WO2014161783A1 - Real-time energy depositing therapy system controlled by magnetic resonance rheology - Google Patents
Real-time energy depositing therapy system controlled by magnetic resonance rheology Download PDFInfo
- Publication number
- WO2014161783A1 WO2014161783A1 PCT/EP2014/056288 EP2014056288W WO2014161783A1 WO 2014161783 A1 WO2014161783 A1 WO 2014161783A1 EP 2014056288 W EP2014056288 W EP 2014056288W WO 2014161783 A1 WO2014161783 A1 WO 2014161783A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- energy
- depositing
- magnetic resonance
- interest
- Prior art date
Links
- 238000000151 deposition Methods 0.000 title claims abstract description 128
- 238000002560 therapeutic procedure Methods 0.000 title claims abstract description 73
- 238000000518 rheometry Methods 0.000 title description 8
- 238000002595 magnetic resonance imaging Methods 0.000 claims abstract description 44
- 230000010358 mechanical oscillation Effects 0.000 claims abstract description 21
- 238000012545 processing Methods 0.000 claims abstract description 16
- 238000002679 ablation Methods 0.000 claims description 12
- 238000002604 ultrasonography Methods 0.000 claims description 7
- 206010020843 Hyperthermia Diseases 0.000 claims description 3
- 230000036031 hyperthermia Effects 0.000 claims description 3
- 238000001959 radiotherapy Methods 0.000 claims description 2
- 241000264877 Hippospongia communis Species 0.000 description 16
- 238000000034 method Methods 0.000 description 16
- 238000001574 biopsy Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 4
- 238000012800 visualization Methods 0.000 description 4
- 238000012307 MRI technique Methods 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 230000001902 propagating effect Effects 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000012045 magnetic resonance elastography Methods 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000002559 palpation Methods 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
- A61B5/0036—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room including treatment, e.g., using an implantable medical device, ablating, ventilating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/1815—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N7/02—Localised ultrasound hyperthermia
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/4808—Multimodal MR, e.g. MR combined with positron emission tomography [PET], MR combined with ultrasound or MR combined with computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00184—Moving parts
- A61B2018/0019—Moving parts vibrating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00577—Ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00642—Sensing and controlling the application of energy with feedback, i.e. closed loop control
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00898—Alarms or notifications created in response to an abnormal condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00904—Automatic detection of target tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/374—NMR or MRI
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1049—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
- A61N2005/1055—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using magnetic resonance imaging [MRI]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N2007/0078—Ultrasound therapy with multiple treatment transducers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/563—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
- G01R33/56358—Elastography
Definitions
- the invention pertains to an energy depositing therapy system comprising a magnetic resonance imaging system, and a method of controlling an energy depositing therapy system by a magnetic resonance rheology system.
- magnetic resonance imaging it is known to characterize the mechanical properties of human or animal tissue by magnetic resonance rheology (cf, for instance, to Muthipillai R. et al., Magnetic resonance imaging of acoustic strain waves, Proc. Soc. Magn. Reson. Nice, 1 : 189, 1995).
- tissue is driven to mechanically oscillate during magnetic resonance imaging, leading to effects which cause an imaging contrast.
- Low- frequency mechanical waves are coupled into the tissue and are visualized via a magnetic resonance sequence which is phase-locked to the mechanical excitation.
- Conventional palpation has turned into the assessment of an objective absolute physical quantity, whose diagnostic value can be quantified. This information can be used, for instance, to distinguish healthy from malign tissue.
- U.S. patent application 2011/0131278 mentions to employ magnetic resonance elastography to derive a temperature distribution caused by applying high-intensity focused ultrasound (HIFU). Therein, it is suggested to correlate magnetic resonance elastography data to a temperature-dependent viscosity to retrospectively monitor the thermal effect of the HIFU application as a replacement for proton resonance frequency shift measurements.
- HIFU high-intensity focused ultrasound
- an energy depositing therapy system comprising:
- an energy depositing unit provided for locally depositing energy into a therapy zone of a subject of interest for therapy purposes; a transducer unit having at least one mechanical transducer that can be mechanically coupled to the subject of interest and that is provided for applying mechanical oscillations to at least a portion of the subject of interest;
- a magnetic resonance imaging system provided for acquiring magnetic resonance imaging data from at least the portion of a subject of interest, comprising:
- an image processing unit configured to image the mechanical oscillations in at least the portion of the subject of interest by processing the acquired magnetic resonance imaging data of the portion of the subject of interest
- control unit that is connectable to the energy depositing unit, the transducer unit and the magnetic resonance scanner, wherein
- control unit is configured to control the depositing of energy in dependence of the processed magnetic resonance imaging data of the portion of the subject of interest.
- therapy zone shall be understood particularly as a zone of tissue of the subject of interest which (a) has been identified to require treatment in form of depositing energy, and (b) has to be protected from excessive energy deposition. Usually, malign tissue is surrounded by healthy, functional tissue which needs to survive the treatment.
- the processing of the acquired magnetic resonance imaging data of the portion of the subject of interest may comprise a magnetic resonance imaging technique based on phase-contrast.
- the acquiring of the magnetic resonance imaging data may be phase-locked with the applied mechanical oscillations for noise reduction and improvement of a signal-to- noise ratio, as is known in the art.
- the control unit may be connectable to the energy depositing unit, the transducer unit and the magnetic resonance scanner by wire connections or by wireless connections or by a combination of both.
- a number of different mechanical transducers for applying the mechanical oscillations to the tissue have been proposed, such as electromagnetic designs, which make use of the main magnetic field Bo inside the MR scanner. Further, piezo-driven transducers or pneumatic designs were proposed for clinical application. In general, any mechanical transducer that appears to be suitable to the one skilled in the art may be employed.
- control unit is configured to disable energy depositing by the energy depositing unit if a target zone is distinct from the therapy zone.
- target zone shall be understood particularly as the tissue volume within the subject of interest that the energy depositing unit would deposit 95% of the energy to in a moment of activation of the energy depositing unit.
- control unit is configured to enable energy depositing by the energy depositing unit only if the target zone at least partially overlaps with the therapy zone.
- the energy depositing therapy system comprises an ablation unit configured for ablating tissue from the subject of interest.
- an ablation unit configured for ablating tissue from the subject of interest.
- the ablation unit may be controlled manually by a human user, or it may be controlled by a non-human user, such as a robot.
- the energy depositing unit comprises at least one out of a high-intensity focused ultrasound (HIFU) device, a microwave ablation unit, a Shockwave generation device, a hyperthermia device and a radiation therapy device.
- HIFU high-intensity focused ultrasound
- microwave ablation unit a microwave ablation unit
- Shockwave generation device a hyperthermia device
- radiation therapy device a radiation therapy device.
- the transducer unit comprises at least one open access for an interventional device.
- the transducer unit comprises a honeycomb structure, wherein the at least one mechanical transducer resides in a first honeycomb of the honeycomb structure, and the at least one open access is provided in a second honeycomb of the honeycomb structure adjacent to the first honeycomb.
- the honeycomb structrue preferably has a mass density about 1/7 ( ⁇ 20%) of the same solid material as which the honycomb structure is made of.
- the honeycomb stgrutrure provides sufficient mechanical stiffness to be able to stable support the transducer unit when in operation. In this way a stable and well controlled field of mechnical shear waves can be generated in the patient's tissue. Becaue of its open structure and lower mass density the honeycomb structure has low relflectivity for energy despoisitng radiation from the energy depositing unit.
- the relative orientatins of the HIFU device and the transducer unit are not subject to restrictions. Notably, there is no need to avoid relections by the
- honeycombstructure of HIFU radaition Good results are achieved with a honeycomb strcuture having a mass density of 21-192kgm ⁇ .
- the piston and the housing of the transducer unit may be made of polycarbonate having a mass density in the range of 1200- 1220kgm "3 .
- the transducer unit has at least two mechanical transducers that are integrated with the energy depositing unit in a single housing.
- an energy depositing therapy system can be provided that is especially useful for therapy of mammae.
- the object is achieved by a method of controlling an energy depositing therapy system by a magnetic resonance rheology system, the energy depositing therapy system comprising
- an energy depositing unit provided for locally depositing energy into a therapy zone of a subject of interest for therapy purposes
- transducer unit having at least one mechanical transducer
- a magnetic resonance imaging system comprising a magnetic resonance scanner and an image processing unit
- the method prevents a potentially unsafe enabling of the energy depositing into the target zone which is distinct from the therapy zone of the subject of interest.
- the object is achieved by a method of controlling an energy depositing therapy system by a magnetic resonance rheology system, the energy depositing therapy system comprising
- an energy depositing unit provided for locally depositing energy into a therapy zone of a subject of interest for therapy purposes
- transducer unit having at least one mechanical transducer
- a magnetic resonance imaging system comprising a magnetic resonance scanner and an image processing unit
- differentiation also supports a precise and safe energy depositing into the therapy zone of the subject of interest.
- the mechanical transducer is deactivated during the depositing of energy by the energy depositing unit.
- the object is achieved by an application software module provided to carry out one of the disclosed methods or combinations thereof, wherein the method is converted into a program code that is implementable in and executable by a control unit that is connectable to the energy depositing unit, the transducer unit and the magnetic resonance imaging system, and that is provided to control an energy depositing therapy system by carrying out the method.
- Fig. 1 shows a schematic partial illustration of an energy depositing therapy system in accordance with the invention
- Fig. 2 shows a schematic diagram of an interconnection of components of the energy depositing therapy system pursuant to Fig. 1,
- Fig. 3 is a partial cross-sectional view of the energy depositing unit pursuant to
- FIG. 4 schematically illustrates an alternative embodiment of an energy depositing unit in accordance with the invention in the same view as Fig. 3,
- Fig. 5 is a schematic illustration of another alternative embodiment of an energy depositing unit in accordance with the invention in the same view as Fig. 3, and
- Fig. 6 is a schematic illustration of yet another alternative embodiment of an energy depositing unit in accordance with the invention in the same view as Fig. 3, and
- Fig. 7 schematically illustrates another alternative embodiment of an energy depositing unit in accordance with the invention in the same view as Fig. 3.
- Fig. 1 shows a schematic partial illustration of an energy depositing therapy system 10 in accordance with the invention.
- the energy depositing therapy system 10 comprises a magnetic resonance imaging system 14 provided for acquiring magnetic resonance imaging data from at least a portion of a subject of interest 28, usually a patient.
- the magnetic resonance imaging system 14 includes a magnetic resonance scanner 16 comprising a main magnet 18 with a center bore that defines an examination space 26 for the subject of interest 28 to be positioned within.
- a patient table has been omitted in Fig. 1 for reasons of clarity.
- the main magnet 18 is provided for generating a substantially static magnetic field in the examination space 26, wherein the substantially static magnetic field is directed substantially parallel to a center axis of the examination space 26.
- the magnetic resonance imaging system 14 comprises a magnetic gradient coil system 20 for generating gradient magnetic fields superimposed to the static magnetic field.
- the magnetic gradient coil system 20 is concentrically arranged within the bore of the main magnet 18, as is well known in the art.
- the magnetic resonance imaging system 14 further includes a magnetic resonance imaging system control unit 22 with a monitoring unit to control functions of the magnetic resonance scanner 16, as is commonly known in the art, and an image processing unit 24 provided for processing magnetic resonance signals acquired from the subject of interest 28.
- the energy depositing therapy system 10 further comprises an energy depositing unit 12 provided for locally depositing energy into a therapy zone 56 of the subject of interest 28 for therapy purposes (Fig. 3).
- the energy depositing unit 12 comprises an ablation unit designed as a high-intensity focused ultrasound (HIFU) array 52 and configured for ablating tissue 38 from the subject of interest 28 (Fig. 3).
- HIFU high-intensity focused ultrasound
- An energy depositing unit target zone 54 is controlled by a human user or by a non-human user, such as a robot.
- the target zone 54 is defined as the tissue volume within the subject of interest 28 in which 95% of the energy was deposited if the energy depositing unit 12 was activated.
- the energy depositing therapy system 10 comprises a transducer unit 32 (Fig. 2) having a plurality of mechanical transducers 34 of the electromechanical type which are arranged to form an array (Fig. 3), and that can be simultaneously operated by a driving amplifier (not shown).
- the mechanical transducers 34 are mechanically coupled to the subject of interest 28 and are provided for applying mechanical oscillations at a frequency of 200 Hz to at least the portion of the subject of interest 28.
- the mechanical transducers 34 By applying mechanical oscillations to the portion of the subject of interest 28, the mechanical transducers 34 generate shear waves 36 propagating within the tissue 38 of the subject of interest 28.
- the frequency of the applied mechanical oscillations may be different than 200 Hz and may be selected out of a range between 10 Hz and 1100 Hz, as is known in the art of magnet resonance rheology.
- the image processing unit 24 (Fig. 1) is, amongst other things, configured to image the mechanical oscillations in the portion of the subject of interest 28 by processing the acquired magnetic resonance imaging data of the portion of the subject of interest 28 by applying a magnetic resonance imaging technique based on phase-contrast.
- the magnetic resonance images show the propagating shear waves 36, and different types of tissue 38 can be clearly distinguished by the different ways in which the shear waves 36 propagate within the tissue 38.
- the energy depositing unit 12, the transducer unit 32 and the magnetic resonance scanner 16 are interconnected by wire connections via a control unit 40 of the energy depositing therapy system 10, as is schematically illustrated in Figs. 1 and 2.
- the transducer unit 32 can be controlled by a first hardware interface 46 of the control unit 40, which is located close to the magnetic resonance scanner 16, and the energy depositing unit 12 can be triggered by a second hardware interface 48 of the control unit 40.
- the control unit 40 is configured to control the depositing of energy by the energy depositing unit 12, as will be described in detail further below.
- the subject of interest 28 the patient, is positioned within the examination space 26 of the magnetic resonance scanner 16, and that the transducer unit 32 is in a ready-to-operate state, with the mechanical transducers 34 coupled to the subject of interest 28.
- a water-based gel 70 is usually provided between the mechanical transducers 34 and a surface of the subject of interest 28 for efficiently transmitting any applied mechanical oscillations.
- the energy depositing unit 12 is understood to be in a ready-to-operate state, and the magnetic resonance imaging system 14 is operable and ready for acquiring magnetic resonance signals from the subject of interest 28.
- the therapy zone 56 within the subject of interest 28 has been identified for therapy purposes prior to the treatment. In Fig. 3, the therapy zone 56 is indicated by a dotted line within an organ 30 (liver) of the subject of interest 28.
- control unit 40 activates the mechanical transducers 34 via the transducer unit 32 for applying mechanical oscillations to the portion of the subject of interest 28, generating the shear waves 36 propagating within the tissue 38 of the subject of interest 28. While the mechanical oscillations are being applied, the control unit 40 activates the magnetic resonance imaging system 14 via the magnetic resonance system control unit 22 to acquire magnetic resonance imaging data from the portion of the subject of interest 28. Then, the image processing unit 24 processes the acquired magnetic resonance imaging data by applying a magnetic resonance imaging technique based on phase-contrast to image the mechanical oscillations in the portion of the subject of interest 28.
- control unit 40 By requesting data from the energy depositing unit 12 via the second hardware interface 48, the control unit 40 identifies the target zone 54 of the energy depositing unit 12 within the processed magnetic resonance imaging data.
- the control unit 40 disables the energy depositing function of the energy depositing unit 12 so that the depositing of energy is omitted.
- a potentially unsafe enabling of the energy depositing into the target zone 54 is prevented, irrespective of whether a location of the energy depositing unit target zone 54 is controlled by a human user or by a non-human user, such as a robot.
- the control unit 40 enables the energy depositing function of the energy depositing unit 12 so that energy will be deposited if the human user or the non-human user, such as a robot, releases the energy depositing function of the energy depositing unit 12.
- control unit 40 deactivates the mechanical transducers 34 via the first hardware interface 46 during the depositing of energy by the energy depositing unit 12.
- control unit 40 is equipped with an application software module 50 comprising the method steps converted into a program code that is implemented in a control unit memory 44 and executable by a control unit processor 42 (Fig. 1).
- Fig. 4 schematically and partially illustrates an alternative embodiment of an energy depositing therapy system 210 in accordance with the invention in the same view as Fig. 3.
- the energy depositing therapy system 210 includes an energy depositing unit 212 that comprises a microwave ablation unit 258 including a microwave generation device (not shown).
- the microwave ablation unit 258 is combined with a biopsy device 260 for sampling tissue 238 of a subject of interest 228, using an identical access 266 to a therapy zone 256.
- Fig. 5 schematically and partially illustrates another alternative embodiment of an energy depositing therapy system 310 in accordance with the invention in the same view as Fig. 3.
- a transducer unit 332 of the energy depositing therapy system 310 comprises a number of open accesses 366 for an interventional device.
- the transducer unit 332 comprises a honeycomb structure 368 with a number of honeycombs, in which a mechanical transducer 334 is arranged in every other honeycomb. Honeycombs between the mechanical transducers 334, adjacent to the honeycombs with the mechanical transducers, each provide an open access 366 for an interventional device designed as a combination of a microwave ablation unit 358 and a biopsy device 360.
- Fig. 6 schematically illustrates yet another alternative embodiment of an energy depositing therapy system 410 which is similar to the embodiment shown in Fig. 3.
- the energy depositing therapy system 410 comprises an energy depositing unit 412 which, besides the high-intensity focused ultrasound device 452, additionally comprises a combination of a microwave ablation unit 458 having a microwave generation device (not shown), and a biopsy device 460.
- Fig. 7 schematically illustrates another alternative embodiment of an energy depositing therapy system 510, comprising a transducer unit 532 having two mechanical transducers 534, 534' and an energy depositing unit 512 that comprises a combination of a microwave ablation unit 558 having a microwave generation device (not shown), and a biopsy device 560.
- the energy depositing therapy system 510 comprises a magnetic resonance imaging system 514 having a radio frequency antenna 62 provided for excitation and reception of magnetic resonance signals from mammae of a subject of interest 528. Radio frequency antennae 62 of this kind are well-known in the art and shall therefore not described further herein.
- the radio frequency antenna 62, the two mechanical transducers 534, 534' and the energy depositing unit 512 are integrated in a single housing 64, providing a solution that is especially configured for an energy depositing therapy of mammae.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Surgery (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Radiology & Medical Imaging (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- High Energy & Nuclear Physics (AREA)
- Otolaryngology (AREA)
- Electromagnetism (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Theoretical Computer Science (AREA)
- Pulmonology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Gynecology & Obstetrics (AREA)
- Surgical Instruments (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14714672.4A EP2981332B1 (en) | 2013-04-05 | 2014-03-28 | Real-time energy depositing therapy system controlled by magnetic resonance rheology |
CN201480031570.5A CN105377369B (en) | 2013-04-05 | 2014-03-28 | Treatment system is deposited by the real-time power that magnetic resonance rheology controls |
JP2016505772A JP6195975B2 (en) | 2013-04-05 | 2014-03-28 | Real-time energy storage therapy system controlled by magnetic resonance rheology |
RU2015146980A RU2654769C2 (en) | 2013-04-05 | 2014-03-28 | Real-time energy depositing therapy system controlled by magnetic resonance rheology |
US14/781,717 US10918283B2 (en) | 2013-04-05 | 2014-03-28 | Real time energy depositing therapy system controlled by magnetic resonance rheology |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13162495.9 | 2013-04-05 | ||
EP13162495.9A EP2786781A1 (en) | 2013-04-05 | 2013-04-05 | Real-time energy depositing therapy system controlled by magnetic resonance rheology |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014161783A1 true WO2014161783A1 (en) | 2014-10-09 |
Family
ID=48082933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2014/056288 WO2014161783A1 (en) | 2013-04-05 | 2014-03-28 | Real-time energy depositing therapy system controlled by magnetic resonance rheology |
Country Status (6)
Country | Link |
---|---|
US (1) | US10918283B2 (en) |
EP (2) | EP2786781A1 (en) |
JP (1) | JP6195975B2 (en) |
CN (1) | CN105377369B (en) |
RU (1) | RU2654769C2 (en) |
WO (1) | WO2014161783A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109157762B (en) * | 2018-08-24 | 2023-12-08 | 西安大医集团股份有限公司 | Collimation body, radiotherapy equipment and driving control method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003075771A1 (en) * | 2002-03-08 | 2003-09-18 | Wisconsin Alumni Research Foundation | Elastographic imaging of soft tissue in vivo |
US20100026298A1 (en) * | 2008-05-02 | 2010-02-04 | Wald Lawrence L | Method for imaging Acoustically induced rotary saturation with a magnetic resonance imaging system |
US20110131278A1 (en) | 2008-05-23 | 2011-06-02 | Jason Nieh | Systems and methods for peer-to-peer bandwidth allocation |
US20120259201A1 (en) * | 2011-03-30 | 2012-10-11 | Jun Chen | System and Method for Inertial Magnetic Resonance Elastography Driver for Use With Interventional Medical Device |
WO2013030746A1 (en) * | 2011-08-30 | 2013-03-07 | Koninklijke Philips Electronics N.V. | Real time control of high intensity focused ultrasound using magnetic resonance imaging |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2558956B1 (en) * | 1984-01-26 | 1986-06-27 | Metravib Sa | METHOD AND DEVICE FOR SEARCHING AND CHARACTERIZING DEFECTS OF A KNOWN SUBMERSIBLE METAL STRUCTURE |
JPH0422350A (en) * | 1990-05-18 | 1992-01-27 | Olympus Optical Co Ltd | Dissolutive therapy device |
DE59008863D1 (en) * | 1990-06-21 | 1995-05-11 | Siemens Ag | Compound ultrasonic transducer and method for producing a structured component made of piezoelectric ceramic. |
JPH0852152A (en) * | 1994-08-11 | 1996-02-27 | Toshiba Corp | Ultrasonic medical treatment device |
US6506171B1 (en) * | 2000-07-27 | 2003-01-14 | Insightec-Txsonics, Ltd | System and methods for controlling distribution of acoustic energy around a focal point using a focused ultrasound system |
IL152439A0 (en) * | 2002-10-23 | 2003-05-29 | Membrane-less microphone capable of functioning in a very wide range of frequencies and with much less distortions | |
US7379769B2 (en) * | 2003-09-30 | 2008-05-27 | Sunnybrook Health Sciences Center | Hybrid imaging method to monitor medical device delivery and patient support for use in the method |
US7833221B2 (en) * | 2004-10-22 | 2010-11-16 | Ethicon Endo-Surgery, Inc. | System and method for treatment of tissue using the tissue as a fiducial |
RU2288753C2 (en) * | 2005-01-27 | 2006-12-10 | Анатолий Васильевич Кобзев | Device for making physiotherapeutic effect |
US7771418B2 (en) * | 2005-03-09 | 2010-08-10 | Sunnybrook Health Sciences Centre | Treatment of diseased tissue using controlled ultrasonic heating |
US20100010595A1 (en) * | 2006-08-30 | 2010-01-14 | Koninklijke Philips Electronics N. V. | Apparatus for thermal treatment of tissue |
WO2008067053A2 (en) * | 2006-10-12 | 2008-06-05 | Lawrence Group Medical Device Trust | Novel needle driver for magnetic resonance elastography |
US8849372B2 (en) * | 2006-11-22 | 2014-09-30 | The General Hospital Corporation | Method for magnetic resonance imaging using stimulus induced rotary saturation with a contrast agent |
US8340374B2 (en) * | 2007-01-11 | 2012-12-25 | Kabushiki Kaisha Toshiba | 3-dimensional diagnostic imaging system |
WO2009045885A2 (en) * | 2007-10-02 | 2009-04-09 | Board Of Regents, The University Of Texas System | Real-time ultrasound monitoring of heat-induced tissue interactions |
US8235903B2 (en) * | 2007-10-12 | 2012-08-07 | Innoscion, Llc | Remotely controlled implantable transducer and associated displays and controls |
CN101868799A (en) | 2007-11-22 | 2010-10-20 | 皇家飞利浦电子股份有限公司 | System and method for generating individualized exercise movies |
CN102202735B (en) * | 2008-11-04 | 2017-02-22 | 皇家飞利浦电子股份有限公司 | Method and system for ultrasound therapy |
CA2743158C (en) * | 2008-11-17 | 2016-04-05 | Sunnybrook Health Sciences Centre | Focused ultrasound system |
EP2223719A1 (en) * | 2009-02-27 | 2010-09-01 | Koninklijke Philips Electronics N.V. | Therapeutic apparatus for treating a subject using magnetic nanoparticles |
EP2421610A1 (en) * | 2009-04-20 | 2012-02-29 | Koninklijke Philips Electronics N.V. | A control apparatus for controlling a therapeutic apparatus |
US20120083686A1 (en) | 2009-06-12 | 2012-04-05 | Koninklijke Philips Electronics N.V. | Mr imaging guided ultrasound therapy |
US20120253176A1 (en) * | 2009-11-13 | 2012-10-04 | Cincinnati Children's Hospital Medical Center | Systems and Methods for Debulking Visceral Fat |
US20110160566A1 (en) * | 2009-12-24 | 2011-06-30 | Labros Petropoulos | Mri and ultrasound guided treatment on a patient |
US8810246B2 (en) * | 2010-01-19 | 2014-08-19 | Insightec Ltd. | Hybrid referenceless and multibaseline PRF-shift magnetic resonance thermometry |
US9465090B2 (en) | 2010-06-09 | 2016-10-11 | Siemens Aktiengesellschaft | Method of magnetic resonance-based temperature mapping |
WO2012018390A2 (en) * | 2010-08-02 | 2012-02-09 | Guided Therapy Systems, Llc | Systems and methods for treating acute and/or chronic injuries in soft tissue |
EP2423700A1 (en) * | 2010-08-30 | 2012-02-29 | Koninklijke Philips Electronics N.V. | Apparatus, computer-implemented method, and computer program product for calculating temperature in accordance with MRI transverse relaxometry data |
EP2489407A1 (en) * | 2011-02-15 | 2012-08-22 | Koninklijke Philips Electronics N.V. | Therapeutic apparatus for heating a subject |
WO2012066449A1 (en) * | 2010-11-18 | 2012-05-24 | Koninklijke Philips Electronics N.V. | System and method for probabilistic ablation planning |
WO2013046131A1 (en) * | 2011-09-27 | 2013-04-04 | Koninklijke Philips Electronics N.V. | High intensity focused ultrasound enhanced by cavitation |
GB2497079A (en) * | 2011-11-25 | 2013-06-05 | Netscientific Ltd | Medical monitoring and control systems for healthcare |
US8670816B2 (en) * | 2012-01-30 | 2014-03-11 | Inneroptic Technology, Inc. | Multiple medical device guidance |
US20140073907A1 (en) * | 2012-09-12 | 2014-03-13 | Convergent Life Sciences, Inc. | System and method for image guided medical procedures |
CN104936517B (en) * | 2013-03-09 | 2020-06-05 | 科纳医药股份有限公司 | Transducers, systems, and fabrication techniques for focused ultrasound therapy |
US20140257262A1 (en) * | 2013-03-11 | 2014-09-11 | Alexandre Carpentier | Interstitial ultrasonic disposable applicator and method for tissue thermal conformal volume ablation and monitoring the same |
US10314559B2 (en) * | 2013-03-14 | 2019-06-11 | Inneroptic Technology, Inc. | Medical device guidance |
US9681919B2 (en) * | 2014-07-09 | 2017-06-20 | Neil Glossop | Systems, methods, and devices for assisting or performing guided interventional procedures using custom templates |
WO2016007751A1 (en) * | 2014-07-09 | 2016-01-14 | Arapeen Medical, LLC | Image-guided focused ultrasound ablation |
-
2013
- 2013-04-05 EP EP13162495.9A patent/EP2786781A1/en not_active Withdrawn
-
2014
- 2014-03-28 JP JP2016505772A patent/JP6195975B2/en active Active
- 2014-03-28 WO PCT/EP2014/056288 patent/WO2014161783A1/en active Application Filing
- 2014-03-28 US US14/781,717 patent/US10918283B2/en active Active
- 2014-03-28 RU RU2015146980A patent/RU2654769C2/en active
- 2014-03-28 EP EP14714672.4A patent/EP2981332B1/en active Active
- 2014-03-28 CN CN201480031570.5A patent/CN105377369B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003075771A1 (en) * | 2002-03-08 | 2003-09-18 | Wisconsin Alumni Research Foundation | Elastographic imaging of soft tissue in vivo |
US20100026298A1 (en) * | 2008-05-02 | 2010-02-04 | Wald Lawrence L | Method for imaging Acoustically induced rotary saturation with a magnetic resonance imaging system |
US20110131278A1 (en) | 2008-05-23 | 2011-06-02 | Jason Nieh | Systems and methods for peer-to-peer bandwidth allocation |
US20120259201A1 (en) * | 2011-03-30 | 2012-10-11 | Jun Chen | System and Method for Inertial Magnetic Resonance Elastography Driver for Use With Interventional Medical Device |
WO2013030746A1 (en) * | 2011-08-30 | 2013-03-07 | Koninklijke Philips Electronics N.V. | Real time control of high intensity focused ultrasound using magnetic resonance imaging |
Non-Patent Citations (1)
Title |
---|
MUTHIPILLAI R. ET AL.: "Magnetic resonance imaging of acoustic strain waves", PROC. SOC. MAGN. RESON. NICE, vol. 1, 1995, pages 189 |
Also Published As
Publication number | Publication date |
---|---|
RU2015146980A (en) | 2017-05-16 |
US20160038081A1 (en) | 2016-02-11 |
US10918283B2 (en) | 2021-02-16 |
CN105377369A (en) | 2016-03-02 |
JP2016520346A (en) | 2016-07-14 |
EP2981332B1 (en) | 2016-11-30 |
CN105377369B (en) | 2018-12-07 |
RU2654769C2 (en) | 2018-05-22 |
RU2015146980A3 (en) | 2018-03-19 |
JP6195975B2 (en) | 2017-09-13 |
EP2786781A1 (en) | 2014-10-08 |
EP2981332A1 (en) | 2016-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103356189B (en) | The method of magnetic resonance and ultrasound parametric image fusion | |
Wijlemans et al. | Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation of liver tumours | |
US8725232B2 (en) | Therapeutic apparatus | |
Damianou et al. | High intensity focused ultrasound ablation of kidney guided by MRI | |
JP2009545354A (en) | System for tracking medical devices using magnetic resonance detection | |
WO2010122449A1 (en) | A control apparatus for controlling a therapeutic apparatus | |
JP2014506822A (en) | Accelerated MR thermometry mapping with image ratio-constrained reconstruction | |
US10874353B2 (en) | Systems and methods for avoiding MRI-originated interference with concurrently used systems | |
US20120203097A1 (en) | Magnetic resonance imaging system and method for detecting a gas bubble | |
US10571540B2 (en) | Systems and methods for avoiding MRI-originated interference with concurrently used systems | |
US11112473B2 (en) | Systems and methods for avoiding MRI-originated interference with concurrently used systems | |
Guo et al. | Patient-activated three-dimensional multifrequency magnetic resonance elastography for high-resolution mechanical imaging of the liver and spleen | |
Yiallouras et al. | Review of MRI positioning devices for guiding focused ultrasound systems | |
US9480414B2 (en) | Elastography method, and magnetic resonance system for implementing an elastography method | |
JP6896719B2 (en) | Systems and methods to avoid interference of MRI origin to RF systems used in parallel | |
US20230024998A1 (en) | Systems and methods for reducing interference between mri apparatus and ultrasound systems | |
US10918283B2 (en) | Real time energy depositing therapy system controlled by magnetic resonance rheology | |
Damianou et al. | Positioning device for MRI-guided high intensity focused ultrasound system | |
WO2023137378A1 (en) | Radiological clips having ultrasound identification | |
Zhou et al. | Prediction of high-intensity focused ultrasound (HIFU)-induced lesion size using the echo amplitude from the focus in tissue | |
Webb | MR‐monitored focused ultrasound using the acoustic‐coupling water bath as an intrinsic high‐mode dielectric resonator | |
Chaplin | Precision and Selectivity: New Techniques in Image Guided Focused Ultrasound | |
Rata | Endocavitary applicator of therapeutic ultrasound integrated with RF receiver coil for high resolution MRI-controlled thermal therapy | |
JPH06261885A (en) | Magnetic resonance video device provided with medical treatment mechanism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14714672 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016505772 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14781717 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2014714672 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014714672 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2015146980 Country of ref document: RU Kind code of ref document: A |