactive sessions, and related methods, systems, and computer-readable media |
US10164929B2 (en) | 2012-09-28 | 2018-12-25 | Avaya Inc. | Intelligent notification of requests for real-time online interaction via real-time communications and/or markup protocols, and related methods, systems, and computer-readable media |
US9407302B2 (en) | 2012-12-03 | 2016-08-02 | Intel Corporation | Communication device, mobile terminal, method for requesting information and method for providing information |
US9294458B2 (en) | 2013-03-14 | 2016-03-22 | Avaya Inc. | Managing identity provider (IdP) identifiers for web real-time communications (WebRTC) interactive flows, and related methods, systems, and computer-readable media |
CN105103606B (en) * | 2013-05-09 | 2018-12-11 | 英特尔Ip公司 | The reduction that buffer overflows |
CN105230067A (en) * | 2013-05-20 | 2016-01-06 | 瑞典爱立信有限公司 | Congestion control in communication network |
US10205624B2 (en) | 2013-06-07 | 2019-02-12 | Avaya Inc. | Bandwidth-efficient archiving of real-time interactive flows, and related methods, systems, and computer-readable media |
DK3008931T3 (en) | 2013-06-13 | 2022-05-23 | Ericsson Telefon Ab L M | Control of vehicle-to-vehicle communication using a distribution schedule |
US9525718B2 (en) | 2013-06-30 | 2016-12-20 | Avaya Inc. | Back-to-back virtual web real-time communications (WebRTC) agents, and related methods, systems, and computer-readable media |
US9113030B2 (en) * | 2013-07-25 | 2015-08-18 | Verizon Patent And Licensing Inc. | Multimedia-enhanced emergency call systems |
WO2015010334A1 (en) * | 2013-07-26 | 2015-01-29 | 华为终端有限公司 | Communication method, user equipment and network device |
US9614890B2 (en) | 2013-07-31 | 2017-04-04 | Avaya Inc. | Acquiring and correlating web real-time communications (WEBRTC) interactive flow characteristics, and related methods, systems, and computer-readable media |
CN105359440B (en) * | 2013-08-08 | 2018-06-15 | 英特尔Ip公司 | About the advanced interference elimination method and system of PDSCH at UE |
US9531808B2 (en) | 2013-08-22 | 2016-12-27 | Avaya Inc. | Providing data resource services within enterprise systems for resource level sharing among multiple applications, and related methods, systems, and computer-readable media |
JP6226458B2 (en) * | 2013-08-30 | 2017-11-08 | シャープ株式会社 | Program and base station apparatus |
US10225212B2 (en) | 2013-09-26 | 2019-03-05 | Avaya Inc. | Providing network management based on monitoring quality of service (QOS) characteristics of web real-time communications (WEBRTC) interactive flows, and related methods, systems, and computer-readable media |
US9241289B1 (en) * | 2013-10-23 | 2016-01-19 | Sprint Communications Company L.P. | Dynamic adjustment of cell reselection parameters for a wireless communication device |
US10263952B2 (en) | 2013-10-31 | 2019-04-16 | Avaya Inc. | Providing origin insight for web applications via session traversal utilities for network address translation (STUN) messages, and related methods, systems, and computer-readable media |
US9769214B2 (en) * | 2013-11-05 | 2017-09-19 | Avaya Inc. | Providing reliable session initiation protocol (SIP) signaling for web real-time communications (WEBRTC) interactive flows, and related methods, systems, and computer-readable media |
KR101781770B1 (en) * | 2013-11-08 | 2017-09-25 | 후지쯔 가부시끼가이샤 | Method, apparatus and system for acquiring system information |
US9641310B2 (en) * | 2013-12-13 | 2017-05-02 | Qualcomm Incorporated | Network assisted interference cancellation signaling |
US10129243B2 (en) | 2013-12-27 | 2018-11-13 | Avaya Inc. | Controlling access to traversal using relays around network address translation (TURN) servers using trusted single-use credentials |
US9386275B2 (en) * | 2014-01-06 | 2016-07-05 | Intel IP Corporation | Interactive video conferencing |
KR102313625B1 (en) * | 2014-01-10 | 2021-10-19 | 삼성전자 주식회사 | Method and apparatus for allocating radio resource for device to device communication in mobile communication system |
US9491725B2 (en) * | 2014-01-30 | 2016-11-08 | Intel Corporation | User equipment and methods for device-to-device communication over an LTE air interface |
WO2015120902A1 (en) * | 2014-02-14 | 2015-08-20 | Telefonaktiebolaget L M Ericsson (Publ) | Pcrf assisted apn selection |
WO2015124210A1 (en) * | 2014-02-21 | 2015-08-27 | Telefonaktiebolaget L M Ericsson (Publ) | Service delivery in a communication network |
US9348495B2 (en) | 2014-03-07 | 2016-05-24 | Sony Corporation | Control of large screen display using wireless portable computer and facilitating selection of audio on a headphone |
CN106105084B (en) * | 2014-03-12 | 2019-07-12 | Lg电子株式会社 | The method and device thereof of uplink control channel are sent in the wireless communication system for the use variation for supporting radio resource |
KR102172468B1 (en) * | 2014-03-14 | 2020-10-30 | 삼성전자 주식회사 | Method for user equipment to access ims network via web browser for web real-time communication |
JP6478229B2 (en) * | 2014-03-20 | 2019-03-06 | シャープ株式会社 | Terminal device, base station device, and integrated circuit |
US10420086B2 (en) * | 2014-03-20 | 2019-09-17 | Sharp Kabushiki Kaisha | Terminal device and integrated circuit |
US9294337B2 (en) * | 2014-03-26 | 2016-03-22 | Sonus Networks, Inc. | Methods and systems for integrating independent IMS and WebRTC networks |
US10492219B2 (en) * | 2014-03-30 | 2019-11-26 | Lg Electronics Inc. | Method for transmitting and receiving signal for device-to-device communication in wireless communication system and device therefor |
US9749363B2 (en) * | 2014-04-17 | 2017-08-29 | Avaya Inc. | Application of enterprise policies to web real-time communications (WebRTC) interactive sessions using an enterprise session initiation protocol (SIP) engine, and related methods, systems, and computer-readable media |
US10581927B2 (en) * | 2014-04-17 | 2020-03-03 | Avaya Inc. | Providing web real-time communications (WebRTC) media services via WebRTC-enabled media servers, and related methods, systems, and computer-readable media |
WO2015171063A1 (en) * | 2014-05-08 | 2015-11-12 | Telefonaktiebolaget L M Ericsson (Publ) | Method and apparatus for controlling the activity state of a wireless device having device-to-device communication capabilities |
US20150326362A1 (en) * | 2014-05-08 | 2015-11-12 | Intel IP Corporation | Demodulation reference signal (dmrs) sequence design for device-to-device (d2d) discovery |
JP6261455B2 (en) * | 2014-06-13 | 2018-01-17 | パナソニック株式会社 | Communication control station apparatus, communication terminal apparatus and communication control method |
US9912705B2 (en) * | 2014-06-24 | 2018-03-06 | Avaya Inc. | Enhancing media characteristics during web real-time communications (WebRTC) interactive sessions by using session initiation protocol (SIP) endpoints, and related methods, systems, and computer-readable media |
WO2015199462A1 (en) * | 2014-06-27 | 2015-12-30 | Samsung Electronics Co., Ltd. | Method and apparatus for providing quality of service for web-based real-time communication |
US10728793B2 (en) * | 2014-06-30 | 2020-07-28 | Telefonakitiebolaget L M Ericsson (Publ) | Aggregation of congestion information |
WO2016000788A1 (en) * | 2014-07-04 | 2016-01-07 | Telefonaktiebolaget L M Ericsson (Publ) | Mobility management of user equipment |
CN106256107B (en) | 2014-07-16 | 2020-01-17 | Lg电子株式会社 | Method and apparatus for estimating channel in wireless communication system |
US9705993B1 (en) * | 2014-07-18 | 2017-07-11 | Sprint Communications Company L.P. | Information exchange between a directory assistance application server and a web-RTC engine |
CN105337684B (en) * | 2014-07-25 | 2019-09-13 | 华为技术有限公司 | A kind of method, base station and terminal transmitted, store downlink data |
US9648525B2 (en) * | 2014-08-12 | 2017-05-09 | Qualcomm Incorporated | System and methods for improving intra-frequency cell reselection on a wireless communication device in connected mode |
US10356807B2 (en) * | 2014-08-22 | 2019-07-16 | Qualcomm Incorporated | Techniques for transmitting and receiving channel occupancy identifiers over an unlicensed radio frequency spectrum band |
EP3198812B1 (en) * | 2014-09-25 | 2018-08-15 | Telefonaktiebolaget LM Ericsson (publ) | Congestion mitigation by offloading to non-3gpp networks |
KR20170036744A (en) * | 2014-09-25 | 2017-04-03 | 인텔 아이피 코포레이션 | Apparatuses, systems, and methods for probabilistic transmission of device-to-device (d2d) discovery messages |
US9935807B2 (en) * | 2014-09-26 | 2018-04-03 | Telefonaktiebolaget L M Ericsson (Publ) | Discovery signal design |
US20160098180A1 (en) * | 2014-10-01 | 2016-04-07 | Sony Corporation | Presentation of enlarged content on companion display device |
US9516220B2 (en) | 2014-10-02 | 2016-12-06 | Intel Corporation | Interactive video conferencing |
US9716758B2 (en) * | 2014-10-13 | 2017-07-25 | General Motors Llc | Network-coordinated DRx transmission reduction for a network access device of a telematics-equipped vehicle |
CN105592285B (en) | 2014-10-21 | 2020-04-21 | 华为技术有限公司 | ROI video implementation method and device |
KR20160057873A (en) * | 2014-11-14 | 2016-05-24 | 삼성전자주식회사 | Communication method, electronic apparatus and storage medium |
US10652798B2 (en) * | 2014-11-14 | 2020-05-12 | Motorola Mobility Llc | Method and device for routing traffic of applications installed on a mobile device |
US10021346B2 (en) * | 2014-12-05 | 2018-07-10 | Intel IP Corporation | Interactive video conferencing |
KR102253868B1 (en) | 2014-12-12 | 2021-05-20 | 삼성전자주식회사 | Apparatus and method for operating ad hoc mode in wireless communication network |
JP6436762B2 (en) * | 2014-12-25 | 2018-12-12 | 株式会社野村総合研究所 | Information processing apparatus and service providing method |
WO2016112988A1 (en) * | 2015-01-15 | 2016-07-21 | Sony Corporation | Radio terminal measurements in extended drx |
US10111201B2 (en) * | 2015-01-16 | 2018-10-23 | Telefonaktiebolaget Lm Ericsson (Publ.) | Wireless communication device, core network node and methods therein for extended DRX paging cycle |
CN106165514B (en) * | 2015-02-09 | 2020-07-03 | 诸暨市元畅信息技术咨询服务部 | RLC data packet retransmission method and base station |
US9769646B2 (en) * | 2015-02-26 | 2017-09-19 | T-Mobile Usa, Inc. | Realm translation in an IMS network |
US9661529B2 (en) * | 2015-03-05 | 2017-05-23 | Cisco Technology, Inc. | Congestion mitigation for roamers |
US10129788B2 (en) * | 2015-03-11 | 2018-11-13 | Cisco Technology, Inc. | System and method for deferred delivery of content based on congestion in a network environment |
US9723652B2 (en) * | 2015-04-23 | 2017-08-01 | Acer Incorporated | Device and method of handling cell reselection |
MX367998B (en) | 2015-05-13 | 2019-09-13 | Ericsson Telefon Ab L M | Paging coordination between wireless communication device and core network node. |
EP3295703B8 (en) * | 2015-05-14 | 2021-01-20 | Apple Inc. | Evolved node-b, shared spectrum controller |
US10630717B2 (en) * | 2015-05-15 | 2020-04-21 | Avaya, Inc. | Mitigation of WebRTC attacks using a network edge system |
US9504012B1 (en) * | 2015-05-22 | 2016-11-22 | Sony Corporation | Extended discontinuous reception mechanism |
US10756869B2 (en) * | 2015-08-12 | 2020-08-25 | Apple Inc. | Demodulation in wireless communications |
US9788219B1 (en) * | 2015-08-25 | 2017-10-10 | Amdocs Development Limited | System, method, and computer program for remotely driving mobile web application testing on mobile devices |
US10178414B2 (en) | 2015-10-14 | 2019-01-08 | International Business Machines Corporation | Aggregated region-based reduced bandwidth video streaming |
WO2017065677A1 (en) * | 2015-10-14 | 2017-04-20 | Telefonaktiebolaget Lm Ericsson (Publ) | Managing transitions between different user equipment activity configurations |
US10136392B2 (en) | 2015-11-20 | 2018-11-20 | Geotab Inc. | Big telematics data network communication fault identification system method |
US10127096B2 (en) | 2015-11-20 | 2018-11-13 | Geotab Inc. | Big telematics data network communication fault identification system |
US11223518B2 (en) | 2015-11-20 | 2022-01-11 | Geotab Inc. | Big telematics data network communication fault identification device |
US10299205B2 (en) | 2015-11-20 | 2019-05-21 | Geotab Inc. | Big telematics data network communication fault identification method |
GB201520509D0 (en) | 2015-11-20 | 2016-01-06 | Microsoft Technology Licensing Llc | Communication system |
GB201520519D0 (en) * | 2015-11-20 | 2016-01-06 | Microsoft Technology Licensing Llc | Communication system |
US10382256B2 (en) * | 2015-11-20 | 2019-08-13 | Geotab Inc. | Big telematics data network communication fault identification device |
WO2017105108A1 (en) * | 2015-12-15 | 2017-06-22 | 삼성전자 주식회사 | Device and method for transmitting/receiving data in wireless communication system |
KR102191334B1 (en) * | 2015-12-31 | 2020-12-15 | 후아웨이 테크놀러지 컴퍼니 리미티드 | Mobility management method, terminal, and base station |
EP3484233B1 (en) * | 2016-01-08 | 2022-03-09 | Telefonaktiebolaget LM Ericsson (publ) | Method and device for resumption of rrc state in a cellular network |
CN105657722B (en) * | 2016-03-10 | 2019-06-18 | 北京佰才邦技术有限公司 | Frequency spectrum resource selection method and device |
KR102373794B1 (en) * | 2016-05-02 | 2022-03-14 | 한국전자통신연구원 | Method and appartus for convetrting signaling |
AU2017263285B2 (en) * | 2016-05-11 | 2020-06-25 | Telefonaktiebolaget Lm Ericsson (Publ) | Validation of pal protection areas |
WO2017200432A1 (en) * | 2016-05-17 | 2017-11-23 | Telefonaktiebolaget Lm Ericsson (Publ) | Network node and method for resource allocation for multiple radio access technologies |
US9888420B2 (en) | 2016-06-29 | 2018-02-06 | Alcatel-Lucent Usa Inc. | Processing handovers for mobile terminals capable of interference cancellation |
US9961600B2 (en) * | 2016-06-30 | 2018-05-01 | Qualcomm Incorporated | Techniques for employing antenna switched diversity in wireless communications |
US10419264B2 (en) * | 2016-07-27 | 2019-09-17 | Qualcomm Incorporated | Subframe structure for the co-existence network of sidelink and mission critical mobile devices |
EP3494667B1 (en) * | 2016-08-03 | 2020-12-23 | Telefonaktiebolaget LM Ericsson (PUBL) | Guest user access in the ip multimedia subsystem ims |
US10536955B2 (en) * | 2016-08-12 | 2020-01-14 | Qualcomm Incorporated | Capability coordination across radio access technologies |
US20180054806A1 (en) * | 2016-08-22 | 2018-02-22 | Alcatel-Lucent Usa, Inc. | Systems and methods for decoupling control and data channels in wireless networks |
CN107770141B (en) * | 2016-08-23 | 2022-04-19 | 中兴通讯股份有限公司 | Communication method and device of video conference system |
EP3504911B1 (en) * | 2016-09-01 | 2022-06-01 | Huawei Technologies Co., Ltd. | Method of configuring parameters for a base station |
US10484878B2 (en) * | 2016-09-16 | 2019-11-19 | Qualcomm Incorporated | Mixed-access mode communication for standalone operation on a shared communication medium |
US10756785B2 (en) * | 2016-09-29 | 2020-08-25 | Nokia Technologies Oy | Flexible reference signal design |
US10142886B2 (en) * | 2016-09-30 | 2018-11-27 | Cisco Technology, Inc. | System and method to facilitate group reporting of user equipment congestion information in a network environment |
EP3451604A4 (en) * | 2016-09-30 | 2019-06-05 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Method for transmitting downlink control information, network side device and terminal device |
US10944849B2 (en) * | 2016-09-30 | 2021-03-09 | Extreme Networks, Inc. | Selective policy network device operation |
CN108024335A (en) * | 2016-10-31 | 2018-05-11 | 普天信息技术有限公司 | The dynamic spectrum resource management method and device of a kind of sensory perceptual system |
US10652851B2 (en) * | 2016-11-03 | 2020-05-12 | Huawei Technologies Co., Ltd. | Uplink-based user equipment tracking for connected inactive state |
US10505697B2 (en) | 2016-11-03 | 2019-12-10 | At&T Intellectual Property I, L.P. | Facilitating a mobile device specific physical downlink shared channel resource element mapping indicator |
US10362574B2 (en) * | 2016-11-18 | 2019-07-23 | Qualcomm Incorporated | Uplink resource allocation techniques for shared radio frequency spectrum |
EP3560255B1 (en) * | 2016-12-23 | 2021-02-24 | Telefonaktiebolaget LM Ericsson (PUBL) | Access spectrum assignment |
CN108616905B (en) * | 2016-12-28 | 2021-03-19 | 大唐移动通信设备有限公司 | Method and system for optimizing user plane in narrow-band Internet of things based on honeycomb |
US10212192B2 (en) * | 2017-01-10 | 2019-02-19 | Mavenir Systems, Inc. | Systems and methods for interworking with over the top applications in communications network |
WO2018143909A1 (en) | 2017-01-31 | 2018-08-09 | Hewlett-Packard Development Company, L.P. | Video zoom controls based on received information |
CN112469127B (en) * | 2017-03-20 | 2024-03-19 | 华为技术有限公司 | Communication method, terminal and network equipment |
CN108632005B (en) * | 2017-03-24 | 2023-12-15 | 华为技术有限公司 | Reference signal transmission method, device and system |
CN113395779A (en) * | 2017-03-24 | 2021-09-14 | 中兴通讯股份有限公司 | Processing method and device for beam recovery |
WO2018171783A1 (en) * | 2017-03-24 | 2018-09-27 | 华为技术有限公司 | Method, apparatus and system for signal transmission |
US10091777B1 (en) | 2017-03-31 | 2018-10-02 | At&T Intellectual Property I, L.P. | Facilitating physical downlink shared channel resource element mapping indicator |
WO2018186667A1 (en) | 2017-04-03 | 2018-10-11 | 엘지전자 주식회사 | D2d operation method of terminal in wireless communication system, and terminal using method |
EP3386250A1 (en) | 2017-04-07 | 2018-10-10 | Telefonaktiebolaget LM Ericsson (publ) | A network node, a first communications device and methods therein for monitoring of an information signal in monitoring time periods of different time durations |
KR102418891B1 (en) * | 2017-04-25 | 2022-07-08 | 삼성전자주식회사 | Apparatus and method for controlling of traffic in wireless communication system |
EP3609255B1 (en) * | 2017-04-25 | 2022-06-22 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Signal processing method and apparatus |
CN111148263B (en) * | 2017-05-05 | 2021-04-09 | 华为技术有限公司 | Method and device for transmitting data |
US11356928B2 (en) * | 2017-05-05 | 2022-06-07 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and systems for reducing system information (SI) acquisition time |
US10469298B2 (en) * | 2017-05-12 | 2019-11-05 | Qualcomm Incorporated | Increasing reference signal density in wireless communications |
EP3625988A4 (en) * | 2017-05-14 | 2021-01-27 | Fg Innovation Company Limited | Methods, devices, and systems for beam refinement during handover |
US10592417B2 (en) * | 2017-06-03 | 2020-03-17 | Vmware, Inc. | Video redirection in virtual desktop environments |
US10648829B2 (en) * | 2017-06-08 | 2020-05-12 | Microsoft Technology Licensing, Llc | Selecting content items using map contexts by background applications |
US11050789B2 (en) | 2017-06-15 | 2021-06-29 | Palo Alto Networks, Inc. | Location based security in service provider networks |
US10721272B2 (en) | 2017-06-15 | 2020-07-21 | Palo Alto Networks, Inc. | Mobile equipment identity and/or IOT equipment identity and application identity based security enforcement in service provider networks |
US10708306B2 (en) | 2017-06-15 | 2020-07-07 | Palo Alto Networks, Inc. | Mobile user identity and/or SIM-based IoT identity and application identity based security enforcement in service provider networks |
EP4050845A1 (en) * | 2017-06-15 | 2022-08-31 | Palo Alto Networks, Inc. | Location based security in service provider networks |
US10812532B2 (en) | 2017-06-15 | 2020-10-20 | Palo Alto Networks, Inc. | Security for cellular internet of things in mobile networks |
US10834136B2 (en) | 2017-06-15 | 2020-11-10 | Palo Alto Networks, Inc. | Access point name and application identity based security enforcement in service provider networks |
US10455638B2 (en) * | 2017-07-06 | 2019-10-22 | Qualcomm Incorporated | Techniques and apparatuses for configuring an extended discontinuous reception cycle |
US11425113B2 (en) | 2017-07-21 | 2022-08-23 | Infrared5, Inc. | System and method for using a proxy to communicate between secure and unsecure devices |
KR102325521B1 (en) * | 2017-08-14 | 2021-11-12 | 삼성전자 주식회사 | Method and apparatus for handling network congestion control to rrc-inactive or light-connection device |
WO2019035007A1 (en) | 2017-08-15 | 2019-02-21 | American Well Corporation | Methods and apparatus for remote camera control with intention based controls and machine learning vision state management |
US11082458B2 (en) * | 2017-08-18 | 2021-08-03 | T-Mobile Usa, Inc. | Web access in 5G environments |
US10666857B2 (en) | 2017-09-05 | 2020-05-26 | Facebook, Inc. | Modifying capture of video data by an image capture device based on video data previously captured by the image capture device |
US10868955B2 (en) * | 2017-09-05 | 2020-12-15 | Facebook, Inc. | Modifying capture of video data by an image capture device based on video data previously captured by the image capture device |
US10805521B2 (en) | 2017-09-05 | 2020-10-13 | Facebook, Inc. | Modifying capture of video data by an image capture device based on video data previously captured by the image capture device |
US10666489B2 (en) * | 2017-09-18 | 2020-05-26 | Apple Inc. | Synchronization sequence design for device-to-device communication |
US11323888B2 (en) * | 2017-10-16 | 2022-05-03 | Nokia Technologies Oy | Spectrum sharing adaptation function |
WO2019090672A1 (en) * | 2017-11-10 | 2019-05-16 | Oppo广东移动通信有限公司 | Method for configuring terminal policy, terminal, and network device |
WO2019136645A1 (en) * | 2018-01-10 | 2019-07-18 | Oppo广东移动通信有限公司 | Method for determining state of a terminal device, terminal device, and access network device |
US10405192B2 (en) * | 2018-01-15 | 2019-09-03 | Charter Communications Operating, Llc | Methods and apparatus for allocation and reconciliation of quasi-licensed wireless spectrum across multiple entities |
US10735969B2 (en) * | 2018-02-22 | 2020-08-04 | T-Mobile Usa, Inc. | 600 MHz spectrum access systems and methods |
US10756863B2 (en) | 2018-05-11 | 2020-08-25 | At&T Intellectual Property I, L.P. | Transmitting reference signals in 5G or other next generation communication systems |
US10887843B2 (en) * | 2018-05-11 | 2021-01-05 | Lenovo (Singapore) Pte. Ltd. | Method and apparatus for transmitting an uplink transmission based on a pathloss estimate |
US20190372897A1 (en) * | 2018-05-31 | 2019-12-05 | T-Mobile Usa, Inc. | Systems and methods for congestion measurements in data networks via qos availability |
US10986219B2 (en) | 2018-06-19 | 2021-04-20 | At&T Intellectual Property I, L.P. | LTE fault-tolerant signaling approach |
WO2019241967A1 (en) | 2018-06-21 | 2019-12-26 | Qualcomm Incorporated | Signaling design for non-linear precoding schemes |
US10681559B2 (en) * | 2018-06-29 | 2020-06-09 | Verizon Patent And Licensing Inc. | Method and system for supporting voice calls in 5G new radio environments |
EP3841774A4 (en) * | 2018-08-22 | 2021-10-06 | Telefonaktiebolaget LM Ericsson (publ) | Method and apparatus for enabling spectrum allocation using smart contracts |
CN110933623B (en) * | 2018-09-17 | 2021-08-31 | 华为技术有限公司 | Communication method and device |
KR20200033166A (en) * | 2018-09-19 | 2020-03-27 | 삼성전자주식회사 | Method and apparatus for transmitting and receiving data in a wireless communication system |
CN118574248A (en) | 2018-09-19 | 2024-08-30 | 三星电子株式会社 | Method and apparatus for transmitting and receiving data in wireless communication system |
US10771570B2 (en) * | 2018-10-15 | 2020-09-08 | Citrix Systems, Inc. | Scalable message passing architecture a cloud environment |
US20200154267A1 (en) * | 2018-11-12 | 2020-05-14 | Qualcomm Incorporated | Configuring a maximum number of layers |
US20240259458A1 (en) * | 2018-11-27 | 2024-08-01 | Unify Patente Gmbh & Co. Kg | Computer-implemented method for sharing a data stream displayed on a display of a first client, and communication and collaboration platform |
US20220070027A1 (en) * | 2018-12-19 | 2022-03-03 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods, remote radio units and base band units of a distributed base station system for handling uplink signals |
US10754526B2 (en) | 2018-12-20 | 2020-08-25 | Microsoft Technology Licensing, Llc | Interactive viewing system |
US10942633B2 (en) | 2018-12-20 | 2021-03-09 | Microsoft Technology Licensing, Llc | Interactive viewing and editing system |
KR102240904B1 (en) * | 2019-01-24 | 2021-04-15 | 주식회사 브리지텍 | Metho and apparstus for providing for call center service |
US11343865B2 (en) * | 2019-02-12 | 2022-05-24 | Qualcomm Incorporated | Unicast link management via radio resource control signaling |
US11191077B2 (en) * | 2019-03-11 | 2021-11-30 | Qualcomm Incorporated | Enhanced discovery resource configuration with staggering for directional vehicle to anything (V2X) |
CN113853809B (en) * | 2019-03-29 | 2024-08-09 | 瑞典爱立信有限公司 | UE, network node for handling UE category information |
US10805246B1 (en) | 2019-06-12 | 2020-10-13 | International Business Machines Corporation | Direct communication between a secure application and a local application running on the same device |
WO2021031067A1 (en) * | 2019-08-19 | 2021-02-25 | Qualcomm Incorporated | Suspend and resume techniques with radio access network (ran) and user plane function (upf) buffered downlink data for multi-usim user equipment |
US11012690B2 (en) * | 2019-08-21 | 2021-05-18 | Tencent America LLC | Method and apparatus for video coding |
CN112448875B (en) * | 2019-08-28 | 2023-10-20 | 华为技术有限公司 | Communication processing method, communication processing device and system |
EP3787352B1 (en) * | 2019-08-29 | 2023-05-31 | Nokia Technologies Oy | Method for user equipment's registration update |
US20230156609A1 (en) * | 2019-09-29 | 2023-05-18 | Lenovo (Beijing) Limited | Method and Apparatus for Power Control |
CN111083568A (en) * | 2019-12-13 | 2020-04-28 | 维沃移动通信有限公司 | Video data processing method and electronic equipment |
WO2021171522A1 (en) * | 2020-02-27 | 2021-09-02 | 株式会社Nttドコモ | Terminal, wireless communication method, and base station |
CN111404880B (en) * | 2020-02-28 | 2022-08-23 | 深圳震有科技股份有限公司 | Registration management method of IMS (IP multimedia subsystem), storage medium and intelligent terminal |
US11601831B2 (en) * | 2020-03-05 | 2023-03-07 | Qualcomm Incorporated | Switching reference signals for beam or link failure detection |
GB2596118B (en) | 2020-06-18 | 2022-07-20 | British Telecomm | Cellular telecommunications network |
GB2596128B (en) * | 2020-06-18 | 2022-10-05 | British Telecomm | Cellular telecommunications network |
US11711505B2 (en) | 2020-07-16 | 2023-07-25 | Nokia Technologies Oy | Viewport dependent delivery methods for omnidirectional conversational video |
WO2022030814A1 (en) * | 2020-08-07 | 2022-02-10 | 삼성전자 주식회사 | Method for managing wireless connection of electronic device, and apparatus therefor |
US11496575B2 (en) * | 2020-09-10 | 2022-11-08 | T-Mobile Usa, Inc. | Enhanced messaging as a platform |
CN112367271B (en) * | 2020-09-25 | 2023-04-18 | 福建星网智慧科技有限公司 | AI-based congestion control feature extraction method, device, equipment and medium |
JP7469216B2 (en) * | 2020-11-30 | 2024-04-16 | 株式会社日立製作所 | Communication support system and method |
CN115002785B (en) * | 2021-03-02 | 2024-06-04 | 中国联合网络通信集团有限公司 | Antenna port data processing method and communication device |
US11901983B1 (en) * | 2021-03-17 | 2024-02-13 | T-Mobile Innovations Llc | Selectively assigning uplink transmission layers |
CA3161020A1 (en) * | 2021-05-28 | 2022-11-28 | Comcast Cable Communications, Llc | Multiple access |
US11509408B1 (en) * | 2021-07-30 | 2022-11-22 | Inntot Technologies Private Limited | System and method for large data transmission in digital radio broadcasting |
US20230039328A1 (en) * | 2021-08-06 | 2023-02-09 | Qualcomm Incorporated | Selective use of transmission diversity |
CN113727386B (en) * | 2021-08-09 | 2023-06-23 | 中国联合网络通信集团有限公司 | Communication method and device |
CN114040511B (en) * | 2021-10-11 | 2023-05-16 | 深圳市联平半导体有限公司 | Communication device, OBO counter value method thereof, electronic device and storage medium |
CN113660146B (en) * | 2021-10-20 | 2021-12-21 | 成都数默科技有限公司 | Network boundary traffic acquisition method, device and storage medium |
US11792712B2 (en) | 2021-12-23 | 2023-10-17 | T-Mobile Usa, Inc. | Cell reselection priority assignment based on performance triggers |
US20230205577A1 (en) | 2021-12-29 | 2023-06-29 | Insight Direct Usa, Inc. | Iot edge scheduler module and system |
US11900677B2 (en) | 2022-02-25 | 2024-02-13 | Cisco Technology, Inc. | User-selected multi-view videoconferencing |
US11765052B1 (en) | 2022-03-11 | 2023-09-19 | T-Mobile Usa, Inc. | User equipment hosting for customizable 5G services |
CN118176771A (en) * | 2022-04-28 | 2024-06-11 | Lg电子株式会社 | Method and apparatus for performing data transmission based on congestion indicator in wireless communication system |
US20240098671A1 (en) * | 2022-09-20 | 2024-03-21 | Qualcomm Incorporated | Timing and synchronization techniques for secure networks |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050202823A1 (en) * | 2004-03-12 | 2005-09-15 | Interdigital Technology Corporation | Method and system for switching a radio access technology between wireless communication systems with a multi-mode wireless transmit/receive unit |
EP2046078A1 (en) | 2007-10-02 | 2009-04-08 | Research In Motion Limited | Measurement control for handover from one radio access technology to another |
EP2187677A1 (en) | 2007-09-07 | 2010-05-19 | NTT DoCoMo, Inc. | Mobile communication method, mobile exchange station, radio base station, mobile station |
US20100208607A1 (en) * | 2009-02-13 | 2010-08-19 | Qualcomm Incorporated | Methods and systems for qos translation during handover between wireless networks |
US20110242975A1 (en) * | 2010-03-31 | 2011-10-06 | Qualcomm Incorporated | Single and Dual Internet Protocol Bearer Support |
US20110250888A1 (en) * | 2010-04-13 | 2011-10-13 | Jin Sook Ryu | Method and apparatus for performing cell reselection in wireless communication system |
WO2011150252A1 (en) | 2010-05-26 | 2011-12-01 | Qualcomm Incorporated | Service-based inter-radio access technology, inter-rat, handover |
WO2012044327A1 (en) | 2010-10-01 | 2012-04-05 | Research In Motion Limited | Method and apparatus for avoiding in-device coexistence interference |
Family Cites Families (286)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5331413A (en) | 1992-09-28 | 1994-07-19 | The United States Of America As Represented By The United States National Aeronautics And Space Administration | Adjustable control station with movable monitors and cameras for viewing systems in robotics and teleoperations |
US5508734A (en) | 1994-07-27 | 1996-04-16 | International Business Machines Corporation | Method and apparatus for hemispheric imaging which emphasizes peripheral content |
US5617422A (en) | 1995-08-10 | 1997-04-01 | Mci Communications Corp. | High speed interface in a telecommunications network |
US5822313A (en) * | 1996-05-24 | 1998-10-13 | National Semiconductor Corporation | Seamless handover in a cordless TDMA system |
US5770275A (en) * | 1996-08-23 | 1998-06-23 | Raman; Narayan K. | Molecular sieving silica membrane fabrication process |
US5771275A (en) * | 1996-12-17 | 1998-06-23 | Telefonaktiebolaget Lm Ericsson | Use of ISDN to provide wireless office environment connection to the public land mobile network |
US5963203A (en) | 1997-07-03 | 1999-10-05 | Obvious Technology, Inc. | Interactive video icon with designated viewing position |
US6573907B1 (en) | 1997-07-03 | 2003-06-03 | Obvious Technology | Network distribution and management of interactive video and multi-media containers |
US6104721A (en) | 1997-12-02 | 2000-08-15 | Symmetry Communcations System | DSP based dynamic resource allocation multiprocessor communications board |
US6677985B1 (en) * | 1998-03-06 | 2004-01-13 | Hitachi Medical Corporation | Ultrasonic video apparatus |
CN1231825A (en) * | 1999-03-08 | 1999-10-20 | 梁东海 | Mixed insecticide and its preparing method |
US6831895B1 (en) | 1999-05-19 | 2004-12-14 | Lucent Technologies Inc. | Methods and devices for relieving congestion in hop-by-hop routed packet networks |
US6253146B1 (en) | 1999-12-06 | 2001-06-26 | At&T Corp. | Network-based traffic congestion notification service |
US7046632B2 (en) | 2000-04-01 | 2006-05-16 | Via Technologies, Inc. | Method and switch controller for relieving flow congestion in network |
US7308263B2 (en) * | 2001-02-26 | 2007-12-11 | Kineto Wireless, Inc. | Apparatus for supporting the handover of a telecommunication session between a licensed wireless system and an unlicensed wireless system |
US7782777B2 (en) | 2001-11-23 | 2010-08-24 | Nokia Corporation | Method and system for handling network congestion |
US6799038B2 (en) * | 2002-01-09 | 2004-09-28 | Motorola, Inc. | Method and apparatus for wireless network selection |
US7116833B2 (en) | 2002-12-23 | 2006-10-03 | Eastman Kodak Company | Method of transmitting selected regions of interest of digital video data at selected resolutions |
TWI492643B (en) | 2003-06-16 | 2015-07-11 | Qualcomm Inc | Apparatus, system, and method for managing reverse link communication resources in a distributed communication system |
US7559026B2 (en) | 2003-06-20 | 2009-07-07 | Apple Inc. | Video conferencing system having focus control |
US7738901B2 (en) * | 2003-07-10 | 2010-06-15 | Telefonaktiebolaget Lm Ericsson (Publ) | Secondary link power control in a wireless communication network |
US20050024487A1 (en) | 2003-07-31 | 2005-02-03 | William Chen | Video codec system with real-time complexity adaptation and region-of-interest coding |
CN1293728C (en) * | 2003-09-30 | 2007-01-03 | 华为技术有限公司 | Rapid interactive method for selection of accessing mobile network by user terminal in WLAN |
ATE379934T1 (en) | 2003-11-13 | 2007-12-15 | Research In Motion Ltd | NETWORK SELECTION METHOD AND DEVICE WITH HOME NETWORK PRIORITIZATION AFTER A NETWORK SIGNAL RECOVERY OR AFTER POWER ON |
CN100484288C (en) | 2003-12-22 | 2009-04-29 | 艾利森电话股份有限公司 | Terminal software for downloading and upgrading wireless device over the air conveying |
US7599698B2 (en) * | 2003-12-29 | 2009-10-06 | Telefonaktiebolaget Lm Ericsson (Publ) | Network controlled channel information reporting |
TWI360361B (en) * | 2004-04-13 | 2012-03-11 | Qualcomm Inc | Multimedia communication using co-located care of |
EP1701546A4 (en) * | 2004-04-23 | 2010-09-15 | Sumitomo Electric Industries | Moving picture data encoding method, decoding method, terminal device for executing them, and bi-directional interactive system |
US8897828B2 (en) * | 2004-08-12 | 2014-11-25 | Intellectual Ventures Holding 81 Llc | Power control in a wireless communication system |
US20060062478A1 (en) * | 2004-08-16 | 2006-03-23 | Grandeye, Ltd., | Region-sensitive compression of digital video |
GB2419774A (en) | 2004-10-27 | 2006-05-03 | Ericsson Telefon Ab L M | Accessing IP multimedia subsystem (IMS) services |
JP4627182B2 (en) * | 2004-12-03 | 2011-02-09 | 富士通株式会社 | Data communication system and communication terminal device |
US20060166677A1 (en) * | 2005-01-27 | 2006-07-27 | Lucent Technologies, Inc. | Balancing load of cells in inter-frequency handover of wireless communications |
US20090144167A1 (en) * | 2005-02-10 | 2009-06-04 | Pablo Calamera | System and method for managing data and voice connectivity for wireless devices |
US8693537B2 (en) | 2005-03-01 | 2014-04-08 | Qualcomm Incorporated | Region-of-interest coding with background skipping for video telephony |
US7724972B2 (en) | 2005-03-01 | 2010-05-25 | Qualcomm Incorporated | Quality metric-biased region-of-interest coding for video telephony |
US8977063B2 (en) | 2005-03-09 | 2015-03-10 | Qualcomm Incorporated | Region-of-interest extraction for video telephony |
US8019175B2 (en) | 2005-03-09 | 2011-09-13 | Qualcomm Incorporated | Region-of-interest processing for video telephony |
US7801328B2 (en) | 2005-03-31 | 2010-09-21 | Honeywell International Inc. | Methods for defining, detecting, analyzing, indexing and retrieving events using video image processing |
US20090089435A1 (en) * | 2005-04-01 | 2009-04-02 | Stephen Terrill | Method for initiating IMS based communications |
FR2884027B1 (en) | 2005-04-04 | 2007-06-01 | Canon Kk | METHOD AND DEVICE FOR TRANSMITTING AND RECEIVING IMAGE SEQUENCES BETWEEN A SERVER AND A CUSTOMER |
CN101120593A (en) | 2005-04-13 | 2008-02-06 | 诺基亚公司 | Coding, storage and signalling of scalability information |
US7937083B2 (en) | 2005-04-14 | 2011-05-03 | Nokia Corporation | Method, apparatus and computer program providing for rapid network selection in a multimode device |
US8964029B2 (en) | 2005-04-29 | 2015-02-24 | Chubb Protection Corporation | Method and device for consistent region of interest |
US8112094B1 (en) * | 2005-06-09 | 2012-02-07 | At&T Mobility Ii Llc | Radio access layer management |
CN100583935C (en) * | 2005-07-29 | 2010-01-20 | Ut斯达康通讯有限公司 | Charging method for cluster communication in IMS/PoC system |
US20070024706A1 (en) * | 2005-08-01 | 2007-02-01 | Brannon Robert H Jr | Systems and methods for providing high-resolution regions-of-interest |
EP1929712B1 (en) * | 2005-09-02 | 2019-11-06 | BlackBerry Limited | Sip header reduction |
US8184153B2 (en) * | 2005-09-26 | 2012-05-22 | Electronics And Telecommunications Research Institute | Method and apparatus for defining and reconstructing ROIs in scalable video coding |
KR101255226B1 (en) * | 2005-09-26 | 2013-04-16 | 한국과학기술원 | Method and Apparatus for defining and reconstructing ROIs in Scalable Video Coding |
US8019170B2 (en) | 2005-10-05 | 2011-09-13 | Qualcomm, Incorporated | Video frame motion-based automatic region-of-interest detection |
US8208758B2 (en) | 2005-10-05 | 2012-06-26 | Qualcomm Incorporated | Video sensor-based automatic region-of-interest detection |
US8358629B2 (en) | 2005-11-01 | 2013-01-22 | Qualcomm Incorporated | Mobile device-initiated measurement gap request |
US20070118881A1 (en) * | 2005-11-18 | 2007-05-24 | Julian Mitchell | Application control at a policy server |
KR100648067B1 (en) | 2005-12-10 | 2006-11-23 | 한국전자통신연구원 | Method for adaptive discontinuous reception based on extended paging indicator for improvement of power effective performance at mobile terminal on wcdma |
CN101379791B (en) | 2005-12-19 | 2011-11-09 | 艾利森电话股份有限公司 | Technology for providing interoperability within different protocol domains |
US8265349B2 (en) | 2006-02-07 | 2012-09-11 | Qualcomm Incorporated | Intra-mode region-of-interest video object segmentation |
US8150155B2 (en) | 2006-02-07 | 2012-04-03 | Qualcomm Incorporated | Multi-mode region-of-interest video object segmentation |
US20100045773A1 (en) | 2007-11-06 | 2010-02-25 | Ritchey Kurtis J | Panoramic adapter system and method with spherical field-of-view coverage |
US8219080B2 (en) * | 2006-04-28 | 2012-07-10 | Research In Motion Limited | Methods and apparatus for producing a user-controlled PLMN list for a SIM/USIM card with use of a user agent application |
US8818321B2 (en) * | 2006-06-20 | 2014-08-26 | Nokia Corporation | Method and system for providing reply-controlled discontinuous reception |
EP2041976A4 (en) * | 2006-07-12 | 2012-06-20 | Nokia Corp | Signaling of region-of-interest scalability information in media files |
US7423201B2 (en) * | 2006-07-12 | 2008-09-09 | Mertec Llc | Soybean cultivar 306734323 |
US8045996B2 (en) * | 2006-07-31 | 2011-10-25 | Qualcomm Incorporated | Determination of cell RF parameters based on measurements by user equipments |
TWI511593B (en) * | 2006-10-03 | 2015-12-01 | Interdigital Tech Corp | Combined open loop/closed loop (cqi-based) uplink transmit power control with interference mitigation for e-utra |
US20080089411A1 (en) | 2006-10-16 | 2008-04-17 | Nokia Corporation | Multiple-hypothesis cross-layer prediction |
KR100996704B1 (en) | 2006-11-06 | 2010-11-25 | 삼성전자주식회사 | Method for Transmitting Buffer Size Information |
EP2082546B1 (en) | 2006-11-16 | 2015-09-23 | Telefonaktiebolaget LM Ericsson (publ) | Gateway selection mechanism |
US8351513B2 (en) | 2006-12-19 | 2013-01-08 | Allot Communications Ltd. | Intelligent video signal encoding utilizing regions of interest information |
US8315466B2 (en) | 2006-12-22 | 2012-11-20 | Qualcomm Incorporated | Decoder-side region of interest video processing |
KR20080067273A (en) | 2007-01-15 | 2008-07-18 | 삼성전자주식회사 | Method and apparatus for drx resume after up-link data transmission in mobile telecommunication system |
US8959238B2 (en) * | 2007-01-18 | 2015-02-17 | At&T Intellectual Property I, L.P. | Systems, methods and computer program products for providing access to web services via device authentication in an IMS network |
US20130258919A1 (en) | 2007-02-05 | 2013-10-03 | Qualcomm Incorporated | Flexible dtx and drx in a wireless communication system |
CN101257437A (en) | 2007-02-28 | 2008-09-03 | 华为技术有限公司 | System, switch and method for reselecting call arbitration node failure routing |
US20080220773A1 (en) * | 2007-03-07 | 2008-09-11 | Research In Motion Limited | Apparatus, and associated method, for facilitating i-wlan plmn selection |
CA2821614C (en) * | 2007-03-21 | 2016-08-23 | Interdigital Technology Corporation | Mimo wireless communication method and apparatus for transmitting and decoding resource block structures based on a dedicated reference signal mode |
KR100917205B1 (en) | 2007-05-02 | 2009-09-15 | 엘지전자 주식회사 | Method of configuring a data block in wireless communication system |
US8542266B2 (en) | 2007-05-21 | 2013-09-24 | Polycom, Inc. | Method and system for adapting a CP layout according to interaction between conferees |
US8289371B2 (en) | 2007-05-21 | 2012-10-16 | Polycom, Inc. | Smart cropping of video images in a videoconferencing session |
US8446454B2 (en) | 2007-05-21 | 2013-05-21 | Polycom, Inc. | Dynamic adaption of a continuous presence videoconferencing layout based on video content |
JP5069296B2 (en) | 2007-06-19 | 2012-11-07 | 株式会社エヌ・ティ・ティ・ドコモ | Base station apparatus and communication control method |
KR101498968B1 (en) * | 2007-07-05 | 2015-03-12 | 삼성전자주식회사 | Apparatus and method for determining communication resource of peer to peer in a communication system |
US8526410B2 (en) | 2007-07-06 | 2013-09-03 | Qualcomm Incorporated | Methods and apparatus related to interference management when sharing downlink bandwidth between wide area network usage and peer to peer signaling |
WO2009009519A1 (en) * | 2007-07-09 | 2009-01-15 | Interdigital Technology Corporation | Method and apparatus for handover and session continuity using pre-registration tunneling procedure |
US8718548B2 (en) | 2007-07-10 | 2014-05-06 | Qualcomm Incorporated | Method and apparatus for adaptive partitioning of links |
KR100963103B1 (en) | 2007-07-11 | 2010-06-14 | 주식회사 케이티테크 | Portable Terminal And Displaying Method During Video Telephony Using The Same |
CN101345981B (en) * | 2007-07-13 | 2012-02-29 | 华为技术有限公司 | Network selection method, communication system and mobile terminal |
JP4963453B2 (en) | 2007-08-21 | 2012-06-27 | 株式会社エヌ・ティ・ティ・ドコモ | Wireless communication system, wireless communication method, and wireless terminal |
ES2385749T3 (en) | 2007-08-22 | 2012-07-31 | Telefonaktiebolaget L M Ericsson (Publ) | Methods and devices for data transmission control |
KR101421587B1 (en) | 2007-08-23 | 2014-07-22 | 삼성전자주식회사 | Method and Apparatus for determining preferred image format in IP-based mobile video telephony |
FR2923106B1 (en) | 2007-10-24 | 2010-01-01 | Commissariat Energie Atomique | METHOD FOR SEARCHING FREE TAPE FOR OPPORTUNISTIC TELECOMMUNICATION TERMINAL. |
US8041375B2 (en) * | 2007-10-31 | 2011-10-18 | Qualcomm Incorporated | Methods and apparatus for use in peer to peer communications devices and/or systems relating to rate scheduling, traffic scheduling, rate control, and/or power control |
ES2744824T3 (en) * | 2007-12-01 | 2020-02-26 | Nokia America Corp | IMS Diameter Router with Load Balancing |
EP2068511B1 (en) | 2007-12-06 | 2011-04-06 | Alcatel-Lucent USA Inc. | Controlling congestion in a packet switched data network |
WO2009096752A1 (en) * | 2008-02-03 | 2009-08-06 | Lg Electronics Inc. | Method and apparatus for supporting harq |
EP2091192A1 (en) | 2008-02-15 | 2009-08-19 | Nokia Siemens Networks Oy | Interworking between messaging service domains |
JP5210895B2 (en) | 2008-02-20 | 2013-06-12 | 株式会社日立製作所 | Wireless communication system, terminal and base station |
EP2413656B1 (en) | 2008-04-28 | 2017-01-04 | Fujitsu Limited | Re-establishing connection between a wireless terminal and a wireless base station |
CN102176790B (en) * | 2008-04-28 | 2014-01-01 | 富士通株式会社 | Connection processing method in wireless communication system, wireless base station and wireless terminal |
US9438746B2 (en) * | 2008-05-01 | 2016-09-06 | Alcatel Lucent | Centralized charging systems for offline charging and online charging |
US8971955B2 (en) | 2008-05-11 | 2015-03-03 | Qualcomm Incorporated | Systems and methods for multi-mode terminal operations in overlaid networks |
US8189807B2 (en) | 2008-06-27 | 2012-05-29 | Microsoft Corporation | Satellite microphone array for video conferencing |
US8396030B2 (en) | 2008-06-30 | 2013-03-12 | Nokia Siemens Networks Oy | Selecting between normal and virtual dual layer ACK/NACK |
CN101626482B (en) | 2008-07-11 | 2011-11-09 | 华为技术有限公司 | Method, device and system for implementing video conference |
WO2010006334A1 (en) | 2008-07-11 | 2010-01-14 | Videosurf, Inc. | Apparatus and software system for and method of performing a visual-relevance-rank subsequent search |
EP2315369B1 (en) | 2008-07-30 | 2016-09-28 | China Academy of Telecommunications Technology | Methods and devices for adaptive modulation and coding |
US8570359B2 (en) | 2008-08-04 | 2013-10-29 | Microsoft Corporation | Video region of interest features |
EP2366261A4 (en) | 2008-09-04 | 2013-02-13 | Powerwave Cognition Inc | Enhanced wireless ad hoc communication techniques |
US8576760B2 (en) | 2008-09-12 | 2013-11-05 | Qualcomm Incorporated | Apparatus and methods for controlling an idle mode in a wireless device |
US8488572B2 (en) | 2008-09-17 | 2013-07-16 | Qualcomm Incorporated | Methods and systems for multi-mode signal quality reporting |
CN101686227A (en) | 2008-09-23 | 2010-03-31 | 华为技术有限公司 | Method and equipment of data suspension |
US8774005B2 (en) | 2008-09-26 | 2014-07-08 | Telefonaktiebolaget L M Ericsson (Publ) | Congestion control method and devices |
JP2010081524A (en) | 2008-09-29 | 2010-04-08 | Fujitsu Ltd | Communications system, mobile station device, and base station device |
US8406297B2 (en) | 2008-10-17 | 2013-03-26 | Futurewei Technologies, Inc. | System and method for bit-allocation in video coding |
JP5189460B2 (en) | 2008-10-30 | 2013-04-24 | 株式会社エヌ・ティ・ティ・ドコモ | Base station apparatus, user apparatus and method in mobile communication system |
KR101603108B1 (en) * | 2008-11-07 | 2016-03-14 | 엘지전자 주식회사 | Method for transmitting a reference signal |
US20100118111A1 (en) | 2008-11-10 | 2010-05-13 | Nokia Corporation | Method and apparatus for remote camera control indications in video conferencing |
KR20100054015A (en) | 2008-11-13 | 2010-05-24 | 주식회사 케이티테크 | Method for setting discontinuous reception mode cycle in mobile communication apparatus and apparatus the same |
US8971933B2 (en) | 2008-11-18 | 2015-03-03 | Qualcomm Incorporated | Method and apparatus for determining DRX cycle used for paging |
KR101321311B1 (en) * | 2008-12-26 | 2013-10-28 | 샤프 가부시키가이샤 | Base station device, mobile station device, communication system, and communication method |
US8493887B2 (en) | 2008-12-30 | 2013-07-23 | Qualcomm Incorporated | Centralized control of peer discovery pilot transmission |
US20100178919A1 (en) * | 2009-01-15 | 2010-07-15 | Qualcomm Incorporated | Optimum technology selection |
EP2211117B1 (en) * | 2009-01-27 | 2015-12-02 | Rational AG | Method for selecting and assembling representatives for programs and cooking device for same |
US10057775B2 (en) * | 2009-01-28 | 2018-08-21 | Headwater Research Llc | Virtualized policy and charging system |
US8289848B2 (en) * | 2009-02-02 | 2012-10-16 | Telefonaktiebolaget Lm Ericsson (Publ) | Controlling a packet flow from a user equipment |
US8644409B2 (en) | 2009-02-11 | 2014-02-04 | Qualcomm Incorporated | Method and apparatus for modulation and layer mapping in a wireless communication system |
US8358613B1 (en) | 2009-02-27 | 2013-01-22 | L-3 Communications Corp. | Transmitter-directed security for wireless-communications |
EP2750426A1 (en) | 2009-04-07 | 2014-07-02 | Togewa Holding AG | Method and system for authenticating a network node in a UAM-based walled garden network |
US8369885B2 (en) * | 2009-04-14 | 2013-02-05 | Samsung Electronics Co., Ltd. | Multi-user MIMO transmissions in wireless communication systems |
EP2426865A2 (en) | 2009-04-29 | 2012-03-07 | Samsung Electronics Co., Ltd. | Terminal apparatus, coordinator, and method for managing emergency events |
US8724707B2 (en) * | 2009-05-07 | 2014-05-13 | Qualcomm Incorporated | Video decoding using temporally constrained spatial dependency |
KR20100121384A (en) * | 2009-05-08 | 2010-11-17 | 삼성전자주식회사 | System and method for providing service related to telephone to a plurality of devices using upnp in the home network |
CN101945459B (en) | 2009-05-22 | 2013-06-05 | 中兴通讯股份有限公司 | Single-mode service continuity implementation method and single-mode service continuity system |
US9055105B2 (en) | 2009-05-29 | 2015-06-09 | Nokia Technologies Oy | Method and apparatus for engaging in a service or activity using an ad-hoc mesh network |
US9264097B2 (en) | 2009-06-04 | 2016-02-16 | Qualcomm Incorporated | Interference mitigation for downlink in a wireless communication system |
US8711198B2 (en) | 2009-06-04 | 2014-04-29 | Hewlett-Packard Development Company, L.P. | Video conference |
US8295874B2 (en) | 2009-06-10 | 2012-10-23 | Motorola Mobility Llc | Femto-cell power control using idle-mode user equipment in a cellular communication system |
KR101637589B1 (en) * | 2009-06-12 | 2016-07-08 | 엘지전자 주식회사 | Apparatus and method of flow control in wireless communication system |
CN102577217B (en) * | 2009-06-19 | 2015-04-08 | 黑莓有限公司 | Reference signal design for wireless communication system |
CN102498743A (en) * | 2009-06-22 | 2012-06-13 | 华为技术有限公司 | Policy information processing method, device and system |
US20110021153A1 (en) * | 2009-07-10 | 2011-01-27 | Saeid Safavi | Centralized cross-layer enhanced method and apparatus for interference mitigation in a wireless network |
KR101782640B1 (en) * | 2009-07-16 | 2017-09-28 | 엘지전자 주식회사 | Method and apparatus for performing harq in multiple carrier system |
US8428521B2 (en) * | 2009-08-04 | 2013-04-23 | Qualcomm Incorporated | Control for uplink in MIMO communication system |
US8629899B2 (en) | 2009-08-06 | 2014-01-14 | Qualcomm Incorporated | Transforming video data in accordance with human visual system feedback metrics |
US8878912B2 (en) | 2009-08-06 | 2014-11-04 | Qualcomm Incorporated | Encapsulating three-dimensional video data in accordance with transport protocols |
US9083958B2 (en) | 2009-08-06 | 2015-07-14 | Qualcomm Incorporated | Transforming video data in accordance with three dimensional input formats |
US9344953B2 (en) * | 2009-08-17 | 2016-05-17 | Nokia Technologies Oy | Apparatus and method for initialization and mapping of reference signals in a communication system |
US8300587B2 (en) * | 2009-08-17 | 2012-10-30 | Nokia Corporation | Initialization of reference signal scrambling |
US8345749B2 (en) | 2009-08-31 | 2013-01-01 | IAD Gesellschaft für Informatik, Automatisierung und Datenverarbeitung mbH | Method and system for transcoding regions of interests in video surveillance |
US20110217985A1 (en) | 2009-09-28 | 2011-09-08 | Qualcomm Incorporated | Predictive short-term channel quality reporting utilizing reference signals |
US8948097B2 (en) * | 2009-09-30 | 2015-02-03 | Qualcomm Incorporated | UE-RS sequence initialization for wireless communication systems |
US8958306B2 (en) * | 2009-10-16 | 2015-02-17 | Tekelec, Inc. | Methods, systems, and computer readable media for providing diameter signaling router with integrated monitoring functionality |
US8922718B2 (en) | 2009-10-21 | 2014-12-30 | Disney Enterprises, Inc. | Key generation through spatial detection of dynamic objects |
KR101663617B1 (en) | 2009-10-29 | 2016-10-07 | 엘지전자 주식회사 | A method for transmitting and receiving downlink reference signals, and a base station and a user equipment thereof |
TW201125334A (en) * | 2009-11-03 | 2011-07-16 | Interdigital Patent Holdings | Method and apparatus for inter-device session transfer between internet protocol (IP) multimedia subsystem (IMS) and H.323 based clients |
WO2011057127A2 (en) | 2009-11-06 | 2011-05-12 | Interdigital Patent Holdings, Inc. | Method and apparatus for inter-device transfer (handoff) between ims and generic ip clients |
EP2320705B1 (en) * | 2009-11-06 | 2013-03-13 | Cinterion Wireless Modules GmbH | Differentiation between mobile and stationary mobile radio terminals |
KR101583088B1 (en) | 2009-11-11 | 2016-01-07 | 엘지전자 주식회사 | A method and apparatus for sharing data in a video conference system |
US20110124335A1 (en) * | 2009-11-25 | 2011-05-26 | Hans Martin | Enhanced plmn list |
CN101711041B (en) | 2009-12-09 | 2012-10-17 | 华为技术有限公司 | Congestion control method, operation-maintenance center equipment and base station |
GB2476488A (en) * | 2009-12-23 | 2011-06-29 | Nec Corp | Allocating physical resource blocks to a user device for transmitting uplink data |
KR101102446B1 (en) * | 2010-01-08 | 2012-01-05 | 고려대학교 산학협력단 | Method for assigning resource in mobile communication system |
PL2524543T3 (en) | 2010-01-11 | 2019-04-30 | Nokia Solutions & Networks Oy | Network selection mechanisms |
US8537906B2 (en) | 2010-01-22 | 2013-09-17 | Qualcomm Incorporated | Method and apparatus for acknowledgment detection during preamble transmission |
CN101771615B (en) | 2010-01-26 | 2012-01-25 | 华为技术有限公司 | Neighborhood relationship building method, communication equipment and system thereof |
WO2011100166A2 (en) | 2010-02-11 | 2011-08-18 | Tekelec | Methods, systems, and computer readable media for dynamic subscriber profile adaptation |
US20110202635A1 (en) * | 2010-02-18 | 2011-08-18 | Alcatel-Lucent Canada Inc. | Policy controller application enablement api for wireline/wireless converged solution |
EP2364051B1 (en) * | 2010-03-03 | 2017-05-03 | BlackBerry Limited | Method and apparatus to indicate space requirements for communicating capabilities of a device |
US9319318B2 (en) * | 2010-03-15 | 2016-04-19 | Tekelec, Inc. | Methods, systems, and computer readable media for performing PCRF-based user information pass through |
WO2011117261A2 (en) | 2010-03-22 | 2011-09-29 | Data Connection Limited | System for connecting applications to networks |
US20110235706A1 (en) | 2010-03-25 | 2011-09-29 | Texas Instruments Incorporated | Region of interest (roi) video encoding |
US8812657B2 (en) | 2010-04-15 | 2014-08-19 | Qualcomm Incorporated | Network-assisted peer discovery |
US8417244B2 (en) * | 2010-04-23 | 2013-04-09 | Telefonaktiebolaget L M Ericsson (Publ) | Detection of early inter-radio access technology (IRAT) handover triggering |
WO2011134496A1 (en) * | 2010-04-27 | 2011-11-03 | Nokia Siemens Networks Oy | Updating of network selection information |
KR101721268B1 (en) | 2010-04-29 | 2017-03-29 | 한국전자통신연구원 | Apparatus and method for wideband high frequency short-range wireless communication |
WO2011141931A2 (en) * | 2010-05-10 | 2011-11-17 | Global Rural Netco Ltd. | A method and system to attain multi-band, multi-carrier, multi-user through access point base station - a femtocell. |
US9155032B2 (en) * | 2010-05-28 | 2015-10-06 | Nokia Technologies Oy | System, method, and apparatus for determining a network interface preference policy |
US8331760B2 (en) | 2010-06-02 | 2012-12-11 | Microsoft Corporation | Adaptive video zoom |
US8732274B2 (en) * | 2010-06-18 | 2014-05-20 | Nokia Corporation | Method and apparatus for generating and handling streaming media quality-of-experience metrics |
KR101707543B1 (en) | 2010-06-24 | 2017-02-16 | 주식회사 케이티 | Method for handover according to services based on PMIP and system thereof |
KR20120009772A (en) | 2010-07-21 | 2012-02-02 | 삼성전자주식회사 | Signaling method and device for interference mitigation in m2m communication system |
WO2012015902A1 (en) * | 2010-07-30 | 2012-02-02 | Interdigital Patent Holdings, Inc. | Method and apparatus for managing and processing policy profile restrictions |
PT105235B (en) * | 2010-08-04 | 2013-05-20 | Portugal Telecom Inovacao S A | LINK LAYER RESOURCE MANAGEMENT FOR THE INDEPENDENT MEDIA TRANSFER. |
JP5437195B2 (en) * | 2010-08-05 | 2014-03-12 | 日本電信電話株式会社 | Network control method and system |
IT1402430B1 (en) | 2010-09-17 | 2013-09-04 | St Microelectronics Srl | "PROCEDURE AND DEVICE FOR THE DEVELOPMENT OF VIDEO SIGNALS, TRANSMITTER OR RELATED COMPUTER PRODUCT" |
WO2012039655A1 (en) | 2010-09-21 | 2012-03-29 | Telefonaktiebolaget L M Ericsson (Publ) | Network signal tracing using charging identifiers as trace recording session references |
AU2010361098B2 (en) | 2010-09-24 | 2014-08-14 | Intel Corporation | Method and system for access point congestion detection and reduction |
KR101688546B1 (en) * | 2010-09-29 | 2016-12-21 | 삼성전자주식회사 | Method of transmitting and receiving for uplink mimo retransmission according to phich in lte system and apparatus thereof |
WO2012044674A1 (en) | 2010-09-30 | 2012-04-05 | Alcatel-Lucent Usa Inc. | Method and apparatus for group paging in wireless communication |
US8724742B2 (en) | 2010-10-06 | 2014-05-13 | Motorola Mobility Llc | Method and apparatus for soft buffer management for carrier aggregation |
CN102457863A (en) * | 2010-10-15 | 2012-05-16 | 电信科学技术研究院 | Method, device and system for realizing cell switch based on CR (Cognitive Radio) |
US8620263B2 (en) | 2010-10-20 | 2013-12-31 | Tekelec, Inc. | Methods, systems, and computer readable media for diameter routing agent (DRA) based credit status triggered policy control |
US8626156B2 (en) * | 2010-10-20 | 2014-01-07 | Tekelec, Inc. | Methods, systems, and computer readable media for selective policy enhancement (PE) for high-usage roamers |
CN103210683A (en) * | 2010-11-11 | 2013-07-17 | 高通股份有限公司 | Systems and methods for improving circuit switched fallback performance |
US20120122472A1 (en) | 2010-11-12 | 2012-05-17 | Motorola Mobility, Inc. | Positioning Reference Signal Assistance Data Signaling for Enhanced Interference Coordination in a Wireless Communication Network |
ES2387437B1 (en) * | 2010-11-19 | 2013-05-20 | Telefónica, S.A. | COMMUNICATIONS SYSTEM AND METHOD FOR COMMUNICATIONS BETWEEN INTERNET AND NGN / IMS SUBSYSTEMS. |
WO2012092935A1 (en) * | 2011-01-04 | 2012-07-12 | Nokia Siemens Networks Oy | Access network selection in communications system |
CN103299556B (en) | 2011-01-07 | 2017-05-17 | 交互数字专利控股公司 | Method, system and device for downlink shared channel reception in coordinated multipoint transmission |
US9137796B2 (en) * | 2011-02-10 | 2015-09-15 | Lg Electronics Inc. | Method and apparatus for monitoring scheduling information |
JP5895163B2 (en) | 2011-03-11 | 2016-03-30 | パナソニックIpマネジメント株式会社 | WIRELESS VIDEO TRANSMITTING DEVICE, WIRELESS VIDEO RECEIVING DEVICE, AND WIRELESS VIDEO TRANSMISSION SYSTEM PROVIDED WITH THE SAME |
JP5645021B2 (en) * | 2011-03-14 | 2014-12-24 | 独立行政法人情報通信研究機構 | Self-coexistence mechanism for frame acquisition in wireless networks |
WO2012124996A2 (en) * | 2011-03-15 | 2012-09-20 | 엘지전자 주식회사 | Method for transmitting/receiving signal and device therefor |
WO2012128558A2 (en) * | 2011-03-21 | 2012-09-27 | 엘지전자 주식회사 | Method and device for executing harq in tdd-based wireless communication system |
KR101854000B1 (en) * | 2011-04-01 | 2018-05-02 | 인터디지탈 패튼 홀딩스, 인크 | Method and apparatus for triggering and synchronizing machine type communication devices |
US20130170415A1 (en) | 2011-04-04 | 2013-07-04 | Kyocera Corporation | Mobile communication method and radio terminal |
US9661029B2 (en) | 2011-04-05 | 2017-05-23 | Interdigital Patent Holdings, Inc. | Wireless peer-to-peer network topology |
US9247203B2 (en) | 2011-04-11 | 2016-01-26 | Intel Corporation | Object of interest based image processing |
US20130137423A1 (en) | 2011-05-27 | 2013-05-30 | Qualcomm Incorporated | Allocating access to multiple radio access technologies via a multi-mode access point |
US8788113B2 (en) * | 2011-06-13 | 2014-07-22 | Ford Global Technologies, Llc | Vehicle driver advisory system and method |
TWI548231B (en) | 2011-06-14 | 2016-09-01 | 內數位專利控股公司 | Methods, systems and apparatus for defining and using phich resources for carrier aggregation |
US8970653B2 (en) | 2011-06-16 | 2015-03-03 | Vtel Products Corporation, Inc. | Video conference control system and method |
US9204329B2 (en) * | 2011-07-21 | 2015-12-01 | Movik Networks | Distributed RAN information collection, consolidation and RAN-analytics |
US20130035095A1 (en) * | 2011-08-01 | 2013-02-07 | Mediatek Inc. | Apparatuses and methods for roaming public land mobile network (plmn) selection |
US9377867B2 (en) | 2011-08-11 | 2016-06-28 | Eyesight Mobile Technologies Ltd. | Gesture based interface system and method |
EP2557889B1 (en) | 2011-08-12 | 2019-07-17 | BlackBerry Limited | Simplified ue + enb messaging |
WO2013024570A1 (en) * | 2011-08-12 | 2013-02-21 | パナソニック株式会社 | Communication device, and retransmission control method |
US9048986B2 (en) * | 2011-08-12 | 2015-06-02 | Qualcomm Incorporated | Mitigation of lost resource allocation synchronization between a user equipment (UE) and an evolved node B (eNodeB) |
US8744502B2 (en) * | 2011-08-12 | 2014-06-03 | Qualcomm Incorporated | Antenna to transceiver mapping of a multimode wireless device |
US9497765B2 (en) | 2011-08-17 | 2016-11-15 | Qualcomm Incorporated | Network coordination for improved interference cancellation |
US9288829B2 (en) | 2011-08-18 | 2016-03-15 | Lg Electronics Inc. | Method for performing device to device direct communication, method for supporting the same, and device therefor |
KR20130020252A (en) | 2011-08-19 | 2013-02-27 | 삼성전자주식회사 | Apparatus and method for transmitting an emergency call in a portable terminal |
US20130051321A1 (en) * | 2011-08-24 | 2013-02-28 | Qualcomm Incorporated | Multiple description coding (mdc) for channel state information reference signals (csi-rs) |
US20130051277A1 (en) | 2011-08-30 | 2013-02-28 | Renesas Mobile Corporation | Method and apparatus for allocating resources for device-to-device discovery |
CN102347950B (en) * | 2011-09-29 | 2018-02-06 | 中兴通讯股份有限公司 | Communication network provides the method and system of conversational services to internet |
CN103959798B (en) | 2011-09-30 | 2018-06-08 | 英特尔公司 | Quality of experience enhancing on wireless network |
US20130083684A1 (en) * | 2011-09-30 | 2013-04-04 | Electronics And Telecommunications Research Institute | Methods of device to device communication |
KR101636475B1 (en) | 2011-10-04 | 2016-07-05 | 노키아 솔루션스 앤드 네트웍스 오와이 | Minimal access transfer control function requirements for single radio voice call continuity handover |
EP2749065B1 (en) * | 2011-10-12 | 2019-12-04 | Telefonaktiebolaget LM Ericsson (publ) | Method and arrangement for terminal reporting |
US9584819B2 (en) | 2011-10-24 | 2017-02-28 | Qualcomm Incorporated | Grouping of tiles for video coding |
US10645398B2 (en) | 2011-10-25 | 2020-05-05 | Texas Instruments Incorporated | Sample-based angular intra-prediction in video coding |
US9078257B2 (en) | 2011-11-11 | 2015-07-07 | Intel Coproration | Random backoff for extended access barring |
EP2603046B1 (en) * | 2011-12-05 | 2014-08-06 | Alcatel Lucent | Communication process and communication network comprising a local access network discovery and selection function, L-ANDSF |
EP2807856B1 (en) * | 2012-01-27 | 2018-05-30 | Telefonaktiebolaget LM Ericsson (publ) | Single radio voice call continuity handover of calls with video media from a circuit switched access network |
JP5893760B2 (en) | 2012-02-06 | 2016-03-23 | インテル コーポレイション | Device used by user device, management device, user device, and management method |
US9215060B2 (en) * | 2012-02-21 | 2015-12-15 | Lg Electronics Inc. | Communication method for user equipment and user equipment, and communication method for base station and base station |
CN102547984B (en) | 2012-02-23 | 2015-03-11 | 华为技术有限公司 | Method and device for paging in device-to-device communication |
US8923865B2 (en) * | 2012-03-15 | 2014-12-30 | Qualcomm Incorporated | Apparatus and method of inter-radio access technology measurement scheduling |
GB2501675B (en) | 2012-03-27 | 2014-11-19 | Microsoft Corp | Encoding and transmitting video streams |
CN102647771B (en) * | 2012-04-10 | 2016-05-25 | 华为技术有限公司 | The discovery of WLAN and system of selection, equipment and system and terminal |
EP2658202B1 (en) * | 2012-04-24 | 2017-10-11 | Telefonaktiebolaget LM Ericsson (publ) | Identification of an ip-can session in a policy and charging control apparatus |
WO2013169376A1 (en) | 2012-05-09 | 2013-11-14 | Interdigital Patent Holdings, Inc. | Handling mtc long drx cycle/sleep lengths |
US9407391B2 (en) * | 2012-05-11 | 2016-08-02 | Intel Corporation | User equipment power savings for machine type communications |
US8982693B2 (en) * | 2012-05-14 | 2015-03-17 | Google Technology Holdings LLC | Radio link monitoring in a wireless communication device |
CN103428817B (en) | 2012-05-23 | 2016-08-03 | 华为技术有限公司 | D2D method for discovering equipment based on LTE cellular communication system and device |
CN102724735A (en) * | 2012-05-28 | 2012-10-10 | 中兴通讯股份有限公司 | Method, device and terminal for selecting public land mobile network (PLMN) |
US9917772B2 (en) * | 2012-05-29 | 2018-03-13 | Alcatel Lucent | Diameter message mirroring and spoofing |
US20140019876A1 (en) * | 2012-07-11 | 2014-01-16 | International Business Machines Corporation | Calendar synch with another user and preferred free time search for scheduling an event |
US9106276B2 (en) * | 2012-08-13 | 2015-08-11 | Telefonaktiebolaget L M Ericsson (Publ) | Method and apparatus for reference signal transmission and reception |
EP2888883B1 (en) | 2012-08-21 | 2020-01-22 | Planet Labs Inc. | Multi-resolution pyramid for georeferenced video |
US8830892B2 (en) | 2012-08-30 | 2014-09-09 | Apple Inc. | Radio power saving techniques for video conference applications |
US8842541B2 (en) * | 2012-09-04 | 2014-09-23 | Verizon Patent And Licensing Inc. | Providing policies using a direct interface between network devices |
US8890923B2 (en) | 2012-09-04 | 2014-11-18 | Cisco Technology, Inc. | Generating and rendering synthesized views with multiple video streams in telepresence video conference sessions |
US20140071854A1 (en) * | 2012-09-13 | 2014-03-13 | Futurewei Technologies, Inc. | System and Methods for Dual Mode Network Selection |
US9231774B2 (en) * | 2012-09-27 | 2016-01-05 | Alcatel Lucent | Congestion control for radio access networks (RAN) |
CN104885514B (en) | 2012-11-01 | 2019-05-21 | 英特尔公司 | The signal of qos requirement and UE power preference is sent in LTE-A network |
WO2014071551A1 (en) * | 2012-11-06 | 2014-05-15 | 华为技术有限公司 | Method for paging ue, base station and ue |
US9055216B1 (en) | 2012-11-19 | 2015-06-09 | A9.Com, Inc. | Using sensor data to enhance image data |
CN103874170A (en) * | 2012-12-10 | 2014-06-18 | 中兴通讯股份有限公司 | User equipment and method and system utilizing extended paging cycles for paging |
US9832717B2 (en) * | 2012-12-19 | 2017-11-28 | Blackberry Limited | Method and apparatus for layer 3 configuration in a heterogeneous network |
US9124762B2 (en) | 2012-12-20 | 2015-09-01 | Microsoft Technology Licensing, Llc | Privacy camera |
SG11201504449SA (en) * | 2012-12-31 | 2015-07-30 | Huawei Tech Co Ltd | Radio bearer control method, device, and system |
CN104982000B (en) * | 2013-01-08 | 2018-07-17 | Lg电子株式会社 | Method and apparatus in carrier aggregation system for communication |
WO2014110410A1 (en) * | 2013-01-11 | 2014-07-17 | Interdigital Patent Holdings, Inc. | User-plane congestion management |
US9451540B2 (en) * | 2013-01-11 | 2016-09-20 | Futurewei Technologies, Inc. | System and method for network selection |
KR102039541B1 (en) * | 2013-01-21 | 2019-11-01 | 삼성전자 주식회사 | Method and apparatus for controlling of selection wireless lan access point of user equipment in wireless communication system |
US10045032B2 (en) | 2013-01-24 | 2018-08-07 | Intel Corporation | Efficient region of interest detection |
GB2511730A (en) | 2013-01-28 | 2014-09-17 | Microsoft Corp | Spatially adaptive video coding |
US10133342B2 (en) | 2013-02-14 | 2018-11-20 | Qualcomm Incorporated | Human-body-gesture-based region and volume selection for HMD |
US9967727B2 (en) * | 2013-02-22 | 2018-05-08 | Intel IP Corporation | Systems and methods for access network selection and traffic routing |
US9386511B2 (en) * | 2013-02-25 | 2016-07-05 | Lg Electronics Inc. | Method and an apparatus for access network selection in visited network in a wireless communication system |
EP2966909A4 (en) * | 2013-02-25 | 2016-11-09 | Lg Electronics Inc | Method and terminal for determining access on basis of policy |
EP2965589A1 (en) * | 2013-03-07 | 2016-01-13 | Telefonaktiebolaget L M Ericsson (publ) | Radio link monitoring |
US9686284B2 (en) * | 2013-03-07 | 2017-06-20 | T-Mobile Usa, Inc. | Extending and re-using an IP multimedia subsystem (IMS) |
US9749946B2 (en) * | 2013-03-11 | 2017-08-29 | Qualcomm Incorporated | Method and apparatus for improved reselection during mode transitions |
US10219206B2 (en) * | 2013-03-22 | 2019-02-26 | Qualcomm Incorporated | Selecting a network node based on precedence of network policies |
CN105009482B (en) | 2013-03-29 | 2018-05-29 | 英特尔Ip公司 | Device-to-device (D2D) leading design |
EP2982188B1 (en) * | 2013-04-05 | 2017-10-04 | Telefonaktiebolaget LM Ericsson (publ) | User equipment, network node, and methods for managing an extended discontinuous reception cycle mode |
WO2014168539A1 (en) * | 2013-04-08 | 2014-10-16 | Telefonaktiebolaget L M Ericsson (Publ) | Methods of performing inter-frequency measurements in the idle state |
CN105144768B (en) | 2013-04-26 | 2019-05-21 | 英特尔Ip公司 | Shared frequency spectrum in frequency spectrum share situation is redistributed |
KR20140136365A (en) * | 2013-05-20 | 2014-11-28 | 삼성전자주식회사 | Method and apparatus for selecting wlan efficiently |
EP2819455A1 (en) * | 2013-06-28 | 2014-12-31 | Alcatel Lucent | Off-path notification of RAN congestion information in an EPS network |
WO2015005842A1 (en) * | 2013-07-09 | 2015-01-15 | Telefonaktiebolaget L M Ericsson (Publ) | Core network node, radio access network node and methods therein for contrail overload in core network |
US9386275B2 (en) | 2014-01-06 | 2016-07-05 | Intel IP Corporation | Interactive video conferencing |
US9668203B2 (en) * | 2014-05-29 | 2017-05-30 | Apple Inc. | Device-type specific preferred PLMN list |
US9516220B2 (en) | 2014-10-02 | 2016-12-06 | Intel Corporation | Interactive video conferencing |
US10021346B2 (en) | 2014-12-05 | 2018-07-10 | Intel IP Corporation | Interactive video conferencing |
-
2013
- 2013-09-27 CN CN201380074929.2A patent/CN105144768B/en active Active
- 2013-09-27 WO PCT/US2013/062455 patent/WO2014175919A1/en active Application Filing
- 2013-12-12 WO PCT/US2013/074692 patent/WO2014175923A1/en active Application Filing
- 2013-12-12 CN CN201380074950.2A patent/CN105052227B/en active Active
- 2013-12-12 US US14/778,037 patent/US10306589B2/en active Active
- 2013-12-16 US US14/107,400 patent/US9392539B2/en active Active
- 2013-12-17 US US14/109,121 patent/US9307192B2/en active Active
- 2013-12-18 US US14/132,525 patent/US9325937B2/en active Active
- 2013-12-18 US US14/132,974 patent/US9294714B2/en active Active
- 2013-12-19 US US14/135,265 patent/US20140321369A1/en not_active Abandoned
- 2013-12-26 US US14/141,034 patent/US9621845B2/en active Active
- 2013-12-26 US US14/140,823 patent/US9414306B2/en active Active
- 2013-12-27 US US14/141,985 patent/US9288434B2/en active Active
-
2014
- 2014-03-11 EP EP14788832.5A patent/EP2989833B1/en active Active
- 2014-03-11 WO PCT/US2014/023744 patent/WO2014175968A1/en active Application Filing
- 2014-03-11 US US14/779,228 patent/US10237846B2/en active Active
- 2014-03-11 CN CN201480017253.8A patent/CN105103626B/en active Active
- 2014-03-11 US US14/778,985 patent/US20160057769A1/en not_active Abandoned
- 2014-03-11 CN CN201480017758.4A patent/CN105052052B/en active Active
- 2014-03-11 EP EP14788057.9A patent/EP2989729A4/en not_active Withdrawn
- 2014-03-11 WO PCT/US2014/023022 patent/WO2014175967A1/en active Application Filing
- 2014-03-26 TW TW103111226A patent/TWI523555B/en active
- 2014-03-27 CN CN201480018424.9A patent/CN105103519B/en active Active
- 2014-03-27 EP EP14787500.9A patent/EP2989728A4/en not_active Withdrawn
- 2014-03-27 WO PCT/US2014/032032 patent/WO2014175990A1/en active Application Filing
- 2014-03-27 US US14/771,869 patent/US9974048B2/en active Active
- 2014-03-27 TW TW103111441A patent/TWI539769B/en not_active IP Right Cessation
- 2014-03-28 KR KR1020157025773A patent/KR20150121110A/en active Search and Examination
- 2014-03-28 WO PCT/US2014/032227 patent/WO2014175997A1/en active Application Filing
- 2014-03-28 CN CN201480018504.4A patent/CN105103648A/en active Pending
- 2014-03-28 EP EP14788990.1A patent/EP2989777B1/en active Active
- 2014-03-28 JP JP2016502616A patent/JP6272984B2/en active Active
- 2014-03-28 US US14/778,983 patent/US11122538B2/en active Active
- 2014-03-28 WO PCT/US2014/032268 patent/WO2014175999A1/en active Application Filing
- 2014-03-28 CN CN201480017184.0A patent/CN105052114A/en active Pending
- 2014-03-28 US US14/771,859 patent/US10638449B2/en active Active
- 2014-03-28 PL PL14788990.1T patent/PL2989777T3/en unknown
- 2014-03-28 BR BR112015024631A patent/BR112015024631A2/en not_active Application Discontinuation
- 2014-03-28 CN CN202010779110.8A patent/CN111935128B/en active Active
- 2014-04-11 TW TW103113447A patent/TWI542231B/en active
- 2014-04-14 WO PCT/US2014/033965 patent/WO2014176058A1/en active Application Filing
- 2014-04-14 EP EP14788741.8A patent/EP2989842B1/en active Active
- 2014-04-15 TW TW103113700A patent/TWI559714B/en not_active IP Right Cessation
- 2014-04-16 TW TW103113876A patent/TWI589159B/en active
- 2014-04-16 KR KR1020177001580A patent/KR20170010448A/en active Search and Examination
- 2014-04-16 TW TW103113875A patent/TWI578723B/en not_active IP Right Cessation
- 2014-04-16 EP EP14788192.4A patent/EP2989772B1/en active Active
- 2014-04-16 EP EP14788589.1A patent/EP2989790B1/en active Active
- 2014-04-16 TW TW103113872A patent/TWI517726B/en active
- 2014-04-16 HU HUE16168880A patent/HUE037091T2/en unknown
- 2014-04-16 CN CN201480017233.0A patent/CN105052109A/en active Pending
- 2014-04-16 TW TW104139673A patent/TWI578809B/en active
- 2014-04-16 TW TW103113898A patent/TWI559776B/en active
- 2014-04-16 JP JP2016505623A patent/JP6138340B2/en not_active Expired - Fee Related
- 2014-04-16 WO PCT/US2014/034337 patent/WO2014176089A1/en active Application Filing
- 2014-04-16 TW TW103113871A patent/TWI552619B/en not_active IP Right Cessation
- 2014-04-16 TW TW106102708A patent/TWI635751B/en active
- 2014-04-16 TW TW103113897A patent/TWI559790B/en not_active IP Right Cessation
- 2014-04-16 WO PCT/US2014/034307 patent/WO2014176087A1/en active Application Filing
- 2014-04-16 TW TW105115759A patent/TWI578796B/en active
- 2014-04-16 TW TW106111401A patent/TWI688275B/en active
- 2014-04-16 KR KR1020187004455A patent/KR102063460B1/en active IP Right Grant
- 2014-04-16 ES ES16168880.9T patent/ES2666554T3/en active Active
- 2014-04-16 EP EP16168880.9A patent/EP3094063B1/en active Active
- 2014-04-16 KR KR1020157026489A patent/KR101825073B1/en active IP Right Grant
- 2014-04-17 EP EP14787874.8A patent/EP2989830A4/en not_active Withdrawn
- 2014-04-17 WO PCT/US2014/034480 patent/WO2014176106A1/en active Application Filing
- 2014-04-17 CN CN201480017187.4A patent/CN105340327A/en active Pending
- 2014-04-18 TW TW103114205A patent/TWI568207B/en not_active IP Right Cessation
- 2014-04-22 EP EP14787987.8A patent/EP2989829B1/en not_active Not-in-force
- 2014-04-22 HU HUE14787987A patent/HUE040641T2/en unknown
- 2014-04-22 WO PCT/US2014/034966 patent/WO2014176245A1/en active Application Filing
- 2014-04-22 WO PCT/US2014/034879 patent/WO2014176200A1/en active Application Filing
- 2014-04-22 EP EP14787776.5A patent/EP2989734A4/en not_active Withdrawn
- 2014-04-22 CN CN201480017266.5A patent/CN105324952B/en active Active
- 2014-04-22 CN CN201480017167.7A patent/CN105103622A/en active Pending
- 2014-04-22 ES ES14787987T patent/ES2703980T3/en active Active
- 2014-04-25 EP EP14788674.1A patent/EP2989827B1/en active Active
- 2014-04-25 CN CN201480017237.9A patent/CN105052202B/en active Active
- 2014-04-25 WO PCT/US2014/035409 patent/WO2014176480A1/en active Application Filing
-
2016
- 2016-03-21 US US15/076,500 patent/US10420065B2/en active Active
- 2016-03-29 US US15/083,897 patent/US9743380B2/en active Active
- 2016-05-04 HK HK16105108.0A patent/HK1217140A1/en unknown
- 2016-05-04 HK HK16105111.5A patent/HK1217146A1/en not_active IP Right Cessation
- 2016-05-04 HK HK16105109.9A patent/HK1217145A1/en unknown
- 2016-05-04 HK HK16105110.6A patent/HK1217144A1/en unknown
- 2016-05-13 HK HK16105506.8A patent/HK1217832A1/en not_active IP Right Cessation
- 2016-05-13 HK HK16105507.7A patent/HK1217852A1/en unknown
- 2016-05-23 HK HK16105857.3A patent/HK1218034A1/en unknown
- 2016-05-25 HK HK16105972.3A patent/HK1218210A1/en unknown
- 2016-07-20 HK HK16108622.1A patent/HK1220846A1/en unknown
- 2016-07-20 HK HK16108620.3A patent/HK1220858A1/en unknown
-
2017
- 2017-04-10 US US15/483,831 patent/US20170244765A1/en not_active Abandoned
- 2017-04-25 JP JP2017086494A patent/JP2017195603A/en active Pending
- 2017-08-21 US US15/682,168 patent/US10225817B2/en active Active
-
2020
- 2020-03-26 US US16/830,684 patent/US20200229136A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050202823A1 (en) * | 2004-03-12 | 2005-09-15 | Interdigital Technology Corporation | Method and system for switching a radio access technology between wireless communication systems with a multi-mode wireless transmit/receive unit |
EP2187677A1 (en) | 2007-09-07 | 2010-05-19 | NTT DoCoMo, Inc. | Mobile communication method, mobile exchange station, radio base station, mobile station |
EP2046078A1 (en) | 2007-10-02 | 2009-04-08 | Research In Motion Limited | Measurement control for handover from one radio access technology to another |
US20100208607A1 (en) * | 2009-02-13 | 2010-08-19 | Qualcomm Incorporated | Methods and systems for qos translation during handover between wireless networks |
US20110242975A1 (en) * | 2010-03-31 | 2011-10-06 | Qualcomm Incorporated | Single and Dual Internet Protocol Bearer Support |
US20110250888A1 (en) * | 2010-04-13 | 2011-10-13 | Jin Sook Ryu | Method and apparatus for performing cell reselection in wireless communication system |
WO2011150252A1 (en) | 2010-05-26 | 2011-12-01 | Qualcomm Incorporated | Service-based inter-radio access technology, inter-rat, handover |
WO2012044327A1 (en) | 2010-10-01 | 2012-04-05 | Research In Motion Limited | Method and apparatus for avoiding in-device coexistence interference |
Non-Patent Citations (1)
Title |
---|
See also references of EP2989827A4 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9414306B2 (en) | 2013-03-29 | 2016-08-09 | Intel IP Corporation | Device-to-device (D2D) preamble design |
US9288434B2 (en) | 2013-04-26 | 2016-03-15 | Intel IP Corporation | Apparatus and method for congestion control in wireless communication networks |
US9294714B2 (en) | 2013-04-26 | 2016-03-22 | Intel IP Corporation | User equipment and methods for adapting system parameters based on extended paging cycles |
US9307192B2 (en) | 2013-04-26 | 2016-04-05 | Intel IP Corporation | Interactive zooming in video conferencing |
US9325937B2 (en) | 2013-04-26 | 2016-04-26 | Intel IP Corporation | Radio access technology information storage in a mobile network |
US9392539B2 (en) | 2013-04-26 | 2016-07-12 | Intel IP Corporation | User equipment and method for feedback of user equipment performance metrics during dynamic radio switching |
US9621845B2 (en) | 2013-04-26 | 2017-04-11 | Intel IP Corporation | Architecture for web-based real-time communications (WebRTC) to access internet protocol multimedia subsystem (IMS) |
US9743380B2 (en) | 2013-04-26 | 2017-08-22 | Intel IP Corporation | MTSI based UE configurable for video region-of-interest (ROI) signaling |
US10225817B2 (en) | 2013-04-26 | 2019-03-05 | Intel IP Corporation | MTSI based UE configurable for video region-of-interest (ROI) signaling |
US10420065B2 (en) | 2013-04-26 | 2019-09-17 | Intel IP Corporation | User equipment and methods for adapting system parameters based on extended paging cycles |
CN105245919A (en) * | 2015-10-08 | 2016-01-13 | 清华大学 | Energy-consumption-optimization adaptive streaming media distribution method for intelligent terminal |
CN105245919B (en) * | 2015-10-08 | 2018-01-16 | 清华大学 | The adaptive stream media distribution method of intelligent terminal energy optimization |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9392539B2 (en) | User equipment and method for feedback of user equipment performance metrics during dynamic radio switching | |
EP2868134B1 (en) | Devices and methods for radio communication network guided traffic offload | |
CN106714270B (en) | Service transmission method, terminal and network equipment | |
US20170111854A1 (en) | Quality of service aware access point and device steering | |
EP2946609B1 (en) | Optimized offloading to wlan in 3gpp-rat mobility | |
EP2827649B1 (en) | User equipment and method for user equipment feedback of flow-to-rat mapping preferences | |
US10659994B2 (en) | Network nodes, wireless communication system and methods thereof | |
US20140355566A1 (en) | Cross Radio Access Technology Access with Handoff and Interference Management Using Communication Performance Data | |
US20170332279A1 (en) | Wireless resource control system, wireless base station, relay apparatus, wireless resource control method, and program | |
Alfoudi et al. | Seamless mobility management in heterogeneous 5G networks: A coordination approach among distributed SDN controllers | |
US11622306B2 (en) | Dynamically changing the primary cell (PCell) for fifth generation (5G) carrier aggregation | |
US20190268814A1 (en) | Network Node and Methods Therein for User Plane Switching | |
US20150230165A1 (en) | Communication apparatus, communication method, non-transitory computer readable medium, and distribution server | |
WO2016045748A1 (en) | Methods and network nodes in a wireless communication network | |
US9237461B1 (en) | Selecting access nodes for broadcast | |
Ahmed et al. | OmniVoice: A mobile voice solution for small-scale enterprises | |
Bukhari et al. | QoS based approach for LTE-WiFi handover | |
US9001769B1 (en) | Managing access node channel loading | |
KR20120012865A (en) | Method and apparatus for allocating resource of base station in mobile communication system | |
US9525535B1 (en) | Systems and methods for scheduling transmissions from an access node | |
CN112703764B (en) | Network node and method in a wireless communication network | |
Goudar et al. | Implementation of an offloading strategy in heterogeneous environment | |
CN117956601A (en) | Data transmission scheduling method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480017237.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14788674 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014788674 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |