WO2014175567A1 - 면역 치료 및 위암 치료제에 대한 효능 및 독성 평가를 위한 마우스 위암 세포주 - Google Patents

면역 치료 및 위암 치료제에 대한 효능 및 독성 평가를 위한 마우스 위암 세포주 Download PDF

Info

Publication number
WO2014175567A1
WO2014175567A1 PCT/KR2014/002760 KR2014002760W WO2014175567A1 WO 2014175567 A1 WO2014175567 A1 WO 2014175567A1 KR 2014002760 W KR2014002760 W KR 2014002760W WO 2014175567 A1 WO2014175567 A1 WO 2014175567A1
Authority
WO
WIPO (PCT)
Prior art keywords
gastric cancer
cell line
cancer cell
animal model
mice
Prior art date
Application number
PCT/KR2014/002760
Other languages
English (en)
French (fr)
Inventor
김학균
박준원
장석훈
Original Assignee
국립암센터
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국립암센터 filed Critical 국립암센터
Publication of WO2014175567A1 publication Critical patent/WO2014175567A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • C12N5/12Fused cells, e.g. hybridomas
    • C12N5/16Animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0331Animal model for proliferative diseases

Definitions

  • the present invention relates to a gastric cancer animal model and a mouse gastric cancer cell line, a method and a preparation thereof for evaluating efficacy and toxicity for immunotherapy and gastric cancer therapeutic agent or for discovering metastasis suppressor genes and developing inhibitors.
  • In vitro chemosensitivity assays widely used to date include colonogenic assays, dye exclusion assays, and MTT assays (tetrazolium salt 3- (4,5-dimethylthiazol-). 2-yl) -2,5-diphenyl tetrazolium bromide assay] or the SRB assay (sulforhodamine B assay).
  • MTT assays tetrazolium salt 3- (4,5-dimethylthiazol-).
  • the low response rate to chemotherapy is due to the three-dimensional organization of solid cancer cells and the interaction between cells and extracellular matrix (ECM) resulting from the multicellular system. It is known to induce drug resistance due to various mechanisms such as lowered penetration into cancer tissue and lowered concentration in tissue (Wolfgang MK, Crit Rev Oncol Hematol: 36, 123-139, 2000: Bernard D. et al., Crit Rev Oncol Hematol: 36, 193-207, 2000).
  • Gastric cancer is one of the most common cancers worldwide and is the most common cancer occurring in Asia such as Korea and Japan (Parkin et al., Int. J. Cancer 80: 827-841, 1999; Neugut et al., Semin.Oncol. 23: 281-291, 1996; Parkin, Lancet Oncol. 2: 533-543, 2001).
  • the symptoms of gastric cancer show a variety of symptoms ranging from no symptoms to severe pain, the symptoms of gastric cancer does not have any characteristics but general digestive symptoms, most of the early symptoms of stomach cancer And, even if the symptoms are relatively mild to feel a slight indigestion or discomfort in the upper abdomen, so it is easy to overlook most people, causing the death rate of stomach cancer.
  • about 90% of patients with gastric cancer die from metastatic cancer, rather than from primary culture.
  • the present inventors developed a mouse model and cell line for evaluating the activity of anti-cancer drugs of gastric cancer, and developed a gastric cancer mouse model and histopathological characteristics similar to human gastric cancer, and gastric cancer cell lines established therefrom. It was confirmed that the size of cancer cells was reduced by the active 4-1BB inhibitor. In addition, as a result of comparing the gene expression of two types of gastric cancer mouse cell lines among the cell lines of the present invention, it was confirmed that genes related to metastasis exist. Therefore, the gastric cancer animal model and the gastric cancer cell line established therefrom have completed the present invention by confirming that the anticancer drug activity can be usefully evaluated and the discovery of metastasis inhibitors.
  • Still another object of the present invention is to provide a gastric cancer animal model and a method for producing a gastric cancer cell line according to the present invention.
  • Still another object of the present invention is to provide a method for discovering efficacy and toxicity evaluation or metastasis suppressor gene for immunotherapy and gastric cancer using the gastric cancer animal model and gastric cancer cell line of the present invention.
  • the present invention provides a gastric cancer animal model having a genotype Cre + ; Smad4 fl / fl ; p53 fl / fl ; Cdh1 fl / + trait, and gastric cancer.
  • the present invention provides a method for producing a gastric cancer animal model comprising the following steps:
  • the present invention also provides a gastric cancer cell line isolated from the gastric cancer animal model of the present invention.
  • the present invention provides a method for producing a gastric cancer cell line comprising the following steps:
  • the present invention provides a method for producing a gastric cancer cell line comprising the following steps:
  • step 2 2) separating gastric stem cell positive cells from the mass of step 1);
  • step 2) injecting the cells of step 2) into an immunodeficient mouse (SCID), and then separating the metabolism;
  • the present invention provides a method for evaluating the efficacy of a candidate drug for treating gastric cancer, comprising the following steps:
  • the present invention provides a method for evaluating safety for immunotherapy comprising the following steps:
  • step 2) measuring the safety of the stomach cancer animal model or gastric cancer cell line gastric cancer or gastric cancer cells of step 1) for the immune treatment.
  • the present invention provides a method for evaluating the efficacy of a gastric cancer metastasis inhibitor candidate comprising the following steps:
  • the present invention provides a method for evaluating safety for immunotherapy comprising the following steps:
  • step 2) measuring the safety of the stomach cancer animal model or gastric cancer cell line gastric cancer or gastric cancer cells of step 1) for the immune treatment.
  • Spontaneous gastric cancer animal model and gastric cancer cell line established therefrom for evaluating the efficacy and toxicity of the immunotherapy and gastric cancer therapeutic agent of the present invention have histopathological characteristics similar to human gastric cancer, fast metastasis, consistent metastasis and high predictability Since it can be useful for the discovery of transition inhibitory genes and the development of inhibitors.
  • 1 is a diagram showing a hybridization plan for naturally occurring gastric cancer mice.
  • Figure 2 is a diagram showing the results of macroscopic and histopathological observations on the primary tumor of the naturally-occurring gastric cancer mouse prepared.
  • NCC-S2 and NCC-S1 is a gastric cancer cell line.
  • Figure 3A is a diagram confirming the parental cells of the established NCC-S1M.
  • Figure 3B confirms that the established NCC-S1M is a gastric cancer cell line.
  • NCC-S1 exhibits genomic instability in a pattern similar to NCC-S1M.
  • Figure 4B is a diagram confirming the expression of Smad4 and p53 in NCC-S1M.
  • FIG. 6 is a diagram visually confirming the metastasis of the NCC-S1M cell line.
  • FIG. 7 is a diagram confirming the cytotoxicity of NCC-S1 and NCC-S1M cell lines.
  • FIG. 8 is a diagram illustrating a mouse model in which luciferase is expressed to more easily identify the occurrence and metastasis of cancer.
  • the present invention provides a gastric cancer animal model having genotype Cre + ; Smad4 fl / fl ; p53 fl / fl ; Cdh1 fl / + traits and gastric cancer.
  • the present invention provides a method for producing an animal model of gastric cancer, comprising the following steps:
  • the target gene of step 1) is most preferably Smad4, p53 and Cdh1, but any cancer suppressor gene (tumor suppressor gene) can be used.
  • the target gene knockout method of step 1) is most preferably using Cre-loxP site specific recombination, but if the target gene can be knocked out, a general method known in the art Are all available.
  • the mouse obtained in step 2) is most preferably genotype Cre + ; Smad4 fl / fl ; p53 fl / fl ; Cdh1 fl / + , but is not limited thereto.
  • the mouse having a Cdh1 fl / + trait was prepared in the preferred embodiment of the present invention because it is fatal to the embryo, but is not limited thereto. I never do that.
  • the animal model of step 3) is preferably a rodent, more preferably a mouse, but is not limited thereto.
  • the animal model is preferably cancer, and gastrointestinal fever cancer, but more preferably, gastric cancer, small intestine cancer and colon cancer most preferably occurs.
  • the gastric cancer preferably has the same histopathologic characteristics as the human subtype gastric cancer, and a low differentiated diffuse-type adenocarcinoma having signal ring cells. Is most preferred.
  • the present invention provides a gastric cancer cell line isolated from the gastric cancer animal model of the present invention.
  • the present invention provides a method for producing a gastric cancer cell line, including but not limited to:
  • the excised mass of step 1) is characterized in that the two or more cancer cell populations are mixed and grown, but not limited thereto.
  • the isolation culture of step 2) is most preferably performed at the seventh passage according to a preferred embodiment of the present invention, but the morphology difference in vitro is different. If observed with the naked eye, it may be performed.
  • the cell line established in step 2) does not express Smad4 and p53, but is not limited thereto.
  • a method for confirming whether the target gene is knocked out can be confirmed at the protein or RNA level, and when it is confirmed at the RNA level, RT-PCR and DNA chip methods can be used. It is preferred to use a method selected from the group consisting of assays, protein chips, western blots and ELISAs, but is not limited to such.
  • the present invention provides a method for preparing a gastric cancer cell line, including but not limited to:
  • step 2 2) separating gastric stem cell positive cells from the mass of step 1);
  • step 2) injecting the cells of step 2) into an immunodeficient mouse (SCID), and then separating the metabolism;
  • the excised mass of step 1) is characterized in that the two or more cancer cell populations are mixed and grown, but not limited thereto.
  • the method further includes, but is not limited to, separating the formed metastasis after transplanting the metastasis isolated in step 3) into another immunodeficient mouse.
  • the injection of step 3) is most preferably injected subcutaneously, but not always limited thereto.
  • the injection site is preferably injected into the torso of the mouse, more preferably in the abdomen, but most preferably in the flank.
  • the cell injection in step 3) is preferably injected with 4 ⁇ 10 4 to 6 ⁇ 10 4 cells, more preferably 4.5 ⁇ 10 4 to 5.5 ⁇ 10 4 cells Preferably, 5 x 10 4 cells are injected, but not always limited thereto.
  • the metastasis of step 3 is most preferably found in the lung, but is not limited thereto.
  • the Cgh array (array) was used in the preferred embodiment of the present invention in order to determine which cell line of the gastric cancer cell line having a high metastasis established by the above-mentioned method is derived from NCC-S2 and NCC-S1 of the present invention. It is not limited to this.
  • the gastric cancer cell line has a high metastatic established is preferably derived from cancer cells derived from the animal model of the present invention, and more preferably derived from NCC-S2 and NCC-S1, the gastric cancer cell lines of the animal model, According to a preferred embodiment, those derived from NCC-S1 are most preferred.
  • the present inventors prepared a mouse model inducing gastric cancer by deleting tumor suppressor genes Smad4, p53 and Cdh1 in order to produce naturally occurring gastric cancer mice (see FIG. 1). It was confirmed that the primary tumor of the mouse model had almost the same characteristics as the human subtype gastric cancer (see FIG. 2).
  • the present inventors attempted culture to establish a mouse-derived gastric cancer cell line using gastric cancer masses generated in the mouse model. It was confirmed that two or more cancer cells were mixed and grown in the initial passage culture step, and cultured them to establish NCC-S2 and NCC-S1, and the protein expression of Smad4 and p53 was not expressed in the NCC-S2 and NCC-S1 cell lines. It was confirmed (see FIG. 3).
  • the present inventors injected the gastric cancer mass generated in the mouse model into the immunodeficiency mouse (SCID) in two times of subcutaneous injection and surgical transplantation, and isolated cultured lung metastases derived from the NCC- S1M was established.
  • the NCC-S1M cell line appears to be derived from NCC-S1, and it was confirmed that the cancer cells do not express Smad4 like the parental cells (see FIG. 4).
  • the inventors performed western blot expression of the oncogenic gene Myc protein in order to confirm whether the produced cell line is a cancer cell line, and confirmed that Myc protein was expressed in all of NCC-S2, NCC-S1 and NCC-S1M. (See Figure 5).
  • NCC-S2 NCC-S1
  • NCC-S1M has a higher tumorigenic capacity by forming a tumor at a lower concentration (see Table 1). ).
  • NCC-S1M showed a faster in vivo growth than NCC-S1, and confirmed that it has a transition element that can be observed with the naked eye (see Table 2 and Figure 6). ).
  • NCC-S1M has a higher resistance to all drugs than NCC-S1 (see Fig. 7).
  • the present inventors produced a luciferase-bound NCC-S1M cell line to make the NCC-S1M cell line easy to identify metastasis in a mouse model to confirm the occurrence of metastatic gastric cancer in mice (see FIG. 8).
  • the present inventors confirmed whether the NCC-S1M cell line is applicable to cancer immunotherapy, and the anti-4-1BB treated test group significantly reduced tumor growth compared to the rat IgG treated control group. Observations were made (see Table 3 and FIG. 9).
  • the present inventors established cell lines NCC-S2, NCC-S1 and NCC-S1M, which cause primary gastric cancer in mice, and found that NCC-S1M has high metastasis. In addition, it was confirmed that the gastric cancer mouse model using the cell line can be usefully used for gastric cancer drug development.
  • the present invention provides a method for evaluating the efficacy of a candidate drug for treating gastric cancer, including but not limited to:
  • the present invention also provides, but is not limited to, a method for evaluating safety for immunotherapy comprising the following steps:
  • step 2) measuring the safety of the stomach cancer animal model or gastric cancer cell line gastric cancer or gastric cancer cells of step 1) for the immune treatment.
  • the present invention provides a method for evaluating the efficacy of a candidate drug for treating gastric cancer, including but not limited to:
  • the present invention also provides, but is not limited to, a method for evaluating safety for immunotherapy comprising the following steps:
  • step 2) measuring the safety of the stomach cancer animal model or gastric cancer cell line gastric cancer or gastric cancer cells of step 1) for the immune treatment.
  • the tumor suppressor gene Smad4, p53, Cdh1 genes are specifically deleted by gastrointestinal string epithelial cells.
  • a mouse model was produced that induced gastric cancer.
  • Smad4 fl / fl with loxP gene (provided by Dr. Chuxia Deng, NIH, USA), p53 fl / fl (NCI Mouse Repository, USA), Cdh1 fl / fl (Jackson Laboratory, USA) Mouse Cre + ; Smad4 fl / + , Cre + ; p53 fl / + and Cre + ; crossed with Villin-Cre mice (NCI Mouse Repository, USA) to perform Cre-loxP site specific recombination, respectively; A hetero mouse of Cdh1 fl / + was prepared.
  • Genotyping PCR was performed to confirm the mouse genotype prepared above. Specifically, genomic DNA was extracted by a method well known in the art, gDNA 0.45 ul (50-100 ng / ul DNA), 10x buffer ( buffer) 1 ul, dNTP (2.5 mM) 0.8 ul, Primer-F 0.3 ul, Primer-R 0.3 ul, EX-Taq (Takara, Japan), a mixture of 0.05 ul, distilled water 7.1 ul (genotyping PCR) ( 94 ° C. 5 minutes, 94 ° C. 40 seconds, 55 ° C. 35 seconds, 72 ° C. 40 seconds, 72 ° C. 3 minutes, 40 repetitions).
  • the sequence of the primers used for the genotype PCR is as follows:
  • Villin-Cre-F (2) 5'-TCCTCTAGGCTCGTCCCG-3 '(SEQ ID NO: 1),
  • Smad4-Genotype-F 5'-GGGCAGCGTAGCATATAAGA-3 '(SEQ ID NO: 3),
  • Smad4-Genotype-R 5'-GACCCAAACGTCACCTTCAC-3 '(SEQ ID NO: 4),
  • Trp53-Genotype-F 5'-TGGAGATATGGCTTGGCTTGGAGTAG-3 '(SEQ ID NO: 5),
  • Trp53-Genotype-R 5'-CAACTTACTTCGAGGCTTGTC-3 '(SEQ ID NO: 6),
  • Cdh1-Genotype-R 5'-GAACTAGGGAGGTAGAAGGAGC-3 '(SEQ ID NO: 8).
  • Cdh1 fl / fl in Cre + mice was fatal to the embryos (embryo-lethality) Cre + ; mice with the Cdh1 fl / fl trait were not born, so Cdh1 fl / + was used.
  • Example ⁇ 1-1> Smad4 fl / fl ; p53 fl / fl ; Cdh1 fl / + genotypes prepared in Example ⁇ 1-1> to determine the occurrence of primary tumor in the mice, after necropsy, gross and histopathology An enemy observation was performed.
  • mice fasted overnight were euthanized using isoflurane and the gastrointestinal tract was immediately removed.
  • the stomach was cut along the great curvature using scissors to spread pieces on the filter paper.
  • the intestine is divided into large intestine and small intestine, and the small intestine is cut into three parts: duodenum, jejunum and ileum. Each part of the intestine was carefully cut vertically with scissors, and then spread on filter paper.
  • the stomach and intestines were washed with cold PBS, and the remaining PBS in the stomach and intestines was removed using a paper towel, followed by an overall observation.
  • the bowel is then rolled off the luminal side from the proximal end to the distal end on a wooden stick and the tip of the dried intestine is fixed with 26-gauge to neutralize 10%.
  • Fixed in formalin buffered formalin One day after fixation, the stomach was cut into six pieces with a razor blade along the ileal axis in the duodenum, and the dried intestines were cut in half.
  • the tissues were then inserted into paraffins by methods well known in the art, and cut 5 ⁇ m cross sections to perform H & E staining for pathological examination. The H & E staining was performed by a universal method known to those skilled in the art.
  • FIG. 2A a mass of 7 ⁇ 9 mm in the pylorus site and multiple masses of about 2-3 mm in the small intestine were observed.
  • the histopathological examination revealed that the above-described mass was diagnosed as a poorly differentiated diffuse-type adenocarcinoma with signal ring cells.
  • histopathological characteristics of gastric cancer in the model mouse were almost the same as that of human subtype gastric cancer (FIG. 2B).
  • mice gastric cancer cell lines NCC-S2 and NCC-S1 cell lines were established using the mouse model established by the method of ⁇ Example 1>.
  • the mass observed in the stomach of the mouse model of Example ⁇ 1-2> was excised, washed with cold PBS, and the washed mass was transferred to a cell culture dish containing a small amount of RPMI1640 medium. The mass was then chopped into surgical blades into small pieces, and then pipeted several times into smaller pieces. The crushed mass was seeded in a 25 cm 2 flask containing RPMI1640 medium containing 20% FBS, 100 U / ml penicillin and 0.1 mg / ml streptomycin. When sufficient tumor cell population formation and heavy tumor cell growth were observed, primary passage was performed via trypsinization. After the first passage was incubated at 37 °C, 5% CO 2 conditions using RPMI1640 containing 10% FBS.
  • the cell line prepared in ⁇ 2-1> is a gastric cancer cell line derived from the mouse model of ⁇ Example 1>
  • the expression of Smad4 and p53 was confirmed by performing Western blot.
  • the protein-transferred membrane was stirred for 30 minutes in 1% BSA and 2% skim milk and then washed three times with PBS-T for 5 minutes.
  • the membrane was used by diluting the primary antibody to 1/1000 in PBS-T containing 5% BSA, 0.1% sodium azide (Smad4: Santa cruz, P53: Santa cruz sc). -6243, E-cadherin: Cell Signaling # 4065) was added and incubated overnight at 4 ° C, and washed three times with PBS-T for 5 minutes the next day.
  • the secondary antibody (used by diluting the secondary antibody to 1/5000 in PBS-T containing 5% whole milk) (goat anti-mouse / rabbit, GenDEPOT) was reacted at room temperature for one hour. After the reaction with the secondary antibody, it was washed with PBS-T three times with stirring for 5 minutes, soaked in ECL solution (Thermo Scientific Inc.) for 1 minute and then printed on an X-ray film.
  • cancer cells prior to isolation culture of NCC-S2 and NCC-S1 in ⁇ 2-1> were obtained by positive sorting with Epcam, a gastric stem cell marker, (sixth passage). After 5 ⁇ 10 4 cells were injected subcutaneously in the flank of immunodeficient mice (SCID), the mice were autopsied 80 days later and metastases were observed in the lungs. Transplantation observed in lung tissue was excised and surgically implanted in the flanks of other immunodeficient mice 55 days after that, the mice were necropsied and metastasis was also observed in the lungs. The cell line was established by the method of ⁇ 2-1> in which the transition subtractor was excised to establish NCC-S2 and NCC-S1, which was named NCC-S1M.
  • NCC-S1M is a cell line that has been metastasized using early cancer cells
  • a manufacturer using DNeasy Blood & Tissue kit (Qiagen) After extracting the entire DNA from each cell line according to the instructions of the CGH array was performed.
  • CNAs copy number alterations
  • the slides are washed with buffer 1 for 5 minutes and with buffer 2 for 2 minutes at room temperature, and the washed slides are scanned with a DNA microarray scanner (Agilent Technologies). It became. The resulting data was extracted from the scanned images into Feature Extraction software, version 10.7.3.1 (Agilent), and the test files were moved to Genomic Workbench, Standard 5.0.14 (Agilent) for analysis. It became. All variation intervals in samples with consistently high or low log rations based on statistical scores, using the Aberration Detection Method 2 (ADM-2) algorithm to identify DNA copy number variations. aberrant intervals were identified. Then, a sample survey was performed with the probe to determine the actual extent of the variation.
  • ADM-2 Aberration Detection Method 2
  • Statistical scores represent the deviation of the logarithmic ratio mean from the expected value of zero, in units of standard deviation. The algorithm found intervals in statistical scores based on the average quality of the skewed log ratio of the samples and exceeded the reference channels user specified threshold. Although limit 6 is recommended in the user guide, conservative limit 10 was used in the present invention because visual inspection of array plots leads to rejection of some variations called low limit. . A filtration option of at least five probes was applied, with a minimum absolute mean log 2 ratio> 0.3. USCS human genome assembly hg18 was used as a reference and replication number variation (CNV) was identified as a database embedded in Agilent Genomic Workbench analytic software.
  • CNV replication number variation
  • NCC-S1 exhibited a genomic instability of a pattern similar to NCC-S1M, confirming that NCC-S1 is a parent cell of NCC-S1M (Fig. 4A).
  • Example ⁇ 2-2> The amplification of Myc carcinogen was observed through the CGH array of Example ⁇ 2-4>, and the method described in Example ⁇ 2-2> was used for anti-Myc antibody (Abcam, 1: 1000). Blots were performed.
  • NCC-S1 and NCC-S1M established in the above examples, syngeneic mice at 5 weeks of age at the concentrations as shown in Table 1 below, NCC-S1 and NCC -S1M cell line was injected subcutaneously and observed for tumor formation.
  • NCC-S2, NCC-S1 and NCC-S1M cell lines were cultured to secure a sufficient number, and trypsin treatment was carried out to drop the cells were centrifuged for 3 minutes at 1500 rpm. The resulting pellet was washed twice with PBS, then 1 ⁇ 10 6 , 1 ⁇ 10 5 , 1 ⁇ 10 4 , 1 ⁇ 10 3 cells are suspended in 50 ⁇ l of PBS each. And 1: 1 mixed with Matrigel (Matrigel, BD Bioscience) in a 1 cc insulin syringe. Injected into the flank subcutaneous tissue of 6 to 7 five-week-old syngenic mice at each concentration, and after 4 weeks was confirmed by visual, palpation, histopathological reading and the like.
  • Matrigel Matrigel
  • NCC-S1M forms tumors at lower concentrations than NCC-S2 and NCC-S1 cell lines, confirming that NCC-S1M has higher tumorigenicity (Table 1).
  • Example ⁇ 3-2> it was confirmed the metastasis of the NCC-S1M cell line showing the highest tumorigenic capacity.
  • Example ⁇ 3-2> 1 ⁇ 10 6 cells were injected subcutaneously in the flanks of 8 SCID mice of 5 weeks old in the same manner as in Example ⁇ 3-2>, and the size of the tumors on the flanks was 1600 mm 3 .
  • An autopsy was performed. To determine the extent and extent of metastasis to the lungs, the lungs were removed at autopsy, and the lungs were fixed in Bowin's fixative solution overnight, and then examined under a microscope. Counted In addition, histopathological evaluation was performed to confirm whether the nodule visually identified was a metastasis.
  • NCC-S1M showed faster in vivo growth than NCC-S1, and when comparing the degree of metastasis in the same volume, NCC-S1M was observed visually in all individuals.
  • NCC-S1M on the other hand, could not observe metastases not only visually, but also histopathologically as shown in Table 2 (Table 2).
  • NCC-S1M has a higher resistance to all drugs than NCC-S1 (Fig. 7).
  • Luciferase-bound NCC-S1M cell lines were prepared in order to facilitate the metastasis of NCC-S1M cell lines identified by Example ⁇ 3-3> in mouse models.
  • the luciferase-coupled NCC-S1M cell line prepared above was transplanted into a mouse model to confirm whether metastatic gastric cancer occurred.
  • luciferase was expressed to prepare a mouse model that can more easily determine the occurrence and metastasis of cancer (Fig. 8).
  • NCC-S1M cell line In order to confirm whether the prepared NCC-S1M cell line is applicable to cancer immunotherapy, tumor growth was confirmed in mice by administering IgG as a 4-1BB and a negative control group as a positive control group.
  • a sufficient number is obtained by culturing NCC-S1M cells, and trypsin treatment to collect the cells.
  • the collected cells were centrifuged at 1500 rpm for 3 minutes to obtain only cells, and the obtained cells were washed twice with PBS, and then 1 ⁇ 10 6 cells were suspended in 50 ⁇ l of PBS.
  • the cells were mixed with Matrigel (BD Bioscience) in a ratio of 1: 1 and injected subcutaneously in the flanks of eight 5-week-old SCID mice, followed by intraperitoneal injection of anti-4-1BB and rat IgG first one week later. One week after the primary injection, the anti-4-1BB and rat IgG were injected once again intraperitoneally. Tumor volume was measured from the first injection.
  • test group treated with anti-4-1BB significantly reduced tumor growth compared to the control group treated with rat IgG.
  • T anti-4-1BB
  • C rat IgG

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Toxicology (AREA)
  • Biophysics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 면역 치료 및 위암 치료제에 대한 효능 및 독성 평가 또는 전이 억제 유전자의 발굴 및 억제제의 개발을 위한, 자연발생 위암 동물모델 및 이로부터 수립된 위암 세포주에 관한 것이다. 구체적으로, 본 발명의 위암 동물모델 및 이로부터 수립된 위암 세포주는 조직병리학적 특징이 인체 위암과 유사하고, 항암활성이 있는 4-1BB 억제제에 의해 암세포의 크기가 줄어드는 것을 확인함으로써, 면역 치료 및 위암 치료제에 대한 효능 및 독성 평가에 유용하게 사용될 수 있음을 확인하였다. 또한, 본 발명의 위암 세포주 중 하나는 전이가 빠르기 때문에 다른 세포주들과 유전자 발현을 비교하여, 전이에 관련하는 유전자를 발굴하고 전이 억제제의 개발 및 효능평가에 유용하게 사용할 수 있다. 따라서, 본 발명의 위암 동물모델 및 위암 세포주는 면역억제 마우스를 대신하여 위암 억제제 및 위암 전이 억제제의 효능평가 및 면역치료제(immunotherapy) 평가에 유용하게 사용될 수 있음을 확인하였다.

Description

면역 치료 및 위암 치료제에 대한 효능 및 독성 평가를 위한 마우스 위암 세포주
본 발명은 면역 치료 및 위암 치료제에 대한 효능 및 독성 평가 또는 전이 억제 유전자의 발굴 및 억제제의 개발을 위한 위암 동물 모델 및 마우스 위암 세포주, 이의 제조방법 및 용도에 관한 것이다.
항암신약이나 새로운 항암화학요법을 개발하기 위한 전임상 연구의 핵심은 항암활성을 정확하고 신속하게 평가하는 데 있다. 새로운 항암제 및 항암화학요법을 개발하기 위해서는 비용 및 신속성의 면에서 시험관(in vitro) 시험계가 생체내(in vivo) 실험계에 비해 경제적이고 우수하지만, 시험관 실험계에 있어서 효능평가의 유효성은 상기 실험계가 생체 내 상황을 충분히 대변하여 임상적으로 의미있는 효능이 검증될 수 있는지의 여부에 달려있다. 현재까지 전임상 개발 단계를 거쳐 임상시험에 진입한 항암 후보물질들의 약 90%가 최종개발에 실패하였는데 이는 적절한 실험계의 부재로 인해 임상 효능의 가능성을 지닌 화합물의 발굴에 실패했기 때문이다(Staquet M.J. et al., Cancer Treat Rep:67, 753-765, 1983; Twentyman P.R., Ann Oncol:5, 394-396, 1994: von Hoff D.D., Clin Cancer Res:4, 1079-1086, 1998).
지금까지 널리 쓰이고 있는 시험관 내 화학감수성 분석방법(in vitro chemosensitivity assay)으로는 콜론 형성 분석법(clonogenic assay), 염료 배제 분석법(dye exclusion assay), MTT 분석법[tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay] 또는 SRB 분석법(sulforhodamine B assay) 등이 있다. 상기한 방법은 항암신약개발에 있어서 대량검색(high-throughput)이 필요한 1차 스크리닝 계로서는 의미가 있으나, 인체 고형암의 생체 내 조건과는 조건이 매우 달라서 고형암에 대한 반응률을 예측하기에는 무리가 있다. 고형암의 경우, 항암화학요법제에 대한 반응률이 낮은 이유는 고형암 세포의 삼차원적 조직화와 다세포계(multicellular system)에서 기인하는 세포간 및 세포와 세포간질(extracellular matrix, ECM)간의 상호작용 등이 항암약물의 암조직내 침투저하 및 조직 내 농도저하를 가져오는 등의 여러 기전으로 말미암아 약물에 대한 내성을 유발하기 때문으로 알려져 있다(Wolfgang M.K., Crit Rev Oncol Hematol:36, 123-139, 2000: Bernard D. et al., Crit Rev Oncol Hematol:36, 193-207, 2000).
위암은 전 세계적으로 발생빈도가 높은 암 중 하나로 한국 및 일본 등 아시아에서 발생하는 가장 흔한 암으로서 사망률 1위를 나타내는 암이다(Parkin et al., Int. J. Cancer 80: 827-841, 1999; Neugut et al., Semin. Oncol. 23: 281-291, 1996; Parkin, Lancet Oncol. 2: 533-543, 2001). 또한, 위암의 증상은 전혀 증상이 없는 경우에서부터 격심한 통증에 이르기까지 다양한 양상을 나타내고 있으며, 위암의 증상이 어떤 특성을 갖는 것이 아니라 일반적인 소화기 증상을 보이며, 위암의 초기에는 증상이 없는 경우가 대부분이며, 증상이 있다 하더라도 비교적 경미하여 약간의 소화불량이나 상복부 불편감을 느끼는 정도이므로 대부분의 사람 이를 간과하기 쉬워 위암의 사망률을 높이는 원인이 되기도 한다. 따라서, 실제 위암 환자들 중 원발암(primary culture)의 상태에서 사망하는 것보다 약 90% 정도의 환자가 전이암으로 악화한 후 사망에 이르고 있다.
현재 위암 항암제의 전임상 시험을 위해서는 인간 위암세포주를 면역억제마우스(SCID 또는 누드마우스)에 주입하여 항암신약의 활성을 평가하고 있다. 그러나 상기 면역억제마우스를 이용한 전임상 시험은 면역요법의 효능평가 및 면역 치료에 대한 안전성 평가방법에 부적합하다는 문제점이 있기 때문에 상기 원발성 위암의 전이 억제제 개발에 필요한 세포주 및 동물모델의 개발이 필요한 실정이다.
이에 본 발명자들은 위암 항암신약의 활성 평가를 위한 마우스 모델 및 세포주를 연구하던 중, 조직병리학적 특징이 인체 위암과 유사한 위암 마우스 모델 및 이로부터 수립된 위암 세포주를 개발하였으며, 상기 위암 세포주가 각각 항암활성이 있는 4-1BB 억제제에 의해 암세포의 크기가 줄어든 것을 확인하였다. 또한, 본 발명의 세포주 중 두 종류의 위암 마우스 세포주의 유전자 발현을 비교한 결과, 전이에 관련하는 유전자가 존재하는 것을 확인하였다. 따라서, 상기 위암 동물모델 및 이로부터 수립된 위암 세포주는 항암신약의 활성평가 및 전이 억제제의 발굴에 유용하게 사용될 수 있음을 확인함으로써 본 발명을 완성하였다.
본 발명의 목적은 위암치료제의 효능평가 및 면역 치료에 대한 안전성 평가방법를 위한 마우스 위암 동물 모델 및 이로부터 수립된 마우스 위암 세포주를 제공하는 것이다.
본 발명의 또 다른 목적은 본 발명에 따른 위암 동물모델 및 위암 세포주를 제조하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 본 발명의 위암 동물모델 및 위암 세포주를 이용하여 면역치료 및 위암 치료제에 대한 효능 및 독성평가 또는 전이억제 유전자를 발굴하는 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 유전형 Cre+;Smad4fl/fl;p53fl/fl;Cdh1fl/+ 형질을 가지고, 위암을 갖는 위암 동물모델을 제공한다.
또한, 본 발명은 하기의 단계를 포함하는 위암 동물모델의 제조방법을 제공한다:
1) Smad4fl/fl 마우스, p53fl/fl 마우스 및 Cdh1fl/fl 마우스를 각각 Villin-Cre 마우스와 교배시킨 후, 선별하여 Cre+;Smadfl/+ 마우스, Cre+;p53fl/+ 마우스 및 Cre+;Chd1fl/+ 마우스를 수득하는 단계;
2) 단계 1)의 Cre+;Smadfl/+ 마우스, Cre+;p53fl/+ 마우스 및 Cre+;Chd1fl/+ 마우스를 무작위 교배시킨 후, 선별하여 Cre+;Smadfl/+;p53fl/+;Chd1fl/+ 마우스를 수득하는 단계; 및
3) 단계 2)의 Cre+;Smadfl/+;p53fl/+;Chd1fl/+ 마우스들 사이에 교배시킨 후, 선별하여 Cre+;Smad4fl/fl;p53fl/fl;Cdh1fl/+ 마우스를 수득하는 단계.
또한, 본 발명은 본 발명의 위암 동물모델로부터 분리된 위암세포주를 제공한다.
또한, 본 발명은 하기의 단계를 포함하는 위암 세포주의 제조방법을 제공한다:
1) 본 발명의 위암 동물모델의 위의 종괴를 절제한 후, 배양하는 단계; 및
2) 상기 단계 1)의 배양된 종괴로부터 위암 세포를 분리하는 단계.
또한, 본 발명은 하기의 단계를 포함하는 위암 세포주의 제조방법을 제공한다:
1) 본 발명의 위암 동물모델의 위의 종괴를 절제한 후, 배양하는 단계;
2) 상기 단계 1)의 종괴로부터 위 줄기세포 양성 세포를 분리하는 단계;
3) 상기 단계 2)의 세포를 면역결핍 마우스(SCID)에 주사한 후, 전이소를 분리하는 단계; 및
4) 상기 단계 3)의 전이소로부터 위암 세포주를 분리하는 단계.
또한, 본 발명은 하기의 단계를 포함하는 위암 치료제 후보물질의 효능평가 방법을 제공한다:
1) 본 발명의 위암 동물모델 또는 위암 세포주에 위암 치료제 후보물질을 처리하는 단계; 및
2) 상기 단계 1)의 위암 동물모델 또는 위암 세포주의 위암 또는 위암 세포를 억제하는 정도를 측정하는 단계.
또한, 본 발명은 하기의 단계를 포함하는 면역 치료에 대한 안전성 평가방법을 제공한다:
1) 본 발명의 위암 동물모델 또는 위암 세포주에 위암 치료제 후보물질을 처리하는 단계; 및
2) 상기 단계 1)의 위암 동물모델 또는 위암 세포주의 위암 또는 위암세포의 면역 치료에 대한 안전성을 측정하는 단계.
또한, 본 발명은 하기의 단계를 포함하는 위암 전이 억제제 후보물질의 효능평가방법을 제공한다:
1) 본 발명의 위암 동물모델 또는 위암 세포주에 위암의 전이 억제제 후보물질을 처리하는 단계; 및
2) 상기 단계 1)의 위암 동물모델 또는 위암 세포주의 위암 또는 위암세포의 전이를 억제하는 정도를 측정하는 단계.
아울러, 본 발명은 하기의 단계를 포함하는 면역 치료에 대한 안전성 평가방법을 제공한다:
1) 본 발명의 위암 동물모델 또는 위암 세포주에 위암의 전이 억제제 후보물질을 처리하는 단계; 및
2) 상기 단계 1)의 위암 동물모델 또는 위암 세포주의 위암 또는 위암세포의 면역 치료에 대한 안전성을 측정하는 단계.
본 발명의 면역 치료 및 위암 치료제에 대한 효능 및 독성 평가를 위한 자연발생 위암 동물 모델 및 이로부터 수립된 위암 세포주는 조직병리학적 특징이 인체 위암과 유사하고, 전이가 빠르며 전이의 일관성 및 높은 예측성을 보이므로 전이억제 유전자의 발굴 및 억제제의 개발에 유용하게 사용될 수 있다.
도 1은 자연발생 위암 마우스를 위한 교배 계획을 나타낸 도이다.
도 2는 제조된 자연발생 위암 마우스의 원발 종양에 대한 육안 및 조직병리학적 관찰 결과를 나타낸 도이다.
도 3은 수립된 NCC-S2 및 NCC-S1가 위암 세포주인 것을 확인한 도이다.
도 3A는 수립된 NCC-S1M의 모세포를 확인한 도이다.
도 3B는 수립된 NCC-S1M이 위암 세포주인 것을 확인한 도이다.
도 4A는 NCC-S1이 NCC-S1M과 비슷한 패턴의 유전자 불안정성(genomic instability)을 나타냄을 확인한 도이다.
도 4B는 NCC-S1M에서 Smad4 및 p53의 발현을 확인한 도이다.
도 5는 NCC-S2, NCC-S1 및 NCC-S1M 세포주에서 Myc 단백질 발현이 증가함을 확인한 도이다.
도 6은 NCC-S1M 세포주의 전이성을 육안으로 확인한 도이다.
도 7은 NCC-S1 및 NCC-S1M 세포주의 세포독성을 확인한 도이다.
A: 5-FU, 및
B: 시스플라틴(cisplatin).
도 8은 루시퍼라제가 발현되어 암의 발생 및 전이 여부를 더욱 용이하게 확인할 수 있는 마우스 모델을 나타내는 도이다.
도 9는 항-4-1BB를 처리한 시험군이 랫 IgG를 처리한 대조군에 비해서 종양의 성장이 유의적으로 감소함을 확인한 도이다.
이하, 본 발명을 상세하게 설명한다.
본 발명은 유전형 Cre+;Smad4fl/fl;p53fl/fl;Cdh1fl/+ 형질을 가지고, 위암을 갖는 위암 동물모델을 제공한다.
또한 본 발명은 하기의 단계를 포함하는 위암 동물모델의 제조방법을 제공하나 이에 한정하지 않는다:
1) Smad4fl/fl 마우스, p53fl/fl 마우스 및 Cdh1fl/fl 마우스를 각각 Villin-Cre 마우스와 교배시킨 후, 선별하여 Cre+;Smadfl/+ 마우스, Cre+;p53fl/+ 마우스 및 Cre+;Chd1fl/+ 마우스를 수득하는 단계;
2) 단계 1)의 Cre+;Smadfl/+ 마우스, Cre+;p53fl/+ 마우스 및 Cre+;Chd1fl/+ 마우스를 무작위 교배시킨 후, 선별하여 Cre+;Smadfl/+;p53fl/+;Chd1fl/+ 마우스를 수득하는 단계; 및
3) 단계 2)의 Cre+;Smadfl/+;p53fl/+;Chd1fl/+ 마우스들 사이에 교배시킨 후, 선별하여 Cre+;Smad4fl/fl;p53fl/fl;Cdh1fl/+ 마우스를 수득하는 단계.
상기 동물모델 제조방법에 있어서, 단계 1)의 표적 유전자는 Smad4, p53 및 Cdh1인 것이 가장 바람직하나, 암 억제 유전자(tumor suppressor gene)라면 모두 사용가능하다.
상기 동물모델 제조방법에 있어서, 단계 1)의 표적 유전자 녹아웃 방법은 Cre-loxP 위치 특이성 재조합(site specific recombination)을 사용하는 것이 가장 바람직하나, 표적 유전자를 녹아웃시킬 수 있다면 당업계에 알려진 보편적인 방법은 모두 사용가능하다.
상기 동물모델 제조방법에 있어서, 단계 2)의 헤테로 마우스는 Cre+;Smad4fl/+, Cre+;p53fl/+ 및 Cre+;Cdh1fl/+의 유전자형을 갖는 것이 가장 바람직하나, 이에 한정하지 않는다.
상기 동물모델 제조방법에 있어서, 단계 2)의 수득된 마우스는 유전자형이 Cre+;Smad4fl/fl;p53fl/fl;Cdh1fl/+인 것이 가장 바람직하나, 이에 한정하지 않는다.
상기 동물모델 제조방법에 있어서, 단계 3)의 제조된 마우스 중 Cdh1fl/fl 형질을 갖는 경우, 배아에 치명적이기 때문에 본 발명의 바람직한 실시예에서는 Cdh1fl/+ 형질을 갖는 마우스가 제조되었으나 이에 한정하지 않는다.
상기 동물모델 제조방법에 있어서, 단계 3)의 동물모델은 설치류인 것이 바람직하고, 마우스인 것이 더욱 바람직하나 이에 한정하지 않는다. 또한, 상기 동물모델은 암이 발생하는 것이 바람직하고, 위장관계열 암이 발생하는 것이 더욱 바람직하나, 위암, 소장암 및 대장암이 발생하는 것이 가장 바람직하다. 또한 본 발명의 바람직한 실시예에 따르면 상기 위암은 인체 미만형 위암과 조직병리학적 특성이 거의 동일한 것이 바람직하고, 인환세포(signet ring cell)을 갖는 저분화 미만형 위암(poorly differentiated diffuse-type adenocarcinoma)인 것이 가장 바람직하다.
상기 동물모델 제조방법으로 제조된 위암 동물모델에서 위암 형성을 확인하는 방법은, 본 발명의 바람직한 실시예에 따르면 부검이 사용되었으나 이에 한정하지 않는다.
본 발명은 본 발명의 위암 동물모델로부터 분리된 위암세포주를 제공한다.
또한 본 발명은 하기의 단계를 포함하는 위암 세포주의 제조방법을 제공하나 이에 한정하지 않는다:
1) 상기 위암 동물모델의 위의 종괴를 절제한 후, 배양하는 단계; 및
2) 상기 단계 1)의 배양된 종괴로부터 위암 세포를 분리하는 단계.
상기 위암 세포주의 수립방법에 있어서, 단계 1)의 절제된 종괴는 둘 이상의 암세포 집단이 혼합하여 자라고 있는 것을 특징으로 하나 이에 한정하지 않는다.
상기 위암 세포주의 수립방법에 있어서, 단계 2)의 분리 배양은, 본 발명의 바람직한 실시예에 따르면 일곱 번째 계대에서 수행하는 것이 가장 바람직하나, 시험관 내(in vitro)에서 형태학(morphology)적 차이가 육안으로 관찰되면 수행하여도 무방하다.
상기 위암 세포주의 수립방법에 있어서, 단계 2)의 수립된 세포주는 Smad4 및 p53을 발현하지 않는 것을 특징으로 하나 이에 한정하지 않는다. 또한, 상기 표적 유전자의 녹아웃 여부를 확인하기 위한 방법은 단백질 또는 RNA 수준에서 확인 가능하며, RNA 수준에서 확인할 경우 RT-PCR 및 DNA 칩의 방법을 사용할 수 있고, 표적 단백질을 사용할 경우 면역형광법, 질량분석법, 단백질 칩, 웨스턴 블랏 및 ELISA로 구성된 군으로부터 선택된 방법을 사용하는 것이 바람직하나 이에 한정하지 않는다.
또한, 본 발명은 하기의 단계를 포함하는 위암 세포주의 제조방법을 제공하나 이에 한정하지 않는다:
1) 상기 위암 동물모델의 위의 종괴를 절제한 후, 배양하는 단계;
2) 상기 단계 1)의 종괴로부터 위 줄기세포 양성 세포를 분리하는 단계;
3) 상기 단계 2)의 세포를 면역결핍 마우스(SCID)에 주사한 후, 전이소를 분리하는 단계; 및
4) 상기 단계 3)의 전이소로부터 위암 세포주를 분리하는 단계.
상기 위암 세포주의 수립방법에 있어서, 단계 1)의 절제된 종괴는 둘 이상의 암세포 집단이 혼합하여 자라고 있는 것을 특징으로 하나 이에 한정하지 않는다.
상기 위암 세포주의 수립방법에 있어서, 단계 2)의 위 줄기세포 양성 세포를 분리하기 위한 마커는 Epcam이 사용되었으나 이에 한정하지 않으며, 당업계에 잘 알려진 위 줄기세포 마커라면 모두 사용가능하다.
상기 위암 세포주의 수립방법에 있어서, 단계 3)에서 분리된 전이소를 다른 면역결핍 마우스에 이식한 후, 형성된 전이소를 분리하는 단계를 추가적으로 포함하나 이에 한정하지 않는다.
상기 위암 세포주의 수립방법에 있어서, 단계 3)의 주사는 피하에 주사하는 것이 가장 바람직하나 이에 한정하지 않는다. 또한 주사 부위는 마우스의 몸통부위에 주사하는 것이 바람직하고, 복부에 주사하는 것이 더욱 바람직하나, 옆구리에 주사하는 것이 가장 바람직하다.
상기 위암 세포주의 수립방법에 있어서, 단계 3)의 세포 주입은 4 × 104 내지 6 × 104개의 세포를 주입하는 것이 바람직하고, 4.5 × 104 내지 5.5 × 104개의 세포를 주입하는 것이 더욱 바람직하며, 5 × 104개의 세포를 주입하는 것이 가장 바람직하나 이에 한정하지 않는다.
상기 위암 세포주의 수립방법에 있어서, 단계 3)의 전이소는 폐에서 발견된 것이 가장 바람직하나 이에 한정하지 않는다.
또한, 상기 수립방법에 의해 수립된 높은 전이성을 갖는 위암 세포주가 본 발명의 NCC-S2 및 NCC-S1 중 어느 세포주에서 유래하였는지 확인하기 위하여 본 발명의 바람직한 실시예에서 Cgh 어레이(array)를 사용하였으나 이에 한정하지 않는다. 아울러, 수립된 높은 전이성을 갖는 위암 세포주는 본 발명의 동물모델 유래 암세포에서 유래한 것이 바람직하고, 상기 동물모델의 위암 세포주인 NCC-S2 및 NCC-S1에서 유래한 것이 더욱 바람직하나, 본 발명의 바람직한 실시예에 따르면 NCC-S1에서 유래한 것이 가장 바람직하다.
본 발명의 구체적인 실시예에서, 본 발명자들은 자연발생 위암 마우스를 제조하기 위하여 암 억제 유전자(tumor suppressor gene)인 Smad4, p53 및 Cdh1을 결손시켜 위암을 유발한 마우스 모델을 제조하였고(도 1 참조), 상기 마우스 모델의 원발 종양이 인체 미만형 위암과 거의 동일한 특성을 가짐을 확인하였다(도 2 참조).
또한, 본 발명자들은 상기의 마우스 모델에서 생성된 위암 종괴를 이용하여 마우스 유래 위암 세포주를 수립하기 위해 배양을 시도하였다. 초기 계대 배양 단계에서 둘 이상의 암세포가 혼합하여 자라는 것을 확인하였고, 이를 분리배양하여 NCC-S2 및 NCC-S1를 수립하였으며, 상기 NCC-S2 및 NCC-S1 세포주에서 Smad4 및 p53의 단백질 발현이 되지 않음을 확인하였다(도 3 참조).
또한, 본 발명자들은 상기의 마우스 모델에서 생성된 위암 종괴를 피하주사 및 수술적 이식의 두 차례에 걸쳐서 면역결핍마우스(SCID)에 주입하였으며, 상기 종괴에서 유래된 폐 전이소를 분리배양하여 NCC-S1M을 수립하였다. 상기 NCC-S1M 세포주는 NCC-S1에서 유래된 것으로 보이며, 모세포와 마찬가지로 Smad4를 발현하지 않는 암세포임을 확인하였다(도 4 참조).
또한, 본 발명자들은 상기 제작된 세포주가 암 세포주인지 확인하기 위하여 발암 유전자인 Myc 단백질의 발현을 웨스턴 블랏을 수행하였으며, NCC-S2, NCC-S1 및 NCC-S1M 모두에서 Myc 단백질이 발현되었음을 확인하였다(도 5 참조).
또한, 본 발명자들은 NCC-S2, NCC-S1 및 NCC-S1M의 종양형성 능력을 확인하였는데, NCC-S1M이 더 낮은 농도에서 종양을 형성하여 더 높은 종양형성 능력이 있음을 확인하였다(표 1 참조).
또한, 본 발명자들은 NCC-S1M 세포주의 전이성을 확인하였고, NCC-S1M은 NCC-S1에 비해 빠른 생체 내 성장을 보였으며 육안으로도 관찰가능한 전이소를 가짐을 확인하였다(표 2 및 도 6 참조).
또한, 본 발명자들은 NCC-S1 및 NCC-S1M의 세포독성을 확인하였고, NCC-S1M이 NCC-S1에 비해 모든 약에 대한 높은 저항성이 있음을 확인하였다(도 7 참조).
또한, 본 발명자들은 NCC-S1M 세포주가 마우스 모델에서 전이를 확인하기 쉽도록 하기 위해 루시퍼라제 결합된 NCC-S1M 세포주를 제작하여, 마우스에서 전이성 위암의 발생을 확인하였다(도 8 참조).
아울러 본 발명자들은 NCC-S1M 세포주가 암 면역치료요법에 적용 가능한지 여부를 확인하였고, 항-4-1BB를 처리한 시험군이 랫 IgG를 처리한 대조군에 비해서 종양의 성장이 유의적으로 감소함을 관찰하였다(표 3 및 도 9 참조).
따라서, 본 발명자들은 마우스에서 원발성 위암을 발생시키는 세포주 NCC-S2, NCC-S1 및 NCC-S1M을 수립하였으며, 그 중 NCC-S1M은 높은 전이성을 가짐을 확인하였다. 또한 상기 세포주를 이용한 위암 마우스 모델을 제작하여 위암 항암제 개발에 유용하게 사용될 수 있음을 확인하였다.
본 발명은 하기의 단계를 포함하는 위암 치료제 후보물질의 효능평가 방법을 제공하나 이에 한정하지 않는다:
1) 본 발명의 위암 동물모델 또는 위암 세포주에 위암 치료제 후보물질을 처리하는 단계; 및
2) 상기 단계 1)의 위암 동물모델 또는 위암 세포주의 위암 또는 위암 세포를 억제하는 정도를 측정하는 단계.
또한, 본 발명은 하기의 단계를 포함하는 면역 치료에 대한 안전성 평가방법을 제공하나 이에 한정하지 않는다:
1) 본 발명의 위암 동물모델 또는 위암 세포주에 위암 치료제 후보물질을 처리하는 단계; 및
2) 상기 단계 1)의 위암 동물모델 또는 위암 세포주의 위암 또는 위암세포의 면역 치료에 대한 안전성을 측정하는 단계.
또한, 본 발명은 하기의 단계를 포함하는 위암 치료제 후보물질의 효능평가 방법을 제공하나 이에 한정하지 않는다:
1) 본 발명의 위암 동물모델 또는 위암 세포주에 위암의 전이 억제제 후보물질을 처리하는 단계; 및
2) 상기 단계 1)의 위암 동물모델 또는 위암 세포주의 위암 또는 위암세포의 전이를 억제하는 정도를 측정하는 단계.
또한, 본 발명은 하기의 단계를 포함하는 면역 치료에 대한 안전성 평가방법을 제공하나 이에 한정하지 않는다:
1) 본 발명의 위암 동물모델 또는 위암 세포주에 위암의 전이 억제제 후보물질을 처리하는 단계; 및
2) 상기 단계 1)의 위암 동물모델 또는 위암 세포주의 위암 또는 위암세포의 면역 치료에 대한 안전성을 측정하는 단계.
이하, 본 발명을 실시예 및 실험예에 의해서 상세하게 설명한다.
단, 하기 실시예 및 실험예는 본 발명을 구체적으로 예시하는 것이며, 본 발명의 내용이 실시예 및 실험예에 의해 한정되는 것은 아니다.
<실시예 1> 자연발생 위암 마우스의 제작
<1-1> 자연발생 위암 마우스를 위한 교배
본 발명의 마우스 위암세포주 마우스모델 제작을 위하여, 조건 유전자 녹아웃(conditional gene knockout) 방법을 이용하여, 암억제유전자(tumor suppressor gene)인 Smad4, p53, Cdh1 유전자를 위장관계열 상피세포 특이적으로 결손시켜 위암을 유발한 마우스 모델을 제조하였다.
구체적으로, loxP 유전자를 갖는 Smad4fl/fl(Chuxia Deng 박사님으로부터 제공받음, NIH, 미국), p53fl/fl(NCI Mouse Repository, 미국), Cdh1fl/fl(Jackson Laboratory, 미국) 마우스를 Cre-loxP 위치특이성 재조합(site specific recombination)의 수행을 위하여 Villin-Cre 마우스(NCI Mouse Repository, 미국)와 각각 교배하여, Cre+;Smad4fl/+, Cre+;p53fl/+ 및 Cre+;Cdh1fl/+의 헤테로 마우스(hetero mouse)를 제조하였다. 상기 3종류의 헤테로 마우스를 무작위 교배를 수행하여, 유전형이 Cre+;Smad4fl/+;p53fl/+;Cdh1fl/+인 마우스를 두 마리 수득한 후, 상기 두 마리의 마우스를 무작위로 교배하여 최종적으로 Cre+;Smad4fl/fl;p53fl/fl;Cdh1fl/+, Cre+;Smad4fl/fl;p53fl/fl, Cre+;p53fl/fl 또는 Cre+;Smad4fl/fl의 유전자형을 갖는 마우스를 수득하였다(도 1).
상기 제조된 마우스 유전자형의 확인을 위하여 유전자형 PCR(genotyping PCR)을 수행하였으며, 구체적으로 당업계에 널리 알려진 방법으로 게놈 DNA를 추출하여, gDNA 0.45 ul(50 ~ 100 ng/ul DNA), 10x 버퍼(buffer) 1 ul, dNTP(2.5 mM) 0.8 ul, 프라이머-F 0.3 ul, 프라이머-R 0.3 ul, EX-Taq(다카라, 일본) 0.05 ul, 증류수 7.1 ul의 혼합물을 만들어 유전자형 PCR(genotyping PCR)(94℃ 5분, 94℃ 40초, 55℃ 35초, 72℃ 40초, 72℃ 3분, 40회 반복)을 수행하였다.
상기 유전자형 PCR에 사용된 프라이머의 서열은 하기와 같다:
Villin-Cre-F(2): 5'-TCCTCTAGGCTCGTCCCG-3'(서열번호 1),
Villin-Cre-F(3): 5'-CAGATTACGTATATCCTGGCAG-3'(서열번호 2),
Smad4-Genotype-F: 5'-GGGCAGCGTAGCATATAAGA-3'(서열번호 3),
Smad4-Genotype-R: 5'-GACCCAAACGTCACCTTCAC-3'(서열번호 4),
Trp53-Genotype-F: 5'-TGGAGATATGGCTTGGCTTGGAGTAG-3'(서열번호 5),
Trp53-Genotype-R: 5'-CAACTTACTTCGAGGCTTGTC-3'(서열번호 6),
Cdh1-Genotype-F: 5'-CGTTCATGGATCAGAAGATCAC-3'(서열번호 7), 및
Cdh1-Genotype-R: 5'-GAACTAGGGAGGTAGAAGGAGC-3'(서열번호 8).
한편, 상기 제조방법에 있어서, Cre+ 마우스에서 Cdh1fl/fl인 경우 배아에 치명적이어서(embryo-lethality) Cre+;Cdh1fl/fl 형질을 갖는 마우스는 태어나지 않기에 Cdh1fl/+를 사용하였다.
<1-2> 원발 종양에 대한 육안 및 조직병리학적 관찰
상기 실시예 <1-1>에서 제작한 Cre+;Smad4fl/fl;p53fl/fl;Cdh1fl/+ 유전형을 갖는 마우스에서 원발종양의 발생여부를 확인하기 위하여, 부검 후, 육안 및 조직병리학적 관찰을 수행하였다.
구체적으로, 하룻밤 동안 금식한 마우스를 이소플루레인(isoflurane)을 이용하여 안락사시키고, 위장관(gastrointestinal tract)을 바로 제거하였다. 위(stomach)는 가위를 이용하여 큰만곡(greater curvature)을 따라 절제되어 여과지에 조각을 펼쳐놓았다. 창자는 대장(large intestine) 및 소장(small intestine)으로 나눠지고, 소장은 십이지장(duodenum), 공장(jejunum) 및 회장(ileum)의 세 부분으로 절단되었다. 창자의 각 부분은 가위를 이용하여 조심스럽게 세로로 자른 후, 여과지에 펼쳐 놓았다. 그리고 위 및 창자는 차가운 PBS로 씻어내고, 상기 위 및 창자에 남은 PBS는 종이타월을 이용해 제거한 후, 전체적인 관찰을 수행하였다. 그리고나서 창자는 나무 막대기에 전단부(proximal end)에서 후단부(distal end)로 루미날 측면(luminal side)을 말고, 상기 말린 창자의 끝 부분은 26-게이지(gauge)로 고정하여 10% 중화포르말린(neutral buffered formalin)에 고정시켰다. 고정 하루 후, 십이지장에서 회장축(ileal axis)을 따라 면도날을 이용하여 위는 6개 조각으로 잘라내고, 말린 창자는 반으로 잘라내었다. 그 후, 상기 조직들은 당업계에 널리 알려진 방법으로 파라핀(paraffin)에 끼워넣고, 5 ㎛ 횡단면(cross section)을 잘라내어 병리조직학적시험을 위한 H & E 염색을 수행하였다. 상기 H & E 염색은 당업계의 당업자라면 누구나 알 수 있는 보편적인 방법으로 수행되었다.
그 결과, 도 2에 나타난 바와 같이, 유문(pylorus) 부위에 직경 7 × 9 mm 의 종괴와 소장에 2 ~ 3 mm 가량의 다발성 종괴가 관찰되었다(도 2A). 또한, 병리조직학적 검사 결과, 위에서 관찰된 종괴는 인환세포(signet ring cell)를 갖는 저분화 미만형 위암(poorly differentiated diffuse-type adenocarcinoma)으로 진단되었다. 또한 상기 모델 마우스에서 발생한 위암의 조직병리학적인 특성이 인체 미만형 위암과 거의 동일한 것을 확인하였다(도 2B).
<실시예 2> 마우스 위암세포주의 수립
<2-1> NCC-S2 및 NCC-S1 세포주의 수립
상기 <실시예 1>의 방법으로 확립된 마우스 모델을 이용한 마우스 위암 세포주인 NCC-S2 및 NCC-S1 세포주를 수립하였다.
구체적으로, 상기 실시예 <1-2>의 마우스 모델의 위에서 관찰된 종괴를 절제하고, 차가운 PBS로 세척하여, 세척된 종괴를 소량의 RPMI1640 배지가 담긴 세포 배양접시(tissue culture dish)로 옮긴 후, 종괴를 외과용 메스(surgical blade)로 잘게 다져 작은 조각으로 만들고 수차례 파이펫팅(pipetting)을 통해 더 작은 조각으로 만들었다. 상기 잘게 부셔진 종괴를 20% FBS, 100 U/ml 페니실린(penicillin) 및 0.1 mg/ml 스트렙토마이신(streptomycin)을 포함한 RPMI1640 배지가 담긴 25 cm2 플라스크에 접종(seeding) 하였다. 충분한 정도의 종양세포집단(tumor cell population)의 형성 및 심각한(heavy) 종양세포 성장이 관찰되었을 때, 트립신처리(trypsinization)을 통해 1차 계대를 수행하였다. 1차 계대 이후로는 10% FBS를 포함한 RPMI1640을 이용하여, 37℃, 5% CO2의 조건에서 배양하였다.
그 결과, 초기 계대(initial passage)의 세포주에서는 둘 이상의 암세포 집단(cancer cell population)이 혼합되어 자라고 있었으며, 일곱 번째 계대에서 서로 다른 시험관 내(in vitro) 형태(morphology)가 확인되어, 상기 세포주의 분리 배양을 시도하여, 상기 분리된 각각의 세포주에 대하여 NCC-S2 및 NCC-S1로 명명하였다.
<2-2> NCC-S2 및 NCC-S1 세포주 확인
상기 <2-1>에서 제조된 세포주가 <실시예 1>의 마우스 모델에서 유래된 위암 세포주인 것을 확인하기 위하여, Smad4 및 p53의 발현을 웨스턴 블랏을 수행하여 확인하였다.
구체적으로, 100 mm 배양접시에 70 내지 80% 배양된 세포를 리프터(lifter)로 긁어 모으고, 원심분리하여 펠렛(pellet)을 얻은 후, PBS로 1회 세척하고 다시 원심분리를 수행하여 웨스턴 블랏에 사용될 펠렛을 수득하였다. 상기 펠렛에 단백질 분해효소 억제제(protease inhibitor)[0.8 uM 아프로틴(aprotinin), 0.02 uM 류펩틴(leupeptin), 1 uM 펩스타틴 A(pepstatin A), 0.04 uM 베스타틴(bestatin)]가 첨가된 200 ul T-PER 조직 용해 완충액(Thermo Scientific Inc.)을 넣고, 잘 섞어주어 얼음에 30분간 방치하였다[10분마다 볼텍싱(vortexing)을 수행]. 그리고 4℃, 13,000 rpm에서 15분 동안 원심분리를 하여 상층액을 얻고, 상기 얻어진 상층액을 BCA 용액(Pierce Inc.)을 이용하여 제조사의 사용설명서에 따라 단백질을 정량하였다. 사용 직전에 4% 머캅토에탄올(mercaptoethanol)을 첨가한 4x 램리 샘플 완충액(Laemmli sample buffer)과 정량한 단백질을 1:3으로 섞은 후, 100℃에서 5분간 끓여주었다. 상기 방법으로 준비된 시료를 9%의 2상(two-phase) SDS-PAGE 겔에 전기영동하여 단백질을 분리한 후, 겔을 해체하여 겔-막(gel-membrane)[니트로셀룰로오스(nitrocellulose) 막사용] 샌드위치(sandwich)를 만들어 1x 이동 완충액(transfer buffer)에서 단백질을 막으로 이동시켰다. 약 한 시간 후, 상기 단백질이 이동된 막을 전처리하기 위하여 1% BSA 및 2% 탈지우유(skim milk)에 30분 동안 교반해주고, 그리고나서 PBS-T로 5분간 3회 세척하였다. 상기 막은 1차 항체[5% BSA, 0.1% 아지드화 나트륨(sodium azide)이 포함된 PBS-T에 1차 항체는 1/1000으로 희석하여 사용)(Smad4: Santa cruz, P53: Santa cruz sc-6243, E-cadherin: Cell Signaling #4065)를 첨가하여 4℃에서 하룻밤 동안 배양하고, 다음날, PBS-T로 5분간 3회씩 세척하였다. 또한 2차 항체(5% 전지우유가 함유된 PBS-T에 2차 항체를 1/5000으로 희석하여 사용)[염소(goat) 항-마우스/토끼, GenDEPOT]는 상온에서 한 시간 동안 반응시켰다. 2차 항체와 반응 후, PBS-T로 5분간 3회 교반하며 세척하고, ECL 용액(Thermo Scientific Inc.)에 1분간 담가둔 후 X-레이(X-ray) 필름에 인화하였다.
그 결과, 도 3에 나타난 바와 같이, 상기 NCC-S2 및 NCC-S1 세포주에서 Smad4 및 p53이 발현되지 않는 것을 확인함으로써, 상기 세포주가 <실시예 1>의 마우스 모델에서 유래한 위암 세포주임을 확인하였다(도 3).
<2-3> NCC-S1M 세포주의 수립
상기 <2-1>에서 NCC-S2 및 NCC-S1의 분리배양을 하기 전의 암세포를 이용하여, 모 세포주보다 더 높은 전이성을 나타내는 세포주인 NCC-S1M을 수립하였다.
구체적으로, <2-1>에서 NCC-S2 및 NCC-S1의 분리배양을 하기 전의 암세포를(여섯 번째 계대) 위 줄기세포(gastric stem cell) 마커인 Epcam으로 양성분류(positive sorting)하여 수득한 5 × 104개의 세포를 면역결핍 마우스(SCID)의 옆구리 피하에 주사한 후, 80일 후 상기 마우스를 부검한 결과 폐에서 전이소가 관찰되었다. 폐조직에서 관찰된 전이소를 절제하여 다른 면역결핍 마우스의 옆구리에 수술적으로 이식하고 55일 후, 상기 마우스를 부검하였으며, 역시 폐에서 전이소가 관찰되었다. 상기 전이소를 절제하여 NCC-S2, NCC-S1를 수립하였던 <2-1>의 방법으로 세포주를 확립하였으며, 이를 NCC-S1M으로 명명하였다.
<2-4> NCC-S1M의 모세포 확인
NCC-S1M은 초기 암세포를 이용하여 전이된 세포주를 확보한 것이므로, NCC-S1M이 NCC-S2 및 NCC-S1 중 어느 세포주에서 유래하였는지 확인하기 위하여, DNeasy Blood & Tissue kit(Qiagen)을 이용하여 제조사의 설명서에 따라 각각의 세포주로부터 전체 DNA를 추출한 후, CGH 어레이를 수행하였다.
구체적으로, 유전자 복제 수 변이(copy number alterations; CNA)는 180,000 올리고뉴클레오티드 탐침(probe)을 포함하는 마이크로어레이 슬라이드(microarray slide)를 사용한 CGH 분석법에 의해서 확인되었다(Agilent Technologies, Santa Clara, USA). 시료의 준비 및 혼성화는 제조사의 지침서에 따라 수행되었고, DNA의 온전함(integrity)은 나노드롭(nanodrop), 피코그린(picogreen) 및 아가로스 겔 전기영동법에 의해 확인되었다. CGH 어레이를 위하여, 시험 DNA 1.5 ㎍ 및 참조 DNA 1.5 ㎍이 각각의 분석에 사용되었고, 상기 DNA는 Rsa I 및 Alu I으로 잘라진 후, Cy5-dUTP 또는 Cy3-dUTP 둘 중 하나를 사용하여 무작위로 표지되었다(labeled). 상기 표지된 DNA는 마이크로콘 원심분리 필터(Microcon Centrifugation Filters)인 Ultracel YM-30(Millipore, Billerica, Ma, 미국)을 이용하여 정제된 후, 탐침은 변성되고 인간 Cot-1 DNA(Invitrogen, Burlington, Ontario, Canada) 50 ㎍과 예비 어닐링(pre-annealed)되었다. 혼성화는 65℃에서 24시간 동안 교반하면서 반응하였다.
혼성화 후, 슬라이드는 완충액 1(buffer 1)로 5분 동안, 완충액 2(buffer 2)로 2분 동안 실온에서 세척하고, 상기 세척한 슬라이드는 DNA 마이크로어레이 스캐너(DNA microarray scanner, Agilent Technologies)로 스캔되었다. 결과 데이터(data)는 스캔된 이미지(images)에서 Feature Extraction software, 버전 10.7.3.1(Agilent)로 추출되었고, 테스트 파일(test files)은 분석을 위하여 Genomic Workbench, 표준형 5.0.14(Agilent)으로 이동되었다. DNA 복제 수 변이를 확인하기 위해 Aberration Detection Method 2(ADM-2) 알고리즘(algorithm)을 사용하여, 통계학적 점수에 기초하여 지속적으로 높거나 낮은 로그 비율(log rations)을 갖는 시료에 있어서 모든 변이 간격(aberrant intervals)을 동정하였다. 그리고나서 변이 부분의 실제 범위를 판단하기 위해서 탐침으로 표본조사를 수행하였다. 통계학적 점수는 표준편차(standard deviation)의 단위에 있어서, 예상된 0의 값으로부터 로그 비율 평균의 편차를 나타낸다. 알고리즘은 시료의 치우친 로그 비율의 평균 질(quality)에 기초한 통계학적 점수에 있어서, 간격을 찾고, 참조 채널(reference channels) 사용자 지정된 한계점(threshold)을 초과하였다. 비록 한계점 6이 사용자 지침서에는 추천되나, 본 발명에 있어서 보존적 한계점 10을 사용하였고, 이는 어레이 구성(array plots)의 외관검사(visual inspection)가 낮은 한계점이라고 불리는 몇몇 변이의 거부를 이끌어내기 때문이다. 최소 5개 탐침의 여과 옵션을 적용하였고, 최소 절대 평균 로그2 비율 > 0.3이었다. USCS 인간 게놈 조립 hg18은 참조로 사용되었고, 복제 수 변이(CNV)는 Agilent Genomic Workbench analytic 소프트웨어에 삽입된 데이타 베이스(data base)로 확인되었다.
그 결과, 도 4A에 나타난 바와 같이, NCC-S1가 NCC-S1M과 비슷한 패턴의 유전자 불안정성(genomic instability)을 나타내어, NCC-S1가 NCC-S1M의 모세포임을 확인하였다(도 4A).
또한, NCC-S1M이 모세포인 NCC-S1와 마찬가지로 Smad4 및 p53의 발현을 상기 서술된 웨스턴 블랏을 사용하여 확인한 결과, NCC-S1M에서도 상기 Smad4 및 p53의 발현은 확인되지 않았다(도 4B).
<실시예3> NCC-S2, NCC-S1 및 NCC-S1M 세포주의 특성 확인
<3-1> NCC-S2, NCC-S1 및 NCC-S1M 세포주에서 Myc 발암 유전자의 활성 확인
상기 실시예 <2-4>의 CGH 어레이를 통해서 Myc 발암 유전자의 증폭이 관찰되었으며, 상기 실시예 <2-2>에 서술된 방법으로 항-Myc 항체(Abcam, 1:1000)을 이용하여 웨스턴 블랏을 수행하였다.
그 결과 도 5에 나타난 바와 같이, NCC-S2, NCC-S1 및 NCC-S1M 세포주에서 Myc 단백질 발현이 증가함을 확인하였다(도 5).
<3-2> NCC-S2, NCC-S1 및 NCC-S1M 세포주의 종양형성 능력 확인
상기 실시예에서 수립한 NCC-S2, NCC-S1 및 NCC-S1M의 종양형성 능력을 확인하기 위하여, 5주령의 동종동계(syngenic) 마우스에 하기 표 1에서 제시된 것과 같은 농도로 NCC-S1 및 NCC-S1M 세포주를 피하에 주사하고 종양의 형성여부를 관찰하였다.
구체적으로, NCC-S2, NCC-S1 및 NCC-S1M 세포주를 배양하여 충분한 수를 확보하고, 트립신(trypsin) 처리하여 세포를 떨어뜨려 1500 rpm에서 3분 동안 원심분리를 수행하였다. 그 결과 수득된 펠렛을 PBS로 2번 세척한 후, 1 × 106, 1 × 105, 1 × 104, 1 × 103개의 세포를 각각 50 ㎕의 PBS에 부유시킨다. 그리고 1:1 비율로 마트리겔(Matrigel, BD Bioscience)과 잘 섞어 1 cc 인슐린 주사기에 담았다. 각 농도당 6 ~ 7 마리의 5주령 동생성 마우스(syngenic mice)의 옆구리 피하 조직에 주사하고, 4주 후 종양의 형성여부를 육안, 촉진, 조직 병리 판독 등을 통하여 확인하였다.
그 결과, NCC-S1M이 NCC-S2 및 NCC-S1 세포주에 비하여 더 낮은 농도에서 종양을 형성함으로써, NCC-S1M이 더 높은 종양형성 능력이 있음을 확인하였다(표 1).
표 1
세포주 세포주입량 종양이 발생한 쥐의 수(%)
NCC-S1M 1 × 106 7/7(100)
1 × 105 2/6(33.3)
1 × 104 1/6(16.7)
1 × 103 1/6(16.7)
NCC-S1 1 × 106 1/7(14.3)
1 × 105 0/6(0)
1 × 104 0/6(0)
1 × 103 0/6(0)
NCC-S2 1 × 106 4/7(57.1)
1 × 105 0/6(0)
1 × 104 0/6(0)
1 × 103 0/6(0)
<3-3> NCC-S1M 세포주의 전이성 확인
상기 실시예 <3-2>의 결과 가장 높은 종양형성 능력을 나타낸 NCC-S1M 세포주의 전이성을 확인하였다.
구체적으로, 상기 실시예 <3-2>와 동일한 방법으로 1 × 106개의 세포를 5주령의 SCID 마우스 8마리의 옆구리 피하에 주사하고, 옆구리에 생긴 종양의 크기가 1600 mm3의 부피가 되었을 때 부검을 수행하였다. 폐로의 전이 여부 및 정도에 대한 판단을 위해서 부검시 폐를 적출하고, 상기 적출된 폐를 보우인의 고정용액(Bouin's fixative solution)에 하룻밤 동안 고정한 후, 현미경으로 관찰하여 폐의 표면에 형성된 전이소의 수를 세었다. 또한, 육안으로 확인된 결절이 전이소인지 확인하기 위하여 최종적으로 조직 병리학적 평가를 수행하였다.
그 결과 도 6에 나타난 바와 같이, NCC-S1M은 NCC-S1에 비해 빠른 생체 내 성장을 보였으며, 동일 부피상에서 전이 정도를 비교하였을 경우 NCC-S1M은 육안으로 확인 가능한 전이소가 모든 개체에서 관찰되었으나(도 6), 반면에 NCC-S1은 육안 소견상으로 뿐만 아니라, 표 2에 나타난 바와 같이 조직 병리학적으로도 전이소를 관찰할 수 없었다(표 2).
표 2
조직병리학적 관찰
폐로의 전이
NCC-S1 0/8
NCC-S1M 8/8
<3-4> NCC-S1 및 NCC-S1M 세포주의 세포독성 확인
본 발명의 NCC-S1 및 NCC-S1M 세포주의 세포독성을 확인하기 위하여 MTT 검정법을 수행하였다.
구체적으로, NCC-S1 및 NCC-S1M을 웰 플레이트(well plate)에 1 × 104 cells이 되도록 접종하고, 12시간 후, 시스플라틴(cisplatin) 및 5-FU를 각각 0.5, 1, 4, 6 uM의 농도와 1, 10, 100, 1000 uM의 농도로 처리하였고, 음성대조군으로는 DMSO를 사용하였다. 상기 처리 48시간 후에 MTT 검정법을 수행하여 세포 생존율을 확인하였는데, 웰(well) 당 1 ml의 배지에 200 ㎕의 MTT 용액(PBS용액에 5 mg/ml의 농도가 되도록 첨가)을 첨가하고 2시간 동안 배양한다. 이후, 배지를 제거하고 500 ㎕의 DMSO를 첨가하여 10분 동안 부드럽게 교반하여 침전물이 완전히 용해되도록 하였다. 상기 침전물이 완전히 용해된 DMSO는 570 nm에서 마이크로플레이트 리더(microplate reader)를 이용하여 흡광도를 측정하였다.
그 결과 도 7에 나타난 바와 같이, NCC-S1M이 NCC-S1에 비해 모든 약에 대한 높은 저항성을 갖고 있음을 확인하였다(도 7).
<실시예 4> 루시퍼라제 결합된 NCC-S1M 세포주를 이식한 마우스 모델에서 전이성 위암 확인
상기 실시예 <3-3>에 의해 전이성이 높다고 확인된 NCC-S1M 세포주가 마우스 모델에서 전이를 확인하기 쉽도록 하기 위해 루시퍼라제 결합된 NCC-S1M 세포주를 제작하였다. 또한 상기 제작된 루시퍼라제 결합된 NCC-S1M 세포주를 마우스 모델에 이식하여 전이성 위암이 발생하는지 확인하였다.
구체적으로, 루시퍼라제 유전자를 pCDH-CMV-MCS-EF1-copGFP 벡터(SBI Inc.)를 변형시켜 제작한 pCDH-CMV-MCS-EF1-Neo 렌티바이러스 벡터(lentiviral vector)에 삽입하여 복제하였다. 상기 벡터를 포장벡터(packaging vector)(pMD2.G, psPAX2)와 같이 293FT 세포주(T75 플라스크에 50% 정도 차도록 배양)에 형질감염(transfection)하여 2일 후 배지를 수득하였다. 상기 수득한 배지를 3000 rpm에서 3분 동안 원심분리하여 얻어진 상층액을 0.4 ㎛ 주사기 필터(syringe filter)(PES; 비-발열성)를 이용하여 여과한 후, 상기 여과액의 1/6 만큼의 20% 자당용액을 첨가한 후, 초원심분리(ultracentrifuge)를 수행(4℃, 25,000 g, 3시간 30분)하여 렌티바이러스를 농축하였다. 상기 농축된 렌티바이러스 펠렛을 100 ㎕ RPMI에 용해시킨 후, 상기 용해액을 NCC-S1M 세포주에 바이러스 농도별로 처리하여[10 ㎍/ml 폴리브랜(polybrene) 첨가] 역가(titer)를 측정하였다. 이때, 역가는 500 ug㎍/ml G418을 처리하여 선별된 세포수와 G418을 처리하지 않은 세포수와 비교하여 상대적인 값을 얻고, 역가 측정 후 5 MOI 상당의 렌티바이러스를 NCC-S1M 세포에 10 ug㎍/ml 폴리브랜과 함께 처리하여 선별하였다. 약 2주간 선별된 1 × 105개의 루시퍼라제 결합된 NCC-S1M 세포주를 25 ㎕의 PBS에 부유시켜 1:1의 비율로 마트리겔과 섞은 후, 1 cc 인슐린 주사기에 담아 SCID 마우스의 복강을 열어 위 표면에 주사하였다.
그 결과 도 8에 나타난 바와 같이, 루시퍼라제가 발현되어 암의 발생 및 전이 여부를 더욱 용이하게 확인할 수 있는 마우스 모델을 제작하였다(도 8).
<실험예 1> 암 면역치료요법을 위한 NCC-S1M의 사용
상기 제작된 NCC-S1M 세포주가 암 면역치료요법에 적용 가능한지 여부를 확인하기 위하여 양성대조군으로 4-1BB 및 음성대조군으로 IgG를 투여하여 마우스에서 종양의 성장을 확인하였다.
구체적으로 NCC-S1M 세포를 배양하여 충분한 수를 확보하고, 트립신을 처리하여 세포를 모은다. 상기 모은 세포는 1500 rpm에서 3분간 원심분리 하여 세포만을 수득하고, 수득한 세포는 PBS로 2차례 세척한 후, 1 × 106 세포를 50 ㎕의 PBS에 부유시킨다. 상기 세포를 마트리겔(BD Bioscience)과 1:1의 비율로 섞어서 5주령 SCID 마우스 8마리의 옆구리 피하에 주사하고, 1주일 후에 1차로 항-4-1BB 및 랫 IgG를 복강 내 주사하고, 1차 주사 1주일 후, 상기 항-4-1BB 및 랫 IgG를 2차로 복강 내에 다시 한번 주사하였다. 종양의 부피는 1차 주사한 시점부터 측정되었다.
그 결과 도 9 및 표 3에 나타난 바와 같이, 항-4-1BB를 처리한 시험군이 랫 IgG를 처리한 대조군에 비해서 종양의 성장이 유의적으로 감소함을 관찰하였다.
표 3
날짜 3 5 7 10 12 14 17 19 21
% T/C 91.2984 88.4776 85.8961 76.3758 76.2079 70.7477 73.6646 66.3761 58.3387
P 값 0.07561 0.11206 0.23562 0.05514 0.06322 0.0362 0.05723 0.00659 0.00328
T: 항-4-1BB, C: 랫 IgG
P값: 스튜던트 t-검정(student t-test)
<110> National Cancer Center
<120> Gastric cancer animal model for efficacy and immunotoxicity
assessments of gastric cancer drugs
<130> 12P-11-27
<160> 8
<170> KopatentIn 1.71
<210> 1
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Villin-Cre-F(2)
<400> 1
tcctctaggc tcgtcccg 18
<210> 2
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Villin-Cre-F(3)
<400> 2
cagattacgt atatcctggc ag 22
<210> 3
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Smad4-Genotype-F
<400> 3
gggcagcgta gcatataaga 20
<210> 4
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Smad4-Genotype-R
<400> 4
gacccaaacg tcaccttcac 20
<210> 5
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Trp53-Genotype-F
<400> 5
tggagatatg gcttggcttg gagtag 26
<210> 6
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Trp53-Genotype-R
<400> 6
caacttactt cgaggcttgt c 21
<210> 7
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Cdh1-Genotype-F
<400> 7
cgttcatgga tcagaagatc ac 22
<210> 8
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Cdh1-Genotype-R
<400> 8
gaactaggga ggtagaagga gc 22
Figure PCTKR2014002760-appb-I000001
Figure PCTKR2014002760-appb-I000002
Figure PCTKR2014002760-appb-I000003
Figure PCTKR2014002760-appb-I000004
Figure PCTKR2014002760-appb-I000005
Figure PCTKR2014002760-appb-I000006

Claims (22)

  1. 유전형 Cre+;Smad4fl/fl;p53fl/fl;Cdh1fl/+ 형질을 가지고, 위암을 갖는 위암 동물모델.
  2. 제 1항에 있어서, 상기 동물은 마우스인 것을 특징으로 하는 위암 동물모델.
  3. 제 1항에 있어서, 상기 위암은 인체 미만형 위암인 것을 특징으로 하는 위암 동물모델.
  4. 1) Smad4fl/fl 마우스, p53fl/fl 마우스 및 Cdh1fl/fl 마우스를 각각 Villin-Cre 마우스와 교배시킨 후, 선별하여 Cre+;Smadfl/+ 마우스, Cre+;p53fl/+ 마우스 및 Cre+;Chd1fl/+ 마우스를 수득하는 단계;
    2) 단계 1)의 Cre+;Smadfl/+ 마우스, Cre+;p53fl/+ 마우스 및 Cre+;Chd1fl/+ 마우스를 무작위 교배시킨 후, 선별하여 Cre+;Smadfl/+;p53fl/+;Chd1fl/+ 마우스를 수득하는 단계; 및
    3) 단계 2)의 Cre+;Smadfl/+;p53fl/+;Chd1fl/+ 마우스들 사이에 교배시킨 후, 선별하여 Cre+;Smad4fl/fl;p53fl/fl;Cdh1fl/+ 마우스를 수득하는 단계를 포함하는 위암 동물모델의 제조방법.
  5. 제 4항에 있어서, 상기 단계 3)에서 Cre+;Smad4fl/fl;p53fl/fl;Cdh1fl/+ 마우스를 수득한 후, 위암 형성을 확인하는 단계를 추가적으로 포함하는 것을 특징으로 하는 위암 동물모델의 제조방법.
  6. 제 1항의 위암 동물모델로부터 분리된 위암 세포주.
  7. 제 6항에 있어서, 상기 위암 세포주는 Smad4 및 p53이 발현되지 않는 것을 특징으로 하는 위암 세포주.
  8. 제 6항에 있어서, 상기 위암 세포주는 기탁번호 KCLRF-BP-00288로 기탁된 것을 특징으로 하는 위암 세포주.
  9. 제 6항에 있어서, 상기 위암 세포주는 기탁번호 KCLRF-BP-00289로 기탁된 것을 특징으로 하는 위암 세포주.
  10. 제 6항에 있어서, 상기 위암 세포주는 기탁번호 KCLRF-BP-00290으로 기탁된 것을 특징으로 하는 위암 세포주.
  11. 1) 제 1항의 위암 동물모델의 위의 종괴를 절제한 후, 배양하는 단계; 및
    2) 상기 단계 1)의 배양된 종괴로부터 위암 세포를 분리하는 단계를 포함하는 위암 세포주의 제조방법.
  12. 제 11항에 있어서, 상기 단계 2)의 분리배양은 일곱 번째 계대에서 수행하는 것을 특징으로 하는 마우스 위암 세포주의 제조방법.
  13. 1) 제 1항의 위암 동물모델의 위의 종괴를 절제한 후, 배양하는 단계;
    2) 상기 단계 1)의 종괴로부터 위 줄기세포 양성 세포를 분리하는 단계;
    3) 상기 단계 2)의 세포를 면역결핍 마우스(SCID)에 주사한 후, 전이소를 분리하는 단계; 및
    4) 상기 단계 3)의 전이소로부터 위암 세포주를 분리하는 단계를 포함하는 위암 세포주의 제조방법.
  14. 제 13항에 있어서, 상기 단계 1)의 줄기세포는 Epcam을 이용하여 분리하는 것을 특징으로 하는 위암 세포주의 제조방법.
  15. 제 13항에 있어서, 상기 단계 3)의 주사는 피하주사인 것을 특징으로 하는 위암 세포주의 제조방법.
  16. 제 13항에 있어서, 상기 단계 3)에서 분리된 전이소를 다른 면역결핍 마우스에 이식한 후, 형성된 전이소를 분리하는 단계를 추가적으로 포함하는 것을 특징으로 하는 위암 세포주의 제조방법.
  17. 제 13항에 있어서, 상기 단계 2)의 종괴는 5 × 104개의 세포를 주사하는 것을 특징으로 하는 위암 세포주의 제조방법.
  18. 제 13항에 있어서, 상기 단계 4)의 전이소는 폐에서 관찰된 것을 특징으로 하는 위암 세포주의 제조방법.
  19. 1) 제 1항의 위암 동물모델 또는 제 6항의 위암 세포주에 위암 치료제 후보물질을 처리하는 단계; 및
    2) 상기 단계 1)의 위암 동물모델 또는 위암 세포주의 위암 또는 위암 세포를 억제하는 정도를 측정하는 단계를 포함하는 위암 치료제 후보물질의 효능평가 방법.
  20. 1) 제 1항의 위암 동물모델 또는 제 6항의 위암 세포주에 위암 치료제 후보물질을 처리하는 단계; 및
    2) 상기 단계 1)의 위암 동물모델 또는 위암 세포주의 위암 또는 위암세포의 면역 치료에 대한 안전성을 측정하는 단계를 포함하는 면역 치료에 대한 안전성 평가방법.
  21. 1) 제 1항의 위암 동물모델 또는 제 6항의 위암 세포주에 위암의 전이 억제제 후보물질을 처리하는 단계; 및
    2) 상기 단계 1)의 위암 동물모델 또는 위암 세포주의 위암 또는 위암세포의 전이를 억제하는 정도를 측정하는 단계를 포함하는 위암 치료제 후보물질의 효능평가 방법.
  22. 1) 제 1항의 위암 동물모델 또는 제 6항의 위암 세포주에 위암의 전이 억제제 후보물질을 처리하는 단계; 및
    2) 상기 단계 1)의 위암 동물모델 또는 위암 세포주의 위암 또는 위암세포의 면역 치료에 대한 안전성을 측정하는 단계를 포함하는 면역 치료에 대한 안전성 평가방법.
PCT/KR2014/002760 2013-04-24 2014-04-01 면역 치료 및 위암 치료제에 대한 효능 및 독성 평가를 위한 마우스 위암 세포주 WO2014175567A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130045644A KR101456627B1 (ko) 2013-04-24 2013-04-24 면역 치료 및 위암 치료제에 대한 효능 및 독성 평가를 위한 마우스 위암 세포주
KR10-2013-0045644 2013-04-24

Publications (1)

Publication Number Publication Date
WO2014175567A1 true WO2014175567A1 (ko) 2014-10-30

Family

ID=51792089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002760 WO2014175567A1 (ko) 2013-04-24 2014-04-01 면역 치료 및 위암 치료제에 대한 효능 및 독성 평가를 위한 마우스 위암 세포주

Country Status (2)

Country Link
KR (1) KR101456627B1 (ko)
WO (1) WO2014175567A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI604054B (zh) * 2016-11-09 2017-11-01 嘉藥學校財團法人嘉南藥理大學 原位胃癌細胞株及其製備方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101695165B1 (ko) 2015-01-30 2017-01-11 국립암센터 E-카데린 및 p53이 결손된 마우스 유래 위암 세포주 및 이의 용도

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080242742A1 (en) * 2003-11-26 2008-10-02 Dana-Farber Cancer Institute, Inc. Animal models of pancreatic adenocarcinoma and uses therefor
KR20130000331A (ko) * 2011-06-22 2013-01-02 가부시키가이샤 칸쿄 케이에이 소고 켄큐쇼 미세 지분 함유 수지조성물의 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101309902B1 (ko) * 2011-09-26 2013-09-17 인제대학교 산학협력단 전이성 유방암 세포주 tubo-p2j

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080242742A1 (en) * 2003-11-26 2008-10-02 Dana-Farber Cancer Institute, Inc. Animal models of pancreatic adenocarcinoma and uses therefor
KR20130000331A (ko) * 2011-06-22 2013-01-02 가부시키가이샤 칸쿄 케이에이 소고 켄큐쇼 미세 지분 함유 수지조성물의 제조방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KIM, HAK GYUN: "Study on Prediction of Chemosensitivity, Diagnostic Marker. Animal Model for Gastric Cancer", NATIONAL CANCER CENTER SUBJECT OF RESEARCH FINAL REPORT, 10 February 2012 (2012-02-10) *
OLIVEIRA, CARLA ET AL., EUROPEAN JOURNAL OF CANCER, vol. 40, 25 June 2004 (2004-06-25), pages 1897 - 1903 *
TAKAKU, KAZUAKI ET AL., CANCER RESEARCH, vol. 59, 15 December 1999 (1999-12-15), pages 6113 - 6117 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI604054B (zh) * 2016-11-09 2017-11-01 嘉藥學校財團法人嘉南藥理大學 原位胃癌細胞株及其製備方法

Also Published As

Publication number Publication date
KR101456627B1 (ko) 2014-11-03

Similar Documents

Publication Publication Date Title
WO2018190656A1 (ko) In vitro에서 성숙된 인간 장관 오가노이드의 제조 방법 및 이의 용도
WO2011142514A1 (ko) Pias3을 유효성분으로 포함하는 암 또는 면역질환의 예방 또는 치료용 조성물
WO2017188797A1 (ko) In vivo에서 rna-가이드 뉴클레아제의 활성을 고처리량 방식으로 평가하는 방법
WO2019182370A1 (ko) Cox2 아세틸화제를 유효성분으로 포함하는 퇴행성 신경질환의 예방 또는 치료용 약학적 조성물
WO2021162521A1 (ko) 외부에서 도입된 세포 신호 조절 인자를 과발현하는 면역 세포 및 이들의 용도
WO2014175567A1 (ko) 면역 치료 및 위암 치료제에 대한 효능 및 독성 평가를 위한 마우스 위암 세포주
WO2014081229A1 (ko) 안전성 및 항암활성이 증가된 재조합 아데노바이러스 및 이의 용도
WO2011052883A2 (ko) Socs2 유전자의 발현을 조절하여 자연 살해 세포를 활성화시키는 방법
WO2019132547A1 (ko) Chi3l1 억제제를 유효성분으로 하는 암의 폐 전이 예방 또는 치료용 약학 조성물
WO2015046783A1 (en) Pharmaceutical composition for treatment of radiation- or drug-resistant cancer comprising hrp-3 inhibitor
WO2020071641A1 (ko) Tsp1 단백질 억제제를 유효성분으로 함유하는 파브리 병의 예방 또는 치료용 약학적 조성물
WO2017018735A1 (ko) 노화 판별용, 비만 판별용, 암 진단용 바이오마커 및 이를 이용한 진단키트
WO2022124839A1 (ko) 온-타겟 활성이 유지되고 오프-타겟 활성이 감소된 가이드 rna 및 이의 용도
WO2021221482A1 (ko) 신규한 단백질 결합체, 및 이의 비알콜성 지방간염, 비만 및 당뇨 질환의 예방 또는 치료 용도
WO2022086257A1 (ko) 항암제를 포함한 미토콘드리아 및 이의 용도
WO2014157965A1 (ko) P34의 발현 억제제 또는 활성 억제제를 유효성분으로 포함하는 암의 치료 또는 전이 억제용 조성물
WO2022065968A1 (ko) 에보디아민을 유효성분으로 포함하는 비소세포폐암의 예방 또는 치료용 약학적 조성물
WO2019059713A2 (ko) 자연살해세포의 제조방법 및 그의 용도
WO2021251656A1 (ko) 엑소좀 유래 miRNA를 이용한 스트레스 진단기술
WO2021157818A1 (ko) 그래핀 기반 신장 질환 치료용 조성물
WO2017048069A1 (ko) 신규한 피라졸린 유도체 및 이의 용도
WO2019004732A1 (ko) 퍼록시레독신 2 의 효소 활성을 억제하는 물질을 유효 성분으로 포함하는 대장암 치료용 약학적 조성물
WO2011010769A1 (ko) 실크 펩타이드를 유효성분으로 하는 당뇨 치료 또는 예방용 조성물
WO2019013607A1 (ko) Oct4 저해용 조성물 및 이의 용도
WO2023038492A1 (ko) 수지상 세포, 자연 살해 세포 및 세포 독성 t 세포를 포함하는 암의 예방 또는 치료용 생물학적 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14787803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14787803

Country of ref document: EP

Kind code of ref document: A1