WO2014174587A1 - 耐疲労特性に優れたばね鋼及びその製造方法 - Google Patents

耐疲労特性に優れたばね鋼及びその製造方法 Download PDF

Info

Publication number
WO2014174587A1
WO2014174587A1 PCT/JP2013/061877 JP2013061877W WO2014174587A1 WO 2014174587 A1 WO2014174587 A1 WO 2014174587A1 JP 2013061877 W JP2013061877 W JP 2013061877W WO 2014174587 A1 WO2014174587 A1 WO 2014174587A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
rem
tin
inclusions
content
Prior art date
Application number
PCT/JP2013/061877
Other languages
English (en)
French (fr)
Inventor
雅文 宮嵜
山村 英明
橋村 雅之
崇史 藤田
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to EP13883297.7A priority Critical patent/EP2990496B1/en
Priority to PCT/JP2013/061877 priority patent/WO2014174587A1/ja
Priority to KR1020157030973A priority patent/KR101742902B1/ko
Priority to US14/785,815 priority patent/US10350676B2/en
Priority to JP2015513394A priority patent/JP6036997B2/ja
Priority to CN201380075822.XA priority patent/CN105121680B/zh
Publication of WO2014174587A1 publication Critical patent/WO2014174587A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/113Treating the molten metal by vacuum treating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0075Treating in a ladle furnace, e.g. up-/reheating of molten steel within the ladle
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires

Definitions

  • the present invention relates to a spring steel used for automobile suspensions and the like and a method for manufacturing the same.
  • the present invention relates to a spring steel having excellent fatigue resistance and a method for producing the same, by controlling the generation of REM inclusions to eliminate the adverse effects of harmful inclusions such as alumina, TiN, and MnS.
  • Spring steel is used for suspension springs and the like of automobile suspension devices, and requires high fatigue strength. Particularly in recent years, there has been a growing demand for lighter and higher output vehicles for the purpose of reducing exhaust gas and improving fuel consumption, and suspension springs used for engines, suspensions, and the like have been designed for high stress.
  • spring steel is in the direction of increasing strength and reducing the diameter, and the load stress is expected to increase more and more. For this reason, a high-performance spring steel with higher fatigue strength and further excellent sag resistance is required.
  • inclusions One of the causes of impairing the fatigue resistance and sag resistance of spring steel is hard non-metallic inclusions such as alumina and TiN, and coarse inclusions such as MnS (hereinafter referred to as these). (Referred to as inclusions). These inclusions are likely to become stress concentration starting points.
  • the surface of the material exposed by peeling off the surface coating of the suspension spring may corrode, and hydrogen may penetrate into the steel from the adhering moisture, resulting in a decrease in fatigue strength.
  • inclusions become hydrogen trap sites and hydrogen is easily accumulated in the steel. For this reason, the inclusion itself and the influence of hydrogen are superimposed on each other, which causes a decrease in fatigue strength.
  • the alumina inclusion contains a large amount of dissolved oxygen in molten steel refined in a converter or a vacuum processing vessel, this excess oxygen is generated by deoxidation with Al having a strong affinity for oxygen.
  • ladles are often constructed of alumina refractories. Therefore, even when deoxidizing with Si or Mn instead of Al deoxidation, the refractory alumina is dissociated by the reaction between the molten steel and the refractory, and is eluted as Al in the molten steel. And this eluted Al is reoxidized and an alumina produces
  • Alumina inclusions in the molten steel tend to agglomerate and coalesce to form clusters. This clustered alumina inclusion remains in the product and has a serious adverse effect on fatigue strength.
  • Patent Document 1 As a technique for modifying alumina inclusions to make them finer and harmless, by adding an Mg alloy into molten steel, alumina is converted into spinel (MgO ⁇ Al 2 A method of modifying to O 3 ) or MgO is known. According to this method, coarsening due to the aggregation of alumina can be prevented, and the adverse effect of alumina on the steel material quality can be avoided.
  • Patent Document 2 the average composition of SiO 2 —Al 2 O 3 —CaO-based oxide having a thickness of 2 ⁇ m or more in the longitudinal cross-section of the steel wire is expressed as SiO 2 : 30 to 60%, Al 2 O 3.
  • the melting point of the composite oxide is controlled to 1400 ° C. or lower, preferably 1350 ° C. or lower, and B 2 O 3 : It has been proposed to contain 0.1 to 10% to finely disperse oxide inclusions and remarkably improve the wire drawing workability and fatigue strength.
  • B 2 O 3 is effective for suppressing crystallization of CaO—Al 2 O 3 —SiO 2 or CaO—Al 2 O 3 —SiO 2 —MgO 2 based composite oxides.
  • it cannot be said that it is useful for suppressing or detoxifying alumina clusters, TiN, and MnS, which become fatigue accumulation sources of spring steel and serve as fracture starting points.
  • an alloy composed of two or more of Ca, Mg, and REM and Al is introduced into the molten steel to form.
  • a method for producing an Al-killed steel without a cluster that adjusts Al 2 O 3 in the product to 30 to 85% by mass is known.
  • Patent Document 3 when adding REM, in order to prevent formation of alumina clusters, by adding two or more selected from REM, Mg, and Ca, low melting point composite inclusions and To do.
  • this technique may be effective in preventing sliver flaws, inclusions cannot be reduced to the size required by spring steel. This is because if inclusions with a low melting point are used, these inclusions aggregate and coalesce and become coarser.
  • Patent Document 4 Addition exceeding 0.010% by mass of REM increases inclusions and, on the contrary, decreases fatigue life. For example, as disclosed in Patent Document 4, the REM addition amount is set to 0.010% by mass or less. It is also known that there is a need. However, Patent Document 4 does not disclose the mechanism and the composition and existence state of inclusions.
  • sulfides such as MnS are stretched by processing such as rolling, become a fatigue accumulation source, become a starting point of fracture, and deteriorate fatigue resistance characteristics. Therefore, it is necessary to suppress the sulfides to be stretched in order to improve the fatigue resistance.
  • a method for preventing the formation of sulfides a method of adding Ca to desulfurize is known.
  • Al—Ca—O formed by the addition of Ca has a problem that it is easily stretched and easily becomes a fatigue accumulation source or a fracture starting point.
  • Patent Document 5 when Ti exceeds 0.001% by mass, the fatigue resistance is deteriorated. As a countermeasure, it is important to adjust Ti to 0.001% by mass or less. However, Ti is contained in the Si alloy and cannot be mixed as an impurity. Further, it is necessary not to mix N at the molten steel stage, but this is not practical because the steelmaking cost increases.
  • An object of the present invention is to provide a spring steel excellent in fatigue resistance and a method for producing the same by detoxifying alumina, TiN, and MnS that impair the fatigue resistance of the spring steel.
  • the gist of the present invention is as follows.
  • the chemical composition is, in mass%, C: 0.4% to less than 0.9%, Si: 1.0% to 3.0%, Mn: 0.1 % To 2.0%, Al: 0.01% to 0.05%, REM: 0.0001% to 0.005%, T.I.
  • O 0.0001% to 0.003%
  • Ti less than 0.005%
  • N 0.015% or less
  • P 0.03% or less
  • S 0.03% or less
  • Cr 0% to 2 0.0%
  • Cu 0% to 0.5%
  • Ni 0% to 3.5%
  • Mo 0% to 1.0%
  • W 0% to 1.0%
  • B 0% to 0% 0.005%
  • V 0% to 0.7%
  • Nb 0% to 0.05%
  • Ca 0% to 0.0020%
  • the spring steel described in (1) above is Cr: 0.05% or more, 2.0% or less, Cu: 0.1% or more, 0.5% or less, Ni: 0.1% or more, 3.5% or less, Mo: 0.05% or more, 1.0% or less, W: 0.05% or more, 1.0% or less, B: 0.0005% or more, 0.005% or less, V: One or more selected from the group consisting of 0.05% or more, 0.7% or less, Nb: 0.005% or more, 0.05% or less, and Ca: 0.0001% or more, 0.0020% or less These elements may be contained.
  • a third aspect of the present invention is a spring made of the spring steel described in (1) above.
  • alumina in the spring steel, can be modified to REM-Al-O inclusions to prevent coarsening, and S can be fixed as REM-Al-O-S inclusions to obtain coarse MnS.
  • S can be fixed as REM-Al-O-S inclusions to obtain coarse MnS.
  • TiN by combining TiN with REM-Al-O inclusions or REM-Al-O-S inclusions, the number density of harmful single TiN can be reduced, resulting in excellent fatigue resistance.
  • a spring steel can be provided.
  • REM-Al—O—S To prevent coarse MnS from being immobilized as a product (hereinafter also referred to as “REM-Al—O—S”), and further to REM-Al—O inclusions or REM-Al—O—S inclusions. It has been found that the number density of harmful TiN can be reduced by combining TiN.
  • C 0.4% or more and less than 0.9% C is an element effective for securing strength.
  • the C content is less than 0.4%, it is difficult to impart high strength to the final spring product.
  • the C content is 0.9% or more, proeutectoid cementite is excessively generated in the cooling process after hot rolling, and the workability is remarkably deteriorated.
  • the C content is 0.4% or more and less than 0.9%.
  • the C content is preferably 0.45% or more, more preferably 0.5% or more. Further, the C content is preferably 0.7% or less, more preferably 0.6% or less.
  • Si 1.0% or more, 3.0% or less Si is an element effective for improving the hardenability and improving the fatigue life, and needs to be contained by 1.0% or more. On the other hand, if the Si content exceeds 3.0%, the ductility of the ferrite phase in the pearlite decreases.
  • Si also has an effect of enhancing the sag resistance characteristic which is important in the spring.
  • the Si content exceeds 3.0%, the effect is saturated and the cost is increased, and decarburization is promoted. Therefore, the Si content is 1.0% or more and 3.0% or less.
  • the Si content is preferably 1.2% or more, more preferably 1.3% or more.
  • Si content becomes like this. Preferably it is 2.0% or less, More preferably, it is 1.9% or less.
  • Mn 0.1% or more and 2.0% or less Mn is an element effective for deoxidation and securing of strength, and if the content is less than 0.1%, the effect is not exhibited. On the other hand, when the Mn content exceeds 2.0%, segregation is likely to occur, and micromartensite is generated in the segregated portion, resulting in deterioration of workability and fatigue resistance. Therefore, the Mn content is 0.1% or more and 2.0% or less.
  • the Mn content is preferably 0.2% or more, more preferably 0.3% or more. Further, the Mn content is preferably 1.5% or less, more preferably 1.4% or less.
  • REM 0.0001% or more and 0.005% or less REM is a powerful desulfurization and deoxidation element and plays an extremely important role in the spring steel according to the present embodiment.
  • REM is a generic name for a total of 17 elements including 15 elements from lanthanum having an atomic number of 57 to lutesium having an atomic number of 57 plus scandium having an atomic number of 21 and yttrium having an atomic number of 39.
  • REM first reacts with alumina in the steel, deprives O in the alumina, and REM-Al-O inclusions are generated. Next, S in the steel is absorbed to form REM-Al-O-S inclusions.
  • the function of REM in the spring steel according to this embodiment is as follows. Alumina is reformed to REM-Al-O containing REM, O, and Al to prevent oxide coarsening. Formation of REM-Al-O-S containing Al, REM, O, and S immobilizes S and suppresses the formation of coarse MnS. Further, TiN is complex-precipitated using REM-Al-O or REM-Al-O-S as a nucleation site, and REM-Al-O- (TiN) or REM-Al-OS- (TiN) is mainly used. A substantially spherical composite inclusion having a structure is formed, and the amount of precipitated TiN having a hard and sharp square shape is reduced.
  • (TiN) represents that TiN adheres to the surface of REM-Al-O or REM-Al-O-S and is composited.
  • the composite inclusion mainly composed of REM-Al-O- (TiN) or REM-Al-OS- (TiN) has a substantially spherical shape as shown in FIG. It is difficult to concentrate stress around the composite inclusion. Further, the REM-Al—O— (TiN) or REM-Al—O—S— (TiN) composite inclusion has a diameter of 1 to 5 ⁇ m and is not stretched or coarsened. For this reason, since it does not become a starting point of destruction, it is a harmless inclusion.
  • the substantially spherical shape means that, for example, as shown in FIG. 1, the maximum unevenness of the inclusion surface is 0.5 ⁇ m or less, and the value obtained by dividing the major axis of the inclusion by the minor axis is three or less. Means.
  • TiN is compositely precipitated is presumably because it has many similarities to the crystal lattice structure of REM-Al-O or REM-Al-O-S and TiN.
  • Ti is not included as an oxide in the REM-Al-O or REM-Al-O-S of the spring steel according to the present embodiment. This is because of the T.I. of spring steel according to this embodiment. This is probably because O (total oxygen content) is low and Ti oxide is generated very little. Further, since inclusions do not contain Ti as an oxide, it is considered that the REM-Al-O or REM-Al-O-S crystal lattice structure and the TiN crystal lattice structure have a similar relationship.
  • REM has a function of preventing coarse alumina clusters by modifying alumina to REM-Al-O to suppress aggregation and coalescence.
  • the REM content is 0.0001% or more, preferably 0.0002% or more, more preferably 0.001% or more, and still more preferably 0.002% or more.
  • the REM content is 0.005% or less, preferably 0.004% or less, more preferably 0.003% or less.
  • Al 0.01% or more, 0.05% or less
  • Al is 0.01% or more, preferably 0.02%, as a deoxidizing element for reducing total oxygen and as an element for adjusting steel crystal grains. This is necessary. However, if it exceeds 0.05%, not only is the crystal grain adjusting effect saturated, but a large amount of alumina remains, which is not preferable.
  • T.A. O total oxygen content: 0.003% or less
  • O is an impurity element removed from steel by deoxidation, but it is inevitable that it remains.
  • O generates a composite inclusion mainly composed of REM-Al-O- (TiN) or REM-Al-OS- (TiN).
  • T.W. If O increases, especially exceeding 0.003%, many oxides, such as an alumina, generate
  • Ti, N, P, and S are impurities and are limited as follows.
  • Ti less than 0.005% Ti is an impurity mixed in from an Si alloy or the like, and forms square inclusions such as TiN. This coarse inclusion is likely to become a starting point of destruction and a trapping site for hydrogen, and thus deteriorates fatigue resistance. Therefore, it is very important to suppress the formation of the above-mentioned square shaped coarse inclusions.
  • TiN can be combined with REM-Al-O or REM-Al-O-S to make it difficult to generate harmful single TiN.
  • the Ti content is limited to less than 0.005% in order to prevent the formation of single TiN.
  • the Ti content is preferably 0.003% or less.
  • the lower limit of the Ti content includes 0%, it is difficult to stably reduce industrially, and 0.0005% is the industrial lower limit.
  • N 0.015% or less
  • N is an impurity, which forms a nitride to deteriorate fatigue resistance, and adversely affects ductility and toughness by strain aging. If the N content exceeds 0.015%, adverse effects become significant. Therefore, the N content is limited to 0.015% or less, preferably 0.010% or less, and more preferably 0.008% or less.
  • the lower limit of the N content includes 0%, but it is difficult to reduce stably industrially, and 0.002% is the industrial lower limit.
  • P 0.03% or less
  • P is an impurity and is an element that segregates at the grain boundary and impairs the fatigue life. If the P content exceeds 0.03%, the fatigue life is significantly reduced, so it is limited to 0.03% or less, preferably 0.02% or less. Although the lower limit of the P content includes 0%, it is difficult to stably reduce industrially, and 0.001% is the industrial lower limit.
  • S 0.03% or less S is an impurity and an element that forms sulfides. If the S content exceeds 0.03%, coarse MnS is generated and the fatigue life is impaired. Therefore, the S content is limited to 0.03% or less, preferably 0.01% or less. Although the lower limit of the S content includes 0%, it is difficult to stably reduce industrially, and 0.001% is the industrial lower limit.
  • the balance consists of only iron and impurities.
  • impurities in “the balance is made only of iron and impurities” refers to what is mixed from ore, scrap, or a manufacturing environment as a raw material when manufacturing steel industrially.
  • the following elements may be selectively contained. Hereinafter, the selective elements will be described.
  • Spring steel according to the present embodiment is Cr: 2.0% or less, Cu: 0.5% or less, Ni: 3.5% or less, Mo: 1.0% or less, W: 1.0% or less, and B: One or more of 0.005% or less may be contained.
  • Cr 2.0% or less Cr is an element effective for improving the strength and improving the fatigue life by improving the hardenability. When hardenability and temper softening resistance are required, the effect can be stably exhibited by adding 0.05% or more of Cr. In particular, in order to obtain excellent temper softening resistance, Cr is contained in an amount of 0.5% or more, preferably 0.7% or more.
  • the Cr content exceeds 2.0%, the hardness of the steel material increases and the cold workability deteriorates, so the content is set to 2.0% or less.
  • a Cr content of 1.5% or less is preferable in order to increase the stability in the processing.
  • Cu 0.5% or less Cu influences hardenability, but more than that, it is an element effective in corrosion resistance and decarburization suppression. When the Cu content is 0.1% or more, preferably 0.2% or more, the effect of suppressing corrosion and decarburization is exhibited.
  • the Cu content is 0.5% or less, preferably 0. 3% or less.
  • the decrease in hot ductility due to Cu can be mitigated by containing Ni.
  • Cu content ⁇ Ni content the decrease in hot ductility is suppressed and good quality is maintained. Can do.
  • Ni 3.5% or less Ni is an element effective for improving the strength and hardenability of steel. This effect is manifested when the Ni content is 0.1% or more.
  • Ni also affects the amount of retained austenite after quenching. If the Ni content exceeds 3.5%, the amount of retained austenite increases, and it remains soft after quenching, and the performance as a spring may be insufficient. is there. In this way, if the Ni content exceeds 3.5%, the product material becomes unstable, so the Ni content is 3.5% or less.
  • Ni is an expensive element and is preferably suppressed from the viewpoint of manufacturing cost.
  • the Ni content is more preferably 2.5% or less, and further preferably 1.0% or less.
  • Cu When Cu is contained, Ni has an effect of suppressing its harmful effects. That is, Cu is an element that lowers the hot ductility of steel, and often causes cracking and flaws in hot rolling and hot forging.
  • Ni when Ni is contained, an alloy phase with Cu is formed, and a decrease in hot ductility is suppressed.
  • the Ni content is preferably 0.1% or more, and more preferably 0.2% or more.
  • Cu content ⁇ Ni content is preferable.
  • Mo 1.0% or less
  • Mo is an element that enhances hardenability and is also an effective element for improving temper softening resistance.
  • the Mo content is set to 0.05% or more.
  • Mo is also an element that generates Mo-based carbides in steel.
  • the temperature at which the Mo-based carbide precipitates is lower than that of carbides such as V, and is an effective element for high-strength spring steel tempered at a relatively low temperature. This effect is manifested with a Mo content of 0.05% or more.
  • the Mo content is preferably 0.1% or more.
  • the Mo content exceeds 1.0%, a supercooled structure is likely to occur during cooling by hot rolling or heat treatment before processing.
  • the Mo content is set to 1.0% or less, preferably 0.75% or less.
  • the Mo content is preferably 0.5% or less. Furthermore, the Mo content is preferably 0.3% or less in order to precisely control the temperature variation at the time of cooling-transformation strain to stabilize the shape accuracy.
  • W 1.0% or less W, like Mo, is an element effective for improving hardenability and temper softening resistance, and is an element that precipitates as carbide in steel.
  • the W content is set to 0.05% or more, preferably 0.1% or more.
  • the W content exceeds 1.0%, a supercooled structure is likely to occur during cooling by hot rolling or heat treatment before processing.
  • the W content is 1.0% or less, preferably 0.75% or less, in order to suppress the formation of a supercooled structure that causes a set crack or a crack during processing.
  • B 0.005% or less B is an element that enhances the hardenability of the steel material with a small amount of content. Further, when the base material is a high C material, B generates boron iron carbide in the cooling process after hot rolling, increases the growth rate of ferrite, and promotes softening.
  • B when contained in an amount of 0.0005% or more, it segregates at the austenite grain boundaries and suppresses the segregation of P, thereby improving the grain boundary strength, thereby contributing to the improvement of fatigue strength and impact strength. To do.
  • the spring steel according to the present embodiment may further contain one or more of mass%, V: 0.7% or less, and Nb: 0.05% or less.
  • V 0.7% or less
  • V is an element that forms nitrides, carbides, carbonitrides in combination with C and N in steel.
  • fine nitriding of V with an equivalent circle diameter of less than 0.2 ⁇ m. It is effective for improving the temper softening resistance, increasing the yield point, and refining the prior austenite.
  • V can be increased in hardness and tensile strength when sufficiently precipitated in the steel material by tempering, so is selected as an optional element to be contained as necessary.
  • the V content is 0.05% or more, preferably 0.06% or more.
  • V content is preferably 0.5% or less. If importance is placed on suppressing variation in quality during spring production and ensuring production stability, the V content is preferably 0.3% or less.
  • V is an element that greatly affects the formation of retained austenite, and thus needs to be precisely controlled. That is, when other hardenability improving elements such as Mn, Ni, Mo, and W are contained, the V content is preferably 0.25% or less.
  • Nb 0.05% or less Nb combines with C and N in steel to generate nitrides, carbonitrides, and carbides. Nb is extremely effective in suppressing the formation of coarse particles as compared with the case where Nb is not contained even in a small amount. Such an effect is manifested when the Nb content is 0.005% or more.
  • Nb is an element that lowers hot ductility. If it is excessively contained, it causes cracks in casting, rolling, and forging, and the productivity is greatly impaired. Therefore, the Nb content is 0.05% or less. Furthermore, when emphasizing workability such as cold coiling properties, the Nb content is preferably less than 0.03%, and more preferably less than 0.02%.
  • the spring steel according to the present embodiment may further contain Ca: 0.0020% or less in mass%.
  • Ca 0.0020% or less Ca has a strong desulfurization action and is effective in suppressing the formation of MnS, and therefore may be contained in an amount of 0.0001% or more for the purpose of desulfurization.
  • REM-Al-O inclusions or REM-Al-O-S inclusions in steel absorb Ca and form REM-Ca-Al-O or REM-Ca-Al-O-S. To do.
  • REM-Ca-Al-O and REM-Ca-Al-O-S are larger in the case of an oxide-based material having a high oxygen content. Tend to increase. Furthermore, since REM-Ca-Al-O and REM-Ca-Al-O-S are inferior in the ability to precipitate TiN in a composite manner, from the viewpoint of detoxifying TiN, it is preferable that Ca is less. This is because REM-Ca-Al-O and REM-Ca-Al-O-S have a similar crystal lattice structure to TiN compared to REM-Al-O and REM-Al-OS. Presumed to be inferior.
  • Ca is a selective element and is 0.0001% or more and 0.0020% or less.
  • TiN is complexed with REM-Al—O—S, and a substantially spherical complex inclusion having a main structure of REM-Al—O—S— (TiN) is generated.
  • TiN substantially spherical complex inclusion having a main structure of REM-Al—O—S—
  • the order of adding the deoxidizer and the deoxidation time are important.
  • deoxidation is performed using Al.
  • O total oxygen amount
  • deoxidation is performed for 5 minutes or more using REM, and ladle refining including vacuum degassing is performed.
  • misch metal a mixture of rare earth elements
  • a massive misch metal may be added to molten steel.
  • desulfurization with Ca can be appropriately performed at the end of refining by adding a Ca—Si alloy or a CaO—CaF 2 flux.
  • REM-Al-O or REM-Al-O-S produced by deoxidation in ladle refined molten steel has a specific gravity of about 6 and is close to the specific gravity of steel, so it floats and separates in the molten steel. It is hard to do. Therefore, when molten steel is injected into the mold, the molten steel penetrates deeply into the unsolidified layer of the slab due to the downward flow, and is easily segregated at the center of the slab.
  • REM-Al-O or REM-Al-OS is segregated at the center of the slab, REM-Al-O or REM-Al-O-S will be insufficient at the surface layer of the slab. It becomes difficult to produce composite inclusions in which TiN adheres to Al—O or REM—Al—O—S. Therefore, the detoxification effect of TiN is impaired at the surface layer portion of the product. Therefore, in order to prevent segregation of REM-Al—O and REM-Al—O—S, in this production method, the molten steel in the mold is agitated in the horizontal direction and swirled to achieve uniform dispersion of inclusions.
  • the mold is swirled at a flow rate of 0.1 m / min or more to achieve uniform dispersion of REM-Al-O and REM-Al-O-S.
  • the stirring means for example, electromagnetic force may be applied.
  • the cast steel is subjected to a temperature-uniforming treatment, and after that, ingot rolling is performed.
  • the composite inclusions described above can be obtained by holding at a temperature range of 1250 to 1200 ° C. for 60 seconds or more.
  • This temperature range is a range in which composite precipitation of TiN on REM-Al—O and REM-Al—O—S starts, and in this temperature range, TiN is converted into REM-Al—O or REM-Al—O—. Grow well on the surface of S. In order to suppress TiN deposited alone, it is necessary to hold for 60 seconds or more in a temperature range of 1250 to 1200 ° C. The present inventors have found this experimentally.
  • a hot forming method Two types of spring forming methods, a hot forming method and a cold forming method, are used.
  • a hot forming method after manufacturing a wire rod by split rolling and wire rod rolling, a slight wire drawing process is performed to adjust the roundness to obtain a steel wire.
  • the steel wire is heated and formed into a spring shape at a temperature of 900 to 1050 ° C., and the strength is adjusted by heat treatment at 850 to 950 ° C. and tempering at 420 to 500 ° C.
  • the cold forming method after partial rolling and wire rolling, a slight wire drawing process is performed to adjust the roundness to obtain a steel wire.
  • the strength of the steel wire Prior to forming into a spring shape, the strength of the steel wire is adjusted by heating the steel wire and quenching at 850 to 950 ° C. and tempering at 420 to 500 ° C. Thereafter, it is molded into a spring shape at room temperature.
  • shot peening is performed as necessary, and plating or resin coating is applied to the surface to obtain a product.
  • the conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • the inside of the mold was turned by electromagnetic stirring under the conditions shown in Table 1 to perform casting to produce a bloom.
  • the bloom was heated at 1200 to 1250 ° C. for the time shown in Table 1 and subjected to ingot rolling to obtain a billet of 160 mm ⁇ 160 mm.
  • the billet was heated again to 1100 ° C. and rolled into a steel bar having a diameter of 15 mm.
  • the sample cut out from the steel bar was subjected to quenching at 900 ° C. for 20 minutes and tempering heat treatment at 450 ° C. for 20 minutes, and then water-cooled to adjust the hardness of the wire to 480 to 520 in terms of Vickers hardness.
  • test piece After charging, Zn plating was performed and hydrogen was enclosed in the test piece. Using the Ono type rotating bending fatigue tester, the test piece was subjected to a rotating bending fatigue test with repeated swing stress according to JIS Z2273 (1978), and the load stress at the fatigue limit of 5 ⁇ 10 5 was applied. evaluated.
  • the cross section in the extending direction of the test piece is mirror-polished and treated by a selective constant potential electrolytic etching method (SPEED method), and then the width is 2 mm in the radial direction from the surface about the half depth of the radius, the rolling direction.
  • SPEED method selective constant potential electrolytic etching method
  • the results are shown in Table 4.
  • the oxide inclusions in Examples 1 to 28 are composite inclusions in which TiN adheres to REM-Al-O or REM-Al-O-S as shown in FIG. 1, and have a maximum diameter of 10 ⁇ m or more. No alumina clusters were included. As shown in Table 4, the total number of MnS having a maximum length of 10 ⁇ m or more and TiN having a maximum diameter of 1 ⁇ m or more was 10 pieces / mm 2 or less.
  • Comparative Example 1 only Al was added and REM was not added, and many alumina clusters, MnS, and TiN were present.
  • Comparative Example 2 there were many alumina clusters, MnS, and TiN due to the low REM content.
  • Comparative Example 3 a large amount of MnS was present due to the high S content.
  • Comparative Example 4 there were many alumina clusters, MnS, and TiN due to the short reflux time after the addition of REM.
  • REM-Al-O or REM-Al-O-S was segregated near the center of the slab due to the low swirling flow velocity in the mold, and a large amount of TiN was present in the surface layer portion.
  • Comparative Example 6 a large amount of TiN was present due to the short holding time in the 1250 to 1200 ° C. region.
  • Comparative Example 7 the maximum diameter of the composite inclusion to which TiN adhered was increased due to the high REM content.
  • alumina in spring steel, alumina can be modified to REM-Al-O to prevent oxide coarsening, and S can be coarsened by fixing as REM-Al-O-S. It is possible to suppress MnS, and furthermore, by combining TiN with REM-Al-O-S inclusions, the number density of TiN that precipitates alone can be reduced, so that a spring steel having excellent fatigue resistance is provided. be able to. Therefore, the present invention has high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)
  • Continuous Casting (AREA)

Abstract

 このばね鋼は、所定の化学組成を有し、REM、O、及び、Alを含む介在物にTiNが付着した、最大径2μm以上の複合介在物を、0.004個/mm~10個/mm含有し、前記複合介在物の最大径が40μm以下、最大径10μm以上のアルミナクラスター、最大長10μm以上のMnS、及び、最大径1μm以上のTiNの合計の個数密度が10個/mm2以下である。

Description

耐疲労特性に優れたばね鋼及びその製造方法
 本発明は、自動車の懸架装置などに使用されるばね用鋼とその製造方法とに関する。
 本発明は特に、REM介在物の生成を制御して、アルミナ、TiN、MnS等の有害な介在物の悪影響を解消し、優れた耐疲労特性を有するばね鋼とその製造方法に関する。
 ばね鋼は、自動車の懸架装置の懸架ばね等に使用されるもので、高い疲労強度が要求される。
 特に近年、排ガス低減や燃費改善を目的として、自動車の軽量化や高出力化の要望が高まり、エンジンやサスペンション等に用いられる懸架ばねは、高応力設計が志向されている。
 そのため、ばね鋼は、高強度化及び細径化していく方向にあり、負荷応力は益々増大することが予想されている。
 このため、疲労強度がより高く、耐へたり性に一段と優れた高性能のばね鋼が求められている。
 ばね鋼の耐疲労特性や耐へたり性を損ねる原因のひとつに、鋼材中に存在する、アルミナやTiNなどの硬質の非金属介在物、及び、MnSなどの粗大な介在物(以下、これらを介在物と呼称する)がある。
 これらの介在物は応力の集中起点となり易い。
 また、懸架ばねの表面塗装が剥離して露出した素材表面が腐食し、付着した水分から水素が鋼中に侵入して疲労強度が低下する場合がある。
 この場合、介在物が水素のトラップサイトとなって水素が鋼中に集積し易くなる。
 このため、介在物自身と水素の影響が重畳して、疲労強度を低下させる原因となる。
 こうした観点から、ばね鋼の耐疲労特性や耐へたり性を改善するため、鋼材中に存在するアルミナ、MnS、及び、TiNを極力低減することが必要である。
 アルミナ介在物は、転炉や真空処理容器で精錬された溶鋼中に多量の溶存酸素が含まれるために、この過剰酸素が酸素と親和力の強いAlにより脱酸されて生成する。
 また、取鍋などは、アルミナ系耐火物で構築される場合が多い。
 従って、Al脱酸でなく、SiやMnで脱酸した場合においても、溶鋼と耐火物との反応により、耐火物であるアルミナが解離し、溶鋼中にAlとして溶出する。
 そして、この溶出したAlが再酸化されて溶鋼中にアルミナが生成する。
 溶鋼中のアルミナ介在物は、凝集・合体してクラスター化し易い。
 このクラスター化したアルミナ介在物は、製品に残留して疲労強度に重大な悪影響を及ぼす。
 そこで、アルミナ介在物の低減・除去のために、RH真空脱ガス装置や粉体吹き込み装置などの二次精錬装置の適用による脱酸生成物の低減を中心として、
(1)断気、スラグ改質などによる再酸化防止、
(2)スラグカットによる混入酸化物系介在物の低減
などの組合せにより介在物を低減し、高清浄化を図ってきた。
 一方、アルミナ系介在物を改質し微細化、無害化する技術としては、特許文献1に開示されるように、溶鋼中にMg合金を添加することにより、アルミナを、スピネル(MgO・Al23)又はMgOに改質する方法が知られている。
 この方法によれば、アルミナの凝集による粗大化を防止し、鋼材品質に対するアルミナの悪影響を回避することができる。
 ただし、この方法では、酸化物系介在物における結晶相の存在により熱間圧延時の軟質化や伸線加工時の介在物の破砕性が十分でない。
 このため、介在物の小型化は不十分となる。
 これに対し、特許文献2では、鋼線材の長手方向縦断面における厚み2μm以上のSiO2-Al23-CaO系酸化物の平均組成を、SiO2:30~60%、Al23:1~30%、CaO:10~50%とし、複合系酸化物の融点を、1400℃以下、好ましくは1350℃以下に制御した上で、さらに、これらの酸化物に、B23:0.1~10%を含有させて、酸化物系介在物を微細に分散させ、伸線加工性や疲労強度を顕著に向上させることが提案されている。
 しかし、このようなB23の添加は、CaO-Al23-SiO2やCaO-Al23-SiO2-MgO2系複合酸化物の結晶化の抑制には有効であるが、ばね鋼の疲労蓄積源となり破壊起点となるアルミナクラスターやTiN、MnSの抑制又は無害化には有用であるとはいえない。
 また、酸可溶Alで0.005質量%以上を含有するAlキルド鋼を製造するにあたり、溶鋼中に、Ca、Mg及びREMの2種以上とAlとからなる合金を投入し、生成する介在物中のAl23を30~85質量%に調整するクラスターのないAlキルド鋼の製造方法が知られている。
 例えば、特許文献3に開示されるように、REMを添加する場合、アルミナクラスター生成防止のため、REM、Mg、Caから選択された2種以上を添加することにより、低融点の複合介在物とする。
 この技術は、スリバー疵防止には有効かもしれないが、介在物を、ばね鋼で要求されるレベルのサイズまで低減することはできない。
 これは、低融点介在物にすると、これら介在物が凝集・合体して、より粗大化してしまうからである。
 REMの0.010質量%を超える添加は介在物を増加させ、かえって、疲労寿命を低下させるので、例えば、特許文献4に開示されるように、REM添加量を0.010質量%以下にする必要があることも知られている。
 しかし、特許文献4には、そのメカニズムや介在物の組成及び存在状態については開示されていない。
 また、MnSなどの硫化物は、圧延などの加工により延伸し、疲労蓄積源となって破壊起点となり、耐疲労特性を劣化させる。
 よって、耐疲労特性を改善するため、延伸する硫化物を抑制する必要がある。
 硫化物の生成を防止する方法として、Caを添加して脱硫する方法が知られている。
 しかし、Caの添加により形成されるAl-Ca-Oは延伸し易く、疲労蓄積源や破壊起点となり易いという問題がある。
 また、TiNは、非常に硬質でかつ尖った形状で析出するため、疲労蓄積源となって破壊起点となり、耐疲労特性に対して影響が大きい。
 例えば、特許文献5に開示されるように、Tiが0.001質量%を超えると耐疲労特性が悪化する。
 その対策として、Tiを0.001質量%以下に調整することが重要であるが、Tiは、Si合金に含まれており、不純物として混入を避けられない。
 また、Nを溶鋼段階で混入させないことも必要となるが、製鋼コストが高くなってしまい現実的ではない。
日本国特開平05-311225号公報 日本国特開2009-263704号公報 日本国特開平09-263820号公報 日本国特開平11-279695号公報 日本国特開2004-277777号公報
 本発明の目的は、ばね鋼の耐疲労特性を損ねるアルミナ、TiN、及び、MnSを無害化して、耐疲労特性に優れたばね鋼とその製造方法を提供することにある。
 本発明の要旨は、次の通りである。
(1)本発明の第一の態様は、化学組成が、質量%で、C:0.4%~0.9%未満、Si:1.0%~3.0%、Mn:0.1%~2.0%、Al:0.01%~0.05%、REM:0.0001%~0.005%、T.O:0.0001%~0.003%、Ti:0.005%未満、N:0.015%以下、P:0.03%以下、S:0.03%以下、Cr:0%~2.0%、Cu:0%~0.5%、Ni:0%~3.5%、Mo:0%~1.0%、W:0%~1.0%、B:0%~0.005%、V:0%~0.7%、Nb:0%~0.05%、Ca:0%~0.0020%、残部:鉄及び不純物であり、REM、O、及び、Alを含む介在物にTiNが付着した、最大径2μm以上の複合介在物を、0.004個/mm~10個/mm含有し、前記複合介在物の最大径が40μm以下であり、最大径10μm以上のアルミナクラスター、最大長10μm以上のMnS、及び、最大径1μm以上のTiNの合計の個数密度が10個/mm2以下のばね鋼である。
(2)上記(1)に記載のばね鋼は、Cr:0.05%以上、2.0%以下、Cu:0.1%以上、0.5%以下、Ni:0.1%以上、3.5%以下、Mo:0.05%以上、1.0%以下、W:0.05%以上、1.0%以下、B:0.0005%以上、0.005%以下、V:0.05%以上、0.7%以下、Nb:0.005%以上、0.05%以下、及びCa:0.0001%以上、0.0020%以下からなる群から選択された1種以上の元素を含有してもよい。
(3)本発明の第二の態様は、上記(1)に記載の化学組成の溶鋼を、真空脱ガスを含む取鍋精錬で製造する際、まず、Alを用いて脱酸を行い、次いで、REMを用いて、5分以上脱酸する工程と、前記溶鋼を鋳型内で鋳造する際、前記鋳型内で、前記溶鋼を、水平方向に0.1m/分以上で旋回させる工程と、前記鋳造で得た鋳片を、均熱化処理で、1250~1200℃の温度域で60秒以上保持し、その後、分塊圧延する工程と、を備える上記(1)に記載のばね鋼の製造方法である。
(4)本発明の第三の態様は、上記(1)に記載のばね鋼から成るばねである。
 上記態様によれば、ばね鋼において、アルミナをREM-Al-O介在物に改質して粗大化を防止でき、かつ、SをREM-Al-O-S介在物として固定化して粗大MnSを抑制し、さらに、REM-Al-O介在物又はREM-Al-O-Sの介在物にTiNを複合させることにより有害な単独のTiNの個数密度を減らすことができるので、耐疲労特性に優れたばね鋼を提供することができる。
本発明のばね鋼中に観察された、REM-Al-O介在物にTiNが複合析出した複合介在物の例を示す図である。
 本発明者らは、従来技術の問題点を解決するために、鋭意実験、検討を重ねた。
 その結果、ばね鋼における有害介在物の抑制と形態を制御するため、REMの含有量を調整するとともに、脱酸プロセス及びばね鋼製造プロセスを制御することにより、アルミナをREM、O、及びAlを含む酸化物(以下「REM-Al-O」ということがある。)へと改質して酸化物の粗大化を防止でき、かつ、SをREM、O、S、及び、Alを含む酸硫化物(以下「REM-Al-O-S」ということがある。)として固定化して粗大MnSを抑制し、さらに、REM-Al-Oの介在物又はREM-Al-O-Sの介在物にTiNを複合させることにより有害なTiNの個数密度を減らすことができることを見出した。
 以下に、上述の知見に基づきなされた本発明の実施形態に係る耐疲労特性に優れたばね鋼とその製造方法とを詳細に説明する。
 まず、本実施形態に係るばね鋼の成分組成とその限定理由について説明する。
 なお、下記の元素の含有量に関する%は質量%を意味する。
 C:0.4%以上、0.9%未満
 Cは、強度を確保するのに有効な元素である。
 しかし、C含有量が0.4%未満の場合、最終ばね製品に高い強度を付与することが困難である。
 一方、C含有量が0.9%以上となると、熱間圧延後の冷却過程で初析セメンタイトが過剰に生成して、加工性が著しく劣化する。
 したがって、C含有量は、0.4%以上、0.9%未満とする。
 C含有量は、好ましくは0.45%以上、より好ましくは0.5%以上である。
 また、C含有量は、好ましくは、0.7%以下、より好ましく0.6%以下である。
 Si:1.0%以上、3.0%以下
 Siは、焼入れ性を高めて疲労寿命を向上させるのに有効な元素であり、1.0%以上含有させる必要がある。
 一方、Si含有量が3.0%を超えると、パーライト中のフェライト相の延性が低下する。
 Siには、ばねにおいて重要な耐へたり特性を高める作用もあるが、Si含有量が3.0%を超えると、その効果は飽和してコストが嵩み、また、脱炭を助長する。
 したがって、Si含有量は、1.0%以上、3.0%以下とする。
 Si含有量は、好ましくは、1.2%以上、より好ましくは1.3%以上である。
 また、Si含有量は、好ましくは2.0%以下、より好ましくは1.9%以下である。
 Mn:0.1%以上、2.0%以下
 Mnは、脱酸及び強度確保のために有効な元素であり、0.1%未満の含有量では、その効果が発現しない。
 一方、Mn含有量が2.0%を超えると、偏析が生じ易くなり、偏析部にミクロマルテンサイトが生成して、加工性及び耐疲労特性が劣化する。
 したがって、Mn含有量は、0.1%以上、2.0%以下とする。
 Mn含有量は、好ましくは、0.2%以上、より好ましくは0.3%以上である。
 また、Mn含有量は、好ましくは1.5%以下、より好ましくは1.4%以下である。
 REM:0.0001%以上、0.005%以下
 REMは、強力な脱硫、脱酸元素であり、本実施形態に係るばね鋼において、極めて重要な役割を果たす。
 ここで、REMとは、原子番号が57のランタンから71のルテシウムまでの15元素に、原子番号21のスカンジウムと原子番号39のイットリウムを加えた合計17元素の総称である。
 REMは、まず、鋼中のアルミナと反応し、アルミナ中のOを奪い、REM-Al-O介在物が生成する。次いで、鋼中のSを吸収して、REM-Al-O-S介在物が生成する。
 本実施形態に係るばね鋼におけるREMの機能は以下の通りである。
アルミナをREM、O、及びAlを含むREM-Al-Oへと改質して酸化物の粗大化を防止する。
 Al、REM、O、及び、Sを含むREM-Al-O-Sの形成により、Sを固定化して粗大MnSの生成を抑制する。
 また、REM-Al-O又はREM-Al-O-Sを核生成サイトとしてTiNが複合析出して、REM-Al-O-(TiN)又はREM-Al-O-S-(TiN)を主たる構造とする略球状の複合介在物が形成され、硬質で尖がった角型形状の単独のTiNの析出量を低減する。
 ここで、(TiN)は、REM-Al-O又はREM-Al-O-Sの表面にTiNが付着して複合化されていることを表す。
 このREM-Al-O-(TiN)又はREM-Al-O-S-(TiN)を主たる構造とする複合介在物は、TiNの単独析出物と異なり、例えば、図1に示すように略球状化していて、複合介在物の周囲で応力集中し難い。
 また、REM-Al-O-(TiN)又はREM-Al-O-S-(TiN)複合介在物は、大きさが直径で1~5μmであり、延伸粗大化やクラスター化はしていない。
 このため、破壊起点とならないので、無害介在物である。
 ここで、略球状とは、例えば、図1に示すように、介在物表面の最大凹凸が0.5μm以下であり、かつ、介在物の長径を短径で割った値が3以下であることを意味する。
 なお、TiNが複合析出する理由は、REM-Al-O又はREM-Al-O-Sの結晶格子構造とTiNとの結晶格子構造に類似する点が多いためと推察される。
 本実施形態に係るばね鋼のREM-Al-O又はREM-Al-O-Sに、Tiは酸化物として含まれない。
 これは、本実施形態に係るばね鋼のT.O(全酸素量)が低く、Ti酸化物の生成が極めて少ないためであると考えられる。
 また、介在物にTiが酸化物として含まれないので、REM-Al-O又はREM-Al-O-Sの結晶格子構造とTiNの結晶格子構造が類似した関係になったと考えられる。
 さらに、REMは、アルミナをREM-Al-Oに改質して凝集合体を抑制することにより、粗大なアルミナクラスターを防止する機能を有する。
 以上の効果を発現させるためには、鋼に一定量以上のREMを含有させて、アルミナをREM-Al-Oに改質する必要がある。
 また、S量に応じて、一定量以上のREMを鋼に含有させて、REM-Al-O-S介在物を形成して、Sを固定する必要がある。
 これらの観点から検討した結果、REMが0.0001%未満では不十分であることを実験的に知見した。
 従って、REM含有量は0.0001%以上、好ましくは0.0002%以上、より好ましくは0.001%以上、更に好ましくは0.002%以上とする。
 一方、REM含有量が0.005%を超えると、不安定な付着物が耐火物から脱落することによって粗大な介在物が製品に混入しやすくなり、製品の疲労強度が低下する。
 従って、REM含有量は、0.005%以下、好ましくは0.004%以下、より好ましくは0.003%以下とする。
 Al:0.01%以上、0.05%以下
 Alは、トータル酸素を低減する脱酸元素として、また、鋼の結晶粒を調整する元素として、0.01%以上、好ましくは0.02%以上必要である。
 しかし、0.05%を超えると、結晶粒調整効果が飽和するだけでなく、アルミナが多数残存するので好ましくない。
 T.O(全酸素量):0.003%以下
 Oは、脱酸により鋼から除去される不純物元素であるが、残存することは避けられない。Oは、REM-Al-O-(TiN)又はREM-Al-O-S-(TiN)を主たる構造とする複合介在物を生成させる。
 ただし、T.Oが多くなり、特に0.003%を超えると、アルミナなどの酸化物が多数発生し、疲労寿命が低下する。
 本実施形態に係るばね鋼において、Ti、N、P、及び、Sは不純物であり、以下のように制限される。
 Ti:0.005%未満
 Tiは、Si合金などから混入する不純物であり、TiNなどの角型形状の粗大介在物を形成する。
 この粗大介在物は、破壊起点になり易く、また、水素のトラッピングサイトになり易いため、耐疲労特性を劣化させる。
 それ故、上記角型形状の粗大介在物の生成を抑制することが非常に重要である。
 本実施形態に係るばね鋼においては、REM-Al-O又はREM-Al-O-SにTiNを複合化させ、有害な単独のTiNを生成し難くすることができる。
 実験的に検討した結果、単独TiNの生成を防止するため、Ti含有量は0.005%未満に制限する。
 Ti含有量は、好ましくは0.003%以下である。
 Ti含有量の下限は0%を含むが、工業的に安定して低減することは難しく、0.0005%が工業的下限である。
 N:0.015%以下
 Nは、不純物であり、窒化物を形成して耐疲労特性を劣化させ、また、歪時効によって延性及び靭性に悪影響を及ぼす。
 N含有量は、0.015%を超えると、弊害が顕著となるので、0.015%以下、好ましくは0.010%以下、さらに好ましくは0.008%以下に制限する。
 N含有量の下限は0%を含むが、工業的に安定して低減することは難しく、0.002%が工業的下限である。
 P:0.03%以下
 Pは、不純物であり、結晶粒界に偏析して疲労寿命を損ねる元素である。
 P含有量が0.03%を超えると、疲労寿命の低下が著しいので、0.03%以下、好ましくは0.02%以下に制限する。
 P含有量の下限は0%を含むが、工業的に安定して低減することは難しく、0.001%が工業的下限である。
 S:0.03%以下
 Sは、不純物であり、硫化物を形成する元素である。
 S含有量は、0.03%を超えると、粗大なMnSが生成し、疲労寿命を損ねるので、0.03%以下、好ましくは0.01%以下に制限する。
 S含有量の下限は0%を含むが、工業的に安定して低減することは難しく、0.001%が工業的下限である。
 以上が本実施形態に係るばね鋼の基本的な成分組成であり、残部は、鉄及び不純物のみからなる。
 なお、「残部は、鉄及び不純物のみからなる」における「不純物」とは、鋼を工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境などから混入するものを指す。
 ただし、上述の元素に加え、以下の元素を選択的に含有してもよい。
 以下、選択元素について説明する。
 本実施形態に係るばね鋼は、Cr:2.0%以下、Cu:0.5%以下、Ni:3.5%以下、Mo:1.0%以下、W:1.0%以下、及び、B:0.005%以下の1種以上を含有してもよい。
 Cr:2.0%以下
 Crは、強度を向上させ、また、焼入れ性を高めて疲労寿命を向上させるのに有効な元素である。
 焼入れ性や焼戻し軟化抵抗を必要とする場合に、Crを0.05%以上含有させるとその効果を安定して発揮させることができる。
 特に、優れた焼戻し軟化抵抗を得るためには、Crを0.5%以上、好ましくは0.7%以上含有させる。
 一方、Crは、含有量が2.0%を超えると鋼材の硬さが上昇して冷間加工性が劣化するので、2.0%以下の含有量とする。
 特に、冷間でコイリングする場合、その加工での安定性を高めるには、1.5%以下のCr含有量が好ましい。
 Cu:0.5%以下
 Cuは、焼入れ性に影響するが、それ以上に、耐食性や脱炭抑制に効果のある元素である。
 Cu含有量が0.1%以上、好ましくは0.2%以上であれば、腐食や脱炭を抑制する効果が発現する。
 しかし、Cuを多量に含有すると熱間延性の低下を招き、鋳造、圧延や鍛造などの製造工程での割れや疵の原因となるので、Cu含有量は0.5%以下、好ましくは、0.3%以下とする。
 Cuによる熱間延性の低下は、後述の通り、Niを含有させることで緩和することができ、Cu含有量≦Ni含有量とすると、熱間延性の低下を抑制し、良品質を維持することができる。
 Ni:3.5%以下
 Niは、鋼の強度及び焼入れ性の向上に有効な元素である。Ni含有量を0.1%以上とすることで、この効果が発現する。
 Niは、焼入れ後の残留オーステナイト量にも影響し、Ni含有量が3.5%を超えると、残留オーステナイト量が大きくなり、焼入れ後も軟質のままで、ばねとしての性能が不足する場合がある。 
 このように、Ni含有量が3.5%超になると、製品材質の不安定を招くので、Ni含有量は3.5%以下とする。
 加えて、Niは高価な元素であり、製造コストの観点から抑制することが好ましい。
 残留オーステナイトや焼入れ性の観点から、Ni含有量は2.5%以下がより好ましく、1.0%以下がさらに好ましい。
 Cuを含有した場合、Niは、その弊害を抑制する効果がある。
 即ち、Cuは、鋼の熱間延性を低下させる元素であり、しばしば熱間圧延や熱間鍛造において割れや疵の原因になる。
 しかし、Niを含有すると、Cuとの合金相を形成し熱間延性の低下を抑制する。
 Cuが混入している場合、Ni含有量は0.1%以上が好ましく、さらに、0.2%以上が好ましい。
 また、Cuとの関係においては、Cu含有量≦Ni含有量が好ましい。
 Mo:1.0%以下
 Moは、焼入れ性を高める元素であり、また、焼戻し軟化抵抗の向上にも有効な元素である。
 特に、焼戻し軟化抵抗を高めるためには、Mo含有量を0.05%以上とする。Moは、鋼中でMo系炭化物を生成する元素でもある。
 Mo系炭化物が析出する温度は、V等の炭化物に比べると低く、比較的低温で焼戻す高強度のばね鋼に対して有効な元素である。
 この効果は、0.05%以上のMo含有量で発現する。Mo含有量は、好ましくは、0.1%以上である。
 一方、Mo含有量が1.0%を超えると、熱間圧延や、加工前の熱処理での冷却時に過冷組織を生じ易くなる。
 置き割れや加工時の割れの原因となる過冷組織の生成を抑制するため、Mo含有量は1.0%以下、好ましくは、0.75%以下とする。
 また、ばね製造時の品質のばらつきを抑制し、製造安定性を確保することを重視すると、Mo含有量は0.5%以下が好ましい。
 さらに、冷却時の温度ばらつき-変態ひずみを精密に制御して形状精度を安定させるためには、Mo含有量は0.3%以下が好ましい。
 W:1.0%以下
 Wは、Moと同様、焼入れ性及び焼戻し軟化抵抗の向上に有効な元素であり、かつ、鋼中で炭化物として析出する元素である。
 特に、高い焼戻し軟化抵抗を得るためには、W含有量を0.05%以上、好ましくは、0.1%以上とする。
 一方、W含有量が1.0%を超えると、熱間圧延や、加工前の熱処理での冷却時に過冷組織が生じ易くなる。
 置き割れや加工時の割れの原因となる過冷組織の生成を抑制するため、W含有量は1.0%以下、好ましくは、0.75%以下とする。
 B:0.005%以下
 Bは、微量の含有量で、鋼材の焼入れ性を高める元素である。
 また、母材が高C材である場合、Bは、熱間圧延後の冷却過程でボロン鉄炭化物を生成し、フェライトの成長速度を増加させ、軟質化を促進する。
 さらに、Bは、0.0005%以上含有させることにより、オーステナイト粒界に偏析してPの偏析を抑制するので、粒界強度を向上させ、これにより、疲労強度、衝撃強度の向上にも寄与する。
 しかし、B含有量は、0.005%を超えると、その効果が飽和し、鋳造、圧延、及び、鍛造などの製造時に、マルテンサイトやベイナイトなどのいわゆる過冷組織が生成し易く、製品の製造性や衝撃強度を劣化させることがあるので、0.005%以下、好ましくは、0.003%以下とする。
 本実施形態に係るばね鋼は、さらに、質量%で、V:0.7%以下、及び、Nb:0.05%以下の1種以上を含有してもよい。
 V:0.7%以下
 Vは、鋼中のC、Nと結びついて、窒化物、炭化物、炭窒化物を生成する元素で、通常、円相当径が0.2μm未満の微細なVの窒化物、炭化物、炭窒化物となり、焼戻し軟化抵抗の向上、降伏点の上昇、及び、旧オーステナイトの微細化に有効である。
 Vは、焼戻しにより鋼材中に十分に析出させると、硬度や引張強度を上昇させることができるので、必要に応じて含有させる選択元素とする。
 これらの効果を得るためには、V含有量を0.05%以上、好ましくは、0.06%以上とする。
 一方、V含有量が0.7%を超えると、炭化物や炭窒化物が、焼入れ前の加熱でも十分に溶解せず、粗大な球状炭化物として、いわゆる未溶解炭化物として残留し、加工性や耐疲労特性を損なうので、0.7%以下とする。
 Vを過剰に含有させると、加工前に、割れや伸線時の断線の原因となる過冷組織が生じ易くなるので、V含有量は0.5%以下が好ましい。
 ばね製造時の品質のばらつきを抑制し、製造安定性を確保することを重視すると、V含有量は0.3%以下が好ましい。
 また、Vは、残留オーステナイトの生成に大きく影響する元素であるので、精密に制御する必要がある。
 即ち、他の焼入れ性向上元素、例えば、Mn、Ni、Mo、及び、Wの1種以上を含有する場合、V含有量は0.25%以下が好ましい。
 Nb:0.05%以下
 Nbは、鋼中のC、Nと結びついて、窒化物、炭窒化物、炭化物を生成する。
 Nbは、微量でも、Nbを含有しない場合に比べて、粗大粒の生成抑制に極めて有効である。
 このような効果はNb含有量を0.005%以上とすることで発現する。
 一方、Nbは、熱間延性を低下させる元素であり、過剰に含有すると、鋳造、圧延、鍛造における割れの原因となり、製造性を大きく損なう。
 そのため、Nb含有量は0.05%以下とする。
 さらに、冷間コイリング性等の加工性を重視する場合には、Nb含有量を0.03%未満、さらには、0.02%未満とすることが好ましい。
 本実施形態に係るばね鋼は、さらに、質量%で、Ca:0.0020%以下を含有してもよい。
 Ca:0.0020%以下
 Caは、強力な脱硫作用を有し、MnSの生成を抑制するには効果があるため、脱硫の目的で、0.0001%以上含有してもよい。
 しかしながら、Caは、鋼中のREM-Al-O介在物又はREM-Al-O-S介在物がCaを吸収し、REM-Ca-Al-O又はREM-Ca-Al-O-Sを形成する。
 REM-Al-O及びREM-Al-O-Sに比べて、REM-Ca-Al-O及びREM-Ca-Al-O-Sは、酸素含有量の多い酸化物主体の場合にはその大きさが大きくなる傾向にある。さらに、REM-Ca-Al-O及びREM-Ca-Al-O-Sは、TiNを複合析出させる能力が劣るので、TiNの無害化の観点からは、Caは少ない方が好ましい。
 この理由は、REM-Ca-Al-O及びREM-Ca-Al-O-Sは、REM-Al-O及びREM-Al-O-Sに比べて、TiNとの結晶格子構造の類似性が劣るためと推定される。
 また、鋼中のCa含有量が0.0020%を超えると、低融点のAl-Ca-O酸化物が多く生成し、圧延などにより延伸して粗大な介在物となり、疲労蓄積源や破壊起点となる。
 それ故、Caは選択元素とし、0.0001%以上、0.0020%以下とする。
 次に、介在物による疲労寿命への影響について説明する。
 本発明者らは、鋭意検討の結果、
(1)図1に示すように、REM、O、及び、Alを含む介在物、又はREM、O、S、及び、Alを含む介在物にTiNが付着した、最大径2μm以上の複合介在物を、0.004個/mm以上含有することにより、単独で析出するTiNの生成が抑制され、疲労寿命の向上が図れること、
(2)但し、上記の複合介在物であっても、その円相当径が40μmを超える寸法のものが観察されるようになると、疲労強度が低下する傾向にあること、及び、
(3)上記の複合介在物とは別に単独で存在する、疲労寿命に及ぼす悪影響が等価である下記の介在物(a)、(b)、(c)の合計数が10個/mm2以下であれば、良好な疲労寿命が得られること、
を実験的に知見した。
(a)最大長10μm以上のMnS(延伸したMnS)
(b)最大径10μm以上のアルミナクラスター
(c)最大径1μm以上のTiN(単独のTiN)
 本実施形態に係るばね鋼中では、アルミナがREM-Al-Oに改質されるので、耐疲労特性などに有害なアルミナクラスターの生成が抑制される。
 また、SがREM-Al-O-Sとして固定されるため、延伸して、耐疲労特性などを劣化させるMnSの生成が抑制される。
 さらに、例えば、図1に示すように、REM-Al-O-SにTiNが複合化し、REM-Al-O-S-(TiN)を主たる構造とする略球状の複合介在物が生成するので、疲労寿命に悪影響を及ぼす単独で析出するTiNの生成が抑制される。
 その結果、(a)最大長10μm以上のMnS(延伸したMnS)、(b)最大径10μm以上のアルミナクラスター、及び(c)最大径1μm以上のTiN(単独のTiN)、の合計の個数密度が10個/mm2以下に抑制され、疲労寿命が改善される。
 次に、本実施形態に係るばね鋼の製造方法について説明する。
 本実施形態に係るばね鋼用の溶鋼を精錬する際、脱酸剤の投入順序と脱酸時間が重要である。
 本製造方法においては、まず、Alを用いて脱酸を行い、T.O(全酸素量)を0.003%以下とする。
 次いで、REMを用いて5分以上脱酸して、真空脱ガスを含む取鍋精錬を行う。
 REMでの脱酸に先立って、Al以外の元素を用いて脱酸すると、酸素量を安定して下げることができない。また、Alを用いた脱酸後に、REMを用いて脱酸することで、REM-Al-O又はREM-Al-O-Sに、TiNが付着した複合介在物が生成しやすくなる。
 また、REMの添加後5分未満の脱酸では、アルミナを充分に改質することができない。
 本製造方法においては、上記の順序で脱酸剤を添加することにより、REM-Al-O介在物が生成し、有害なアルミナの生成が抑制される。
 REMの添加にはミッシュメタル(希土類元素の混合物)などを用いることができ、例えば塊状のミッシュメタルを溶鋼に添加すればよい。
 なお、精錬末期に、Ca-Si合金又はCaO-CaF2フラックスなどの添加により、Caによる脱硫を適宜行うことも可能である。
 取鍋精錬された溶鋼中の、脱酸で生じたREM-Al-O又はREM-Al-O-Sは、比重が約6であり、鋼の比重の7に近いため、溶鋼中で浮上分離し難い。
 それ故、鋳型内に溶鋼が注入された際には下降流により鋳片未凝固層深くまで侵入して、鋳片の中心部に偏析し易い。
 鋳片の中心部に、REM-Al-O又はREM-Al-O-Sが偏析すると、鋳片の表層部にREM-Al-O又はREM-Al-O-Sが不足するため、REM-Al-O又はREM-Al-O-SにTiNが付着した複合介在物を生成することが困難になる。したがって、TiNの無害化効果が、製品の表層部で損なわれる。
 そこで、REM-Al-O及びREM-Al-O-Sの偏析を防止するために、本製造方法では、鋳型内の溶鋼を水平方向に撹拌して旋回させ、介在物の均一分散を図る。
 本製造方法においては、鋳型内旋回を0.1m/分以上の流速で行い、REM-Al-O及びREM-Al-O-Sの均一分散を図る。
 鋳型内旋回の速度が0.1m/分未満では、REM-Al-O及びREM-Al-O-Sが均一に分散する効果が小さい。
 撹拌手段としては、例えば、電磁力などを適用すればよい。
 次に、鋳造した鋼に均熱化処理を施し、その後、分塊圧延を行う。
 均熱化処理においては、1250~1200℃の温度域で60秒以上保持して、上述の複合介在物を得ることができる。
 この温度域が、REM-Al-O及びREM-Al-O-SへのTiNの複合析出が開始する範囲であり、この温度域で、TiNをREM-Al-O又はREM-Al-O-Sの表面で充分に成長させる。単独で析出するTiNを抑制するためには、1250~1200℃の温度域で60秒以上の保持が必要である。
 このことを、本発明者らは実験的に知見した。
 なお、通常は、1250~1200℃の温度で加熱すると、TiNは固溶する。
 しかし、本実施形態に係るばね鋼では、Cが、0.4%以上、0.9%未満と高いために、セメンタイトが多く存在するので、セメンタイト中のNの溶解度が低く、この関係で、TiNが、REM-Al-O又はREM-Al-O-S上に析出成長することが考えられる。
 ばねの成形法として、熱間成形法及び冷間成形法の二種類が用いられる。
 熱間成形法は、分塊圧延および線材圧延で線材を製造した後、真円度を整えるためにわずかな伸線加工を行い鋼線とする。そして、鋼線を加熱して900~1050℃の熱間でばね形状に成形した後、850~950℃での焼入れと、420~500℃での焼戻しの熱処理により、強度を調整する。
 一方、冷間成形法は、分塊圧延および線材圧延の後、真円度を整えるためにわずかな伸線加工を行い鋼線とする。そして、ばね形状に成形するに先立ち、鋼線を加熱して850~950℃での焼入れと、420~500℃での焼戻しの熱処理により鋼線の強度を調整する。その後、室温でばね形状に成形を行う。
 この後、必要に応じてショットピーニングを行い、また、メッキや樹脂塗装などを表面に施し、製品とする。
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。
 本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 取鍋精錬での真空脱ガスにおいて、金属Al、ミッシュメタル、Ca-Si合金、CaO:CaF2=50:50(質量比)のフラックスを使用して、表1に示す条件で精錬し、表2、表3に示す成分組成からなる溶鋼を得、連続鋳造装置により300mm角の鋳片に鋳造した。
 その際、表1に示す条件で電磁撹拌による鋳型内旋回を行い鋳造し、ブルームを製造した。
 ブルームを、1200~1250℃で、表1に示す時間加熱して分塊圧延を行い、160mm×160mmのビレットとした。ビレットを、1100℃に再度加熱して、棒鋼圧延し直径15mmの棒鋼とした。
 さらにその棒鋼から切り出したサンプルを、900℃×20分の焼入れと、450℃×20分の焼戻し熱処理を施し、その後、水冷し、線材の硬度をビッカース硬度で480~520に調整した。
 その後、仕上げ加工により、JIS Z2274(1978)金属材料の回転曲げ疲れ試験方法1号試験片(全長80mm、つかみ部長さ20mm、つかみ部径D=12mm、平行部径d=6mm、平行部長さL=10mm)を作製した。
 さらに、3%NaCl+0.3%チオシアン酸アンモニウム水溶液中で試験片を陰極として電解チャージして、0.2~0.5ppmの水素を鋼中に含ませた。
 チャージ後、Znめっきを施して水素を試験片中に封入した。その試験片を、小野式回転曲げ疲労試験機を用いて、JIS Z2273(1978)に準拠した両振り応力繰り返し応力による回転曲げ疲労試験に供し、5×105までの疲労限での負荷応力を評価した。
 また、試験片の延伸方向の断面を鏡面研磨し、選択的定電位電解エッチング法(SPEED法)で処理した後、表面から半径の1/2深さを中心に半径方向に2mm幅、圧延方向長さ5mmの範囲の鋼中の介在物を走査型電子顕微鏡で観察し、EDXを用いて介在物の組成を分析し、試料の10mm2内の介在物を計数して個数密度を測定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 その結果を表4に示す。
 実施例1~28における酸化物介在物は、図1に示すような、REM-Al-O又はREM-Al-O-SにTiNが付着した複合介在物となっていて、最大径10μm以上のアルミナクラスターは含まなかった。最大長10μm以上のMnS、及び、最大径1μm以上のTiNの合計個数は、表4に示すように、10個/mm2以下であった。
 また、実施例1~28において、回転曲げ疲労試験による疲労強度は、比較例1~7に比べ、数十MPa以上高く、良好な耐疲労特性が得られていることが解る。
 比較例1では、Alのみが添加され、REMは添加されなかったことに起因し、アルミナクラスター、MnS、及び、TiNが多数存在した。
 比較例2では、REM含有量が少なかったことに起因し、アルミナクラスター、MnS、及び、TiNが多数存在した。
 比較例3では、S含有量が多かったことに起因し、MnSが多数存在した。
 比較例4では、REM添加後の還流時間が短かったことに起因し、アルミナクラスター、MnS、及び、TiNが多数存在した。
 比較例5では、鋳型内の旋回流速が低かったことに起因し、REM-Al-O又はREM-Al-O-Sが鋳片の中心近傍に偏析し、表層部にTiNが多数存在した。
 比較例6では、1250~1200℃域の保持時間が短かったことに起因し、TiNが多数存在した。
 比較例7では、REM含有量が多かったことに起因し、TiNが付着した複合介在物の最大径が大きくなった。
 以上の比較例では、上述の介在物の影響により、製品の疲労強度がいずれも不良であった。
Figure JPOXMLDOC01-appb-T000004
 本発明によれば、ばね鋼において、アルミナをREM-Al-Oに改質して酸化物の粗大化を防止することができ、また、SをREM-Al-O-Sとして固定化して粗大MnSを抑制でき、さらに、REM-Al-O-Sの介在物にTiNを複合させることにより、単独で析出するTiNの個数密度を減らすことができるので、耐疲労特性に優れたばね鋼を提供することができる。
 よって、本発明は、産業上の利用可能性が高い。
 A  REM-Al-O-S
 B  REM-Al-O-Sの表面上に複合析出したTiN
 C  初析セメンタイト

Claims (4)

  1.  化学組成が、質量%で、
    C:0.4%~0.9%未満、
    Si:1.0%~3.0%、
    Mn:0.1%~2.0%、
    Al:0.01%~0.05%、
    REM:0.0001%~0.005%、
    T.O:0.0001%~0.003%、
    Ti:0.005%未満、
    N:0.015%以下、
    P:0.03%以下、
    S:0.03%以下、
    Cr:0%~2.0%、
    Cu:0%~0.5%、
    Ni:0%~3.5%、
    Mo:0%~1.0%、
    W:0%~1.0%、
    B:0%~0.005%、
    V:0%~0.7%、
    Nb:0%~0.05%、
    Ca:0%~0.0020%、
    残部:鉄及び不純物
    であり、
     REM、O、及び、Alを含む介在物にTiNが付着した、最大径2μm以上の複合介在物を、0.004個/mm~10個/mm含有し、前記複合介在物の最大径が40μm以下であり、
     最大径10μm以上のアルミナクラスター、最大長10μm以上のMnS、及び、最大径1μm以上のTiNの合計の個数密度が10個/mm2以下である
    ことを特徴とするばね鋼。
  2. Cr:0.05%以上、2.0%以下、
    Cu:0.1%以上、0.5%以下、
    Ni:0.1%以上、3.5%以下、
    Mo:0.05%以上、1.0%以下、
    W:0.05%以上、1.0%以下、
    B:0.0005%以上、0.005%以下、
    V:0.05%以上、0.7%以下、
    Nb:0.005%以上、0.05%以下、及び
    Ca:0.0001%以上、0.0020%以下
    からなる群から選択された1種以上の元素を含有することを特徴とする請求項1に記載のばね鋼。
  3.  請求項1に記載の化学組成の溶鋼を、真空脱ガスを含む取鍋精錬で製造する際、まず、Alを用いて脱酸を行い、次いで、REMを用いて、5分以上脱酸する工程と、
     前記溶鋼を鋳型内で鋳造する際、前記鋳型内で、前記溶鋼を、水平方向に0.1m/分以上で旋回させる工程と、
     前記鋳造で得た鋳片を、均熱化処理で、1250~1200℃の温度域で60秒以上保持し、その後、分塊圧延する工程と、
    を備えることを特徴とする請求項1に記載のばね鋼の製造方法。
  4.  請求項1に記載のばね鋼から成ることを特徴とするばね。
PCT/JP2013/061877 2013-04-23 2013-04-23 耐疲労特性に優れたばね鋼及びその製造方法 WO2014174587A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP13883297.7A EP2990496B1 (en) 2013-04-23 2013-04-23 Spring steel having excellent fatigue characteristics and process for manufacturing same
PCT/JP2013/061877 WO2014174587A1 (ja) 2013-04-23 2013-04-23 耐疲労特性に優れたばね鋼及びその製造方法
KR1020157030973A KR101742902B1 (ko) 2013-04-23 2013-04-23 내피로 특성이 우수한 스프링강 및 그 제조 방법
US14/785,815 US10350676B2 (en) 2013-04-23 2013-04-23 Spring steel with excellent fatigue resistance and method of manufacturing the same
JP2015513394A JP6036997B2 (ja) 2013-04-23 2013-04-23 耐疲労特性に優れたばね鋼及びその製造方法
CN201380075822.XA CN105121680B (zh) 2013-04-23 2013-04-23 耐疲劳特性优异的弹簧钢及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/061877 WO2014174587A1 (ja) 2013-04-23 2013-04-23 耐疲労特性に優れたばね鋼及びその製造方法

Publications (1)

Publication Number Publication Date
WO2014174587A1 true WO2014174587A1 (ja) 2014-10-30

Family

ID=51791198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061877 WO2014174587A1 (ja) 2013-04-23 2013-04-23 耐疲労特性に優れたばね鋼及びその製造方法

Country Status (6)

Country Link
US (1) US10350676B2 (ja)
EP (1) EP2990496B1 (ja)
JP (1) JP6036997B2 (ja)
KR (1) KR101742902B1 (ja)
CN (1) CN105121680B (ja)
WO (1) WO2014174587A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162928A1 (ja) * 2014-04-23 2015-10-29 新日鐵住金株式会社 ばね鋼及びその製造方法
JP2017170487A (ja) * 2016-03-24 2017-09-28 新日鐵住金株式会社 高炭素溶鋼の連続鋳造方法
CN107614723A (zh) * 2015-05-15 2018-01-19 新日铁住金株式会社 弹簧钢

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5361098B1 (ja) * 2012-09-14 2013-12-04 日本発條株式会社 圧縮コイルばねおよびその製造方法
CN105316591A (zh) * 2015-03-14 2016-02-10 洛阳辰祥机械科技有限公司 一种高性能弹簧的制备方法
CN105483541A (zh) * 2015-12-09 2016-04-13 苏州市吴中区胥口丰收机械配件厂 一种耐腐蚀弹簧及其加工工艺
CN105506471A (zh) * 2015-12-09 2016-04-20 苏州市吴中区胥口丰收机械配件厂 一种高强度弹簧及其加工工艺
KR101776491B1 (ko) * 2016-04-15 2017-09-20 현대자동차주식회사 내식성이 우수한 고강도 스프링강
KR101819343B1 (ko) * 2016-07-01 2018-01-17 주식회사 포스코 신선가공성이 우수한 선재 및 그 제조방법
TWI613903B (zh) * 2016-07-11 2018-02-01 龍華科技大學 結合小波轉換及邊緣偵測建立單張影像深度圖的裝置及其方法
EP3489380A4 (en) * 2016-07-19 2020-01-01 Nippon Steel Corporation STEEL FOR INDUCTION HARDNESS
JP6384626B2 (ja) 2016-07-19 2018-09-05 新日鐵住金株式会社 高周波焼入れ用鋼
JP6733808B2 (ja) * 2017-03-24 2020-08-05 日本製鉄株式会社 線材、及び平鋼線
CN108728739A (zh) * 2018-04-21 2018-11-02 张家港联峰钢铁研究所有限公司 一种非淬回火高碳高强度合金弹簧钢90SiMn及其制备方法
CN110760748B (zh) * 2018-07-27 2021-05-14 宝山钢铁股份有限公司 一种疲劳寿命优良的弹簧钢及其制造方法
KR20200076476A (ko) 2018-12-19 2020-06-29 주식회사 포스코 피로 특성이 향상된 스프링강 및 그 제조방법
CN109881100A (zh) * 2019-03-19 2019-06-14 马鞍山钢铁股份有限公司 一种抗拉强度≥2000MPa的耐蚀弹簧用钢及其生产方法
CN115298339B (zh) * 2020-02-21 2023-10-24 日本制铁株式会社 减震器弹簧
JP7321354B2 (ja) * 2020-02-21 2023-08-04 日本製鉄株式会社 弁ばね
CN113528930B (zh) * 2020-04-21 2022-09-16 江苏金力弹簧科技有限公司 一种冲压弹簧片及其生产工艺
CN114134431B (zh) * 2021-05-10 2022-12-30 江阴兴澄特种钢铁有限公司 一种方坯连铸连轧2000Mpa级高强高韧高淬透性弹簧钢及其制造方法
CN114107841B (zh) * 2022-01-27 2022-04-12 北京科技大学 一种高强度耐腐蚀弹簧钢及其制备方法
CN115287409A (zh) * 2022-07-13 2022-11-04 首钢集团有限公司 一种2000MPa级异型弹性针布钢丝、盘条及盘条的生产方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279695A (ja) 1988-04-30 1989-11-09 Nec Home Electron Ltd 磁気記録再生装置
JPH05311225A (ja) 1991-11-28 1993-11-22 Nippon Steel Corp 溶鋼中Al2O3の凝集防止方法
JPH073398A (ja) * 1993-06-21 1995-01-06 Daido Steel Co Ltd 高強度ばね用鋼及び高強度ばね
JPH09263820A (ja) 1996-03-25 1997-10-07 Kawasaki Steel Corp クラスターのないAlキルド鋼の製造方法
JP2004277777A (ja) 2003-03-13 2004-10-07 Nippon Steel Corp 疲労寿命に優れた介在物微細分散鋼
JP2005002421A (ja) * 2003-06-12 2005-01-06 Nippon Steel Corp アルミナクラスターの少ない鋼材の製造方法
JP2009263704A (ja) 2008-04-23 2009-11-12 Nippon Steel Corp 伸線加工性と耐疲労特性に優れた鋼線材
JP2013108171A (ja) * 2011-10-25 2013-06-06 Nippon Steel & Sumitomo Metal Corp 耐疲労特性に優れたばね鋼及びその製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3255296B2 (ja) * 1992-02-03 2002-02-12 大同特殊鋼株式会社 高強度ばね用鋼およびその製造方法
JP3903996B2 (ja) 1993-08-02 2007-04-11 Jfeスチール株式会社 被削性、冷間鍛造性および焼き入れ・焼き戻し後の疲労強度特性に優れた冷間鍛造用棒鋼および機械構造用部材
JP3552286B2 (ja) 1993-08-02 2004-08-11 Jfeスチール株式会社 被削性、冷間鍛造性および焼き入れ・焼き戻し後の疲労強度特性に優れた機械構造用鋼とその部材の製造方法
JP3796949B2 (ja) 1998-03-27 2006-07-12 Jfeスチール株式会社 軸受用鋼線材の製造方法
JP3533196B2 (ja) 2001-08-28 2004-05-31 株式会社神戸製鋼所 高疲労強度ばね用鋼線とその製法
EP1612287B1 (en) 2003-03-28 2016-06-01 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Use of steel for spring being excellent in resistance to setting and fatigue characteristics
JP4022175B2 (ja) 2003-06-12 2007-12-12 新日本製鐵株式会社 アルミナクラスターの少ない鋼材の製造方法
JP3918787B2 (ja) * 2003-08-01 2007-05-23 住友金属工業株式会社 低炭素快削鋼
EP1801253B1 (en) 2004-08-26 2014-11-05 Daido Tokushuko Kabushiki Kaisha High strength spring and method for manufacture thereof
KR100851083B1 (ko) 2004-11-30 2008-08-08 신닛뽄세이테쯔 카부시키카이샤 고강도 스프링용 강 및 강선
JP4516923B2 (ja) * 2006-03-23 2010-08-04 新日本製鐵株式会社 アルミキルド鋼の連続鋳造鋼片及びその製造方法
CN1851025A (zh) 2006-05-26 2006-10-25 钢铁研究总院 一种具有优异抗疲劳性能的高强度弹簧钢
JP5217403B2 (ja) 2006-12-08 2013-06-19 Jfeスチール株式会社 被削性および疲労特性に優れた機械構造用鋼材
CN101671792B (zh) 2008-09-12 2011-01-19 攀钢集团研究院有限公司 弹簧钢及其制备方法
JP5406687B2 (ja) 2009-11-30 2014-02-05 株式会社神戸製鋼所 転動疲労寿命に優れた鋼材
JP4900516B2 (ja) 2010-03-29 2012-03-21 Jfeスチール株式会社 ばね鋼およびその製造方法
JP5541172B2 (ja) * 2011-01-13 2014-07-09 新日鐵住金株式会社 鋼の製造方法
US9523404B2 (en) 2011-08-18 2016-12-20 Nippon Steel & Sumitomo Metal Corporation Spring steel and spring
ES2609033T3 (es) * 2011-10-25 2017-04-18 Nippon Steel & Sumitomo Metal Corporation Chapa de acero
CN102416411B (zh) 2011-11-10 2013-06-19 南京钢铁股份有限公司 一种疲劳性能优良的直接冷拉拔弹簧钢线材的制造方法
JP5824401B2 (ja) * 2012-03-30 2015-11-25 株式会社神戸製鋼所 耐水素誘起割れ性に優れた鋼板およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279695A (ja) 1988-04-30 1989-11-09 Nec Home Electron Ltd 磁気記録再生装置
JPH05311225A (ja) 1991-11-28 1993-11-22 Nippon Steel Corp 溶鋼中Al2O3の凝集防止方法
JPH073398A (ja) * 1993-06-21 1995-01-06 Daido Steel Co Ltd 高強度ばね用鋼及び高強度ばね
JPH09263820A (ja) 1996-03-25 1997-10-07 Kawasaki Steel Corp クラスターのないAlキルド鋼の製造方法
JP2004277777A (ja) 2003-03-13 2004-10-07 Nippon Steel Corp 疲労寿命に優れた介在物微細分散鋼
JP2005002421A (ja) * 2003-06-12 2005-01-06 Nippon Steel Corp アルミナクラスターの少ない鋼材の製造方法
JP2009263704A (ja) 2008-04-23 2009-11-12 Nippon Steel Corp 伸線加工性と耐疲労特性に優れた鋼線材
JP2013108171A (ja) * 2011-10-25 2013-06-06 Nippon Steel & Sumitomo Metal Corp 耐疲労特性に優れたばね鋼及びその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162928A1 (ja) * 2014-04-23 2015-10-29 新日鐵住金株式会社 ばね鋼及びその製造方法
JPWO2015162928A1 (ja) * 2014-04-23 2017-04-13 新日鐵住金株式会社 ばね鋼及びその製造方法
CN107614723A (zh) * 2015-05-15 2018-01-19 新日铁住金株式会社 弹簧钢
US10724125B2 (en) 2015-05-15 2020-07-28 Nippon Steel Corporation Spring steel
JP2017170487A (ja) * 2016-03-24 2017-09-28 新日鐵住金株式会社 高炭素溶鋼の連続鋳造方法

Also Published As

Publication number Publication date
JPWO2014174587A1 (ja) 2017-02-23
JP6036997B2 (ja) 2016-11-30
US20160151832A1 (en) 2016-06-02
US10350676B2 (en) 2019-07-16
KR20150133850A (ko) 2015-11-30
EP2990496A1 (en) 2016-03-02
CN105121680A (zh) 2015-12-02
EP2990496A4 (en) 2016-11-30
KR101742902B1 (ko) 2017-06-01
CN105121680B (zh) 2017-03-08
EP2990496B1 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
JP6036997B2 (ja) 耐疲労特性に優れたばね鋼及びその製造方法
JP5652555B2 (ja) 軸受鋼とその製造方法
JP5093422B2 (ja) 高強度鋼板及びその製造方法
JP4135691B2 (ja) 窒化物系介在物形態制御鋼
JP5609946B2 (ja) 耐疲労特性に優れたばね鋼及びその製造方法
KR101263102B1 (ko) 내마모성 및 인성이 우수한 펄라이트계 레일
JP5794397B2 (ja) 疲労特性に優れる肌焼鋼
JP5794396B2 (ja) 疲労特性に優れる高周波焼入れ用鋼
WO2013161794A1 (ja) レール
JP2008127594A (ja) 疲労限度比に優れた高強度熱間鍛造非調質鋼部品
JP2014109056A (ja) 伸びフランジ性、曲げ加工性に優れた高強度鋼板およびその鋼板用の溶鋼の溶製方法
WO2014112532A1 (ja) 疲労特性に優れたSiキルド鋼線材、およびそれを用いたばね
EP2682489B1 (en) High-carbon steel wire rod excellent in drawability and fatigue characteristics after wire drawing
KR101518654B1 (ko) 신장 플랜지성과 굽힘 가공성이 우수한 고강도 강판 및 그 용강의 용제 방법
JP5158271B2 (ja) 伸びフランジ性と曲げ加工性に優れた高強度鋼板およびその溶鋼の溶製方法
WO2019054448A1 (ja) 転動疲労特性に優れた鋼材
CN103667928A (zh) 一种抗低温脆性n80级石油管用钢及其制造方法
JP6957890B2 (ja) 溶鋼の精錬方法
JP5058892B2 (ja) 伸びフランジ性に優れたdp鋼板およびその製造方法
JP2005344167A (ja) 浸炭部品又は浸炭窒化部品用の鋼材、浸炭部品又は浸炭窒化部品の製造方法
JP3912186B2 (ja) 耐疲労特性に優れたばね鋼
JP3429164B2 (ja) 靱性及び疲労特性に優れたばね用鋼材
RU2469107C1 (ru) Трубная заготовка из легированной стали

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: IDP00201507151

Country of ref document: ID

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883297

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14785815

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015513394

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157030973

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013883297

Country of ref document: EP