WO2014158185A1 - Tire uniformity improvement using estimates based on convolution/deconvolution - Google Patents
Tire uniformity improvement using estimates based on convolution/deconvolution Download PDFInfo
- Publication number
- WO2014158185A1 WO2014158185A1 PCT/US2013/034600 US2013034600W WO2014158185A1 WO 2014158185 A1 WO2014158185 A1 WO 2014158185A1 US 2013034600 W US2013034600 W US 2013034600W WO 2014158185 A1 WO2014158185 A1 WO 2014158185A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tire
- radial
- parameter
- measured
- run out
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M17/00—Testing of vehicles
- G01M17/007—Wheeled or endless-tracked vehicles
- G01M17/02—Tyres
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
Definitions
- the present disclosure relates generally to systems and methods for improving tire uniformity, and more particularly to systems and methods for improving tire uniformity based on the use of convolution/deconvolution-based estimates of uniformity parameters.
- Tire non-uniformity relates to the symmetry (or lack of symmetry) relative to the tire's axis of rotation in certain quantifiable characteristics of a tire.
- Tire uniformity parameters are generally categorized as dimensional or geometric variations (radial run out and lateral run out), mass variance, and rolling force variations (radial force variation, lateral force variation and tangential force variation, sometimes also called longitudinal or fore and aft force variation).
- correction procedures can be performed to account for some of the uniformities by making adjustments to the manufacturing process. Additional correction procedures can be performed to address non-uniformities of a cured tire including, but not limited to, the addition and/or removal of material to a cured tire and/or deformation of a cured tire.
- Force variation parameters of a tire can be attributable not only to the geometric variations (e.g. radial run out) of the tire but also to variations in tire stiffness.
- only certain tire uniformity parameter measurements may be available for a tire. For instance, radial run out measurements may be available for a tire but radial force variation measurements may not be available.
- One exemplary aspect of the present disclosure is directed to a method for improving the uniformity of a tire.
- the method includes obtaining a measured radial uniformity parameter (e.g. measured radial run out or measured radial force variation) for a plurality of measurement points about a tire.
- the method further includes accessing a model correlating radial run out of the tire with radial force variation of the tire and determining, with a computing device, an estimated radial uniformity parameter (e.g. estimated radial run out or estimated radial force) for at least one discrete measurement point for the tire using the model.
- a measured radial uniformity parameter e.g. measured radial run out or measured radial force variation
- the estimated radial uniformity parameter for the at least one discrete measurement point can be determined based at least in part on the measured radial uniformity parameter for one or more measurement points (e.g. along a center track or along a plurality of tracks) proximate to the discrete measurement point on the tire.
- the measured radial uniformity parameter for one or more measurement points e.g. along a center track or along a plurality of tracks
- the one or more measurement points proximate to the discrete measurement point can be identified based on a contact patch length of the tire.
- the system includes a measurement machine configured to acquire a measured radial uniformity parameter for a plurality of measurement points about a tire.
- the system further includes a computing device coupled to the measurement machine.
- the computing device can be configured to access a model correlating radial run out of the tire with radial force variation of the tire and to determine an estimated radial uniformity parameter for at least one discrete measurement point for the tire using the model.
- the estimated uniformity parameter for the at least one discrete measurement point is determined based at least in part on the measured radial uniformity parameter for one or more measurement points proximate to the discrete measurement point on the tire.
- Yet another exemplary aspect of the present disclosure is directed to a method for generating a model correlating a measured radial uniformity parameter of a tire with an estimated radial uniformity parameter of the tire.
- the method includes obtaining measured radial run out data for one or more test tires in a set of test tires and obtaining measured radial force variation data for the one or more test tires in the set of test tires.
- the method further includes modeling the estimated radial uniformity parameter for at least one discrete measurement point for the tire as a weighted sum of the measured radial uniformity parameter at one or more measurement points proximate to the discrete measurement point.
- the method further includes estimating, with a computing device, one or more coefficients for the weighted sum based on the measured radial run out data and the measured radial force variation data.
- FIGS. 1 and 2 provide a simplified graphical representation of the transformation of radial run out into radial force variation through action of the contact patch of a tire
- FIG. 3 depicts a flow diagram of an exemplary method for generating a model correlating radial run out and radial force variation of a tire according to an exemplary embodiment of the present disclosure
- FIG. 4 depicts a representation of a plurality of measurement points proximate to a discrete measurement point along a center track of a tire
- FIG. 5 depicts a representation of a plurality of measurement points proximate to a discrete measurement point along a plurality of tracks of a tire
- FIG. 6 depicts a flow diagram of an exemplary method for improving the uniformity of a tire based on convolution-based estimated radial force variation of a tire determined using measured radial run out according to an exemplary embodiment of the present disclosure
- FIG. 7 depicts a flow diagram of an exemplary method for improving the uniformity of a tire based on deconvolution-based estimated radial run out of a tire determined using measured radial force variation according to an exemplary embodiment of the present disclosure
- FIG. 8 depicts a block diagram of an exemplary system according to an exemplary embodiment of the present disclosure.
- a first type of radial uniformity parameter of a tire can be estimated from a measured second type of radial uniformity parameter of the tire.
- the second type of radial uniformity parameter can be a different type of radial uniformity parameter than the first type of radial uniformity parameter.
- a radial uniformity parameter of a tire is a uniformity parameter associated with the radial direction of the tire, such as a radial run out parameter or a radial force variation parameter for the tire.
- Radial run out is a uniformity parameter directed to the physical out of roundness or geometrical non- uniformity in the radial direction of a tire.
- Radial force variation (RFV) is a uniformity parameter directed to variations in force reacting in the radial direction on a surface in contact with the tire.
- the radial run out of a tire can be transformed through action of the contact patch into radial force variation.
- aspects of the present disclosure are directed to translating between radial run out of a tire and radial force variation of a tire.
- convolution can be used to estimate radial force variation from one or more uniformity parameter measurements, including radial run out parameter measurements.
- Deconvolution can be used to estimate radial run out from one or more uniformity parameter measurements, including radial force variation parameter measurements.
- the estimated radial uniformity parameter can be estimated from the measured radial uniformity parameter using one or more models.
- the one or more models can represent an estimated radial uniformity parameter at a discrete measurement point as a weighted sum of the measured radial uniformity parameter at the discrete measurement point and one or more selected measurement points proximate the discrete measurement point.
- the selected measurement points proximate to the discrete measurement point can be selected based on the contact patch length of the tire to provide an approximation of the transformation of radial run out to radial force variation through action of the contact patch.
- the one or more models can be generated by obtaining measured radial run out data and measured radial force variation data for a set of one or more test tires and estimating coefficients for the weighted sum using a regression analysis (e.g. multiple linear regression, Bayesian regression, etc.) or a programming analysis (e.g. a linear programming analysis) based on the measured data.
- a regression analysis e.g. multiple linear regression, Bayesian regression, etc.
- a programming analysis e.g. a linear programming analysis
- the estimated radial uniformity parameter can be used for a variety of purposes to improve tire uniformity.
- an estimated radial force variation parameter can be used to replace radial force variation measurements used for tire grading/sorting.
- An estimated radial force variation parameter can also be used, for instance, to replace radial force variation measurements used in dynamic tire uniformity compensation processes, such as green tire correction processes, and can also be used to supplement measured radial force variation used in signature analysis studies.
- An estimated radial run out parameter can be used, for instance, to track joint formation, and/or to replace or supplement radial run out measurements typically used in process harmonic detection.
- An estimated radial force variation parameter can also be used to assess the stiffness of a tire.
- the radial force variation of a tire can be attributable not only to radial run out through action of the contact patch, but can also be attributable to variations in stiffness of the tire. Any differences in a measured radial force variation and an estimated radial force variation determined according to aspects of the present disclosure can provide an indication of the portion of radial force variation attributable to stiffness. In this manner, an estimated radial force variation for a tire can be compared to a measured radial force variation for the tire to assess the stiffness of the tire.
- FIGS. 1 and 2 provide a simplified representation of a tire to explain the transformation of radial run out through action of the contact patch to radial force variation.
- FIG. 1 illustrates an exemplary tire 20 having radial run out at point 25.
- the tire 20 rolls on a surface 40.
- the contact patch 30 is the portion of the tire 20 in contact with the surface 40.
- the contact patch 30 has a length L.
- the length L of the contact patch 30 can be dependent on factors such as section width, aspect ratio, seat size, inflation pressure, and load of the tire 20.
- Radial force 28 acts on the tire 20 along the radial direction (i.e. along the x-axis) in response to the tire 20 rolling on the surface 40.
- FIG. 1 illustrates an exemplary tire 20 having radial run out at point 25.
- the tire 20 rolls on a surface 40.
- the contact patch 30 is the portion of the tire 20 in contact with the surface 40.
- the contact patch 30 has a length L.
- the radial run out at point 25 is outside the contact patch 30. As such, the radial run out at point 25 does not contribute to the radial force 28 on the tire 20.
- the radial force 28 on the tire 20 can result from compression of the tire 20 at the contact patch 30 and factors such as stiffness of the tire 20.
- the tire 20 has rolled such that radial run out at point 25 is passing through the contact patch 30 of the tire 20.
- the radial run out will be compressed (in addition to the nominal deformation due to loading) and radial force 38 will be created.
- the radial force 38 can result at least in part from compression of the radial run out at point 25 as it passes through the contact patch 30.
- the radial force 38 for the tire 20 as the radial run out at point 25 passes through the contact patch 30 can be greater than the radial force 28 for the tire 20 when the radial run out 25 is not passing through the contact patch 30.
- radial run out contributes to radial force variation of the tire through action of the contact patch.
- one or more models can be generated correlating radial run out and radial force variation of the tire based on the transformation of radial run out to radial force variation through action of the contact patch.
- the one or more models can be used to estimate radial uniformity parameters from measured radial uniformity parameters.
- an estimated radial uniformity parameter at a discrete measurement point can be determined based on a weighted sum of measured radial uniformity parameters at selected measurement points proximate the discrete measurement point, such as measurement points that fall within the contact patch length of the tire relative to the discrete measurement point.
- FIG. 3 depicts a flow diagram of an exemplary method (300) for generating a model correlating a measured radial uniformity parameter of a tire with an estimated radial uniformity parameter of the tire.
- the method (300) depicts steps performed in a particular order for purposes of illustration and discussion.
- steps of any of the methods disclosed herein can be adapted, omitted, rearranged, and/or modified in various ways.
- the method includes identifying a set of test tires.
- the set of test tires can include a plurality of tires of the same or similar tire construction.
- the set of test tires can include any number of tires suitable for generating a model correlating a measured radial uniformity parameter of a tire with an estimated radial uniformity parameter of the tire according to aspects of the present disclosure.
- the set of test tires can include a set of 2 to 10 test tires.
- the method includes obtaining measured radial run out data for one or more test tires in the set of test tires.
- obtaining data can include measuring the data, for instance, using a uniformity measurement machine or other suitable device and/or can include accessing previously measured or acquired data stored, for instance, in a memory of a computing device.
- the radial run out data can include a radial run out waveform measured for each test tire in the set of test tires.
- the radial run out waveform can provide a measured radial run out parameter (e.g. measured radial run out) of the test tire for a plurality of measurement points at spaced angular locations about the circumference of the test tire (e.g. 128, 256, 512 or other suitable number measurement points).
- the method includes obtaining measured radial force variation data for one or more test tires in the set of test tires.
- the radial force variation data can include a radial force variation waveform measured for each test tire in the set of test tires.
- the radial force variation waveform can provide a measured radial force variation parameter (e.g. measured radial force) of the test tire for a plurality of measurement points at spaced angular locations about the circumference of the test tire.
- the radial force variation data can be obtained for rotation of the tire in both the clockwise and counterclockwise direction.
- the radial force variation data can also include various derived measures, such as an average radial force variation determined based on measured radial force variation for both clockwise and counterclockwise rotation of the tire.
- the radial run out data and the radial force variation data for the set of test tires is standardized for purposes of determining the model.
- Standardization can be performed by subtracting a mean from each data point in the radial run out data and the radial force variation and dividing each data point by the standard deviation of the data to center data at zero and account for any measurement offsets.
- the model is generated by modeling the estimated radial uniformity parameter as a weighted sum of a measured radial uniformity parameter at the discrete measurement point and one or more measurement points proximate to the discrete measurement point.
- the one or more measurement points proximate the discrete measurement point used in the model can be selected based on the contact patch length associated with the test tires so that the model provides a good approximation of the transformation of radial run out to radial force variation through action of the contact patch.
- One exemplary model that can be generated according to exemplary aspects of the present disclosure is a convolution model correlating an estimated radial force variation parameter at a discrete measurement point with the radial run out parameters at a plurality of measurement points along a center track of the tire. This particular convolution model can be more readily understood with reference to FIG. 4 of the present disclosure.
- FIG. 4 depicts a portion of tire 20.
- the radial run out data can provide a plurality of radial run out measurements for measurement points along a center track 120 of the tire 20.
- the convolution model can represent an estimated radial force variation parameter at a discrete measurement point 100 as a weighted sum of the measured radial run out parameter at the discrete measurement point 100 in addition to the measured radial run out parameter at one or more measurement points 1 10 proximate to the discrete measurement point 100.
- the measurement points 1 10 are selected to provide an approximation of the measurement points within the contact patch length L of the tire relative to the discrete measurement point 100.
- One or more of the measurement points 1 10 can be used in the convolution model. For instance, in one
- all measurement points 110 can be used in the convolution model.
- selected of the measurement points 110 such as the outer measurement points (i.e. the measurement points 110 the furthest distance away from the discrete measurement point 100) can be used in the convolution model.
- the convolution model according to this exemplary embodiment can be represented as follows:
- This convolution model represents radial force variation rv at a discrete measurement point i as a weighted sum of measured radial run out frc at each measurement point i+k proximate to and including the discrete measurement point.
- Oi+k represents coefficients associated with measurement points i+k used in the weighted sum.
- k can range from -j to j depending on the particular tire construction. The size of/ ' can be based on the contact patch length of the tire.
- j is equal to 3 such that measured radial run out associated with 7 measurement points is used to estimate radial force variation at the discrete measurement point. It has been discovered that 7 measurement points can provide a good approximation of the contact patch length for certain tires when 128 equally spaced measurement points are provided about the tire. More or fewer measurement points can be used without deviating from the scope of the present disclosure.
- Another exemplary model that can be generated according to exemplary aspects of the present disclosure is a convolution model correlating an estimated radial force variation at a discrete measurement point with radial run out at a plurality of measurement points along a plurality of tracks of the tire.
- the use of a plurality of tracks of radial run out measurements can increase the accuracy of the convolution model.
- a convolution model generated based on radial run out data for a plurality of tracks can be more readily understood with reference to FIG. 5 of the present disclosure.
- FIG. 5 depicts a portion of tire 20.
- Radial run out data can provide a plurality of radial run out measurements along a center track 120 of the tire 20.
- the radial run out data can also provide a plurality of radial run out measurements along additional tracks of the tire 20, such as along tracks 122 and 124 of the tire 20.
- the convolution model can represent an estimated radial force variation parameter at a discrete measurement point 100 as a weighted sum of the measured radial run out at the discrete measurement point 100 in addition to one or more measurement points 110 along the plurality of tracks 120, 122, and 124 proximate to the discrete measurement point 100.
- the measurement points 1 10 proximate to the discrete measurement point are selected to provide an approximation of the measurement points within the contact patch length L of the tire relative to the discrete
- measurement point 100 One or more of the measurement points 1 10 can be used in the convolution model. For instance, in one implementation, all measurement points 110 can be used in the convolution model. In another implementation, selected of the measurement points 110 can be used in the convolution model.
- a convolution model involving a plurality of radial run out tracks can be represented as follows:
- This convolution model represents radial force variation rv at a discrete measurement point i as a weighted sum of measured radial run out frc at each measurement point i+k for n tracks proximate to and including the discrete measurement point.
- a i+i t represents coefficients associated with measurement points i+k for each of the n tracks used in the weighted sum.
- k can range from -j to j depending on the particular tire construction.
- This exemplary model represents radial force variation rv at a discrete measurement point i as a weighted sum of measured radial run out frc at each measurement point i+k for a center track, measured radial run out frt at each measurement point i+k, for a top track, and measured radial run out frb at each measurement point i+k for a bottom track.
- ⁇ 3 ⁇ 4 +/ t represents coefficients associated with measurement points i+k for the center track.
- X i+ k represents coefficients associated with measurement points i+k for the top track.
- y i+ k represents coefficients associated with measurement points i+k for the bottom track, k can range from -j to j depending on the particular tire construction. The size of j can be based on the contact patch length of the tire.
- Yet another exemplary model can be a deconvolution model correlating an estimated radial run out parameter at a discrete measurement point along a center track with measured radial force variation.
- the deconvolution model can also be understood with reference to FIG. 4 of the present disclosure.
- the radial force variation data can provide a plurality of radial force measurements for the tire 20.
- the deconvolution model can estimate radial run out at a discrete measurement point 100 along a center track 120 of the tire 20 as a weighted sum of the measured radial force variation at the discrete measurement point 100 in addition to one or more measurement points 1 10 proximate to the discrete measurement point 100.
- the deconvolution model can be represented as follows:
- This deconvolution model represents radial run out frc at a discrete measurement point i along a center track of a tire as a weighted sum of measured radial force variation vr at each measurement point i+k proximate to and including the discrete measurement point. represents coefficients associated with measurement points i+k used in the weighted sum. k can range from -j to j depending on the particular tire construction.
- the coefficients associated with the one or more models need to be estimated using the measured radial run out data and the measured radial force variation data.
- the measured radial run out data and the measured radial force variation data can be substituted into the model.
- the coefficients provided by the model can then be estimated based on the data.
- Constant coefficients can be estimated based on measured data for all sectors (each discrete measurement point) of the test tires in the set of test tires.
- the coefficients can be estimated using any suitable technique, such as a regression technique or a programming technique.
- the coefficients can be estimated using multiple linear regression. Multiple linear regression can estimate a unique set of coefficients that minimizes the sum of the squared errors between the estimated radial uniformity parameter and the measured radial uniformity parameter data. In the multiple linear regression approach, the estimated coefficients are essentially unconstrained and estimates can sometimes not meet physical expectations. The solution can come directly from a matrix equation.
- the coefficients can be estimated using Bayesian regression.
- Bayesian regression also minimizes the sum of the squared errors but it does so by maximizing the posterior probability that the model is correct given the observed data. This requires that a prior probability that the model is correct be provided. This addition allows for the conditioning of the final estimated coefficients to be more physically realistic.
- the solution can either come directly from a matrix equation or from an iterative search.
- the prior probability can be used to condition the results but it is not an absolute constraint on the final estimates of the coefficients. For example a suitable prior probability might condition the estimates to be lower at the edges of the contact patch and higher in the center.
- a linear programming approach can be used to implement an LI optimization that minimizes the sum of the absolute errors.
- This approach can provide for constraining the estimates to match physical expectations in an explicit manner. For instance, the coefficients can be expected to be smaller for measurement points proximate the edges of the contact patch than at the center. The coefficient pattern can also be expected to be reasonably symmetric around the center of the contact patch.
- the final solution under this approach can be the optimal set of coefficients that both meet the constraints and minimize the sum of the absolute errors.
- This approach can be particularly suitable for estimating coefficients for convolution/deconvolution models because of the ability to force the estimates of the coefficients to meet physical expectations.
- the models can be accessed and used to determine an estimated radial uniformity parameter for the tire.
- a convolution model can be used to estimate radial force variation from radial run out measurements.
- a deconvolution model can be used to estimate radial run out from radial force variation
- the estimated radial uniformity parameter(s) can then be used in a variety of manners to improve the uniformity of a tire.
- FIG. 6 depicts a flow diagram of an exemplary method (400) of improving the uniformity of a tire using convolution-based estimated radial force variation of a tire determined using measured radial run out according to an exemplary embodiment of the present disclosure.
- the method includes obtaining a measured radial run out parameter for a plurality of measurement points about a tire.
- obtaining a uniformity parameter can include measuring the uniformity parameter using a uniformity measurement machine or other suitable measurement machine and/or can include accessing previously measured uniformity parameters stored, for instance, in a memory.
- the measured radial run out parameter can include or be a part of a measured radial run out waveform for a plurality of points (e.g.
- the method includes accessing a model correlating radial force variation with the radial run out of the tire.
- Accessing the model can include accessing a model stored in a memory of a computing device.
- the model can be a convolution model correlating radial force variation of a tire with measured radial run out.
- the model can be a convolution model correlating estimated radial force variation with radial run out measured for a center track of the tire or with radial run out measured for a plurality of tracks about the tire.
- the estimated radial force variation parameter is determined for one or more discrete measurement points on the tire using the model.
- the measured radial run out for the discrete measurement point and/or one or more measurement points proximate the discrete measurement point are substituted into convolution model.
- the estimated radial force variation parameter at the discrete measurement is then calculated from the measured radial run out using the convolution model. This process can be repeated for each discrete measurement point to generate an estimated radial force variation waveform for the tire.
- measured radial run out parameters for the discrete measurement 100 and the measurement points 110 proximate the discrete measurement point along the center track 120 of the tire 20 are substituted into the convolution model represented by equation (1) above.
- the estimated radial force variation parameter for the discrete measurement point 100 is then calculated using the convolution model represented by equation (1).
- measured radial run out parameters for the discrete measurement point 100 and the measurement points 110 along the plurality of tracks 120, 122, and 125 can be substituted into the convolution model represented by equation (3) above.
- the estimated radial force variation parameter for the discrete measurement point 100 is then calculated using the convolution model represented by equation (3).
- the estimated radial force variation parameter calculated using radial run out measured for a plurality of tracks can more closely approximate the actual radial force variation at the discrete measurement point.
- the estimated radial force variation parameter can be used to improve uniformity of the tire.
- the method can include sorting or grading the tire based on the estimated radial force variation parameter.
- the method can include modifying tire manufacture based on the estimated radial force variation parameter. For example, correction techniques can be performed (e.g. addition or removal of tire material) on the tire to reduce the estimated radial force variation.
- the estimated radial force variation can be used as part of a uniformity compensation method such as signature analysis or as part of a green tire correction process.
- the estimated radial force variation parameter can also be used to assess the stiffness of the tire.
- the stiffness of the tire would be the radial force variation that is not dependent on radial run out.
- the method can include obtaining a measured radial force variation parameter for the one or more discrete measurement points (412).
- the estimated radial force variation parameter is then compared with the measured radial force variation at the one or more discrete measurement points to assess tire stiffness (414). For instance, any differences between the measured and estimated radial force variation can provide an indication of the amount of radial force at the one or more discrete measurement points is attributable to tire stiffness.
- FIG. 7 depicts a flow diagram of an exemplary method (500) for improving tire uniformity using a deconvolution-based estimated radial run out parameter of a tire determined using measured radial force variation according to an exemplary embodiment of the present disclosure.
- the method includes obtaining a measured radial force variation parameter for a plurality of measurement points about a tire.
- the method includes accessing a model correlating radial force variation with the radial run out of the tire.
- the model can be a deconvolution model correlating radial run out of a tire with measured radial force variation.
- the estimated radial run out parameter is determined for one or more discrete measurement points on the tire using the model.
- the measured radial force variation for the discrete measurement point and/or one or more measurement points proximate the discrete measurement point are substituted into deconvolution model.
- the estimated radial run out parameter at the discrete measurement is then calculated from the measured radial force variation using the deconvolution model.
- measured radial force variation parameters for the discrete measurement 100 and the measurement points 110 proximate the discrete measurement point are substituted into the deconvolution model represented by equation (4) above.
- the estimated radial run out parameter for the discrete measurement point 100 is then calculated using the deconvolution model represented by equation (4). This process can be repeated for a plurality of discrete measurement point about the circumference of the tire to generate an estimated radial run out waveform for the tire.
- the estimated radial run out parameter can be used to assess and/or improve uniformity of the tire. For instance, at (508) of FIG. 7, the method can include sorting or grading the tire based on the estimated radial run out parameter. At (510), the method can include modifying tire manufacture based on the estimated radial run out parameter. For example, correction techniques can be performed (e.g. addition or removal of tire material) on the tire to reduce the estimated radial run out. As another example, the estimated radial run out can be used as part of a signature analysis, joint tracking, and/or process harmonic detection.
- An exemplary tire 600 is constructed in accordance with a plurality of respective manufacturing processes.
- Such tire building processes may, for example, include applying various layers of rubber compound and/or other suitable materials to form the tire carcass, providing a tire belt portion and a tread portion to form the tire summit block, positioning a green tire in a curing mold, and curing the finished green tire, etc.
- Such respective process elements are represented as 602a, 602b,..., 602n in FIG. 8 and combine to form exemplary tire 600. It should be appreciated that a batch of multiple tires can be constructed from one iteration of the various processes 602a through 602n.
- a measurement machine 604 is provided to obtain the various uniformity measurements.
- a measurement machine can include such features as a mounting fixture on which a tire is mounted and rotated centrifugally at one or more speeds.
- laser sensors are employed to operate by contact, non-contact or near contact positioning relative to tire 600 in order to determine the relative position of the tire surface at multiple data points (e.g., 128 points) as it rotates about a center line.
- the measurement machine can also include a road wheel used to load the tire to obtain force measurements as the tire is rotated in the measurement machine 604.
- the measurements obtained by measurement machine 604 can be relayed such that they are received at one or more computing devices 606, which may respectively contain one or more processors 608, although only one computer and processor are shown in FIG. 8 for ease and clarity of illustration.
- Processor(s) 608 may be configured to receive input data from input device 614 or data that is stored in memory 612.
- Processor(s) 608, can then analyze such measurements in accordance with the disclosed methods, and provide useable output such as data to a user via output device 616 or signals to a process controller 618.
- Uniformity analysis may alternatively be implemented by one or more servers 610 or across multiple computing and processing devices.
- Various memory/media elements 612a, 612b, 612c may be provided as a single or multiple portions of one or more varieties of computer- readable media, including, but not limited to, non-transitory computer-readable media, RAM, ROM, hard drives, flash drives, optical media, magnetic media or other memory devices.
- the computing/processing devices of FIG. 8 may be adapted to function as a special-purpose machine providing desired functionality by accessing software instructions rendered in a computer-readable form stored in one or more of the memory/media elements.
- any suitable programming, scripting, or other type of language or combinations of languages may be used to implement the teachings contained herein. Example
- Radial run out data for a center track as well as radial run out data for three tracks were obtained for a set of test four tires. Radial force variation data were obtained for the set of test tires.
- a first convolution model was generating in accordance with aspects of the present disclosure using the radial force variation data and the radial run out data for the center track.
- a second convolution model was generated in accordance with aspects of the present disclosure using the radial force variation data and the radial run out data for three tracks. Coefficients for the first and second convolution models were estimated using a regression analysis. Table 1 below compares the R 2 values (coefficient of determination) and the RSME values (Root Mean Squared Error) of the first convolution model and the second convolution model.
- the convolution model generated based on the center track radial run out data provides a good model correlating radial force variation and radial run out.
- use of three track radial run out data can improve the accuracy of the model significantly.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Geometry (AREA)
- Evolutionary Computation (AREA)
- Computer Hardware Design (AREA)
- Tires In General (AREA)
- Testing Of Balance (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157026401A KR20150121180A (en) | 2013-03-29 | 2013-03-29 | Tire uniformity improvement using estimates based on convolution/deconvolution |
CA2901724A CA2901724C (en) | 2013-03-29 | 2013-03-29 | Tire uniformity improvement using estimates based on convolution/deconvolution |
CN201380074465.5A CN105143845B (en) | 2013-03-29 | 2013-03-29 | Improved using the tyre evenness of the assessment based on convolution/deconvolution |
US14/768,044 US20150377742A1 (en) | 2013-03-29 | 2013-03-29 | Tire uniformity improvement using estimates based on convolution/deconvolution |
EP13880135.2A EP2979074B1 (en) | 2013-03-29 | 2013-03-29 | Tire uniformity estimation using estimates based on convolution/deconvolution |
PCT/US2013/034600 WO2014158185A1 (en) | 2013-03-29 | 2013-03-29 | Tire uniformity improvement using estimates based on convolution/deconvolution |
KR1020187002572A KR101934690B1 (en) | 2013-03-29 | 2013-03-29 | Tire uniformity improvement using estimates based on convolution/deconvolution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2013/034600 WO2014158185A1 (en) | 2013-03-29 | 2013-03-29 | Tire uniformity improvement using estimates based on convolution/deconvolution |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014158185A1 true WO2014158185A1 (en) | 2014-10-02 |
Family
ID=51624964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/034600 WO2014158185A1 (en) | 2013-03-29 | 2013-03-29 | Tire uniformity improvement using estimates based on convolution/deconvolution |
Country Status (6)
Country | Link |
---|---|
US (1) | US20150377742A1 (en) |
EP (1) | EP2979074B1 (en) |
KR (2) | KR20150121180A (en) |
CN (1) | CN105143845B (en) |
CA (1) | CA2901724C (en) |
WO (1) | WO2014158185A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109635389B (en) * | 2018-11-29 | 2022-12-20 | 中国航空工业集团公司沈阳飞机设计研究所 | Rigidity test data processing method for electric steering engine |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5421197A (en) * | 1992-11-12 | 1995-06-06 | Hofmann Maschinenbau Gmbh | Method of measuring irregularities of a pneumatic tire |
US20050262933A1 (en) * | 2004-05-26 | 2005-12-01 | Fang Zhu | Tire uniformity through compensation between radial run out and stiffness variation |
US20070144657A1 (en) * | 2005-12-28 | 2007-06-28 | Julien Flament | Green tire evolution for high speed uniformity |
US20110246128A1 (en) * | 2008-12-19 | 2011-10-06 | Verner Steve Nicholson | Filtering method for improving the data quality of geometric tire measurements |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6139401A (en) * | 1996-10-15 | 2000-10-31 | The Goodyear Tire & Rubber Company | Method of correcting the imbalance of a pneumatic tire with a tire uniformity machine |
DE19744725A1 (en) * | 1997-10-10 | 1999-04-15 | Itt Mfg Enterprises Inc | Method to determine variable characteristics, which define motor vehicle behavior |
ES2410534T3 (en) * | 2001-10-11 | 2013-07-02 | Bridgestone Corporation | Radial force variation prediction method |
CN101287589B (en) * | 2004-11-19 | 2015-07-01 | 米其林集团总公司 | Tire manufacturing method for improving the uniformity of a tire |
JP4716365B2 (en) * | 2005-10-17 | 2011-07-06 | 東洋ゴム工業株式会社 | Method and apparatus for inspecting pneumatic tire during production |
EP2580567B1 (en) * | 2010-06-14 | 2019-05-29 | Compagnie Générale des Etablissements Michelin | Method for prediction and control of harmonic components of tire uniformity parameters |
US8978458B2 (en) * | 2010-06-30 | 2015-03-17 | Michelin Recherche Et Technique S.A. | Tire uniformity through identification of process effects using singlet tire regression analysis |
WO2012074527A1 (en) * | 2010-12-02 | 2012-06-07 | Michelin Recherche Et Technique, S.A. | Method for prediction and control of tire uniformity parameters from crown thickness variation |
-
2013
- 2013-03-29 WO PCT/US2013/034600 patent/WO2014158185A1/en active Application Filing
- 2013-03-29 KR KR1020157026401A patent/KR20150121180A/en active Search and Examination
- 2013-03-29 KR KR1020187002572A patent/KR101934690B1/en active IP Right Grant
- 2013-03-29 EP EP13880135.2A patent/EP2979074B1/en active Active
- 2013-03-29 US US14/768,044 patent/US20150377742A1/en not_active Abandoned
- 2013-03-29 CA CA2901724A patent/CA2901724C/en not_active Expired - Fee Related
- 2013-03-29 CN CN201380074465.5A patent/CN105143845B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5421197A (en) * | 1992-11-12 | 1995-06-06 | Hofmann Maschinenbau Gmbh | Method of measuring irregularities of a pneumatic tire |
US20050262933A1 (en) * | 2004-05-26 | 2005-12-01 | Fang Zhu | Tire uniformity through compensation between radial run out and stiffness variation |
US20070144657A1 (en) * | 2005-12-28 | 2007-06-28 | Julien Flament | Green tire evolution for high speed uniformity |
US20110246128A1 (en) * | 2008-12-19 | 2011-10-06 | Verner Steve Nicholson | Filtering method for improving the data quality of geometric tire measurements |
Non-Patent Citations (2)
Title |
---|
PARKER ET AL.: "Tire Uniformity Tester for Automotive Service Industry.", 2000, XP055281818, Retrieved from the Internet <URL:http://www.gsp9700.com/technical/4693t/4693t.htm> [retrieved on 20130617] * |
SCHWARZ ET AL.: "Developing a Learning Progression for Scientific Modeling: Making Scientific Modeling Accessible and Meaningful for Learners.", JOURNAL OF RESEARCH IN SCIENCE TEACHING., vol. 46, 2009, pages 632 - 654, XP055279586, Retrieved from the Internet <URL:http://deepblue.lib.umich.edu/bitstream/handle/2027.42/63556/20311_ftp.pdf?sequence=1> [retrieved on 20130617] * |
Also Published As
Publication number | Publication date |
---|---|
KR101934690B1 (en) | 2019-01-04 |
KR20150121180A (en) | 2015-10-28 |
CN105143845B (en) | 2018-01-30 |
EP2979074A4 (en) | 2016-11-23 |
CN105143845A (en) | 2015-12-09 |
EP2979074B1 (en) | 2019-07-17 |
KR20180014215A (en) | 2018-02-07 |
CA2901724A1 (en) | 2014-10-02 |
CA2901724C (en) | 2020-06-02 |
US20150377742A1 (en) | 2015-12-31 |
EP2979074A1 (en) | 2016-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2979075B1 (en) | Tire uniformity improvement using estimates based on convolution/deconvolution with measured lateral force variation | |
EP2838714B1 (en) | Uniformity improvement through discrete effect identification | |
US10247640B2 (en) | Tire uniformity improvement through identification of measurement process harmonics using multiple revolutions in a uniformity measurement machine | |
US10279636B2 (en) | Uniformity of a tire using tooling signature analysis | |
CA2901724C (en) | Tire uniformity improvement using estimates based on convolution/deconvolution | |
EP3175214B1 (en) | Tire uniformity improvement through identification of measurement process harmonics | |
US10260993B2 (en) | Tire uniformity improvement through identification of a composite uniformity parameter using Weibull distributions | |
US10514321B2 (en) | Tire uniformity through identification of process effects using regression analysis without azimuth data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380074465.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13880135 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2901724 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013880135 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20157026401 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |