WO2014168874A2 - Compositions and methods for personalized neoplasia vaccines - Google Patents
Compositions and methods for personalized neoplasia vaccines Download PDFInfo
- Publication number
- WO2014168874A2 WO2014168874A2 PCT/US2014/033185 US2014033185W WO2014168874A2 WO 2014168874 A2 WO2014168874 A2 WO 2014168874A2 US 2014033185 W US2014033185 W US 2014033185W WO 2014168874 A2 WO2014168874 A2 WO 2014168874A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- neo
- mutations
- antigenic
- peptides
- vaccine
- Prior art date
Links
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 313
- 229960005486 vaccine Drugs 0.000 title claims abstract description 112
- 230000009826 neoplastic cell growth Effects 0.000 title claims abstract description 105
- 238000000034 method Methods 0.000 title claims description 150
- 239000000203 mixture Substances 0.000 title description 110
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 467
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 348
- 230000035772 mutation Effects 0.000 claims abstract description 135
- 238000004519 manufacturing process Methods 0.000 claims abstract description 15
- 229920001184 polypeptide Polymers 0.000 claims description 115
- 108090000623 proteins and genes Proteins 0.000 claims description 104
- 235000001014 amino acid Nutrition 0.000 claims description 70
- 102000004169 proteins and genes Human genes 0.000 claims description 68
- 235000018102 proteins Nutrition 0.000 claims description 67
- 150000001413 amino acids Chemical class 0.000 claims description 63
- 230000027455 binding Effects 0.000 claims description 51
- 210000004443 dendritic cell Anatomy 0.000 claims description 46
- 239000002671 adjuvant Substances 0.000 claims description 42
- -1 SRL172 Substances 0.000 claims description 39
- 239000012648 POLY-ICLC Substances 0.000 claims description 30
- 229940115270 poly iclc Drugs 0.000 claims description 30
- 239000013598 vector Substances 0.000 claims description 23
- 230000000890 antigenic effect Effects 0.000 claims description 18
- 238000012163 sequencing technique Methods 0.000 claims description 18
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 claims description 12
- 239000002245 particle Substances 0.000 claims description 8
- 229940029030 dendritic cell vaccine Drugs 0.000 claims description 7
- 230000008685 targeting Effects 0.000 claims description 7
- DRHZYJAUECRAJM-DWSYSWFDSA-N (2s,3s,4s,5r,6r)-6-[[(3s,4s,4ar,6ar,6bs,8r,8ar,12as,14ar,14br)-8a-[(2s,3r,4s,5r,6r)-3-[(2s,3r,4s,5r,6s)-5-[(2s,3r,4s,5r)-4-[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy-3,5-dihydroxyoxan-2-yl]oxy-3,4-dihydroxy-6-methyloxan-2-yl]oxy-5-[(3s,5s, Chemical compound O([C@H]1[C@H](O)[C@H](O[C@H]([C@@H]1O[C@H]1[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O1)O)O[C@H]1CC[C@]2(C)[C@H]3CC=C4[C@@H]5CC(C)(C)CC[C@@]5([C@@H](C[C@@]4(C)[C@]3(C)CC[C@H]2[C@@]1(C=O)C)O)C(=O)O[C@@H]1O[C@H](C)[C@@H]([C@@H]([C@H]1O[C@H]1[C@@H]([C@H](O)[C@@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@](O)(CO)CO3)O)[C@H](O)CO2)O)[C@H](C)O1)O)O)OC(=O)C[C@@H](O)C[C@H](OC(=O)C[C@@H](O)C[C@@H]([C@@H](C)CC)O[C@H]1[C@@H]([C@@H](O)[C@H](CO)O1)O)[C@@H](C)CC)C(O)=O)[C@@H]1OC[C@@H](O)[C@H](O)[C@H]1O DRHZYJAUECRAJM-DWSYSWFDSA-N 0.000 claims description 6
- BXNMTOQRYBFHNZ-UHFFFAOYSA-N resiquimod Chemical compound C1=CC=CC2=C(N(C(COCC)=N3)CC(C)(C)O)C3=C(N)N=C21 BXNMTOQRYBFHNZ-UHFFFAOYSA-N 0.000 claims description 6
- 229950010550 resiquimod Drugs 0.000 claims description 6
- 108010026552 Proteome Proteins 0.000 claims description 5
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 claims description 5
- 235000018417 cysteine Nutrition 0.000 claims description 5
- 230000003993 interaction Effects 0.000 claims description 5
- XGOYIMQSIKSOBS-UHFFFAOYSA-N vadimezan Chemical compound C1=CC=C2C(=O)C3=CC=C(C)C(C)=C3OC2=C1CC(O)=O XGOYIMQSIKSOBS-UHFFFAOYSA-N 0.000 claims description 5
- 241000272478 Aquila Species 0.000 claims description 4
- 239000011859 microparticle Substances 0.000 claims description 4
- 229950008737 vadimezan Drugs 0.000 claims description 4
- FYGDTMLNYKFZSV-URKRLVJHSA-N (2s,3r,4s,5s,6r)-2-[(2r,4r,5r,6s)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(2r,4r,5r,6s)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1[C@@H](CO)O[C@@H](OC2[C@H](O[C@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-URKRLVJHSA-N 0.000 claims description 3
- 229920002498 Beta-glucan Polymers 0.000 claims description 3
- GUVMFDICMFQHSZ-UHFFFAOYSA-N N-(1-aminoethenyl)-1-[4-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[hydroxy-[[3-[hydroxy-[[3-hydroxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy]phosphinothioyl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy]phosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(2-amino-6-oxo-1H-purin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(2-amino-6-oxo-1H-purin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-[[[2-[[[2-[[[5-(2-amino-6-oxo-1H-purin-9-yl)-2-[[[5-(4-amino-2-oxopyrimidin-1-yl)-2-[[hydroxy-[2-(hydroxymethyl)-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-3-yl]oxyphosphinothioyl]oxymethyl]oxolan-3-yl]oxy-hydroxyphosphinothioyl]oxymethyl]oxolan-3-yl]oxy-hydroxyphosphinothioyl]oxymethyl]-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-3-yl]oxy-hydroxyphosphinothioyl]oxymethyl]-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-3-yl]oxy-hydroxyphosphinothioyl]oxymethyl]oxolan-2-yl]-5-methylimidazole-4-carboxamide Chemical compound CC1=C(C(=O)NC(N)=C)N=CN1C1OC(COP(O)(=S)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=S)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=S)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)CO)C(OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)O)C1 GUVMFDICMFQHSZ-UHFFFAOYSA-N 0.000 claims description 3
- 108010084333 N-palmitoyl-S-(2,3-bis(palmitoyloxy)propyl)cysteinyl-seryl-lysyl-lysyl-lysyl-lysine Proteins 0.000 claims description 3
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 claims description 3
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 claims description 3
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims description 3
- 108010017271 denileukin diftitox Proteins 0.000 claims description 3
- 229960002751 imiquimod Drugs 0.000 claims description 3
- DOUYETYNHWVLEO-UHFFFAOYSA-N imiquimod Chemical compound C1=CC=CC2=C3N(CC(C)C)C=NC3=C(N)N=C21 DOUYETYNHWVLEO-UHFFFAOYSA-N 0.000 claims description 3
- 229940035032 monophosphoryl lipid a Drugs 0.000 claims description 3
- 229940100027 ontak Drugs 0.000 claims description 3
- 239000000277 virosome Substances 0.000 claims description 3
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 claims description 2
- 229940056913 eftilagimod alfa Drugs 0.000 claims description 2
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 122
- 239000000427 antigen Substances 0.000 description 120
- 150000001875 compounds Chemical class 0.000 description 88
- 108091007433 antigens Proteins 0.000 description 68
- 102000036639 antigens Human genes 0.000 description 68
- 108020004414 DNA Proteins 0.000 description 60
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 57
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 56
- 229940024606 amino acid Drugs 0.000 description 56
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 54
- 210000001744 T-lymphocyte Anatomy 0.000 description 52
- 230000014509 gene expression Effects 0.000 description 52
- 125000003729 nucleotide group Chemical group 0.000 description 47
- 239000004480 active ingredient Substances 0.000 description 46
- 239000003814 drug Substances 0.000 description 45
- 239000002773 nucleotide Substances 0.000 description 45
- 235000002639 sodium chloride Nutrition 0.000 description 45
- 239000008194 pharmaceutical composition Substances 0.000 description 43
- 150000007523 nucleic acids Chemical class 0.000 description 40
- 239000003795 chemical substances by application Substances 0.000 description 39
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 39
- 201000011510 cancer Diseases 0.000 description 36
- 102000039446 nucleic acids Human genes 0.000 description 35
- 108020004707 nucleic acids Proteins 0.000 description 35
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 32
- 238000011282 treatment Methods 0.000 description 32
- 238000009472 formulation Methods 0.000 description 31
- 201000010099 disease Diseases 0.000 description 30
- 241000282414 Homo sapiens Species 0.000 description 28
- 210000000612 antigen-presenting cell Anatomy 0.000 description 28
- 230000000694 effects Effects 0.000 description 28
- 150000003839 salts Chemical class 0.000 description 28
- 108700002563 poly ICLC Proteins 0.000 description 27
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 26
- 102000040430 polynucleotide Human genes 0.000 description 26
- 108091033319 polynucleotide Proteins 0.000 description 26
- 239000002157 polynucleotide Substances 0.000 description 26
- 230000028993 immune response Effects 0.000 description 24
- 230000004044 response Effects 0.000 description 24
- 229940124597 therapeutic agent Drugs 0.000 description 24
- 108091054437 MHC class I family Proteins 0.000 description 22
- 201000001441 melanoma Diseases 0.000 description 21
- 239000000969 carrier Substances 0.000 description 20
- 230000006698 induction Effects 0.000 description 20
- 238000002360 preparation method Methods 0.000 description 20
- 230000001225 therapeutic effect Effects 0.000 description 20
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 19
- 230000000295 complement effect Effects 0.000 description 19
- 239000013604 expression vector Substances 0.000 description 19
- 239000000523 sample Substances 0.000 description 19
- 238000006467 substitution reaction Methods 0.000 description 19
- 210000001519 tissue Anatomy 0.000 description 19
- 125000003275 alpha amino acid group Chemical group 0.000 description 18
- 238000013459 approach Methods 0.000 description 18
- 239000007788 liquid Substances 0.000 description 18
- 238000003786 synthesis reaction Methods 0.000 description 18
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 17
- 230000005867 T cell response Effects 0.000 description 17
- 229940022399 cancer vaccine Drugs 0.000 description 17
- 229940079593 drug Drugs 0.000 description 17
- 230000003053 immunization Effects 0.000 description 17
- 239000003446 ligand Substances 0.000 description 17
- 239000000546 pharmaceutical excipient Substances 0.000 description 17
- 102000005962 receptors Human genes 0.000 description 17
- 108020003175 receptors Proteins 0.000 description 17
- 102000043129 MHC class I family Human genes 0.000 description 16
- 102000002689 Toll-like receptor Human genes 0.000 description 16
- 108020000411 Toll-like receptor Proteins 0.000 description 16
- 238000009566 cancer vaccine Methods 0.000 description 16
- 230000000875 corresponding effect Effects 0.000 description 16
- 239000003937 drug carrier Substances 0.000 description 16
- 239000011780 sodium chloride Substances 0.000 description 16
- 239000000243 solution Substances 0.000 description 16
- 239000003826 tablet Substances 0.000 description 16
- 108091028043 Nucleic acid sequence Proteins 0.000 description 15
- 239000002775 capsule Substances 0.000 description 15
- 238000002347 injection Methods 0.000 description 15
- 239000007924 injection Substances 0.000 description 15
- 239000011159 matrix material Substances 0.000 description 15
- 239000007787 solid Substances 0.000 description 15
- 239000000725 suspension Substances 0.000 description 15
- 241000282412 Homo Species 0.000 description 14
- 241001465754 Metazoa Species 0.000 description 14
- 108091034117 Oligonucleotide Proteins 0.000 description 14
- 208000006265 Renal cell carcinoma Diseases 0.000 description 14
- 230000001580 bacterial effect Effects 0.000 description 14
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 14
- 238000002649 immunization Methods 0.000 description 14
- 230000001965 increasing effect Effects 0.000 description 14
- 238000007920 subcutaneous administration Methods 0.000 description 14
- 238000002560 therapeutic procedure Methods 0.000 description 14
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 13
- 102000004127 Cytokines Human genes 0.000 description 13
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 13
- 210000000987 immune system Anatomy 0.000 description 13
- 239000004615 ingredient Substances 0.000 description 13
- 239000013612 plasmid Substances 0.000 description 13
- 108090000695 Cytokines Proteins 0.000 description 12
- 102100026545 Fibronectin type III domain-containing protein 3B Human genes 0.000 description 12
- 101000913642 Homo sapiens Fibronectin type III domain-containing protein 3B Proteins 0.000 description 12
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 12
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 12
- 239000002253 acid Substances 0.000 description 12
- 239000003085 diluting agent Substances 0.000 description 12
- 238000000338 in vitro Methods 0.000 description 12
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 12
- 239000000843 powder Substances 0.000 description 12
- 239000001509 sodium citrate Substances 0.000 description 12
- 208000024891 symptom Diseases 0.000 description 12
- 238000002255 vaccination Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 108700028369 Alleles Proteins 0.000 description 11
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 11
- 230000004913 activation Effects 0.000 description 11
- 239000002585 base Substances 0.000 description 11
- 238000001514 detection method Methods 0.000 description 11
- 239000002552 dosage form Substances 0.000 description 11
- 238000009396 hybridization Methods 0.000 description 11
- 230000002163 immunogen Effects 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 11
- 229940038773 trisodium citrate Drugs 0.000 description 11
- 230000003612 virological effect Effects 0.000 description 11
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 10
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 10
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 10
- 238000010521 absorption reaction Methods 0.000 description 10
- 230000008901 benefit Effects 0.000 description 10
- 210000004369 blood Anatomy 0.000 description 10
- 239000008280 blood Substances 0.000 description 10
- 239000012634 fragment Substances 0.000 description 10
- 230000037433 frameshift Effects 0.000 description 10
- 230000001900 immune effect Effects 0.000 description 10
- 238000001727 in vivo Methods 0.000 description 10
- 239000012528 membrane Substances 0.000 description 10
- 210000004379 membrane Anatomy 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 229930006000 Sucrose Natural products 0.000 description 9
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 9
- 108091008874 T cell receptors Proteins 0.000 description 9
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 9
- 239000002299 complementary DNA Substances 0.000 description 9
- 238000013270 controlled release Methods 0.000 description 9
- 208000035475 disorder Diseases 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 239000000499 gel Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 239000012071 phase Substances 0.000 description 9
- 229940002612 prodrug Drugs 0.000 description 9
- 239000000651 prodrug Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 230000028327 secretion Effects 0.000 description 9
- 239000005720 sucrose Substances 0.000 description 9
- 230000002103 transcriptional effect Effects 0.000 description 9
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 8
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 8
- 108091026890 Coding region Proteins 0.000 description 8
- 102000008949 Histocompatibility Antigens Class I Human genes 0.000 description 8
- 108010074328 Interferon-gamma Proteins 0.000 description 8
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 8
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 8
- 239000003963 antioxidant agent Substances 0.000 description 8
- 235000006708 antioxidants Nutrition 0.000 description 8
- 238000004422 calculation algorithm Methods 0.000 description 8
- 238000012217 deletion Methods 0.000 description 8
- 230000037430 deletion Effects 0.000 description 8
- 230000005746 immune checkpoint blockade Effects 0.000 description 8
- 230000005847 immunogenicity Effects 0.000 description 8
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 8
- 206010061289 metastatic neoplasm Diseases 0.000 description 8
- 230000003389 potentiating effect Effects 0.000 description 8
- 239000003755 preservative agent Substances 0.000 description 8
- 230000001105 regulatory effect Effects 0.000 description 8
- 125000006850 spacer group Chemical group 0.000 description 8
- 238000010561 standard procedure Methods 0.000 description 8
- 230000000638 stimulation Effects 0.000 description 8
- 230000000699 topical effect Effects 0.000 description 8
- 210000004881 tumor cell Anatomy 0.000 description 8
- 108010010803 Gelatin Proteins 0.000 description 7
- 102100037850 Interferon gamma Human genes 0.000 description 7
- 230000003321 amplification Effects 0.000 description 7
- 230000004071 biological effect Effects 0.000 description 7
- 239000012636 effector Substances 0.000 description 7
- 239000003623 enhancer Substances 0.000 description 7
- 239000008273 gelatin Substances 0.000 description 7
- 229920000159 gelatin Polymers 0.000 description 7
- 235000019322 gelatine Nutrition 0.000 description 7
- 235000011852 gelatine desserts Nutrition 0.000 description 7
- 235000011187 glycerol Nutrition 0.000 description 7
- 210000002443 helper t lymphocyte Anatomy 0.000 description 7
- 230000008105 immune reaction Effects 0.000 description 7
- 230000036039 immunity Effects 0.000 description 7
- 238000009169 immunotherapy Methods 0.000 description 7
- 239000007943 implant Substances 0.000 description 7
- 230000001939 inductive effect Effects 0.000 description 7
- 210000001165 lymph node Anatomy 0.000 description 7
- 230000001404 mediated effect Effects 0.000 description 7
- 230000007935 neutral effect Effects 0.000 description 7
- 238000003199 nucleic acid amplification method Methods 0.000 description 7
- 239000002243 precursor Substances 0.000 description 7
- 230000037452 priming Effects 0.000 description 7
- 238000000746 purification Methods 0.000 description 7
- 230000004083 survival effect Effects 0.000 description 7
- 241000894006 Bacteria Species 0.000 description 6
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 6
- 102000043131 MHC class II family Human genes 0.000 description 6
- 108091054438 MHC class II family Proteins 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- 229920002472 Starch Polymers 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 210000003719 b-lymphocyte Anatomy 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 230000037396 body weight Effects 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 239000006071 cream Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 208000005017 glioblastoma Diseases 0.000 description 6
- 239000008187 granular material Substances 0.000 description 6
- 238000011134 hematopoietic stem cell transplantation Methods 0.000 description 6
- 238000011534 incubation Methods 0.000 description 6
- 208000015181 infectious disease Diseases 0.000 description 6
- 238000001990 intravenous administration Methods 0.000 description 6
- 239000008101 lactose Substances 0.000 description 6
- 239000000314 lubricant Substances 0.000 description 6
- 210000000056 organ Anatomy 0.000 description 6
- 239000006072 paste Substances 0.000 description 6
- 244000052769 pathogen Species 0.000 description 6
- 239000006187 pill Substances 0.000 description 6
- 239000003380 propellant Substances 0.000 description 6
- 230000003248 secreting effect Effects 0.000 description 6
- 230000037436 splice-site mutation Effects 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- 235000019698 starch Nutrition 0.000 description 6
- 230000002194 synthesizing effect Effects 0.000 description 6
- 230000009885 systemic effect Effects 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 5
- 241000416162 Astragalus gummifer Species 0.000 description 5
- 102000008203 CTLA-4 Antigen Human genes 0.000 description 5
- 108010021064 CTLA-4 Antigen Proteins 0.000 description 5
- 229940045513 CTLA4 antagonist Drugs 0.000 description 5
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 5
- 241000588724 Escherichia coli Species 0.000 description 5
- 108060002716 Exonuclease Proteins 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- 241000701806 Human papillomavirus Species 0.000 description 5
- 101800000324 Immunoglobulin A1 protease translocator Proteins 0.000 description 5
- 108010065805 Interleukin-12 Proteins 0.000 description 5
- 102000013462 Interleukin-12 Human genes 0.000 description 5
- 239000002147 L01XE04 - Sunitinib Substances 0.000 description 5
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 5
- 240000007472 Leucaena leucocephala Species 0.000 description 5
- 241000124008 Mammalia Species 0.000 description 5
- 241000699670 Mus sp. Species 0.000 description 5
- 102000008235 Toll-Like Receptor 9 Human genes 0.000 description 5
- 108010060818 Toll-Like Receptor 9 Proteins 0.000 description 5
- 229920001615 Tragacanth Polymers 0.000 description 5
- 239000000443 aerosol Substances 0.000 description 5
- 235000010443 alginic acid Nutrition 0.000 description 5
- 229920000615 alginic acid Polymers 0.000 description 5
- 230000004075 alteration Effects 0.000 description 5
- 239000002246 antineoplastic agent Substances 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 5
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical compound O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 description 5
- 238000004113 cell culture Methods 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 238000002648 combination therapy Methods 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 5
- 230000009089 cytolysis Effects 0.000 description 5
- 229940127089 cytotoxic agent Drugs 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 231100000371 dose-limiting toxicity Toxicity 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 102000013165 exonuclease Human genes 0.000 description 5
- 239000000796 flavoring agent Substances 0.000 description 5
- 230000002068 genetic effect Effects 0.000 description 5
- 230000001976 improved effect Effects 0.000 description 5
- 210000005007 innate immune system Anatomy 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 238000007918 intramuscular administration Methods 0.000 description 5
- 239000002502 liposome Substances 0.000 description 5
- 238000011068 loading method Methods 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 239000002674 ointment Substances 0.000 description 5
- 238000010647 peptide synthesis reaction Methods 0.000 description 5
- 229940023041 peptide vaccine Drugs 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 210000003289 regulatory T cell Anatomy 0.000 description 5
- 238000012216 screening Methods 0.000 description 5
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 5
- 210000003491 skin Anatomy 0.000 description 5
- 230000004936 stimulating effect Effects 0.000 description 5
- 229960001796 sunitinib Drugs 0.000 description 5
- WINHZLLDWRZWRT-ATVHPVEESA-N sunitinib Chemical compound CCN(CC)CCNC(=O)C1=C(C)NC(\C=C/2C3=CC(F)=CC=C3NC\2=O)=C1C WINHZLLDWRZWRT-ATVHPVEESA-N 0.000 description 5
- 238000001356 surgical procedure Methods 0.000 description 5
- 238000013519 translation Methods 0.000 description 5
- 230000032258 transport Effects 0.000 description 5
- 239000012646 vaccine adjuvant Substances 0.000 description 5
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 4
- 206010069754 Acquired gene mutation Diseases 0.000 description 4
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 4
- 108020004705 Codon Proteins 0.000 description 4
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 4
- 239000004471 Glycine Substances 0.000 description 4
- 101000831496 Homo sapiens Toll-like receptor 3 Proteins 0.000 description 4
- 108010014726 Interferon Type I Proteins 0.000 description 4
- 102000002227 Interferon Type I Human genes 0.000 description 4
- 102000014150 Interferons Human genes 0.000 description 4
- 108010050904 Interferons Proteins 0.000 description 4
- 108091092195 Intron Proteins 0.000 description 4
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 4
- 229930012538 Paclitaxel Natural products 0.000 description 4
- 108010033276 Peptide Fragments Proteins 0.000 description 4
- 102000007079 Peptide Fragments Human genes 0.000 description 4
- 102100024324 Toll-like receptor 3 Human genes 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 239000002998 adhesive polymer Substances 0.000 description 4
- 239000000556 agonist Substances 0.000 description 4
- 125000000539 amino acid group Chemical group 0.000 description 4
- 230000005875 antibody response Effects 0.000 description 4
- 230000030741 antigen processing and presentation Effects 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 235000010323 ascorbic acid Nutrition 0.000 description 4
- 239000011668 ascorbic acid Substances 0.000 description 4
- 229960005070 ascorbic acid Drugs 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 239000012620 biological material Substances 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 238000002619 cancer immunotherapy Methods 0.000 description 4
- 235000010980 cellulose Nutrition 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 4
- 239000001913 cellulose Substances 0.000 description 4
- 239000002738 chelating agent Substances 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 229960004397 cyclophosphamide Drugs 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 238000003114 enzyme-linked immunosorbent spot assay Methods 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 230000003308 immunostimulating effect Effects 0.000 description 4
- 229940079322 interferon Drugs 0.000 description 4
- 229940117681 interleukin-12 Drugs 0.000 description 4
- 238000007912 intraperitoneal administration Methods 0.000 description 4
- 235000010445 lecithin Nutrition 0.000 description 4
- 239000000787 lecithin Substances 0.000 description 4
- 229940067606 lecithin Drugs 0.000 description 4
- 150000002632 lipids Chemical class 0.000 description 4
- 235000019359 magnesium stearate Nutrition 0.000 description 4
- 210000004962 mammalian cell Anatomy 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 238000010369 molecular cloning Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 210000004985 myeloid-derived suppressor cell Anatomy 0.000 description 4
- 210000004296 naive t lymphocyte Anatomy 0.000 description 4
- 231100000252 nontoxic Toxicity 0.000 description 4
- 230000003000 nontoxic effect Effects 0.000 description 4
- 229960001592 paclitaxel Drugs 0.000 description 4
- 230000000144 pharmacologic effect Effects 0.000 description 4
- 239000002953 phosphate buffered saline Substances 0.000 description 4
- 238000000734 protein sequencing Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000007790 solid phase Substances 0.000 description 4
- 230000037439 somatic mutation Effects 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 229940032147 starch Drugs 0.000 description 4
- 239000008107 starch Substances 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- 239000000829 suppository Substances 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- 238000013268 sustained release Methods 0.000 description 4
- 239000012730 sustained-release form Substances 0.000 description 4
- 239000000454 talc Substances 0.000 description 4
- 235000012222 talc Nutrition 0.000 description 4
- 229910052623 talc Inorganic materials 0.000 description 4
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 4
- 229960000814 tetanus toxoid Drugs 0.000 description 4
- 231100000331 toxic Toxicity 0.000 description 4
- 230000002588 toxic effect Effects 0.000 description 4
- 229940124931 vaccine adjuvant Drugs 0.000 description 4
- 238000012070 whole genome sequencing analysis Methods 0.000 description 4
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 3
- 208000023275 Autoimmune disease Diseases 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 102100033680 Bombesin receptor-activated protein C6orf89 Human genes 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 3
- 229920002307 Dextran Polymers 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 206010061819 Disease recurrence Diseases 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 238000011510 Elispot assay Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 3
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 3
- 102100028972 HLA class I histocompatibility antigen, A alpha chain Human genes 0.000 description 3
- 108010075704 HLA-A Antigens Proteins 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- 108010027412 Histocompatibility Antigens Class II Proteins 0.000 description 3
- 102000018713 Histocompatibility Antigens Class II Human genes 0.000 description 3
- 101000944524 Homo sapiens Bombesin receptor-activated protein C6orf89 Proteins 0.000 description 3
- 101001082073 Homo sapiens Interferon-induced helicase C domain-containing protein 1 Proteins 0.000 description 3
- 102100027353 Interferon-induced helicase C domain-containing protein 1 Human genes 0.000 description 3
- 102000000589 Interleukin-1 Human genes 0.000 description 3
- 108010002352 Interleukin-1 Proteins 0.000 description 3
- 102000003814 Interleukin-10 Human genes 0.000 description 3
- 108090000174 Interleukin-10 Proteins 0.000 description 3
- 102000004388 Interleukin-4 Human genes 0.000 description 3
- 108090000978 Interleukin-4 Proteins 0.000 description 3
- 229930195725 Mannitol Natural products 0.000 description 3
- 206010027480 Metastatic malignant melanoma Diseases 0.000 description 3
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 3
- 206010033128 Ovarian cancer Diseases 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 229920000954 Polyglycolide Polymers 0.000 description 3
- 229920001710 Polyorthoester Polymers 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- BPEGJWRSRHCHSN-UHFFFAOYSA-N Temozolomide Chemical compound O=C1N(C)N=NC2=C(C(N)=O)N=CN21 BPEGJWRSRHCHSN-UHFFFAOYSA-N 0.000 description 3
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 3
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 3
- 208000036142 Viral infection Diseases 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 210000005006 adaptive immune system Anatomy 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 239000000783 alginic acid Substances 0.000 description 3
- 229960001126 alginic acid Drugs 0.000 description 3
- 150000004781 alginic acids Chemical class 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 230000000259 anti-tumor effect Effects 0.000 description 3
- 235000012216 bentonite Nutrition 0.000 description 3
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 3
- 229920002988 biodegradable polymer Polymers 0.000 description 3
- 239000006172 buffering agent Substances 0.000 description 3
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 3
- 239000012876 carrier material Substances 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 230000007969 cellular immunity Effects 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 229960002433 cysteine Drugs 0.000 description 3
- 231100000433 cytotoxic Toxicity 0.000 description 3
- 230000001472 cytotoxic effect Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000008121 dextrose Substances 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000012377 drug delivery Methods 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 235000013355 food flavoring agent Nutrition 0.000 description 3
- 231100000221 frame shift mutation induction Toxicity 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000005090 green fluorescent protein Substances 0.000 description 3
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 3
- 239000003906 humectant Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 230000008629 immune suppression Effects 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 239000003701 inert diluent Substances 0.000 description 3
- 206010022000 influenza Diseases 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 229940076144 interleukin-10 Drugs 0.000 description 3
- 229940028885 interleukin-4 Drugs 0.000 description 3
- 229960005386 ipilimumab Drugs 0.000 description 3
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 3
- 239000006210 lotion Substances 0.000 description 3
- 210000004072 lung Anatomy 0.000 description 3
- 210000004698 lymphocyte Anatomy 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 239000000594 mannitol Substances 0.000 description 3
- 235000010355 mannitol Nutrition 0.000 description 3
- 208000021039 metastatic melanoma Diseases 0.000 description 3
- 230000000813 microbial effect Effects 0.000 description 3
- 239000004005 microsphere Substances 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 230000001717 pathogenic effect Effects 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 210000005259 peripheral blood Anatomy 0.000 description 3
- 239000011886 peripheral blood Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920000747 poly(lactic acid) Polymers 0.000 description 3
- 102000054765 polymorphisms of proteins Human genes 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 210000002307 prostate Anatomy 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000003259 recombinant expression Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 230000000284 resting effect Effects 0.000 description 3
- 238000004007 reversed phase HPLC Methods 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000011272 standard treatment Methods 0.000 description 3
- 239000003765 sweetening agent Substances 0.000 description 3
- 239000006188 syrup Substances 0.000 description 3
- 235000020357 syrup Nutrition 0.000 description 3
- 229960004964 temozolomide Drugs 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 235000010487 tragacanth Nutrition 0.000 description 3
- 239000000196 tragacanth Substances 0.000 description 3
- 229940116362 tragacanth Drugs 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 238000011269 treatment regimen Methods 0.000 description 3
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 description 3
- 241000701161 unidentified adenovirus Species 0.000 description 3
- 230000003827 upregulation Effects 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 230000009385 viral infection Effects 0.000 description 3
- 239000000080 wetting agent Substances 0.000 description 3
- 229960001515 yellow fever vaccine Drugs 0.000 description 3
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 3
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 2
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 description 2
- 102000004400 Aminopeptidases Human genes 0.000 description 2
- 108090000915 Aminopeptidases Proteins 0.000 description 2
- 208000003950 B-cell lymphoma Diseases 0.000 description 2
- 102000008096 B7-H1 Antigen Human genes 0.000 description 2
- 108010074708 B7-H1 Antigen Proteins 0.000 description 2
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 2
- 101710201279 Biotin carboxyl carrier protein Proteins 0.000 description 2
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 2
- 239000004255 Butylated hydroxyanisole Substances 0.000 description 2
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- 102100035793 CD83 antigen Human genes 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 201000009030 Carcinoma Diseases 0.000 description 2
- 206010057248 Cell death Diseases 0.000 description 2
- 108010012236 Chemokines Proteins 0.000 description 2
- 102000019034 Chemokines Human genes 0.000 description 2
- VYZAMTAEIAYCRO-BJUDXGSMSA-N Chromium-51 Chemical compound [51Cr] VYZAMTAEIAYCRO-BJUDXGSMSA-N 0.000 description 2
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 2
- 208000030808 Clear cell renal carcinoma Diseases 0.000 description 2
- 206010009944 Colon cancer Diseases 0.000 description 2
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 108010041986 DNA Vaccines Proteins 0.000 description 2
- 229940021995 DNA vaccine Drugs 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- 208000001382 Experimental Melanoma Diseases 0.000 description 2
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 2
- 208000032612 Glial tumor Diseases 0.000 description 2
- 206010018338 Glioma Diseases 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- 108010074032 HLA-A2 Antigen Proteins 0.000 description 2
- 102000025850 HLA-A2 Antigen Human genes 0.000 description 2
- 108010058597 HLA-DR Antigens Proteins 0.000 description 2
- 102000006354 HLA-DR Antigens Human genes 0.000 description 2
- 108010093488 His-His-His-His-His-His Proteins 0.000 description 2
- 108010088652 Histocompatibility Antigens Class I Proteins 0.000 description 2
- 208000017604 Hodgkin disease Diseases 0.000 description 2
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 2
- 101000946856 Homo sapiens CD83 antigen Proteins 0.000 description 2
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 108010002350 Interleukin-2 Proteins 0.000 description 2
- 102000000588 Interleukin-2 Human genes 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 2
- 239000003798 L01XE11 - Pazopanib Substances 0.000 description 2
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 241000282560 Macaca mulatta Species 0.000 description 2
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 2
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 206010061535 Ovarian neoplasm Diseases 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 229920002732 Polyanhydride Polymers 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 description 2
- 206010060862 Prostate cancer Diseases 0.000 description 2
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 206010039491 Sarcoma Diseases 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 241000700618 Vaccinia virus Species 0.000 description 2
- 206010046865 Vaccinia virus infection Diseases 0.000 description 2
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- MZVQCMJNVPIDEA-UHFFFAOYSA-N [CH2]CN(CC)CC Chemical group [CH2]CN(CC)CC MZVQCMJNVPIDEA-UHFFFAOYSA-N 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 208000009956 adenocarcinoma Diseases 0.000 description 2
- 238000009098 adjuvant therapy Methods 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 230000029936 alkylation Effects 0.000 description 2
- 238000005804 alkylation reaction Methods 0.000 description 2
- 239000004037 angiogenesis inhibitor Substances 0.000 description 2
- 230000000340 anti-metabolite Effects 0.000 description 2
- 230000014102 antigen processing and presentation of exogenous peptide antigen via MHC class I Effects 0.000 description 2
- 229940100197 antimetabolite Drugs 0.000 description 2
- 239000002256 antimetabolite Substances 0.000 description 2
- 239000008365 aqueous carrier Substances 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 230000005784 autoimmunity Effects 0.000 description 2
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 2
- 239000000440 bentonite Substances 0.000 description 2
- 229910000278 bentonite Inorganic materials 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- 239000004621 biodegradable polymer Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 229940043253 butylated hydroxyanisole Drugs 0.000 description 2
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 description 2
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 2
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229960004562 carboplatin Drugs 0.000 description 2
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 2
- 230000020411 cell activation Effects 0.000 description 2
- 238000011965 cell line development Methods 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 230000036755 cellular response Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000973 chemotherapeutic effect Effects 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 2
- 229960004316 cisplatin Drugs 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 239000007891 compressed tablet Substances 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 208000030381 cutaneous melanoma Diseases 0.000 description 2
- 238000002784 cytotoxicity assay Methods 0.000 description 2
- 231100000263 cytotoxicity test Toxicity 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 230000007123 defense Effects 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical group CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 229960003668 docetaxel Drugs 0.000 description 2
- 229960004679 doxorubicin Drugs 0.000 description 2
- 239000008298 dragée Substances 0.000 description 2
- 230000037437 driver mutation Effects 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 229960005420 etoposide Drugs 0.000 description 2
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000013265 extended release Methods 0.000 description 2
- 210000003414 extremity Anatomy 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 2
- 229960002949 fluorouracil Drugs 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 235000003599 food sweetener Nutrition 0.000 description 2
- 239000007903 gelatin capsule Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 210000003714 granulocyte Anatomy 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000008004 immune attack Effects 0.000 description 2
- 210000002865 immune cell Anatomy 0.000 description 2
- 238000011502 immune monitoring Methods 0.000 description 2
- 239000000568 immunological adjuvant Substances 0.000 description 2
- 230000001506 immunosuppresive effect Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- 239000007937 lozenge Substances 0.000 description 2
- 201000005296 lung carcinoma Diseases 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000035800 maturation Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 210000003071 memory t lymphocyte Anatomy 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- UQDUPQYQJKYHQI-UHFFFAOYSA-N methyl laurate Chemical compound CCCCCCCCCCCC(=O)OC UQDUPQYQJKYHQI-UHFFFAOYSA-N 0.000 description 2
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 2
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 2
- 239000003094 microcapsule Substances 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 229960004857 mitomycin Drugs 0.000 description 2
- 239000007932 molded tablet Substances 0.000 description 2
- 210000001616 monocyte Anatomy 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000002324 mouth wash Substances 0.000 description 2
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 2
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 2
- 235000021313 oleic acid Nutrition 0.000 description 2
- 238000011275 oncology therapy Methods 0.000 description 2
- 230000002611 ovarian Effects 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 235000010603 pastilles Nutrition 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 102000007863 pattern recognition receptors Human genes 0.000 description 2
- 108010089193 pattern recognition receptors Proteins 0.000 description 2
- 229960000639 pazopanib Drugs 0.000 description 2
- CUIHSIWYWATEQL-UHFFFAOYSA-N pazopanib Chemical compound C1=CC2=C(C)N(C)N=C2C=C1N(C)C(N=1)=CC=NC=1NC1=CC=C(C)C(S(N)(=O)=O)=C1 CUIHSIWYWATEQL-UHFFFAOYSA-N 0.000 description 2
- 239000002304 perfume Substances 0.000 description 2
- 239000008177 pharmaceutical agent Substances 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 230000004962 physiological condition Effects 0.000 description 2
- 229920001983 poloxamer Polymers 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 150000004804 polysaccharides Chemical class 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 238000011321 prophylaxis Methods 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 238000001742 protein purification Methods 0.000 description 2
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000003362 replicative effect Effects 0.000 description 2
- 238000002271 resection Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 229960004641 rituximab Drugs 0.000 description 2
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- BNRNXUUZRGQAQC-UHFFFAOYSA-N sildenafil Chemical compound CCCC1=NN(C)C(C(N2)=O)=C1N=C2C(C(=CC=1)OCC)=CC=1S(=O)(=O)N1CCN(C)CC1 BNRNXUUZRGQAQC-UHFFFAOYSA-N 0.000 description 2
- 238000002741 site-directed mutagenesis Methods 0.000 description 2
- 201000003708 skin melanoma Diseases 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 239000007909 solid dosage form Substances 0.000 description 2
- 239000008247 solid mixture Substances 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 239000008223 sterile water Substances 0.000 description 2
- 238000010254 subcutaneous injection Methods 0.000 description 2
- 239000007929 subcutaneous injection Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 150000005846 sugar alcohols Chemical class 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 238000007910 systemic administration Methods 0.000 description 2
- 235000002906 tartaric acid Nutrition 0.000 description 2
- 239000011975 tartaric acid Substances 0.000 description 2
- RCINICONZNJXQF-XAZOAEDWSA-N taxol® Chemical compound O([C@@H]1[C@@]2(CC(C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3(C21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-XAZOAEDWSA-N 0.000 description 2
- 229940021747 therapeutic vaccine Drugs 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 210000001541 thymus gland Anatomy 0.000 description 2
- WYWHKKSPHMUBEB-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 2
- 238000011200 topical administration Methods 0.000 description 2
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 238000013271 transdermal drug delivery Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 230000005945 translocation Effects 0.000 description 2
- 238000011277 treatment modality Methods 0.000 description 2
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 2
- 239000005483 tyrosine kinase inhibitor Substances 0.000 description 2
- 208000007089 vaccinia Diseases 0.000 description 2
- 229960003048 vinblastine Drugs 0.000 description 2
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 2
- 229960004854 viral vaccine Drugs 0.000 description 2
- 239000008215 water for injection Substances 0.000 description 2
- 238000007482 whole exome sequencing Methods 0.000 description 2
- JNELGWHKGNBSMD-UHFFFAOYSA-N xanthone Chemical class C1=CC=C2C(=O)C3=CC=CC=C3OC2=C1 JNELGWHKGNBSMD-UHFFFAOYSA-N 0.000 description 2
- QCHFTSOMWOSFHM-WPRPVWTQSA-N (+)-Pilocarpine Chemical compound C1OC(=O)[C@@H](CC)[C@H]1CC1=CN=CN1C QCHFTSOMWOSFHM-WPRPVWTQSA-N 0.000 description 1
- QIJRTFXNRTXDIP-UHFFFAOYSA-N (1-carboxy-2-sulfanylethyl)azanium;chloride;hydrate Chemical compound O.Cl.SCC(N)C(O)=O QIJRTFXNRTXDIP-UHFFFAOYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- FELGMEQIXOGIFQ-CYBMUJFWSA-N (3r)-9-methyl-3-[(2-methylimidazol-1-yl)methyl]-2,3-dihydro-1h-carbazol-4-one Chemical compound CC1=NC=CN1C[C@@H]1C(=O)C(C=2C(=CC=CC=2)N2C)=C2CC1 FELGMEQIXOGIFQ-CYBMUJFWSA-N 0.000 description 1
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- ICLYJLBTOGPLMC-KVVVOXFISA-N (z)-octadec-9-enoate;tris(2-hydroxyethyl)azanium Chemical compound OCCN(CCO)CCO.CCCCCCCC\C=C/CCCCCCCC(O)=O ICLYJLBTOGPLMC-KVVVOXFISA-N 0.000 description 1
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical class FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 1
- WEEGYLXZBRQIMU-UHFFFAOYSA-N 1,8-cineole Natural products C1CC2CCC1(C)OC2(C)C WEEGYLXZBRQIMU-UHFFFAOYSA-N 0.000 description 1
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 description 1
- OKMWKBLSFKFYGZ-UHFFFAOYSA-N 1-behenoylglycerol Chemical compound CCCCCCCCCCCCCCCCCCCCCC(=O)OCC(O)CO OKMWKBLSFKFYGZ-UHFFFAOYSA-N 0.000 description 1
- AXTGDCSMTYGJND-UHFFFAOYSA-N 1-dodecylazepan-2-one Chemical compound CCCCCCCCCCCCN1CCCCCC1=O AXTGDCSMTYGJND-UHFFFAOYSA-N 0.000 description 1
- JLPULHDHAOZNQI-ZTIMHPMXSA-N 1-hexadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/C\C=C/CCCCC JLPULHDHAOZNQI-ZTIMHPMXSA-N 0.000 description 1
- VSNHCAURESNICA-NJFSPNSNSA-N 1-oxidanylurea Chemical compound N[14C](=O)NO VSNHCAURESNICA-NJFSPNSNSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- FUFLCEKSBBHCMO-UHFFFAOYSA-N 11-dehydrocorticosterone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 FUFLCEKSBBHCMO-UHFFFAOYSA-N 0.000 description 1
- 125000005273 2-acetoxybenzoic acid group Chemical group 0.000 description 1
- IOJUJUOXKXMJNF-UHFFFAOYSA-N 2-acetyloxybenzoic acid [3-(nitrooxymethyl)phenyl] ester Chemical compound CC(=O)OC1=CC=CC=C1C(=O)OC1=CC=CC(CO[N+]([O-])=O)=C1 IOJUJUOXKXMJNF-UHFFFAOYSA-N 0.000 description 1
- GHCZTIFQWKKGSB-UHFFFAOYSA-N 2-hydroxypropane-1,2,3-tricarboxylic acid;phosphoric acid Chemical compound OP(O)(O)=O.OC(=O)CC(O)(C(O)=O)CC(O)=O GHCZTIFQWKKGSB-UHFFFAOYSA-N 0.000 description 1
- BHIZVZJETFVJMJ-UHFFFAOYSA-N 2-hydroxypropyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OCC(C)O BHIZVZJETFVJMJ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- XXJWYDDUDKYVKI-UHFFFAOYSA-N 4-[(4-fluoro-2-methyl-1H-indol-5-yl)oxy]-6-methoxy-7-[3-(1-pyrrolidinyl)propoxy]quinazoline Chemical compound COC1=CC2=C(OC=3C(=C4C=C(C)NC4=CC=3)F)N=CN=C2C=C1OCCCN1CCCC1 XXJWYDDUDKYVKI-UHFFFAOYSA-N 0.000 description 1
- NMUSYJAQQFHJEW-UHFFFAOYSA-N 5-Azacytidine Natural products O=C1N=C(N)N=CN1C1C(O)C(O)C(CO)O1 NMUSYJAQQFHJEW-UHFFFAOYSA-N 0.000 description 1
- NMUSYJAQQFHJEW-KVTDHHQDSA-N 5-azacytidine Chemical compound O=C1N=C(N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NMUSYJAQQFHJEW-KVTDHHQDSA-N 0.000 description 1
- SUBDBMMJDZJVOS-UHFFFAOYSA-N 5-methoxy-2-{[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]sulfinyl}-1H-benzimidazole Chemical compound N=1C2=CC(OC)=CC=C2NC=1S(=O)CC1=NC=C(C)C(OC)=C1C SUBDBMMJDZJVOS-UHFFFAOYSA-N 0.000 description 1
- XZIIFPSPUDAGJM-UHFFFAOYSA-N 6-chloro-2-n,2-n-diethylpyrimidine-2,4-diamine Chemical compound CCN(CC)C1=NC(N)=CC(Cl)=N1 XZIIFPSPUDAGJM-UHFFFAOYSA-N 0.000 description 1
- VVIAGPKUTFNRDU-UHFFFAOYSA-N 6S-folinic acid Natural products C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 VVIAGPKUTFNRDU-UHFFFAOYSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 102100033391 ATP-dependent RNA helicase DDX3X Human genes 0.000 description 1
- 102100032814 ATP-dependent zinc metalloprotease YME1L1 Human genes 0.000 description 1
- 235000006491 Acacia senegal Nutrition 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 206010000830 Acute leukaemia Diseases 0.000 description 1
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 1
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 1
- 206010000871 Acute monocytic leukaemia Diseases 0.000 description 1
- 206010000890 Acute myelomonocytic leukaemia Diseases 0.000 description 1
- 208000036762 Acute promyelocytic leukaemia Diseases 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 208000010507 Adenocarcinoma of Lung Diseases 0.000 description 1
- 208000036764 Adenocarcinoma of the esophagus Diseases 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 108010011170 Ala-Trp-Arg-His-Pro-Gln-Phe-Gly-Gly Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102100032360 Alstrom syndrome protein 1 Human genes 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 108091093088 Amplicon Proteins 0.000 description 1
- 201000003076 Angiosarcoma Diseases 0.000 description 1
- 108020005544 Antisense RNA Proteins 0.000 description 1
- 102100037435 Antiviral innate immune response receptor RIG-I Human genes 0.000 description 1
- 101710127675 Antiviral innate immune response receptor RIG-I Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 102000015790 Asparaginase Human genes 0.000 description 1
- 108010024976 Asparaginase Proteins 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 206010003571 Astrocytoma Diseases 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- MLDQJTXFUGDVEO-UHFFFAOYSA-N BAY-43-9006 Chemical compound C1=NC(C(=O)NC)=CC(OC=2C=CC(NC(=O)NC=3C=C(C(Cl)=CC=3)C(F)(F)F)=CC=2)=C1 MLDQJTXFUGDVEO-UHFFFAOYSA-N 0.000 description 1
- 108020000946 Bacterial DNA Proteins 0.000 description 1
- 108020004513 Bacterial RNA Proteins 0.000 description 1
- 206010004146 Basal cell carcinoma Diseases 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 102100027314 Beta-2-microglobulin Human genes 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 241000701822 Bovine papillomavirus Species 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 102100036301 C-C chemokine receptor type 7 Human genes 0.000 description 1
- 108010029697 CD40 Ligand Proteins 0.000 description 1
- 102100032937 CD40 ligand Human genes 0.000 description 1
- 101100194816 Caenorhabditis elegans rig-3 gene Proteins 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 102000000584 Calmodulin Human genes 0.000 description 1
- 108010041952 Calmodulin Proteins 0.000 description 1
- KLWPJMFMVPTNCC-UHFFFAOYSA-N Camptothecin Natural products CCC1(O)C(=O)OCC2=C1C=C3C4Nc5ccccc5C=C4CN3C2=O KLWPJMFMVPTNCC-UHFFFAOYSA-N 0.000 description 1
- 102100025570 Cancer/testis antigen 1 Human genes 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- GAGWJHPBXLXJQN-UORFTKCHSA-N Capecitabine Chemical compound C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](C)O1 GAGWJHPBXLXJQN-UORFTKCHSA-N 0.000 description 1
- GAGWJHPBXLXJQN-UHFFFAOYSA-N Capecitabine Natural products C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1C1C(O)C(O)C(C)O1 GAGWJHPBXLXJQN-UHFFFAOYSA-N 0.000 description 1
- 101710205625 Capsid protein p24 Proteins 0.000 description 1
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- JWBOIMRXGHLCPP-UHFFFAOYSA-N Chloditan Chemical compound C=1C=CC=C(Cl)C=1C(C(Cl)Cl)C1=CC=C(Cl)C=C1 JWBOIMRXGHLCPP-UHFFFAOYSA-N 0.000 description 1
- 208000005243 Chondrosarcoma Diseases 0.000 description 1
- 201000009047 Chordoma Diseases 0.000 description 1
- 208000006332 Choriocarcinoma Diseases 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- PTOAARAWEBMLNO-KVQBGUIXSA-N Cladribine Chemical compound C1=NC=2C(N)=NC(Cl)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 PTOAARAWEBMLNO-KVQBGUIXSA-N 0.000 description 1
- 108091033380 Coding strand Proteins 0.000 description 1
- 108700010070 Codon Usage Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102000007644 Colony-Stimulating Factors Human genes 0.000 description 1
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- MFYSYFVPBJMHGN-ZPOLXVRWSA-N Cortisone Chemical compound O=C1CC[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 MFYSYFVPBJMHGN-ZPOLXVRWSA-N 0.000 description 1
- MFYSYFVPBJMHGN-UHFFFAOYSA-N Cortisone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC2=C1 MFYSYFVPBJMHGN-UHFFFAOYSA-N 0.000 description 1
- 208000009798 Craniopharyngioma Diseases 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- 102100028712 Cytosolic purine 5'-nucleotidase Human genes 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- YVGGHNCTFXOJCH-UHFFFAOYSA-N DDT Chemical compound C1=CC(Cl)=CC=C1C(C(Cl)(Cl)Cl)C1=CC=C(Cl)C=C1 YVGGHNCTFXOJCH-UHFFFAOYSA-N 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 108010092160 Dactinomycin Proteins 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- CYQFCXCEBYINGO-DLBZAZTESA-N Dronabinol Natural products C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@H]21 CYQFCXCEBYINGO-DLBZAZTESA-N 0.000 description 1
- 101100072149 Drosophila melanogaster eIF2alpha gene Proteins 0.000 description 1
- 102000001301 EGF receptor Human genes 0.000 description 1
- 108060006698 EGF receptor Proteins 0.000 description 1
- 201000009051 Embryonal Carcinoma Diseases 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 206010014967 Ependymoma Diseases 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 208000031637 Erythroblastic Acute Leukemia Diseases 0.000 description 1
- 208000036566 Erythroleukaemia Diseases 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- WEEGYLXZBRQIMU-WAAGHKOSSA-N Eucalyptol Chemical compound C1C[C@H]2CC[C@]1(C)OC2(C)C WEEGYLXZBRQIMU-WAAGHKOSSA-N 0.000 description 1
- 244000165918 Eucalyptus papuana Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 208000006168 Ewing Sarcoma Diseases 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 101710105178 F-box/WD repeat-containing protein 7 Proteins 0.000 description 1
- 102100028138 F-box/WD repeat-containing protein 7 Human genes 0.000 description 1
- 239000001263 FEMA 3042 Substances 0.000 description 1
- 201000001342 Fallopian tube cancer Diseases 0.000 description 1
- 208000013452 Fallopian tube neoplasm Diseases 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 201000008808 Fibrosarcoma Diseases 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- 108010029961 Filgrastim Proteins 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 208000000666 Fowlpox Diseases 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 241000206672 Gelidium Species 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- 102100036646 Glutamyl-tRNA(Gln) amidotransferase subunit A, mitochondrial Human genes 0.000 description 1
- 108010070675 Glutathione transferase Proteins 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Polymers OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 1
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 1
- 102100039619 Granulocyte colony-stimulating factor Human genes 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 1
- 102100028976 HLA class I histocompatibility antigen, B alpha chain Human genes 0.000 description 1
- 102100028971 HLA class I histocompatibility antigen, C alpha chain Human genes 0.000 description 1
- 102100029966 HLA class II histocompatibility antigen, DP alpha 1 chain Human genes 0.000 description 1
- 102100036242 HLA class II histocompatibility antigen, DQ alpha 2 chain Human genes 0.000 description 1
- 108010088729 HLA-A*02:01 antigen Proteins 0.000 description 1
- 108010058607 HLA-B Antigens Proteins 0.000 description 1
- 108010052199 HLA-C Antigens Proteins 0.000 description 1
- 108010010378 HLA-DP Antigens Proteins 0.000 description 1
- 102000015789 HLA-DP Antigens Human genes 0.000 description 1
- 108010062347 HLA-DQ Antigens Proteins 0.000 description 1
- 101710154606 Hemagglutinin Proteins 0.000 description 1
- 208000001258 Hemangiosarcoma Diseases 0.000 description 1
- 102100029100 Hematopoietic prostaglandin D synthase Human genes 0.000 description 1
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 1
- 101000870662 Homo sapiens ATP-dependent RNA helicase DDX3X Proteins 0.000 description 1
- 101000797795 Homo sapiens Alstrom syndrome protein 1 Proteins 0.000 description 1
- 101000716065 Homo sapiens C-C chemokine receptor type 7 Proteins 0.000 description 1
- 101000856237 Homo sapiens Cancer/testis antigen 1 Proteins 0.000 description 1
- 101001072655 Homo sapiens Glutamyl-tRNA(Gln) amidotransferase subunit A, mitochondrial Proteins 0.000 description 1
- 101001024316 Homo sapiens Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 Proteins 0.000 description 1
- 101000864089 Homo sapiens HLA class II histocompatibility antigen, DP alpha 1 chain Proteins 0.000 description 1
- 101000930802 Homo sapiens HLA class II histocompatibility antigen, DQ alpha 1 chain Proteins 0.000 description 1
- 101000930801 Homo sapiens HLA class II histocompatibility antigen, DQ alpha 2 chain Proteins 0.000 description 1
- 101000968032 Homo sapiens HLA class II histocompatibility antigen, DR beta 3 chain Proteins 0.000 description 1
- 101001052493 Homo sapiens Mitogen-activated protein kinase 1 Proteins 0.000 description 1
- 101000707567 Homo sapiens Splicing factor 3B subunit 1 Proteins 0.000 description 1
- 101000643024 Homo sapiens Stimulator of interferon genes protein Proteins 0.000 description 1
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 1
- 101000800133 Homo sapiens Thyroglobulin Proteins 0.000 description 1
- 101000669447 Homo sapiens Toll-like receptor 4 Proteins 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 241000205701 Human adenovirus 26 Species 0.000 description 1
- 241000725303 Human immunodeficiency virus Species 0.000 description 1
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 1
- VSNHCAURESNICA-UHFFFAOYSA-N Hydroxyurea Chemical compound NC(=O)NO VSNHCAURESNICA-UHFFFAOYSA-N 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 101150103227 IFN gene Proteins 0.000 description 1
- 229940124672 IMA901 Drugs 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- XDXDZDZNSLXDNA-TZNDIEGXSA-N Idarubicin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XDXDZDZNSLXDNA-TZNDIEGXSA-N 0.000 description 1
- XDXDZDZNSLXDNA-UHFFFAOYSA-N Idarubicin Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XDXDZDZNSLXDNA-UHFFFAOYSA-N 0.000 description 1
- 102000037982 Immune checkpoint proteins Human genes 0.000 description 1
- 108091008036 Immune checkpoint proteins Proteins 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 108700001097 Insect Genes Proteins 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 108010078049 Interferon alpha-2 Proteins 0.000 description 1
- 102100040018 Interferon alpha-2 Human genes 0.000 description 1
- 108010047761 Interferon-alpha Proteins 0.000 description 1
- 102000006992 Interferon-alpha Human genes 0.000 description 1
- 108010079944 Interferon-alpha2b Proteins 0.000 description 1
- 102000008070 Interferon-gamma Human genes 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 102000004889 Interleukin-6 Human genes 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- 239000011786 L-ascorbyl-6-palmitate Substances 0.000 description 1
- QAQJMLQRFWZOBN-LAUBAEHRSA-N L-ascorbyl-6-palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O QAQJMLQRFWZOBN-LAUBAEHRSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 239000005511 L01XE05 - Sorafenib Substances 0.000 description 1
- 208000018142 Leiomyosarcoma Diseases 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- HLFSDGLLUJUHTE-SNVBAGLBSA-N Levamisole Chemical compound C1([C@H]2CN3CCSC3=N2)=CC=CC=C1 HLFSDGLLUJUHTE-SNVBAGLBSA-N 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 208000030289 Lymphoproliferative disease Diseases 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 101150053046 MYD88 gene Proteins 0.000 description 1
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 1
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 101710175625 Maltose/maltodextrin-binding periplasmic protein Proteins 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 108091027974 Mature messenger RNA Proteins 0.000 description 1
- 208000007054 Medullary Carcinoma Diseases 0.000 description 1
- 208000000172 Medulloblastoma Diseases 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- XOGTZOOQQBDUSI-UHFFFAOYSA-M Mesna Chemical compound [Na+].[O-]S(=O)(=O)CCS XOGTZOOQQBDUSI-UHFFFAOYSA-M 0.000 description 1
- 206010027406 Mesothelioma Diseases 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 206010050513 Metastatic renal cell carcinoma Diseases 0.000 description 1
- 108060004795 Methyltransferase Proteins 0.000 description 1
- 108700005443 Microbial Genes Proteins 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 102100024193 Mitogen-activated protein kinase 1 Human genes 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- 208000035489 Monocytic Acute Leukemia Diseases 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 102100024134 Myeloid differentiation primary response protein MyD88 Human genes 0.000 description 1
- 208000033835 Myelomonocytic Acute Leukemia Diseases 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 108091061960 Naked DNA Proteins 0.000 description 1
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 206010030137 Oesophageal adenocarcinoma Diseases 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 1
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 1
- 108010058846 Ovalbumin Proteins 0.000 description 1
- 238000002944 PCR assay Methods 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- 101710177166 Phosphoprotein Proteins 0.000 description 1
- 208000007641 Pinealoma Diseases 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 108010020346 Polyglutamic Acid Proteins 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 1
- 208000026149 Primary peritoneal carcinoma Diseases 0.000 description 1
- 101800000795 Proadrenomedullin N-20 terminal peptide Proteins 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 208000033826 Promyelocytic Acute Leukemia Diseases 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 101710176177 Protein A56 Proteins 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 108090000944 RNA Helicases Proteins 0.000 description 1
- 102000004409 RNA Helicases Human genes 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 229940022005 RNA vaccine Drugs 0.000 description 1
- 230000004570 RNA-binding Effects 0.000 description 1
- 238000003559 RNA-seq method Methods 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- QCHFTSOMWOSFHM-UHFFFAOYSA-N SJ000285536 Natural products C1OC(=O)C(CC)C1CC1=CN=CN1C QCHFTSOMWOSFHM-UHFFFAOYSA-N 0.000 description 1
- 229940044665 STING agonist Drugs 0.000 description 1
- 241000293871 Salmonella enterica subsp. enterica serovar Typhi Species 0.000 description 1
- 201000010208 Seminoma Diseases 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 101710149279 Small delta antigen Proteins 0.000 description 1
- 108091027967 Small hairpin RNA Proteins 0.000 description 1
- 108020004459 Small interfering RNA Proteins 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 102100031711 Splicing factor 3B subunit 1 Human genes 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 230000006052 T cell proliferation Effects 0.000 description 1
- 208000026651 T-cell prolymphocytic leukemia Diseases 0.000 description 1
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 1
- CYQFCXCEBYINGO-UHFFFAOYSA-N THC Natural products C1=C(C)CCC2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3C21 CYQFCXCEBYINGO-UHFFFAOYSA-N 0.000 description 1
- 241000897276 Termes Species 0.000 description 1
- 108020005038 Terminator Codon Proteins 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- 206010057644 Testis cancer Diseases 0.000 description 1
- 210000004241 Th2 cell Anatomy 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical group OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 102100036407 Thioredoxin Human genes 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 102000009843 Thyroglobulin Human genes 0.000 description 1
- 102000008236 Toll-Like Receptor 7 Human genes 0.000 description 1
- 108010060825 Toll-Like Receptor 7 Proteins 0.000 description 1
- 102000008208 Toll-Like Receptor 8 Human genes 0.000 description 1
- 108010060752 Toll-Like Receptor 8 Proteins 0.000 description 1
- 102100039360 Toll-like receptor 4 Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 102100022563 Tubulin polymerization-promoting protein Human genes 0.000 description 1
- 238000010162 Tukey test Methods 0.000 description 1
- 108010078814 Tumor Suppressor Protein p53 Proteins 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 208000002495 Uterine Neoplasms Diseases 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- SECKRCOLJRRGGV-UHFFFAOYSA-N Vardenafil Chemical compound CCCC1=NC(C)=C(C(N=2)=O)N1NC=2C(C(=CC=1)OCC)=CC=1S(=O)(=O)N1CCN(CC)CC1 SECKRCOLJRRGGV-UHFFFAOYSA-N 0.000 description 1
- 208000014070 Vestibular schwannoma Diseases 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- 108010067390 Viral Proteins Proteins 0.000 description 1
- 208000018777 Vulvar intraepithelial neoplasia Diseases 0.000 description 1
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 description 1
- 238000001790 Welch's t-test Methods 0.000 description 1
- 208000008383 Wilms tumor Diseases 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000001089 [(2R)-oxolan-2-yl]methanol Substances 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000003655 absorption accelerator Substances 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 208000004064 acoustic neuroma Diseases 0.000 description 1
- 208000017733 acquired polycythemia vera Diseases 0.000 description 1
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000009056 active transport Effects 0.000 description 1
- 208000021841 acute erythroid leukemia Diseases 0.000 description 1
- 208000011912 acute myelomonocytic leukemia M4 Diseases 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000033289 adaptive immune response Effects 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 108700025316 aldesleukin Proteins 0.000 description 1
- 229960005310 aldesleukin Drugs 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 229940087168 alpha tocopherol Drugs 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229960000473 altretamine Drugs 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- JKOQGQFVAUAYPM-UHFFFAOYSA-N amifostine Chemical compound NCCCNCCSP(O)(O)=O JKOQGQFVAUAYPM-UHFFFAOYSA-N 0.000 description 1
- 229960001097 amifostine Drugs 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 210000003423 ankle Anatomy 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000005911 anti-cytotoxic effect Effects 0.000 description 1
- 230000000947 anti-immunosuppressive effect Effects 0.000 description 1
- 230000002924 anti-infective effect Effects 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 230000006023 anti-tumor response Effects 0.000 description 1
- 238000009175 antibody therapy Methods 0.000 description 1
- 230000008349 antigen-specific humoral response Effects 0.000 description 1
- 239000003080 antimitotic agent Substances 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- 229940027983 antiseptic and disinfectant quaternary ammonium compound Drugs 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000010385 ascorbyl palmitate Nutrition 0.000 description 1
- 229960003272 asparaginase Drugs 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-M asparaginate Chemical compound [O-]C(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-M 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 230000006472 autoimmune response Effects 0.000 description 1
- 229960002756 azacitidine Drugs 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 229960004217 benzyl alcohol Drugs 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- 108010081355 beta 2-Microglobulin Proteins 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 229960000397 bevacizumab Drugs 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 229920013641 bioerodible polymer Polymers 0.000 description 1
- 238000007622 bioinformatic analysis Methods 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 201000001531 bladder carcinoma Diseases 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 201000010983 breast ductal carcinoma Diseases 0.000 description 1
- 208000003362 bronchogenic carcinoma Diseases 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 229960002092 busulfan Drugs 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229960002713 calcium chloride Drugs 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 229940127093 camptothecin Drugs 0.000 description 1
- VSJKWCGYPAHWDS-FQEVSTJZSA-N camptothecin Chemical compound C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-FQEVSTJZSA-N 0.000 description 1
- 230000008777 canonical pathway Effects 0.000 description 1
- 229960004117 capecitabine Drugs 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 229960005243 carmustine Drugs 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 150000001767 cationic compounds Chemical class 0.000 description 1
- 229960002412 cediranib Drugs 0.000 description 1
- 229940047495 celebrex Drugs 0.000 description 1
- 229960000590 celecoxib Drugs 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 238000002659 cell therapy Methods 0.000 description 1
- 229940030156 cell vaccine Drugs 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 108091092328 cellular RNA Proteins 0.000 description 1
- 230000005889 cellular cytotoxicity Effects 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229940112822 chewing gum Drugs 0.000 description 1
- 235000015218 chewing gum Nutrition 0.000 description 1
- 150000005827 chlorofluoro hydrocarbons Chemical class 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000008711 chromosomal rearrangement Effects 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 208000024207 chronic leukemia Diseases 0.000 description 1
- 229960005233 cineole Drugs 0.000 description 1
- DCSUBABJRXZOMT-IRLDBZIGSA-N cisapride Chemical compound C([C@@H]([C@@H](CC1)NC(=O)C=2C(=CC(N)=C(Cl)C=2)OC)OC)N1CCCOC1=CC=C(F)C=C1 DCSUBABJRXZOMT-IRLDBZIGSA-N 0.000 description 1
- 229960005132 cisapride Drugs 0.000 description 1
- DCSUBABJRXZOMT-UHFFFAOYSA-N cisapride Natural products C1CC(NC(=O)C=2C(=CC(N)=C(Cl)C=2)OC)C(OC)CN1CCCOC1=CC=C(F)C=C1 DCSUBABJRXZOMT-UHFFFAOYSA-N 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 229960002436 cladribine Drugs 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 230000007012 clinical effect Effects 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 229960001338 colchicine Drugs 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 229940047120 colony stimulating factors Drugs 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000011220 combination immunotherapy Methods 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 235000008504 concentrate Nutrition 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 229960004544 cortisone Drugs 0.000 description 1
- 230000000139 costimulatory effect Effects 0.000 description 1
- 238000011262 co‐therapy Methods 0.000 description 1
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 1
- 239000001767 crosslinked sodium carboxy methyl cellulose Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 208000002445 cystadenocarcinoma Diseases 0.000 description 1
- 229960001305 cysteine hydrochloride Drugs 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 108010057085 cytokine receptors Proteins 0.000 description 1
- 230000001461 cytolytic effect Effects 0.000 description 1
- 210000000172 cytosol Anatomy 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 1
- 229960003901 dacarbazine Drugs 0.000 description 1
- 229960000640 dactinomycin Drugs 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000008260 defense mechanism Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- CYQFCXCEBYINGO-IAGOWNOFSA-N delta1-THC Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 CYQFCXCEBYINGO-IAGOWNOFSA-N 0.000 description 1
- 230000004041 dendritic cell maturation Effects 0.000 description 1
- 230000035614 depigmentation Effects 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 239000005546 dideoxynucleotide Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 206010012818 diffuse large B-cell lymphoma Diseases 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- VSJKWCGYPAHWDS-UHFFFAOYSA-N dl-camptothecin Natural products C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)C5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-UHFFFAOYSA-N 0.000 description 1
- 229960004242 dronabinol Drugs 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 229940126534 drug product Drugs 0.000 description 1
- 229940088679 drug related substance Drugs 0.000 description 1
- 210000001513 elbow Anatomy 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 210000001163 endosome Anatomy 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 208000037828 epithelial carcinoma Diseases 0.000 description 1
- 230000008029 eradication Effects 0.000 description 1
- 208000028653 esophageal adenocarcinoma Diseases 0.000 description 1
- BFMKFCLXZSUVPI-UHFFFAOYSA-N ethyl but-3-enoate Chemical compound CCOC(=O)CC=C BFMKFCLXZSUVPI-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000017188 evasion or tolerance of host immune response Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000010685 fatty oil Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229960004177 filgrastim Drugs 0.000 description 1
- 239000013020 final formulation Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229930003935 flavonoid Natural products 0.000 description 1
- 150000002215 flavonoids Chemical class 0.000 description 1
- 235000017173 flavonoids Nutrition 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- ODKNJVUHOIMIIZ-RRKCRQDMSA-N floxuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ODKNJVUHOIMIIZ-RRKCRQDMSA-N 0.000 description 1
- 108700014844 flt3 ligand Proteins 0.000 description 1
- 229960000390 fludarabine Drugs 0.000 description 1
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- VVIAGPKUTFNRDU-ABLWVSNPSA-N folinic acid Chemical compound C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 VVIAGPKUTFNRDU-ABLWVSNPSA-N 0.000 description 1
- 235000008191 folinic acid Nutrition 0.000 description 1
- 239000011672 folinic acid Substances 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 230000000799 fusogenic effect Effects 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- LRBQNJMCXXYXIU-QWKBTXIPSA-N gallotannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@H]2[C@@H]([C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-QWKBTXIPSA-N 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 239000007897 gelcap Substances 0.000 description 1
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 1
- 229960005277 gemcitabine Drugs 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- 238000003205 genotyping method Methods 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 235000004554 glutamine Nutrition 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229960003727 granisetron Drugs 0.000 description 1
- MFWNKCLOYSRHCJ-BTTYYORXSA-N granisetron Chemical compound C1=CC=C2C(C(=O)N[C@H]3C[C@H]4CCC[C@@H](C3)N4C)=NN(C)C2=C1 MFWNKCLOYSRHCJ-BTTYYORXSA-N 0.000 description 1
- 239000003979 granulating agent Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 208000025750 heavy chain disease Diseases 0.000 description 1
- 201000002222 hemangioblastoma Diseases 0.000 description 1
- 201000005787 hematologic cancer Diseases 0.000 description 1
- 208000024200 hematopoietic and lymphoid system neoplasm Diseases 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 229940022353 herceptin Drugs 0.000 description 1
- 238000003268 heterogeneous phase assay Methods 0.000 description 1
- UUVWYPNAQBNQJQ-UHFFFAOYSA-N hexamethylmelamine Chemical compound CN(C)C1=NC(N(C)C)=NC(N(C)C)=N1 UUVWYPNAQBNQJQ-UHFFFAOYSA-N 0.000 description 1
- 210000001624 hip Anatomy 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 102000050022 human STING1 Human genes 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 230000028996 humoral immune response Effects 0.000 description 1
- 230000004727 humoral immunity Effects 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 229960001330 hydroxycarbamide Drugs 0.000 description 1
- UWYVPFMHMJIBHE-OWOJBTEDSA-N hydroxymaleic acid group Chemical group O/C(/C(=O)O)=C/C(=O)O UWYVPFMHMJIBHE-OWOJBTEDSA-N 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 230000000774 hypoallergenic effect Effects 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 229960000908 idarubicin Drugs 0.000 description 1
- 229960001101 ifosfamide Drugs 0.000 description 1
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000037189 immune system physiology Effects 0.000 description 1
- 230000001571 immunoadjuvant effect Effects 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 230000002584 immunomodulator Effects 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 229940125721 immunosuppressive agent Drugs 0.000 description 1
- 230000001024 immunotherapeutic effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 210000002602 induced regulatory T cell Anatomy 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 230000015788 innate immune response Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910001867 inorganic solvent Inorganic materials 0.000 description 1
- 239000003049 inorganic solvent Substances 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229960003507 interferon alfa-2b Drugs 0.000 description 1
- 229960003130 interferon gamma Drugs 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 230000031146 intracellular signal transduction Effects 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 230000002601 intratumoral effect Effects 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 238000004969 ion scattering spectroscopy Methods 0.000 description 1
- 229960004768 irinotecan Drugs 0.000 description 1
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000000644 isotonic solution Substances 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 239000002650 laminated plastic Substances 0.000 description 1
- 229960003174 lansoprazole Drugs 0.000 description 1
- MJIHNNLFOKEZEW-UHFFFAOYSA-N lansoprazole Chemical compound CC1=C(OCC(F)(F)F)C=CN=C1CS(=O)C1=NC2=CC=CC=C2N1 MJIHNNLFOKEZEW-UHFFFAOYSA-N 0.000 description 1
- 238000012007 large scale cell culture Methods 0.000 description 1
- 230000013016 learning Effects 0.000 description 1
- 229960001691 leucovorin Drugs 0.000 description 1
- 108010003486 leucyl-leucyl-phenylalanyl-glycyl-tyrosyl-prolyl-valyl-tyrosyl-valine Proteins 0.000 description 1
- 229960001614 levamisole Drugs 0.000 description 1
- 239000000865 liniment Substances 0.000 description 1
- 239000002960 lipid emulsion Substances 0.000 description 1
- 206010024627 liposarcoma Diseases 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000007108 local immune response Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 201000005249 lung adenocarcinoma Diseases 0.000 description 1
- 201000005243 lung squamous cell carcinoma Diseases 0.000 description 1
- 208000037829 lymphangioendotheliosarcoma Diseases 0.000 description 1
- 208000012804 lymphangiosarcoma Diseases 0.000 description 1
- 210000004324 lymphatic system Anatomy 0.000 description 1
- 210000003563 lymphoid tissue Anatomy 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 210000003712 lysosome Anatomy 0.000 description 1
- 230000001868 lysosomic effect Effects 0.000 description 1
- 108700021021 mRNA Vaccine Proteins 0.000 description 1
- 230000012976 mRNA stabilization Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 201000004792 malaria Diseases 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000013411 master cell bank Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 208000023356 medullary thyroid gland carcinoma Diseases 0.000 description 1
- 229960001786 megestrol Drugs 0.000 description 1
- RQZAXGRLVPAYTJ-GQFGMJRRSA-N megestrol acetate Chemical compound C1=C(C)C2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)C)[C@@]1(C)CC2 RQZAXGRLVPAYTJ-GQFGMJRRSA-N 0.000 description 1
- 206010027191 meningioma Diseases 0.000 description 1
- 229960004635 mesna Drugs 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000037323 metabolic rate Effects 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 1
- STZCRXQWRGQSJD-GEEYTBSJSA-M methyl orange Chemical compound [Na+].C1=CC(N(C)C)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-GEEYTBSJSA-M 0.000 description 1
- 229940012189 methyl orange Drugs 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 229960001047 methyl salicylate Drugs 0.000 description 1
- 229960004503 metoclopramide Drugs 0.000 description 1
- TTWJBBZEZQICBI-UHFFFAOYSA-N metoclopramide Chemical compound CCN(CC)CCNC(=O)C1=CC(Cl)=C(N)C=C1OC TTWJBBZEZQICBI-UHFFFAOYSA-N 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229960000350 mitotane Drugs 0.000 description 1
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 1
- 229960001156 mitoxantrone Drugs 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 229940035036 multi-peptide vaccine Drugs 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 210000000066 myeloid cell Anatomy 0.000 description 1
- 208000001611 myxosarcoma Diseases 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 229960002009 naproxen Drugs 0.000 description 1
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 1
- 239000007923 nasal drop Substances 0.000 description 1
- 229940100662 nasal drops Drugs 0.000 description 1
- 229940097496 nasal spray Drugs 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 208000007538 neurilemmoma Diseases 0.000 description 1
- 238000007481 next generation sequencing Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000013546 non-drug therapy Methods 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 231100001221 nontumorigenic Toxicity 0.000 description 1
- 239000000346 nonvolatile oil Substances 0.000 description 1
- 238000011330 nucleic acid test Methods 0.000 description 1
- 239000012053 oil suspension Substances 0.000 description 1
- 239000003883 ointment base Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 229960002969 oleic acid Drugs 0.000 description 1
- 150000002889 oleic acids Chemical class 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 229960000381 omeprazole Drugs 0.000 description 1
- 102000027450 oncoproteins Human genes 0.000 description 1
- 108091008819 oncoproteins Proteins 0.000 description 1
- 229960005343 ondansetron Drugs 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000006186 oral dosage form Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 201000008968 osteosarcoma Diseases 0.000 description 1
- 229940092253 ovalbumin Drugs 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 210000003101 oviduct Anatomy 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 101710135378 pH 6 antigen Proteins 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- WLJNZVDCPSBLRP-UHFFFAOYSA-N pamoic acid Chemical compound C1=CC=C2C(CC=3C4=CC=CC=C4C=C(C=3O)C(=O)O)=C(O)C(C(O)=O)=CC2=C1 WLJNZVDCPSBLRP-UHFFFAOYSA-N 0.000 description 1
- PIRWNASAJNPKHT-SHZATDIYSA-N pamp Chemical compound C([C@@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](C)N)C(C)C)C1=CC=CC=C1 PIRWNASAJNPKHT-SHZATDIYSA-N 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 208000004019 papillary adenocarcinoma Diseases 0.000 description 1
- 201000010198 papillary carcinoma Diseases 0.000 description 1
- 201000010279 papillary renal cell carcinoma Diseases 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000013610 patient sample Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 210000004976 peripheral blood cell Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229940021222 peritoneal dialysis isotonic solution Drugs 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 238000009520 phase I clinical trial Methods 0.000 description 1
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 229960001416 pilocarpine Drugs 0.000 description 1
- 208000024724 pineal body neoplasm Diseases 0.000 description 1
- 201000004123 pineal gland cancer Diseases 0.000 description 1
- 229940068196 placebo Drugs 0.000 description 1
- 239000000902 placebo Substances 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 108010054442 polyalanine Proteins 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 208000037244 polycythemia vera Diseases 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002643 polyglutamic acid Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 229940115272 polyinosinic:polycytidylic acid Drugs 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229920005553 polystyrene-acrylate Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 229960002816 potassium chloride Drugs 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 238000009021 pre-vaccination Methods 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- 230000001855 preneoplastic effect Effects 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- WIKYUJGCLQQFNW-UHFFFAOYSA-N prochlorperazine Chemical compound C1CN(C)CCN1CCCN1C2=CC(Cl)=CC=C2SC2=CC=CC=C21 WIKYUJGCLQQFNW-UHFFFAOYSA-N 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 229940021993 prophylactic vaccine Drugs 0.000 description 1
- 239000000473 propyl gallate Substances 0.000 description 1
- 235000010388 propyl gallate Nutrition 0.000 description 1
- 229940075579 propyl gallate Drugs 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 229940026235 propylene glycol monolaurate Drugs 0.000 description 1
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 230000026938 proteasomal ubiquitin-dependent protein catabolic process Effects 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 229940023143 protein vaccine Drugs 0.000 description 1
- 230000003161 proteinsynthetic effect Effects 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 238000000575 proteomic method Methods 0.000 description 1
- 230000001698 pyrogenic effect Effects 0.000 description 1
- 238000012175 pyrosequencing Methods 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 238000010223 real-time analysis Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012429 release testing Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 239000003340 retarding agent Substances 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 108010038379 sargramostim Proteins 0.000 description 1
- 229960002530 sargramostim Drugs 0.000 description 1
- 206010039667 schwannoma Diseases 0.000 description 1
- 201000008407 sebaceous adenocarcinoma Diseases 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000012679 serum free medium Substances 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 210000002832 shoulder Anatomy 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 229960003310 sildenafil Drugs 0.000 description 1
- 239000002924 silencing RNA Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 238000004557 single molecule detection Methods 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000003009 skin protective agent Substances 0.000 description 1
- 239000004055 small Interfering RNA Substances 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 229960004249 sodium acetate Drugs 0.000 description 1
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 1
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 1
- 229940100996 sodium bisulfate Drugs 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 229960002668 sodium chloride Drugs 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 229940001482 sodium sulfite Drugs 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- MIXCUJKCXRNYFM-UHFFFAOYSA-M sodium;diiodomethanesulfonate;n-propyl-n-[2-(2,4,6-trichlorophenoxy)ethyl]imidazole-1-carboxamide Chemical compound [Na+].[O-]S(=O)(=O)C(I)I.C1=CN=CN1C(=O)N(CCC)CCOC1=C(Cl)C=C(Cl)C=C1Cl MIXCUJKCXRNYFM-UHFFFAOYSA-M 0.000 description 1
- 238000000807 solvent casting Methods 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 229960003787 sorafenib Drugs 0.000 description 1
- 229940035044 sorbitan monolaurate Drugs 0.000 description 1
- 229940083466 soybean lecithin Drugs 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 210000004988 splenocyte Anatomy 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000021 stimulant Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000013269 sustained drug release Methods 0.000 description 1
- 201000010965 sweat gland carcinoma Diseases 0.000 description 1
- 206010042863 synovial sarcoma Diseases 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 238000012353 t test Methods 0.000 description 1
- 229960000835 tadalafil Drugs 0.000 description 1
- IEHKWSGCTWLXFU-IIBYNOLFSA-N tadalafil Chemical compound C1=C2OCOC2=CC([C@@H]2C3=C([C]4C=CC=CC4=N3)C[C@H]3N2C(=O)CN(C3=O)C)=C1 IEHKWSGCTWLXFU-IIBYNOLFSA-N 0.000 description 1
- 229960001603 tamoxifen Drugs 0.000 description 1
- 238000004885 tandem mass spectrometry Methods 0.000 description 1
- 235000015523 tannic acid Nutrition 0.000 description 1
- 229920002258 tannic acid Polymers 0.000 description 1
- 229940033123 tannic acid Drugs 0.000 description 1
- 230000002381 testicular Effects 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- BSYVTEYKTMYBMK-UHFFFAOYSA-N tetrahydrofurfuryl alcohol Chemical compound OCC1CCCO1 BSYVTEYKTMYBMK-UHFFFAOYSA-N 0.000 description 1
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 108060008226 thioredoxin Proteins 0.000 description 1
- 229940094937 thioredoxin Drugs 0.000 description 1
- 230000002992 thymic effect Effects 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 229960002175 thyroglobulin Drugs 0.000 description 1
- 229960003087 tioguanine Drugs 0.000 description 1
- 229960000984 tocofersolan Drugs 0.000 description 1
- 235000010384 tocopherol Nutrition 0.000 description 1
- 229930003799 tocopherol Natural products 0.000 description 1
- 239000011732 tocopherol Substances 0.000 description 1
- 229960001295 tocopherol Drugs 0.000 description 1
- 229940044655 toll-like receptor 9 agonist Drugs 0.000 description 1
- 229960000303 topotecan Drugs 0.000 description 1
- 229960002190 topotecan hydrochloride Drugs 0.000 description 1
- 231100000440 toxicity profile Toxicity 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000759 toxicological effect Toxicity 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 229940100640 transdermal system Drugs 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000003151 transfection method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 229960000575 trastuzumab Drugs 0.000 description 1
- 229950007217 tremelimumab Drugs 0.000 description 1
- 229940117013 triethanolamine oleate Drugs 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- 229960004418 trolamine Drugs 0.000 description 1
- 230000037455 tumor specific immune response Effects 0.000 description 1
- 231100000588 tumorigenic Toxicity 0.000 description 1
- 230000000381 tumorigenic effect Effects 0.000 description 1
- 238000007492 two-way ANOVA Methods 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 208000010570 urinary bladder carcinoma Diseases 0.000 description 1
- 206010046766 uterine cancer Diseases 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 229960002381 vardenafil Drugs 0.000 description 1
- 239000004066 vascular targeting agent Substances 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- 229960002166 vinorelbine tartrate Drugs 0.000 description 1
- GBABOYUKABKIAF-IWWDSPBFSA-N vinorelbinetartrate Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC(C23[C@H]([C@@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-IWWDSPBFSA-N 0.000 description 1
- 244000052613 viral pathogen Species 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 230000009278 visceral effect Effects 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
- 238000002424 x-ray crystallography Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 235000016804 zinc Nutrition 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 235000014692 zinc oxide Nutrition 0.000 description 1
- 239000002076 α-tocopherol Substances 0.000 description 1
- 235000004835 α-tocopherol Nutrition 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/46—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
- A61K2239/48—Blood cells, e.g. leukemia or lymphoma
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/39—Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/461—Cellular immunotherapy characterised by the cell type used
- A61K39/4611—T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/461—Cellular immunotherapy characterised by the cell type used
- A61K39/4615—Dendritic cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/462—Cellular immunotherapy characterized by the effect or the function of the cells
- A61K39/4622—Antigen presenting cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4643—Vertebrate antigens
- A61K39/4644—Cancer antigens
- A61K39/464401—Neoantigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/545—Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55561—CpG containing adjuvants; Oligonucleotide containing adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/70—Multivalent vaccine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/80—Vaccine for a specifically defined cancer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2300/00—Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Definitions
- the present invention relates to personalized strategies for the treatment of neoplasia. More particularly, the present invention relates to the identification and use of a patient specific pool of tumor specific neo-antigens in a personalized tumor vaccine for treatment of the subject.
- neoplasia Approximately 1.6 million Americans are diagnosed with neoplasia every year, and approximately 580,000 people in the United States are expected to die of the disease in 2013. Over the past few decades there been significant improvements in the detection, diagnosis, and treatment of neoplasia, which have significantly increased the survival rate for many types of neoplasia. However, only about 60% of people diagnosed with neoplasia are still alive 5 years after the onset of treatment, which makes neoplasia the second leading cause of death in the United States.
- cancer therapies including ablation techniques (e.g., surgical procedures, cryogenic/heat treatment, ultrasound, radiofrequency, and radiation) and chemical techniques (e.g., pharmaceutical agents, cytotoxic/chemotherapeutic agents, monoclonal antibodies, and various combinations thereof).
- ablation techniques e.g., surgical procedures, cryogenic/heat treatment, ultrasound, radiofrequency, and radiation
- chemical techniques e.g., pharmaceutical agents, cytotoxic/chemotherapeutic agents, monoclonal antibodies, and various combinations thereof.
- cancer therapies that seek to target cancerous cells with a patient's own immune system (e.g., cancer vaccines) because such therapies may
- Cancer vaccines are typically composed of tumor antigens and immuno stimulatory molecules (e.g., cytokines or TLR ligands) that work together to induce antigen- specific cytotoxic T cells that target and destroy tumor cells.
- Current cancer vaccines typically contain shared tumor antigens, which are native proteins (i.e. - proteins encoded by the DNA of all the normal cells in the individual) that are selectively expressed or over-expressed in tumors found in many individuals. While such shared tumor antigens are useful in identifying particular types of tumors, they are not ideal as immunogens for targeting a T-cell response to a particular tumor type because they are subject to the immune dampening effects of self-tolerance. Accordingly, there is a need for methods of identifying more effective tumor antigens that may be used for neoplasia vaccines.
- the present invention relates to a strategy for the personalized treatment of neoplasia, and more particularly to the identification and use of a personalized cancer vaccine consisting essentially of a pool of tumor- specific and patient- specific neo-antigens for the treatment of tumors in a subject.
- the present invention is based, at least in part, on the discovery that whole genome/exome sequencing may be used to identify all, or nearly all, mutated neo-antigens that are uniquely present in a neoplasia/tumor of an individual patient, and that this collection of mutated neo-antigens may be analyzed to identify a specific, optimized subset of neo-antigens for use as a personalized neoplasia vaccine for treatment of the patient's neoplasia/tumor.
- the invention provides a method of making a personalized neoplasia vaccine for a subject diagnosed as having a neoplasia, which includes identifying a plurality of mutations in the neoplasia, analyzing the plurality of mutations to identify a subset of at least five neo-antigenic mutations predicted to encode neo-antigenic peptides, the neo-antigenic mutations selected from the group consisting of missense mutations, neoORF mutations, and any combination thereof, and producing, based on the identified subset, a personalized neoplasia vaccine.
- the invention provides that the identifying step further includes sequencing the genome, transcriptome, or proteome of the neoplasia.
- the analyzing step may further include determining one or more characteristics associated with the subset of at least five neo-antigenic mutations predicted to encode neo-antigenic peptides, the characteristics selected from the group consisting of molecular weight, cysteine content, hydrophilicity, hydrophobicity, charge, and binding affinity; and ranking, based on the determined characteristics, each of the neo-antigenic mutations within the identified subset of at least five neo-antigenic mutations.
- the top 5-30 ranked neo-antigenic mutations are included in the personalized neoplasia vaccine.
- the neo-antigenic mutations are ranked according to the order shown in FIG. 8.
- the personalized neoplasia vaccine comprises at least about 20 neo- antigenic peptides corresponding to the neo-antigenic mutations.
- the personalized neoplasia vaccine comprises one or more DNA molecules capable of expressing at least about 20 neo-antigenic peptides corresponding to the neo-antigenic mutations. In another embodiment, the personalized neoplasia vaccine comprises one or more RNA molecules capable of expressing at least 20 neo-antigenic peptides corresponding to the neo-antigenic mutations.
- the personalized neoplasia vaccine comprises neoORF mutations predicted to encode a neoORF polypeptide having a Kd of ⁇ 500 nM.
- the personalized neoplasia vaccine comprises missense mutations predicted to encode a polypeptide having a Kd of ⁇ 150 nM, wherein the native cognate protein has a Kd of > 1000 nM or ⁇ 150 nM.
- the at least about 20 neo-antigenic peptides range from about 5 to about 50 amino acids in length. In another embodiment, the at least about 20 neo-antigenic peptides range from about 15 to about 35 amino acids in length. In another embodiment, the at least about 20 neo-antigenic peptides range from about 18 to about 30 amino acids in length. In another embodiment, the at least about 20 neo-antigenic peptides range from about 6 to about 15 amino acids in length. In yet another embodiment, the at least about 20 neo-antigenic peptides are 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 amino acids in length.
- the personalized neoplasia vaccine further includes an adjuvant.
- the adjuvant is selected from the group consisting of poly-ICLC, 1018 ISS, aluminum salts, Amplivax, AS 15, BCG, CP-870,893, CpG7909, CyaA, dSLIM, GM-CSF, IC30, IC31, Imiquimod, ImuFact EV1P321, IS Patch, ISS, ISCOMATRIX, Juvlmmune, LipoVac, MF59, monophosphoryl lipid A, Montanide IMS 1312, Montanide ISA 206, Montanide ISA 50V, Montanide ISA-51, OK-432, OM-174, OM-197-MP-EC, ONTAK, PepTel.RTM, vector system, PLGA microparticles, resiquimod, SRL172, Virosomes and other Virus-like particles, YF-17D, VEGF trap, R84
- the invention includes a method of treating a subject diagnosed as having a neoplasia with a personalized neoplasia vaccine, which includes identifying a plurality of mutations in the neoplasia; analyzing the plurality of mutations to identify a subset of at least five neo-antigenic mutations predicted to encode expressed neo-antigenic peptides, the neo- antigenic mutations selected from the group consisting of missense mutations, neoORF mutations, and any combination thereof; producing, based on the identified subset, a
- personalized neoplasia vaccine comprising: administering the personalized neoplasia vaccine to the subject, thereby treating the neoplasia.
- the identifying step may further include sequencing the genome, transcriptome, or proteome of the neoplasia.
- the analyzing step may further include determining one or more characteristics associated with the subset of at least five neo-antigenic mutations predicted to encode expressed neo-antigenic peptides, the characteristics selected from the group consisting of molecular weight, cysteine content, hydrophilicity, hydrophobicity charge, and binding affinity; and ranking, based on the determined characteristics, each of the neo-antigenic mutations within the identified subset of at least five neo-antigenic mutations.
- the top 5-30 ranked neo-antigenic mutations are included in the personalized neoplasia vaccine. In another embodiment, the neo-antigenic mutations are ranked according to the order shown in FIG. 8.
- the personalized neoplasia vaccine comprises at least 20 neo- antigenic peptides corresponding to the neo-antigenic mutations.
- the personalized neoplasia vaccine comprises one or more DNA molecules capable of expressing at least 20 neo-antigenic peptides corresponding to the neo- antigenic mutations. In one embodiment, the personalized neoplasia vaccine comprises one or more RNA molecules capable of expressing at least 20 neo-antigenic peptides corresponding to the neo- antigenic mutations.
- the personalized neoplasia vaccine comprises neoORF mutations predicted to encode a neoORF polypeptide having a Kd of ⁇ 500 nM.
- the personalized neoplasia vaccine comprises missense mutations predicted to encode a polypeptide having a Kd of ⁇ 150 nM, wherein the native cognate protein has a Kd of > 1000 nM or ⁇ 150 nM.
- the at least 20 neo-antigenic peptides range from about 5 to about 50 amino acids in length. In one embodiment, the at least 20 neo-antigenic peptides range from about 15 to about 35 amino acids in length. In one embodiment, the at least 20 neo-antigenic peptides range from about 18 to about 30 amino acids in length. In one embodiment, the at least 20 neo-antigenic peptides range from about 6 to about 15 amino acids in length. In one embodiment, the at least 20 neo-antigenic peptides are 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 amino acids in length.
- the administering further includes dividing the produced vaccine into two or more sub-pools; and injecting each of the sub-pools into a different location of the patient.
- each of the sub-pools injected into a different location comprises neo- antigenic peptides such that the number of individual peptides in the sub-pool targeting any single patient HLA is one, or as few above one as possible.
- the administering step further includes dividing the produced vaccine into two or more sub-pools, wherein each sub-pool comprises at least five neo-antigenic peptides selected to optimize intra-pool interactions.
- optimizing comprises reducing negative interaction among the neo- antigenic peptides in the same pool.
- the invention includes a personalize neoplasia vaccine prepared according to the above-described methods.
- agent any small molecule chemical compound, antibody, nucleic acid molecule, or polypeptide, or fragments thereof.
- ameliorate decrease, suppress, attenuate, diminish, arrest, or stabilize the development or progression of a disease (e.g., a neoplasia, tumor, etc.).
- alteration is meant a change (increase or decrease) in the expression levels or activity of a gene or polypeptide as detected by standard art known methods such as those described herein.
- an alteration includes a 10% change in expression levels, preferably a 25% change, more preferably a 40% change, and most preferably a 50% or greater change in expression levels.
- analog is meant a molecule that is not identical, but has analogous functional or structural features.
- a tumor specific neo-antigen polypeptide analog retains the biological activity of a corresponding naturally- occurring tumor specific neo-antigen
- polypeptide while having certain biochemical modifications that enhance the analog's function relative to a naturally- occurring polypeptide. Such biochemical modifications could increase the analog's protease resistance, membrane permeability, or half-life, without altering, for example, ligand binding.
- An analog may include an unnatural amino acid.
- combination therapy embraces the administration of a pooled sample of neoplasia/tumor specific neo-antigens and one or more additional therapeutic agents as part of a specific treatment regimen intended to provide a beneficial (additive or synergistic) effect from the co-action of these therapeutic agents.
- the beneficial effect of the combination includes, but is not limited to, pharmacokinetic or pharmacodynamic co-action resulting from the combination of therapeutic agents.
- Administration of these therapeutic agents in combination typically is carried out over a defined time period (usually minutes, hours, days, or weeks depending upon the combination selected).
- Combination therapy is intended to embrace administration of these therapeutic agents in a sequential manner, that is, wherein each therapeutic agent is administered at a different time, as well as administration of these therapeutic agents, or at least two of the therapeutic agents, in a substantially simultaneous manner. Substantially
- simultaneous administration can be accomplished, for example, by administering to the subject a single capsule having a fixed ratio of each therapeutic agent or in multiple, single capsules for each of the therapeutic agents.
- one combination of the present invention may comprise a pooled sample of tumor specific neo-antigens and at least one additional therapeutic agent (e.g., a chemotherapeutic agent, an anti-angiogenesis agent, an immunosuppressive agent, an anti-inflammatory agent, and the like) at the same or different times or they can be formulated as a single, co-formulated pharmaceutical composition comprising the two compounds.
- additional therapeutic agent e.g., a chemotherapeutic agent, an anti-angiogenesis agent, an immunosuppressive agent, an anti-inflammatory agent, and the like
- a combination of the present invention may be formulated as separate pharmaceutical compositions that can be administered at the same or different time.
- Sequential or substantially simultaneous administration of each therapeutic agent can be effected by any appropriate route including, but not limited to, oral routes, intravenous routes, sub-cutaneous routes, intramuscular routes, direct absorption through mucous membrane tissues (e.g., nasal, mouth, vaginal, and rectal), and ocular routes (e.g., intravitreal, intraocular, etc.).
- the therapeutic agents can be administered by the same route or by different routes.
- one component of a particular combination may be administered by intravenous injection while the other component(s) of the combination may be administered orally.
- the components may be administered in any therapeutically effective sequence.
- control is meant a standard or reference condition.
- disease is meant any condition or disorder that damages or interferes with the normal function of a cell, tissue, or organ.
- effective amount is meant the amount required to ameliorate the symptoms of a disease (e.g., a neoplasia/tumor) relative to an untreated patient.
- the effective amount of active compound(s) used to practice the present invention for therapeutic treatment of a disease varies depending upon the manner of administration, the age, body weight, and general health of the subject. Ultimately, the attending physician or veterinarian will decide the appropriate amount and dosage regimen. Such amount is referred to as an "effective" amount.
- fragment is meant a portion of a polypeptide or nucleic acid molecule. This portion contains, preferably, at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% of the entire length of the reference nucleic acid molecule or polypeptide.
- a fragment may contain 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 or more nucleotides or amino acids.
- Hybridization means hydrogen bonding, which may be Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding, between complementary nucleobases.
- adenine and thymine are complementary nucleobases that pair through the formation of hydrogen bonds.
- inhibitory nucleic acid is meant a double- stranded RNA, siRNA, shRNA, or antisense RNA, or a portion thereof, or a mimetic thereof, that when administered to a mammalian cell results in a decrease (e.g. , by 10%, 25%, 50%, 75%, or even 90- 100%) in the expression of a target gene.
- a nucleic acid inhibitor comprises at least a portion of a target nucleic acid molecule, or an ortholog thereof, or comprises at least a portion of the complementary strand of a target nucleic acid molecule.
- an inhibitory nucleic acid molecule comprises at least a portion of any or all of the nucleic acids delineated herein.
- isolated polynucleotide is meant a nucleic acid (e.g. , a DNA) that is free of the genes which, in the naturally-occurring genome of the organism— or in the genomic DNA of a neoplasia/tumor derived from the organism— the nucleic acid molecule of the invention is derived.
- the term therefore includes, for example, a recombinant DNA (e.g., DNA coding for a neoORF, read-through, or InDel derived polypeptide identified in a patient' s tumor) that is incorporated into a vector; into an autonomously replicating plasmid or virus; or into the genomic DNA of a prokaryote or eukaryote; or that exists as a separate molecule (for example, a cDNA or a genomic or cDNA fragment produced by PCR or restriction endonuclease digestion) independent of other sequences.
- the term includes an RNA molecule that is transcribed from a DNA molecule, as well as a recombinant DNA that is part of a hybrid gene encoding additional polypeptide sequence.
- an “isolated polypeptide” is meant a polypeptide of the invention that has been separated from components that naturally accompany it.
- the polypeptide is isolated when it is at least 60%, by weight, free from the proteins and naturally-occurring organic molecules with which it is naturally associated.
- the preparation is at least 75%, more preferably at least 90%, and most preferably at least 99%, by weight, a polypeptide of the invention.
- An isolated polypeptide of the invention may be obtained, for example, by extraction from a natural source, by expression of a recombinant nucleic acid encoding such a polypeptide; or by chemically synthesizing the protein. Purity can be measured by any appropriate method, for example, column chromatography, polyacrylamide gel electrophoresis, or by HPLC analysis.
- a "ligand” is to be understood as meaning a molecule which has a structure
- a ligand is to be understood as meaning a peptide or peptide fragment that has a suitable length and suitable binding motifs in its amino acid sequence, so that the peptide or peptide fragment is capable of forming a complex with proteins of MHC class I or
- “Mutation” for the purposes of this document means a DNA sequence found in the tumor DNA sample of a patient that is not found in the corresponding normal DNA sample of that same patient. “Mutation” may also refer to patterns in the sequence of RNA from a patient that are not attributable to expected variations based on known information for an individual gene and are reasonably considered to be novel variations in, for example, the splicing pattern of one or more genes that has been specifically altered in the tumor cells of the patient.
- Neo-antigen or “neo-antigenic” means a class of tumor antigens that arises from a tumor-specific mutation(s) which alters the amino acid sequence of genome encoded proteins.
- neoplasia any disease that is caused by or results in inappropriately high levels of cell division, inappropriately low levels of apoptosis, or both.
- cancer is an example of a neoplasia.
- cancers include, without limitation, leukemia (e.g., acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemia, acute myeloblastic leukemia, acute promyelocytic leukemia, acute myelomonocytic leukemia, acute monocytic leukemia, acute erythroleukemia, chronic leukemia, chronic myelocytic leukemia, chronic lymphocytic leukemia), polycythemia vera, lymphoma (e.g., Hodgkin's disease, non-Hodgkin's disease), Waldenstrom's macroglobulinemia, heavy chain disease, and solid tumors such as sarcomas and carcinomas (e.g., fibro
- lymphangioendotheliosarcoma synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas,
- cystadenocarcinoma medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, nile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilm's tumor, cervical cancer, uterine cancer, testicular cancer, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodenroglioma, schwannoma, meningioma, melanoma, neuroblastoma, and retinoblastoma). Lymphoproliferative disorders are also considered to be proliferative diseases.
- a subject refers to an animal which is the object of treatment, observation, or experiment.
- a subject includes, but is not limited to, a mammal, including, but not limited to, a human or a non-human mammal, such as a non-human primate, bovine, equine, canine, ovine, or feline.
- “Pharmaceutically acceptable” refers to approved or approvable by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, including humans.
- “Pharmaceutically acceptable excipient, carrier or diluent” refers to an excipient, carrier or diluent that can be administered to a subject, together with an agent, and which does not destroy the pharmacological activity thereof and is nontoxic when administered in doses sufficient to deliver a therapeutic amount of the agent.
- a "pharmaceutically acceptable salt" of pooled tumor specific neo-antigens as recited herein may be an acid or base salt that is generally considered in the art to be suitable for use in contact with the tissues of human beings or animals without excessive toxicity, irritation, allergic response, or other problem or complication.
- Such salts include mineral and organic acid salts of basic residues such as amines, as well as alkali or organic salts of acidic residues such as carboxylic acids.
- Specific pharmaceutical salts include, but are not limited to, salts of acids such as hydrochloric, phosphoric, hydrobromic, malic, glycolic, fumaric, sulfuric, sulfamic, sulfanilic, formic, toluenesulfonic, methanesulfonic, benzene sulfonic, ethane disulfonic, 2- hydroxyethylsulfonic, nitric, benzoic, 2-acetoxybenzoic, citric, tartaric, lactic, stearic, salicylic, glutamic, ascorbic, pamoic, succinic, fumaric, maleic, propionic, hydroxymaleic, hydroiodic, phenylacetic, alkanoic such as acetic, HOOC-(CH 2 ) n
- pharmaceutically acceptable cations include, but are not limited to sodium, potassium, calcium, aluminum, lithium and ammonium.
- pharmaceutically acceptable salts for the pooled tumor specific neo-antigens provided herein including those listed by Remington's Pharmaceutical Sciences, 17th ed., Mack
- a pharmaceutically acceptable acid or base salt can be synthesized from a parent compound that contains a basic or acidic moiety by any conventional chemical method. Briefly, such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in an appropriate solvent.
- the terms “prevent,” “preventing,” “prevention,” “prophylactic treatment,” and the like refer to reducing the probability of developing a disease or condition in a subject, who does not have, but is at risk of or susceptible to developing a disease or condition.
- Primer set means a set of oligonucleotides that may be used, for example, for PCR.
- a primer set would consist of at least 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 30, 40, 50, 60, 80, 100, 200, 250, 300, 400, 500, 600, or more primers.
- MHC major histocompatibility complex
- MHC molecules proteins
- HLA proteins proteins capable of binding peptides resulting from the proteolytic cleavage of protein antigens and representing potential T-cell epitopes, transporting them to the cell surface and presenting them to specific cells there, in particular naive T-cells, cytotoxic T-lymphocytes or T-helper cells.
- the major histocompatibility complex in the genome comprises the genetic region whose gene products are expressed on the cell surface and are important for binding and presenting endogenous and/or foreign antigens, and thus for regulating immunological processes.
- the major histocompatibility complex is classified into two gene groups coding for different proteins: molecules of MHC class I and MHC class II.
- the molecules of the two MHC classes are specialized for different antigen sources.
- the molecules of MHC class I typically present but are not restricted to endogenously synthesized antigens, for example viral proteins and tumor antigens.
- the molecules of MHC class II present protein antigens originating from exogenous sources, for example bacterial products.
- the cellular biology and the expression patterns of the two MHC classes are adapted to these different roles.
- MHC molecules of class I consist of a heavy chain and a light chain and are capable of binding a peptide of about 8 to 11 amino acids, but usually 9 or 10 amino acids, if this peptide has suitable binding motifs, and presenting it to naive and cytotoxic T- lymphocytes.
- the peptide bound by the MHC molecules of class I typically but not exclusively originates from an endogenous protein antigen.
- the heavy chain of the MHC molecules of class I is preferably an HLA-A, HLA-B or HLA-C monomer, and the light chain is ⁇ -2-microglobulin.
- MHC molecules of class II consist of an cc-chain and a ⁇ -chain and are capable of binding a peptide of about 15 to 24 amino acids if this peptide has suitable binding motifs, and presenting it to T-helper cells.
- the peptide bound by the MHC molecules of class II usually originates from an extracellular or exogenous protein antigen.
- the cc-chain and the ⁇ -chain are in particular HLA-DR, HLA-DQ and HLA-DP monomers.
- Ranges provided herein are understood to be shorthand for all of the values within the range.
- a range of 1 to 50 is understood to include any number, combination of numbers, or sub-range from the group consisting of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50, as well as all intervening decimal values between the aforementioned integers such as, for example, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, and 1.9.
- a nested sub-range of an exemplary range of 1 to 50 may comprise 1 to 10, 1 to 20, 1 to 30, and 1 to 40 in one direction, or 50 to 40, 50 to 30, 50 to 20, and 50 to 10 in the other direction.
- a "receptor” is to be understood as meaning a biological molecule or a molecule grouping capable of binding a ligand.
- a receptor may serve, to transmit information in a cell, a cell formation or an organism.
- the receptor comprises at least one receptor unit and frequently contains two or more receptor units, where each receptor unit may consist of a protein molecule, in particular a glycoprotein molecule.
- the receptor has a structure that complements the structure of a ligand and may complex the ligand as a binding partner. Signaling information may be transmitted by conformational changes of the receptor following binding with the ligand on the surface of a cell.
- a receptor may refer to particular proteins of MHC classes I and II capable of forming a receptor/ligand complex with a ligand, in particular a peptide or peptide fragment of suitable length.
- a “receptor/ligand complex” is also to be understood as meaning a “receptor/peptide complex” or “receptor/peptide fragment complex,” in particular a peptide- or peptide fragment- presenting MHC molecule of class I or of class II.
- reduces is meant a negative alteration of at least 10%, 25%, 50%, 75%, or 100%.
- reference is meant a standard or control condition.
- a "reference sequence” is a defined sequence used as a basis for sequence comparison.
- a reference sequence may be a subset of, or the entirety of, a specified sequence; for example, a segment of a full-length cDNA or genomic sequence, or the complete cDNA or genomic sequence.
- the length of the reference polypeptide sequence will generally be at least about 10-2,000 amino acids, 10-1,500, 10-1,000, 10-500, or 10-100.
- the length of the reference polypeptide sequence may be at least about 10-50 amino acids, more preferably at least about 10-40 amino acids, and even more preferably about 10-30 amino acids, about 10- 20 amino acids, about 15-25 amino acids, or about 20 amino acids.
- the length of the reference nucleic acid sequence will generally be at least about 50 nucleotides, preferably at least about 60 nucleotides, more preferably at least about 75 nucleotides, and even more preferably about 100 nucleotides or about 300 nucleotides or any integer thereabout or there between.
- specifically binds is meant a compound or antibody that recognizes and binds a polypeptide of the invention, but which does not substantially recognize and bind other molecules in a sample, for example, a biological sample.
- Nucleic acid molecules useful in the methods of the invention include any nucleic acid molecule that encodes a polypeptide of the invention or a fragment thereof. Such nucleic acid molecules need not be 100% identical with an endogenous nucleic acid sequence, but will typically exhibit substantial identity. Polynucleotides having "substantial identity" to an endogenous sequence are typically capable of hybridizing with at least one strand of a double- stranded nucleic acid molecule. . By “hybridize” is meant pair to form a double- stranded molecule between complementary polynucleotide sequences (e.g., a gene described herein), or portions thereof, under various conditions of stringency. (See, e.g., Wahl, G. M. and S. L. Berger (1987) Methods Enzymol. 152:399; Kimmel, A. R. (1987) Methods Enzymol. 152:507).
- stringent salt concentration will ordinarily be less than about 750 mM NaCl and 75 mM trisodium citrate, preferably less than about 500 mM NaCl and 50 mM trisodium citrate, and more preferably less than about 250 mM NaCl and 25 mM trisodium citrate.
- Low stringency hybridization can be obtained in the absence of organic solvent, e.g., formamide, while high stringency hybridization can be obtained in the presence of at least about 35% formamide, and more preferably at least about 50% formamide.
- Stringent temperature conditions will ordinarily include temperatures of at least about 30°C, more preferably of at least about 37°C, and most preferably of at least about 42°C.
- Varying additional parameters, such as hybridization time, the concentration of detergent, e.g., sodium dodecyl sulfate (SDS), and the inclusion or exclusion of carrier DNA, are well known to those skilled in the art.
- concentration of detergent e.g., sodium dodecyl sulfate (SDS)
- SDS sodium dodecyl sulfate
- Various levels of stringency are accomplished by combining these various conditions as needed.
- hybridization will occur at 30°C in 750 mM NaCl, 75 mM trisodium citrate, and 1% SDS.
- hybridization will occur at 37° C in 500 mM NaCl, 50 mM trisodium citrate, 1% SDS, 35% formamide, and 100 ⁇ g/ml denatured salmon sperm DNA (ssDNA).
- hybridization will occur at 42°C in 250 mM NaCl, 25 mM trisodium citrate, 1% SDS, 50% formamide, and 200 ⁇ g/ml ssDNA. Useful variations on these conditions will be readily apparent to those skilled in the art.
- wash stringency conditions can be defined by salt concentration and by temperature. As above, wash stringency can be increased by decreasing salt concentration or by increasing temperature.
- stringent salt concentration for the wash steps will preferably be less than about 30 mM NaCl and 3 mM trisodium citrate, and most preferably less than about 15 mM NaCl and 1.5 mM trisodium citrate.
- Stringent temperature conditions for the wash steps will ordinarily include a temperature of at least about 25°C, more preferably of at least about 42°C, and even more preferably of at least about 68°C.
- wash steps will occur at 25°C in 30 mM NaCl, 3 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 42°C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 68°C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. Additional variations on these conditions will be readily apparent to those skilled in the art. Hybridization techniques are well known to those skilled in the art and are described, for example, in Benton and Davis (Science 196: 180, 1977); Grunstein and Hogness (Proc. Natl. Acad.
- substantially identical is meant a polypeptide or nucleic acid molecule exhibiting at least 50% identity to a reference amino acid sequence (for example, any one of the amino acid sequences described herein) or nucleic acid sequence (for example, any one of the nucleic acid sequences described herein).
- a reference amino acid sequence for example, any one of the amino acid sequences described herein
- nucleic acid sequence for example, any one of the nucleic acid sequences described herein.
- such a sequence is at least 60%, more preferably 80% or 85%, and more preferably 90%, 95% or even 99% identical at the amino acid level or nucleic acid to the sequence used for comparison.
- Sequence identity is typically measured using sequence analysis software (for example, Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University Avenue, Madison, Wis. 53705, BLAST, BESTFIT, GAP, or PILEUP/PRETTYBOX programs). Such software matches identical or similar sequences by assigning degrees of homology to various substitutions, deletions, and/or other modifications. Conservative substitutions typically include substitutions within the following groups: glycine, alanine; valine, isoleucine, leucine; aspartic acid, glutamic acid, asparagine, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine. In an exemplary approach to determining the degree of identity, a BLAST program may be used, with a probability score between e "3 and e "100 indicating a closely related sequence.
- sequence analysis software for example, Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology
- T-cell epitope is to be understood as meaning a peptide sequence that can be bound by MHC molecules of class I or II in the form of a peptide-presenting MHC molecule or MHC complex and then, in this form, be recognized and bound by naive T-cells, cytotoxic T- lymphocytes or T-helper cells.
- the terms “treat,” “treated,” “treating,” “treatment,” and the like refer to reducing or ameliorating a disorder and/or symptoms associated therewith (e.g., a neoplasia or tumor). It will be appreciated that, although not precluded, treating a disorder or condition does not require that the disorder, condition, or symptoms associated therewith be completely eliminated.
- therapeutic effect refers to some extent of relief of one or more of the symptoms of a disorder (e.g., a neoplasia or tumor) or its associated pathology.
- “Therapeutically effective amount” as used herein refers to an amount of an agent which is effective, upon single or multiple dose administration to the cell or subject, in prolonging the survivability of the patient with such a disorder, reducing one or more signs or symptoms of the disorder, preventing or delaying, and the like beyond that expected in the absence of such treatment.
- “Therapeutically effective amount” is intended to qualify the amount required to achieve a therapeutic effect.
- a physician or veterinarian having ordinary skill in the art can readily determine and prescribe the "therapeutically effective amount” (e.g., ED50) of the
- the physician or veterinarian could start doses of the compounds of the invention employed in a pharmaceutical composition at levels lower than that required in order to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved.
- the pharmaceutical compositions typically should provide a dosage of from about 0.0001 mg to about 200 mg of compound per kilogram of body weight per day.
- dosages for systemic administration to a human patient can range from 0.01-10 ⁇ g/kg, 20-80 ⁇ g/kg, 5-50 ⁇ g/kg, 75-150 ⁇ g/kg, 100-500 ⁇ g/kg, 250-750 ⁇ g/kg, 500-1000 ⁇ g/kg, 1-10 mg/kg, 5-50 mg/kg, 25-75 mg/kg, 50-100 mg/kg, 100-250 mg/kg, 50-100 mg/kg, 250-500 mg/kg, 500-750 mg/kg, 750-1000 mg/kg, 1000-1500 mg/kg, 1500-2000 mg/kg, 5 mg/kg, 20 mg/kg, 50 mg/kg, 100 mg/kg, of 200 mg/kg.
- Pharmaceutical dosage unit forms are prepared to provide from about 0.001 mg to about 5000 mg, for example from about 100 to about 2500 mg of the compound or a combination of essential ingredients per
- vaccine is to be understood as meaning a composition for generating immunity for the prophylaxis and/or treatment of diseases (e.g., neoplasia/tumor). Accordingly, vaccines are medicaments which comprise antigens and are intended to be used in humans or animals for generating specific defense and protective substance by vaccination.
- compositions or methods provided herein can be combined with one or more of any of the other compositions and methods provided herein.
- Figure 1 depicts a flow process for making a personalized cancer vaccine according to an exemplary embodiment of the invention.
- Figure 2 shows a flow process for pre-treatment steps for generating a cancer vaccine for a melanoma patient according to an exemplary embodiment of the invention.
- FIG 3 is a flowchart depicting an approach for addressing an initial patient population study according to an exemplary embodiment of the invention.
- Five patients may be treated in the first cohort at an anticipated safe dose level. If fewer than two of these five patients develop a dose limiting toxicity at, or prior to, the primary safety endpoint, then 10 more patients may be recruited at that dose level to expand the analysis of the patient population (e.g., to assess efficacy, safety, etc.). If two or more dose limiting toxicities (DLTs) are observed, then the dose of poly-ICLC may be reduced by 50% and five additional patients may be treated. If fewer than two of these five patients develop a dose limiting toxicity, then 10 more patients may be recruited at that dose level. However, if two or more patients at the reduced poly-ICLC level develop a DLT, then the study will be stopped.
- Figures 4A and 4B show examples of different types of discrete mutations and neoORFs, respectively.
- Figure 5 illustrates an immunization schedule based on a prime boost strategy according to an exemplary embodiment of the present invention.
- Multiple immunizations may occur over the first ⁇ 3 weeks to maintain an early high antigen exposure during the priming phase of immune response. Patients may then be rested for eight weeks to allow memory T cells to develop and these T cells will then be boosted in order to maintain a strong ongoing response.
- Figure 6 shows a time line indicating the primary immunological endpoint according to an exemplary aspect of the invention.
- Figure 7 illustrates a time line for administering a co-therapy with checkpoint blockade antibodies to evaluate the combination of relief of local immune suppression coupled with the stimulation of new immunity according to an exemplary embodiment of the invention.
- patients who enter as appropriate candidates for checkpoint blockade therapy e.g., anti-PDLl as shown here, may be entered and immediately treated with antibody, while the vaccine is being prepared. Patients may then be vaccinated.
- Checkpoint blockade antibody dosing can be continued or possibly deferred while the priming phase of vaccination occurs.
- Figure 8 is a table that shows the ranking assignments for different neo-antigenic mutations according to an exemplary embodiment of the invention.
- Figure 9 shows a schematic depicting drug product processing of individual neo- antigenic peptides into pools of 4 subgroups according to an exemplary embodiment of the invention.
- FIG 10 shows a schematic representation of a strategy to systematically discover tumor neoantigens according to an exemplary embodiment of the invention.
- Tumor specific mutations in cancer samples may be detected using whole-exome (WES) or whole-genome sequencing (WGS) and identified through the application of mutation calling algorithms (e.g., Mutect).
- WES whole-exome
- WGS whole-genome sequencing
- candidate neoepitopes may be predicted using well-validated algorithms (e.g., NetMHCpan) and their identification may be refined by experimental validation for peptide- HLA binding and by confirmation of gene expression at the RNA level.
- NetMHCpan well-validated algorithms
- Figures 11 A-C show the frequency of classes of point mutations that have the potential to generate neoantigens in chronic lymphocytic leukemia (CLL).
- CLL chronic lymphocytic leukemia
- FIG. 12 A shows the predicted binding (IC50) to their known restricting HLA allele of 33 functionally identified cancer neoepitopes reported in literature tested by NetMHCpan, sorted on the basis of predicted binding affinity.
- FIG. 12B shows the distribution of the number of predicted peptides with HLA binding affinity ⁇ 150 nM (black) and 150-500 nM (grey) across 31 CLL patients with available HLA typing information.
- FIG. 12 A shows the predicted binding (IC50) to their known restricting HLA allele of 33 functionally identified cancer neoepitopes reported in literature tested by NetMHCpan, sorted on the basis of predicted binding affinity.
- FIG. 12B shows the distribution of the number of predicted peptides with HLA binding affinity ⁇ 150 nM (black) and 150-500 nM (grey) across 31 CLL patients with available HLA typing information.
- FIG. 12C shows a graph comparing the predicted binding (IC50 ⁇ 500 nM by NetMHCpan) of peptides from 4 patients with the experimentally determined binding affinity for HLA-A and -B allele binding using a competitive MHC I allele -binding assay with synthesized peptides. The percent of predicted peptides with evidence of experimental binding (IC50 ⁇ 500 nM) are indicated.
- FIG. 12C shows a graph comparing the predicted binding (IC50 ⁇ 500 nM by NetMHCpan) of peptides from 4 patients with the experimentally determined binding affinity for HLA-A and -B allele binding using a competitive MHC I allele -binding assay with synthesized peptides. The percent of predicted peptides with evidence of experimental binding (IC50 ⁇ 500 nM) are indicated.
- FIG. 13A-B show the same data as in Figure 12D but separately for 9-mer (FIG. 13A) and 10-mer peptides (FIG. 13B). In each case, percentages of peptides with predicted IC50 ⁇ 150 nM and 150-500 nM, with evidence of experimental binding are indicated.
- FIG. 14A shows that 25 missense mutations were identified in Pt I CLL cells from which 30 peptides from 13 mutations were predicted to bind to Pt l's MHC class I alleles. A total of 14 peptides from 9 mutations were experimentally confirmed as HLA-binding.
- Post-transplant T cells (7 yrs) from Pt 1 were stimulated weekly ex vivo for 4 weeks with 5 pools of 6 mutated peptides with similar predicted HLA binding, per pool, and subsequently tested by IFN- ⁇ ELISPOT assay.
- FIG. 14A shows that 25 missense mutations were identified in Pt I CLL cells from which 30 peptides from 13 mutations were predicted to bind to Pt l's MHC class I alleles. A total of 14 peptides from 9 mutations were experimentally confirmed as HLA-binding.
- Post-transplant T cells (7 yrs) from Pt 1 were stimulated weekly ex vivo for 4 weeks with 5 pools of 6 mutated
- FIG. 14B shows that increased IFN- ⁇ secretion by T cells was detected against Pool 2 peptides. Negative control - Irrelevant Tax peptide; positive control - PHA.
- FIG. 14C shows that of Pool 2 peptides, Pt 1 T cells were reactive to mutated ALMS] and C60RF89 peptides (right panel; averaged results from duplicate wells are displayed). Left panel-The predicted and experimental IC50 scores (nM) of mutated and wildtype ALMS1 and C60RF89 peptides.
- Figure 15 illustrates that the sequence context around the sites of mutations in FNDC3B, C6orf89 and ALMS] lack evolutionary conservation.
- the neoepitopes generated from each of the genes are boxed. Red- conserved amino acids (aa) in all 4 species; blue- conserved aa in at least 2 of 4 species; black -absent conservation across species.
- Figure 16 shows localization of somatic mutations reported in FNDC3B, C6orf89 and
- FIG. 17 shows that mutated FNDC3B generates a naturally immunogenic neoepitope in Pt 2.
- FIG. 17A shows 26 missense mutations were identified in Pt 2 CLL cells from which 37 peptides from 16 mutations were predicted to bind to Pt 2's MHC class I alleles. A total of 18 peptides from 12 mutations were experimentally confirmed to bind.
- Post-transplant T cells ( ⁇ 3 yrs) from Pt 2 were stimulated with autologous DCs or B cells pulsed with 3 pools of experimentally validated binding mutated peptides (18 peptides total) for 2 weeks ex vivo (See table S6J.
- FIG. 17A shows 26 missense mutations were identified in Pt 2 CLL cells from which 37 peptides from 16 mutations were predicted to bind to Pt 2's MHC class I alleles. A total of 18 peptides from 12 mutations were experimentally confirmed to bind.
- FIG. 17B shows increased IFN- ⁇ secretion was detected by ELISPOT assay in T cells stimulated with Pool 1 peptides.
- FIG. 17C shows that of Pool 1 peptides, increased IFN- ⁇ secretion was detected against the peptide (bottom panel; averaged results from duplicated wells are displayed).
- FIG. 17D illustrates that T cells reactive to demonstrate specificity to the mutated epitope but not the corresponding wildtype peptide (concentrations:
- FIG. 17E shows that Mut-iWDCJfi-specific T cells are reactive in a class I-restricted manner (left), and recognize an endogenously processed and presented form of mutated
- FIG. 17F shows that T cells recognizing the m t-FNDC3B epitope as detected by HLA-A2 + /mut FNDC3B tetramers are more frequently detected in T cells in Pt 2 compared to T cells from a normal donor.
- FIG. 18 illustrates kinetics of the specific T cell response in relation to the transplant course.
- FIG. 18 shows molecular tumor burden was measured in Pt 2 using a patient tumor-specific Taqman PCR assay based on the clonotypic IgH sequence at serial time points before and after HSCT (top panel).
- the number of IFN-y-secreting spots per cells at each time point was measured in triplicate (Welch t test; mut vs. wt).
- FIG. 19A-D show the design of specific TCR ⁇ specific primers in Pt 2.
- FIG. 19A shows vX-FNDC3B specific T cells detected and isolated from Pt 2 PBMCs 6 months following HSCT using an IFN- ⁇ catch assay.
- FIG. 19B shows RNA from FNDC3B- reactive T cells expressed TCR ⁇ , generating an amplicon of 350bp in length.
- FIG. 19C shows ⁇ 11 -specific real time primers were designed based on the sequence of the mut- FNDC3B clone- specific CDR3 rearrangement, such that the quantitative PCR probe was positioned in the region of junctional diversity (orange).
- FIG. 19D shows FNDC3B-reactive T cells were monoclonal for ⁇ 1, as detected by spectratyping.
- FIG. 20A illustrates the application of the neoantigen discovery pipeline across cancers
- FIG. 20A shows the comparison of overall somatic mutation rate detected across cancers by massively parallel sequencing.
- Red-CLL blue-clear cell renal carcinoma (RCC) and green- melanoma.
- LSCC Lung squamous cell carcinoma
- Lung AdCa Lung adenocarcinoma
- ESO AdCa Esophageal adenocarcinoma
- DLBCL Diffused large B- cell lymphoma
- GBM Glioblastoma
- Papillary RCC Papillary renal cell carcinoma.
- FIG. 20B shows the number of missense, frameshift and splice-site mutations per case in melanoma, clear ceil RCC and CLL
- FIG. 20C shows the average neoORF length generated per sample
- FIG. 20D shows predicted neopeptides with IC50 ⁇ 150 nM (dashed lines) and ⁇ 500 nM (solid lines) generated from missense and frameshift mutations.
- FIGS. 20E depicts the distributions (shown by box plot) of the number of missense, frameshift and splice-site mutations per case across 13 cancers, FIG.
- 20F shows the summed neoORF length generated per sample.
- 20G shows the predicted neopeptides with IC50 ⁇ 150 nM and with ⁇ 500 nM generated from missense and frameshift mutations,.
- the left and right ends of the boxes represent the 25th and 75th percentile values, respectively, while the segment in the middle is the median. The left and right extremes of the bars extend to the minimum and maximum values.
- the present invention relates to personalized strategies for the treatment of neoplasia, and more particularly tumors, by administering a therapeutically effective amount of a
- composition comprising a plurality of neoplasia/tumor specific neo-antigens to a subject (e.g., a mammal such as a human).
- a subject e.g., a mammal such as a human.
- the present invention is based, at least in part, on the discovery that whole genome/ex ome sequencing may be used to identify all, or nearly all, mutated neo-antigens that are uniquely present in a neoplasia/tumor of an individual patient, and that this collection of mutated neo- antigens may be analyzed to identify a specific, optimized subset of neo-antigens for use as a personalized cancer vaccine for treatment of the patient's neoplasia/tumor.
- a population of neoplasia/tumor specific neo-antigens may be identified by sequencing the neoplasia/tumor and normal DNA of each patient to identify tumor- specific mutations, and determining the patient's HLA allotype.
- the population of neoplasia/tumor specific neo-antigens and their cognate native antigens may then be subject to bioinformatic analysis using validated algorithms to predict which tumor- specific mutations create epitopes that could bind to the patient's HLA allotype, and in particular which tumor- specific mutations create epitopes that could bind to the patient' s HLA allotype more effectively than the cognate native antigen.
- a plurality of peptides corresponding to a subset of these mutations may be designed and synthesized for each patient, and pooled together for use as a cancer vaccine in immunizing the patient.
- the neo-antigens peptides may be combined with an adjuvant (e.g., poly-ICLC) or another anti-neoplastic agent.
- an adjuvant e.g., poly-ICLC
- these neo-antigens are expected to bypass central thymic tolerance (thus allowing stronger antitumor T cell response), while reducing the potential for autoimmunity (e.g., by avoiding targeting of normal self-antigens).
- the immune system can be classified into two functional subsystems: the innate and the acquired immune system.
- the innate immune system is the first line of defense against infections, and most potential pathogens are rapidly neutralized by this system before they can cause, for example, a noticeable infection.
- the acquired immune system reacts to molecular structures, referred to as antigens, of the intruding organism.
- humoral immune reaction antibodies secreted by B cells into bodily fluids bind to pathogen-derived antigens, leading to the elimination of the pathogen through a variety of mechanisms, e.g. complement-mediated lysis.
- the cell-mediated immune reaction T-cells capable of destroying other cells are activated.
- proteins associated with a disease are present in a cell, they are fragmented proteolytically to peptides within the cell. Specific cell proteins then attach themselves to the antigen or peptide formed in this manner and transport them to the surface of the cell, where they are presented to the molecular defense mechanisms, in particular T-cells, of the body. Cytotoxic T cells recognize these antigens and kill the cells that harbor the antigens.
- MHC proteins The molecules that transport and present peptides on the cell surface are referred to as proteins of the major histocompatibility complex (MHC).
- MHC proteins are classified into two types, referred to as MHC class I and MHC class II.
- the structures of the proteins of the two MHC classes are very similar; however, they have very different functions.
- Proteins of MHC class I are present on the surface of almost all cells of the body, including most tumor cells.
- MHC class I proteins are loaded with antigens that usually originate from endogenous proteins or from pathogens present inside cells, and are then presented to naive or cytotoxic T-lymphocytes (CTLs).
- CTLs cytotoxic T-lymphocytes
- MHC class II proteins are present on dendritic cells, B- lymphocytes, macrophages and other antigen-presenting cells.
- MHC molecules are processed from external antigen sources, i.e. outside of the cells, to T-helper (Th) cells.
- T-helper (Th) cells Most of the peptides bound by the MHC class I proteins originate from cytoplasmic proteins produced in the healthy host cells of an organism itself, and do not normally stimulate an immune reaction. Accordingly, cytotoxic T-lymphocytes that recognize such self-peptide-presenting MHC molecules of class I are deleted in the thymus (central tolerance) or, after their release from the thymus, are deleted or inactivated, i.e. tolerized (peripheral tolerance). MHC molecules are capable of stimulating an immune reaction when they present peptides to non-tolerized T-lymphocytes.
- T-cell receptors TCR
- CD8 molecules CD8 molecules on their surface.
- T-Cell receptors are capable of recognizing and binding peptides complexed with the molecules of MHC class I.
- Each cytotoxic T-lymphocyte expresses a unique T-cell receptor which is capable of binding specific MHC/peptide complexes.
- the peptide antigens attach themselves to the molecules of MHC class I by competitive affinity binding within the endoplasmic reticulum, before they are presented on the cell surface.
- affinity of an individual peptide antigen is directly linked to its amino acid sequence and the presence of specific binding motifs in defined positions within the amino acid sequence. If the sequence of such a peptide is known, it is possible to manipulate the immune system against diseased cells using, for example, peptide vaccines.
- Tumor neo-antigens which arise as a result of genetic change (e.g., inversions, translocations, deletions, missense mutations, splice site mutations, etc.) within malignant cells, represent the most tumor- specific class of antigens.
- Neo-antigens have rarely been used in cancer vaccines due to technical difficulties in identifying them, selecting optimized neo- antigens, and producing neo-antigens for use in a vaccine. According to the present invention, these problems may be addressed by:
- translating sequencing information into a therapeutic vaccine may include:
- poly-ICLC an agonist of TLR3 and the RNA helicase -domains of MDA5 and RIG3, has shown several desirable properties for a vaccine adjuvant. These properties include the induction of local and systemic activation of immune cells in vivo, production of stimulatory chemokines and cytokines, and stimulation of antigen-presentation by DCs. Furthermore, poly-ICLC can induce durable CD4 + and CD8 + responses in humans. Importantly, striking similarities in the upregulation of transcriptional and signal transduction pathways were seen in subjects vaccinated with poly-ICLC and in volunteers who had received the highly effective, replication-competent yellow fever vaccine.
- the present invention is based, at least in part, on the ability to identify all, or nearly all, of the mutations within a neoplasia/tumor (e.g., translocations, inversions, large and small deletions and insertions, missense mutations, splice site mutations, etc.).
- these mutations are present in the genome of neoplasia/tumor cells of a subject, but not in normal tissue from the subject.
- Such mutations are of particular interest if they lead to changes that result in a protein with an altered amino acid sequence that is unique to the patient's
- useful mutations may include: (1) non- synonymous mutations leading to different amino acids in the protein; (2) read-through mutations in which a stop codon is modified or deleted, leading to translation of a longer protein with a novel tumor- specific sequence at the C-terminus; (3) splice site mutations that lead to the inclusion of an intron in the mature mRNA and thus a unique tumor- specific protein sequence; (4) chromosomal rearrangements that give rise to a chimeric protein with tumor- specific sequences at the junction of 2 proteins (i.e., gene fusion); (5) frameshift mutations or deletions that lead to a new open reading frame with a novel tumor- specific protein sequence; and the like.
- Peptides with mutations or mutated polypeptides arising from, for example, splice- site, frameshift, read-through, or gene fusion mutations in tumor cells may be identified by sequencing DNA, RNA or protein
- personal neo-antigen peptides derived from common tumor driver genes may further include previously identified tumor specific mutations.
- known common tumor driver genes and tumor mutations in common tumor driver genes may be found on the world wide web at (www)sanger.ac.uk/cosmic.
- oligonucleotides 30-50 bases in length are covalently anchored at the 5' end to glass cover slips. These anchored strands perform two functions. First, they act as capture sites for the target template strands if the templates are configured with capture tails complementary to the surface-bound oligonucleotides. They also act as primers for the template directed primer extension that forms the basis of the sequence reading.
- the capture primers function as a fixed position site for sequence determination using multiple cycles of synthesis, detection, and chemical cleavage of the dye-linker to remove the dye. Each cycle consists of adding the polymerase/labeled nucleotide mixture, rinsing, imaging and cleavage of dye.
- polymerase is modified with a fluorescent donor molecule and immobilized on a glass slide, while each nucleotide is color-coded with an acceptor fluorescent moiety attached to a gamma-phosphate.
- the system detects the interaction between a fluorescently- tagged polymerase and a fluorescently modified nucleotide as the nucleotide becomes incorporated into the de novo chain.
- Other sequencing -by- synthesis technologies also exist.
- any suitable sequencing-by- synthesis platform can be used to identify mutations.
- sequencing-by- synthesis platforms are currently available: the Genome Sequencers from Roche/454 Life Sciences, the HiSeq Analyzer from Illumina/Solexa, the SOLiD system from Applied BioSystems, and the Heliscope system from Helicos Biosciences. Sequencing-by- synthesis platforms have also been described by Pacific Biosciences and VisiGen Biotechnologies. Each of these platforms can be used in the methods of the invention.
- a plurality of nucleic acid molecules being sequenced is bound to a support (e.g., solid support).
- a capture sequence/universal priming site can be added at the 3' and/or 5' end of the template.
- the nucleic acids may be bound to the support by hybridizing the capture sequence to a complementary sequence covalently attached to the support.
- the capture sequence (also referred to as a universal capture sequence) is a nucleic acid sequence complementary to a sequence attached to a support that may dually serve as a universal primer.
- a member of a coupling pair (such as, e.g., antibody/antigen, receptor/ligand, or the avidin-biotin pair as described in, e.g., U.S. Patent Application No. 2006/0252077) may be linked to each fragment to be captured on a surface coated with a respective second member of that coupling pair.
- the sequence may be analyzed, for example, by single molecule detection/sequencing, e.g., as described in the Examples and in U.S. Patent No. 7,283,337, including template-dependent sequencing-by- synthesis.
- the surface-bound molecule is exposed to a plurality of labeled nucleotide triphosphates in the presence of polymerase.
- the sequence of the template is determined by the order of labeled nucleotides incorporated into the 3' end of the growing chain. This can be done in real time or in a step-and-repeat mode. For real-time analysis, different optical labels to each nucleotide may be incorporated and multiple lasers may be utilized for stimulation of incorporated nucleotides.
- the DNA or RNA sample is obtained from a neoplasia/tumor or a bodily fluid, e.g., blood, obtained by known techniques (e.g. venipuncture) or saliva.
- nucleic acid tests can be performed on dry samples (e.g. hair or skin).
- PCR based detection means may include multiplex amplification of a plurality of markers simultaneously. For example, it is well known in the art to select PCR primers to generate PCR products that do not overlap in size and can be analyzed simultaneously.
- hybridization based detection means allow the differential detection of multiple PCR products in a sample.
- Other techniques are known in the art to allow multiplex analyses of a plurality of markers.
- the single base polymorphism can be detected by using a specialized exonuclease-resistant nucleotide, as disclosed, e.g., U.S. Patent No. 4,656,127.
- a primer complementary to the allelic sequence immediately 3' to the polymorphic site is permitted to hybridize to a target molecule obtained from a particular animal or human. If the polymorphic site on the target molecule contains a nucleotide that is complementary to the particular exonuclease-resistant nucleotide derivative present, then that derivative will be incorporated onto the end of the hybridized primer.
- a solution-based method is used for determining the identity of the nucleotide of a polymorphic site.
- Cohen et al. (French Patent No. 2,650,840; PCT Application No. WO1991/02087).
- a primer may be employed that is complementary to allelic sequences immediately 3' to a polymorphic site. The method determines the identity of the nucleotide of that site using labeled dideoxynucleotide derivatives, which, if complementary to the nucleotide of the polymorphic site, will become incorporated onto the terminus of the primer.
- GBA® Genetic Bit Analysis
- PCT Application No. WO 1992/ 15712 An alternative method, known as Genetic Bit Analysis or GBA® is described in PCT Application No. WO 1992/ 15712).
- GBA® uses mixtures of labeled terminators and a primer that is complementary to the sequence 3' to a polymorphic site.
- the labeled terminator that is incorporated is thus determined by, and complementary to, the nucleotide present in the polymorphic site of the target molecule being evaluated.
- the GBA® method is preferably a heterogeneous phase assay, in which the primer or the target molecule is immobilized to a solid phase.
- Recently, several primer-guided nucleotide incorporation procedures for assaying polymorphic sites in DN A have been described ( Komher, J. S. et al., Nucl. Acids. Res.
- An alternative method for identifying tumor specific neo-antigens is direct protein sequencing.
- Protein sequencing of enzymatic digests using multidimensional MS techniques (MSn) including tandem mass spectrometry (MS/MS)) can also be used to identify neo-antigens of the invention.
- MSn multidimensional MS techniques
- MS/MS tandem mass spectrometry
- Such proteomic approaches permit rapid, highly automated analysis (see, e.g., K. Gevaert and J. Vandekerckhove, Electrophoresis 21: 1145- 1154 (2000)). It is further contemplated within the scope of the invention that high-throughput methods for de novo sequencing of unknown proteins may be used to analyze the proteome of a patient' s tumor to identify expressed neo-antigens.
- meta shotgun protein sequencing may be used to identify expressed neo-antigens (see e.g., Guthals et al. (2012) Shotgun Protein Sequencing with Meta-contig Assembly, Molecular and Cellular Proteomics 11(10): 1084-96).
- Tumor specific neo-antigens may also be identified using MHC multimers to identify neo-antigen- specific T-cell responses.
- MHC multimers to identify neo-antigen- specific T-cell responses.
- highthroughput analysis of neo-antigen- specific T-cell responses in patient samples may be performed using MHC tetramer-based screening techniques (see e.g., Hombrink et al. (2011) High-Throughput Identification of
- such tetramer-based screening techniques may be used for the initial identification of tumor specific neo-antigens, or alternatively as a secondary screening protocol to assess what neo-antigens a patient may have already been exposed to, thereby facilitating the selection of candidate neo-antigens for the vaccines of the invention.
- the invention further includes isolated peptides (e.g., neo-antigenic peptides containing the tumor specific mutations identified by the methods of the invention, peptides that comprise know tumor specific mutations, and mutant polypeptides or fragments thereof identified by the method of the invention).
- isolated peptides e.g., neo-antigenic peptides containing the tumor specific mutations identified by the methods of the invention, peptides that comprise know tumor specific mutations, and mutant polypeptides or fragments thereof identified by the method of the invention.
- peptides and polypeptides are referred to herein as "neo- antigenic peptides” or “neo-antigenic polypeptides.”
- the term “peptide” is used interchangeably with “mutant peptide” and “neo-antigenic peptide” and “wildtype peptide” in the present specification to designate a series of residues, typically L-amino acids, connected one to the other, typically by peptide bonds between the alpha-amino and alpha-carboxyl groups of adjacent amino acids.
- the polypeptides or peptides can be of a variety of lengths and will minimally include the small region predicted to bind to the HLA molecule of the patient (the "epitope") as well as additional adjacent amino acids extending in both the N- and C-terminal directions.
- the polypeptides or peptides can be either in their neutral (uncharged) forms or in forms which are salts, and either free of modifications such as glycosylation, side chain oxidation, or phosphorylation or containing these modifications, subject to the condition that the modification not destroy the biological activity of the polypeptides as herein described.
- the size of the at least one neo-antigenic peptide molecule may comprise, but is not limited to, about 8, about 9, about 10, about 11, about 12, about 13, about 14, about 15, about 16, about 17, about 18, about 19, about 20, about 21, about 22, about 23, about 24, about 25, about 26, about 27, about 28, about 29, about 30, about 31, about 32, about 33, about 34, about 35, about 36, about 37, about 38, about 39, about 40, about 41, about 42, about 43, about 44, about 45, about 46, about 47, about 48, about 49, about 50, about 60, about 70, about 80, about 90, about 100, about 110, about 120 or greater amino molecule residues, and any range derivable therein.
- the neo-antigenic peptide molecules are equal to or less than 50 amino acids. In a preferred embodiment, the neo-antigenic peptide molecules are equal to about 20 to about 30 amino acids.
- a longer peptide may be designed in several ways. For example, when the HLA-binding regions (e.g., the "epitopes") are predicted or known, a longer peptide may consist of either: individual binding peptides with an extension of 0-10 amino acids toward the N- and C-terminus of each corresponding gene product. A longer peptide may also consist of a concatenation of some or all of the binding peptides with extended sequences for each.
- a longer peptide may consist of the entire stretch of novel tumor-specific amino acids.
- use of a longer peptide requires endogenous processing by professional antigen presenting cells such as dendritic cells and may lead to more effective antigen presentation and induction of T cell responses.
- the neo-antigenic peptides and polypeptides may bind an HLA protein.
- the neo-antigenic peptides and polypeptides may bind an HLA protein with greater affinity than the corresponding native / wild-type peptide.
- the neo-antigenic peptide or polypeptide may have an IC50 of about less than 1000 nM, about less than 500 nM, about less than 250 nM, about less than 200 nM, about less than 150 nM, about less than 100 nM, or about less than 50 nM.
- the neo-antigenic peptides and polypeptides of the invention do not induce an autoimmune response and/or invoke immunological tolerance when
- the invention also provides compositions comprising a plurality of neo-antigenic peptides.
- the composition comprises at least 5 or more neo-antigenic peptides.
- the composition contains at least about 6, about 8, about 10, about 12, about 14, about 16, about 18, or about 20 distinct peptides.
- the composition contains at least 20 distinct peptides.
- 2 or more of the distinct peptides may be derived from the same polypeptide. For example, if a preferred neo- antigenic mutation encodes a neoORF polypeptide, two or more of the neo-antigenic peptides may be derived from the neoORF polypeptide.
- the two or more neo- antigenic peptides derived from the neoORF polypeptide may comprise a tiled array that spans the polypeptide (e.g., the neo-antigenic peptides may comprise a series of overlapping neo- antigenic peptides that spans a portion, or all, of the neoORF polypeptide).
- each peptide is believed to have its own epitope; accordingly, a tiling array that spans one neoORF polypeptide may give rise to polypeptides that are targeted to different HLA molecules.
- Neo-antigenic peptides can be derived from any protein coding gene.
- Exemplary polypeptides from which the neo-antigenic peptides may be derived can be found for example at the COSMIC database (on the worldwide web at (www)sanger.ac.uk/cosmic). COSMIC curates comprehensive information on somatic mutations in human cancer.
- the peptide may contain the tumor specific mutation.
- the tumor specific mutation is in a common driver gene or is a common driver mutation for a particular cancer type.
- common driver mutation peptides may include, but are not limited to, the following: a SF3B1 polypeptide, a MYD88 polypeptide, a TP53 polypeptide, an ATM polypeptide, an Abl polypeptide, A FBXW7 polypeptide, a DDX3X polypeptide, a MAPK1 polypeptide, or a GNB1 polypeptide.
- neo-antigenic peptides, polypeptides, and analogs can be further modified to contain additional chemical moieties not normally part of the protein.
- Those derivatized moieties can improve the solubility, the biological half-life, absorption of the protein, or binding affinity.
- the moieties can also reduce or eliminate any desirable side effects of the proteins and the like. An overview for those moieties can be found in Remington's Pharmaceutical Sciences, 20 th ed., Mack Publishing Co., Easton, PA (2000).
- neo-antigenic peptides and polypeptides having the desired activity may be modified as necessary to provide certain desired attributes, e.g.
- the neo-antigenic peptide and polypeptides may be subject to various changes, such as substitutions, either conservative or non-conservative, where such changes might provide for certain advantages in their use, such as improved MHC binding.
- conservative substitutions may encompass replacing an amino acid residue with another amino acid residue that is biologically and/or chemically similar, e.g., one hydrophobic residue for another, or one polar residue for another.
- the effect of single amino acid substitutions may also be probed using D- amino acids.
- neo-antigenic peptide and polypeptides may also be modified by extending or decreasing the compound's amino acid sequence, e.g., by the addition or deletion of amino acids.
- the neo-antigenic peptides, polypeptides, or analogs can also be modified by altering the order or composition of certain residues. It will be appreciated by the skilled artisan that certain amino acid residues essential for biological activity, e.g., those at critical contact sites or conserved residues, may generally not be altered without an adverse effect on biological activity.
- non-critical amino acids need not be limited to those naturally occurring in proteins, such as L-a- amino acids, or their D-isomers, but may include non-natural amino acids as well, such as ⁇ - ⁇ - ⁇ - amino acids, as well as many derivatives of L-a-amino acids.
- a neo-antigen polypeptide or peptide may be optimized by using a series of peptides with single amino acid substitutions to determine the effect of electrostatic charge, hydrophobicity, etc. on MHC binding. For instance, a series of positively charged (e.g., Lys or Arg) or negatively charged (e.g., Glu) amino acid substitutions may be made along the length of the peptide revealing different patterns of sensitivity towards various MHC molecules and T cell receptors. In addition, multiple substitutions using small, relatively neutral moieties such as Ala, Gly, Pro, or similar residues may be employed. The substitutions may be homo-oligomers or hetero-oligomers.
- substitutions The number and types of residues which are substituted or added depend on the spacing necessary between essential contact points and certain functional attributes which are sought (e.g., hydrophobicity versus hydrophilicity). Increased binding affinity for an MHC molecule or T cell receptor may also be achieved by such substitutions, compared to the affinity of the parent peptide. In any event, such substitutions should employ amino acid residues or other molecular fragments chosen to avoid, for example, steric and charge interference which might disrupt binding. Amino acid substitutions are typically of single residues. Substitutions, deletions, insertions or any combination thereof may be combined to arrive at a final peptide.
- Substitutional variants are those in which at least one residue of a peptide has been removed and a different residue inserted in its place.
- the neo-antigenic peptides and polypeptides may be modified to provide desired attributes. For instance, the ability of the peptides to induce CTL activity can be enhanced by linkage to a sequence which contains at least one epitope that is capable of inducing a T helper cell response.
- Particularly preferred immunogenic peptides/T helper conjugates are linked by a spacer molecule.
- the spacer is typically comprised of relatively small, neutral molecules, such as amino acids or amino acid mimetics, which are substantially uncharged under physiological conditions.
- the spacers are typically selected from, e.g., Ala, Gly, or other neutral spacers of nonpolar amino acids or neutral polar amino acids.
- the optionally present spacer need not be comprised of the same residues and thus may be a hetero- or homo- oligomer.
- the spacer will usually be at least one or two residues, more usually three to six residues.
- the peptide may be linked to the T helper peptide without a spacer.
- the neo-antigenic peptide may be linked to the T helper peptide either directly or via a spacer either at the amino or carboxy terminus of the peptide.
- the amino terminus of either the neo-antigenic peptide or the T helper peptide may be acylated.
- Exemplary T helper peptides include tetanus toxoid 830-843, influenza 307-319, malaria circumsporozoite 382-398 and 378- 389.
- the present invention is based, at least in part, on the ability to present the immune system of the patient with a pool of tumor specific neo-antigens.
- tumor specific neo-antigens may be produced either in vitro or in vivo.
- Tumor specific neo-antigens may be produced in vitro as peptides or polypeptides, which may then be formulated into a personalized neoplasia vaccine and administered to a subject.
- such in vitro production may occur by a variety of methods known to one of skill in the art such as, for example, peptide synthesis or expression of a peptide/polypeptide from a DNA or RNA molecule in any of a variety of bacterial, eukaryotic, or viral recombinant expression systems, followed by purification of the expressed peptide/polypeptide.
- tumor specific neo-antigens may be produced in vivo by introducing molecules (e.g., DNA, RNA, viral expression systems, and the like) that encode tumor specific neo- antigens into a subject, whereupon the encoded tumor specific neo-antigens are expressed.
- molecules e.g., DNA, RNA, viral expression systems, and the like
- Proteins or peptides may be made by any technique known to those of skill in the art, including the expression of proteins, polypeptides or peptides through standard molecular biological techniques, the isolation of proteins or peptides from natural sources, or the chemical synthesis of proteins or peptides.
- the nucleotide and protein, polypeptide and peptide sequences corresponding to various genes have been previously disclosed, and may be found at
- Peptides can be readily synthesized chemically utilizing reagents that are free of contaminating bacterial or animal substances (Merrifield RB: Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85:2149-54, 1963).
- a further aspect of the invention provides a nucleic acid (e.g., a polynucleotide) encoding a neo-antigenic peptide of the invention, which may be used to produce the neo-antigenic peptide in vitro.
- the polynucleotide may be, e.g., DNA, cDNA, PNA, CNA, RNA, either single- and/or double- stranded, or native or stabilized forms of polynucleotides, such as e.g. polynucleotides with a phosphorothiate backbone, or combinations thereof and it may or may not contain introns so long as it codes for the peptide.
- a still further aspect of the invention provides an expression vector capable of expressing a polypeptide according to the invention.
- Expression vectors for different cell types are well known in the art and can be selected without undue experimentation.
- the DNA is inserted into an expression vector, such as a plasmid, in proper orientation and correct reading frame for expression.
- the DNA may be linked to the appropriate transcriptional and translational regulatory control nucleotide sequences recognized by the desired host (e.g., bacteria), although such controls are generally available in the expression vector.
- the vector is then introduced into the host bacteria for cloning using standard techniques (see, e.g., Sambrook et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.).
- the invention further embraces variants and equivalents which are substantially homologous to the identified tumor specific neo-antigens described herein.
- These can contain, for example, conservative substitution mutations, i.e., the substitution of one or more amino acids by similar amino acids.
- conservative substitution refers to the substitution of an amino acid with another within the same general class such as, for example, one acidic amino acid with another acidic amino acid, one basic amino acid with another basic amino acid, or one neutral amino acid by another neutral amino acid. What is intended by a conservative amino acid substitution is well known in the art.
- the invention also includes expression vectors comprising the isolated polynucleotides, as well as host cells containing the expression vectors. It is also contemplated within the scope of the invention that the neo-antigenic peptides may be provided in the form of RNA or cDNA molecules encoding the desired neo-antigenic peptides. The invention also provides that the one or more neo-antigenic peptides of the invention may be encoded by a single expression vector. The invention also provides that the one or more neo-antigenic peptides of the invention may be encoded and expressed in vivo using a viral based system (e.g., an adenovirus system).
- a viral based system e.g., an adenovirus system
- polynucleotide encoding a polypeptide encompasses a polynucleotide which includes only coding sequences for the polypeptide as well as a polynucleotide which includes additional coding and/or non-coding sequences.
- the polynucleotides of the invention can be in the form of RNA or in the form of DNA.
- DNA includes cDNA, genomic DNA, and synthetic DNA; and can be double-stranded or single-stranded, and if single stranded can be the coding strand or non-coding (anti-sense) strand.
- the polynucleotides may comprise the coding sequence for the tumor specific neo-antigenic peptide fused in the same reading frame to a polynucleotide which aids, for example, in expression and/or secretion of a polypeptide from a host cell (e.g., a leader sequence which functions as a secretory sequence for controlling transport of a polypeptide from the cell).
- a polypeptide having a leader sequence is a preprotein and can have the leader sequence cleaved by the host cell to form the mature form of the polypeptide.
- the polynucleotides can comprise the coding sequence for the tumor specific neo-antigenic peptide fused in the same reading frame to a marker sequence that allows, for example, for purification of the encoded polypeptide, which may then be incorporated into the personalized neoplasia vaccine.
- the marker sequence can be a hexa-histidine tag supplied by a pQE-9 vector to provide for purification of the mature polypeptide fused to the marker in the case of a bacterial host, or the marker sequence can be a hemagglutinin (HA) tag derived from the influenza hemagglutinin protein when a mammalian host (e.g., COS-7 cells) is used.
- a mammalian host e.g., COS-7 cells
- Additional tags include, but are not limited to, Calmodulin tags, FLAG tags, Myc tags, S tags, SBP tags, Softag 1, Softag 3, V5 tag, Xpress tag, Isopeptag, SpyTag, Biotin Carboxyl Carrier Protein (BCCP) tags, GST tags, fluorescent protein tags (e.g., green fluorescent protein tags), maltose binding protein tags, Nus tags, Strep-tag, thioredoxin tag, TC tag, Ty tag, and the like.
- Calmodulin tags include, but are not limited to, Calmodulin tags, FLAG tags, Myc tags, S tags, SBP tags, Softag 1, Softag 3, V5 tag, Xpress tag, Isopeptag, SpyTag, Biotin Carboxyl Carrier Protein (BCCP) tags, GST tags, fluorescent protein tags (e.g., green fluorescent protein tags), maltose binding protein tags, Nus tags, Strep-tag, thioredoxin tag, TC tag, Ty
- the polynucleotides may comprise the coding sequence for one or more of the tumor specific neo-antigenic peptides fused in the same reading frame to create a single concatamerized neo-antigenic peptide construct capable of producing multiple neo-antigenic peptides.
- the present invention provides isolated nucleic acid molecules having a nucleotide sequence at least 60% identical, at least 65% identical, at least 70% identical, at least 75% identical, at least 80% identical, at least 85% identical, at least 90% identical, at least 95% identical, or at least 96%, 97%, 98% or 99% identical to a polynucleotide encoding a tumor specific neo-antigenic peptide of the present invention.
- nucleotide sequence at least, for example, 95% “identical" to a reference nucleotide sequence is intended that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence can include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence.
- a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence up to 5% of the nucleotides in the reference sequence can be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence can be inserted into the reference sequence.
- These mutations of the reference sequence can occur at the amino- or carboxy-terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence.
- nucleic acid molecule is at least 80% identical, at least 85% identical, at least 90% identical, and in some embodiments, at least 95%, 96%, 97%, 98%, or 99% identical to a reference sequence can be determined conventionally using known computer programs such as the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, WI 53711). Bestfit uses the local homology algorithm of Smith and Waterman, Advances in Applied Mathematics 2:482-489 (1981), to find the best segment of homology between two sequences.
- Bestfit program Wiconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, WI 53711. Bestfit uses the local homology algorithm of Smith and Waterman, Advances in Applied Mathematics 2:482-489 (1981), to find the best segment of homology between two sequences.
- the parameters are set such that the percentage of identity is calculated over the full length of the reference nucleotide sequence and that gaps in homology of up to 5% of the total number of nucleotides in the reference sequence are allowed.
- the isolated tumor specific neo-antigenic peptides described herein can be produced in vitro (e.g., in the laboratory) by any suitable method known in the art. Such methods range from direct protein synthetic methods to constructing a DNA sequence encoding isolated polypeptide sequences and expressing those sequences in a suitable transformed host.
- a DNA sequence is constructed using recombinant technology by isolating or synthesizing a DNA sequence encoding a wild-type protein of interest.
- the sequence can be mutagenized by site-specific mutagenesis to provide functional analogs thereof. See, e.g. Zoeller et al., Proc. Nat'l. Acad. Sci. USA 81:5662-5066 (1984) and U.S. Pat. No. 4,588,585.
- a DNA sequence encoding a polypeptide of interest would be constructed by chemical synthesis using an oligonucleotide synthesizer.
- Such oligonucleotides can be designed based on the amino acid sequence of the desired polypeptide and selecting those codons that are favored in the host cell in which the recombinant polypeptide of interest will be produced. Standard methods can be applied to synthesize an isolated polynucleotide sequence encoding an isolated polypeptide of interest. For example, a complete amino acid sequence can be used to construct a back-translated gene.
- a DNA oligomer containing a nucleotide sequence coding for the particular isolated polypeptide can be synthesized. For example, several small oligonucleotides coding for portions of the desired polypeptide can be synthesized and then ligated. The individual oligonucleotides typically contain 5' or 3' overhangs for
- the polynucleotide sequences encoding a particular isolated polypeptide of interest will be inserted into an expression vector and optionally operatively linked to an expression control sequence appropriate for expression of the protein in a desired host. Proper assembly can be confirmed by nucleotide sequencing, restriction mapping, and expression of a biologically active polypeptide in a suitable host. As well known in the art, in order to obtain high expression levels of a transfected gene in a host, the gene can be operatively linked to transcriptional and translational expression control sequences that are functional in the chosen expression host.
- Recombinant expression vectors may be used to amplify and express DNA encoding the tumor specific neo-antigenic peptides.
- Recombinant expression vectors are replicable DNA constructs which have synthetic or cDNA-derived DNA fragments encoding a tumor specific neo-antigenic peptide or a bioequivalent analog operatively linked to suitable transcriptional or translational regulatory elements derived from mammalian, microbial, viral or insect genes.
- a transcriptional unit generally comprises an assembly of (1) a genetic element or elements having a regulatory role in gene expression, for example, transcriptional promoters or enhancers, (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate transcription and translation initiation and termination sequences, as described in detail below.
- a genetic element or elements having a regulatory role in gene expression for example, transcriptional promoters or enhancers
- a structural or coding sequence which is transcribed into mRNA and translated into protein
- appropriate transcription and translation initiation and termination sequences as described in detail below.
- Such regulatory elements can include an operator sequence to control
- DNA regions are operatively linked when they are functionally related to each other.
- DNA for a signal peptide secretory leader
- a promoter is operatively linked to a coding sequence if it controls the transcription of the sequence
- a ribosome binding site is operatively linked to a coding sequence if it is positioned so as to permit translation.
- operatively linked means contiguous, and in the case of secretory leaders, means contiguous and in reading frame.
- Structural elements intended for use in yeast expression systems include a leader sequence enabling extracellular secretion of translated protein by a host cell.
- recombinant protein is expressed without a leader or transport sequence, it can include an N-terminal methionine residue. This residue can optionally be subsequently cleaved from the expressed recombinant protein to provide a final product.
- Useful expression vectors for eukaryotic hosts include, for example, vectors comprising expression control sequences from SV40, bovine papilloma virus, adenovirus and cytomegalovirus.
- Useful expression vectors for bacterial hosts include known bacterial plasmids, such as plasmids from Escherichia coli, including pCR 1, pBR322, pMB9 and their derivatives, wider host range plasmids, such as M13 and filamentous single- stranded DNA phages.
- Suitable host cells for expression of a polypeptide include prokaryotes, yeast, insect or higher eukaryotic cells under the control of appropriate promoters.
- Prokaryotes include gram negative or gram positive organisms, for example E. coli or bacilli.
- Higher eukaryotic cells include established cell lines of mammalian origin. Cell-free translation systems could also be employed.
- Appropriate cloning and expression vectors for use with bacterial, fungal, yeast, and mammalian cellular hosts are well known in the art (see Pouwels et al., Cloning Vectors: A Laboratory Manual, Elsevier, N.Y., 1985).
- mammalian or insect cell culture systems are also advantageously employed to express recombinant protein.
- Expression of recombinant proteins in mammalian cells can be performed because such proteins are generally correctly folded, appropriately modified and completely functional.
- suitable mammalian host cell lines include the COS-7 lines of monkey kidney cells, described by Gluzman (Cell 23: 175, 1981), and other cell lines capable of expressing an appropriate vector including, for example, L cells, C127, 3T3, Chinese hamster ovary (CHO), HeLa and BHK cell lines.
- Mammalian expression vectors can comprise nontranscribed elements such as an origin of replication, a suitable promoter and enhancer linked to the gene to be expressed, and other 5' or 3' flanking nontranscribed sequences, and 5' or 3' nontranslated sequences, such as necessary ribosome binding sites, a polyadenylation site, splice donor and acceptor sites, and transcriptional termination sequences.
- nontranscribed elements such as an origin of replication, a suitable promoter and enhancer linked to the gene to be expressed, and other 5' or 3' flanking nontranscribed sequences, and 5' or 3' nontranslated sequences, such as necessary ribosome binding sites, a polyadenylation site, splice donor and acceptor sites, and transcriptional termination sequences.
- the proteins produced by a transformed host can be purified according to any suitable method.
- standard methods include chromatography (e.g., ion exchange, affinity and sizing column chromatography, and the like), centrifugation, differential solubility, or by any other standard technique for protein purification.
- Affinity tags such as hexahistidine, maltose binding domain, influenza coat sequence, glutathione-S-transferase, and the like can be attached to the protein to allow easy purification by passage over an appropriate affinity column.
- Isolated proteins can also be physically characterized using such techniques as proteolysis, nuclear magnetic resonance and x-ray crystallography.
- supernatants from systems which secrete recombinant protein into culture media can be first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. Following the concentration step, the concentrate can be applied to a suitable purification matrix.
- a suitable purification matrix for example, an anion exchange resin can be employed, for example, a matrix or substrate having pendant diethylaminoethyl (DEAE) groups.
- the matrices can be acrylamide, agarose, dextran, cellulose or other types commonly employed in protein purification.
- a cation exchange step can be employed. Suitable cation exchangers include various insoluble matrices comprising sulfopropyl or carboxymethyl groups.
- RP-HPLC reversed-phase high performance liquid chromatography
- hydrophobic RP-HPLC media e.g., silica gel having pendant methyl or other aliphatic groups
- RP-HPLC reversed-phase high performance liquid chromatography
- Recombinant protein produced in bacterial culture can be isolated, for example, by initial extraction from cell pellets, followed by one or more concentration, salting-out, aqueous ion exchange or size exclusion chromatography steps.
- High performance liquid chromatography (HPLC) can be employed for final purification steps.
- Microbial cells employed in expression of a recombinant protein can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents.
- the present invention also contemplates the use of nucleic acid molecules as vehicles for delivering neo-antigenic peptides/polypeptides to the subject in vivo in the form of, e.g., DNA/RNA vaccines (see, e.g., WO2012/159643, and WO2012/159754, hereby incorporated by reference in their entirety).
- the personalized neoplasia vaccine may include separate DNA plasmids encoding, for example, one or more neo-antigenic peptides/polypeptides as identified in according to the invention.
- the exact choice of expression vectors will depend upon the peptide/polypeptides to be expressed, and is well within the skill of the ordinary artisan.
- the expected persistence of the DNA constructs is expected to provide an increased duration of protection.
- the personalized neoplasia vaccine may include separate RNA or cDNA molecules encoding neo-antigenic peptides/polypeptides of the invention.
- the personalized neoplasia vaccine may include a viral based vector for use in a human patient such as, for example, and adenovirus system (see, e.g., Baden et al. First-in-human evaluation of the safety and immunogenicity of a recombinant adenovirus serotype 26 HIV-1 Env vaccine (IPCAVD 001). J Infect Dis. 2013 Jan 15;207(2):240-7, hereby incorporated by reference in its entirety).
- adenovirus system see, e.g., Baden et al. First-in-human evaluation of the safety and immunogenicity of a recombinant adenovirus serotype 26 HIV-1 Env vaccine (IPCAVD 001). J Infect Dis. 2013 Jan 15;207(2):240-7, hereby incorporated by reference in its entirety).
- the present invention is also directed to pharmaceutical compositions comprising an effective amount of one or more compounds according to the present invention (including a pharmaceutically acceptable salt, thereof), optionally in combination with a pharmaceutically acceptable carrier, excipient or additive.
- a "pharmaceutically acceptable derivative or prodrug” means any pharmaceutically acceptable salt, ester, salt of an ester, or other derivative of a compound of this invention which, upon administration to a recipient, is capable of providing (directly or indirectly) a compound of this invention.
- Particularly favored derivatives and prodrugs are those that increase the bioavailability of the compounds of this invention when such compounds are administered to a mammal (e.g., by allowing an orally or ocularly administered compound to be more readily absorbed into the blood) or which enhance delivery of the parent compound to a biological compartment (e.g., the retina) relative to the parent species.
- tumor specific neo-antigenic peptides of the invention can be administered as the sole active pharmaceutical agent, they can also be used in combination with one or more other agents and/or adjuvants.
- the therapeutic agents can be formulated as separate compositions that are given at the same time or different times, or the therapeutic agents can be given as a single composition.
- the tumor specific neo-antigenic peptides of the present invention may be administered by injection, orally, parenterally, by inhalation spray, rectally, vaginally, or topically in dosage unit formulations containing conventional pharmaceutically acceptable carriers, adjuvants, and vehicles.
- parenteral as used herein includes, into a lymph node or nodes, subcutaneous, intravenous, intramuscular, intrasternal, infusion techniques, intraperitoneally, eye or ocular, intravitreal, intrabuccal, transdermal, intranasal, into the brain, including intracranial and intradural, into the joints, including ankles, knees, hips, shoulders, elbows, wrists, directly into tumors, and the like, and in suppository form.
- the pharmaceutically active compounds of this invention can be processed in accordance with conventional methods of pharmacy to produce medicinal agents for administration to patients, including humans and other mammals.
- Modifications of the active compound can affect the solubility, bioavailability and rate of metabolism of the active species, thus providing control over the delivery of the active species. This can easily be assessed by preparing the derivative and testing its activity according to known methods well within the routine practitioner's skill in the art.
- compositions based upon these chemical compounds comprise the above- described tumor specific neo-antigenic peptides in a therapeutically effective amount for treating diseases and conditions (e.g., a neoplasia/tumor), which have been described herein, optionally in combination with a pharmaceutically acceptable additive, carrier and/or excipient.
- diseases and conditions e.g., a neoplasia/tumor
- a pharmaceutically acceptable additive, carrier and/or excipient e.g., a neoplasia/tumor
- a therapeutically effective amount of one of more compounds according to the present invention will vary with the infection or condition to be treated, its severity, the treatment regimen to be employed, the pharmacokinetics of the agent used, as well as the patient (animal or human) treated.
- a therapeutically effective amount of one or more of the compounds according to the present invention is preferably intimately admixed with a pharmaceutically acceptable carrier according to conventional pharmaceutical compounding techniques to produce a dose.
- a carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., ocular, oral, topical or parenteral, including gels, creams ointments, lotions and time released implantable preparations, among numerous others.
- any of the usual pharmaceutical media may be used.
- suitable carriers and additives including water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like may be used.
- suitable carriers and additives including starches, sugar carriers, such as dextrose, mannitol, lactose and related carriers, diluents, granulating agents, lubricants, binders, disintegrating agents and the like may be used. If desired, the tablets or capsules may be enteric- coated or sustained release by standard techniques.
- the active compound is included in the pharmaceutically acceptable carrier or diluent in an amount sufficient to deliver to a patient a therapeutically effective amount for the desired indication, without causing serious toxic effects in the patient treated.
- Oral compositions will generally include an inert diluent or an edible carrier. They may be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound or its prodrug derivative can be incorporated with excipients and used in the form of tablets, troches, or capsules. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition.
- the tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a dispersing agent such as alginic acid or corn starch; a lubricant such as magnesium stearate; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
- a binder such as microcrystalline cellulose, gum tragacanth or gelatin
- an excipient such as starch or lactose, a dispersing agent such as alginic acid or corn starch
- a lubricant such as magnesium stearate
- a glidant such as colloidal silicon dioxide
- a sweetening agent such as sucrose or saccharin
- a flavoring agent
- dosage unit forms can contain various other materials which modify the physical form of the dosage unit, for example, coatings of sugar, shellac, or enteric agents.
- Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous liquid or a non-aqueous liquid; or as an oil-in- water liquid emulsion or a water-in-oil emulsion and as a bolus, etc.
- a tablet may be made by compression or molding, optionally with one or more accessory ingredients.
- Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, preservative, surface-active or dispersing agent. Molded tablets may be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent. The tablets optionally may be coated or scored and may be formulated so as to provide slow or controlled release of the active ingredient therein.
- the active compound or pharmaceutically acceptable salt thereof may also be any organic compound.
- a syrup may contain, in addition to the active compounds, sucrose or fructose as a sweetening agent and certain preservatives, dyes and colorings and flavors.
- Solutions or suspensions used for ocular, parenteral, intradermal, subcutaneous, or topical application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid;
- a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents
- antibacterial agents such as benzyl alcohol or methyl parabens
- antioxidants such as ascorbic acid or sodium bisulfite
- chelating agents such as ethylenediaminetetraacetic acid
- the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems.
- a controlled release formulation including implants and microencapsulated delivery systems.
- Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, polylactic acid, and polylactic-co-glycolic acid (PLGA). Methods for preparation of such formulations will be apparent to those skilled in the art.
- dosage forms can be formulated to provide slow or controlled release of the active ingredient.
- dosage forms include, but are not limited to, capsules, granulations and gel-caps.
- Liposomal suspensions may also be pharmaceutically acceptable carriers. These may be prepared according to methods known to those skilled in the art. For example, liposomal formulations may be prepared by dissolving appropriate lipid(s) in an inorganic solvent that is then evaporated, leaving behind a thin film of dried lipid on the surface of the container. An aqueous solution of the active compound are then introduced into the container. The container is then swirled by hand to free lipid material from the sides of the container and to disperse lipid aggregates, thereby forming the liposomal suspension. Other methods of preparation well known by those of ordinary skill may also be used in this aspect of the present invention.
- the formulations may conveniently be presented in unit dosage form and may be prepared by conventional pharmaceutical techniques. Such techniques include the step of bringing into association the active ingredient and the pharmaceutical carrier(s) or excipient(s). In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.
- Formulations and compositions suitable for topical administration in the mouth include lozenges comprising the ingredients in a flavored basis, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia; and mouthwashes comprising the ingredient to be administered in a suitable liquid carrier.
- Formulations suitable for topical administration to the skin may be presented as ointments, creams, gels and pastes comprising the ingredient to be administered in a
- a preferred topical delivery system is a transdermal patch containing the ingredient to be administered.
- Formulations for rectal administration may be presented as a suppository with a suitable base comprising, for example, cocoa butter or a salicylate.
- Formulations suitable for nasal administration include a coarse powder having a particle size, for example, in the range of 20 to 500 microns which is administered in the manner in which snuff is administered, i.e., by rapid inhalation through the nasal passage from a container of the powder held close up to the nose.
- Suitable formulations, wherein the carrier is a liquid, for administration, as for example, a nasal spray or as nasal drops, include aqueous or oily solutions of the active ingredient.
- Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or spray formulations containing in addition to the active ingredient such carriers as are known in the art to be appropriate.
- the parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
- preferred carriers include, for example, physiological saline or phosphate buffered saline (PBS).
- PBS phosphate buffered saline
- the carrier will usually comprise sterile water or aqueous sodium chloride solution, though other ingredients including those which aid dispersion may be included.
- Injectable suspensions may also be prepared, in which case appropriate liquid carriers, suspending agents and the like may be employed.
- Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain antioxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.
- the formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example, water for injections, immediately prior to use.
- Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described.
- Administration of the active compound may range from continuous (intravenous drip) to several oral administrations per day (for example, Q.I.D.) and may include oral, topical, eye or ocular, parenteral, intramuscular, intravenous, sub-cutaneous, transdermal (which may include a penetration enhancement agent), buccal and suppository administration, among other routes of administration, including through an eye or ocular route.
- Application of the subject therapeutics may be local, so as to be administered at the site of interest.
- Various techniques can be used for providing the subject compositions at the site of interest, such as injection, use of catheters, trocars, projectiles, pluronic gel, stents, sustained drug release polymers or other device which provides for internal access.
- the subject compositions may be painted onto the organ, or may be applied in any convenient way.
- the tumor specific neo-antigenic peptides may be administered through a device suitable for the controlled and sustained release of a composition effective in obtaining a desired local or systemic physiological or pharmacological effect.
- the method includes positioning the sustained released drug delivery system at an area wherein release of the agent is desired and allowing the agent to pass through the device to the desired area of treatment.
- the tumor specific neo-antigenic peptides may be utilized in combination with at least one known other therapeutic agent, or a pharmaceutically acceptable salt of said agent.
- known therapeutic agents which can be used for combination therapy include, but are not limited to, corticosteroids (e.g., cortisone, prednisone, dexamethasone), non-steroidal antiinflammatory drugs (NSAIDS) (e.g., ibuprofen, celecoxib, aspirin, indomethicin, naproxen), alkylating agents such as busulfan, cis-platin, mitomycin C, and carboplatin; antimitotic agents such as colchicine, vinblastine, paclitaxel, and docetaxel; topo I inhibitors such as camptothecin and topotecan; topo II inhibitors such as doxorubicin and etoposide; and/or RNA/DNA antimetabolites such as 5-azacytidine, 5-fluorouracil and methotre
- formulations of the present invention may include other agents conventional in the art having regard to the type of formulation in question, for example, those suitable for oral administration may include flavoring agents.
- the pro-drug form of the compounds may be preferred.
- One of ordinary skill in the art will recognize how to readily modify the present compounds to pro-drug forms to facilitate delivery of active compounds to a targeted site within the host organism or patient. The routine practitioner also will take advantage of favorable pharmacokinetic parameters of the pro-drug forms, where applicable, in delivering the present compounds to a targeted site within the host organism or patient to maximize the intended effect of the compound.
- Preferred prodrugs include derivatives where a group which enhances aqueous solubility or active transport through the gut membrane is appended to the structure of formulae described herein. See, e.g., Alexander, J. et al. Journal of Medicinal Chemistry 1988, 31, 318-322;
- Bundgaard H. Design of Prodrugs; Elsevier: Amsterdam, 1985; pp 1-92; Bundgaard, H.;
- the prodrug forms may be active themselves, or may be those such that when metabolized after administration provide the active therapeutic agent in vivo.
- Pharmaceutically acceptable salt forms may be the preferred chemical form of compounds according to the present invention for inclusion in pharmaceutical compositions according to the present invention.
- salts or complexes refers to appropriate salts or complexes of the active compounds according to the present invention which retain the desired biological activity of the parent compound and exhibit limited toxicological effects to normal cells.
- Nonlimiting examples of such salts are (a) acid addition salts formed with inorganic acids (for example, hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid, and the like), and salts formed with organic acids such as acetic acid, oxalic acid, tartaric acid, succinic acid, malic acid, ascorbic acid, benzoic acid, tannic acid, pamoic acid, alginic acid, and polyglutamic acid, among others; (b) base addition salts formed with metal cations such as zinc, calcium, sodium, potassium, and the like, among numerous others.
- the additional agents that may be included with the tumor specific neo-antigenic peptides of this invention may contain one or more asymmetric centers and thus occur as racemates and racemic mixtures, single enantiomers, individual diastereomers and diastereomeric mixtures. All such isomeric forms of these compounds are expressly included in the present invention.
- the compounds of this invention may also be represented in multiple tautomeric forms, in such instances, the invention expressly includes all tautomeric forms of the compounds described herein (e.g., alkylation of a ring system may result in alkylation at multiple sites, the invention expressly includes all such reaction products). All such isomeric forms of such compounds are expressly included in the present invention. All crystal forms of the compounds described herein are expressly included in the present invention.
- Preferred unit dosage formulations are those containing a daily dose or unit, daily sub- dose, as hereinabove recited, or an appropriate fraction thereof, of the administered ingredient.
- the dosage regimen for treating a disorder or a disease with the tumor specific neo- antigenic peptides of this invention and/or compositions of this invention is based on a variety of factors, including the type of disease, the age, weight, sex, medical condition of the patient, the severity of the condition, the route of administration, and the particular compound employed. Thus, the dosage regimen may vary widely, but can be determined routinely using standard methods.
- the amounts and dosage regimens administered to a subject will depend on a number of factors, such as the mode of administration, the nature of the condition being treated, the body weight of the subject being treated and the judgment of the prescribing physician.
- the amount of compound included within therapeutically active formulations according to the present invention is an effective amount for treating the disease or condition.
- a therapeutically effective amount of the present preferred compound in dosage form usually ranges from slightly less than about 0.025 mg/kg/day to about 2.5 g/kg/day, preferably about 0.1 mg/kg/day to about 100 mg/kg/day of the patient or considerably more, depending upon the compound used, the condition or infection treated and the route of administration, although exceptions to this dosage range may be contemplated by the present invention.
- compounds according to the present invention are administered in amounts ranging from about 1 mg/kg/day to about 100 mg/kg/day.
- the dosage of the compound will depend on the condition being treated, the particular compound, and other clinical factors such as weight and condition of the patient and the route of administration of the compound. It is to be understood that the present invention has application for both human and veterinary use.
- this dosage range generally produces effective blood level concentrations of active compound ranging from less than about 0.04 to about 400 micrograms/cc or more of blood in the patient.
- the compound is conveniently administered in any suitable unit dosage form, including but not limited to one containing 0.001 to 3000 mg, preferably 0.05 to 500 mg of active ingredient per unit dosage form.
- An oral dosage of 10-250 mg is usually convenient.
- the concentration of active compound in the drug composition will depend on absorption, distribution, inactivation, and excretion rates of the drug as well as other factors known to those of skill in the art. It is to be noted that dosage values will also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that the concentration ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed composition.
- the active ingredient may be administered at once, or may be divided into a number of smaller doses to be administered at varying intervals of time.
- the compound is administered once daily; in other embodiments, the compound is administered twice daily; in yet other embodiments, the compound is administered once every two days, once every three days, once every four days, once every five days, once every six days, once every seven days, once every two weeks, once every three weeks, once every four weeks, once every two months, once every six months, or once per year.
- the dosing interval can be adjusted according to the needs of individual patients. For longer intervals of administration, extended release or depot formulations can be used.
- the compounds of the invention can be used to treat diseases and disease conditions that are acute, and may also be used for treatment of chronic conditions.
- the compounds of the invention are administered for time periods exceeding two weeks, three weeks, one month, two months, three months, four months, five months, six months, one year, two years, three years, four years, or five years, ten years, or fifteen years; or for example, any time period range in days, months or years in which the low end of the range is any time period between 14 days and 15 years and the upper end of the range is between 15 days and 20 years (e.g., 4 weeks and 15 years, 6 months and 20 years).
- the patient is monitored to check the progression of the disease or disorder, and the dose is adjusted accordingly.
- treatment according to the invention is effective for at least two weeks, three weeks, one month, two months, three months, four months, five months, six months, one year, two years, three years, four years, or five years, ten years, fifteen years, twenty years, or for the remainder of the subject's life.
- the invention provides for pharmaceutical compositions containing at least one tumor specific neo-antigen described herein.
- the pharmaceutical compositions contain a pharmaceutically acceptable carrier, excipient, or diluent, which includes any pharmaceutical agent that does not itself induce the production of an immune response harmful to a subject receiving the composition, and which may be administered without undue toxicity.
- the term "pharmaceutically acceptable” means being approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopia, European Pharmacopia or other generally recognized pharmacopia for use in mammals, and more particularly in humans. These compositions can be useful for treating and/or preventing viral infection and/or autoimmune disease.
- pharmaceutically acceptable carriers, diluents, and other excipients is presented in Remington's Pharmaceutical Sciences (17th ed., Mack Publishing Company) and Remington: The Science and Practice of Pharmacy (21st ed., Lippincott Williams & Wilkins), which are hereby incorporated by reference.
- the formulation of the pharmaceutical composition should suit the mode of administration.
- the pharmaceutical composition is suitable for administration to humans, and can be sterile, non-particulate and/or non-pyrogenic.
- Pharmaceutically acceptable carriers, excipients, or diluents include, but are not limited, to saline, buffered saline, dextrose, water, glycerol, ethanol, sterile isotonic aqueous buffer, and combinations thereof.
- wetting agents such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives, and antioxidants can also be present in the compositions.
- antioxidants examples include, but are not limited to: (1) water soluble antioxidants, such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like; (2) oil-soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, alpha-tocopherol, and the like; and (3) metal chelating agents, such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like.
- water soluble antioxidants such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like
- oil-soluble antioxidants such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluen
- the pharmaceutical composition is provided in a solid form, such as a lyophilized powder suitable for reconstitution, a liquid solution, suspension, emulsion, tablet, pill, capsule, sustained release formulation, or powder.
- the pharmaceutical composition is supplied in liquid form, for example, in a sealed container indicating the quantity and concentration of the active ingredient in the pharmaceutical composition.
- the liquid form of the pharmaceutical composition is supplied in a hermetically sealed container.
- compositions of the present invention are conventional and well known in the art (see Remington and Remington's).
- One of skill in the art can readily formulate a pharmaceutical composition having the desired characteristics (e.g., route of administration, biosafety, and release profile).
- Methods for preparing the pharmaceutical compositions include the step of bringing into association the active ingredient with a pharmaceutically acceptable carrier and, optionally, one or more accessory ingredients.
- the pharmaceutical compositions can be prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product. Additional methodology for preparing the pharmaceutical compositions, including the preparation of multilayer dosage forms, are described in Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems (9th ed., Lippincott Williams & Wilkins), which is hereby incorporated by reference.
- compositions suitable for oral administration can be in the form of capsules, cachets, pills, tablets, lozenges (using a flavored basis, usually sucrose and acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia) and/or as mouth washes and the like, each containing a predetermined amount of a compound(s) described herein, a derivative thereof, or a pharmaceutically acceptable salt or prodrug thereof as the active ingredient(s).
- the active ingredient can also be administered as a bolus, electuary, or paste.
- solid dosage forms for oral administration e.g., capsules, tablets, pills, dragees, powders, granules and the like
- the active ingredient is mixed with one or more
- pharmaceutically acceptable carriers, excipients, or diluents such as sodium citrate or dicalcium phosphate, and/or any of the following: (1) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose and/or acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as quaternary ammonium compounds; (7) wetting agents, such as, for example, acetyl alcohol and glycerol monostearate; (8) absorbents, such as kaolin and bentonite clay
- compositions can also comprise buffering agents.
- Solid compositions of a similar type can also be prepared using fillers in soft and hard-filled gelatin capsules, and excipients such as lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.
- a tablet can be made by compression or molding, optionally with one or more accessory ingredients.
- Compressed tablets can be prepared using binders (for example, gelatin or hydroxypropylmethyl cellulose), lubricants, inert diluents, preservatives, disintegrants (for example, sodium starch glycolate or cross-linked sodium carboxymethyl cellulose), surface- actives, and/ or dispersing agents.
- Molded tablets can be made by molding in a suitable machine a mixture of the powdered active ingredient moistened with an inert liquid diluent.
- the tablets and other solid dosage forms can optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the art.
- the absorption of the compound in order to prolong the effect of an active ingredient, it is desirable to slow the absorption of the compound from subcutaneous or intramuscular injection. This can be accomplished by the use of a liquid suspension of crystalline or amorphous material having poor water solubility. The rate of absorption of the active ingredient then depends upon its rate of dissolution which, in turn, can depend upon crystal size and crystalline form.
- delayed absorption of a parenterally-administered active ingredient is accomplished by dissolving or suspending the compound in an oil vehicle.
- prolonged absorption of the injectable pharmaceutical form can be brought about by the inclusion of agents that delay absorption such as aluminum mono stearate and gelatin.
- Controlled release parenteral compositions can be in form of aqueous suspensions, microspheres, microcapsules, magnetic microspheres, oil solutions, oil suspensions, emulsions, or the active ingredient can be incorporated in biocompatible carrier(s), liposomes, nanoparticles, implants or infusion devices.
- Materials for use in the preparation of microspheres and/or microcapsules include biodegradable/bioerodible polymers such as polyglactin, poly-(isobutyl cyanoacrylate), poly(2- hydroxyethyl-L-glutamine) and poly(lactic acid).
- Biocompatible carriers which can be used when formulating a controlled release parenteral formulation include carbohydrates such as dextrans, proteins such as albumin, lipoproteins or antibodies.
- Materials for use in implants can be non-biodegradable, e.g., polydimethylsiloxane, or biodegradable such as, e.g., poly(caprolactone), poly(lactic acid), poly(glycolic acid) or poly(ortho esters).
- biodegradable e.g., poly(caprolactone), poly(lactic acid), poly(glycolic acid) or poly(ortho esters).
- the active ingredient(s) are administered by aerosol. This is
- aqueous aerosol e.g., liposomal preparation, or solid particles containing the compound.
- a nonaqueous (e.g., fluorocarbon propellant) suspension can be used.
- the pharmaceutical composition can also be administered using a sonic nebulizer, which would minimize exposing the agent to shear, which can result in degradation of the compound.
- an aqueous aerosol is made by formulating an aqueous solution or suspension of the active ingredient(s) together with conventional pharmaceutically-acceptable carriers and stabilizers.
- the carriers and stabilizers vary with the requirements of the particular compound, but typically include nonionic surfactants (Tweens, Pluronics, or polyethylene glycol), innocuous proteins like serum albumin, sorbitan esters, oleic acid, lecithin, amino acids such as glycine, buffers, salts, sugars or sugar alcohols.
- Aerosols generally are prepared from isotonic solutions.
- Dosage forms for topical or transdermal administration of an active ingredient(s) includes powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches and inhalants.
- the active ingredient(s) can be mixed under sterile conditions with a pharmaceutically acceptable carrier, and with any preservatives, buffers, or propellants as appropriate.
- Transdermal patches suitable for use in the present invention are disclosed in
- transdermal Drug Delivery Developmental Issues and Research Initiatives (Marcel Dekker Inc., 1989) and U.S. Pat. Nos. 4,743,249, 4,906,169, 5,198,223, 4,816,540, 5,422,119, 5,023,084, which are hereby incorporated by reference.
- the transdermal patch can also be any transdermal patch well known in the art, including transscrotal patches.
- Pharmaceutical compositions in such transdermal patches can contain one or more absorption enhancers or skin permeation enhancers well known in the art (see, e.g., U.S. Pat. Nos. 4,379,454 and 4,973,468, which are hereby incorporated by reference).
- Transdermal therapeutic systems for use in the present invention can be based on iontophoresis, diffusion, or a combination of these two effects.
- Transdermal patches have the added advantage of providing controlled delivery of active ingredient(s) to the body.
- dosage forms can be made by dissolving or dispersing the active ingredient(s) in a proper medium.
- Absorption enhancers can also be used to increase the flux of the active ingredient across the skin. The rate of such flux can be controlled by either providing a rate controlling membrane or dispersing the active ingredient(s) in a polymer matrix or gel.
- compositions can be in the form of creams, ointments, lotions, liniments, gels, hydrogels, solutions, suspensions, sticks, sprays, pastes, plasters and other kinds of transdermal drug delivery systems.
- the compositions can also include pharmaceutically acceptable carriers or excipients such as emulsifying agents, antioxidants, buffering agents, preservatives, humectants, penetration enhancers, chelating agents, gel-forming agents, ointment bases, perfumes, and skin protective agents.
- emulsifying agents include, but are not limited to, naturally occurring gums, e.g. gum acacia or gum tragacanth, naturally occurring phosphatides, e.g. soybean lecithin and sorbitan monooleate derivatives.
- antioxidants include, but are not limited to, butylated hydroxy anisole
- BHA ascorbic acid and derivatives thereof, tocopherol and derivatives thereof, and cysteine.
- preservatives include, but are not limited to, parabens, such as methyl or propyl p-hydroxybenzoate and benzalkonium chloride.
- humectants include, but are not limited to, glycerin, propylene glycol, sorbitol and urea.
- penetration enhancers include, but are not limited to, propylene glycol, DMSO, triethanolamine, N,N-dimethylacetamide, ⁇ , ⁇ -dimethylformamide, 2-pyrrolidone and derivatives thereof, tetrahydrofurfuryl alcohol, propylene glycol, diethylene glycol monoethyl or monomethyl ether with propylene glycol monolaurate or methyl laurate, eucalyptol, lecithin, Transcutol ® , and Azone ® .
- chelating agents include, but are not limited to, sodium EDTA, citric acid and phosphoric acid.
- gel forming agents include, but are not limited to, Carbopol, cellulose derivatives, bentonite, alginates, gelatin and polyvinylpyrrolidone.
- the ointments, pastes, creams, and gels of the present invention can contain excipients, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
- excipients such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
- Powders and sprays can contain excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances.
- Sprays can additionally contain customary propellants, such as chlorofluorohydrocarbons, and volatile unsubstituted hydrocarbons, such as butane and propane.
- Injectable depot forms are made by forming microencapsule matrices of compound(s) of the invention in biodegradable polymers such as polylactide-polyglycolide. Depending on the ratio of compound to polymer, and the nature of the particular polymer employed, the rate of compound release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissue.
- Subcutaneous implants are well known in the art and are suitable for use in the present invention.
- Subcutaneous implantation methods are preferably non-irritating and mechanically resilient.
- the implants can be of matrix type, of reservoir type, or hybrids thereof.
- the carrier material can be porous or non-porous, solid or semi-solid, and permeable or impermeable to the active compound or compounds.
- the carrier material can be biodegradable or may slowly erode after administration.
- the matrix is non- degradable but instead relies on the diffusion of the active compound through the matrix for the carrier material to degrade.
- Alternative subcutaneous implant methods utilize reservoir devices where the active compound or compounds are surrounded by a rate controlling membrane, e.g., a membrane independent of component concentration (possessing zero-order kinetics). Devices consisting of a matrix surrounded by a rate controlling membrane also suitable for use.
- a rate controlling membrane e.g., a membrane independent of component concentration (possessing zero-order kinetics).
- Both reservoir and matrix type devices can contain materials such as
- Matrix materials can be insoluble polypropylene, polyethylene, polyvinyl chloride, ethylvinyl acetate, polystyrene and polymethacrylate, as well as glycerol esters of the glycerol palmitostearate, glycerol stearate, and glycerol behenate type. Materials can be hydrophobic or hydrophilic polymers and optionally contain solubilizing agents.
- Subcutaneous implant devices can be slow-release capsules made with any suitable polymer, e.g., as described in U.S. Pat. Nos. 5,035,891 and 4,210,644, which are hereby incorporated by reference.
- At least four different approaches are applicable in order to provide rate control over the release and transdermal permeation of a drug compound. These approaches are: membrane-moderated systems, adhesive diffusion-controlled systems, matrix dispersion-type systems and microreservoir systems. It is appreciated that a controlled release percutaneous and/or topical composition can be obtained by using a suitable mixture of these approaches.
- the active ingredient is present in a reservoir which is totally encapsulated in a shallow compartment molded from a drug-impermeable laminate, such as a metallic plastic laminate, and a rate-controlling polymeric membrane such as a microporous or a non-porous polymeric membrane, e.g., ethylene- vinyl acetate copolymer.
- a rate-controlling polymeric membrane such as a microporous or a non-porous polymeric membrane, e.g., ethylene- vinyl acetate copolymer.
- the active ingredient is released through the rate controlling polymeric membrane.
- the active ingredient can either be dispersed in a solid polymer matrix or suspended in an unleachable, viscous liquid medium such as silicone fluid.
- a thin layer of an adhesive polymer is applied to achieve an intimate contact of the transdermal system with the skin surface.
- the adhesive polymer is preferably a polymer which is hypoallergenic and compatible with the active drug substance.
- a reservoir of the active ingredient is formed by directly dispersing the active ingredient in an adhesive polymer and then by, e.g., solvent casting, spreading the adhesive containing the active ingredient onto a flat sheet of substantially drug-impermeable metallic plastic backing to form a thin drug reservoir layer.
- a matrix dispersion-type system is characterized in that a reservoir of the active ingredient is formed by substantially homogeneously dispersing the active ingredient in a hydrophilic or lipophilic polymer matrix.
- the drug-containing polymer is then molded into disc with a substantially well-defined surface area and controlled thickness.
- the adhesive polymer is spread along the circumference to form a strip of adhesive around the disc.
- a microreservoir system can be considered as a combination of the reservoir and matrix dispersion type systems.
- the reservoir of the active substance is formed by first suspending the drug solids in an aqueous solution of water-soluble polymer and then dispersing the drug suspension in a lipophilic polymer to form a multiplicity of unleachable, microscopic spheres of drug reservoirs.
- any of the above-described controlled release, extended release, and sustained release compositions can be formulated to release the active ingredient in about 30 minutes to about 1 week, in about 30 minutes to about 72 hours, in about 30 minutes to 24 hours, in about 30 minutes to 12 hours, in about 30 minutes to 6 hours, in about 30 minutes to 4 hours, and in about 3 hours to 10 hours.
- an effective concentration of the active ingredient(s) is sustained in a subject for 4 hours, 6 hours, 8 hours, 10 hours, 12 hours, 16 hours, 24 hours, 48 hours, 72 hours, or more after administration of the pharmaceutical compositions to the subject.
- agents described herein When the agents described herein are administered as pharmaceuticals to humans or animals, they can be given per se or as a pharmaceutical composition containing active ingredient in combination with a pharmaceutically acceptable carrier, excipient, or diluent. Actual dosage levels and time course of administration of the active ingredients in the pharmaceutical compositions of the invention can be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient. Generally, agents or pharmaceutical compositions of the invention are administered in an amount sufficient to reduce or eliminate symptoms associated with viral infection and/or autoimmune disease.
- Exemplary dose ranges include 0.01 mg to 250 mg per day, 0.01 mg to 100 mg per day, 1 mg to 100 mg per day, 10 mg to 100 mg per day, 1 mg to 10 mg per day, and 0.01 mg to 10 mg per day.
- a preferred dose of an agent is the maximum that a patient can tolerate and not develop serious or unacceptable side effects.
- the agent is administered at a
- the pharmaceutical composition comprises an agent in an amount ranging between 1 and 10 mg, such as 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 mg.
- the therapeutically effective dosage produces a serum concentration of an agent of from about 0.1 ng/ml to about 50-100 ⁇ g/ml.
- the pharmaceutical compositions typically should provide a dosage of from about 0.001 mg to about 2000 mg of compound per kilogram of body weight per day.
- dosages for systemic administration to a human patient can range from 1-10 ⁇ g/kg, 20-80 ⁇ g/kg, 5-50 ⁇ g/kg, 75-150 ⁇ g/kg, 100-500 ⁇ g/kg, 250- 750 ⁇ g/kg, 500-1000 ⁇ g/kg, 1-10 mg/kg, 5-50 mg/kg, 25-75 mg/kg, 50-100 mg/kg, 100-250 mg/kg, 50-100 mg/kg, 250-500 mg/kg, 500-750 mg/kg, 750-1000 mg/kg, 1000-1500 mg/kg, 1500-2000 mg/kg, 5 mg/kg, 20 mg/kg, 50 mg/kg, 100 mg/kg, 500 mg/kg, 1000 mg/kg, 1500 mg/kg, or 2000 mg/kg.
- Pharmaceutical dosage unit forms are prepared to provide from about 1 mg to about 5000 mg, for example from about 100 to about 2500 mg of the compound or a combination of essential ingredients per dosage unit form.
- about 50 nM to about ⁇ of an agent is administered to a subject.
- about 50-100 nM, 50-250 nM, 100-500 nM, 250-500 nM, 250-750 nM, 500-750 nM, 500 nM to 1 ⁇ , or 750 nM to ⁇ of an agent is administered to a subject. Determination of an effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein.
- an efficacious or effective amount of an agent is determined by first administering a low dose of the agent(s) and then incrementally increasing the administered dose or dosages until a desired effect (e.g., reduce or eliminate symptoms associated with viral infection or autoimmune disease) is observed in the treated subject, with minimal or acceptable toxic side effects.
- a desired effect e.g., reduce or eliminate symptoms associated with viral infection or autoimmune disease
- determining an appropriate dose and dosing schedule for administration of a pharmaceutical composition of the present invention are described, for example, in Goodman and Oilman's The Pharmacological Basis of Therapeutics, Goodman et al., eds., 11th Edition, McGraw-Hill 2005, and Remington: The Science and Practice of Pharmacy, 20th and 21st Editions, Gennaro and University of the Sciences in Philadelphia, Eds., Lippencott Williams & Wilkins (2003 and 2005), each of which is hereby incorporated by reference.
- the tumor specific neo-antigen peptides and pharmaceutical compositions described herein can also be administered in combination with another therapeutic molecule.
- therapeutic molecule can be any compound used to mitigate neoplasia, or symptoms thereof.
- Such compounds include, but are not limited to, chemotherapeutic agents, anti— angiogenesis agents, checkpoint blockade antibodies or other molecules that reduce immune- suppression, and the like.
- the tumor specific neo-antigen peptides can be administered before, during, or after administration of the additional therapeutic agent. In embodiments, the tumor specific neo-antigen peptides are administered before the first administration of the additional therapeutic agent. In embodiments, the tumor specific neo-antigen peptides are administered after the first administration of the additional therapeutic agent (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 days or more). In embodiments, the tumor specific neo-antigen peptides are administered simultaneously with the first administration of the additional therapeutic agent.
- the present invention is directed to an immunogenic composition, e.g., a vaccine composition capable of raising a specific T-cell response.
- the vaccine composition comprises mutant neo-antigenic peptides and mutant neo-antigenic polypeptides corresponding to tumor specific neo-antigens identified by the methods described herein.
- a suitable vaccine will preferably contain a plurality of tumor specific neo-antigenic peptides.
- the vaccine will include between 1 and 100 sets peptides, more preferably between 1 and 50 such peptides, even more preferably between 10 and 30 sets peptides, even more preferably between 15 and 25 peptides.
- the vaccine will include approximately 20 peptides, more preferably 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 different peptides, further preferred 6, 7, 8, 9, 10 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 different peptides, and most preferably 18, 19, 20, 21, 22, 23, 24, or 25 different peptides.
- the different tumor specific neo-antigenic peptides and/or polypeptides are selected for use in the neoplasia vaccine so as to maximize the likelihood of generating an immune attack against the neoplasia/tumor of the patient. Without being bound by theory, it is believed that the inclusion of a diversity of tumor specific neo- antigenic peptides will generate a broad scale immune attack against a neoplasia/tumor.
- the selected tumor specific neo-antigenic peptides/polypeptides are encoded by missense mutations.
- the selected tumor specific neo-antigenic peptides/polypeptides are encoded by a combination of missense mutations and neoORF mutations.
- the selected tumor specific neo-antigenic peptides/polypeptides are encoded by a combination of missense mutations and neoORF mutations.
- peptides/polypeptides are encoded by neoORF mutations.
- peptides/polypeptides are encoded by missense mutations, the peptides and/or polypeptides are chosen based on their capability to associate with the particular MHC molecules of the patient. Peptides/polypeptides derived from neoORF mutations can also be selected on the basis of their capability to associate with the particular MHC molecules of the patient, but can also be selected even if not predicted to associate with the particular MHC molecules of the patient.
- the vaccine composition is capable of raising a specific cytotoxic T-cells response and/or a specific helper T-cell response.
- the vaccine composition can further comprise an adjuvant and/or a carrier.
- an adjuvant and/or a carrier examples of useful adjuvants and carriers are given herein below.
- the peptides and/or polypeptides in the composition can be associated with a carrier such as, e.g., a protein or an antigen-presenting cell such as e.g. a dendritic cell (DC) capable of presenting the peptide to a T-cell.
- a carrier such as, e.g., a protein or an antigen-presenting cell such as e.g. a dendritic cell (DC) capable of presenting the peptide to a T-cell.
- DC dendritic cell
- Adjuvants are any substance whose admixture into the vaccine composition increases or otherwise modifies the immune response to the mutant peptide.
- Carriers are scaffold structures, for example a polypeptide or a polysaccharide, to which the neo-antigenic peptides, is capable of being associated.
- adjuvants are conjugated covalently or non-covalently to the peptides or polypeptides of the invention.
- an adjuvant to increase the immune response to an antigen is typically manifested by a significant increase in immune-mediated reaction, or reduction in disease symptoms.
- an increase in humoral immunity is typically manifested by a significant increase in the titer of antibodies raised to the antigen
- an increase in T-cell activity is typically manifested in increased cell proliferation, or cellular cytotoxicity, or cytokine secretion.
- An adjuvant may also alter an immune response, for example, by changing a primarily humoral or Th2 response into a primarily cellular, or Thl response.
- Suitable adjuvants include, but are not limited to 1018 ISS, aluminum salts, Amplivax,
- cytokines may be used.
- TNF-alpha lymphoid tissues
- IL-1 and IL-4 efficient antigen -presenting cells for T-lymphocytes
- immunoadjuvants e.g., IL-12
- TLRs Toll like receptors
- PRRs pattern recognition receptors
- TLRs are expressed by cells of the innate and adaptive immune systems such as dendritic cells (DCs), macrophages, T and B cells, mast cells, and granulocytes and are localized in different cellular compartments, such as the plasma membrane, lysosomes, endosomes, and endolysosomes.
- DCs dendritic cells
- TLR9 is activated by unmethylated bacterial or viral CpG DNA
- TLR3 is activated by double stranded RNA.
- TLR ligand binding leads to the activation of one or more intracellular signaling pathways, ultimately resulting in the production of many key molecules associated with inflammation and immunity (particularly the transcription factor NF- ⁇ and the Type-I interferons).
- TLR mediated DC activation leads to enhanced DC activation, phagocytosis, upregulation of activation and co- stimulation markers such as CD80, CD83, and CD86, expression of CCR7 allowing migration of DC to draining lymph nodes and facilitating antigen presentation to T cells, as well as increased secretion of cytokines such as type I interferons, IL-12, and IL-6. All of these downstream events are critical for the induction of an adaptive immune response.
- TLR9 agonist CpG the TLR9 agonist CpG and the synthetic double- stranded RNA (dsRNA) TLR3 ligand poly- ICLC.
- dsRNA double- stranded RNA
- poly-ICLC appears to be the most potent TLR adjuvant when compared to LPS and CpG due to its induction of pro-inflammatory cytokines and lack of stimulation of IL-10, as well as maintenance of high levels of co-stimulatory molecules in DCs.
- poly-ICLC was recently directly compared to CpG in non-human primates (rhesus macaques) as adjuvant for a protein vaccine consisting of human papillomavirus (HPV)16 capsomers (Stahl-Hennig C, Eisenblatter M, Jasny E, et al. Synthetic double- stranded RNAs are adjuvants for the induction of T helper 1 and humoral immune responses to human
- CpG immuno stimulatory oligonucleotides have also been reported to enhance the effects of adjuvants in a vaccine setting.
- CpG oligonucleotides act by activating the innate (non- adaptive) immune system via Toll-like receptors (TLR), mainly TLR9.
- TLR Toll-like receptors
- CpG triggered TLR9 activation enhances antigen- specific humoral and cellular responses to a wide variety of antigens, including peptide or protein antigens, live or killed viruses, dendritic cell vaccines, autologous cellular vaccines and polysaccharide conjugates in both prophylactic and therapeutic vaccines.
- Thl cytotoxic T- lymphocyte
- IFA incomplete Freund's adjuvant
- CpG oligonucleotides show even greater adjuvant activity when formulated or co-administered with other adjuvants or in formulations such as microparticles, nano particles, lipid emulsions or similar formulations, which are especially necessary for inducing a strong response when the antigen is relatively weak.
- U.S. Pat. No. 6,406,705 Bl describes the combined use of CpG oligonucleotides, non-nucleic acid adjuvants and an antigen to induce an antigen- specific immune response.
- a commercially available CpG TLR9 antagonist is dSLIM (double Stem Loop Immunomodulator) by Mologen (Berlin, GERMANY), which is a preferred component of the pharmaceutical composition of the present invention.
- Other TLR binding molecules such as RNA binding TLR 7, TLR 8 and/or TLR 9 may also be used.
- Xanthenone derivatives such as, for example, Vadimezan or AsA404 (also known as 5,6- dimethylaxanthenone-4-acetic acid (DMXAA)), may also be used as adjuvants according to embodiments of the invention. Alternatively, such derivatives may also be administered in parallel to the vaccine of the invention, for example via systemic or intratumoral delivery, to stimulate immunity at the tumor site. Without being bound by theory, it is believed that such xanthenone derivatives act by stimulating interferon (IFN) production via the stimulator of IFN gene ISTING) receptor (see e.g., Conlon et al.
- IFN interferon
- CpGs e.g. CpR, Idera
- Poly(I:C) e.g. polyi:CI2U
- non-CpG bacterial DNA or RNA as well as immunoactive small molecules and antibodies such as cyclophosphamide, sunitinib
- adjuvants and additives useful in the context of the present invention can readily be determined by the skilled artisan without undue experimentation.
- Additional adjuvants include colony- stimulating factors, such as Granulocyte Macrophage Colony Stimulating Factor (GM-CSF, sargramostim).
- GM-CSF Granulocyte Macrophage Colony Stimulating Factor
- Poly-ICLC is a synthetically prepared double- stranded RNA consisting of polyl and polyC strands of average length of about 5000 nucleotides, which has been stabilized to thermal denaturation and hydrolysis by serum nucleases by the addition of polylysine and
- the compound activates TLR3 and the RNA helicase-domain of MDA5, both members of the PAMP family, leading to DC and natural killer (NK) cell activation and production of a "natural mix" of type I interferons, cytokines, and chemokines.
- poly-ICLC exerts a more direct, broad host-targeted anti-infectious and possibly antitumor effect mediated by the two IFN-inducible nuclear enzyme systems, the 2' 5 '-OAS and the Pl/eIF2a kinase, also known as the PKR (4-6), as well as RIG-I helicase and MDA5.
- poly-ICLC In rodents and non-human primates, poly-ICLC was shown to enhance T cell responses to viral antigens, cross-priming, and the induction of tumor-, virus-, and autoantigen-specific
- CD8 + T-cells CD8 + T-cells.
- poly-ICLC was found to be essential for the generation of antibody responses and T-cell immunity to DC targeted or non-targeted HIV Gag p24 protein, emphasizing its effectiveness as a vaccine adjuvant.
- poly-ICLC and differential expression of up to 212 genes between these 8 subjects versus 4 subjects receiving placebo.
- comparison of the poly-ICLC gene expression data to previous data from volunteers immunized with the highly effective yellow fever vaccine YF17D showed that a large number of transcriptional and signal transduction canonical pathways, including those of the innate immune system, were similarly upregulated at peak time points.
- a vaccine composition according to the present invention may comprise more than one different adjuvant.
- the invention encompasses a therapeutic composition comprising any adjuvant substance including any of the above or combinations thereof. It is also contemplated that the peptide or polypeptide, and the adjuvant can be administered separately in any appropriate sequence.
- a carrier may be present independently of an adjuvant.
- the function of a carrier can for example be to confer stability, to increase the biological activity, or to increase serum half-life.
- a carrier may aid presenting peptides to T-cells.
- the carrier may be any suitable carrier known to the person skilled in the art, for example a protein or an antigen presenting cell.
- a carrier protein could be but is not limited to keyhole limpet hemocyanin, serum proteins such as transferrin, bovine serum albumin, human serum albumin, thyroglobulin or ovalbumin, immunoglobulins, or hormones, such as insulin or palmitic acid.
- the carrier may be a physiologically acceptable carrier acceptable to humans and safe.
- tetanus toxoid and/or diptheria toxoid are suitable carriers in one embodiment of the invention.
- the carrier may be dextrans for example sepharose.
- Cytotoxic T-cells recognize an antigen in the form of a peptide bound to an MHC molecule rather than the intact foreign antigen itself.
- the MHC molecule itself is located at the cell surface of an antigen presenting cell.
- an activation of CTLs is only possible if a trimeric complex of peptide antigen, MHC molecule, and APC is present.
- it may enhance the immune response if not only the peptide is used for activation of CTLs, but if additionally APCs with the respective MHC molecule are added. Therefore, in some
- the vaccine composition according to the present invention additionally contains at least one antigen presenting cell.
- the antigen-presenting cell typically has an MHC class I or II molecule on its surface, and in one embodiment is substantially incapable of itself loading the MHC class I or II molecule with the selected antigen. As is described in more detail below, the MHC class I or II molecule may readily be loaded with the selected antigen in vitro.
- the antigen presenting cells are dendritic cells.
- the dendritic cells are autologous dendritic cells that are pulsed with the neo-antigenic peptide.
- the peptide may be any suitable peptide that gives rise to an appropriate T-cell response. T-cell therapy using autologous dendritic cells pulsed with peptides from a tumor associated antigen is disclosed in Murphy et al. (1996) The Prostate 29, 371-380 and Tjua et al. (1997) The Prostate 32, 272-278.
- the vaccine composition containing at least one antigen presenting cell is pulsed or loaded with one or more peptides of the present invention.
- peripheral blood mononuclear cells PBMCs
- the antigen presenting cell comprises an expression construct encoding a peptide of the present invention.
- the polynucleotide may be any suitable polynucleotide and it is preferred that it is capable of transducing the dendritic cell, thus resulting in the presentation of a peptide and induction of immunity.
- the invention further provides a method of inducing a neoplasia/tumor specific immune response in a subject, vaccinating against a neoplasia/tumor, treating and or alleviating a symptom of cancer in a subject by administering the subject a neo-antigenic peptide or vaccine composition of the invention.
- the above-described cancer vaccine may be used for a patient that has been diagnosed as having cancer, or at risk of developing cancer.
- the patient may have a solid tumor such as breast, ovarian, prostate, lung, kidney, gastric, colon, testicular, head and neck, pancreas, brain, melanoma, and other tumors of tissue organs and hematological tumors, such as lymphomas and leukemias, including acute myelogenous leukemia, chronic myelogenous leukemia, chronic lymphocytic leukemia, T cell lymphocytic leukemia, and B cell lymphomas.
- lymphomas and leukemias including acute myelogenous leukemia, chronic myelogenous leukemia, chronic lymphocytic leukemia, T cell lymphocytic leukemia, and B cell lymphomas.
- the peptide or composition of the invention is administered in an amount sufficient to induce a CTL response.
- the neo-antigenic peptide, polypeptide or vaccine composition of the invention can be administered alone or in combination with other therapeutic agents.
- the therapeutic agent is for example, a chemotherapeutic or biotherapeutic agent, radiation, or immunotherapy. Any suitable therapeutic treatment for a particular cancer may be administered.
- chemotherapeutic and biotherapeutic agents include, but are not limited to, aldesleukin, altretamine, amifostine, asparaginase, bleomycin, capecitabine, carboplatin, carmustine, cladribine, cisapride, cisplatin, cyclophosphamide, cytarabine, dacarbazine (DTIC),
- dactinomycin docetaxel, doxorubicin, dronabinol, epoetin alpha, etoposide, filgrastim, fludarabine, fluorouracil, gemcitabine, granisetron, hydroxyurea, idarubicin, ifosfamide, interferon alpha, irinotecan, lansoprazole, levamisole, leucovorin, megestrol, mesna, methotrexate, metoclopramide, mitomycin, mitotane, mitoxantrone, omeprazole, ondansetron, paclitaxel (Taxol®), pilocarpine, prochloroperazine, rituximab, tamoxifen, taxol, topotecan hydrochloride, trastuzumab, vinblastine, vincristine and vinorelbine tartrate.
- prostate cancer treatment
- the subject may be further administered an anti- immunosuppressive or immuno stimulatory agent.
- the subject is further administered an anti-CTLA antibody or anti-PD-1 or anti-PD-Ll.
- Blockade of CTLA-4 or PD-1/PD-L1 by antibodies can enhance the immune response to cancerous cells in the patient.
- CTLA-4 blockade has been shown effective when following a vaccination protocol (Hodi et al 2005).
- each peptide to be included in the vaccine composition and the optimum dosing regimen can be determined by one skilled in the art without undue
- the peptide or its variant may be prepared for intravenous (i.v.) injection, sub-cutaneous (s.c.) injection, intradermal (i.d.) injection, intraperitoneal (i.p.) injection, intramuscular (i.m.) injection.
- Preferred methods of peptide injection include s.c, i.d., i.p., i.m., and i.v.
- Preferred methods of DNA injection include i.d., i.m., s.c, i.p. and i.v.
- doses of between 1 and 500 mg 50 ⁇ g and 1.5 mg, preferably 10 ⁇ g to 500 ⁇ g, of peptide or DNA may be given and will depend from the respective peptide or DNA. Doses of this range were successfully used in previous trials (Brunsvig P F, et al., Cancer Immunol Immunother. 2006; 55(12): 1553- 1564; M. Staehler, et al., ASCO meeting 2007; Abstract No 3017). Other methods of administration of the vaccine composition are known to those skilled in the art.
- the inventive pharmaceutical composition may be compiled so that the selection, number and/or amount of peptides present in the composition is/are tissue, cancer, and/or patient- specific. For instance, the exact selection of peptides can be guided by expression patterns of the parent proteins in a given tissue to avoid side effects. The selection may be dependent on the specific type of cancer, the status of the disease, earlier treatment regimens, the immune status of the patient, and, of course, the HLA-haplotype of the patient.
- the vaccine according to the invention can contain individualized components, according to personal needs of the particular patient. Examples include varying the amounts of peptides according to the expression of the related neoantigen in the particular patient, unwanted side-effects due to personal allergies or other treatments, and adjustments for secondary treatments following a first round or scheme of treatment.
- compositions comprising the peptide of the invention may be
- compositions are administered to a patient in an amount sufficient to elicit an effective CTL response to the tumor antigen and to cure or at least partially arrest symptoms and/or
- Amount adequate to accomplish this is defined as "therapeutically effective dose.” Amounts effective for this use will depend on, e.g., the peptide composition, the manner of administration, the stage and severity of the disease being treated, the weight and general state of health of the patient, and the judgment of the prescribing physician, but generally range for the initial immunization (that is for therapeutic or prophylactic administration) from about 1.0 ⁇ g to about 50,000 ⁇ g of peptide for a 70 kg patient, followed by boosting dosages or from about 1.0 ⁇ g to about 10,000 ⁇ g of peptide pursuant to a boosting regimen over weeks to months depending upon the patient's response and condition and possibly by measuring specific CTL activity in the patient's blood.
- compositions of the present invention may generally be employed in serious disease states, that is, life-threatening or potentially life threatening situations, especially when the cancer has metastasized.
- administration should begin as soon as possible after the detection or surgical removal of tumors. This is followed by boosting doses until at least symptoms are substantially abated and for a period thereafter.
- the pharmaceutical compositions e.g., vaccine compositions
- the pharmaceutical compositions are intended for parenteral, topical, nasal, oral or local administration.
- the pharmaceutical compositions are administered parenterally, e.g., intravenously, subcutaneously, intradermally, or intramuscularly.
- the compositions may be administered at the site of surgical excision to induce a local immune response to the tumor.
- compositions for parenteral administration which comprise a solution of the peptides and vaccine compositions are dissolved or suspended in an acceptable carrier, preferably an aqueous carrier.
- an acceptable carrier preferably an aqueous carrier.
- aqueous carriers may be used, e.g., water, buffered water, 0.9% saline, 0.3% glycine, hyaluronic acid and the like.
- compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, such as pH adjusting and buffering agents, tonicity adjusting agents, wetting agents and the like, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, sorbitan monolaurate, triethanolamine oleate, etc.
- concentration of peptides of the invention in the pharmaceutical formulations can vary widely, i.e., from usually less than about 0.1%, to at least about 2% to as much as 20% to 50% or more by weight, and will be selected primarily by fluid volumes, viscosities, etc., in accordance with the particular mode of administration selected.
- a liposome suspension containing a peptide may be administered intravenously, locally, topically, etc. in a dose which varies according to, inter alia, the manner of administration, the peptide being delivered, and the stage of the disease being treated.
- a ligand such as, e.g., antibodies or fragments thereof specific for cell surface
- determinants of the desired immune system cells can be incorporated into the liposome.
- nontoxic solid carriers include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate, and the like.
- a pharmaceutically acceptable nontoxic composition is formed by incorporating any of the normally employed excipients, such as those carriers previously listed, and generally 10-95% of active ingredient, that is, one or more peptides of the invention, and more preferably at a concentration of 25%-75%.
- the immunogenic peptides are preferably supplied in finely divided form along with a surfactant and propellant. Typical percentages of peptides are 0.01 %- 20% by weight, preferably 1%-10%.
- the surfactant will, of course, be nontoxic, and preferably soluble in the propellant.
- Representative of such agents are the esters or partial esters of fatty acids containing from 6 to 22 carbon atoms, such as caproic, octanoic, lauric, palmitic, stearic, linoleic, linolenic, olesteric and oleic acids with an aliphatic polyhydric alcohol or its cyclic anhydride.
- Mixed esters such as mixed or natural glycerides may be employed.
- the surfactant may constitute 0. l%-20% by weight of the composition, preferably 0.25-5%.
- the balance of the composition is ordinarily propellant.
- a carrier can also be included as desired, as with, e.g., lecithin for intranasal delivery.
- peptides and polypeptides of the invention can be readily synthesized chemically utilizing reagents that are free of contaminating bacterial or animal substances (Merrifield RB: Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85:2149-54,
- nucleic acids encoding the peptide of the invention and optionally one or more of the peptides described herein can also be administered to the patient.
- a number of methods are conveniently used to deliver the nucleic acids to the patient.
- the nucleic acid can be delivered directly, as "naked DNA". This approach is described, for instance, in Wolff et al., Science 247: 1465-1468 (1990) as well as U.S. Patent Nos. 5,580,859 and 5,589,466.
- the nucleic acids can also be administered using ballistic delivery as described, for instance, in U.S. Patent No. 5,204,253. Particles comprised solely of DNA can be administered. Alternatively, DNA can be adhered to particles, such as gold particles.
- the nucleic acids can also be delivered complexed to cationic compounds, such as cationic lipids.
- cationic compounds such as cationic lipids.
- Lipid- mediated gene delivery methods are described, for instance, in
- RNA encoding the peptide of interest can also be used for delivery (see, e.g., Kiken et al, 2011; Su et al , 2011).
- the peptides and polypeptides of the invention can also be expressed by attenuated viral hosts, such as vaccinia or fowlpox.
- attenuated viral hosts such as vaccinia or fowlpox.
- This approach involves the use of vaccinia virus as a vector to express nucleotide sequences that encode the peptide of the invention.
- the recombinant vaccinia virus Upon introduction into an acutely or chronically infected host or into a noninfected host, the recombinant vaccinia virus expresses the immunogenic peptide, and thereby elicits a host CTL response.
- Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Patent No.
- BCG Bacillus Calmette Guerin
- Salmonella typhi vectors and the like are described in Stover et al. (Nature 351:456-460 (1991)).
- Salmonella typhi vectors and the like will be apparent to those skilled in the art from the description herein.
- a preferred means of administering nucleic acids encoding the peptide of the invention uses minigene constructs encoding multiple epitopes.
- a human codon usage table is used to guide the codon choice for each amino acid.
- MHC presentation of CTL epitopes may be improved by including synthetic (e.g. poly-alanine) or naturally- occurring flanking sequences adjacent to the CTL epitopes.
- the minigene sequence is converted to DNA by assembling oligonucleotides that encode the plus and minus strands of the minigene. Overlapping oligonucleotides (30-100 bases long) are synthesized, phosphorylated, purified and annealed under appropriate conditions using well known techniques. The ends of the oligonucleotides are joined using T4 DNA ligase. This synthetic minigene, encoding the CTL epitope polypeptide, can then cloned into a desired expression vector.
- Standard regulatory sequences well known to those of skill in the art are included in the vector to ensure expression in the target cells.
- Several vector elements are required: a promoter with a down-stream cloning site for minigene insertion; a polyadenylation signal for efficient transcription termination; an E. coli origin of replication; and an E. coli selectable marker (e.g. ampicillin or kanamycin resistance).
- E. coli origin of replication e.g. ampicillin or kanamycin resistance
- Numerous promoters can be used for this purpose, e.g., the human cytomegalovirus (hCMV) promoter. See, U.S. Patent Nos. 5,580,859 and 5,589,466 for other suitable promoter sequences.
- introns are required for efficient gene expression, and one or more synthetic or naturally-occurring introns could be incorporated into the transcribed region of the minigene.
- mRNA stabilization sequences can also be considered for increasing minigene expression.
- immuno stimulatory sequences ISSs or CpGs
- a bicistronic expression vector to allow production of the minigene-encoded epitopes and a second protein included to enhance or decrease
- immunogenicity can be used.
- proteins or polypeptides that could beneficially enhance the immune response if co-expressed include cytokines (e.g., IL2, IL12, GM-CSF), cytokine-inducing molecules (e.g. LeIF) or costimulatory molecules.
- Helper (HTL) epitopes could be joined to intracellular targeting signals and expressed separately from the CTL epitopes. This would allow direction of the HTL epitopes to a cell compartment different than the CTL epitopes. If required, this could facilitate more efficient entry of HTL epitopes into the MHC class II pathway, thereby improving CTL induction.
- immunosuppressive molecules e.g. TGF- ⁇
- TGF- ⁇ immunosuppressive molecules
- the minigene is cloned into the polylinker region downstream of the promoter.
- This plasmid is transformed into an appropriate E. coli strain, and DNA is prepared using standard techniques. The orientation and DNA sequence of the minigene, as well as all other elements included in the vector, are confirmed using restriction mapping and DNA sequence analysis.
- Bacterial cells harboring the correct plasmid can be stored as a master cell bank and a working cell bank.
- Purified plasmid DNA can be prepared for injection using a variety of formulations. The simplest of these is reconstitution of lyophilized DNA in sterile phosphate-buffer saline (PBS). A variety of methods have been described, and new techniques may become available.
- PBS sterile phosphate-buffer saline
- nucleic acids are conveniently formulated with cationic lipids.
- glycolipids, fusogenic liposomes, peptides and compounds referred to collectively as protective, interactive, non-condensing (PINC) could also be complexed to purified plasmid DNA to influence variables such as stability, intramuscular dispersion, or trafficking to specific organs or cell types.
- Target cell sensitization can be used as a functional assay for expression and MHC class I presentation of minigene-encoded CTL epitopes.
- the plasmid DNA is introduced into a mammalian cell line that is suitable as a target for standard CTL chromium release assays. The transfection method used will be dependent on the final formulation. Electroporation can be used for "naked" DNA, whereas cationic lipids allow direct in vitro transfection.
- a plasmid expressing green fluorescent protein (GFP) can be co-transfected to allow enrichment of transfected cells using fluorescence activated cell sorting (FACS). These cells are then chromium-51 labeled and used as target cells for epitope- specific CTL lines. Cytolysis, detected by 51 Cr release, indicates production of MHC presentation of mini gene-encoded CTL epitopes.
- GFP green fluorescent protein
- In vivo immunogenicity is a second approach for functional testing of minigene DNA formulations.
- Transgenic mice expressing appropriate human MHC molecules are immunized with the DNA product.
- the dose and route of administration are formulation dependent (e.g. IM for DNA in PBS, IP for lipid-complexed DNA).
- Twenty-one days after immunization splenocytes are harvested and restimulated for 1 week in the presence of peptides encoding each epitope being tested.
- These effector cells (CTLs) are assayed for cytolysis of peptide-loaded, chromium-51 labeled target cells using standard techniques. Lysis of target cells sensitized by MHC loading of peptides corresponding to minigene-encoded epitopes demonstrates DNA vaccine function for in vivo induction of CTLs.
- CTL CTL precursor cells
- APC antigen-presenting cells
- the cells After an appropriate incubation time (typically 1-4 weeks), in which the CTLp are activated and mature and expand into effector CTL, the cells are infused back into the patient, where they will destroy their specific target cell (i.e., a tumor cell).
- the culture of stimulator cells is maintained in an appropriate serum-free medium.
- the stimulator cells Prior to incubation of the stimulator cells with the cells to be activated, e.g., precursor
- an amount of antigenic peptide is added to the stimulator cell culture, of sufficient quantity to become loaded onto the human Class I molecules to be expressed on the surface of the stimulator cells.
- a sufficient amount of peptide is an amount that will allow about 200, and preferably 200 or more, human Class I MHC molecules loaded with peptide to be expressed on the surface of each stimulator cell.
- the stimulator cells are incubated with >2 ⁇ g/ml peptide.
- the stimulator cells are incubates with > 3, 4, 5, 10, 15, or more ⁇ g/ml peptide.
- Resting or precursor CD8+ cells are then incubated in culture with the appropriate stimulator cells for a time period sufficient to activate the CD8+ cells.
- the CD8+ cells are activated in an antigen- specific manner. The ratio of resting or precursor CD8+
- effector cells to stimulator cells may vary from individual to individual and may further depend upon variables such as the amenability of an individual's lymphocytes to culturing conditions and the nature and severity of the disease condition or other condition for which the within-described treatment modality is used.
- the lymphocyte: stimulator cell ratio is in the range of about 30: 1 to 300: 1.
- the effector/stimulator culture may be maintained for as long a time as is necessary to stimulate a therapeutically useable or effective number of CD8+ cells.
- CTL CTL precursor
- mutant cell lines do not exist for every human MHC allele, it is advantageous to use a technique to remove endogenous MHC- associated peptides from the surface of APC, followed by loading the resulting empty MHC molecules with the immunogenic peptides of interest.
- the use of non-transformed (non-tumorigenic), noninfected cells, and preferably, autologous cells of patients as APC is desirable for the design of CTL induction protocols directed towards development of ex vivo CTL therapies.
- This application discloses methods for stripping the endogenous MHC-associated peptides from the surface of APC followed by the loading of desired peptides.
- a stable MHC class I molecule is a trimeric complex formed of the following elements: 1) a peptide usually of 8 - 10 residues, 2) a transmembrane heavy polymorphic protein chain which bears the peptide-binding site in its al and a2 domains, and 3) a non-covalently associated non-polymorphic light chain, p2microglobuiin. Removing the bound peptides and/or dissociating the p2microglobulin from the complex renders the MHC class I molecules nonfunctional and unstable, resulting in rapid degradation. All MHC class I molecules isolated from PBMCs have endogenous peptides bound to them. Therefore, the first step is to remove all endogenous peptides bound to MHC class I molecules on the APC without causing their degradation before exogenous peptides can be added to them.
- Two possible ways to free up MHC class I molecules of bound peptides include lowering the culture temperature from 37°C to 26°C overnight to destabilize p2microglobulin and stripping the endogenous peptides from the cell using a mild acid treatment.
- the methods release previously bound peptides into the extracellular environment allowing new exogenous peptides to bind to the empty class I molecules.
- the cold-temperature incubation method enables exogenous peptides to bind efficiently to the MHC complex, but requires an overnight incubation at 26°C which may slow the cell's metabolic rate. It is also likely that cells not actively synthesizing MHC molecules (e.g., resting PBMC) would not produce high amounts of empty surface MHC molecules by the cold temperature procedure.
- Harsh acid stripping involves extraction of the peptides with trifluoroacetic acid, pH 2, or acid denaturation of the immunoaffinity purified class I-peptide complexes. These methods are not feasible for CTL induction, since it is important to remove the endogenous peptides while preserving APC viability and an optimal metabolic state which is critical for antigen
- Mild acid solutions of pH 3 such as glycine or citrate -phosphate buffers have been used to identify endogenous peptides and to identify tumor associated T cell epitopes.
- the treatment is especially effective, in that only the MHC class I molecules are destabilized (and associated peptides released), while other surface antigens remain intact, including MHC class II molecules.
- treatment of cells with the mild acid solutions do not affect the cell's viability or metabolic state.
- the mild acid treatment is rapid since the stripping of the endogenous peptides occurs in two minutes at 4°C and the APC is ready to perform its function after the appropriate peptides are loaded.
- the technique is utilized herein to make peptide- specific APCs for the generation of primary antigen- specific CTL. The resulting APC are efficient in inducing peptide- specific CD8+ CTL.
- Activated CD8+ cells may be effectively separated from the stimulator cells using one of a variety of known methods. For example, monoclonal antibodies specific for the stimulator cells, for the peptides loaded onto the stimulator cells, or for the CD8+ cells (or a segment thereof) may be utilized to bind their appropriate complementary ligand. Antibody- tagged molecules may then be extracted from the stimulator-effector cell admixture via appropriate means, e.g., via well-known immunoprecipitation or immunoassay methods.
- Effective, cytotoxic amounts of the activated CD8+ cells can vary between in vitro and in vivo uses, as well as with the amount and type of cells that are the ultimate target of these killer cells. The amount will also vary depending on the condition of the patient and should be determined via consideration of all appropriate factors by the practitioner. Preferably, however, about 1 X 10 6 to about 1 X 10 12 , more preferably about 1 X 10 8 to about 1 X 10 11 , and even more preferably, about 1 X 10 9 to about 1 X 10 10 activated CD8+ cells are utilized for adult humans, compared to about 5 X 10 6 - 5 X 10 7 cells used in mice.
- the activated CD8+ cells are harvested from the cell culture prior to administration of the CD8+ cells to the individual being treated. It is important to note, however, that unlike other present and proposed treatment modalities, the present method uses a cell culture system that is not tumorigenic. Therefore, if complete separation of stimulator cells and activated CD8+ cells is not achieved, there is no inherent danger known to be associated with the administration of a small number of stimulator cells, whereas
- administration of mammalian tumor-promoting cells may be extremely hazardous.
- Methods of re-introducing cellular components are known in the art and include procedures such as those exemplified in U.S. Patent No. 4,844,893 to Honsik, et al. and U.S. Patent No. 4,690,915 to Rosenberg.
- administration of activated CD8+ cells via intravenous infusion is appropriate.
- CD8+ cell activity may be augmented through the use of CD4+ cells.
- the identification of CD4 T+ cell epitopes for tumor antigens has attracted interest because many immune based therapies against cancer may be more effective if both CD8+ and CD4+ T lymphocytes are used to target a patient's tumor.
- CD4+ cells are capable of enhancing CD8 T cell responses.
- CD4+ and CD8+ T cells participate in anti-tumor responses (see e.g., Nishimura et al. (1999) Distinct role of antigen-specific T helper type 1 (TH1) and Th2 cells in tumor eradication in vivo. J Ex Med 190:617-27). Universal CD4+ T cell epitopes have been identified that are applicable to developing therapies against different types of cancer (see e.g., Kobayashi et al. (2008) Current Opinion in Immunology 20:221-27).
- an HLA-DR restricted helper peptide from tetanus toxoid was used in melanoma vaccines to activate CD4+ T cells non- specifically (see e.g., Slingluff et al. (2007) Immunologic and Clinical Outcomes of a Randomized Phase II Trial of Two Multipeptide Vaccines for Melanoma in the Adjuvant Setting, Clinical Cancer Research 13(21):6386-95).
- CD4+ cells may be applicable at three levels that vary in their tumor specificity: 1) a broad level in which universal CD4+ epitopes (e.g., tetanus toxoid) may be used to augment CD8+ cells; 2) an intermediate level in which native, tumor-associated CD4+ epitopes may be used to augment CD8+ cells; and 3) a patient specific level in which neoantigen CD4+ epitopes may be used to augment CD8+ cells in a patient specific manner.
- universal CD4+ epitopes e.g., tetanus toxoid
- CD8+ cell immunity may also be generated with neo-antigen loaded dendritic cell (DC) vaccine.
- DCs are potent antigen-presenting cells that initiate T cell immunity and can be used as cancer vaccines when loaded with one or more peptides of interest, for example, by direct peptide injection.
- neo-antigen loaded DCs may be prepared using the synthetic TLR 3 agonist Polyinosinic- Polycytidylic Acid-poly-L-lysine Carboxymethylcellulose (Poly-ICLC) to stimulate the DCs.
- Poly-ICLC is a potent individual maturation stimulus for human DCs as assessed by an upregulation of CD83 and CD86, induction of interleukin-12 (IL-12), tumor necrosis factor (TNF), interferon gamma-induced protein 10 (IP- 10), interleukin 1 (IL-1), and type I interferons (IFN), and minimal interleukin 10 (IL-10) production.
- DCs may be differentiated from frozen peripheral blood mononuclear cells (PBMCs) obtained by leukapheresis, while PBMCs may be isolated by Ficoll gradient centrifugation and frozen in aliquots.
- PBMCs peripheral blood mononuclear cells
- the following 7 day activation protocol may be used.
- Day 1 PBMCs are thawed and plated onto tissue culture flasks to select for monocytes which adhere to the plastic surface after 1-2 hr incubation at 37°C in the tissue culture incubator. After incubation, the lymphocytes are washed off and the adherent monocytes are cultured for 5 days in the presence of interleukin-4 (IL-4) and granulocyte macrophage-colony stimulating factor (GM-CSF) to differentiate to immature DCs.
- IL-4 interleukin-4
- GM-CSF granulocyte macrophage-colony stimulating factor
- immature DCs are pulsed with the keyhole limpet hemocyanin (KLH) protein which serves as a control for the quality of the vaccine and may boost the immunogenicity of the vaccine.
- KLH keyhole limpet hemocyanin
- the DCs are stimulated to mature, loaded with peptide antigens, and incubated overnight. On Day 7, the cells are washed, and frozen in 1 ml aliquots containing 4-20 x 10(6) cells using a controlled-rate freezer. Lot release testing for the batches of DCs may be performed to meet minimum specifications before the DCs are injected into patients (see e.g., Sabado et al. (2013) Preparation of tumor antigen-loaded mature dendritic cells for immunotherapy, J. Vis Exp. Aug 1;(78). doi: 10.3791/50085).
- a DC vaccine may be incorporated into a scaffold system to facilitate delivery to a patient.
- Therapeutic treatment of a patients neoplasia with a DC vaccine may utilize a biomaterial system that releases factors that recruit host dendritic cells into the device, differentiates the resident, immature DCs by locally presenting adjuvants (e.g., danger signals) while releasing antigen, and promotes the release of activated, antigen loaded DCs to the lymph nodes (or desired site of action) where the DCs may interact with T cells to generate a potent cytotoxic T lymphocyte response to the cancer neo-antigens.
- Implantable biomaterials may be used to generate a potent cytotoxic T lymphocyte response against a neoplasia in a patient specific manner.
- the biomaterial-resident dendritic cells may then be activated by exposing them to danger signals mimicking infection, in concert with release of antigen from the biomaterial.
- the activated dendritic cells then migrate from the biomaterials to lymph nodes to induce a cytotoxic T effector response.
- This approach has previously been demonstrated to lead to regression of established melanoma in preclinical studies using a lysate prepared from tumor biopsies (see e.g., Ali et al. (2209) In situ regulation of DC subsets and T cells mediates tumor regression in mice, Cancer Immunotherapy 1(8): 1-10; Ali et al. (2009) Infection-mimicking materials to program dendritic cells in situ.
- Example 1 Cancer Vaccine Testing Protocol
- compositions and methods may be tested on 15 patients with high- risk melanoma (fully resected stages IIIB, IIIC and IVMla,b) according to the general flow process shown in FIG. 2.
- Patients may receive a series of priming vaccinations with a mixture of personalized tumor- specific peptides and poly-ICLC over a 4 week period followed by two boosts during a maintenance phase. All vaccinations will be subcutaneously delivered.
- the vaccine will be evaluated for safety, tolerability, immune response and clinical effect in patients and for feasibility of producing vaccine and successfully initiating vaccination within an appropriate time frame.
- the first cohort will consist of 5 patients, and after safety is adequately demonstrated, an additional cohort of 10 patients may be enrolled (see, e.g., FIG. 3 depicting an approach for an initial population study). Peripheral blood will be extensively monitored for peptide- specific T-cell responses and patients will be followed for up to two years to assess disease recurrence.
- Karanikas et al High frequency of cytolytic T lymphocytes directed against a tumor- specific mutated antigen detectable with HLA tetramers in the blood of a lung carcinoma patient with long survival. Cancer Res. 61:3718-3724 (2001); Lennerz et al, The response of autologous T cells to a human melanoma is dominated by mutated neo-antigens.
- NeoORFs are particularly valuable as immunogens because the entirety of their sequence is completely novel to the immune system and so are analogous to a viral or bacterial foreign antigen.
- neoORFs (1) are highly specific to the tumor (i.e.
- each tumor contains multiple, patient-specific mutations that alter the protein coding content of a gene.
- Such mutations create altered proteins, ranging from single amino acid changes (caused by missense mutations) to addition of long regions of novel amino acid sequence due to frame shifts, read-through of termination codons or translation of intron regions (novel open reading frame mutations; neoORFs).
- mutated proteins are valuable targets for the host's immune response to the tumor as, unlike native proteins, they are not subject to the immune-dampening effects of self-tolerance. Therefore, mutated proteins are more likely to be immunogenic and are also more specific for the tumor cells compared to normal cells of the patient.
- a set of peptides representative of optimal mutated epitopes (both neoORF and missense) for each patient will be identified and prioritized and up to 20 or more peptides will be prepared for immunization (Zhang et al, Machine learning competition in immunology - Prediction of HLA class I binding peptides J Immunol Methods 374: 1 (2011); Lundegaard et al Prediction of epitopes using neural network based methods J Immunol Methods 374:26 (2011)).
- Peptides -20-35 amino acids in length will be synthesized because such "long” peptides undergo efficient internalization, processing and cross-presentation in professional antigen-presenting cells such as dendritic cells, and have been shown to induce CTLs in humans (Melief and van der Burg, Immunotherapy of established (pre) malignant disease by synthetic long peptide vaccines Nature Rev Cancer 8:351 (2008)).
- TLRs Toll-like receptors
- poly-ICLC a synthetic double-stranded RNA mimic
- poly-ICLC has been shown to be safe and to induce a gene expression profile in peripheral blood cells comparable to that induced by one of the most potent live attenuated viral vaccines, the yellow fever vaccine YF-17D (Caskey et al, Synthetic double- stranded RNA induces innate immune responses similar to a live viral vaccine in humans J Exp Med 208:2357 (2011)).
- Hiltonol® a GMP preparation of poly-ICLC prepared by
- Oncovir, Inc will be utilized as the adjuvant.
- interferon-a IFN
- IFN interferon-a
- the target population will be cutaneous melanoma patients with clinically detectable, histologically confirmed nodal (local or distant) or in transit metastasis, who have been fully resected and are free of disease (most of stage IIIB (because of the need to have adequate tumor tissue for sequencing and cell line development, patients with ulcerated primary tumor but micrometastatic lymph nodes (Tl-4b, Nla or N2a) will be excluded.), all of stage IIIC, and stage IVMla, b). These may be patients at first diagnosis or at disease recurrence after previous diagnosis of an earlier stage melanoma.
- Tumor harvest Patients will undergo complete resection of their primary melanoma (if not already removed) and all regional metastatic disease with the intent of rendering them free of melanoma. After adequate tumor for pathological assessment has been harvested, remaining tumor tissue will be placed in sterile media in a sterile container and prepared for disaggregation. Portions of the tumor tissue will be used for whole-exome and transcriptome sequencing and cell line generation and any remaining tumor will be frozen.
- Normal tissue harvest A normal tissue sample (blood or sputum sample ) will be taken for whole exome sequencing.
- vaccine administration will commence as soon as possible after the study drug has arrived and has met incoming
- Immunizations may generally proceed according to the schedule shown in FIG. 5.
- patients will be immunized on days 1, 4, 8, 15 and 22.
- patients will receive booster doses at weeks 12 and 24.
- Blood samples may be obtained at multiple time points: pre- (baseline; two samples on different days); day 15 during priming vaccination; four weeks after the induction/priming vaccination (week 8); pre- (week 12) and post- (week 16) first boost; pre- (week 24) and post- (week 28) second boost 50 - 150 ml blood will be collected for each sample (except week 16).
- the primary immunological endpoint will be at week 16, and hence patients will undergo leukapheresis (unless otherwise indicated based on patient and physician assessment).
- the immunization strategy is a "prime-boost" approach, involving an initial series of closely spaced immunizations to induce an immune response followed by a period of rest to allow memory T-cells to be established. This will be followed by a booster immunization, and the T-cell response 4 weeks after this boost is expected to generate the strongest response and will be the primary immunological endpoint.
- Global immunological response will be initially monitored using peripheral blood mononuclear cells from this time point in an 18 hr ex vivo ELISPOT assay, stimulating with a pool of overlapping 15mer peptides (11 aa overlap) comprising all the immunizing epitopes. Pre-vaccination samples will be evaluated to establish the baseline response to this peptide pool.
- PBMC samples will be evaluated to examine the kinetics of the immune response to the total peptide mix.
- the pool of all 15mers will be de- convoluted to determine which particular immunizing peptide(s) were immunogenic.
- additional assays will be conducted on a case-by-case basis for appropriate samples: • The entire 15mer pool or sub-pools will be used as stimulating peptides for intracellular cytokine staining assays to identify and quantify antigen- specific CD4+, CD8+, central memory and effector memory populations
- these pools will be used to evaluate the pattern of cytokines secreted by these cells to determine the T H I VS T H 2 phenotype
- MDSC Treg and myeloid-derived suppressor cells
- T-cell cytotoxicity assays will be conducted using the mutant and corresponding wild type peptide
- Immuno-histochemistry of the tumor sample will be conducted to quantify CD4+, CD8+, MDSC, and Treg infiltrating populations.
- Vaccine treatment of patients with metastatic disease is complicated by their need for an effective therapy for the active cancer and the consequent absence of an off treatment time window for vaccine preparation. Furthermore, these cancer treatments may compromise the patient's immune system, possibly impeding the induction of an immune response. With these considerations in mind, settings may be chosen where timing of vaccine preparation fits temporally with other standard care approaches for the particular patient population and/or where such standard care is demonstrably compatible with an immunotherapeutic approach. There are two types of settings that may be pursued:
- Integrating a powerful vaccine to initiate an immune response with checkpoint blockade antibodies may provide synergies, as observed in multiple animal studies (van Elsas et al Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4)and
- GM-CSF granulocyte/macrophage colony- stimulating factor
- TKI tyrosine kinase inhibitors
- sunitinib has been shown to increase T H I responsiveness and decrease Treg and myeloid-derived suppressor cells (Finke et al, Sunitinib reverses Type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients Clin Can Res 14:6674 - 6682 (2008); Terme et al, VEGFA-VEGFR pathway blockade inhibits tumor- induced regulatory T cell proliferation in colorectal cancer (Cancer Research Author Manuscript published Online (2102)).
- the ability to immediately treat patients with an approved therapy that does not compromise the immune system provides the needed window to prepare the vaccine and could provide synergy with a vaccine therapy.
- CTX cyclophosphamide
- GBM glioblastoma
- TMZ low dose temozolomide
- tumor tissue will be surgically resected, and tumor tissue will be disaggregated and separate portions used for DNA and RNA extraction and for patient- specific melanoma cell line development.
- DNA and/or RNA extracted from the tumor tissue will be used for whole- exome sequencing (e.g., by using the Illumina HiSeq platform) and to determine HLA typing information. It is contemplated within the scope of the invention that missense or neoORF neo- antigenic peptides may be directly identified by protein-based techniques (e.g., mass spectrometry).
- Bioinformatics analysis will be conducted as follows. Sequence analysis of the Exome and RNA - SEQ fast Q files will leverage existing bioinformatic pipelines that have been used and validated extensively in large-scale projects such as the TCGA for many patient samples (e.g., Chapman et al, 2011, Stransky et al, 2011, Berger et al, 2012). There are two sequential categories of analyses: data processing and cancer genome analysis.
- the Picard data processing pipeline (picard.sourceforge.net/) was developed by the Sequencing Platform. Raw data extracted from (e.g., Illumina) sequencers for each tumor and normal sample is subjected to the following processes using various modules in the Picard pipeline:
- Picard is a bam file (Li et al, 2009) (samtools.sourceforge.net/SAMl.pdf) that stores the base sequences, quality scores, and alignment details for all reads for the given sample.
- Sample mix-up during sequencing will be done by comparing initial SNP fingerprinting done on a sample at a few dozen sites with exome sequencing pileups at those sites.
- Intra-sample tumor/normal mixup will be checked by first comparing the insert size distribution of lanes that correspond to the same library for both tumor and normal samples, and discarding those lanes that have a different distribution. Bioinformatic analysis will be applied to tumor and matched normal exome samples to get the DNA copy number profiles. Tumor samples should also have more copy number variation than the corresponding normals. Lanes corresponding to normal samples that do not have flat profiles will be discarded, as will tumor lanes that don't have profiles consistent with other lanes from the same tumor sample will be discarded.
- Tumor purity and ploidy will be estimated based on the bioinformatic-generated copy number profiles.
- ContEst (Cibulskis et al, 2011) will be used to determine the level of cross- sample contamination in samples. Local realignment around putative indels
- Somatic base pair substitutions will be identified by analyzing tumor and matched normal samples from a patient using a Bayesian statistical framework called muTect (Cibulskis et al, 2013).
- muTect Bayesian statistical framework
- reads with a preponderance of low quality bases or mismatches to the genome are filtered out.
- Mutect then computes two log-odds (LOD) scores which encapsulate confidence in presence and absence of the variant in the tumor and normal samples respectively.
- LOD log-odds
- candidate mutations are empirically filtered by various criteria to account for artifacts of capture, sequencing and alignment.
- One such filter tests for consistency between distributions of orientations of reads that harbor the mutation and the overall orientation distribution of reads that map to the locus to ensure that there is no strand bias.
- the final set of mutations will then be annotated with the Oncotator tool by several fields including genomic region, codon, cDNA and protein changes. Identification of somatic small insertions and deletions
- the local realignment output from section 2.2 will be used to predict candidate somatic and germline indels based on assessment of reads supporting the variant exclusively in tumor or both in tumor and normal bams respectively. Further filtering based on number and distribution of mismatches and base quality scores will be done (McKenna et al, 2010, DePristo et al, 2011). All indels will be manually inspected using the Integrated Genomics Viewer (Robinson et al, 2011) (on the worldwide web at (www)broadinstitute.org/igv) to ensure high-fidelity calls. Gene fusion detection
- the first step in the gene fusion detection pipeline is alignment of tumor RNA-Seq reads to a library of known gene sequences following by mapping of this alignment to genomic coordinates.
- the genomic mapping helps collapse multiple read pairs that map to different transcript variants that share exons to common genomic locations.
- the DNA aligned bam file will be queried for read pairs where the two mates map to two different coding regions that are either on different chromosomes or at least 1 MB apart if on the same chromosome. It will also be required that the pair ends aligned in their respective genes be in the direction consistent with coding— >coding 5'-> 3' direction of the (putative) fusion mRNA transcript.
- a list of gene pairs where there are at least two such 'chimeric' read pairs will be enumerated as the initial putative event list subject to further refinement.
- all unaligned reads will be extracted from the original bam file, with the additional constraint that their mates were originally aligned and map into one of the genes in the gene pairs obtained as described above.
- An attempt will then be made to align all such originally unaligned reads to the custom "reference" built of all possible exon-exon junctions (full length, boundary-to-boundary, in coding 5'-> 3' direction) between the discovered gene pairs.
- Bioinformatic analysis may be used to estimate clonality of mutations.
- the ABSOLUTE algorithm (Carter et al, 2012, Landau et al, 2013) may be used to estimate tumor purity, ploidy, absolute copy numbers and clonality of mutations. Probability density distributions of allelic fractions of each mutation will be generated followed by conversion to cancer cell fractions (CCFs) of the mutations. Mutations will be classified as clonal or subclonal based on whether the posterior probability of their CCF exceeds 0.95 is greater or lesser than 0.5 respectively.
- the TopHat suite (Langmead et al, 2009) will be used to align RNA-Seq reads for the tumor and matched normal bams to the hgl9 genome.
- the quality of RNA-Seq data will be assessed by the RNA-SeQC (DeLuca et al, 2012) package.
- the RSEM tool (Li et al, 2011) will then be used to estimate gene and isoform expression levels.
- the generated reads per kilobase per million and tau estimates will be used to prioritize neo-antigens identified in each patient as described elsewhere. 8. Validation of mutations in RNA-Seq
- Mutations that will be identified by analysis of whole exome data will be assessed for presence in the corresponding RNA-Seq tumor bam file of the patient.
- a power calculation based on the beta-binomial distribution will be performed to ensure that there is at least 80% power to detect it in the RNA- Seq data.
- a capture identified mutation will be considered validated if there are at least 2 reads harboring the mutation for adequately powered sites.
- Selection of Tumor- Specific Mutation-Containing Epitopes All missense mutations and neoORFs will be analyzed for the presence of mutation-containing epitopes using the neural- network based algorithm netMHC, provided and maintained by the Center for Biological Sequence Analysis, Technical University of Denmark, Netherlands.
- This family of algorithms were rated the top epitope prediction algorithms based on a competition recently completed among a series of related approaches (ref). The algorithms were trained using an artificial neural network based approach on multiple different human HLA A and B alleles utilizing over 100,000 measured binding and non-binding interactions.
- the accuracy of the algorithms were evaluated by conducting predictions from mutations found in CLL patients for whom the HLA allotypes were known.
- the included allotypes were AO 101, A0201, A0310, A1101, A2402, A6801, B0702, B0801, B1501. Predictions were made for all 9mer and 10 mer peptides spanning each mutation using netMHCpan in mid-2011.
- the predictions for these peptides were repeated in March 2013 using each of the most up to date versions of the netMHC servers (netMHCpan, netMHC and netMHCcons). These three algorithms were the top rated algorithms among a group of 20 used in a competition in 2012 (Zhang et al). The observed binding affinities were then evaluated with respect to each of the new predictions. For each set of predicted and observed values, the % of correct predictions for each range is given, as well as the number of samples. The definition for each range is as follows: 0 - 150 Predicted to have an affinity equal to or lower than 150 nM and measured to have an affinity equal to or lower than 150 nM.
- 151 - 500 nM Predicted to have an affinity greater than 150 nM but equal to or lower than 500 nM and measured to have an affinity equal to or below 500 nM.
- the number of predicted binding peptides per allotype was adjusted based on the frequency of that allotype (Bone Marrow Registry dataset for the expected affected dominant population in the geographic area [Caucasian for melanoma]) to generate a predicted number of actionable mutant epitopes per patient. For each of these mutant epitopes (MUT), the corresponding native (WT) epitope binding was also predicted.
- neoORF peptides Utilizing a single peptide for predicted missense binders with Kd ⁇ 500 nM and a WT/MUT Kd ratio of >5X and over-lapping peptides spanning the full length of each neoORF, 80% (16 of 20) of patients were predicted to have at least 20 peptides appropriate for vaccination. For a quarter of the patients, neoORF peptides could constitute nearly half to all of the 20 peptides. Thus, there is an adequate mutational load in melanoma to expect a high proportion of patients to generate an adequate number of immunogenic peptides.
- Peptides for immunization may be prioritized based on a number of criteria: neoORF vs. missense, predicted Kd for the mutated peptide, the comparability of predicted affinity for the native peptide compared to the mutated peptide, whether the mutation occurs in an oncogenic driver gene or related pathway, and # of RNA-Seq reads (see e.g., FIG. 8).
- peptides derived from segments of neoORF mutations that are predicted to bind may be given the highest priority based on the absence of tolerance for these entirely novel sequences and their extraordinarily tumor-specificity.
- the similar class of missense mutations in which the native peptide is not predicted to bind (Kd > 1000 nM) and the mutated peptide is predicted to bind with strong/moderate affinity (Kd ⁇ 150 nM) may be given the next highest priority.
- This class (Group I discussed above) represents approximately 20% of naturally observed T-cell responses.
- the third highest priority may be given to the more tightly binding ( ⁇ 150 nM) subset of the Group II class discussed above. This class is responsible for approximately almost 2/3 of naturally observed T-cell responses.
- All the remaining peptides derived from the neoORF mutations may be given the fourth priority. Despite not being predicted to bind, these are included based on the known false negative rate, potential binding to HLA-C, potential for presence of Class II epitopes and the high value of utilizing totally foreign antigens.
- the fifth priority may be given to the subset of Group II with lower predicted binding affinities (150 - 500 nM). This class is responsible for approximately 10% of the naturally observed T-cell responses.
- peptides may be ranked based on binding affinity (e.g., the lowest Kd may have the highest priority).
- oncogenic driver mutations may be given higher priority.
- a normal human peptidome library of -12.6 million unique 9 and 10 mers curated from all known human protein sequences (HG19) has been created. Prior to final selection, any potential predicted epitopes derived from a missense mutation and all neoORF regions may be screened against this library, and perfect matches may be excluded. As discussed below, particular peptides predicted to have deleterious biochemical properties may be eliminated or modified.
- RNA levels may be analyzed to assess neoantigen expression.
- RNA-Seq read-count may be used as a proxy to estimate neoantigen expression.
- the techniques herein initially set broad acceptance limits for RNA levels that may vary inversely with the priority group. As the predicted affinity decreases, higher stringency may be applied to expression levels.
- One of skill in the art will appreciate that as additional information becomes available, such limits may be adjusted.
- neoORFs with predicted binding epitopes may be utilized even if there are no detectable mRNA molecules by RNA-Seq (Rank 1). Regions of neoORFs without predicted binding epitopes (> 500 nM), may generally be utilized only if some level of RNA expression is detected (Rank 4). All missense mutations with strong to intermediate predicted MHC binding affinity ( ⁇ 150 nM) may generally be utilized unless there were no RNA-Seq reads (Ranks 2 and 3). For missense mutations with lower predicted binding affinity (150 - ⁇ 500 nM), these will likely be utilized only if a slightly higher level of RNA expression is detected (Rank 5).
- Oncogenic drivers may represent a high priority group. For example, within a given grouping of missense mutations, oncogenic driver mutations may be of higher priority. This approach is based on the observed down-regulation of genes that are targeted by immune pressure (e.g., immunoediting). In contrast to other immune targets where down-regulation may not have a deleterious effect of cancer cell growth, continued expression of oncogenic driver genes may be crucial to cancer cell survival, thus shutting off a pathway of immune escape.
- immune pressure e.g., immunoediting
- oncogenic drivers are listed in Table 3-1 (see e.g., Vogelstein et al; GOTERM_BP Assignment of genes to Gene Ontology Term - Biological Function on the worldwide web at (www)geneontology.org; BIOCARTA Assignment of genes to signaling pathways, on the worldwide web at (www)biocarta.com; KEGG Assignment of genes to pathways according to KEGG pathway database, on the worldwide web at (www)genome.jp/krgg/pathway.html;
- GNAQ guanine nucleotide 245 95% 1% Oncogene PI3K;RAS; MAPK Cell binding protein (G Survival protein), q
- H3F3A H3 histone, family 3B 122 93% 0% Oncogene Chromatin Cell Fate (H3.3B); H3 histone, Modification family 3A
- GMP neo-antigenic peptides for immunization will be prepared by chemical synthesis Merrifield RB: Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85:2149-54, 1963) in accordance with FDA regulations. Three development runs have been conducted of 20 ⁇ 20-30mer peptides each. Each run was conducted in the same facility and utilized the same equipment as will be used for the GMP runs, utilizing draft GMP batch records. Each run successfully produced > 50 mg of each peptide, which were tested by all currently planned release tests (e.g., Appearance, Identify by MS, Purity by RP-HPLC, Content by
- each peptide will be dissolved at high concentration (50 mg/ml) in 100% DMSO and diluted to 2 mg/ml in an aqueous solvent.
- PBS 5% dextrose in water
- D5W 5% dextrose in water
- the predicted biochemical properties of planned immunizing peptides will be evaluated and synthesis plans may be altered accordingly (using a shorter peptide, shifting the region to be synthesized in the N- or C-terminal direction around the predicted epitope, or potentially utilizing an alternate peptide).
- Ten separate peptides in DMSO/D5W were subjected to two freeze/thaw cycles and showed full recovery.
- Two individual peptides were dissolved in DMSO/D5W and placed on stability at two temperatures (-20°C and -80°C). These peptides will be evaluated (RP-HPLC, MS and pH) for up to 6 months. To date, both peptides are stable at the 12 week time point with additional time points at 24 weeks to be evaluated.
- the design of the dosage form process is to prepare 4 pools of patient-specific peptides consisting of 5 peptides each.
- a RP-HPLC assay has been prepared and qualified to evaluate these peptide mixes. This assay achieves good resolution of multiple peptides within a single mix and can also be used to quantitate individual peptides.
- Membrane filtration (0.2 ⁇ pore size) will be used to reduce bioburden and conduct final filter sterilization.
- Four different appropriately sized filter types were initially evaluated and the Pall, PES filter (# 4612) was selected. To date, 4 different mixtures of 5 different peptides each have been prepared and individually filtered sequentially through two PES filters. Recovery of each individual peptide was evaluated utilizing the RP-HPLC assay. For 18 of the 20 peptides, the recovery after two filtrations was >90%. For two highly hydrophobic peptides, the recovery was below 60% when evaluated at small scale but were nearly fully recovered (87 and 97%) at scale. As stated above, approaches will be undertaken to limit the hydrophobic nature of the sequences selected.
- GMP neo-antigenic peptides for immunization will be prepared by chemical synthesis Merrifield RB: Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85:2149-54, 1963) in accordance with FDA regulations.
- Example 9 Endpoint Assessment
- the primary immunological endpoint of this study will be the assessment of T cell response measured by ex vivo IFN- ⁇ ELISPOT.
- IFN- ⁇ secretion occurs as a result of the recognition of cognate peptides or mitogenic stimuli by CD4 + and/or CD8 + T -cells.
- CD4 + and CD8 + determinants will likely be presented to T cells in vivo since the 20-30mer peptides used for vaccination should undergo processing into smaller peptides by antigen presenting cells.
- T cell responses are detectable ex vivo i.e. without the need for in vitro expansion of epitope specific T cells through short-term culture.
- Patients will initially be evaluated using the total pool of peptide immunogens as stimulant in the ELISPOT assay. For patients demonstrating a robust positive response, the precise immunogenic peptide(s) will be determined in follow-up analysis.
- the IFN- ⁇ ELISPOT is generally accepted as a robust and reproducible assay to detect ex vivo T cell activity and determine specificity.
- other aspects of the immune response induced by the vaccine are critical and will be assessed.
- These evaluations will be performed in patients who exhibit an ex vivo IFN- ⁇ ELISPOT response in the screening assay. They include the evaluation of T cell subsets (Thl versus Th2, T effector versus memory cells), analysis of the presence and abundance of regulatory cells such as T regulatory cells or myeloid derived suppressor cells, and cytotoxicity assays if patient-specific melanoma cells lines are successfully established.
- GMP peptides will be synthesized by standard solid phase synthetic peptide chemistry and purified by RP-HPLC. Each individual peptide will be analyzed by a variety of qualified assays to assess appearance (visual), purity (RP-HPLC), identity (by mass spectrometry), quantity (elemental nitrogen), and trifluoroacetate counterion (RP-HPLC) and released.
- the personalized neoantigen peptides may be comprised of up to 20 distinct peptides unique to each patient.
- Each peptide may be a linear polymer of -20 - -30 L-amino acids joined by standard peptide bonds.
- the amino terminus may be a primary amine (NH2-) and the carboxy terminus is a carbonyl group (-COOH).
- the standard 20 amino acids commonly found in mammalian cells are utilized (alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid , glycine, histidine, isoleucine, leucine lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine).
- the molecular weight of each peptide varies based on its length and sequence and is calculated for each peptide.
- Personalized neoantigen peptides may be supplied as a box containing 2 ml Nunc Cryo vials with color-coded caps, each vial containing approximately 1.5 ml of a frozen DMSO/D5W solution containing up to 5 peptides at a concentration of 400 ug/ml. There may be 10 - 15 vials for each of the four groups of peptides. The vials are to be stored at -80oC until use. Ongoing stability studies support the storage temperature and time.
- the personalized neoantigen peptides are stored frozen at -80oC.
- the thawed, sterile filtered, in process intermediates and the final mixture of personalized neoantigen peptides and poly-ICLC can be kept at room temperature but should be used within 4 hours .
- the personalized neoantigen peptides will be mixed with 1/3 volume poly-ICLC just prior to use.
- the vaccine e.g., peptides + poly-ICLC
- the vaccine is to be administered subcutaneously.
- peptides will be mixed together in 4 pools of up to 5 peptides each.
- the selection criteria for each pool will be based on the particular MHC allele to which the peptide is predicted to bind.
- Pool Composition The composition of the pools will be selected on the basis of the particular HLA allele to which each peptide is predicted to bind.
- the four pools will be injected into anatomic sites that drain to separate lymph node basins. This approach was chosen in order to potentially reduce antigenic competition between peptides binding to the same HLA allele as much as possible and involve a wide subset of the patient's immune system in developing an immune response. For each patient, peptides predicted to bind up to four different HLA A and B alleles will be identified. Some neoORF derived peptides will not be associated with any particular HLA allele.
- NeoORF peptides Peptides predicted to bind to the same MHC allele will be placed into separate pools whenever possible. Some of the neoORF peptides may not be predicted to bind to any MHC allele of the patient. These peptides will still be utilized however, primarily because they are completely novel and therefore not subject to the immune-dampening effects of central tolerance and therefore have a high probability of being immunogenic. NeoORF peptides also carry a dramatically reduced potential for autoimmunity as there is no equivalent molecule in any normal cell. In addition, there can be false negatives arising from the prediction algorithm and it is possible that the peptide will contain a HLA class II epitope (HLA class II epitopes are not reliably predicted based on current algorithms). All peptides not identified with a particular HLA allele will be randomly assigned to the individual pools. The amounts of each peptide are predicated on a final dose of 300 ⁇ g of each peptide per injection.
- each patient four distinct pools (labeled "A”, “B”, “C” and “D") of 5 synthetic peptides each will have been prepared manufacturer and stored at -80°C.
- the complete vaccine consisting of the peptide component(s) and poly-ICLC will be prepared in a laminar flow biosafety cabinet in the research pharmacy.
- One vial each (A, B, C and D) will be thawed at room temperature and moved into a biosafety cabinet for the remaining steps. 0.75 ml of each peptide pool will be withdrawn from the vial into separate syringes.
- study drug A will be injected into left arm on day 1, 4, 8 etc.
- study drug B will be injected into right arm on days 1, 4, 8 etc.
- Alternative anatomical locations for patients who are status post complete axillary or inguinal lymph node dissection are the left and right midriff, respectively.
- Vaccine will be administered following a prime/boost schedule. Priming doses of vaccine will be administered on days 1, 4, 8, 15, and 22 as shown above. In the boost phase, vaccine will be administered on days 85 (week 13) and 169 (week 25).
- All patients receiving at least one dose of vaccine will be evaluable for toxicity. Patients will be evaluable for immunologic activity if they have received all vaccinations during the induction phase and the first vaccination (boost) during the maintenance phase.
- the immunization strategy is a "prime-boost" approach, involving an initial series of closely spaced immunizations to induce an immune response followed by a period of rest to allow memory T-cells to be established. This will be followed by a booster immunization, and the T-cell response 4 weeks after this boost (16 weeks after the first vaccination) is expected to generate the strongest response and will be the primary immunological endpoint. Immune monitoring will be performed in a step-wise fashion as outlined below to characterize the intensity and quality of the elicited immune responses. Peripheral blood will be collected and PBMC will be frozen at two separate time points prior to the first vaccination (baseline) and at different time points thereafter as illustrated in Schema B and specified in the study calendar.
- Immune monitoring in a given patient will be performed after the entire set of samples from the induction phase and the maintenance phase, respectively, have been collected. If sufficient tumor tissue is available, a portion of the tumor will be used to develop autologous melanoma cell lines for use in cytotoxic T-cell assays.
- a set of screening peptides will be synthesized.
- the screening peptides will be 15 amino acids in length (occasionally a 16mer or 17mer will be used), overlapping by 11 amino acids and covering the entire length of each peptide or the entire length of the neoORF for neoORF-derived peptides.
- the entire set of patient- specific screening peptides will be pooled together at approximately equal concentration and a portion of each peptide will also be stored individually. Purity of the peptide pool will be ascertained by testing PBMC from 5 healthy donors with established low background in ex vivo IFN- ⁇ ELISPOTs.
- PBMC obtained at baseline and at week 16 will be stimulated for 18 hours with the complete pool of overlapping 15-mer peptides (11 amino acids overlap) to examine the global response to the peptide vaccine. Subsequent assays may utilize PBMC collected at other time points as indicated. If no response is identified at the primary immunological endpoint using the ex vivo IFN- ⁇ ELISPOT assay, PBMC will be stimulated with the peptide pool for a longer time period (up to 10 days) and re-analyzed.
- Example 14 Deconvolution of epitopes in follow-up ex vivo IFN- ⁇ ELISPOT assays.
- an ex vivo IFN- ⁇ ELISPOT response elicited by an overlapping peptide pool is observed (defined as at least 55 spot forming units / 10 6 PBMC or increased at least 3 times over baseline)
- the particular immunogenic peptide eliciting this response will be identified by de- convoluting the peptide pool based into sub-pools based on the immunizing peptides and repeating the ex vivo IFN- ⁇ ELISPOT assays.
- an attempt will be made to precisely characterize the stimulating epitope by utilizing overlapping 8-10 mer peptides derived from confirmed, stimulating peptides in IFN- ⁇ ELISPOT assays.
- Additional assays may be conducted on a case-by case basis for appropriate samples. For example, • The entire 15mer pool or sub-pools will be used as stimulating peptides for intracellular cytokine staining assays to identify and quantify antigen- specific CD4+, CD8+, central memory and effector memory populations
- these pools will be used to evaluate the pattern of cytokines secreted by these cells to determine the T H 1 vs T H 2 phenotype
- MDSC Treg and myeloid-derived suppressor cells
- T-cell cytotoxicity assays will be conducted using the mutant and corresponding wild type peptide
- PBMC from the primary immunological endpoint will be evaluated for "epitope spreading" by using known melanoma tumor associated antigens as stimulants and by using several additional identified mutated epitopes that were not selected to be among the immunogens
- Immuno-histochemistry of tumor samples will be conducted to quantify CD4+, CD8+, MDSC, and Treg infiltrating populations.
- Example 15 Pipeline for the systematic identification of tumor neoantigens
- candidate tumor specific mutated peptides generated by tumor mutations with the potential to bind personal class I HLA proteins, and hence be presented to CD8 + T cells may be predicted using prediction algorithms such as, for example, NetMHCpan (see e.g., Lin 2008; Zhang 2011).
- Candidate peptide antigens were further evaluated based on experimental validation of their binding to HLA and expression cognate mRNAs in autologous leukemia cells.
- This pipeline was applied to a large dataset of sequenced CLL samples (see e.g., Wang et al. 2011). From 91 cases that were sequenced by either WES or WGS, a total of 1838 non- synonymous mutations were discovered in protein-coding regions, corresponding to a mean somatic mutation rate of 0.72 (+0.36 s.d.) per megabase (range, 0.08 to 2.70), and a mean of 20 non-synonymous mutations per patient (range, 2 to 76) (see e.g., Wang et al. 2011). Three general classes of mutations were identified that would be expected to generate regions of amino acid changes and hence potentially be recognized immunologically.
- missense mutation that cause single amino acid (aa) changes, representing 90% of somatic mutations per CLL.
- aa single amino acid
- missense mutations 99% harbored missense mutations and 69% had between 10-25 missense mutations (see e.g., FIG. 2A).
- the other two classes of mutations, frameshifts and splice- site mutations (mutations at exon-intron junctions) have the potential to generate longer stretches of novel amino acid sequences entirely specific to the tumor (neo-open reading frames, or neoORFs), with a higher number of neoantigen peptides per given alteration (compared to missense mutations).
- neoORF-generating mutations were approximately 10 fold less abundant than missense mutations in CLL (see e.g., FIGS. 2B-C). Given the prevalence of missense mutations, subsequent experimental studies was focused on the analysis of neoepitopes generated by missense mutations.
- Example 16 Somatic missense mutations generate neopeptides predicted to bind to personal HLA class I alleles
- T cell recognition of peptide epitopes by the T cell receptor (TCR) requires the display of peptides bound within the binding groove of HLA molecules on the surface of antigen- presenting cells.
- TCR T cell receptor
- the NetMHCpan algorithm was tested against a set of 33 known mutated epitopes that were originally identified in the literature on the basis of their functional activity (i.e., ability to stimulate antitumor cytolytic T cell responses) or were characterized as immunogenic minor histocompatibility antigens to determine whether the algorithm would correctly predict binding for the 33 known mutated epitopes (see e.g., Tables 4 and 5).
- Tables 4 and 5 show HLA-peptide binding affinities of known functionally derived immunogenic mutated epitopes across human cancers using NetMHCpan.
- Table 4 shows epitopes from missense mutations (NSCLC: non- small cell lung cancer; MEL: melanoma; CLL: chronic lymphocytic leukemia; RCC: clear cell renal carcinoma; BLD: bladder cancer; NR: not reported;). Yellow: IC50 ⁇ 150 nM, green: IC50 150-500 nM and grey: IC50 > 500 nM.
- Table 5 shows epitopes from minor histocompatibility antigens (MM: multiple myeloma; HM: hematological malignancy; B-ALL: B cell acute lymphocytic leukemia).
- NetMHCpan identified all 33 functionally validated mutated epitopes as the best binding peptide among the possible choices for the given mutation.
- the median predicted binding affinity (IC50) to the known reported HLA restricting elements of each of the 33 mutated epitopes was 32 nM (range, 3-11, 192 nM).
- NetMHCpan was then applied to the 31 of 91 CLL cases for which HLA typing information was available.
- peptides with IC50 ⁇ 150 nM were considered as strong to intermediate binders, IC50 150-500 nM as weak binders, and IC50 > 500 nM as non-binders, respectively (see e.g., Cai et al. 2012).
- a median of 10 strong binding peptides (range, 2-40) and 12 intermediate to weak binding peptides (range, 2-41) was found.
- a median of 22 (range, 6-81) peptides per case was predicted with IC50 ⁇ 500 nM (see e.g., FIG. 12B and Table 6).
- Table 6 shows that the numbers and affinity distributions of peptides predicted from 31 CLL cases with available HLA typing. Patients expressing the 8 most common HLA - A, -B alleles in the Caucasian population are marked in grey.
- Example 17 More than half of predicted HLA-binding neopeptides showed direct binding to HLA proteins in vitro
- IC50 nM scores generated by HLA -peptide binding predictions were validated using a competitive MHC I allele binding assay and focused on class I-A and -B alleles.
- 112 mutated peptides (9 or 10-mer mutated peptides) with predicted IC50 scores of less than 500 nM that were identified from 4 CLL cases (Pt 1-4) were synthesized.
- the experimental results correlated with the binding predictions.
- Experimental binding (defined as IC 50 ⁇ 500 NM) was confirmed in 76.5% and 36% of peptides predicted with IC50 of ⁇ 150 nM or 150-500 nM, respectively (see e.g., FIG. 12C).
- CTL responses against an epitope would only be useful if the gene encoding the epitope is expressed in the target cells.
- 26 were subjected to genome-wide expression profiling (see e.g.. Brown et al. 2012).
- the expression level of 347 genes with mutations in CLL samples was classified as having low/absent (lowest quartile), medium (middle two quartiles), or high (highest quartile) expression.
- 80% of the 347 mutated genes or 79% of the 180 mutations with predicted HLA- binding
- a similar high frequency of expression was observed among the subset of 221 mutated genes (88.6%) with predicted class I binding epitopes.
- R A levels may be determined based on the number of reads per gene product, and ranked by quartiles. "H” - Top quartile; “M” - Middle two quartiles; “L” - Lowest quartile (excluding genes with no reads; "-" - no reads detectable. As the predicted affinity decreases, higher stringency may be applied to expression levels. NeoORFs with predicted binders were utilized even if there was no detectable mRNA molecules by RNA-Seq. There is no data currently available to assess what, if any, the minimum expression level required in a rumor cell would be for a neoORF to be useful as a target for activated T-cells.
- neoORFs may be utilized as immunogens even if expression at the RNA level is low or undetectable.
- Example 19 T cells targeting candidate neoepitopes were detected in CLL Patient 1 following HSCT
- HSCT post-allogeneic hematopoietic stem cell transplantation
- Flu/Bu Fludarabine/Busulfan
- GvHD graft vs host disease
- URD unrelated donor
- Mis missense
- FS frameshift.
- Table 9 provides a summary of peptides from Pt 1 missense mutations that were included in peptide pools for T cell stimulation studies.
- Pt 1 all predicted peptides with IC50 ⁇ 500 nM binding to HLA -A and -B alleles were used.
- T cells were tested for neoantigen reactivity by expanding them using autologous antigen presenting cells (APCs) pulsed with candidate neoantigen peptide pools (once per week X 4 weeks).
- APCs autologous antigen presenting cells
- FIG. 14B reactivity in a IFN-y ELISPOT assay was detected against Pool 2, but not against an irrelevant peptide (Tax peptide).
- Deconvolution of the pool revealed that the mutated (mut) ALMS1 and C6orf89 peptides within Pool 2 were immunogenic.
- ALMS1 plays a role in ciliary function, cellular quiescence and intracellular transport, and mutations in this gene have been implicated in type II diabetes.
- C6orf89 encodes a protein that interacts with bombesin receptor subtype-3, which is involved in cell cycle progression and wound repair of bronchial epithelial cells. Both mutated sites were not in conserved regions of the gene, and were not within genes previously reported to be mutated in cancer. Both of the target peptides were among the subset of 14 predicted peptides that could be experimentally confirmed to bind Pt l's HLA alleles.
- the experimental binding scores of mut and wildtype (wt) ALMS1 were 91 and 666 nM, respectively; and of mut- and wt-C60RF89, 131 and 1.7 nM, respectively (see e.g., FIG. 14C and Table 9).
- Example 20 CLL Patient 2 exhibited immunity against a mutated FNDC3B peptide that is naturally processed
- HLA-binding peptides were studied. T cell stimulations were performed using 3 pools of 6 peptides/pool (see e.g., Table 10). Table 10 shows a summary of peptides from Pt 2 missense mutations that were included in peptide pools for T cell stimulation studies. In Pt 2, all peptides that were experimentally confirmed to bind to HLA -A and -B alleles were used. 3 pools of peptides with 6 peptides/pool listed in decreasing order of experimental binding affinity of mutated peptides. The corresponding wildtype peptides and their predicted IC50 scores are included in the far right columns.
- T cell reactivity against was polyfunctional (secreting GM-CSF, IFN- ⁇ and IL-2), and specific to the peptide but not its wildtype counterpart.
- Testing T cell reactivity against different concentrations of mut- and wt-FNDC3B peptides revealed a high avidity and specificity of reactive T cells.
- T cell reactivity was abrogated by the presence of class I blocking antibody (W6/32), indicating that T cell reactivity was class I restricted (see e.g., FIGS. 17D-E).
- the peptide appeared to be a naturally processed and presented peptide since T cell reactivity was detected against HLA-A2- expressing APCs that were transfected with a 300 basepair minigene encompassing the region of gene mutation but not the wildtype minigene, as shown in FIG. 17E, right panel.
- T cell responses were not detected before or up to 3 months following HSCT.
- Molecular remission was first achieved 4 months following HSCT, and T cells were then first detected 6 months following HSCT.
- Antigen- specific reactivity subsequently waned (between 12 and 20 months post-HSCT), but was again strongly detected at 32 months post-HSCT.
- ⁇ 1 was identified as the
- Table 11 shows primers used for amplification of the TCR ⁇ subfamily.
- Table 12 shows detection of specific TCR ⁇ 1, using T cell receptor-specific primers in Pt 2.
- a real-time PCR assay was designed to detect the
- the PCR products were normalized over 18S ribosomal RNA. -, negative: no amplification; +, positive: amplification detected; ++, double positive: amplification detected and amplification level is more than median level of all positive samples. Table 12.
- Example 21 Large numbers of candidate neoantigens were predicted across diverse cancers The overall somatic mutation rate of CLL is similar to other blood malignancies, but low in comparison to solid tumor malignancies (see e.g., FIG. 20A).
- the pipeline was applied to publicly available WES data from 13 malignancies - including high (melanoma (MEL)), lung squamous (LUSC) and adeno (LUAD) carcinoma, head and neck cancer (HNC), bladder cancer, colon and rectum adenocarcinoma, medium (glioblastoma (GBM), ovarian, clear cell renal carcinoma (clear cell RCC), and breast cancer) and low (CLL and acute myeloid leukemia (AML) cancers.
- MEL melanoma
- LUSC lung squamous
- LUAD adeno carcinoma
- HNC head and neck cancer
- bladder cancer colon and rectum adenocarcinoma
- GBM glioblastoma
- the overall mutation rate in these solid malignancies was an order of magnitude higher than for CLL and was associated with an increased median number of missense mutations.
- melanoma displayed a median of 300 (range, 34-4276) missense mutations per case, while RCC had 41 (range, 10-101), respectively.
- Frameshift and splice-site mutations in RCC and melanoma were increased by only 2-3 fold in frequency as compared to CLL and summed neoORF length per sample were increased only moderately (by 5-13 fold).
- the median number of predicted neopeptides with IC50 ⁇ 500 nM generated from missense and frameshift events per sample was proportional to the mutation rate; this was approximately 20- and 4-fold higher for melanoma (488; range, 18-5811) and RCC (80; range, 6-407)), respectively, compared to CLL (24; range 2-124).
- the corresponding numbers of predicted neopeptides were 212, 35 and 10 for melanoma, RCC and CLL, respectively, as shown in FIG. 20B and Table 13).
- Table 13 shows the distribution of mutation classes, summed neoORF sizes and number of predicted binding peptides across 13 cancers.
- MEL melanoma
- LUSC lung squamous cell carcinoma
- LUAD lung adenocarcinoma
- BLCA bladder
- HNSC head and neck cancer
- COAD colon adenocarcinoma
- READ renal adenocarcinoma
- GBM glioblastoma
- OV OV
- RCC clear cell renal carcinoma
- BRCA breast
- CLL chronic lymphocytic leukemia
- AML acute myeloid leukemia. * -predicted number of peptides based on missense and frameshift mutations.
- Example 22 Clinical strategies for addressing clonal mutations
- “Clonal” mutations are those that are found in all cancer cells within a tumor, while “subclonal” mutations are those that statistically are not in all cancer cells and therefore are derived from a sub population within the tumor.
- bioinformatic analysis may be used to estimate clonality of mutations.
- the ABSOLUTE algorithm (Carter et al, 2012, Landau et al, 2013) may be used to estimate tumor purity, ploidy, absolute copy numbers and clonality of mutations.
- Probability density distributions of allelic fractions of each mutation may be generated followed by conversion to cancer cell fractions (CCFs) of the mutations. Mutations may be classified as clonal or subclonal based on whether the posterior probability of their CCF exceeds 0.95 is greater or lesser than 0.5 respectively.
- a neoantigen vaccine may include peptides to clonal, sub-clonal or both types of mutations. The decision may depend on the disease stage of the patient and the tumor sample(s) sequenced. For an initial clinical study in the adjuvant setting, it may not be necessary to distinguish between the two mutations types during peptide selection, however, one of skill in the art will appreciate that such information may be useful in guiding future studies for a number of reasons.
- subject tumor cells may be genetically heterogeneous.
- Multiple studies have been published in which tumors representing different stages of disease progression have been evaluated for heterogeneity. These include examining the evolution from a pre-malignant disease (Myelodysplasia syndrome) to leukemia (secondary acute myelogenous leukemia [AML]) (Walter et al 2012), relapse following therapy-induced remission of AML(Ding et al 2012), evolution from primary to metastatic breast cancer and medulloblastomas (Ding et al 2012; Wu et al Nature 2012), and evolution from primary to highly metastatic pancreatic and renal cancers (Yachida et al 2012; Gerlinger et al 2012).
- a single tumor for each patient may be initially sequenced, which may provide a snapshot of the profile of genetic variation for that particular point in time.
- the sequenced tumor may be derived from a clinically evident lymph node, in transit/satellite metastasis, or resectable visceral metastasis. None of the initially tested patients will have disease that has clinically progressed to multiple sites; however, it is contemplated that the techniques described herein in will be broadly applicable to patients have cancer that has progressed to multiple sites.
- "clonal mutations" may be comprised of both founder mutations and any novel mutations present in the cell that seeded the resected tumor and sub-clonal mutations represent those that evolved during growth of the resected tumor.
- the clinically important tumor cells for the vaccine induced T-cells to target are frequently not the resected tumor cells but rather other currently undetectable tumor cells within a given patient. These cells may have spread directly from the primary tumor or from the resected tumor, may have derived from a dominant or sub-dominant population within the seeding tumor and may have genetically evolved further at the surgically resected site. These events are currently unpredictable.
- mutations found in the resected tumor that are clonal or subclonal represent the optimal choice for targeting other non-resected cancer cells.
- mutations that are subclonal within the resected tumor may be clonal at other sites if those other sites were seeded from a subpopulation of cells containing the sub-clonal mutation within the resected tumor.
- sequencing of more than one lesion (or parts of lesion) or lesions from different time points may provide more information relative to effective peptide selection.
- Clonal mutations may typically be prioritized in the design of neo-antigen epitopes for the vaccine. In some instances, especially as the tumor evolves and sequencing details from metastatic lesions are evaluated for an individual patient, certain subclonal mutations may be prioritized for consideration as part of peptide selection.
- Example 23 Personalized cancer vaccines stimulate immunity against tumor neoantigens
- CLL is a relatively low mutation rate cancer
- Whole-exome sequencing data from 31 CLL samples revealed that per case, a median of 22 peptides (range, 6- 81) were predicted to bind to personal HLA-A and -B alleles with IC50 ⁇ 500nM originating from a median of 16 (range, 2-75) missense mutations.
- RNA expression analysis showed that nearly 90% of the cognate genes corresponding to the predicted mutated peptides were confirmed to be expressed in CLL cells and expression of a transcript from the mutated allele was detected in each of the three (data not shown) examples tested.
- Cancer Res 72: 1081-1091, 2012 who identified candidate neoepitopes by WES of B16 murine melanoma and prediction of peptide-HLA allele binders.
- a subset of these predicted epitopes not only elicited immune responses that were specific to the mutated peptide and not the wildtype counterpart, but could also control the disease both therapeutically and prophylactically.
- driver mutations may not necessarily generate immunogenic peptides.
- the TP53-S83R mutation in Patient 2 did not generate a predicted epitope of ⁇ 500 nM against any of its class I HLA-A or -B alleles.
- the distinction between these two types of mutations fits with the concept that the peptide can be considered as a "key', which must fit both the MHC and the TCR "locks" in order to stimulate cytolysis, allowing mutations to independently vary MHC or TCR binding. Excepting the contribution of minor histocompatiblility antigens to graft-vs- host disease, there are no reports of auto-immune sequelae linked to neoantigens in these patients, even in those patients where a reaction occurs to a mutated peptide and the cognate native peptide is predicted to be a tight binder.
- an optimal therapy may need to be customized based on the exact mutations present in each tumor, and may need to target multiple nodes to avoid resistance.
- the vast repertoire of human CTLs has the potential to create such a therapy that targets multiple, personalized tumor antigens.
- the present disclosure shows that it is possible to systematically identify CTL target antigens harboring tumor- specific mutations by using massively parallel sequencing in combination with algorithms that effectively predict HLA -binding peptides.
- the present disclosure allows tumor neoantigens in a variety of low and high mutation rate cancers to be predicted, and experimentally identifies long-lived CTLs that target leukemia neoantigens in CLL patients.
- the present disclosure supports the existence of protective immunity targeting tumor neoantigens, and provides a method for selecting neoantigens for personalized tumor vaccines.
- neoantigen-reactive CTLs are important in cancer surveillance because the study of a long-term melanoma survivor found that CTLs targeting neoantigens are significantly more abundant and sustained than those against non-mutated overexpressed tumor antigens (Lennerz V, Fatho M, Gentilini C, et al: The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc Natl Acad Sci U S A 102: 16013-8, 2005).
- neoantigen-specific T cell responses in CLL patients were found to be long-lived (on the order of several years) memory T cells (based on their rapid stimulation kinetics in vitro) and associated with continuous disease remission. Accordingly, neoantigen-reactive CTLs likely play an active role in controlling leukemia in transplanted CLL patients.
- the abundance of neoantigens across many tumors was estimated and found to be -1.5 HLA-binding peptides with IC50 ⁇ 500nM per point mutation and ⁇ 4 binding peptides per frameshift mutation.
- the rate of predicted HLA binding peptides mirrored the somatic mutation rate per tumor type (see e.g., FIG. 20).
- Two approaches were used to study the relationship between predicted binding affinity and immunogenic neoantigens that induce CTLs. The above-described techniques were applied to published immunogenic tumor neoantigens (i.e. in which reactive CTLs were observed in patients) demonstrated that the vast majority (91%) of functional neoantigens are predicted to bind HLA with IC50 ⁇ 500nM (with
- allo-HSCT is a general cellular therapy likely to induce only a small number of neoantigen-specific T cell memory clones; and (ii) standard T cell expansion methods are not sensitive enough to detect naive T cells that represent a much larger part of the repertoire but with much lower precursor frequencies.
- this class of neoantigens may be an excellent candidate neoepitope because it is likely to be more specific (for lack of a wild type counterpart) and immunogenic (as a result of bypassing thymic tolerance).
- the present disclosure provides techniques that make it feasible to generate personalized cancer vaccines that effectively stimulate immunity against tumor neoantigens.
- PBMCs Peripheral blood mononuclear cells
- HLA alleles were inferred through a two-stage likelihood calculation.
- population- based frequencies were used as priors for each allele and the posterior likelihoods were calculated based on quality and insert size distributions of aligned reads.
- Alleles with the highest likelihoods for each of HLA-A, B and C genes were identified as the first set of alleles.
- a heuristic weighting strategy of the computed likelihoods in conjunction with the first set of winners were then used to identify the second set of alleles.
- Table 14 shows TCGA patient IDs for neoantigen load estimates across cancers.
- LUSC lung squamous carcinoma
- LUAD lung adeno carcinoma
- BLCA bladder
- HNSC head and neck
- COAD colon
- READ rectum
- GBM glioblastoma
- OV ovarian
- RCC clear cell renal carcinoma
- AML acute myeloid leukemia
- BRCA breast
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Cell Biology (AREA)
- Epidemiology (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Oncology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Hospice & Palliative Care (AREA)
- Hematology (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Genetics & Genomics (AREA)
- Pathology (AREA)
- Biochemistry (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
Abstract
Description
Claims
Priority Applications (20)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237034437A KR20230145545A (en) | 2013-04-07 | 2014-04-07 | Compositions and methods for personalized neoplasia vaccines |
KR1020157031939A KR102341899B1 (en) | 2013-04-07 | 2014-04-07 | Compositions and methods for personalized neoplasia vaccines |
AU2014251207A AU2014251207B2 (en) | 2013-04-07 | 2014-04-07 | Compositions and methods for personalized neoplasia vaccines |
NZ712933A NZ712933B2 (en) | 2013-04-07 | 2014-04-07 | Compositions and methods for personalized neoplasia vaccines |
CN202410556851.8A CN118557711A (en) | 2013-04-07 | 2014-04-07 | Compositions and methods for personalizing neoplasia vaccines |
BR112015025460-8A BR112015025460B1 (en) | 2013-04-07 | 2014-04-07 | METHOD FOR PRODUCING A PERSONALIZED VACCINE AGAINST NEOPLASM FOR AN INDIVIDUAL DIAGNOSED AS HAVING A NEOPLASM, PERSONALIZED VACCINE AND USE THEREOF |
KR1020217041186A KR20210156320A (en) | 2013-04-07 | 2014-04-07 | Compositions and methods for personalized neoplasia vaccines |
EP14727288.4A EP2983702A2 (en) | 2013-04-07 | 2014-04-07 | Compositions and methods for personalized neoplasia vaccines |
JP2016507587A JP6702855B2 (en) | 2013-04-07 | 2014-04-07 | Personalized neoplastic vaccine compositions and methods |
CN201480032291.0A CN105377292A (en) | 2013-04-07 | 2014-04-07 | Compositions and methods for personalized neoplasia vaccines |
CN202410556757.2A CN118750591A (en) | 2013-04-07 | 2014-04-07 | Compositions and methods for personalizing neoplasia vaccines |
CN202311507937.3A CN117815373A (en) | 2013-04-07 | 2014-04-07 | Compositions and methods for personalizing neoplasia vaccines |
CA2908434A CA2908434C (en) | 2013-04-07 | 2014-04-07 | Compositions and methods for personalized neoplasia vaccines |
IL241858A IL241858B (en) | 2013-04-07 | 2015-10-06 | Compositions and methods for personalized neoplasia vaccines |
US14/877,125 US20160101170A1 (en) | 2013-04-07 | 2015-10-07 | Compositions and methods for personalized neoplasia vaccines |
AU2019203665A AU2019203665B2 (en) | 2013-04-07 | 2019-05-24 | Compositions and methods for personalized neoplasia vaccines |
AU2019203664A AU2019203664B2 (en) | 2013-04-07 | 2019-05-24 | Compositions and methods for personalized neoplasia vaccines |
US17/089,408 US20210220455A1 (en) | 2013-04-07 | 2020-11-04 | Compositions and methods for personalized neoplasia vaccines |
IL282202A IL282202A (en) | 2013-04-07 | 2021-04-08 | Compositions and methods for personalized neoplasia vaccines |
AU2021266338A AU2021266338A1 (en) | 2013-04-07 | 2021-11-12 | Compositions and methods for personalized neoplasia vaccines |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361809406P | 2013-04-07 | 2013-04-07 | |
US61/809,406 | 2013-04-07 | ||
US201361869721P | 2013-08-25 | 2013-08-25 | |
US61/869,721 | 2013-08-25 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/877,125 Continuation-In-Part US20160101170A1 (en) | 2013-04-07 | 2015-10-07 | Compositions and methods for personalized neoplasia vaccines |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2014168874A2 true WO2014168874A2 (en) | 2014-10-16 |
WO2014168874A3 WO2014168874A3 (en) | 2014-12-18 |
Family
ID=50842334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2014/033185 WO2014168874A2 (en) | 2013-04-07 | 2014-04-07 | Compositions and methods for personalized neoplasia vaccines |
Country Status (10)
Country | Link |
---|---|
US (2) | US20160101170A1 (en) |
EP (1) | EP2983702A2 (en) |
JP (3) | JP6702855B2 (en) |
KR (3) | KR20210156320A (en) |
CN (4) | CN117815373A (en) |
AU (4) | AU2014251207B2 (en) |
BR (1) | BR112015025460B1 (en) |
CA (2) | CA3137846A1 (en) |
IL (2) | IL241858B (en) |
WO (1) | WO2014168874A2 (en) |
Cited By (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015085147A1 (en) * | 2013-12-05 | 2015-06-11 | The Broad Institute Inc. | Polymorphic gene typing and somatic change detection using sequencing data |
WO2015085233A1 (en) * | 2013-12-06 | 2015-06-11 | The Broad Institute Inc. | Formulations for neoplasia vaccines |
WO2015095811A3 (en) * | 2013-12-20 | 2015-10-22 | The Board Institute Inc. | Combination therapy with neoantigen vaccine |
EP2983702A2 (en) * | 2013-04-07 | 2016-02-17 | The Broad Institute, Inc. | Compositions and methods for personalized neoplasia vaccines |
WO2016128376A1 (en) * | 2015-02-12 | 2016-08-18 | Biontech Ag | Predicting t cell epitopes useful for vaccination |
WO2016145317A1 (en) * | 2015-03-12 | 2016-09-15 | Thomas Schwaab | Enrichment of cd16+ monocytes to improve dendritic cell vaccine quality |
WO2016174085A1 (en) * | 2015-04-27 | 2016-11-03 | Cancer Research Technology Limited | Method for treating cancer |
WO2017066290A1 (en) * | 2015-10-12 | 2017-04-20 | Nantomics, Llc | Viral neoepitopes and uses thereof |
WO2017139725A1 (en) * | 2016-02-11 | 2017-08-17 | Nant Holdings Ip, Llc | Subcutaneous delivery of adenovirus with dual targeting |
WO2017184590A1 (en) * | 2016-04-18 | 2017-10-26 | The Broad Institute Inc. | Improved hla epitope prediction |
WO2017220463A1 (en) | 2016-06-20 | 2017-12-28 | Isa Pharmaceuticals B.V. | Formulation of a peptide vaccine |
CN107921107A (en) * | 2015-06-09 | 2018-04-17 | 博德研究所 | Preparation of vaccine and preparation method thereof is formed for knurl |
WO2018085802A1 (en) * | 2016-11-07 | 2018-05-11 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Methods for selecting therapy for a cancer patient |
CN108135985A (en) * | 2015-09-10 | 2018-06-08 | 癌症研究技术有限公司 | " intervention of immunologic test point " in cancer |
JP2018516847A (en) * | 2015-03-25 | 2018-06-28 | ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン | Compositions and methods for delivering biopolymer drugs |
JP2018522822A (en) * | 2015-05-20 | 2018-08-16 | ザ・ブロード・インスティテュート・インコーポレイテッド | Common neo antigen |
WO2018183544A1 (en) * | 2017-03-31 | 2018-10-04 | Dana-Farber Cancer Institute, Inc. | Method for identification of retained intron tumor neoantigens from patient transcriptome |
US10106800B2 (en) | 2005-09-28 | 2018-10-23 | Biontech Ag | Modification of RNA, producing an increased transcript stability and translation efficiency |
CN108700592A (en) * | 2015-10-12 | 2018-10-23 | 南托米克斯有限责任公司 | The iteration discovery of new epitope and its adaptive immunity therapy and method |
WO2018200389A1 (en) * | 2017-04-24 | 2018-11-01 | Nantcell, Inc. | Targeted neoepitope vectors and methods therefor |
US10155031B2 (en) | 2012-11-28 | 2018-12-18 | Biontech Rna Pharmaceuticals Gmbh | Individualized vaccines for cancer |
JP2019500057A (en) * | 2015-12-07 | 2019-01-10 | ナント ホールディングス アイピー エルエルシーNant Holdings IP, LLC | Improved compositions and methods for viral delivery of neoepitope and uses thereof |
WO2018234506A3 (en) * | 2017-06-21 | 2019-03-07 | Transgene Sa | Personalized vaccine |
JP2019511907A (en) * | 2016-02-12 | 2019-05-09 | ナントミクス,エルエルシー | High-throughput identification of patient-specific neoepitopes as therapeutic targets for cancer immunotherapy |
WO2019122050A1 (en) | 2017-12-22 | 2019-06-27 | Isa Pharmaceuticals B.V. | Methods of immunization |
US10350280B2 (en) | 2016-08-31 | 2019-07-16 | Medgenome Inc. | Methods to analyze genetic alterations in cancer to identify therapeutic peptide vaccines and kits therefore |
US10485884B2 (en) | 2012-03-26 | 2019-11-26 | Biontech Rna Pharmaceuticals Gmbh | RNA formulation for immunotherapy |
WO2019241315A1 (en) | 2018-06-12 | 2019-12-19 | Obsidian Therapeutics, Inc. | Pde5 derived regulatory constructs and methods of use in immunotherapy |
WO2020006242A1 (en) * | 2018-06-27 | 2020-01-02 | Modernatx, Inc. | Personalized cancer vaccine epitope selection |
US10564165B2 (en) | 2014-09-10 | 2020-02-18 | Genentech, Inc. | Identification of immunogenic mutant peptides using genomic, transcriptomic and proteomic information |
US10568948B2 (en) | 2015-05-13 | 2020-02-25 | Agenus Inc. | Vaccines for treatment and prevention of cancer |
US20200095548A1 (en) * | 2015-05-01 | 2020-03-26 | The United States Of America,As Represented By The Secretary,Department Of Health And Human Services | Methods of isolating t cells and t cell receptors having antigenic specificity for a cancer-specific mutation from peripheral blood |
WO2020097291A1 (en) * | 2018-11-07 | 2020-05-14 | Modernatx, Inc. | Rna cancer vaccines |
US10738355B2 (en) | 2011-05-24 | 2020-08-11 | Tron-Translationale Onkologie An Der Universitätsmedizin Der Johannes Gutenberg-Universität Mainz Ggmbh | Individualized vaccines for cancer |
US10801070B2 (en) | 2013-11-25 | 2020-10-13 | The Broad Institute, Inc. | Compositions and methods for diagnosing, evaluating and treating cancer |
EP3544607A4 (en) * | 2016-11-23 | 2020-10-14 | Gritstone Oncology, Inc. | Viral delivery of neoantigens |
EP3234130B1 (en) * | 2014-12-19 | 2020-11-25 | The Broad Institute, Inc. | Methods for profiling the t-cell- receptor repertoire |
US20210055306A1 (en) * | 2019-08-22 | 2021-02-25 | Shenzhen Neocura Biotechnology Corporation | Method and platform for detecting immunogenicity of tumor neoantigen |
US10975442B2 (en) | 2014-12-19 | 2021-04-13 | Massachusetts Institute Of Technology | Molecular biomarkers for cancer immunotherapy |
US11065317B2 (en) | 2018-04-26 | 2021-07-20 | Agenus Inc. | Heat shock protein-binding peptide compositions and methods of use thereof |
US11154597B2 (en) | 2016-03-24 | 2021-10-26 | Nantcell, Inc. | Sequence arrangements and sequences for neoepitope presentation |
US11173120B2 (en) | 2014-09-25 | 2021-11-16 | Biontech Rna Pharmaceuticals Gmbh | Stable formulations of lipids and liposomes |
US11222711B2 (en) | 2013-05-10 | 2022-01-11 | BioNTech SE | Predicting immunogenicity of T cell epitopes |
US11298426B2 (en) | 2003-10-14 | 2022-04-12 | BioNTech SE | Recombinant vaccines and use thereof |
EP3801597A4 (en) * | 2018-05-25 | 2022-05-04 | The Wistar Institute | Tumor-specific neoantigens and methods of using the same |
RU2779987C2 (en) * | 2017-06-21 | 2022-09-16 | Трансген | Personalized vaccine |
WO2022229464A1 (en) | 2021-04-30 | 2022-11-03 | Tigen Pharma Sa | Single vessel expansion of lymphocytes |
US11492628B2 (en) | 2015-10-07 | 2022-11-08 | BioNTech SE | 3′-UTR sequences for stabilization of RNA |
US11504421B2 (en) | 2017-05-08 | 2022-11-22 | Gritstone Bio, Inc. | Alphavirus neoantigen vectors |
US11504398B2 (en) | 2021-04-01 | 2022-11-22 | Achilles Therapeutics Uk Limited | Identification of clonal neoantigens and uses thereof |
US11549149B2 (en) | 2017-01-24 | 2023-01-10 | The Broad Institute, Inc. | Compositions and methods for detecting a mutant variant of a polynucleotide |
US11591619B2 (en) | 2019-05-30 | 2023-02-28 | Gritstone Bio, Inc. | Modified adenoviruses |
US11614449B2 (en) * | 2015-03-31 | 2023-03-28 | Technische Universitaet Muenchen | T cell receptors and peptides derived by mutations for the treatment of cancer |
US11723962B2 (en) | 2016-05-04 | 2023-08-15 | Fred Hutchinson Cancer Center | Cell-based neoantigen vaccines and uses thereof |
US11744801B2 (en) | 2017-08-31 | 2023-09-05 | Modernatx, Inc. | Methods of making lipid nanoparticles |
US11771747B2 (en) | 2020-08-06 | 2023-10-03 | Gritstone Bio, Inc. | Multiepitope vaccine cassettes |
US11786607B2 (en) | 2017-06-15 | 2023-10-17 | Modernatx, Inc. | RNA formulations |
EP3389630B1 (en) | 2015-12-16 | 2023-11-08 | Gritstone bio, Inc. | Neoantigen identification, manufacture, and use |
WO2023218399A1 (en) * | 2022-05-11 | 2023-11-16 | Fundação D. Anna De Sommer Champalimaud E Dr. Carlos Montez Champalimaud - Centro De Investigação Da Fundação Champalimaud | Method of preparing and expanding a population of immune cells for cancer therapy, potency assay for tumor recognition, biological vaccine preparation and epitope target for antibodies |
US11885815B2 (en) * | 2017-11-22 | 2024-01-30 | Gritstone Bio, Inc. | Reducing junction epitope presentation for neoantigens |
WO2024097864A1 (en) | 2022-11-02 | 2024-05-10 | Tigen Pharma Sa | Expansion of lymphocytes |
US12049643B2 (en) | 2017-07-14 | 2024-07-30 | The Broad Institute, Inc. | Methods and compositions for modulating cytotoxic lymphocyte activity |
US12059459B2 (en) | 2016-01-08 | 2024-08-13 | Nykode Therapeutics ASA | Therapeutic anticancer neoepitope vaccine |
US12090235B2 (en) | 2018-09-20 | 2024-09-17 | Modernatx, Inc. | Preparation of lipid nanoparticles and methods of administration thereof |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016123365A1 (en) | 2015-01-30 | 2016-08-04 | The Regents Of The University Of Michigan | Liposomal particles comprising biological molecules and uses thereof |
US20190099475A1 (en) | 2015-04-08 | 2019-04-04 | Nantomics, Llc | Cancer neoepitopes |
CA3172682A1 (en) | 2015-04-23 | 2016-10-27 | Nantomics, Llc | Cancer neoepitopes |
EP3362103A4 (en) * | 2015-10-12 | 2020-02-05 | Nantomics, LLC | Compositions and methods for viral cancer neoepitopes |
JP2018532736A (en) | 2015-10-12 | 2018-11-08 | ナントミクス,エルエルシー | Systems, compositions, and methods for MSI and neoepitope search to predict susceptibility to checkpoint inhibitors |
US20170224796A1 (en) | 2016-02-05 | 2017-08-10 | Xeme Biopharma Inc. | Therapeutic Cancer Vaccine Containing Tumor-Associated Neoantigens and Immunostimulants in a Delivery System |
EP3471778A4 (en) * | 2016-06-20 | 2020-02-19 | The Regents of The University of Michigan | Compositions and methods for delivery of biomacromolecule agents |
PT3488443T (en) * | 2016-07-20 | 2021-09-24 | BioNTech SE | Selecting neoepitopes as disease-specific targets for therapy with enhanced efficacy |
WO2018102613A2 (en) * | 2016-12-01 | 2018-06-07 | Nantomics, Llc | Tumor antigenicity processing and presentation |
US11485784B2 (en) | 2017-03-31 | 2022-11-01 | Act Genomics (Ip) Co., Ltd. | Ranking system for immunogenic cancer-specific epitopes |
MX2019012433A (en) * | 2017-04-19 | 2019-12-11 | Gritstone Oncology Inc | Neoantigen identification, manufacture, and use. |
EP3630130B1 (en) | 2017-06-02 | 2022-08-31 | Arizona Board of Regents on behalf of Arizona State University | A method to create personalized cancer vaccines |
AU2018279627B2 (en) * | 2017-06-09 | 2023-08-10 | Gritstone Bio, Inc. | Neoantigen identification, manufacture, and use |
FI3642331T3 (en) * | 2017-06-22 | 2023-07-24 | Neogap Therapeutics Ab | T-cell expansion method and uses |
US20200363414A1 (en) * | 2017-09-05 | 2020-11-19 | Gritstone Oncology, Inc. | Neoantigen Identification for T-Cell Therapy |
US12025615B2 (en) | 2017-09-15 | 2024-07-02 | Arizona Board Of Regents On Behalf Of Arizona State University | Methods of classifying response to immunotherapy for cancer |
WO2019060835A2 (en) * | 2017-09-25 | 2019-03-28 | Nant Holdings Ip, Llc | Validation of neoepitope presentation |
CA3078744A1 (en) * | 2017-10-10 | 2019-04-18 | Gritstone Oncology, Inc. | Neoantigen identification using hotspots |
EP3706765A4 (en) | 2017-11-07 | 2021-07-14 | Coimmune, Inc. | Methods and uses for dendritic cell therapy |
CN109865133B (en) * | 2017-12-01 | 2021-07-09 | 上海桀蒙生物技术有限公司 | Method for preparing personalized cancer vaccine |
CN108491689B (en) * | 2018-02-01 | 2019-07-09 | 杭州纽安津生物科技有限公司 | Tumour neoantigen identification method based on transcript profile |
WO2020020444A1 (en) * | 2018-07-24 | 2020-01-30 | Biontech Rna Pharmaceuticals Gmbh | Individualized vaccines for cancer |
AU2019334131A1 (en) * | 2018-09-05 | 2021-03-04 | NEC Oncolmmunity AS | Neoantigen targeting DNA vaccine for combination therapy |
CN109337873A (en) * | 2018-09-30 | 2019-02-15 | 北京鼎成肽源生物技术有限公司 | A kind of LRFF cell |
WO2020131586A2 (en) | 2018-12-17 | 2020-06-25 | The Broad Institute, Inc. | Methods for identifying neoantigens |
AU2020232971A1 (en) * | 2019-03-01 | 2021-09-23 | Scott R. BURKHOLZ | Design, manufacture, and use of personalized cancer vaccines |
US20220108768A1 (en) * | 2019-03-08 | 2022-04-07 | Nantomics, Llc | System and method for variant calling |
CN110059625B (en) * | 2019-04-18 | 2023-04-07 | 重庆大学 | Face training and recognition method based on mixup |
US20200390873A1 (en) * | 2019-06-11 | 2020-12-17 | Iogenetics, Llc | Neoantigen immunotherapies |
CN110464840A (en) * | 2019-09-06 | 2019-11-19 | 北京微九九科技有限公司 | A kind of preparation method of tumor vaccine and the tumor vaccine prepared using this method |
EP4038222A4 (en) | 2019-10-02 | 2023-10-18 | Arizona Board of Regents on behalf of Arizona State University | Methods and compositions for identifying neoantigens for use in treating and preventing cancer |
EP4055182A4 (en) * | 2019-11-08 | 2024-07-03 | Univ California | Identification of splicing-derived antigens for treating cancer |
JP7496111B2 (en) * | 2019-12-24 | 2024-06-06 | 国立大学法人東京工業大学 | Subcarrier modulation terahertz radar |
US11011253B1 (en) * | 2020-07-09 | 2021-05-18 | Brian Hie | Escape profiling for therapeutic and vaccine development |
US11421015B2 (en) | 2020-12-07 | 2022-08-23 | Think Therapeutics, Inc. | Method of compact peptide vaccines using residue optimization |
US20240229143A1 (en) * | 2020-12-07 | 2024-07-11 | Iogenetics, Llc | Formulation of peptide immunotherapies |
US11464842B1 (en) | 2021-04-28 | 2022-10-11 | Think Therapeutics, Inc. | Compositions and method for optimized peptide vaccines using residue optimization |
CN113069537A (en) * | 2021-04-29 | 2021-07-06 | 江苏欣生元生物科技有限公司 | Fusion protein nano vaccine based on RAS (RAS-mediated isothermal amplification) variant neoepitope and preparation method thereof |
CN112972666B (en) * | 2021-05-12 | 2021-08-31 | 山东兴瑞生物科技有限公司 | Preparation method of personalized gene modified tumor DC vaccine |
WO2024077256A1 (en) | 2022-10-07 | 2024-04-11 | The General Hospital Corporation | Methods and compositions for high-throughput discovery ofpeptide-mhc targeting binding proteins |
Citations (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3870790A (en) | 1970-01-22 | 1975-03-11 | Forest Laboratories | Solid pharmaceutical formulations containing hydroxypropyl methyl cellulose |
US4210644A (en) | 1978-02-23 | 1980-07-01 | The Johns Hopkins University | Male contraception |
US4226859A (en) | 1979-06-07 | 1980-10-07 | Velsicol Chemical Corporation | Pyridyl esters of N-alkylidene-substituted phosphor- and phosphonamidic acids |
US4369172A (en) | 1981-12-18 | 1983-01-18 | Forest Laboratories Inc. | Prolonged release therapeutic compositions based on hydroxypropylmethylcellulose |
US4379454A (en) | 1981-02-17 | 1983-04-12 | Alza Corporation | Dosage for coadministering drug and percutaneous absorption enhancer |
US4588585A (en) | 1982-10-19 | 1986-05-13 | Cetus Corporation | Human recombinant cysteine depleted interferon-β muteins |
US4656127A (en) | 1983-04-22 | 1987-04-07 | Amersham International Plc. | Method of detecting mutations in DNA and RNA |
US4690915A (en) | 1985-08-08 | 1987-09-01 | The United States Of America As Represented By The Department Of Health And Human Services | Adoptive immunotherapy as a treatment modality in humans |
US4722848A (en) | 1982-12-08 | 1988-02-02 | Health Research, Incorporated | Method for immunizing animals with synthetically modified vaccinia virus |
US4743249A (en) | 1986-02-14 | 1988-05-10 | Ciba-Geigy Corp. | Dermal and transdermal patches having a discontinuous pattern adhesive layer |
US4816540A (en) | 1987-06-12 | 1989-03-28 | Yasuhiko Onishi | Cationic graft-copolymer |
US4842866A (en) | 1985-01-11 | 1989-06-27 | Abbott Laboratories Ltd. | Slow release solid preparation |
US4844893A (en) | 1986-10-07 | 1989-07-04 | Scripps Clinic And Research Foundation | EX vivo effector cell activation for target cell killing |
US4906169A (en) | 1986-12-29 | 1990-03-06 | Rutgers, The State University Of New Jersey | Transdermal estrogen/progestin dosage unit, system and process |
US4973468A (en) | 1989-03-22 | 1990-11-27 | Cygnus Research Corporation | Skin permeation enhancer compositions |
FR2650840A1 (en) | 1989-08-11 | 1991-02-15 | Bertin & Cie | RAPID METHOD OF DETECTING AND / OR IDENTIFYING ONLY ONE BASED ON A NUCLEIC ACID SEQUENCE, AND ITS APPLICATIONS |
WO1991006309A1 (en) | 1989-11-03 | 1991-05-16 | Vanderbilt University | Method of in vivo delivery of functioning foreign genes |
US5023084A (en) | 1986-12-29 | 1991-06-11 | Rutgers, The State University Of New Jersey | Transdermal estrogen/progestin dosage unit, system and process |
US5035891A (en) | 1987-10-05 | 1991-07-30 | Syntex (U.S.A.) Inc. | Controlled release subcutaneous implant |
WO1992015712A1 (en) | 1991-03-05 | 1992-09-17 | Molecular Tool, Inc. | Nucleic acid typing by polymerase extension of oligonucleotides using terminator mixtures |
US5198223A (en) | 1990-10-29 | 1993-03-30 | Alza Corporation | Transdermal formulations, methods and devices |
US5204253A (en) | 1990-05-29 | 1993-04-20 | E. I. Du Pont De Nemours And Company | Method and apparatus for introducing biological substances into living cells |
US5217720A (en) | 1990-07-10 | 1993-06-08 | Shin-Etsu Chemical Co., Ltd. | Coated solid medicament form having releasability in large intestine |
WO1993024640A2 (en) | 1992-06-04 | 1993-12-09 | The Regents Of The University Of California | Methods and compositions for in vivo gene therapy |
US5279833A (en) | 1990-04-04 | 1994-01-18 | Yale University | Liposomal transfection of nucleic acids into animal cells |
US5422119A (en) | 1987-09-24 | 1995-06-06 | Jencap Research Ltd. | Transdermal hormone replacement therapy |
WO1996018372A2 (en) | 1994-12-09 | 1996-06-20 | Genzyme Corporation | Cationic amphiphiles and plasmids for intracellular delivery of therapeutic molecules |
US5541171A (en) | 1981-07-31 | 1996-07-30 | Tillotts Pharma Ag | Orally administrable pharmaceutical composition |
US5580859A (en) | 1989-03-21 | 1996-12-03 | Vical Incorporated | Delivery of exogenous DNA sequences in a mammal |
US5705190A (en) | 1995-12-19 | 1998-01-06 | Abbott Laboratories | Controlled release formulation for poorly soluble basic drugs |
US5849589A (en) | 1996-03-11 | 1998-12-15 | Duke University | Culturing monocytes with IL-4, TNF-α and GM-CSF TO induce differentiation to dendric cells |
US6406705B1 (en) | 1997-03-10 | 2002-06-18 | University Of Iowa Research Foundation | Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant |
US6569457B2 (en) | 1998-07-17 | 2003-05-27 | Bristol-Myers Squibb Company | Enteric coated pharmaceutical tablet and method of manufacturing |
US6638534B1 (en) | 1998-07-28 | 2003-10-28 | Tanabe Seiyaku Co., Ltd. | Preparation capable of releasing drug at target site in intestine |
US20060252077A1 (en) | 2004-12-30 | 2006-11-09 | Helicos Biosciences Corporation | Stabilizing a nucleic acid for nucleic acid sequencing |
US7283337B2 (en) | 2005-03-04 | 2007-10-16 | Headway Technologies, Inc. | Abutted exchange bias design for sensor stabilization |
WO2012159643A1 (en) | 2011-05-24 | 2012-11-29 | Biontech Ag | Individualized vaccines for cancer |
WO2012159754A2 (en) | 2011-05-24 | 2012-11-29 | Biontech Ag | Individualized vaccines for cancer |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1994181A4 (en) * | 2006-02-27 | 2010-05-19 | Univ Arizona | Identification and use of novopeptides for the treatment of cancer |
WO2008096831A1 (en) * | 2007-02-07 | 2008-08-14 | The Research Foundation For Microbial Diseases Of Osaka University | Therapeutic agent for cancer |
EP2337795A2 (en) * | 2008-10-01 | 2011-06-29 | Dako Denmark A/S | Mhc multimers in cancer vaccines and immune monitoring |
BRPI0924827A2 (en) * | 2009-04-02 | 2019-01-08 | Vaxon Biotech | identification, optimization and use of hla-a24 cryptic epitopes for immunotherapy |
EP2569633B1 (en) * | 2010-05-14 | 2016-02-10 | The General Hospital Corporation | Compositions and methods of identifying tumor specific neoantigens |
WO2014012051A1 (en) * | 2012-07-12 | 2014-01-16 | Persimmune, Inc. | Personalized cancer vaccines and adoptive immune cell therapies |
KR20210156320A (en) * | 2013-04-07 | 2021-12-24 | 더 브로드 인스티튜트, 인코퍼레이티드 | Compositions and methods for personalized neoplasia vaccines |
-
2014
- 2014-04-07 KR KR1020217041186A patent/KR20210156320A/en not_active IP Right Cessation
- 2014-04-07 CN CN202311507937.3A patent/CN117815373A/en active Pending
- 2014-04-07 AU AU2014251207A patent/AU2014251207B2/en active Active
- 2014-04-07 BR BR112015025460-8A patent/BR112015025460B1/en active IP Right Grant
- 2014-04-07 CN CN201480032291.0A patent/CN105377292A/en active Pending
- 2014-04-07 KR KR1020237034437A patent/KR20230145545A/en active Application Filing
- 2014-04-07 CN CN202410556757.2A patent/CN118750591A/en active Pending
- 2014-04-07 KR KR1020157031939A patent/KR102341899B1/en active IP Right Grant
- 2014-04-07 EP EP14727288.4A patent/EP2983702A2/en active Pending
- 2014-04-07 JP JP2016507587A patent/JP6702855B2/en active Active
- 2014-04-07 CA CA3137846A patent/CA3137846A1/en active Pending
- 2014-04-07 CN CN202410556851.8A patent/CN118557711A/en active Pending
- 2014-04-07 WO PCT/US2014/033185 patent/WO2014168874A2/en active Application Filing
- 2014-04-07 CA CA2908434A patent/CA2908434C/en active Active
-
2015
- 2015-10-06 IL IL241858A patent/IL241858B/en active IP Right Grant
- 2015-10-07 US US14/877,125 patent/US20160101170A1/en not_active Abandoned
-
2019
- 2019-05-24 AU AU2019203664A patent/AU2019203664B2/en active Active
- 2019-05-24 AU AU2019203665A patent/AU2019203665B2/en active Active
-
2020
- 2020-01-06 JP JP2020000367A patent/JP7489193B2/en active Active
- 2020-11-04 US US17/089,408 patent/US20210220455A1/en active Pending
-
2021
- 2021-04-08 IL IL282202A patent/IL282202A/en unknown
- 2021-11-12 AU AU2021266338A patent/AU2021266338A1/en active Pending
-
2022
- 2022-04-21 JP JP2022070352A patent/JP2022105069A/en active Pending
Patent Citations (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3870790A (en) | 1970-01-22 | 1975-03-11 | Forest Laboratories | Solid pharmaceutical formulations containing hydroxypropyl methyl cellulose |
US4210644A (en) | 1978-02-23 | 1980-07-01 | The Johns Hopkins University | Male contraception |
US4226859A (en) | 1979-06-07 | 1980-10-07 | Velsicol Chemical Corporation | Pyridyl esters of N-alkylidene-substituted phosphor- and phosphonamidic acids |
US4379454A (en) | 1981-02-17 | 1983-04-12 | Alza Corporation | Dosage for coadministering drug and percutaneous absorption enhancer |
US5541171A (en) | 1981-07-31 | 1996-07-30 | Tillotts Pharma Ag | Orally administrable pharmaceutical composition |
US4369172A (en) | 1981-12-18 | 1983-01-18 | Forest Laboratories Inc. | Prolonged release therapeutic compositions based on hydroxypropylmethylcellulose |
US4588585A (en) | 1982-10-19 | 1986-05-13 | Cetus Corporation | Human recombinant cysteine depleted interferon-β muteins |
US4722848A (en) | 1982-12-08 | 1988-02-02 | Health Research, Incorporated | Method for immunizing animals with synthetically modified vaccinia virus |
US4656127A (en) | 1983-04-22 | 1987-04-07 | Amersham International Plc. | Method of detecting mutations in DNA and RNA |
US4842866A (en) | 1985-01-11 | 1989-06-27 | Abbott Laboratories Ltd. | Slow release solid preparation |
US4690915A (en) | 1985-08-08 | 1987-09-01 | The United States Of America As Represented By The Department Of Health And Human Services | Adoptive immunotherapy as a treatment modality in humans |
US4743249A (en) | 1986-02-14 | 1988-05-10 | Ciba-Geigy Corp. | Dermal and transdermal patches having a discontinuous pattern adhesive layer |
US4844893A (en) | 1986-10-07 | 1989-07-04 | Scripps Clinic And Research Foundation | EX vivo effector cell activation for target cell killing |
US5023084A (en) | 1986-12-29 | 1991-06-11 | Rutgers, The State University Of New Jersey | Transdermal estrogen/progestin dosage unit, system and process |
US4906169A (en) | 1986-12-29 | 1990-03-06 | Rutgers, The State University Of New Jersey | Transdermal estrogen/progestin dosage unit, system and process |
US4816540A (en) | 1987-06-12 | 1989-03-28 | Yasuhiko Onishi | Cationic graft-copolymer |
US5422119A (en) | 1987-09-24 | 1995-06-06 | Jencap Research Ltd. | Transdermal hormone replacement therapy |
US5035891A (en) | 1987-10-05 | 1991-07-30 | Syntex (U.S.A.) Inc. | Controlled release subcutaneous implant |
US5589466A (en) | 1989-03-21 | 1996-12-31 | Vical Incorporated | Induction of a protective immune response in a mammal by injecting a DNA sequence |
US5580859A (en) | 1989-03-21 | 1996-12-03 | Vical Incorporated | Delivery of exogenous DNA sequences in a mammal |
US4973468A (en) | 1989-03-22 | 1990-11-27 | Cygnus Research Corporation | Skin permeation enhancer compositions |
WO1991002087A1 (en) | 1989-08-11 | 1991-02-21 | Bertin & Cie | Fast process for detecting and/or identifying a single base on a nucleic acid sequence and its applications |
FR2650840A1 (en) | 1989-08-11 | 1991-02-15 | Bertin & Cie | RAPID METHOD OF DETECTING AND / OR IDENTIFYING ONLY ONE BASED ON A NUCLEIC ACID SEQUENCE, AND ITS APPLICATIONS |
WO1991006309A1 (en) | 1989-11-03 | 1991-05-16 | Vanderbilt University | Method of in vivo delivery of functioning foreign genes |
US5279833A (en) | 1990-04-04 | 1994-01-18 | Yale University | Liposomal transfection of nucleic acids into animal cells |
US5204253A (en) | 1990-05-29 | 1993-04-20 | E. I. Du Pont De Nemours And Company | Method and apparatus for introducing biological substances into living cells |
US5217720A (en) | 1990-07-10 | 1993-06-08 | Shin-Etsu Chemical Co., Ltd. | Coated solid medicament form having releasability in large intestine |
US5198223A (en) | 1990-10-29 | 1993-03-30 | Alza Corporation | Transdermal formulations, methods and devices |
WO1992015712A1 (en) | 1991-03-05 | 1992-09-17 | Molecular Tool, Inc. | Nucleic acid typing by polymerase extension of oligonucleotides using terminator mixtures |
WO1993024640A2 (en) | 1992-06-04 | 1993-12-09 | The Regents Of The University Of California | Methods and compositions for in vivo gene therapy |
WO1996018372A2 (en) | 1994-12-09 | 1996-06-20 | Genzyme Corporation | Cationic amphiphiles and plasmids for intracellular delivery of therapeutic molecules |
US5705190A (en) | 1995-12-19 | 1998-01-06 | Abbott Laboratories | Controlled release formulation for poorly soluble basic drugs |
US5849589A (en) | 1996-03-11 | 1998-12-15 | Duke University | Culturing monocytes with IL-4, TNF-α and GM-CSF TO induce differentiation to dendric cells |
US6406705B1 (en) | 1997-03-10 | 2002-06-18 | University Of Iowa Research Foundation | Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant |
US6569457B2 (en) | 1998-07-17 | 2003-05-27 | Bristol-Myers Squibb Company | Enteric coated pharmaceutical tablet and method of manufacturing |
US6638534B1 (en) | 1998-07-28 | 2003-10-28 | Tanabe Seiyaku Co., Ltd. | Preparation capable of releasing drug at target site in intestine |
US20060252077A1 (en) | 2004-12-30 | 2006-11-09 | Helicos Biosciences Corporation | Stabilizing a nucleic acid for nucleic acid sequencing |
US7283337B2 (en) | 2005-03-04 | 2007-10-16 | Headway Technologies, Inc. | Abutted exchange bias design for sensor stabilization |
WO2012159643A1 (en) | 2011-05-24 | 2012-11-29 | Biontech Ag | Individualized vaccines for cancer |
WO2012159754A2 (en) | 2011-05-24 | 2012-11-29 | Biontech Ag | Individualized vaccines for cancer |
Non-Patent Citations (186)
Title |
---|
"Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems", LIPPINCOTT WILLIAMS & WILKINS |
"Comprehensive genomic characterization defines human glioblastoma genes and core pathways", NATURE, vol. 455, 2008, pages 1061 - 1068 |
"Comprehensive genomic characterization of squamous cell lung cancers", NATURE, vol. 489, 2012, pages 519 - 525 |
"Comprehensive molecular characterization of clear cell renal cell carcinoma", NATURE, vol. 499, 2013, pages 43 - 49 |
"Comprehensive molecular portraits of human breast tumours", NATURE, vol. 490, 2012, pages 61 - 70 |
"Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia", N ENGL J MED., vol. 368, 2013, pages 2059 - 2074 |
"Integrated genomic analyses of ovarian carcinoma", NATURE, vol. 474, 30 June 2011 (2011-06-30), pages 609 - 615 |
"Remington's Pharmaceutical Sciences", 1985, MACK PUBLISHING COMPANY, pages: 1418 |
"Remington's Pharmaceutical Sciences", MACK PUBLISHING COMPANY |
"Remington's Pharmaceutical Sciences, 20 th ed.", 2000, MACK PUBLISHING CO. |
"Transdermal Drug Delivery: Developmental Issues and Research Initiatives", 1989, MARCEL DEKKER INC. |
ADAMS S.: "Toll-like receptor agonists in cancer therapy", IMMUNOTHERAPY, vol. 1, no. 6, November 2009 (2009-11-01), pages 949 - 964, XP009155358, DOI: doi:10.2217/imt.09.70 |
ALEXANDER, J. ET AL., JOURNAL OF MEDICINAL CHEMISTRY, vol. 31, 1988, pages 318 - 322 |
ALI ET AL.: "In situ regulation of DC subsets and T cells mediates tumor regression in mice", CANCER IMMUNOTHERAPY, vol. 1, no. 8, 2009, pages 1 - 10, XP009165920, DOI: doi:10.1126/scitranslmed.3000359 |
ALI ET AL.: "Infection-mimicking materials to program dendritic cells in situ", NAT MATER, vol. 8, 2009, pages 151 - 8 |
ALLISON A C, DEV BIOL STAND., vol. 92, 1998, pages 3 - 11 |
ARTHUR M. KRIEG, NATURE REVIEWS, DRUG DISCOVERY, 5 June 2006 (2006-06-05), pages 471 - 484 |
AUSUBEL ET AL.: "Current Protocols in Molecular Biology", 2001, WILEY INTERSCIENCE |
AUSUBEL, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, 1987 |
BADEN ET AL.: "First-in-human evaluation of the safety and immunogenicity of a recombinant adenovirus serotype 26 HIV-1 Env vaccine (IPCAVD 001", J INFECT DIS., vol. 207, no. 2, 15 January 2013 (2013-01-15), pages 240 - 7, XP055190590, DOI: doi:10.1093/infdis/jis670 |
BALCH CM; GERSHENWALD JE; SOONG SJ ET AL.: "Final version of 2009 AJCC melanoma staging and classification", JOURNAL OF CLINICAL ONCOLOGY : OFFICIAL JOURNAL OF THE AMERICAN SOCIETY OF CLINICAL ONCOLOGY, vol. 27, no. 36, 20 December 2009 (2009-12-20), pages 6199 - 6206 |
BALCH ET AL.: "Final Version of 2009 AJCC Melanoma Staging and Classification", J CLIN ONCOL, vol. 27, 2009, pages 6199 - 6206 |
BARANY; MERRIFIELD: "The Peptides", 1979, ACADEMIC PRESS, pages: 1 - 284 |
BAURAIN JF; COLAU D; VAN BAREN N ET AL.: "High frequency of autologous anti-melanoma CTL directed against an antigen generated by a point mutation in a new helicase gene", J IMMUNOL., vol. 164, no. 11, 1 June 2000 (2000-06-01), pages 6057 - 6066 |
BENTON; DAVIS, SCIENCE, vol. 196, 1977, pages 180 |
BERGER, M. ET AL.: "Melanoma genome sequencing reveals frequent PREX2 mutations", NATURE, vol. 485, 2012, pages 502 - 6 |
BERGER; KIMMEL: "Guide to Molecular Cloning Techniques", 1987, ACADEMIC PRESS |
BHARDWAJ; GNJATIC: "TLR AGONISTS: Are They Good Adjuvants", CANCER J., vol. 16, 2010, pages 382 - 391 |
BOGUNOVIC D; MANCHES 0; GODEFROY E ET AL.: "TLR4 engagement during TLR3-induced proinflammatory signaling in dendritic cells promotes IL-10-mediated suppression of antitumor immunity", CANCER RES., vol. 71, no. 16, 15 August 2011 (2011-08-15), pages 5467 - 5476, XP055128795, DOI: doi:10.1158/0008-5472.CAN-10-3988 |
BOSCARDIN SB; HAFALLA JC; MASILAMANI RF ET AL.: "Antigen targeting to dendritic cells elicits long-lived T cell help for antibody responses", THE JOURNAL OF EXPERIMENTAL MEDICINE, vol. 203, no. 3, 20 March 2006 (2006-03-20), pages 599 - 606, XP055498842, DOI: doi:10.1084/jem.20051639 |
BRAHMER ET AL.: "Safety and Activity of Anti-PD-Ll Antibody in Patients with Advanced Cancer", NEJM, vol. 366, 2012, pages 2455 - 2465, XP002685330, DOI: doi:10.1056/NEJMoa1200694 |
BRUNSVIG P F ET AL., CANCER IMMUNOL IMMUNOTHER., vol. 55, no. 12, 2006, pages 1553 - 1564 |
BUCKWALTER MR; SRIVASTAVA PK.: "It is the antigen(s), stupid'' and other lessons from over a decade of vaccitherapy of human cancer", SEMINARS IN IMMUNOLOGY, vol. 20, no. 5, October 2008 (2008-10-01), pages 296 - 300, XP025646569, DOI: doi:10.1016/j.smim.2008.07.003 |
BUCKWALTER; SRIVASTAVA PK: "It is the antigen(s), stupid'' and other lessons from over a decade of vaccitherapy of human cancer", SEMINARS IN IMMUNOLOGY, vol. 20, 2008, pages 296 - 300, XP025646569, DOI: doi:10.1016/j.smim.2008.07.003 |
BUNDGAARD, H.: "A Textbook of Drug Design and Development", 1991, HARWOOD ACADEMIC PUBL., pages: 113 - 191 |
BUNDGAARD, H.: "Design of Prodrugs", 1985, ELSEVIER, pages: 1 - 92 |
BUNDGAARD, H.; NIELSEN, N. M., JOURNAL OF MEDICINAL CHEMISTRY, vol. 30, 1987, pages 451 - 454 |
CARRENO ET AL.: "L-12p70-producing patient DC vaccine elicits Tcl-polarized immunity", JOURNAL OF CLINICAL INVESTIGATION, vol. 123, no. 8, 2013, pages 3383 - 94 |
CARTER, S. L. ET AL.: "Absolute quantification of somatic DNA alterations in human cancer", NAT. BIOTECHNOLOGY, vol. 30, 2012, pages 413 - 21, XP055042894, DOI: doi:10.1038/nbt.2203 |
CARTER, SL. ET AL.: "Absolute quantification of somatic DNA alterations in human cancer", NAT BIOTECHNOL, vol. 30, 2012, pages 413 - 21, XP055042894, DOI: doi:10.1038/nbt.2203 |
CASKEY ET AL.: "Synthetic double-stranded RNA induces innate immune responses similar to a live viral vaccine in humans", J EXP MED, vol. 208, 2011, pages 2357 |
CASKEY M; LEFEBVRE F; FILALI-MOUHIM A ET AL.: "Synthetic double-stranded RNA induces innate immune responses similar to a live viral vaccine in humans", THE JOURNAL OF EXPERIMENTAL MEDICINE, vol. 208, no. 12, 21 November 2011 (2011-11-21), pages 2357 - 2366 |
CASTLE JC; KREITER S; DIEKMANN J ET AL.: "Exploiting the mutanome for tumor vaccination", CANCER RES, vol. 72, 2012, pages 1081 - 1091, XP055231746, DOI: doi:10.1158/0008-5472.CAN-11-3722 |
CHANG YF; IMAM JS; WILKINSON MF: "The nonsense-mediated decay RNA surveillance pathway", ANNU REV BIOCHEM, vol. 76, 2007, pages 51 - 74 |
CHAPMAN, M.A. ET AL.: "Initial genome sequencing and analysis of multiple myeloma", NATURE, vol. 471, 2011, pages 467 - 72, XP002729444, DOI: doi:10.1038/NATURE09837 |
CHEEVER MA: "Twelve immunotherapy drugs that could cure cancers", IMMUNOLOGICAL REVIEWS, vol. 222, April 2008 (2008-04-01), pages 357 - 368 |
CHIARI R; FOURY F; DE PLAEN E; BAURAIN JF; THONNARD J; COULIE PG: "Two antigens recognized by autologous cytolytic T lymphocytes on a melanoma result from a single point mutation in an essential housekeeping gene", CANCER RES., vol. 59, no. 22, 15 November 1999 (1999-11-15), pages 5785 - 5792, XP055111371 |
CIBULSKIS, K. ET AL.: "ContEst: estimating cross-contamination of human samples in next-generation sequencing data", BIOINFORMATICS, vol. 27, 2011, pages 2601 - 2, XP055442350, DOI: doi:10.1093/bioinformatics/btr446 |
CIBULSKIS, K. ET AL.: "Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples", NATURE BIOTECH, 10 February 2013 (2013-02-10) |
COLIGAN, CURRENT PROTOCOLS IN IMMUNOLOGY, 1991 |
COMPREHENSIVE MOLECULAR CHARACTERIZATION OF HUMAN COLON AND RECTAL CANCER: "Comprehensive molecular characterization of human colon and rectal cancer", NATURE, vol. 487, 2012, pages 330 - 337, XP055041570, DOI: doi:10.1038/nature11252 |
CONLON ET AL.: "Mouse, but not Human STING, Binds and Signals in Response to the Vascular Disrupting Agent 5,6-Dimethylxanthenone-4-Acetic Acid", JOURNAL OF IMMUNOLOGY, vol. 190, 2013, pages 5216 - 25, XP055367377, DOI: doi:10.4049/jimmunol.1300097 |
CURRAN ET AL.: "PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B 16 melanoma tumors", PROC NATL ACAD SCI U S A., vol. 107, no. 9, 2 March 2010 (2010-03-02), pages 4275 - 80, XP055067204, DOI: doi:10.1073/pnas.0915174107 |
CURRAN ET AL.: "Tumor vaccines expressing flt3 ligand synergize with ctla-4 blockade to reject preimplanted tumors", CANCER RES., vol. 69, no. 19, 1 October 2009 (2009-10-01), pages 7747 - 55, XP055177400, DOI: doi:10.1158/0008-5472.CAN-08-3289 |
DELUCA, DS. ET AL.: "RNA-SeQC: RNA-seq metrics for quality control and process optimization", BIOINFORMATICS, vol. 28, 2012, pages 1530 - 2 |
DEPRISTO, M. ET AL.: "A framework for variation discovery and genotyping using next-generation DNA sequencing data", NATURE GENETICS, vol. 43, 2011, pages 491 - 498, XP055046798, DOI: doi:10.1038/ng.806 |
DIGENIS, G. A. ET AL.: "Handbook of Experimental Pharmacology", vol. 28, 1975, pages: 86 - 112 |
DING, L. ET AL.: "Somatic mutations affect key pathways in lung adenocarcinoma", NATURE, vol. 455, 2008, pages 1069 - 1075, XP055335353, DOI: doi:10.1038/nature07423 |
DUPAGE ET AL.: "Expression of tumor-specific antigens underlies cancer immunoediting", NATURE, vol. 482, 2012, pages 405 |
DUPUIS M ET AL., CELL IMMUNOL., vol. 186, no. 1, 1998, pages 18 - 27 |
EGGERMONT AM; SUCIU S; TESTORI A ET AL.: "Ulceration and stage are predictive of interferon efficacy in melanoma: results of the phase III adjuvant trials EORTC 18952 and EORTC 18991", EUR J CANCER, vol. 48, no. 2, January 2012 (2012-01-01), pages 218 - 225, XP028353481, DOI: doi:10.1016/j.ejca.2011.09.028 |
FEIGNER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 84, 1987, pages 7413 - 7414 |
FINKE ET AL.: "Sunitinib reverses Type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients", CLIN CAN RES, vol. 14, 2008, pages 6674 - 6682 |
FLAHERTY KT; HODI FS; FISHER DE: "From genes to drugs: targeted strategies for melanoma", NAT REV CANCER, vol. 12, no. 5, May 2012 (2012-05-01), pages 349 - 361, XP055080280, DOI: doi:10.1038/nrc3218 |
FLYNN BJ; KASTENMULLER K; WILLE-REECE U ET AL.: "Immunization with HIV Gag targeted to dendritic cells followed by recombinant New York vaccinia virus induces robust T-cell immunity in nonhuman primates", PROC NATL ACAD SCI U S A., vol. 108, no. 17, 26 April 2011 (2011-04-26), pages 7131 - 7136 |
FRESHNEY, ANIMAL CELL CULTURE, 1987 |
FRIIS, G. J.; BUNDGAARD, H.: "A Textbook of Drug Design and Development, 2nd ed.", 1996, OVERSEAS PUBL., pages: 351 - 385 |
GABRILOVICH D I ET AL., J IMMUNOTHER EMPHASIS TUMOR IMMUNOL., 1996, pages 414 - 418 |
GAIT, OLIGONUCLEOTIDE SYNTHESIS, 1984 |
GARRAWAY, L.A.; LANDER, E. S: "Lessons from the cancer genome", CELL, vol. 153, 2013, pages 17 - 37, XP055233891, DOI: doi:10.1016/j.cell.2013.03.002 |
GAUCHER D; THERRIEN R; KETTAF N ET AL.: "Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses", THE JOURNAL OF EXPERIMENTAL MEDICINE, vol. 205, no. 13, 22 December 2008 (2008-12-22), pages 3119 - 3131 |
GLUZMAN, CELL, vol. 23, 1981, pages 175 |
GOODMAN ET AL.,: "Goodman and Gilman's The Pharmacological Basis of Therapeutics, 11th ed.", 2005, MCGRAW-HILL |
GRUNSTEIN; HOGNESS, PROC. NATL. ACAD. SCI., USA, vol. 72, 1975, pages 3961 |
GUTHALS ET AL.: "Shotgun Protein Sequencing with Meta-contig Assembly", MOLECULAR AND CELLULAR PROTEOMICS, vol. 11, no. 10, 2012, pages 1084 - 96 |
HADRUP ET AL.: "Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers", NATURE METHODS, vol. 6, no. 7, 2009, pages 520 - 26, XP002543149, DOI: doi:10.1038/nmeth.1345 |
HAM ET AL.: "Characterizing the specificity and co-operation of aminopeptidases in the cytosol and ER during MHC Class I antigen presentation", J. IMMUNOL, vol. 184, no. 9, 2010, pages 4725 - 32, XP055305412, DOI: doi:10.4049/jimmunol.0903125 |
HEEMSKERK ET AL.: "The cancer antigenome", EMBO JOURNAL, vol. 32, no. 2, 2013, pages 194 - 203 |
HODI ET AL.: "Improved Survival with Ipilimumab in Patients with Metastatic Melanoma", NEJM, vol. 363, 2010, pages 711 - 723, XP055015428, DOI: doi:10.1056/NEJMoa1003466 |
HOMBRINK ET AL., HIGH-THROUGHPUT IDENTIFICATION OF POTENTIAL MINOR HISTOCOMPATIBILITY ANTIGENS BY MHC TETRAMER-BASED SCREENING: FEASIBILITY AND LIMITATIONS, vol. 6, no. 8, 2011, pages 1 - 11 |
HUANG J; EL-GAMIL M; DUDLEY ME; LI YF; ROSENBERG SA; ROBBINS PF.: "T cells associated with tumor regression recognize frameshifted products of the CDKN2A tumor suppressor gene locus and a mutated HLA class I gene product", J IMMUNOL., vol. 172, no. 10, 15 May 2004 (2004-05-15), pages 6057 - 6064, XP055094297, DOI: doi:10.4049/jimmunol.172.10.6057 |
K. GEVAERT; J. VANDEKERCKHOVE, ELECTROPHORESIS, vol. 21, 2000, pages 1145 - 1154 |
KANNAN S; NEELAPU SS.: "Vaccination strategies in follicular lymphoma", CURRENT HEMATOLOGIC MALIGNANCY REPORTS, vol. 4, no. 4, October 2009 (2009-10-01), pages 189 - 195, XP055111554, DOI: doi:10.1007/s11899-009-0025-2 |
KARANIKAS ET AL.: "High frequency of cytolytic T lymphocytes directed against a tumor-specific mutated antigen detectable with HLA tetramers in the blood of a lung carcinoma patient with long survival", CANCER RES., vol. 61, 2001, pages 3718 - 3724, XP055111384 |
KARANIKAS V; COLAU D; BAURAIN JF ET AL.: "High frequency of cytolytic T lymphocytes directed against a tumor-specific mutated antigen detectable with HLA tetramers in the blood of a lung carcinoma patient with long survival", CANCER RES., vol. 61, no. 9, 1 May 2001 (2001-05-01), pages 3718 - 3724, XP055111384 |
KAWAI T; AKIRA S.: "TLR signaling", SEMINARS IN IMMUNOLOGY, vol. 19, no. 1, February 2007 (2007-02-01), pages 24 - 32, XP022005927, DOI: doi:10.1016/j.smim.2006.12.004 |
KENTER GG; WELTERS MJ; VALENTIJN AR ET AL.: "Phase I immunotherapeutic trial with long peptides spanning the E6 and E7 sequences of high-risk human papillomavirus 16 in end-stage cervical cancer patients shows low toxicity and robust immunogenicity", CLINICAL CANCER RESEARCH : AN OFFICIAL JOURNAL OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH, vol. 14, no. 1, 1 January 2008 (2008-01-01), pages 169 - 177, XP055322493, DOI: doi:10.1158/1078-0432.CCR-07-1881 |
KENTER GG; WELTERS MJ; VALENTIJN AR ET AL.: "Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia", THE NEW ENGLAND JOURNAL OF MEDICINE, vol. 361, no. 19, 5 November 2009 (2009-11-05), pages 1838 - 1847, XP008157144, DOI: doi:10.1056/NEJMoa0810097 |
KENTER: "Vaccination against HPV-16 Oncoproteins for Vulvar Intraepithelial Neoplasia", NEJM, vol. 361, 2009, pages 1838, XP008157144, DOI: doi:10.1056/NEJMoa0810097 |
KIM ET AL., ANTICANCER FLAVONOIDS ARE MOUSE-SELECTIVE STING AGONISTS, vol. 8, 2013, pages 1396 - 1401 |
KIMMEL, A. R., METHODS ENZYMOL., vol. 152, 1987, pages 507 |
KIRKWOOD ET AL.: "High- and Low-dose Interferon Alpha-2b in High-Risk Melanoma: First Analysis of Intergroup Trial E1690/S9111/C9190", J CLIN ONCOL, vol. 18, 2000, pages 2444 - 2458, XP009024818 |
KIRKWOOD ET AL.: "Interferon alfa-2b Adjuvant Therapy of High-Risk Resected Cutaneous Melanoma: The Eastern Cooperative Oncology Group Trial EST 1684", J CLIN ONCOL, vol. 14, 1996, pages 7 - 17 |
KOBAYASHI ET AL., CURRENT OPINION IN IMMUNOLOGY, vol. 20, 2008, pages 221 - 27 |
KOMHER, J. S. ET AL., NUCL. ACIDS. RES., vol. 17, 1989, pages 7779 - 7784 |
KUPPUSWAMY, M. N. ET AL., PROC. NATL. ACAD. SCI., vol. 88, 1991, pages 1143 - 1147 |
KYTE ET AL.: "Telomerase peptide vaccination combined with temozolomide: a clinical trial in stage IV melanoma patients", CLIN CANCER RES, vol. 17, 2011, pages 4568, XP002683221, DOI: doi:10.1158/1078-0432.CCR-11-0184 |
L. FIESER; M. FIESER: "Fieser and Fieser's Reagents for Organic Synthesis", 1999, JOHN WILEY AND SONS |
L. PAQUETTE: "Encyclopedia of Reagents for Organic Synthesis", 1995, JOHN WILEY AND SONS |
LANDAU, DA. ET AL.: "Evolution and impact of subclonal mutations in chronic lymphocytic leukemia", CELL, vol. 152, 2013, pages 714 - 26, XP028979918, DOI: doi:10.1016/j.cell.2013.01.019 |
LANGMEAD, B. ET AL.: "Ultrafast and memory-efficient alignment of short DNA sequences to the human genome", GENOME BIOLOGY, vol. 10, 2009, pages R25, XP021053573, DOI: doi:10.1186/gb-2009-10-3-r25 |
LENNERZ ET AL.: "The response of autologous T cells to a human melanoma is dominated by mutated neo-antigens", PROC NATL ACAD SCI U S A., vol. 102, 2005, pages 16013 |
LENNERZ V; FATHO M; GENTILINI C ET AL.: "The response of autologous T cells to a human melanoma is dominated by mutated neoantigens", PROC NATL ACAD SCI U S A, vol. 102, 2005, pages 16013 - 8, XP002408502, DOI: doi:10.1073/pnas.0500090102 |
LENNERZ V; FATHO M; GENTILINI C ET AL.: "The response of autologous T cells to a human melanoma is dominated by mutated neoantigens", PROC NATL ACAD SCI U S A., vol. 102, no. 44, 1 November 2005 (2005-11-01), pages 16013 - 16018, XP002408502, DOI: doi:10.1073/pnas.0500090102 |
LI ET AL.: "Anti-programmed death-1 synergizes with granulocyte macrophage colony-stimulating factor -secreting tumor cell immunotherapy providing therapeutic benefit to mice with established tumors", CLIN CANCER RES, vol. 15, 2009, pages 1623 - 1634, XP055166457, DOI: doi:10.1158/1078-0432.CCR-08-1825 |
LI H.; DURBIN R.: "Fast and accurate short read alignment with Burrows-Wheeler Transform.", BIOINFORMATICS, vol. 25, 2009, pages 1754 - 60, XP055287430, DOI: doi:10.1093/bioinformatics/btp324 |
LI, B. ET AL.: "RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome", BMC BIOINFORMATICS, vol. 12, 2011, pages 323, XP021104619, DOI: doi:10.1186/1471-2105-12-323 |
LI, H. ET AL.: "The Sequence Alignment/Map format and SAMtools", BIOINFORMATICS, vol. 25, 2009, pages 2078 - 9, XP055229864, DOI: doi:10.1093/bioinformatics/btp352 |
LU, Y. C. ET AL.: "Mutated regions of nucleophosmin 1PPP1R3B Is Recognized by T Cells Used To Treat a Melanoma Patient Who Experienced a Durable Complete Tumor Regression", J IMMUNOL., vol. 190, 2013, pages 6034 - 6042 |
LUCKOW; SUMMERS, BIOLTECHNOLOGY, vol. 6, 1988, pages 47 |
LUNDEGAARD C; LUND 0; NIELSEN M.: "Prediction of epitopes using neural network based methods", J IMMUNOL METHODS, vol. 374, no. 1-2, 30 November 2011 (2011-11-30), pages 26 - 34, XP002739412, DOI: doi:10.1016/j.jim.2010.10.011 |
LUNDEGAARD ET AL.: "Prediction of epitopes using neural network based methods", J IMMUNOL METHODS, vol. 374, 2011, pages 26, XP002739412, DOI: doi:10.1016/j.jim.2010.10.011 |
LUNDEGAARD, C. ET AL.: "Prediction of epitopes using neural network based methods", J IMMUNOL, vol. 374, 2011, pages 26 - 34, XP002739412, DOI: doi:10.1016/j.jim.2010.10.011 |
M. STAEHLER ET AL., ASCO MEETING 2007 |
MANNINO; GOULD-FOGERITE, BIOTECHNIQUES, vol. 6, no. 7, 1988, pages 682 - 691 |
MATSUSHITA ET AL.: "Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting", NATURE, vol. 482, 2012, pages 400, XP055355530, DOI: doi:10.1038/nature10755 |
MCKENNA, A. ET AL.: "The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data", GENOME RES, vol. 20, 2010, pages 1297 - 303, XP055175644, DOI: doi:10.1101/gr.107524.110 |
MELIEF; VAN DER BURG: "Immunotherapy of established (pre) malignant disease by synthetic long peptide vaccines", NATURE REV CANCER, vol. 8, 2008, pages 351, XP055019108, DOI: doi:10.1038/nrc2373 |
MERRIFIELD RB: "Solid phase peptide synthesis. I. The synthesis of a tetrapeptide", J. AM. CHEM. SOC., vol. 85, 1963, pages 2149 - 54, XP002257754, DOI: doi:10.1021/ja00897a025 |
MERRIFIELD, SCIENCE, vol. 232, 1986, pages 341 - 347 |
MILLER; CALOS, GENE TRANSFER VECTORS FOR MAMMALIAN CELLS, 1987 |
MOCELLIN S; PASQUALI S; ROSSI CR; NITTI D.: "Interferon alpha adjuvant therapy in patients with high-risk melanoma: a systematic review and meta-analysis", JOURNAL OF THE NATIONAL CANCER INSTITUTE, vol. 102, no. 7, 7 April 2010 (2010-04-07), pages 493 - 501 |
MULLIS, PCR: THE POLYMERASE CHAIN REACTION, 1994 |
MURPHY ET AL., THE PROSTATE, vol. 29, 1996, pages 371 - 380 |
NISHIMURA ET AL.: "Distinct role of antigen-specific T helper type 1 (TH1) and Th2 cells in tumor eradication in vivo", J EX MED, vol. 190, 1999, pages 617 - 27 |
NYREN, P. ET AL., ANAL. BIOCHEM., vol. 208, 1993, pages 171 - 175 |
PARDOLL, D. M.: "The blockade of immune checkpoints in cancer immunotherapy", NATURE REVIEWS CANCER, vol. 12, 2012, pages 252 - 264, XP055415943, DOI: doi:10.1038/nrc3239 |
PIRARD D; HEENEN M; MELOT C; VEREECKEN P.: "Interferon alpha as adjuvant postsurgical treatment of melanoma: a meta-analysis", DERMATOLOGY, vol. 208, no. 1, 2004, pages 43 - 48 |
PITMAN, I. H., MEDICINAL RESEARCH REVIEWS, vol. 1, 1981, pages 189 - 214 |
POUWELS ET AL.: "Cloning Vectors: A Laboratory Manual", 1985, ELSEVIER |
PREZANT, T. R. ET AL., HUM. MUTAT., vol. 1, 1992, pages 159 - 164 |
R. LAROCK: "Comprehensive Organic Transformations, 2nd ed.", 1999, WILEY-VCH PUBLISHERS |
REMINGTON: "The Science and Practice of Pharmacy, 20th and 21 st Editions", 2003, LIPPENCOTT WILLIAMS & WILKINS |
REMINGTON: "The Science and Practice of Pharmacy, 21st ed.", LIPPINCOTT WILLIAMS & WILKINS |
ROBBINS PF; LU YC; EL-GAMIL M ET AL.: "Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells", NAT MED, 2013 |
ROBINSON RA; DEVITA VT; LEVY HB; BARON S; HUBBARD SP; LEVINE AS: "A phase I-II trial of multiple-dose polyriboinosic-polyribocytidylic acid in patients with leukemia or solid tumors", JOURNAL OF THE NATIONAL CANCER INSTITUTE, vol. 57, no. 3, September 1976 (1976-09-01), pages 599 - 602 |
ROBINSON, JT. ET AL.: "Integrative genomics viewer", NATURE BIOTECH, vol. 29, 2011, pages 24 - 26, XP055103333, DOI: doi:10.1038/nbt.1754 |
SABADO ET AL.: "Preparation of tumor antigen-loaded mature dendritic cells for immunotherapy", J. VIS EXP., 1 August 2013 (2013-08-01) |
SABBATINI P; TSUJI T; FERRAN L ET AL.: "Phase I trial of overlapping long peptides from a tumor self-antigen and poly-ICLC shows rapid induction of integrated immune response in ovarian cancer patients", CLINICAL CANCER RESEARCH : AN OFFICIAL JOURNAL OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH, vol. 18, no. 23, 1 December 2012 (2012-12-01), pages 6497 - 6508, XP055157602, DOI: doi:10.1158/1078-0432.CCR-12-2189 |
SALEM ML; KADIMA AN; COLE DJ; GILLANDERS WE: "Defining the antigen-specific T-cell response to vaccination and poly(I:C)/TLR3 signaling: evidence of enhanced primary and memory CD8 T-cell responses and antitumor immunity", J IMMUNOTHER., vol. 28, no. 3, May 2005 (2005-05-01), pages 220 - 228, XP009061607, DOI: doi:10.1097/01.cji.0000156828.75196.0d |
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", COLD SPRING HARBOR LABORATORY PRESS |
SAMBROOK, MOLECULAR CLONING: A LABORATORY MANUAL, 1989 |
SAMPSON ET AL.: "Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma", J CLIN ONCOL., vol. 28, 2010, pages 4722 - 4729, XP055111559, DOI: doi:10.1200/JCO.2010.28.6963 |
SCHREIBER RD; OLD LJ; SMYTH MJ.: "Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion", SCIENCE, vol. 331, no. 6024, 25 March 2011 (2011-03-25), pages 1565 - 1570 |
SETTE, A. ET AL.: "The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes", J IMMUNOL., vol. 153, 1994, pages 5586 - 5592, XP002088728 |
SIDNEY, J. ET AL.: "HLA class I supertypes: a revised and updated classification", BMC IMMUNOL., vol. 9, 2008, pages 1, XP021033200 |
SIEGEL R; NAISHADHAM D; JEMAL A.: "Cancer statistics", 2013. CA: A CANCER JOURNAL FOR CLINICIANS, vol. 63, no. 1, January 2013 (2013-01-01), pages 11 - 30 |
SLINGLUFF ET AL.: "Immunologic and Clinical Outcomes of a Randomized Phase II Trial of Two Multipeptide Vaccines for Melanoma in the Adjuvant Setting", CLINICAL CANCER RESEARCH, vol. 13, no. 21, 2007, pages 6386 - 95, XP009144705, DOI: doi:10.1158/1078-0432.CCR-07-0486 |
SMITH; WATERMAN, ADVANCES IN APPLIED MATHEMATICS, vol. 2, 1981, pages 482 - 489 |
SOARES H; WAECHTER H; GLAICHENHAUS N ET AL.: "A subset of dendritic cells induces CD4+ T cells to produce IFN-gamma by an IL-12-independent but CD70-dependent mechanism in vivo", THE JOURNAL OF EXPERIMENTAL MEDICINE, vol. 204, no. 5, 14 May 2007 (2007-05-14), pages 1095 - 1106 |
SOKOLOV, B. P., NUCL. ACIDS RES., vol. 18, 1990, pages 3671 |
SOSMAN JA; MOON J; TUTHILL RJ ET AL.: "A phase 2 trial of complete resection for stage IV melanoma: results of Southwest Oncology Group Clinical Trial S9430", CANCER, vol. 117, no. 20, 15 October 2011 (2011-10-15), pages 4740 - 4706 |
SPEISER; ROMERO: "Molecularly defined vaccines for cancer immunotherapy, and protective T cell immunity", SEMINARS IN IMMUNOL, vol. 22, 2010, pages 144, XP027080489, DOI: doi:10.1016/j.smim.2010.03.004 |
STAHL-HENNIG C; EISENBLATTER M; JASNY E ET AL.: "Synthetic double-stranded RNAs are adjuvants for the induction of T helper 1 and humoral immune responses to human papillomavirus in rhesus macaques", PLOS PATHOGENS, vol. 5, no. 4, April 2009 (2009-04-01) |
STAHL-HENNIG C; EISENBLATTER M; JASNY E ET AL.: "Synthetic double-stranded RNAs are adjuvants for the induction of T helper 1 and humoral immune responses to human papillomavirus in rhesus macaques", PLOS PATHOGENS, vol. 5, no. 4, April 2009 (2009-04-01), pages E1000373 |
STEWART; YOUNG: "Solid Phase Peptide Synthesis, 2nd ed.", 1984, PIERCE |
STOVER ET AL., NATURE, vol. 351, 1991, pages 456 - 460 |
STRANSKY, N. ET AL.: "The mutational landscape of head and neck squamous cell carcinoma", SCIENCE, vol. 333, 2011, pages 1157 - 1160, XP055078258, DOI: doi:10.1126/science.1208130 |
STRANSKY, N. ET AL.: "The mutational landscape of head and neck squamous cell carcinoma", SCIENCE, vol. 333, 2011, pages 1157 - 60, XP055078258, DOI: doi:10.1126/science.1208130 |
SYKULEV, Y. ET AL.: "Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response", IMMUNITY, vol. 4, 1996, pages 565 - 571 |
SYVANEN, A.-C ET AL., AMER. J. HUM. GENET., vol. 52, 1993, pages 46 - 59 |
SYVANEN, A.-C ET AL., GENOMICS, vol. 8, 1990, pages 684 - 692 |
T.W. GREENE; P.G.M. WUTS: "Protective Groups in Organic Synthesis, 3rd ed.", 1999, JOHN WILEY AND SONS |
TERME ET AL.: "VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T cell proliferation in colorectal cancer", CANCER RESEARCH AUTHOR MANUSCRIPT |
TJUA ET AL., THE PROSTATE, vol. 32, 1997, pages 272 - 278 |
TOPALIAN ET AL.: "Safety, Activity, and Immune Correlates of Anti-PD-1 I Antibody in Cancer", NEJM, vol. 366, 2012, pages 2443 - 2454, XP055098235, DOI: doi:10.1056/NEJMoa1200690 |
TOUGH DF; BORROW P; SPRENT J.: "Induction of bystander T cell proliferation by viruses and type I interferon in vivo", SCIENCE, vol. 272, no. 5270, 28 June 1996 (1996-06-28), pages 1947 - 1950 |
TRUMPFHELLER C; CASKEY M; NCHINDA G ET AL.: "The microbial mimic poly IC induces durable and protective CD4+ T cell immunity together with a dendritic cell targeted vaccine", PROC NATL ACAD SCI U S A., vol. 105, no. 7, 19 February 2008 (2008-02-19), pages 2574 - 2579, XP055068889, DOI: doi:10.1073/pnas.0711976105 |
TRUMPFHELLER C; FINKE JS; LOPEZ CB ET AL.: "Intensified and protective CD4+ T cell immunity in mice with anti-dendritic cell HIV gag fusion antibody vaccine", THE JOURNAL OF EXPERIMENTAL MEDICINE, vol. 203, no. 3, 20 March 2006 (2006-03-20), pages 607 - 617, XP009077925, DOI: doi:10.1084/jem.20052005 |
UGOZZOLI, L. ET AL., GATA, vol. 9, 1992, pages 107 - 112 |
VAN ELSAS ET AL.: "Combination immunotherapy of B 16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4)and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation", J EXP MED, vol. 190, 1999, pages 35 - 366 |
VAN ROOIJ ET AL.: "Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an Ipilimumab-responsive melanoma", JOURNAL OF CLINICAL ONCOLOGY, vol. 31, 2013, pages 1 - 4 |
WAHL, G. M.; S. L. BERGER, METHODS ENZYMOL., vol. 152, 1987, pages 399 |
WALTER ET AL.: "Multipeptide immune response to a cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival", NATURE MEDICINE, vol. 18, 2012, pages 1254 - 1260 |
WEI: "Handbook of Experimental Immunology", 1996, article "Methods in Enzymology" |
WELTERS MJ; KENTER GG; PIERSMA SJ ET AL.: "Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine", CLINICAL CANCER RESEARCH : AN OFFICIAL JOURNAL OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH, vol. 14, no. 1, 1 January 2008 (2008-01-01), pages 178 - 187, XP055070892, DOI: doi:10.1158/1078-0432.CCR-07-1880 |
WHEATLEY K; IVES N; HANCOCK B; GORE M; EGGERMONT A; SUCIU S.: "Does adjuvant interferon-alpha for high-risk melanoma provide a worthwhile benefit? A meta-analysis of the randomised trials", CANCER TREATMENT REVIEWS, vol. 29, no. 4, August 2003 (2003-08-01), pages 241 - 252 |
WIEMERHAUS ET AL.: "Peptidases trimming MHC Class I ligands", CURR OPIN IMMUNOL, vol. 25, 2012, pages 1 - 7 |
WOLFF ET AL., SCIENCE, vol. 247, 1990, pages 1465 - 1468 |
WU ET AL., NATURE, 2012 |
ZHANG ET AL.: "Aminopeptidase substrate preference affects HIV epitope presentation and predicts immune escape patterns in HIV-infected individuals", J. IMMUNOL, vol. 188, 2012, pages 5924 - 34 |
ZHANG ET AL.: "Machine learning competition in immunology - Prediction of HLA class I binding peptides", J IMMUNOL METHODS, vol. 374, 2011, pages 1, XP055526498, DOI: doi:10.1016/j.jim.2011.09.010 |
ZHANG GL; ANSARI HR; BRADLEY P ET AL.: "Machine learning competition in immunology - Prediction of HLA class I binding peptides", J IMMUNOL METHODS, vol. 374, no. 1-2, 30 November 2011 (2011-11-30), pages 1 - 4, XP055526498, DOI: doi:10.1016/j.jim.2011.09.010 |
ZHU X; NISHIMURA F; SASAKI K ET AL.: "Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models", JOURNAL OF TRANSLATIONAL MEDICINE, vol. 5, 2007, pages 10, XP021024921, DOI: doi:10.1186/1479-5876-5-10 |
ZOELLER ET AL., PROC. NAT'L. ACAD. SCI. USA, vol. 81, 1984, pages 5662 - 5066 |
ZORN E; HERCEND T.: "A natural cytotoxic T cell response in a spontaneously regressing human melanoma targets a neoantigen resulting from a somatic point mutation", EUR J IMMUNOL., vol. 29, no. 2, February 1999 (1999-02-01), pages 592 - 601, XP055111374, DOI: doi:10.1002/(SICI)1521-4141(199902)29:02<592::AID-IMMU592>3.0.CO;2-2 |
Cited By (144)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11298426B2 (en) | 2003-10-14 | 2022-04-12 | BioNTech SE | Recombinant vaccines and use thereof |
US10106800B2 (en) | 2005-09-28 | 2018-10-23 | Biontech Ag | Modification of RNA, producing an increased transcript stability and translation efficiency |
US11248264B2 (en) | 2011-05-24 | 2022-02-15 | Tron-Translationale Onkologie An Der Universitätsmedizin Der Johannes Gutenberg-Universität Mainz Ggmbh | Individualized vaccines for cancer |
US10738355B2 (en) | 2011-05-24 | 2020-08-11 | Tron-Translationale Onkologie An Der Universitätsmedizin Der Johannes Gutenberg-Universität Mainz Ggmbh | Individualized vaccines for cancer |
US10485884B2 (en) | 2012-03-26 | 2019-11-26 | Biontech Rna Pharmaceuticals Gmbh | RNA formulation for immunotherapy |
US11559587B2 (en) | 2012-03-26 | 2023-01-24 | Tron-Translationale Onkologie An Der Universitätsmedizin Der Johannes Gutenberg-Universität Mainz Ggmbh | RNA formulation for immunotherapy |
US11504419B2 (en) | 2012-11-28 | 2022-11-22 | BioNTech SE | Individualized vaccines for cancer |
US10155031B2 (en) | 2012-11-28 | 2018-12-18 | Biontech Rna Pharmaceuticals Gmbh | Individualized vaccines for cancer |
EP2983702A2 (en) * | 2013-04-07 | 2016-02-17 | The Broad Institute, Inc. | Compositions and methods for personalized neoplasia vaccines |
US11222711B2 (en) | 2013-05-10 | 2022-01-11 | BioNTech SE | Predicting immunogenicity of T cell epitopes |
US11834718B2 (en) | 2013-11-25 | 2023-12-05 | The Broad Institute, Inc. | Compositions and methods for diagnosing, evaluating and treating cancer by means of the DNA methylation status |
US10801070B2 (en) | 2013-11-25 | 2020-10-13 | The Broad Institute, Inc. | Compositions and methods for diagnosing, evaluating and treating cancer |
US11725237B2 (en) | 2013-12-05 | 2023-08-15 | The Broad Institute Inc. | Polymorphic gene typing and somatic change detection using sequencing data |
WO2015085147A1 (en) * | 2013-12-05 | 2015-06-11 | The Broad Institute Inc. | Polymorphic gene typing and somatic change detection using sequencing data |
EP4052724A1 (en) * | 2013-12-06 | 2022-09-07 | The Broad Institute Inc. | Formulations for neoplasia vaccines |
AU2014360198B2 (en) * | 2013-12-06 | 2020-06-18 | The Broad Institute, Inc. | Formulations for neoplasia vaccines |
WO2015085233A1 (en) * | 2013-12-06 | 2015-06-11 | The Broad Institute Inc. | Formulations for neoplasia vaccines |
US11452768B2 (en) | 2013-12-20 | 2022-09-27 | The Broad Institute, Inc. | Combination therapy with neoantigen vaccine |
WO2015095811A3 (en) * | 2013-12-20 | 2015-10-22 | The Board Institute Inc. | Combination therapy with neoantigen vaccine |
US10564165B2 (en) | 2014-09-10 | 2020-02-18 | Genentech, Inc. | Identification of immunogenic mutant peptides using genomic, transcriptomic and proteomic information |
US11173120B2 (en) | 2014-09-25 | 2021-11-16 | Biontech Rna Pharmaceuticals Gmbh | Stable formulations of lipids and liposomes |
US11939637B2 (en) | 2014-12-19 | 2024-03-26 | Massachusetts Institute Of Technology | Molecular biomarkers for cancer immunotherapy |
EP3234130B1 (en) * | 2014-12-19 | 2020-11-25 | The Broad Institute, Inc. | Methods for profiling the t-cell- receptor repertoire |
US10975442B2 (en) | 2014-12-19 | 2021-04-13 | Massachusetts Institute Of Technology | Molecular biomarkers for cancer immunotherapy |
US10993997B2 (en) | 2014-12-19 | 2021-05-04 | The Broad Institute, Inc. | Methods for profiling the t cell repertoire |
JP2018507686A (en) * | 2015-02-12 | 2018-03-22 | バイオンテック エールエヌアー ファーマシューティカルズ ゲーエムベーハー | Prediction of T cell epitopes useful for vaccination |
JP2021129569A (en) * | 2015-02-12 | 2021-09-09 | バイオンテック エールエヌアー ファーマシューティカルズ ゲーエムベーハー | Predicting t cell epitopes useful for vaccination |
CN113484523A (en) * | 2015-02-12 | 2021-10-08 | 生物技术Rna制药有限公司 | Predicting T cell epitopes useful for vaccination |
WO2016128376A1 (en) * | 2015-02-12 | 2016-08-18 | Biontech Ag | Predicting t cell epitopes useful for vaccination |
WO2016128060A1 (en) * | 2015-02-12 | 2016-08-18 | Biontech Ag | Predicting t cell epitopes useful for vaccination |
KR20220021014A (en) * | 2015-02-12 | 2022-02-21 | 비온테크 에스이 | Predicting t cell epitopes useful for vaccination |
EP3954383A1 (en) * | 2015-02-12 | 2022-02-16 | BioNTech SE | Predicting t cell epitopes useful for vaccination |
JP7244571B2 (en) | 2015-02-12 | 2023-03-22 | バイオンテック・エスイー | Prediction of T cell epitopes useful for vaccination |
US11156617B2 (en) | 2015-02-12 | 2021-10-26 | BioNTech RNA Pharmaceuticals GbmH | Predicting T cell epitopes useful for vaccination |
KR102670064B1 (en) * | 2015-02-12 | 2024-05-29 | 비온테크 에스이 | Predicting t cell epitopes useful for vaccination |
KR102359213B1 (en) | 2015-02-12 | 2022-02-08 | 비온테크 에스이 | Prediction of T cell epitopes useful for vaccination |
KR20170117514A (en) * | 2015-02-12 | 2017-10-23 | 비온테크 알엔에이 파마슈티컬스 게엠베하 | Prediction of T cell epitopes useful for vaccination |
AU2016217965B2 (en) * | 2015-02-12 | 2022-05-26 | BioNTech SE | Predicting T cell epitopes useful for vaccination |
CN107430132A (en) * | 2015-02-12 | 2017-12-01 | 生物技术Rna制药有限公司 | T cell epitope of the prediction available for vaccine inoculation |
US20190250166A1 (en) * | 2015-02-12 | 2019-08-15 | Biontech Rna Pharmaceuticals Gmbh | Predicting t cell epitopes useful for vaccination |
US11254914B2 (en) | 2015-03-12 | 2022-02-22 | Health Research, Inc. | Enrichment of CD16+ monocytes to improve dendritic cell vaccine quality |
WO2016145317A1 (en) * | 2015-03-12 | 2016-09-15 | Thomas Schwaab | Enrichment of cd16+ monocytes to improve dendritic cell vaccine quality |
US11219673B2 (en) | 2015-03-25 | 2022-01-11 | The Regents Of The University Of Michigan | Compositions and methods for delivery of biomacromolecule agents |
JP2018516847A (en) * | 2015-03-25 | 2018-06-28 | ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン | Compositions and methods for delivering biopolymer drugs |
US11833196B2 (en) | 2015-03-25 | 2023-12-05 | The Regents Of The University Of Michigan | Compositions and methods for delivery of biomacromolecule agents |
JP2020073568A (en) * | 2015-03-25 | 2020-05-14 | ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン | Compositions and methods for delivery of biomacromolecule agents |
US11614449B2 (en) * | 2015-03-31 | 2023-03-28 | Technische Universitaet Muenchen | T cell receptors and peptides derived by mutations for the treatment of cancer |
KR102629590B1 (en) * | 2015-04-27 | 2024-01-24 | 캔써 리서치 테크놀로지 리미티드 | How to treat cancer |
JP2020127404A (en) * | 2015-04-27 | 2020-08-27 | キャンサー・リサーチ・テクノロジー・リミテッド | Method for treating cancer |
EP3603665A1 (en) | 2015-04-27 | 2020-02-05 | Cancer Research Technology Limited | Diagnostic methods and personalised vaccines for cancer |
IL254760A (en) * | 2015-04-27 | 2017-12-31 | Cancer Research Tech Ltd | Method for treating cancer |
IL254760B2 (en) * | 2015-04-27 | 2023-05-01 | Cancer Research Tech Ltd | Method for treating cancer |
CN107750278A (en) * | 2015-04-27 | 2018-03-02 | 癌症研究技术有限公司 | The method for the treatment of cancer |
AU2016256220B2 (en) * | 2015-04-27 | 2021-10-21 | Achilles Therapeutics Uk Limited | Method for treating cancer |
RU2770447C2 (en) * | 2015-04-27 | 2022-04-18 | Кэнсэр Ресерч Текнолоджи Лимитед | Method for treating cancer |
US20200000903A1 (en) * | 2015-04-27 | 2020-01-02 | Cancer Research Technology Limited | Method for Treating Cancer |
US20200000904A1 (en) * | 2015-04-27 | 2020-01-02 | Cancer Research Technology Limited | Neo-antigen specific t cells |
KR20170138560A (en) * | 2015-04-27 | 2017-12-15 | 캔써 리서치 테크놀로지 리미티드 | A method for treating cancer |
EP4137151A1 (en) | 2015-04-27 | 2023-02-22 | Cancer Research Technology Ltd. | Method |
WO2016174085A1 (en) * | 2015-04-27 | 2016-11-03 | Cancer Research Technology Limited | Method for treating cancer |
EP3603666A1 (en) | 2015-04-27 | 2020-02-05 | Cancer Research Technology Limited | Method for treating cancer |
JP2018520637A (en) * | 2015-04-27 | 2018-08-02 | キャンサー・リサーチ・テクノロジー・リミテッド | Methods for treating cancer |
CN107750278B (en) * | 2015-04-27 | 2023-10-03 | 癌症研究技术有限公司 | Methods of treating cancer |
US11629334B2 (en) * | 2015-05-01 | 2023-04-18 | The United States of Americans represented by the Secretary, Department of Health and Human Services | Methods of isolating T cells and T cell receptors having antigenic specificity for a cancer-specific mutation from peripheral blood |
US20200095548A1 (en) * | 2015-05-01 | 2020-03-26 | The United States Of America,As Represented By The Secretary,Department Of Health And Human Services | Methods of isolating t cells and t cell receptors having antigenic specificity for a cancer-specific mutation from peripheral blood |
US10568948B2 (en) | 2015-05-13 | 2020-02-25 | Agenus Inc. | Vaccines for treatment and prevention of cancer |
US10835585B2 (en) | 2015-05-20 | 2020-11-17 | The Broad Institute, Inc. | Shared neoantigens |
JP2018522822A (en) * | 2015-05-20 | 2018-08-16 | ザ・ブロード・インスティテュート・インコーポレイテッド | Common neo antigen |
CN107921107A (en) * | 2015-06-09 | 2018-04-17 | 博德研究所 | Preparation of vaccine and preparation method thereof is formed for knurl |
RU2753246C2 (en) * | 2015-06-09 | 2021-08-12 | Те Брод Инститьют Инк. | Compositions of vaccines against neoplasia and methods for obtaining thereof |
CN108135985A (en) * | 2015-09-10 | 2018-06-08 | 癌症研究技术有限公司 | " intervention of immunologic test point " in cancer |
JP7073254B2 (en) | 2015-09-10 | 2022-05-23 | キャンサー・リサーチ・テクノロジー・リミテッド | "Immune checkpoint intervention" in cancer |
JP2018527935A (en) * | 2015-09-10 | 2018-09-27 | キャンサー・リサーチ・テクノロジー・リミテッド | "Immune checkpoint intervention" in cancer |
US11098121B2 (en) | 2015-09-10 | 2021-08-24 | Cancer Research Technology Limited | “Immune checkpoint intervention” in cancer |
US11492628B2 (en) | 2015-10-07 | 2022-11-08 | BioNTech SE | 3′-UTR sequences for stabilization of RNA |
EP3855444A1 (en) * | 2015-10-12 | 2021-07-28 | Nantomics, LLC | Iterative discovery of neoepitopes and adaptive immunotherapy and methods therefor |
EP3362929A4 (en) * | 2015-10-12 | 2019-06-19 | Nantomics, LLC | Viral neoepitopes and uses thereof |
US11717564B2 (en) | 2015-10-12 | 2023-08-08 | Nantomics, Llc | Iterative discovery of neoepitopes and adaptive immunotherapy and methods therefor |
CN108700592A (en) * | 2015-10-12 | 2018-10-23 | 南托米克斯有限责任公司 | The iteration discovery of new epitope and its adaptive immunity therapy and method |
US12080382B2 (en) | 2015-10-12 | 2024-09-03 | Nantomics, Llc | Viral neoepitopes and uses thereof |
JP2018536225A (en) * | 2015-10-12 | 2018-12-06 | ナントミクス,エルエルシー | Viral neoepitope and uses thereof |
CN108700592B (en) * | 2015-10-12 | 2021-08-24 | 南托米克斯有限责任公司 | Iterative discovery of neoepitopes and adaptive immunotherapy and methods therefor |
AU2016339022B2 (en) * | 2015-10-12 | 2020-09-10 | Nantomics, Llc | Iterative discovery of neoepitopes and adaptive immunotherapy and methods therefor |
JP6991967B2 (en) | 2015-10-12 | 2022-01-13 | ナントミクス,エルエルシー | Viral neoepitope and its use |
CN108604257A (en) * | 2015-10-12 | 2018-09-28 | 南托米克斯有限责任公司 | Viral new epitope and application thereof |
EP3362797A4 (en) * | 2015-10-12 | 2019-06-19 | Nantomics, LLC | Iterative discovery of neoepitopes and adaptive immunotherapy and methods therefor |
WO2017066290A1 (en) * | 2015-10-12 | 2017-04-20 | Nantomics, Llc | Viral neoepitopes and uses thereof |
US10532089B2 (en) | 2015-10-12 | 2020-01-14 | Nantomics, Llc | Iterative discovery of neoepitopes and adaptive immunotherapy and methods therefor |
US11441160B2 (en) | 2015-12-07 | 2022-09-13 | Nant Holdings Ip, Llc | Compositions and methods for viral delivery of neoepitopes and uses thereof |
JP7034931B2 (en) | 2015-12-07 | 2022-03-14 | ナント ホールディングス アイピー,エルエルシー | Improved compositions and methods for viral delivery of neoepitope and their use |
JP2019500057A (en) * | 2015-12-07 | 2019-01-10 | ナント ホールディングス アイピー エルエルシーNant Holdings IP, LLC | Improved compositions and methods for viral delivery of neoepitope and uses thereof |
AU2016366183B2 (en) * | 2015-12-07 | 2020-01-16 | Immunitybio, Inc. | Improved compositions and methods for viral delivery of neoepitopes and uses thereof |
US10793875B2 (en) | 2015-12-07 | 2020-10-06 | Nant Holdings Ip, Llc | Compositions and methods for viral delivery of neoepitopes and uses thereof |
EP3389630B1 (en) | 2015-12-16 | 2023-11-08 | Gritstone bio, Inc. | Neoantigen identification, manufacture, and use |
US12059459B2 (en) | 2016-01-08 | 2024-08-13 | Nykode Therapeutics ASA | Therapeutic anticancer neoepitope vaccine |
WO2017139725A1 (en) * | 2016-02-11 | 2017-08-17 | Nant Holdings Ip, Llc | Subcutaneous delivery of adenovirus with dual targeting |
JP2019511907A (en) * | 2016-02-12 | 2019-05-09 | ナントミクス,エルエルシー | High-throughput identification of patient-specific neoepitopes as therapeutic targets for cancer immunotherapy |
EP3414692A4 (en) * | 2016-02-12 | 2020-07-29 | Nantomics, LLC | High-throughput identification of patient-specific neoepitopes as therapeutic targets for cancer immunotherapies |
US11361841B2 (en) | 2016-02-12 | 2022-06-14 | Nantomics Llc | High-throughput identification of patient-specific neoepitopes as therapeutic targets for cancer immunotherapies |
US11154597B2 (en) | 2016-03-24 | 2021-10-26 | Nantcell, Inc. | Sequence arrangements and sequences for neoepitope presentation |
WO2017184590A1 (en) * | 2016-04-18 | 2017-10-26 | The Broad Institute Inc. | Improved hla epitope prediction |
US11723962B2 (en) | 2016-05-04 | 2023-08-15 | Fred Hutchinson Cancer Center | Cell-based neoantigen vaccines and uses thereof |
EP3552623A1 (en) | 2016-06-20 | 2019-10-16 | ISA Pharmaceuticals B.V | Formulation of a peptide vaccine |
WO2017220463A1 (en) | 2016-06-20 | 2017-12-28 | Isa Pharmaceuticals B.V. | Formulation of a peptide vaccine |
US10350280B2 (en) | 2016-08-31 | 2019-07-16 | Medgenome Inc. | Methods to analyze genetic alterations in cancer to identify therapeutic peptide vaccines and kits therefore |
EP4001437A1 (en) * | 2016-11-07 | 2022-05-25 | The United States of America, as represented by The Secretary, Department of Health and Human Services | Methods for selecting therapy for a cancer patient |
WO2018085802A1 (en) * | 2016-11-07 | 2018-05-11 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Methods for selecting therapy for a cancer patient |
US11312998B2 (en) | 2016-11-07 | 2022-04-26 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Methods for selecting therapy for a cancer patient |
EP3544607A4 (en) * | 2016-11-23 | 2020-10-14 | Gritstone Oncology, Inc. | Viral delivery of neoantigens |
US11549149B2 (en) | 2017-01-24 | 2023-01-10 | The Broad Institute, Inc. | Compositions and methods for detecting a mutant variant of a polynucleotide |
WO2018183544A1 (en) * | 2017-03-31 | 2018-10-04 | Dana-Farber Cancer Institute, Inc. | Method for identification of retained intron tumor neoantigens from patient transcriptome |
US11779637B2 (en) | 2017-04-24 | 2023-10-10 | Nantcell, Inc. | Targeted neoepitope vectors and methods therefor |
WO2018200389A1 (en) * | 2017-04-24 | 2018-11-01 | Nantcell, Inc. | Targeted neoepitope vectors and methods therefor |
US11510973B2 (en) | 2017-05-08 | 2022-11-29 | Gritstone Bio, Inc. | Alphavirus antigen vectors |
US11504421B2 (en) | 2017-05-08 | 2022-11-22 | Gritstone Bio, Inc. | Alphavirus neoantigen vectors |
US12109257B2 (en) | 2017-05-08 | 2024-10-08 | Gritstone Bio, Inc. | Alphavirus neoantigen vectors |
US11786607B2 (en) | 2017-06-15 | 2023-10-17 | Modernatx, Inc. | RNA formulations |
WO2018234506A3 (en) * | 2017-06-21 | 2019-03-07 | Transgene Sa | Personalized vaccine |
IL271558B2 (en) * | 2017-06-21 | 2024-01-01 | Transgene | Personalized vaccine |
IL271558B1 (en) * | 2017-06-21 | 2023-09-01 | Transgene | Personalized vaccine |
KR102684237B1 (en) * | 2017-06-21 | 2024-07-11 | 트랜스진 | personalized vaccine |
US20200138923A1 (en) * | 2017-06-21 | 2020-05-07 | Transgene | Personalized vaccine |
US11969462B2 (en) | 2017-06-21 | 2024-04-30 | Transgene | Personalized vaccine |
RU2779987C2 (en) * | 2017-06-21 | 2022-09-16 | Трансген | Personalized vaccine |
KR20200026894A (en) * | 2017-06-21 | 2020-03-11 | 트랜스진 에스아이 | Personalized vaccines |
US12049643B2 (en) | 2017-07-14 | 2024-07-30 | The Broad Institute, Inc. | Methods and compositions for modulating cytotoxic lymphocyte activity |
US11744801B2 (en) | 2017-08-31 | 2023-09-05 | Modernatx, Inc. | Methods of making lipid nanoparticles |
US11885815B2 (en) * | 2017-11-22 | 2024-01-30 | Gritstone Bio, Inc. | Reducing junction epitope presentation for neoantigens |
WO2019122050A1 (en) | 2017-12-22 | 2019-06-27 | Isa Pharmaceuticals B.V. | Methods of immunization |
US11065317B2 (en) | 2018-04-26 | 2021-07-20 | Agenus Inc. | Heat shock protein-binding peptide compositions and methods of use thereof |
EP3801597A4 (en) * | 2018-05-25 | 2022-05-04 | The Wistar Institute | Tumor-specific neoantigens and methods of using the same |
WO2019241315A1 (en) | 2018-06-12 | 2019-12-19 | Obsidian Therapeutics, Inc. | Pde5 derived regulatory constructs and methods of use in immunotherapy |
WO2020006242A1 (en) * | 2018-06-27 | 2020-01-02 | Modernatx, Inc. | Personalized cancer vaccine epitope selection |
US12090235B2 (en) | 2018-09-20 | 2024-09-17 | Modernatx, Inc. | Preparation of lipid nanoparticles and methods of administration thereof |
WO2020097291A1 (en) * | 2018-11-07 | 2020-05-14 | Modernatx, Inc. | Rna cancer vaccines |
US11591619B2 (en) | 2019-05-30 | 2023-02-28 | Gritstone Bio, Inc. | Modified adenoviruses |
US12098383B2 (en) | 2019-05-30 | 2024-09-24 | Gritstone Bio, Inc. | Modified adenoviruses |
US11918635B2 (en) * | 2019-08-22 | 2024-03-05 | Neocura Bio-Medical Technology Co., Ltd | Method and platform for detecting immunogenicity of tumor neoantigen |
US20210055306A1 (en) * | 2019-08-22 | 2021-02-25 | Shenzhen Neocura Biotechnology Corporation | Method and platform for detecting immunogenicity of tumor neoantigen |
US11771747B2 (en) | 2020-08-06 | 2023-10-03 | Gritstone Bio, Inc. | Multiepitope vaccine cassettes |
US11504398B2 (en) | 2021-04-01 | 2022-11-22 | Achilles Therapeutics Uk Limited | Identification of clonal neoantigens and uses thereof |
WO2022229464A1 (en) | 2021-04-30 | 2022-11-03 | Tigen Pharma Sa | Single vessel expansion of lymphocytes |
WO2023218399A1 (en) * | 2022-05-11 | 2023-11-16 | Fundação D. Anna De Sommer Champalimaud E Dr. Carlos Montez Champalimaud - Centro De Investigação Da Fundação Champalimaud | Method of preparing and expanding a population of immune cells for cancer therapy, potency assay for tumor recognition, biological vaccine preparation and epitope target for antibodies |
WO2024097864A1 (en) | 2022-11-02 | 2024-05-10 | Tigen Pharma Sa | Expansion of lymphocytes |
Also Published As
Publication number | Publication date |
---|---|
IL282202A (en) | 2021-05-31 |
JP2016518355A (en) | 2016-06-23 |
IL241858B (en) | 2021-04-29 |
KR20150143597A (en) | 2015-12-23 |
KR20210156320A (en) | 2021-12-24 |
US20210220455A1 (en) | 2021-07-22 |
EP2983702A2 (en) | 2016-02-17 |
AU2019203665A1 (en) | 2019-06-13 |
KR20230145545A (en) | 2023-10-17 |
CN118750591A (en) | 2024-10-11 |
BR112015025460B1 (en) | 2024-01-02 |
CA2908434C (en) | 2021-12-28 |
AU2019203664B2 (en) | 2021-08-12 |
AU2021266338A1 (en) | 2021-12-09 |
WO2014168874A3 (en) | 2014-12-18 |
AU2014251207A1 (en) | 2015-11-05 |
JP7489193B2 (en) | 2024-05-23 |
CN105377292A (en) | 2016-03-02 |
JP6702855B2 (en) | 2020-06-03 |
AU2019203664A1 (en) | 2019-06-13 |
BR112015025460A2 (en) | 2017-10-10 |
CN118557711A (en) | 2024-08-30 |
KR102341899B1 (en) | 2021-12-21 |
NZ712933A (en) | 2021-08-27 |
CN117815373A (en) | 2024-04-05 |
JP2020073553A (en) | 2020-05-14 |
CA2908434A1 (en) | 2014-10-16 |
AU2014251207B2 (en) | 2019-06-13 |
US20160101170A1 (en) | 2016-04-14 |
JP2022105069A (en) | 2022-07-12 |
CA3137846A1 (en) | 2014-10-16 |
AU2019203665B2 (en) | 2021-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2019203665B2 (en) | Compositions and methods for personalized neoplasia vaccines | |
AU2020230277B2 (en) | Combination therapy with neoantigen vaccine | |
US11939637B2 (en) | Molecular biomarkers for cancer immunotherapy | |
MX2014011136A (en) | Universal cancer peptides derived from telomerase. | |
NZ712933B2 (en) | Compositions and methods for personalized neoplasia vaccines | |
WO2023220661A1 (en) | Vaccines and methods of using the same to treat wnt-related cancer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14727288 Country of ref document: EP Kind code of ref document: A2 |
|
ENP | Entry into the national phase |
Ref document number: 2908434 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 241858 Country of ref document: IL |
|
ENP | Entry into the national phase |
Ref document number: 2016507587 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014727288 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2014251207 Country of ref document: AU Date of ref document: 20140407 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20157031939 Country of ref document: KR Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015025460 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112015025460 Country of ref document: BR Kind code of ref document: A2 Effective date: 20151005 |