WO2014157081A1 - Retarder, circular polarizer, and 3d-image display device - Google Patents

Retarder, circular polarizer, and 3d-image display device Download PDF

Info

Publication number
WO2014157081A1
WO2014157081A1 PCT/JP2014/058077 JP2014058077W WO2014157081A1 WO 2014157081 A1 WO2014157081 A1 WO 2014157081A1 JP 2014058077 W JP2014058077 W JP 2014058077W WO 2014157081 A1 WO2014157081 A1 WO 2014157081A1
Authority
WO
WIPO (PCT)
Prior art keywords
anisotropic layer
optical anisotropic
pattern
pattern optical
liquid crystal
Prior art date
Application number
PCT/JP2014/058077
Other languages
French (fr)
Japanese (ja)
Inventor
市橋 光芳
齊藤 之人
佐藤 寛
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2014157081A1 publication Critical patent/WO2014157081A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133631Birefringent elements, e.g. for optical compensation with a spatial distribution of the retardation value

Definitions

  • the present invention relates to a retardation plate (optical film), and more particularly to a retardation plate having a patterned optical anisotropic layer containing a twisted liquid crystal compound. Moreover, this invention relates to the circularly-polarizing plate or 3D image display apparatus which has the said phase difference plate.
  • an optical device that converts linearly polarized light into circularly polarized light in order to prevent deterioration of display characteristics with respect to face rotation or to separate a right eye image and a left eye image.
  • a member may be used.
  • an optical member for example, a so-called ⁇ / 4 plate formed by using a liquid crystalline compound, or a pattern phase difference in which regions having different slow axes and retardations are regularly arranged in a plane.
  • a plate is used (see, for example, Patent Document 1).
  • an object of the present invention is to provide a phase difference plate in which coloring when a face is inclined is sufficiently suppressed when it is attached to a display device as a circularly polarizing plate.
  • Another object of the present invention is to provide a circularly polarizing plate and a 3D image display device having the retardation plate.
  • the present inventors have found that the above problem can be solved by using a patterned optically anisotropic layer containing a twisted liquid crystal compound. That is, it has been found that the above object can be achieved by the following configuration.
  • a pattern including a first phase difference region and a second phase difference region whose in-plane slow axis directions are different from each other, and the first phase difference region and the second phase difference region are alternately arranged in the plane.
  • a retardation plate having at least an optically anisotropic layer
  • the pattern optical anisotropic layer is a layer in which a first pattern optical anisotropic layer and a second pattern optical anisotropic layer are laminated, The in-plane slow axis on the surface opposite to the second pattern optical anisotropic layer side in the first retardation region of the first pattern optical anisotropic layer, and the second of the first pattern optical anisotropic layer
  • the in-plane slow axis on the surface opposite to the second pattern optically anisotropic layer side in the retardation region is orthogonal to the surface
  • the first pattern optical anisotropic layer and the second pattern optical anisotropic layer include a twist-aligned liquid crystal compound having a thickness direction as a helical axis, The twist
  • a circularly polarizing plate comprising at least a polarizing film and the retardation plate according to any one of (1) to (4), A polarizing film, a first patterned optically anisotropic layer, and a second patterned optically anisotropic layer in this order; An absorption axis of the polarizing film and an in-plane slow axis on the surface on the polarizing film side in one of the first retardation region and the second retardation region of the first patterned optically anisotropic layer A circularly polarizing plate that is parallel or orthogonal.
  • a retardation plate having at least an optically anisotropic layer The pattern optical anisotropic layer is a layer in which a first pattern optical anisotropic layer and a second pattern optical anisotropic layer are laminated, The in-plane slow axis on the surface opposite to the second pattern optical anisotropic layer side in the first retardation region of the first pattern optical anisotropic layer, and the second of the first pattern optical anisotropic layer The in-plane slow axis on the surface opposite to the second pattern optically anisotropic layer side in the retardation region is orthogonal to the surface,
  • the first pattern optical anisotropic layer and the second pattern optical anisotropic layer include a twist-aligned liquid crystal compound having a thickness direction as a helical axis, The twist direction of the liquid
  • phase difference plate according to (6) wherein the liquid crystal compound is a discotic liquid crystal compound or a rod-like liquid crystal compound.
  • a circularly polarizing plate comprising at least a polarizing film and the phase difference plate according to any one of (6) to (9), A polarizing film, a first patterned optically anisotropic layer, and a second patterned optically anisotropic layer in this order; An absorption axis of the polarizing film and an in-plane slow axis on the surface on the polarizing film side in one of the first retardation region and the second retardation region of the first patterned optically anisotropic layer A circularly polarizing plate that is parallel or orthogonal.
  • a display panel driven based on an image signal The retardation plate according to any one of (1) to (4) and (6) to (9) disposed on the viewing side of the display panel, or any of (5) and (10)
  • a 3D image display device having at least the circularly polarizing plate according to one.
  • the phase difference plate by which the coloring at the time of face inclination is fully suppressed can be provided.
  • the circularly-polarizing plate and 3D image display apparatus which have this phase difference plate can also be provided.
  • FIG. 1 It is a perspective sectional view of the 1st embodiment of the phase contrast plate of the present invention.
  • the figure which shows the relationship of each in-plane slow axis of the 1st pattern optical anisotropic layer 16a and the 2nd pattern optical anisotropic layer 18a in one aspect of the 1st embodiment of the phase difference plate of this invention.
  • (A) is a partially enlarged perspective sectional view of the retardation plate
  • (B) is a first pattern optical anisotropic in the first retardation region when observed from the direction of the arrow in FIG.
  • FIG. 1 is a partially enlarged perspective sectional view of the retardation plate
  • B is a first pattern optical anisotropic in the first retardation region when observed from the direction of the arrow in FIG.
  • It is the schematic which shows the relationship of the angle of the in-plane slow axis of the crystalline layer 16b and the 2nd pattern optically anisotropic layer 18b
  • C is the 2nd position when it observes from the direction of the arrow of (A) figure.
  • the absorption axis of the polarizing film 32 and the respective in-planes of the first pattern optical anisotropic layer 16a and the second pattern optical anisotropic layer 18a It is a figure showing requirements (a) with a slow axis, (A) is a partially enlarged perspective sectional view of a circularly polarizing plate, (B) when observed from the direction of the arrow in (A) figure, It is the schematic which shows the relationship of the angle of the in-plane slow axis of the 1st pattern optical anisotropic layer 16a and the in-plane slow axis of the 2nd pattern optical anisotropic layer 18a in a 1st phase difference area
  • region It is a figure showing requirements (a) with a slow axis, (A) is a partially enlarged perspective sectional view of a circularly polarizing plate, (B) when observed from the direction of the arrow in (A) figure, It is the schematic which shows the relationship of the angle of the in-plane slow axis
  • (C) is the in-plane slow axis of the first pattern optical anisotropic layer 16a and the second pattern optical anisotropy in the second retardation region when observed from the direction of the arrow in FIG. It is the schematic which shows the relationship of the angle with the in-plane slow axis of the layer 18a. It is an example of the schematic sectional drawing of the 2nd embodiment of the circularly-polarizing plate of this invention. It is an example of the schematic sectional drawing of the 3rd embodiment of the circularly-polarizing plate of this invention.
  • the absorption axis of the polarizing film 32 and the respective in-planes of the first pattern optical anisotropic layer 16b and the second pattern optical anisotropic layer 18b It is a figure showing requirements (b) with a slow axis, (A) is a partially enlarged perspective cross-sectional view of a circularly polarizing plate, (B) is when observed from the direction of the arrow in (A) Figure, It is the schematic which shows the relationship of the angle of the in-plane slow axis of the 1st pattern optical anisotropic layer 16b and the in-plane slow axis of the 2nd pattern optical anisotropic layer 18b in a 1st phase difference area
  • region It is the schematic which shows the relationship of the angle of the in-plane slow axis of the 1st pattern optical anisotropic layer 16b and the in-plane slow axis of the 2nd pattern optical anisotropic layer 18b in a 1st phase difference area
  • region It is the schematic which shows the
  • (C) is the in-plane slow axis of the first pattern optical anisotropic layer 16b and the second pattern optical anisotropy in the second retardation region when observed from the direction of the arrow in FIG. It is the schematic which shows the relationship of the angle with the in-plane slow axis of the layer 18b. It is an example of the schematic sectional drawing of the 4th embodiment of the circularly-polarizing plate of this invention.
  • Re ( ⁇ ) and Rth ( ⁇ ) represent in-plane retardation at wavelength ⁇ and retardation in the thickness direction, respectively.
  • Re ( ⁇ ), Rth ( ⁇ ), and ⁇ nd are measured by AXOSCAN (manufactured by AXOMETRICS).
  • visible light means 380 nm to 780 nm.
  • a measurement wavelength is 550 nm.
  • the angle relationship (for example, “orthogonal”, “parallel”, etc.) includes a range of errors allowed in the technical field to which the present invention belongs. Specifically, it means that the angle is within a range of strict angle ⁇ 10 °, and an error from the strict angle is preferably 5 ° or less, and more preferably 3 ° or less.
  • phase difference plate of this invention is explained in full detail.
  • a multilayer optically anisotropic layer having a patterned optically anisotropic layer containing a twisted liquid crystal compound is used as the patterned optically anisotropic layer.
  • a known level is obtained.
  • a wideband pattern phase difference plate capable of converting linearly polarized light with a wider wavelength into more complete circularly polarized light can be realized, and as a result, coloring when the face is inclined is suppressed.
  • a first optical anisotropy layer is formed on the alignment film, and then the first layer is formed.
  • An alignment film is formed again on the optical anisotropic layer, and then a second optical anisotropic layer is formed on the alignment film. That is, the alignment film needs to be prepared twice.
  • the liquid crystal compound in one optically anisotropic layer is twisted and oriented, so that the step of providing the orientation film can be performed once. More specifically, after forming the alignment film, forming a first pattern optical anisotropic layer containing a liquid crystal compound that twists and aligns on the alignment film, the surface on the exposed surface of the first pattern optical anisotropic layer The inner slow axis is rotated by a predetermined angle with respect to the in-plane slow axis on the surface on the side where the alignment film is present.
  • the exposure having a predetermined angle relationship with the in-plane slow axis on the surface on the side where the alignment film of the first pattern optical anisotropic layer is present Since the liquid crystal compound is aligned along the in-plane slow axis of the surface, it is possible to save the trouble of providing a separate alignment film.
  • FIG. 1 shows a schematic cross-sectional view of a first embodiment of a retardation plate of the present invention.
  • the retardation film 10a has at least a patterned optical anisotropic layer 14a.
  • the patterned optically anisotropic layer 14a has a structure in which the first retardation regions 20a and the second retardation regions 22a are alternately arranged in a stripe pattern in order.
  • the retardation plate 10a may include a transparent support described later.
  • the patterned optical anisotropic layer 14a is a layer formed by laminating the first patterned optical anisotropic layer 16a and the second patterned optical anisotropic layer 18a, and is formed on the first patterned optical anisotropic layer 16a. Includes a twist-aligned liquid crystal compound having a thickness direction as a helical axis. As shown in FIG. 1, the first retardation region 20a and the second retardation region 22a are intended to cover the entire area in the thickness direction of the patterned optical anisotropic layer 14a.
  • the first retardation region of the patterned optically anisotropic layer 16a means the region 24a in FIG.
  • the first retardation region of the second patterned optically anisotropic layer 18a means the region 26a in FIG.
  • the second retardation region of the first pattern optical anisotropic layer 16a means the region 28a in FIG. 1
  • the second retardation region of the second pattern optical anisotropic layer 18a in FIG. It means the region 30a.
  • the patterned optically anisotropic layer 14a includes a first retardation region 20a and a second retardation region 22a whose in-plane slow axis directions are different from each other, and the first retardation region 20a and the second retardation region 22a are They are arranged alternately in the plane.
  • FIG. 1 shows a mode in which the first phase difference region 20a and the second phase difference region 22a are arranged in a stripe shape, the present invention is not limited to this mode.
  • the patterned optical anisotropic layer 14a includes a first patterned optical anisotropic layer 16a and a second patterned optical anisotropic layer 18a.
  • FIG. 2 is a partially enlarged perspective sectional view of the first retardation region 20a and the second retardation region 22a in the patterned optical anisotropic layer 14a.
  • Arrows in the patterned optically anisotropic layer 16a represent in-plane slow axes in the respective layers.
  • the first pattern optically anisotropic layer 16a includes a twisted liquid crystal compound having a thickness direction as a helical axis.
  • the first patterned optically anisotropic layer 16a preferably exhibits a chiral nematic phase having a so-called spiral structure, a cholesteric phase, or the like.
  • the liquid crystal compound will be described in detail later.
  • As the liquid crystal compound used in the first pattern optical anisotropic layer 16a a liquid crystal compound exhibiting a nematic liquid crystal phase is preferably used.
  • the first pattern optical anisotropic layer 16a has a first retardation region and a second retardation region, as in a second pattern optical anisotropic layer 18a described later, and the liquid crystal compound contained in each region.
  • the twist directions of the same are the same. More specifically, as shown in FIG. 2B, the first phase difference region (region 24a) of the first pattern optical anisotropic layer 16a is opposite to the second pattern optical anisotropic layer 18a side.
  • the in-plane slow axis on the surface 161a on the side and the in-plane slow axis on the surface 162a on the second pattern optical anisotropic layer 18a side form a predetermined twist angle ⁇ 1Ax described later.
  • the in-plane slow axis rotates by a predetermined angle, and the twist direction of the liquid crystal compound is clockwise as shown by the arrow in FIG. Shows rotation (right twist).
  • the second retardation region (region 28a) of the first pattern optical anisotropic layer 16a as shown in FIG. 2C, the surface opposite to the second pattern optical anisotropic layer 18a side.
  • the in-plane slow axis at 161a and the in-plane slow axis at the surface 162a on the second pattern optical anisotropic layer 18a side form a predetermined twist angle ⁇ 1Ay described later.
  • the twist direction of the liquid crystal compound shows clockwise rotation (right twist). Note that the twist direction is observed from the white arrow in FIG. 2A, and the right direction is based on the in-plane slow axis on the front surface (surface 161a) in the first pattern optical anisotropic layer 16a. Judge the twist or the left twist.
  • the in-plane slow axis on the surface (161a) opposite to the second pattern optical anisotropic layer 18a side in the second retardation region of the one pattern optical anisotropic layer 16a is orthogonal.
  • the definition of orthogonal is as described above.
  • the twist angle of the liquid crystal compound (the twist angle in the alignment direction of the liquid crystal compound) is 26.5 ⁇ 10.0 °, and the tint when the retardation plate of the present invention is bonded to a display device as a circularly polarizing plate is displayed.
  • the point where the effect of the present invention is more excellent 26.5 ⁇ 8.0 ° is more preferable, and 26.5 ⁇ 6.0 ° is more preferable.
  • the twist angle is less than 16.5 ° and more than 36.5 °, the tint when the retardation plate of the present invention is bonded to a display device as a circularly polarizing plate is large.
  • the measuring method of a twist angle uses the Axoscan (polarimeter) apparatus of Axometrics, and measures it using the analysis software of the company.
  • the twisted orientation of the liquid crystal compound means that the liquid crystal compound from one main surface to the other main surface of the first pattern optical anisotropic layer 16a with the thickness direction of the first pattern optical anisotropic layer 16a as an axis. Intended to twist. Accordingly, the alignment direction (in-plane slow axis direction) of the liquid crystal compound varies depending on the position in the thickness direction of the first pattern optical anisotropic layer 16a.
  • the product ⁇ n1 ⁇ d1 of the refractive index anisotropy ⁇ n1 of the first pattern optical anisotropic layer 16a and the thickness d1 of the first pattern optical anisotropic layer 16a measured at a wavelength of 550 nm is expressed by the following formula (1). Fulfill. That is, the values of the products ⁇ n1 ⁇ d1 in the first retardation region (region 24a) and the second retardation region (region 28a) of the first patterned optically anisotropic layer 16a both satisfy the following formula (1). .
  • Formula (1) 252 nm ⁇ ⁇ n1 ⁇ d1 ⁇ 312 nm Especially, it is preferable to satisfy
  • Formula (1A) 262 nm ⁇ ⁇ n1 ⁇ d1 ⁇ 302 nm
  • Formula (1B) 272 nm ⁇ ⁇ n1 ⁇ d1 ⁇ 292 nm
  • ⁇ n1 ⁇ d1 is less than 252 nm and more than 312 nm, the tint when the retardation plate of the present invention is bonded to a display device as a circularly polarizing plate is large.
  • the refractive index anisotropy ⁇ n means the refractive index anisotropy of the optically anisotropic layer.
  • the measurement method of ⁇ n1 ⁇ d1 is measured using the Axoscan (polarimeter) apparatus of Axometrics and the analysis software of the same company as the measurement method of the twist angle.
  • the second pattern optical anisotropic layer 18a Similar to the first pattern optical anisotropic layer 16a, the second pattern optical anisotropic layer 18a includes a twist-aligned liquid crystal compound having a thickness direction as a helical axis. The description regarding the liquid crystal compound is as described above.
  • the in-plane slow axis at the surface 162a on the second pattern optical anisotropic layer 18a side of the first pattern optical anisotropic layer 16a, and the first pattern optical anisotropic layer of the second pattern optical anisotropic layer 18a The in-plane slow axis on the surface 181a on the 16a side is arranged in parallel. Note that the above relationship is satisfied in each of the first phase difference region and the second phase difference region. More specifically, the in-plane slow axis at the surface 162a in the first retardation region (region 24a) of the first pattern optical anisotropic layer 16a and the first position of the second pattern optical anisotropic layer 18a.
  • the surface at the surface 162a in the second phase difference region (region 28a) of the first pattern optical anisotropic layer 16a is arranged in parallel with the in-plane slow axis at the surface 181a in the phase difference region (region 26a).
  • the inner slow axis and the in-plane slow axis at the surface 181a in the second retardation region (region 30a) of the second patterned optically anisotropic layer 18a are arranged in parallel.
  • the second pattern optical anisotropic layer 18a has a first retardation region and a second retardation region, and a liquid crystal compound contained in each region.
  • the twist direction of the same is the same. More specifically, as shown in FIG. 2B, in the first retardation region (region 26a) of the second pattern optical anisotropic layer 18a, the surface 181a on the first pattern optical anisotropic layer 16a side. And the in-plane slow axis on the surface 182a opposite to the second pattern optical anisotropic layer 18a side form a predetermined twist angle ⁇ 2Ax described later.
  • the in-plane slow axis rotates by a predetermined angle in the first retardation region (region 26a) of the second patterned optically anisotropic layer 18a, and the twist direction of the liquid crystal compound as shown by the arrow in FIG. Indicates clockwise rotation (right twist).
  • the second retardation region (region 30a) of the second pattern optical anisotropic layer 18a as shown in FIG. 2C, the surface at the surface 181a on the first pattern optical anisotropic layer 16a side.
  • the inner slow axis and the in-plane slow axis on the surface 182a opposite to the second pattern optical anisotropic layer 18a side form a predetermined twist angle ⁇ 2Ay described later.
  • the twist direction of the liquid crystal compound shows clockwise rotation (right twist).
  • the twist direction is observed from the white arrow in FIG. 2 (A), and the right side with respect to the in-plane slow axis on the front surface (surface 181a) in the second pattern optical anisotropic layer 18a. Judge the twist or the left twist.
  • the twist angle of the liquid crystal compound (the twist angle in the alignment direction of the liquid crystal compound) is 78.6 ⁇ 10.0 °, and 78.6 ⁇ 8.0 ° is more preferable in terms of more excellent effects of the present invention. More preferably, 6 ⁇ 6.0 °.
  • the twist angle is less than 68.6 ° and more than 88.6 °, the tint when the retardation plate of the present invention is bonded to a display device as a circularly polarizing plate is large.
  • the measuring method of a twist angle uses the Axoscan (polarimeter) apparatus of Axometrics, and measures it using the analysis software of the company.
  • the twist direction of the liquid crystal compound in the second pattern optical anisotropic layer 18a is the same as the twist direction of the liquid crystal compound in the first pattern optical anisotropic layer 16a.
  • the twist direction of the liquid crystal compound in the first pattern optical anisotropic layer 16a is right twist
  • the twist direction of the liquid crystal compound in the second pattern optical anisotropic layer 18a is also right twist.
  • the product ⁇ n2 ⁇ d2 of the refractive index anisotropy ⁇ n2 of the second pattern optical anisotropic layer 18a measured at a wavelength of 550 nm and the thickness d2 of the second pattern optical anisotropic layer 18a is expressed by the following formula (2). Fulfill. That is, the values of the products ⁇ n2 ⁇ d2 in the first retardation region (region 26a) and the second retardation region (region 30a) of the second patterned optically anisotropic layer 18a both satisfy the following formula (2). .
  • ⁇ n2 ⁇ d2 is less than 110 nm and more than 170 nm, the tint when the retardation plate of the present invention is bonded to a display device as a circularly polarizing plate is large.
  • the measuring method of ⁇ n2 ⁇ d2 is measured by using the Axoscan (polarimeter) device of Axometrics and the analysis software of the same company as the measuring method of the twist angle.
  • the twist direction of the liquid crystal compound in the two phase difference region is the same.
  • twist direction of the liquid crystal compound in the first pattern optical anisotropic layer 16a and the second pattern optical anisotropic layer 18a is right twist is described in detail, but the present invention is not limited to this mode.
  • the twist direction of the liquid crystal compound in the first pattern optical anisotropic layer 16a and the second pattern optical anisotropic layer 18a may be left twist.
  • the right twist means a right twist (clockwise twist) when observing from the first pattern optical anisotropic layer 16a toward the second pattern optical anisotropic layer 18a. .
  • An alignment film described later may be disposed between the first pattern optical anisotropic layer 16a and the second pattern optical anisotropic layer 18a, but as shown in FIG.
  • the anisotropic layer 16a and the second patterned optical anisotropic layer 18a are adjacent to each other, and an alignment film is substantially formed between the first patterned optical anisotropic layer 16a and the second patterned optical anisotropic layer 18a. It is preferable not to have it.
  • a covalent bond between compounds contained in each optical anisotropic layer is used. Because it can, it is more excellent in adhesion.
  • the first pattern optical anisotropic layer 16a includes the twisted liquid crystal compound, a desired retardation plate can be obtained without performing the rubbing treatment. More specifically, after forming the first pattern optical anisotropic layer 16a, when forming the second pattern optical anisotropic layer 18a using a liquid crystal compound thereon, the first pattern optical anisotropic layer If the liquid crystal compound is applied on the surface 162a without rubbing, the liquid crystal compound is aligned along the alignment state of the surface 162a. Can be oriented to obtain a desired retardation plate.
  • substantially no alignment film means that a film formed only for functioning as an alignment film is not included. Even when the surface of the lower layer contributes to the alignment of the liquid crystalline compound of the upper layer, unless the lower layer is formed only for use as an alignment film, It is included in the present invention.
  • the type of liquid crystal compound used for forming the first pattern optical anisotropic layer 16a or the second pattern optical anisotropic layer 18a is not particularly limited.
  • an optically anisotropic layer obtained by fixing by photocrosslinking or thermal crosslinking, or after forming a polymer liquid crystalline compound in a nematic orientation in a liquid crystal state An optically anisotropic layer obtained by fixing the orientation by cooling can also be used.
  • liquid crystal compounds can be classified into a rod-shaped type (bar-shaped liquid crystal compound) and a disk-shaped type (discotic liquid crystal compound) based on their shapes.
  • Polymer generally refers to a polymer having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, 2 pages, Iwanami Shoten, 1992).
  • any liquid crystal compound can be used, but a rod-like liquid crystal compound or a discotic liquid crystal compound is preferably used.
  • Two or more kinds of rod-like liquid crystal compounds, two or more kinds of discotic liquid crystal compounds, or a mixture of a rod-like liquid crystal compound and a discotic liquid crystal compound may be used.
  • rod-like liquid crystal compound for example, those described in claim 1 of JP-A No. 11-53019 and paragraphs [0026] to [0098] of JP-A-2005-289980 can be preferably used.
  • discotic liquid crystal compound for example, those described in paragraphs [0020] to [0067] of JP-A-2007-108732 and paragraphs [0013] to [0108] of JP-A-2010-244038 are preferably used. However, it is not limited to these.
  • the first pattern optical anisotropic layer 16a or the second pattern optical anisotropic layer 18a can be formed by using a rod-like liquid crystal compound or a discotic liquid crystal compound having a polymerizable group, since the temperature change and the humidity change can be reduced. Is more preferable.
  • the liquid crystal compound may be a mixture of two or more types, and in that case, at least one preferably has two or more polymerizable groups. That is, the first pattern optical anisotropic layer 16a or the second pattern optical anisotropic layer 18a is a layer formed by fixing a rod-like liquid crystal compound having a polymerizable group or a discotic liquid crystal compound by polymerization or the like.
  • the kind of the polymerizable group contained in the discotic liquid crystal compound and the rod-like liquid crystal compound is not particularly limited, and a functional group capable of addition polymerization reaction is preferable, and a polymerizable ethylenically unsaturated group or a ring polymerizable group is preferable. More specifically, a (meth) acryloyl group, a vinyl group, a styryl group, an allyl group, etc. are mentioned preferably, and a (meth) acryloyl group is more preferable.
  • Examples of the method for forming the patterned optically anisotropic layer 14a include the following preferred embodiments, but are not limited thereto, and various known methods (for example, first pattern optics including a liquid crystal compound) And a method using a composition for forming an anisotropic layer and a composition for forming a second pattern optically anisotropic layer).
  • the first preferred embodiment utilizes a plurality of actions for controlling the alignment of the liquid crystal compound, and then eliminates any action by an external stimulus (heat treatment, etc.) to make the predetermined alignment control action dominant. Is the method.
  • the liquid crystalline compound is brought into a predetermined alignment state by the combined action of the alignment control ability by the alignment film and the alignment control ability of the alignment controller added to the liquid crystalline compound, and then fixed.
  • any action for example, action by the alignment control agent
  • disappears by external stimulation heat treatment, etc.
  • the other orientation control action action by the alignment film
  • another alignment state is realized and fixed to form the other retardation region. Details of this method are described in paragraphs [0017] to [0029] of Japanese Patent Application Laid-Open No. 2012-008170, the contents of which are incorporated herein by reference.
  • the second preferred embodiment is an embodiment using a pattern alignment film.
  • pattern alignment films having different alignment control capabilities are formed, a liquid crystalline compound is disposed thereon, and the liquid crystalline compound is aligned.
  • the liquid crystalline compounds achieve different alignment states depending on the alignment control ability of the pattern alignment film.
  • the pattern alignment film can be formed using a printing method, mask rubbing for the rubbing alignment film, mask exposure for the photo alignment film, or the like.
  • a method using a printing method is preferable in that large-scale equipment is not required and manufacturing is easy. Details of this method are described in paragraphs [0166] to [0181] of JP2012-032661A, the contents of which are incorporated herein by reference.
  • a photo acid generator is added to the alignment film.
  • a photoacid generator is added to the alignment film, and pattern exposure exposes a region where the photoacid generator is decomposed to generate an acidic compound and a region where no acid compound is generated.
  • the photoacid generator remains almost undecomposed in the non-irradiated portion, and the interaction between the alignment film material, the liquid crystal compound, and the alignment control agent added as necessary dominates the alignment state, and the liquid crystal compound Is oriented in a direction whose slow axis is perpendicular to the rubbing direction.
  • the alignment film When the alignment film is irradiated with light and an acidic compound is generated, the interaction is no longer dominant, the rubbing direction of the rubbing alignment film controls the alignment state, and the liquid crystalline compound has its slow axis parallel to the rubbing direction. To parallel orientation.
  • a water-soluble compound is preferably used. Examples of photoacid generators that can be used include Prog. Polym. Sci. , Vol. 23, p. 1485 (1998).
  • the photoacid generator pyridinium salts, iodonium salts and sulfonium salts are particularly preferably used. Details of this method are described in Japanese Patent Application No. 2010-289360, the contents of which are incorporated herein by reference.
  • the aligned (preferably vertically aligned) liquid crystalline compound is preferably fixed while maintaining the alignment state.
  • the immobilization is preferably carried out by a polymerization reaction of a polymerizable group introduced into the liquid crystal compound using a polymerization initiator.
  • the polymerization reaction includes a thermal polymerization reaction using a thermal polymerization initiator and a photopolymerization reaction using a photopolymerization initiator.
  • a photopolymerization reaction is preferred.
  • the amount of the polymerization initiator used is 0.01 to 20% by mass of the solid content of the composition for forming the first pattern optical anisotropic layer or the composition for forming the second pattern optical anisotropic layer). It is more preferable that the content is 0.5 to 5% by mass.
  • a chiral agent When forming the 1st pattern optical anisotropic layer 16a and the 2nd pattern optical anisotropic layer 18a, a chiral agent may be used if desired with the above-mentioned liquid crystal compound as needed.
  • the chiral agent is added to twist and align the liquid crystal compound.
  • the liquid crystalline compound is an optically active compound such as having an asymmetric carbon in the molecule, the addition of the chiral agent is unnecessary. It is. Further, depending on the production method and the twist angle, it is not necessary to add a chiral agent.
  • the chiral agent is not particularly limited as long as it is compatible with the liquid crystal compound used in combination.
  • a chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound containing no asymmetric carbon atom can also be used as the chiral agent.
  • the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • the chiral agent may have liquid crystallinity.
  • a plasticizer for optically anisotropic layer
  • a surfactant for optically anisotropic layer
  • a polymerizable monomer for optically anisotropic layer
  • these materials are preferably compatible with the liquid crystal compound and do not inhibit the alignment.
  • additive alignment control agent
  • Various known additives can be used as the additive.
  • the polymerizable monomer examples include radically polymerizable or cationically polymerizable compounds. Preferably, it is a polyfunctional radically polymerizable monomer and is preferably copolymerizable with the polymerizable group-containing liquid crystalline compound. Examples thereof include those described in paragraph numbers [0018] to [0020] in JP-A No. 2002-296423.
  • the amount of the compound added is generally in the range of 1 to 50% by mass and preferably in the range of 5 to 30% by mass with respect to the liquid crystal molecules.
  • surfactant examples include conventionally known compounds, and fluorine compounds are particularly preferable. Specifically, for example, compounds described in paragraphs [0028] to [0056] in JP-A-2001-330725, and paragraphs [0069] to [0126] in Japanese Patent Application No. 2003-295212 are described. The compound of this is mentioned.
  • the polymer used together with the liquid crystal compound is preferably capable of thickening the coating solution.
  • a cellulose ester can be mentioned as an example of a polymer. Preferable examples of the cellulose ester include those described in paragraph [0178] of JP-A No. 2000-155216.
  • the addition amount of the polymer is preferably in the range of 0.1 to 10% by mass, and in the range of 0.1 to 8% by mass with respect to the liquid crystal molecules so as not to inhibit the alignment of the liquid crystal compound. It is more preferable.
  • the discotic nematic liquid crystal phase-solid phase transition temperature of the liquid crystal compound is preferably 70 to 300 ° C, and more preferably 70 to 170 ° C.
  • an organic solvent is preferably used as the solvent used for the preparation of the composition (the first pattern optical anisotropic layer forming composition or the second pattern optical anisotropic layer forming composition).
  • organic solvents include amides (eg N, N-dimethylformamide), sulfoxides (eg dimethyl sulfoxide), heterocyclic compounds (eg pyridine), hydrocarbons (eg benzene, hexane), alkyl halides (eg , Chloroform, dichloromethane), esters (eg, methyl acetate, ethyl acetate, butyl acetate), ketones (eg, acetone, methyl ethyl ketone), ethers (eg, tetrahydrofuran, 1,2-dimethoxyethane). Alkyl halides and ketones are preferred. Two or more organic solvents may be used in combination.
  • a liquid crystal compound for example, a discotic liquid crystal compound
  • the molecules may be oriented. Since the alignment film has a function of defining the alignment direction of the liquid crystalline compound, it is preferably used for realizing a preferred embodiment of the present invention. However, if the alignment state is fixed after aligning the liquid crystalline compound, the alignment film plays the role, and thus is not necessarily an essential component of the present invention.
  • the alignment film is an organic compound (eg, ⁇ -tricosanoic acid) formed by rubbing treatment of an organic compound (preferably polymer), oblique deposition of an inorganic compound, formation of a layer having a microgroove, or Langmuir-Blodgett method (LB film). , Dioctadecylmethylammonium chloride, methyl stearylate). Furthermore, an alignment film in which an alignment function is generated by application of an electric field, application of a magnetic field, or light irradiation (preferably polarized light) is also known. The alignment film is preferably formed by polymer rubbing treatment.
  • an organic compound eg, ⁇ -tricosanoic acid
  • LB film Langmuir-Blodgett method
  • polymer examples include, for example, methacrylate copolymers, styrene copolymers, polyolefins, polyvinyl alcohols and modified polyvinyl alcohols described in paragraph No. [0022] of JP-A-8-338913, poly (N— Methylolacrylamide), polyester, polyimide, vinyl acetate copolymer, carboxymethylcellulose, polycarbonate and the like. Silane coupling agents can be used as the polymer.
  • Water-soluble polymers eg, poly (N-methylolacrylamide), carboxymethylcellulose, gelatin, polyvinyl alcohol, modified polyvinyl alcohol
  • gelatin, polyvinyl alcohol and modified polyvinyl alcohol are more preferred, and polyvinyl alcohol and modified polyvinyl alcohol are most preferred.
  • the alignment film is basically formed by applying a solution containing the polymer as an alignment film forming material and an optional additive (for example, a crosslinking agent) on a transparent support, followed by drying by heating (crosslinking), and rubbing treatment.
  • a solution containing the polymer as an alignment film forming material and an optional additive for example, a crosslinking agent
  • a crosslinking agent for example, a crosslinking agent
  • rubbing treatment a treatment method widely adopted as a liquid crystal alignment treatment process of the LCD can be applied. That is, a method of obtaining the orientation by rubbing the surface of the orientation film in a certain direction using paper, gauze, felt, rubber, nylon, polyester fiber or the like can be used. Generally, it is carried out by rubbing several times using a cloth or the like in which fibers having a uniform length and thickness are planted on average.
  • FIG. 3 shows a schematic cross-sectional view of the second embodiment of the retardation plate of the present invention.
  • the retardation plate 10b has a patterned optical anisotropic layer 14b.
  • the patterned optical anisotropic layer 14b has a structure in which the first retardation regions 20b and the second retardation regions 22b are alternately arranged in a stripe pattern in order.
  • the retardation plate 10b may include a transparent support described later.
  • the patterned optical anisotropic layer 14b is a layer formed by laminating the first patterned optical anisotropic layer 16b and the second patterned optical anisotropic layer 18b, and the first patterned optical anisotropic layer 16b and The second pattern optical anisotropic layer 18b includes a twisted liquid crystal compound having a thickness direction as a helical axis.
  • the retardation plate 10b is composed of two patterned optically anisotropic layers as in the retardation plate 10a, but differs in respect of the retardation of the patterned optically anisotropic layer and the twist angle of the liquid crystal compound. As shown in FIG.
  • each of the first retardation region 20b and the second retardation region 22b is a region extending over the entire thickness direction of the patterned optically anisotropic layer 14b.
  • the first retardation region of the patterned optically anisotropic layer 16b means the region 24b in FIG. 1
  • the first retardation region of the second patterned optically anisotropic layer 18b means the region 26b in FIG.
  • the second retardation region of the first pattern optical anisotropic layer 16b means the region 28b in FIG. 1
  • the second retardation region of the second pattern optical anisotropic layer 18b means the region in FIG. It means the region 30b.
  • the patterned optically anisotropic layer 14b includes a first retardation region 20b and a second retardation region 22b having different in-plane slow axis directions, and the first retardation region 20b and the second retardation region 22b They are arranged alternately in the plane.
  • FIG. 3 shows a mode in which the first phase difference region 20b and the second phase difference region 22b are arranged in a stripe shape, the present invention is not limited to this mode.
  • the patterned optical anisotropic layer 14b includes a first patterned optical anisotropic layer 16b and a second patterned optical anisotropic layer 18b.
  • FIG. 4 is a partially enlarged perspective cross-sectional view of the first retardation region 20b and the second retardation region 22b in the patterned optical anisotropic layer 14b, and shows the second patterned optical anisotropic layer 18b and the first optical retardation layer 18b.
  • Arrows in the patterned optically anisotropic layer 16b represent in-plane slow axes in the respective layers.
  • the first patterned optically anisotropic layer 16b includes a twist-aligned liquid crystal compound having a thickness direction as a helical axis, like the first patterned optically anisotropic layer 16a shown in FIG.
  • the preferred embodiment of the liquid crystal compound is as described above.
  • the first pattern optical anisotropic layer 16b has a first retardation region and a second retardation region, as in the second pattern optical anisotropic layer 18b described later, and the liquid crystal compound contained in each region.
  • the twist directions of the same are the same. More specifically, as shown in FIG. 4B, the first phase difference region (region 24b) of the first pattern optical anisotropic layer 16b is opposite to the second pattern optical anisotropic layer 18b side.
  • the in-plane slow axis on the surface 161b on the side and the in-plane slow axis on the surface 162b on the second pattern optical anisotropic layer 18b side form a predetermined twist angle ⁇ 1Bx described later.
  • the in-plane slow axis rotates by a predetermined angle in the first retardation region (region 24b) of the first patterned optically anisotropic layer 16b, and the twist direction of the liquid crystal compound as shown by the arrow in FIG. Indicates clockwise rotation (right twist).
  • the second retardation region (region 28b) of the first pattern optical anisotropic layer 16b as shown in FIG. 2C, the surface opposite to the second pattern optical anisotropic layer 18b side.
  • the in-plane slow axis at 161b and the in-plane slow axis at the surface 162b on the second pattern optical anisotropic layer 18b side form a predetermined twist angle ⁇ 1By to be described later.
  • the twist direction of the liquid crystal compound shows clockwise rotation (right twist). Note that the twist direction is observed from the white arrow in FIG. 4A and is based on the in-plane slow axis on the near surface (surface 161b) in the first pattern optical anisotropic layer 16b. Judge the twist or the left twist.
  • the in-plane slow axis on the surface (161b) opposite to the second pattern optical anisotropic layer 18b side in the second retardation region of the one pattern optical anisotropic layer 16b is orthogonal.
  • the twist angle of the liquid crystal compound is 59.7 ⁇ 10.0 °, and 59.7 ⁇ 8.0 ° is more preferable, and 59.7 ⁇ 6.0 ° is more preferable in that the effect of the present invention is more excellent. .
  • the twist angle is less than 49.7 ° and when it exceeds 69.7 °, the tint when the retardation plate of the present invention is bonded to a display device as a circularly polarizing plate is large.
  • the method for measuring the twist angle is as described above.
  • the product ⁇ n1 ⁇ d1 of the refractive index anisotropy ⁇ n1 of the first pattern optical anisotropic layer 16b and the thickness d1 of the first pattern optical anisotropic layer 16b measured at a wavelength of 550 nm is expressed by the following formula (1). Fulfill. That is, the values of the products ⁇ n1 ⁇ d1 in the first retardation region (region 24b) and the second retardation region (region 28b) of the first patterned optically anisotropic layer 16b both satisfy the following formula (3). .
  • Formula (3) 111 nm ⁇ ⁇ n1 ⁇ d1 ⁇ 171 nm Especially, it is preferable to satisfy
  • Formula (3A) 121 nm ⁇ ⁇ n1 ⁇ d1 ⁇ 161 nm
  • Formula (3B) 131 nm ⁇ ⁇ n1 ⁇ d1 ⁇ 151 nm
  • the tint when the retardation plate of the present invention is bonded to a display device as a circularly polarizing plate is large.
  • the measuring method of (DELTA) n1 * d1 uses the Axoscan (polarimeter) apparatus of Axometrics, and measures it using the analysis software of the company.
  • the second pattern optical anisotropic layer 18b includes a twisted liquid crystal compound having a thickness direction as a helical axis. The description regarding the liquid crystal compound is as described above.
  • the in-plane slow axis at the surface 162b of the first pattern optical anisotropic layer 16b on the second pattern optical anisotropic layer 18b side, and the first pattern optical anisotropic layer of the second pattern optical anisotropic layer 18b It is orthogonal to the in-plane slow axis on the surface 181b on the 16b side. Note that the above relationship is satisfied in each of the first phase difference region and the second phase difference region. More specifically, the in-plane slow axis at the surface 162b in the first retardation region (region 24b) of the first patterned optically anisotropic layer 16b and the first position of the second patterned optically anisotropic layer 18b.
  • the phase difference region (region 26b) is disposed orthogonal to the in-plane slow axis on the surface 181b (that is, ⁇ 2Bx in FIG. 4 is 90 °), and the second position of the first pattern optical anisotropic layer 16b.
  • the in-plane slow axis at the surface 162b in the phase difference region (region 28b) is orthogonal to the in-plane slow axis at the surface 181b in the second phase difference region (region 30b) of the second patterned optically anisotropic layer 18b. (That is, ⁇ 2By in FIG. 4 is 90 °).
  • the second pattern optical anisotropic layer 18b has a first retardation region and a second retardation region, and a liquid crystal compound contained in each region.
  • the twist directions of the same are the same. More specifically, as shown in FIG. 4B, in the first retardation region (region 26b) of the second pattern optical anisotropic layer 18b, the surface 181b on the first pattern optical anisotropic layer 16b side. And the in-plane slow axis on the surface 182b opposite to the second pattern optical anisotropic layer 18b side form a predetermined twist angle ⁇ 3Bx described later.
  • the in-plane slow axis rotates by a predetermined angle in the first retardation region (region 26b) of the second patterned optically anisotropic layer 18b, and the twist direction of the liquid crystal compound as shown by the arrow in FIG. Indicates clockwise rotation (right twist).
  • the second retardation region (region 30b) of the second pattern optical anisotropic layer 18b as shown in FIG. 4C, the surface at the surface 181b on the first pattern optical anisotropic layer 16b side.
  • the inner slow axis and the in-plane slow axis on the surface 182b opposite to the second pattern optical anisotropic layer 18b side form a predetermined twist angle ⁇ 3By.
  • the twist direction of a liquid crystal compound shows clockwise rotation (right twist). Note that the twist direction is observed from the white arrow in FIG. 4A, and the right direction is based on the in-plane slow axis on the front surface (surface 181b) in the second patterned optically anisotropic layer 18b. Judge the twist or the left twist.
  • the twist angle of the liquid crystal compound is 127.6 ⁇ 10.0 °, and 127.6 ⁇ 8.0 ° is more preferable, and 127.6 ⁇ 6.0 ° is more preferable in that the effect of the present invention is more excellent. .
  • the twist angle is less than 117.6 ° and more than 137.6 °, the tint when the retardation plate of the present invention is bonded to a display device as a circularly polarizing plate is large.
  • the method for measuring the twist angle is as described above.
  • the twist direction of the liquid crystal compound in the second pattern optical anisotropic layer 18b is the same as the twist direction of the liquid crystal compound in the first pattern optical anisotropic layer 16b.
  • the twist direction of the liquid crystal compound in the first pattern optical anisotropic layer 16b is right twist
  • the twist direction of the liquid crystal compound in the second pattern optical anisotropic layer 18b is also right twist.
  • the product ⁇ n2 ⁇ d2 of the refractive index anisotropy ⁇ n2 of the second pattern optical anisotropic layer 18b and the thickness d2 of the second pattern optical anisotropic layer 18b measured at a wavelength of 550 nm is expressed by the following formula (4). Fulfill. That is, the values of the products ⁇ n2 ⁇ d2 in the first retardation region (region 26b) and the second retardation region (region 30b) of the second patterned optically anisotropic layer 18b both satisfy the following formula (4). .
  • Formula (4) 252 nm ⁇ ⁇ n 2 ⁇ d 2 ⁇ 312 nm Especially, it is preferable to satisfy
  • Formula (4A) 262 nm ⁇ ⁇ n 2 ⁇ d 2 ⁇ 302 nm
  • Formula (4B) 272 nm ⁇ ⁇ n 2 ⁇ d 2 ⁇ 292 nm
  • ⁇ n 2 ⁇ d 2 is less than 252 nm and more than 312 nm, the tint when the retardation plate of the present invention is bonded to a display device as a circularly polarizing plate is large.
  • the measuring method of (DELTA) n2 * d2 is measured using the analysis software of the company using the Axoscan (polarimeter) apparatus of Axometrics.
  • the alignment film described above may be disposed between the first pattern optical anisotropic layer 16b and the second pattern optical anisotropic layer 18b, but as in the case of the retardation plate 10a, As shown in FIG. 3, the first pattern optical anisotropic layer 16b and the second pattern optical anisotropic layer 18b are adjacent to each other, and the first pattern optical anisotropic layer 16b and the second pattern optical anisotropic layer 18b are adjacent to each other. It is preferable that substantially no alignment film is present between the two.
  • the materials constituting the first pattern optical anisotropic layer 16b and the second pattern optical anisotropic layer 18b are the same as the first pattern optical anisotropic layer 16a and the second pattern optical anisotropic layer 18a described above.
  • the material which comprises is illustrated.
  • the method for producing the first pattern optical anisotropic layer 16b and the second pattern optical anisotropic layer 18b is not particularly limited, and the first pattern optical anisotropic layer 16a and the second pattern optical anisotropic layer described above are used.
  • the manufacturing method of 18a is illustrated.
  • twist direction of the liquid crystal compound in the first pattern optical anisotropic layer 16b and the second pattern optical anisotropic layer 18b is right twist.
  • the twist direction of the liquid crystal compound in the first pattern optical anisotropic layer 16b and the second pattern optical anisotropic layer 18b may be left twist.
  • the circularly polarizing plate of the present invention includes at least the above-mentioned retardation plate (first embodiment and second embodiment) and a polarizing film. Moreover, the transparent support body may be included as needed.
  • the circularly polarizing plate of the present invention having the above configuration can be used for various applications in addition to being used as a polarizing plate for 3D image display devices. For example, it can be used as an adjusting light system by using two optical films. In particular, it is preferably used as a window adjustment system.
  • the polarizing film may be a member having a function of converting natural light into specific linearly polarized light, and an absorptive polarizer can be used.
  • the type of the polarizing film is not particularly limited, and a commonly used polarizing film can be used.
  • any of an iodine-based polarizing film, a dye-based polarizing film using a dichroic dye, and a polyene-based polarizing film Can also be used.
  • the iodine-based polarizing film and the dye-based polarizing film are generally produced by adsorbing iodine or a dichroic dye to polyvinyl alcohol and stretching it.
  • a polarizing film is used as a polarizing plate by which the protective film was bonded on both surfaces.
  • the manufacturing method in particular of a circularly-polarizing plate is not restrict
  • the said retardation plate and polarizing film include the process of laminating
  • a transparent support is a base material which supports the pattern optically anisotropic layer mentioned above. In the case where the patterned optically anisotropic layer itself has sufficient self-supporting property, the transparent support may not be provided. That is, the transparent support is an arbitrary constituent member.
  • the retardation value in the thickness direction (Rth (550)) at 550 nm of the transparent support is not particularly limited, but is preferably ⁇ 110 to 110 nm, more preferably ⁇ 80 to 80 nm, from the viewpoint of more excellent effects of the present invention.
  • the in-plane retardation value (Re (550)) at 550 nm of the transparent support is not particularly limited, but is preferably 0 to 50 nm, more preferably 0 to 30 nm, and further preferably 0 to 10 nm. preferable.
  • the above range is preferable because light leakage of reflected light can be reduced to a level where it is not visually recognized.
  • the transparent support As a material for forming the transparent support, a polymer excellent in optical performance transparency, mechanical strength, thermal stability, moisture shielding property, isotropy and the like is preferable.
  • the term “transparent” means that the visible light transmittance is 60% or more, preferably 80% or more, and particularly preferably 90% or more.
  • the polymer film that can be used as the transparent support 12 include a cellulose acylate film (for example, a cellulose triacetate film (refractive index: 1.48), a cellulose diacetate film, a cellulose acetate butyrate film, and a cellulose acetate propionate.
  • polyolefins such as polyethylene and polypropylene
  • polyester resin films such as polyethylene terephthalate and polyethylene naphthalate
  • polyethersulfone films polyacrylic resin films such as polymethyl methacrylate, polyurethane resin films, polyester films, polycarbonate films
  • Polysulfone film, polyether film, polymethylpentene film, polyether ketone film Rum (meth) acrylonitrile film
  • polymer film having alicyclic structure nonorbornene resin (Arton: trade name, manufactured by JSR Corporation, amorphous polyolefin (ZEONEX: trade name, manufactured by ZEON Corporation)
  • a material for the polymer film triacetyl cellulose, polyethylene terephthalate, or a polymer having an alicyclic structure is preferable, and triacetyl cellulose is particularly preferable.
  • the thickness of the transparent support is not particularly limited, but is preferably about 10 ⁇ m to 200 ⁇ m, more preferably 10 ⁇ m to 100 ⁇ m, and even more preferably 20 ⁇ m to 90 ⁇ m.
  • the transparent support 12 may be composed of a plurality of laminated layers. A thinner one is preferable for suppressing external light reflection, but if it is thinner than 10 ⁇ m, the strength of the film tends to be weak, which tends to be undesirable.
  • the transparent support 12 is subjected to a surface treatment (eg, glow discharge treatment, corona discharge treatment, ultraviolet (UV) treatment, flame treatment). Also good.
  • additives for example, an optical anisotropy adjusting agent, a wavelength dispersion adjusting agent, fine particles, a plasticizer, an ultraviolet ray preventing agent, a deterioration preventing agent, a release agent, etc.
  • the transparent support is a cellulose acylate film
  • the addition time may be any in the dope preparation step (preparation step of the cellulose acylate solution), but an additive is added and prepared at the end of the dope preparation step. You may perform a process.
  • the in-plane slow axis is parallel or orthogonal.
  • FIG. 6A shows a partially enlarged perspective cross-sectional view of a configuration in which the transparent support 16 is removed from the circularly polarizing plate 100a shown in FIG. 5 that satisfies the relationship (a).
  • the arrow in the polarizing film 32 indicates the absorption axis
  • the arrows in the first pattern optical anisotropic layer 16a and the second pattern optical anisotropic layer 18a indicate in-plane slow phases in the respective layers.
  • 6B the in-plane slow axis of the first patterned optically anisotropic layer 16a in the first retardation region when observed from the white arrow in FIG. 6A
  • the relationship of an angle with the in-plane slow axis of the 2nd pattern optically anisotropic layer 18a is shown.
  • FIG. 6C the in-plane slow axis of the first pattern optical anisotropic layer 16a in the second retardation region when observed from the white arrow in FIG.
  • the absorption axis of the polarizing film 32 and the in-plane slow axis on the surface 161a on the polarizing film 32 side in the first retardation region (region 24a) of the first pattern optical anisotropic layer 16a are parallel to each other. It is. The definition of parallel is as described above.
  • the first pattern optical anisotropic layer 16a includes a twisted liquid crystal compound having the thickness direction as a helical axis. Therefore, the in-plane slow axis on the surface 161a on the polarizing film 32 side of the first pattern optical anisotropic layer 16a and the surface on the second pattern optical anisotropic layer 18a side of the first pattern optical anisotropic layer 16a.
  • the in-plane slow axis at 162a forms the above-described twist angle (26.5 ° in FIG. 6). That is, the in-plane slow axis of the first pattern optically anisotropic layer 16a rotates by ⁇ 26.5 ° (26.5 ° clockwise).
  • the in-plane slow axis at the surface 162a of the first patterned optically anisotropic layer 16a is located at ⁇ 26.5 ° in the first retardation region, In the retardation region, the in-plane slow axis at the surface 162a of the first pattern optical anisotropic layer 16a is located at -116.5 °.
  • the in-plane slow axes at the surface 162a of the first patterned optically anisotropic layer 16a in the first retardation region and the second retardation region are ⁇ 26.5 ° and ⁇ 116.5 °, respectively.
  • the present invention is not limited to this embodiment, and may be in the range of ⁇ 26.5 ⁇ 10 ° and ⁇ 116.5 ⁇ 10 °, respectively.
  • the in-plane slow axis at the surface 162a on the second pattern optical anisotropic layer 18a side of the first pattern optical anisotropic layer 16a and the first pattern of the second pattern optical anisotropic layer 18a is parallel to both the first retardation region and the second retardation region.
  • the second pattern optical anisotropic layer 18a includes a twisted liquid crystal compound having a thickness direction as a helical axis. Therefore, the in-plane slow axis at the surface 181a on the polarizing film 32 side of the second pattern optical anisotropic layer 18a and the first pattern optical anisotropic layer 16a side of the second pattern optical anisotropic layer 18a are
  • the in-plane slow axis on the opposite surface 182a forms the above-described twist angle (78.6 ° in FIG. 6). That is, the in-plane slow axis of the second patterned optically anisotropic layer 18a rotates by ⁇ 78.6 ° (clockwise 78.6 °).
  • the in-plane slow axis on the surface 182a of the second patterned optically anisotropic layer 18a is located at ⁇ 105.1 ° in the first retardation region, In the retardation region, the in-plane slow axis at the surface 182a of the second patterned optically anisotropic layer 18a is located at -195.1 °.
  • the in-plane slow axes on the surface 182a of the second patterned optically anisotropic layer 18a in the first retardation region and the second retardation region are ⁇ 105.1 ° and ⁇ 195.1 °.
  • the absorption axis of the polarizing film 32 and the in-plane slow axis on the surface 161a on the polarizing film 32 side in the first retardation region (region 24a) of the first pattern optical anisotropic layer 16a are parallel to each other. Although the aspect which is is explained in full detail, it may be orthogonal.
  • the liquid crystal compound in the first pattern optical anisotropic layer 16a and the second pattern optical anisotropic layer 18a is described in detail as to the clockwise direction (right twist). It may be a surrounding aspect.
  • the in-plane slow axis at the surface 162a in the first retardation region of the first pattern optical anisotropic layer 16a is 26.5 ⁇ 10 ° with reference to the absorption axis of the polarizing film 32.
  • the in-plane slow axis at the surface 162a in the second retardation region of the first pattern optical anisotropic layer 16a is at a position of 116.5 ⁇ 10 °, and the second pattern optical anisotropic layer
  • the in-plane slow axis at the surface 182a in the first retardation region 18a is at a position of 105.1 ⁇ 20 °
  • the in-plane slow axis may be at a position of 195.1 ⁇ 20 °.
  • a transparent support Rth is preferably ⁇ 30 nm to ⁇ 10 nm, more preferably ⁇ 25 nm to ⁇ 10 nm in that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to a display device is smaller. More preferably, it is ⁇ 15 nm.
  • Rth (550) of the transparent support Is preferably ⁇ 70 nm to ⁇ 50 nm, and preferably ⁇ 75 nm to ⁇ 65 nm in that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to the display device is smaller. Is more preferable.
  • Rth (550) of the transparent support Is preferably 50 nm to 70 nm, and more preferably 55 nm to 65 nm in that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to the display device is smaller.
  • Rth (550) of the transparent support is From the viewpoint of less difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to a display device, the thickness is preferably 30 nm to 50 nm, and more preferably 35 nm to 45 nm.
  • the transparent support 12 As a second embodiment of the circularly polarizing plate, as shown in FIG. 7, the transparent support 12, the second pattern optical anisotropic layer 18a, the first pattern optical anisotropic layer 16a, and the polarizing film 32 are used.
  • the circularly-polarizing plate 100b which has these in this order is mentioned.
  • the circularly polarizing plate 100b shown in FIG. 7 and the circularly polarizing plate 100a shown in FIG. 5 are the same except for the position of the transparent support 12.
  • the relationship between the absorption axis of the polarizing film 32 and the in-plane slow axis of the first patterned optically anisotropic layer 16a satisfies the requirement (a). Fulfill.
  • Rth (550) of the transparent support Is preferably 70 nm to 90 nm, more preferably 75 nm to 85 nm, in that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to a display device is smaller. .
  • Rth (550) of the transparent support Is preferably 30 nm to 50 nm, more preferably 35 nm to 45 nm, in that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to the display device is smaller.
  • Rth (550) of the transparent support Is preferably ⁇ 70 nm to ⁇ 50 nm, and preferably ⁇ 65 nm to ⁇ 55 nm in that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to the display device is smaller. Is more preferable.
  • Rth (550) of the transparent support is From the viewpoint that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to the display device is smaller, it is preferably ⁇ 70 nm to ⁇ 50 nm, and preferably ⁇ 65 nm to ⁇ 55 nm. More preferred.
  • the second pattern optical anisotropic layer 18b, the first pattern optical anisotropic layer 16b, the transparent support 12, and the polarizing film 32 are used.
  • the circularly-polarizing plate 100c which has these in this order is mentioned.
  • the relationship between the absorption axis of the polarizing film 32 and the in-plane slow axes of the first pattern optical anisotropic layer 16b and the second pattern optical anisotropic layer 18b is as shown in (b) below. Satisfy requirements.
  • the in-plane slow axis is parallel or orthogonal.
  • FIG. 9A shows a partially enlarged perspective cross-sectional view of a configuration in which the transparent support 12 is removed from the circularly polarizing plate 100c shown in FIG. In FIG.
  • the arrow in the polarizing film 32 indicates the absorption axis
  • the arrows in the first pattern optical anisotropic layer 16b and the second pattern optical anisotropic layer 18b indicate in-plane slow phases in the respective layers.
  • 9B the in-plane slow axis of the first patterned optically anisotropic layer 16b in the first retardation region when observed from the white arrow in FIG. 9A
  • the relationship of an angle with the in-plane slow axis of the 2nd pattern optically anisotropic layer 18b is shown.
  • 9C the in-plane slow axis of the first pattern optical anisotropic layer 16b in the second retardation region when observed from the white arrow in FIG.
  • the absorption axis of the polarizing film 32 and the in-plane slow axis on the surface 161b on the polarizing film 32 side in the first retardation region (region 24b) of the first pattern optical anisotropic layer 16b are parallel to each other. It is.
  • the definition of parallel is as described above.
  • the first pattern optical anisotropic layer 16b includes a twist-aligned liquid crystal compound having the thickness direction as a helical axis. Therefore, the in-plane slow axis on the surface 161b on the polarizing film 32 side of the first pattern optical anisotropic layer 16b and the surface on the second pattern optical anisotropic layer 18b side of the first pattern optical anisotropic layer 16b.
  • the in-plane slow axis at 162b forms the twist angle described above (59.7 ° in FIG. 9). That is, the in-plane slow axis of the first patterned optically anisotropic layer 16a rotates by ⁇ 59.7 ° (clockwise 59.7 °).
  • the in-plane slow axis at the surface 162b of the first patterned optically anisotropic layer 16b is located at ⁇ 59.7 ° in the first retardation region, In the retardation region, the in-plane slow axis at the surface 162b of the first patterned optically anisotropic layer 16b is located at -149.7 °.
  • the in-plane slow axes on the surface 162b of the first pattern optical anisotropic layer 16b in the first retardation region and the second retardation region are ⁇ 59.7 ° and ⁇ 149.7 °, respectively.
  • the present invention is not limited to this embodiment, and may be in the range of ⁇ 59.7 ⁇ 10 ° and ⁇ 149.7 ⁇ 10 °, respectively.
  • the in-plane slow axis on the surface 181b on the optically anisotropic layer 16b side is orthogonal to both the first retardation region and the second retardation region. Therefore, in FIG. 9, the in-plane slow axes at the surface 181b of the second patterned optically anisotropic layer 18b in the first retardation region and the second retardation region are ⁇ 149.7 ° and ⁇ 239.7, respectively. In the position of °.
  • the second pattern optical anisotropic layer 18b includes a twisted liquid crystal compound having a thickness direction as a helical axis. Therefore, the in-plane slow axis on the surface 181b of the second pattern optical anisotropic layer 18b on the polarizing film 32 side and the first pattern optical anisotropic layer 16b side of the second pattern optical anisotropic layer 18b are The in-plane slow axis on the opposite surface 182b forms the above-described twist angle (127.6 ° in FIG. 9). That is, the in-plane slow axis of the second patterned optically anisotropic layer 18b rotates by ⁇ 127.6 ° (127.6 ° clockwise).
  • the in-plane slow axis at the surface 182b of the second patterned optically anisotropic layer 18b is located at ⁇ 277.3 ° in the first retardation region
  • the in-plane slow axis at the surface 182b of the second patterned optically anisotropic layer 18b is located at ⁇ 367.3 °.
  • the in-plane slow axes at the surface 182b of the second patterned optical anisotropic layer 18b in the first retardation region and the second retardation region are ⁇ 277.3 ° and ⁇ 367.3 °.
  • the absorption axis of the polarizing film 32 and the in-plane slow axis on the surface 161b on the polarizing film 32 side in the first retardation region (region 24b) of the first patterned optically anisotropic layer 16b are parallel to each other. Although the aspect which is is explained in full detail, it may be orthogonal. In FIG. 9, the mode in which the twist direction of the liquid crystal compound in the first pattern optical anisotropic layer 16b and the second pattern optical anisotropic layer 18b is clockwise (right twist) is described in detail. It may be a surrounding aspect.
  • the in-plane slow axis at the surface 162b in the first retardation region of the first pattern optical anisotropic layer 16b is 59.7 ⁇ 10 ° with respect to the absorption axis of the polarizing film 32.
  • the in-plane slow axis at the surface 162b in the second retardation region of the first pattern optical anisotropic layer 16a is at a position of 149.7 ⁇ 10 °, and the second pattern optical anisotropic layer
  • the in-plane slow axis on the surface 182b in the first retardation region 18b is at a position of 277.3 ⁇ 20 °
  • the in-plane slow axis may be at a position of 367.3 ⁇ 20 °.
  • Rth (550) of the transparent support Is preferably 50 nm to 70 nm, more preferably 55 nm to 65 nm in that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to a display device is smaller. .
  • Rth (550) of the transparent support Is preferably ⁇ 70 nm to ⁇ 50 nm, and preferably ⁇ 65 nm to ⁇ 55 nm in that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to the display device is smaller. Is more preferable.
  • Rth (550) of the transparent support Is preferably 50 nm to 70 nm, and more preferably 55 nm to 65 nm in that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to the display device is smaller.
  • Rth (550) of the transparent support is From the viewpoint that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to the display device is smaller, it is preferably ⁇ 70 nm to ⁇ 50 nm, and preferably ⁇ 65 nm to ⁇ 55 nm. More preferred.
  • the transparent support 12 As a fourth embodiment of the circularly polarizing plate, as shown in FIG. 10, the transparent support 12, the second pattern optical anisotropic layer 18b, the first pattern optical anisotropic layer 16b, and the polarizing film 32 are used.
  • the circularly-polarizing plate 100d which has these in this order is mentioned.
  • the circularly polarizing plate 100d shown in FIG. 10 and the circularly polarizing plate 100c shown in FIG. 8 are the same except for the position of the transparent support 12.
  • the absorption axis of the polarizing film 32 and the in-plane slow axes of the first patterned optically anisotropic layer 16b and the second patterned optically anisotropic layer 18b similarly to the circularly polarizing plate 100c, the absorption axis of the polarizing film 32 and the in-plane slow axes of the first patterned optically anisotropic layer 16b and the second patterned optically anisotropic layer 18b.
  • the relationship satisfies the requirement (b) above.
  • Rth (550) of the transparent support Is preferably 50 nm to 70 nm, more preferably 55 nm to 65 nm in that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to a display device is smaller. .
  • Rth (550) of the transparent support Is preferably 70 nm to 90 nm, more preferably 75 nm to 85 nm, in that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to a display device is smaller.
  • Rth (550) of the transparent support Is preferably ⁇ 110 nm to ⁇ 90 nm, and preferably ⁇ 105 nm to ⁇ 95 nm in that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to the display device is smaller. Is more preferable.
  • Rth (550) of the transparent support is From the viewpoint that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to the display device is smaller, it is preferably ⁇ 90 nm to ⁇ 70 nm, and preferably ⁇ 85 nm to ⁇ 75 nm. More preferred.
  • the retardation plate and the circularly polarizing plate described above can be suitably used for a 3D image display device and a 3D image display system. More specifically, by arranging the above-described retardation plate or circularly polarizing plate on the viewing side of the display panel driven based on the image signal, the first retardation region of the light from the display panel is The polarization state of the light that has passed through and the light that has passed through the second phase difference region can be changed, and the video display panel can display a 3D stereoscopic video display.
  • Preparation of transparent support (hereinafter also referred to simply as support)> ⁇ Preparation of cellulose acylate film with Rth of -80 nm to -30 nm >> (Preparation of cellulose acylate)
  • a cellulose acylate having a total substitution degree of 2.97 (breakdown: acetyl substitution degree: 0.45, propionyl substitution degree: 2.52) was prepared.
  • As a catalyst a mixture of sulfuric acid (7.8 parts by mass with respect to 100 parts by mass of cellulose) and carboxylic acid anhydride was cooled to ⁇ 20 ° C., added to cellulose derived from pulp, and acylated at 40 ° C. At this time, the kind of acyl group and its substitution ratio were adjusted by adjusting the kind and amount of carboxylic anhydride. After acylation, aging was performed at 40 ° C. to adjust the total substitution degree.
  • cellulose acylate was gradually added to the 400 liter stainless steel dissolution tank having stirring blades and circulating cooling water around the outer periphery, while stirring and dispersing the solvent and additives. . After completion of the addition, the mixture was stirred at room temperature for 2 hours, swollen for 3 hours and then stirred again to obtain a cellulose acylate solution.
  • a dissolver type eccentric stirring shaft that stirs at a peripheral speed of 15 m / sec (shear stress 5 ⁇ 10 4 kgf / m / sec 2 ) and an anchor blade on the central axis and a peripheral speed of 1 m / sec.
  • a stirring shaft that stirs at a sec (shear stress of 1 ⁇ 10 4 kgf / m / sec 2 ) was used. Swelling was performed with the high speed stirring shaft stopped and the peripheral speed of the stirring shaft having the anchor blades set at 0.5 m / sec. 5) Filtration The cellulose acylate solution obtained above was filtered through a filter paper (# 63, manufactured by Toyo Filter Paper Co., Ltd.) with an absolute filtration accuracy of 0.01 mm, and further a filter paper (FH025, Poll) with an absolute filtration accuracy of 2.5 ⁇ m. To obtain a cellulose acylate solution.
  • cellulose acylate film (Preparation of cellulose acylate film)
  • the cellulose acylate solution was heated to 30 ° C., and cast on a mirror surface stainless steel support having a band length of 60 m set at 15 ° C. through a casting Giesser (described in JP-A-11-314233).
  • the casting speed was 15 m / min and the coating width was 200 cm.
  • the space temperature of the entire casting part was set to 15 ° C.
  • the cellulose acylate film that had been cast and rotated 50 cm before the cast part was peeled off from the band, and 45 ° C. dry air was blown.
  • it was dried at 110 ° C. for 5 minutes and further at 140 ° C. for 10 minutes to obtain a cellulose acylate film.
  • the film thickness was adjusted to 30 ⁇ m to 100 ⁇ m, and various cellulose acylate films having Re (550) of 5 nm or less and Rth (550) of ⁇ 80 nm to ⁇
  • composition of additive solution Compound A-19 (retardation reducing agent) 49.3 parts by mass UV-102 (wavelength dispersion adjusting agent) 7.6 parts by mass Methylene chloride (first solvent) 58.4 parts by mass Methanol (second solvent) 8.7 parts by mass Cellulose acylate solution 12.8 parts by mass
  • a dope was prepared by mixing 474 parts by mass of the cellulose acylate solution with 25 parts by mass of the retardation increasing agent solution and thoroughly stirring.
  • the addition amount of the retardation increasing agent was 6.0 parts by mass with respect to 100 parts by mass of cellulose acylate.
  • the obtained dope was cast using a band stretching machine. After the film surface temperature on the band reached 40 ° C., the film was dried with warm air at 70 ° C. for 1 minute, and the film from the band was dried with 140 ° C. drying air for 10 minutes to obtain a cellulose acylate film.
  • the film thickness was adjusted to 30 ⁇ m to 100 ⁇ m, and various cellulose acylate films having Re (550) of 5 nm or less and Rth (550) of 45 nm to 100 nm were obtained.
  • Example 1 (Alkaline saponification treatment) After passing the support 4 through a dielectric heating roll having a temperature of 60 ° C. and raising the film surface temperature to 40 ° C., an alkaline solution having the composition shown below is applied to the band surface of the film using a bar coater. It was transported for 10 seconds under a steam far infrared heater manufactured by Noritake Co., Ltd., which was applied at / m 2 and heated to 110 ° C. Subsequently, 3 ml / m 2 of pure water was applied using the same bar coater. Next, washing with a fountain coater and draining with an air knife were repeated three times, and then the sheet was transported to a drying zone at 70 ° C. for 10 seconds and dried to prepare an alkali saponified cellulose acylate film.
  • Alkaline solution composition Alkaline solution composition (parts by mass) ⁇ Potassium hydroxide 4.7 parts by weight Water 15.8 parts by weight Isopropanol 63.7 parts by weight
  • Surfactant SF-1 C 14 H 29 O (CH 2 CH 2 O) 20 H 1.0 part by weight Propylene glycol 14. 8 parts by mass ⁇
  • the alignment film coating solution 1 having the following composition was prepared, filtered with a polypropylene filter having a pore size of 0.2 ⁇ m, and then continuously with a # 8 wire bar. Was applied. The film was dried with warm air of 100 ° C. for 2 minutes to obtain an alignment film 1 having a thickness of 0.6 ⁇ m. Next, a lattice mask in which openings and non-openings of 5 mm ⁇ 282 ⁇ m square are periodically formed with a pitch of 564 ⁇ m is used so that the repeating direction of the openings and non-openings is perpendicular to the film longitudinal direction.
  • composition of alignment film coating solution 1 ⁇ 4 parts by weight of the following modified polyvinyl alcohol The following photoacid generator 0.1 part by weight 70 parts by weight of methanol 30 parts by weight of methanol ⁇ ⁇
  • a coating liquid (DLC (1)) containing a discotic liquid crystal compound shown in Table 2 was applied onto the alignment film 1 produced above with a # 3 wire bar.
  • the conveyance speed (V) of the film was 5 m / min.
  • the coating liquid was heated with hot air at 110 ° C. for 2 minutes.
  • UV irradiation 500 mJ / cm 2 was performed at 80 ° C. in a nitrogen environment to fix the alignment of the liquid crystal compound.
  • the discotic liquid crystal In the lattice mask exposure portion (first retardation region) of the alignment film 1, the discotic liquid crystal is vertically aligned with the slow axis direction parallel to the rubbing direction, and the unexposed portion (second retardation region) is rubbed.
  • the slow axis direction was perpendicular to the direction perpendicular to the direction.
  • the thickness of the optically anisotropic layer A was 1.25 ⁇ m in both the exposed area and the unexposed area.
  • ⁇ nd at 550 nm was 282 nm in any region.
  • optically anisotropic layer B (Formation of patterned optically anisotropic layer B (hereinafter also simply referred to as “optically anisotropic layer B”))
  • a coating liquid (DLC (4)) containing a discotic liquid crystal compound shown in Table 2 was applied onto the optically anisotropic layer A prepared above # 3 was applied with a wire bar.
  • the conveyance speed (V) of the film was 5 m / min.
  • the coating liquid was heated with hot air at 110 ° C. for 2 minutes.
  • UV irradiation 500 mJ / cm 2
  • the thickness of the optically anisotropic layer B was 1.19 ⁇ m in both the first retardation region and the second retardation region.
  • ⁇ nd at 550 nm was 140 nm.
  • the in-plane slow axis of the surface of the optically anisotropic layer B on the optically anisotropic layer A side is the optical axis of each optically anisotropic layer A in both the first retardation region and the second retardation region. It was parallel to the in-plane slow axis on the surface of the anisotropic layer B side.
  • the twist angle of the discotic liquid crystal compound in the optically anisotropic layer A is 26.5 ° in both the first retardation region and the second retardation region, and the discotic liquid crystal compound in the optically anisotropic layer B The twist angle was 78.6 ° in both the first phase difference region and the second phase difference region.
  • the discotic liquid crystal compound forms a twisted structure clockwise. Further, here, the twisted structure of the discotic liquid crystal compound is obtained by observing the support from the surface side on which the optically anisotropic layer is laminated, and on the side opposite to the optically anisotropic layer A side of the optically anisotropic layer B. Whether the in-plane slow axis is clockwise or counterclockwise is determined based on the in-plane slow axis of the surface.
  • a polyvinyl alcohol (PVA) film having a thickness of 80 ⁇ m is dyed by immersing it in an aqueous iodine solution having an iodine concentration of 0.05% by mass at 30 ° C. for 60 seconds, and then in an aqueous boric acid solution having a boric acid concentration of 4% by mass.
  • the film was vertically stretched to 5 times the original length while being immersed for 2 seconds, and then dried at 50 ° C. for 4 minutes to obtain a polarizing film having a thickness of 20 ⁇ m.
  • TD80UL cellulose acylate film “TD80UL” (manufactured by FUJIFILM Corporation) was prepared, immersed in an aqueous sodium hydroxide solution at 55 ° C. at 1.5 mol / liter, and then thoroughly washed with water. . Then, after being immersed in a diluted sulfuric acid aqueous solution at 35 ° C. at 0.005 mol / liter for 1 minute, it was immersed in water to sufficiently wash away the diluted sulfuric acid aqueous solution. Finally, the sample was thoroughly dried at 120 ° C.
  • the above polarizing film and the above polarizing film protective film are coated with polyvinyl alcohol.
  • a long patterned circularly polarizing plate (P-1) was produced by continuous bonding using a system adhesive. That is, the patterned circularly polarizing plate (P-1) includes a polarizing film protective film, a polarizing film, a transparent support, an optically anisotropic layer A (corresponding to the second patterned optically anisotropic layer), an optically anisotropic layer.
  • the absorption axis of the polarizing film coincides with the longitudinal direction of the circularly polarizing plate, and the optical anisotropic layer B of the optical anisotropic layer A in the first retardation region is based on the absorption axis of the polarizing film.
  • the in-plane slow axis on the side surface is at a position of ⁇ 26.5 °, and the in-plane slow axis of the surface of the optically anisotropic layer B opposite to the optically anisotropic layer A is ⁇ 105.1. In the position of °. Further, the in-plane slow axis of the optically anisotropic layer A on the surface of the optically anisotropic layer B in the second retardation region is at a position of ⁇ 116.5 °, and the optically anisotropic layer B has an optically different axis. The in-plane slow axis of the surface opposite to the isotropic layer A is at a position of -195.1 °.
  • the rotation angle of the in-plane slow axis is determined by observing the retardation plate (the optically anisotropic layer A and the optically anisotropic layer B) from the polarizing film side and taking the absorption axis of the polarizing film as a reference. Expressed with a positive angle in the clockwise direction and a negative angle value in the clockwise direction.
  • Example 2> (Formation of orientation underlayer) An alignment base coating solution having the following composition was prepared on a saponified long support 3, filtered with a polypropylene filter having a pore size of 0.2 ⁇ m, and then continuously applied with a # 8 wire bar. The film was dried for 2 minutes with warm air at 100 ° C. to obtain a film having a thickness of 0.6 ⁇ m.
  • composition of alignment primer coating solution
  • alignment film 2 (Formation of alignment film 2) Further, an alignment film coating solution having the following composition was prepared and continuously coated with a # 8 wire bar. The alignment film 2 having a thickness of 0.15 ⁇ m was obtained by drying with warm air of 100 ° C. for 2 minutes. Next, a lattice mask in which openings and non-openings of 5 mm ⁇ 282 ⁇ m are periodically formed at a pitch of 564 ⁇ m is used, and an alignment layer is formed so that the repeating direction of the openings and non-openings is perpendicular to the film longitudinal direction. Two pieces were placed on 2 at an interval of 1 m in the longitudinal direction of the film.
  • the arrangement of one mask is shifted in the direction perpendicular to the longitudinal direction of the 282 ⁇ m film with respect to the other, and the exposure area of the first mask is changed to the light-shielding area of the second mask.
  • the light shielding area is set to be the exposure area of the second mask.
  • a polarizing plate is arranged between each lattice mask and the UV lamp, and polarized ultraviolet rays are applied to the alignment film 2 using an air-cooled metal halide lamp having an illuminance of 2.5 mW / cm 2 in the UV-C region under air at room temperature. Irradiated.
  • the polarizing transmission axis direction of the polarizing plate with respect to the longitudinal direction of the film is 0 °
  • the polarizing transmission axis direction of the polarizing plate with respect to the longitudinal direction of the film is 90 °.
  • the polarization transmission direction of was adjusted. Under such a mask, the film was continuously conveyed in the longitudinal direction at a speed of 1 m / min, and the film was continuously irradiated with ultraviolet rays.
  • the angle in the direction of the polarization transmission axis is determined by observing the support from the side on which the optically anisotropic layer to be described later is laminated, the longitudinal direction of the support is 0 ° as a reference, and is positive in the counterclockwise direction. It is represented with a negative angle value in the clockwise direction.
  • composition of coating solution for photo-alignment film The following compounds 1 part by mass Tetrahydrofuran 100 parts by mass ⁇
  • the rod-like liquid crystal compound In the exposure portion (first retardation region) where the polarized light irradiation direction of the alignment film is 0 °, the rod-like liquid crystal compound is horizontally aligned with the slow axis direction parallel to the polarized light irradiation direction, and the polarized light irradiation direction is 90 °. In the portion (second retardation region), the rod-like liquid crystal compound was horizontally aligned with the slow axis direction parallel to the polarization irradiation direction.
  • a patterned circularly polarizing plate (P-2) was manufactured according to the same procedure as in Example 1.
  • the relationship between the angle between the absorption axis of the polarizing film in the patterned circularly polarizing plate (P-2) and the in-plane slow axes of the optically anisotropic layer A and the optically anisotropic layer B is as follows. It was the same as the plate (P-1).
  • Example 3 According to the same procedure as in Example 1, except that the support 6 was used instead of the support 4 and RLC (2) was used instead of DLC (4) in the production of the optically anisotropic layer B.
  • a circularly polarizing plate (P-3) was produced.
  • the relationship between the angle between the absorption axis of the polarizing film in the patterned circularly polarizing plate (P-3) and the in-plane slow axes of the optically anisotropic layer A and the optically anisotropic layer B is as follows. It was the same as the plate (P-1).
  • Example 4 According to the same procedure as in Example 2, except that the support 5 was used instead of the support 3 and RLC (2) was used instead of DLC (4) in the production of the optically anisotropic layer B A circularly polarizing plate (P-4) was produced.
  • the relationship between the angle between the absorption axis of the polarizing film in the patterned circularly polarizing plate (P-4) and the in-plane slow axes of the optically anisotropic layer A and the optically anisotropic layer B is as follows. It was the same as the plate (P-1).
  • Example 5 In the formation of the optically anisotropic layer A, the rubbing direction with respect to the longitudinal direction of the film was changed from 0 ° to ⁇ 105.1 °, the support 6 was used instead of the support 4, and the optically anisotropic layer A Example 1 except that DLC (3) was used instead of DLC (1) during the production, and DLC (2) was used instead of DLC (4) during the production of the optically anisotropic layer B. (Alkali saponification treatment), (formation of alignment film), (formation of optically anisotropic layer A), and (formation of optically anisotropic layer B) were carried out to produce a retardation plate.
  • the above polarizing film and the above polarizing film protective film are continuously bonded using a polyvinyl alcohol-based adhesive.
  • a patterned circularly polarizing plate (P-5) was produced. That is, the patterned circularly polarizing plate (P-5) includes a polarizing film protective film, a polarizing film, an optically anisotropic layer B (corresponding to the second patterned optically anisotropic layer), and an optically anisotropic layer A (the above-described first film). This corresponds to one pattern optically anisotropic layer), and has a transparent support in this order.
  • the order of the polarizing film, the optically anisotropic layer B, the optically anisotropic layer A, and the transparent support is shown in FIG. It corresponds to an aspect.
  • the absorption axis of the polarizing film coincides with the longitudinal direction of the patterned circularly polarizing plate, and the first retardation region and the second retardation region of the optically anisotropic layer B are based on the absorption axis of the polarizing film.
  • In-plane slow axes are located at ⁇ 26.5 ° and ⁇ 116.5 °, respectively, and what is the optically anisotropic layer B in the first retardation region and the second retardation region of the optically anisotropic layer A?
  • the in-plane slow axes of the opposite surface are located at -105.1 ° and -195.1 °, respectively.
  • the rotation angle of the in-plane slow axis is expressed as a positive angle in the counterclockwise direction and a negative angle value in the clockwise direction with reference to the absorption axis of the polarizing film by observing the retardation film from the polarizing film side. It is.
  • Example 6 According to the same procedure as in Example 5, except that the support 5 was used instead of the support 6 and RLC (1) was used instead of DLC (2) in the production of the optically anisotropic layer B A circularly polarizing plate (P-6) was produced.
  • the relationship between the angle between the absorption axis of the polarizing film in the patterned circularly polarizing plate (P-6) and the in-plane slow axes of the optically anisotropic layer A and the optically anisotropic layer B is as follows. It was the same as the plate (P-5).
  • Example 7 When forming the optically anisotropic layer A, the polarizing transmission axis direction of the polarizing plate of the first mask with respect to the longitudinal direction of the film is changed from 0 ° to ⁇ 105.1 °, and the second mask with respect to the longitudinal direction of the film The polarizing transmission axis direction of the polarizing plate was changed from 90 ° to -195.1 °, and RLC (2) was used instead of RLC (1) in the production of the optically anisotropic layer A.
  • a retardation plate was produced according to the same procedure as in Example 2 except that DLC (2) was used instead of DLC (4) in the production of the conductive layer B.
  • the above-mentioned polarizing film and the above-mentioned polarizing film protective film are continuously bonded using a polyvinyl alcohol-based adhesive.
  • a patterned circularly polarizing plate (P-7) was produced. That is, the patterned circularly polarizing plate (P-7) includes the polarizing film protective film, the polarizing film, the optically anisotropic layer B (corresponding to the second patterned optically anisotropic layer), and the optically anisotropic layer A (the first film). This corresponds to one pattern optically anisotropic layer), and has a transparent support in this order.
  • the order of the polarizing film, the optically anisotropic layer B, the optically anisotropic layer A, and the transparent support is shown in FIG. It corresponds to an aspect.
  • the relationship between the angle between the absorption axis of the polarizing film in the patterned circularly polarizing plate (P-7) and the in-plane slow axes of the optically anisotropic layer A and the optically anisotropic layer B is as follows. Same as plate (P-5).
  • Example 8 A patterned circularly polarizing plate (P-8) was produced according to the same procedure as in Example 7, except that RLC (1) was used instead of DLC (2) in the production of the optically anisotropic layer B.
  • the relationship between the angle between the absorption axis of the polarizing film in the patterned circularly polarizing plate (P-8) and the in-plane slow axes of the optically anisotropic layer A and the optically anisotropic layer B is as follows. It was the same as the plate (P-5).
  • Example 9> The support 6 is used in place of the support 4, the DLC (5) is used in place of the DLC (1) in the production of the optically anisotropic layer A, and the optically anisotropic layer B is produced in the production. DLC (6) is used instead of DLC (4), and the alignment film 1 forming step is provided between (formation of optically anisotropic layer A) and (formation of optically anisotropic layer B), The formed alignment film is exposed to UV light so that the alignment film region irradiated with the mask exposure of the alignment film 1 before the optical anisotropic layer A is formed and the mask opening coincide with each other, and the film longitudinal direction is set.
  • a patterned circularly polarizing plate (P-9) was produced in the same manner as in Example 1 except that rubbing was performed in the 149.7 ° direction as a reference and the optically anisotropic layer B was formed on the alignment film. That is, the patterned circularly polarizing plate (P-9) includes a polarizing film protective film, a polarizing film, a transparent support, an optically anisotropic layer A (corresponding to the first patterned optically anisotropic layer), an optically anisotropic layer. B (corresponding to the second pattern optically anisotropic layer) in this order, and the order of the polarizing film, the transparent support, the optically anisotropic layer A, and the optically anisotropic layer B is as shown in FIG.
  • the absorption axis of the polarizing film coincides with the longitudinal direction of the patterned circularly polarizing plate, and the first retardation region and the second retardation region of the optical anisotropic layer A are based on the absorption axis of the polarizing film.
  • the in-plane slow axis of the surface on the optically anisotropic layer B side is located at ⁇ 59.7 ° and ⁇ 149.7 °, respectively, and the first retardation region and the second retardation of the optically anisotropic layer B
  • the in-plane slow axis of the surface on the optically anisotropic layer A side in the region is located at ⁇ 149.7 ° and ⁇ 239.7 °, respectively, and the first retardation region and the second position of the optically anisotropic layer B
  • In-plane slow axes of the surface opposite to the optically anisotropic layer A side in the phase difference region are located at ⁇ 277.3 ° and ⁇ 367.3 °, respectively.
  • the rotation angle of the in-plane slow axis is expressed as a positive angle in the counterclockwise direction and a negative angle value in the clockwise direction with reference to the absorption axis of the polarizing film by observing the retardation film from the polarizing film side. It is.
  • RLC (3) is used instead of RLC (1) when manufacturing optically anisotropic layer A
  • DLC (6) is used instead of DLC (4) when manufacturing optically anisotropic layer B
  • the alignment film 1 forming step is provided between (formation of the optically anisotropic layer A) and (formation of the optically anisotropic layer B).
  • UV exposure is performed so that the alignment film region irradiated with the exposure region of the first mask of the alignment film 2 before the formation of A and the mask opening coincide with each other, and the direction of 149.7 ° with respect to the longitudinal direction of the film.
  • a patterned circularly polarizing plate (P-10) was produced according to the same procedure as in Example 2 except that the optically anisotropic layer B was formed on the alignment film.
  • the relationship between the angle between the absorption axis of the polarizing film in the patterned circularly polarizing plate (P-10) and the in-plane slow axes of the optically anisotropic layer A and the optically anisotropic layer B is as follows. It was the same as the plate (P-9).
  • RLC (4) is used instead of DLC (6) in the production of optically anisotropic layer B, and between (formation of optically anisotropic layer A) and (formation of optically anisotropic layer B)
  • the alignment film 2 forming step is provided so that the polarization transmission axis direction of the polarizing plate of the first mask with respect to the longitudinal direction of the film is 149.7 °, and the polarized light transmission of the polarizing plate of the second mask with respect to the longitudinal direction of the film is performed.
  • a patterned circularly polarizing plate (P-11) was produced according to the same procedure as in Example 9 except that the axial direction was 239.7 °.
  • the relationship between the angle between the absorption axis of the polarizing film in the patterned circularly polarizing plate (P-11) and the in-plane slow axes of the optically anisotropic layer A and the optically anisotropic layer B is as follows. It was the same as the plate (P-9).
  • RLC (4) is used instead of DLC (6) in the production of optically anisotropic layer B, and between (formation of optically anisotropic layer A) and (formation of optically anisotropic layer B)
  • the alignment film 2 forming step is provided so that the polarization transmission axis direction of the polarizing plate of the first mask with respect to the longitudinal direction of the film is 149.7 °, and the polarized light transmission of the polarizing plate of the second mask with respect to the longitudinal direction of the film is performed.
  • a patterned circularly polarizing plate (P-12) was produced according to the same procedure as in Example 10 except that the axial direction was 239.7 °.
  • the angle relationship between the absorption axis of the polarizing film in the patterned circularly polarizing plate (P-12) and the in-plane slow axes of the optically anisotropic layer A and the optically anisotropic layer B is as follows. It was the same as the plate (P-9).
  • Example 13> The rubbing direction with respect to the longitudinal direction of the film during (formation of optically anisotropic layer A) was changed from ⁇ 105.1 ° to ⁇ 277.3 °, and DLC (3) DLC (6) is used instead of DLC, DLC (5) is used instead of DLC (2) in the production of the optically anisotropic layer B, (formation of optically anisotropic layer A) and (optical The alignment film 1 formation step is provided between the formation of the anisotropic layer B and the formed alignment film is irradiated by mask exposure of the alignment film 1 before the optical anisotropic layer A is formed.
  • Example 5 alkali saponification treatment), (formation of alignment film), (formation of optically anisotropic layer A), and Conduct formation of the optically anisotropic layer B), it was produced a retardation plate.
  • the above-mentioned polarizing film and the above-mentioned polarizing film protective film are continuously bonded using a polyvinyl alcohol-based adhesive.
  • the patterned circularly polarizing plate (P-13) includes a polarizing film protective film, a polarizing film, an optically anisotropic layer B (corresponding to the first patterned optically anisotropic layer), and an optically anisotropic layer A (the first film Corresponding to a two-pattern optically anisotropic layer), having a transparent support in this order, and the order of the polarizing film, the optically anisotropic layer B, the optically anisotropic layer A, and the transparent support is the above-mentioned FIG. It corresponds to an aspect.
  • the absorption axis of the polarizing film coincides with the longitudinal direction of the patterned circularly polarizing plate, and the first retardation region and the second retardation region of the optically anisotropic layer B are based on the absorption axis of the polarizing film.
  • In-plane slow axes of the surface on the optically anisotropic layer A side are located at ⁇ 59.7 ° and ⁇ 149.7 °, respectively, and the first retardation region and the second retardation of the optically anisotropic layer A In-plane slow axes of the surface on the optically anisotropic layer B side in the region are located at ⁇ 149.7 ° and ⁇ 239.7 °, respectively, and the first retardation region and the second position of the optically anisotropic layer A In-plane slow axes of the surface opposite to the optically anisotropic layer B side in the phase difference region are located at ⁇ 277.3 ° and ⁇ 367.3 °, respectively.
  • the rotation angle of the in-plane slow axis is expressed as a positive angle in the counterclockwise direction and a negative angle value in the clockwise direction with reference to the absorption axis of the polarizing film by observing the retardation film from the polarizing film side. It is.
  • Example 14 Using the support 7 instead of the support 6 and using RLC (3) instead of DLC (5) in the production of the optically anisotropic layer B (formation of the optically anisotropic layer A) and (The formation of the optically anisotropic layer B) is provided with the alignment film 2 forming step so that the polarization transmission axis direction of the polarizing plate of the first mask with respect to the film longitudinal direction is -59.7 °.
  • a patterned circularly polarizing plate (P-14) was produced according to the same procedure as in Example 13 except that the polarization transmission axis direction of the polarizing plate of the second mask with respect to the longitudinal direction was set to -149.7 °.
  • the angle relationship between the absorption axis of the polarizing film in the patterned circularly polarizing plate (P-14) and the in-plane slow axes of the optically anisotropic layer A and the optically anisotropic layer B is as follows. Same as plate (P-13).
  • the relationship between the angle between the absorption axis of the polarizing film in the patterned circularly polarizing plate (P-15) and the in-plane slow axes of the optically anisotropic layer A and the optically anisotropic layer B is as follows. Same as plate (P-13).
  • Example 16> Using support 2 instead of support 1, using RLC (3) instead of DLC (5) in the production of optically anisotropic layer B, (formation of optically anisotropic layer A) and (The formation of the optically anisotropic layer B) is provided with the alignment film 2 forming step so that the polarization transmission axis direction of the polarizing plate of the first mask with respect to the film longitudinal direction is -59.7 °.
  • a patterned circularly polarizing plate (P-16) was produced in the same manner as in Example 15 except that the polarization transmission axis direction of the polarizing plate of the second mask with respect to the longitudinal direction was set to -149.7 °.
  • the relationship between the angle between the absorption axis of the polarizing film in the patterned circularly polarizing plate (P-16) and the in-plane slow axes of the optically anisotropic layer A and the optically anisotropic layer B is as follows. It was the same as the plate (P-13).
  • Table 2 shows the compositions of DLC (1) to (6) and RLC (1) to (4) used in Examples 1 to 16 above.
  • various conditions such as the alignment temperature, the alignment time, and the polymerization temperature are as follows: The conditions in Table 2 were followed.
  • the relationship between the absorption axis of the polarizing film and the in-plane slow axes of the first pattern optical anisotropic layer and the second pattern optical anisotropic layer in Examples 1 to 8 described above is shown in FIG. It corresponds to the aspect of.
  • the rotation angle of the in-plane slow axis of the optically anisotropic layer A and the optically anisotropic layer B with respect to the absorption axis of the polarizing film is counterclockwise by observing the retardation plate from the polarizing film side. It is represented with positive and clockwise negative angle values.
  • the rod-like liquid crystal compound was horizontally aligned with the slow axis direction parallel to the polarized light irradiation direction, and each phase difference was 137 nm.
  • the above-mentioned polarizing film and the above-mentioned polarizing film protective film are crossed at an angle of 45 degrees between the in-plane slow axis of the retardation film and the absorption axis of the polarizing film.
  • a patterned circularly polarizing plate (P-17) (Comparative Example 1) was prepared by using a polyvinyl alcohol-based adhesive. That is, the patterned circularly polarizing plate has a polarizing film protective film, a polarizing film, and a pattern ⁇ / 4 plate in this order.
  • a circularly polarizing plate (G-2) was produced according to the same procedure except that the rubbing direction was changed from 0 ° to 90 °.
  • These circularly polarizing plates were mounted on the left and right sides of the spectacle frame so that the polarizing layer side was on the eyeball side to produce 3D spectacles.
  • each manufactured 3D display device is set to 3D display, with one eye displayed in white and the other eye displayed in black, and a measuring instrument (manufactured by BM-5A Topcon) is placed through the white display side glasses.
  • a measuring instrument manufactured by BM-5A Topcon
  • the whiteness of the glasses during rotation was measured.
  • the patterning period of the patterning retardation film is in the vertical direction, the crosstalk performance in 3D display in the vertical direction is deteriorated in principle, so it is important to improve the viewing angle performance in the horizontal direction. Therefore, based on the difference between the minimum value and the maximum value of the color v ′ in the white display at the azimuth angle of 0 degrees and the polar angle of 45 degrees, the evaluation was made according to the following criteria.
  • v ′ change of white display is less than 0.015 (acceptable to such an extent that a very slight tint is visually recognized)
  • B: v ′ change of white display is 0.015 or more and less than 0.025 (color tinting is visually recognized).
  • C: v ′ change of white display is 0.025 or more (a color tint is intense and unacceptable)
  • the pattern circularly polarizing plates (P-1) to (P-16) were all A, but the pattern circularly polarizing plate (P-17) of the comparative example was C.

Abstract

The purpose of the present invention is to provide the following: a retarder that, when affixed to a display device as a circular polarizer, sufficiently prevents color shifting upon head tilting; a circular polarizer; and a 3D-image display device. This retarder has, at least, a patterned optically anisotropic layer that contains first retardation regions and second retardation regions that have different in-plane slow axes, said first and second retardation regions being laid out so as to alternate in-plane. The patterned optically anisotropic layer comprises a first patterned optically anisotropic layer and a second patterned optically anisotropic layer laminated together. The in-plane slow axis of the first patterned optically anisotropic layer and the in-plane slow axis of the second patterned optically anisotropic layer exhibit a given relationship.

Description

位相差板、円偏光板、3D画像表示装置Retardation plate, circularly polarizing plate, 3D image display device
 本発明は、位相差板(光学フィルム)に係り、特に捩れ配向した液晶化合物を含むパターン光学異方性層を有する位相差板に関する。
 また、本発明は、上記位相差板を有する円偏光板または3D画像表示装置に関する。
The present invention relates to a retardation plate (optical film), and more particularly to a retardation plate having a patterned optical anisotropic layer containing a twisted liquid crystal compound.
Moreover, this invention relates to the circularly-polarizing plate or 3D image display apparatus which has the said phase difference plate.
 立体画像を表示する3D画像表示装置には、顔の回転に対して表示特性の悪化を防止するため、もしくは右目用画像と左目用画像を分離するために、直線偏光を円偏光に変換する光学部材が用いられることがある。
 このような光学部材としては、例えば、液晶性化合物を利用して形成されるいわゆるλ/4板や、遅相軸やレタデーション等が互いに異なる領域が規則的に面内に配置されたパターン位相差板が利用されている(例えば、特許文献1参照)。
In a 3D image display device that displays a stereoscopic image, an optical device that converts linearly polarized light into circularly polarized light in order to prevent deterioration of display characteristics with respect to face rotation or to separate a right eye image and a left eye image. A member may be used.
As such an optical member, for example, a so-called λ / 4 plate formed by using a liquid crystalline compound, or a pattern phase difference in which regions having different slow axes and retardations are regularly arranged in a plane. A plate is used (see, for example, Patent Document 1).
特開2012-73515号公報JP 2012-73515 A
 一方、近年、3D画像表示装置に代表される表示装置においては、画質のより一層の向上が求められている。
 本発明者らは、特許文献1で開示される位相差板を使用して円偏光板を作製し、表示装置に張り付けて、3D画像の性能評価を行ったところ、顔傾斜時における色味づきが十分に抑えられていないことが知見した。より具体的には、位相差板を張り付けた3D画像表示装置を視認する際に、観察者が顔を傾けると(以下、「顔傾斜」とも称する)、白色に他の色が混色したような色味(色味づき)が生じやすいという問題があった。
On the other hand, in recent years, there has been a demand for further improvement in image quality in display devices represented by 3D image display devices.
The inventors of the present invention produced a circularly polarizing plate using the retardation plate disclosed in Patent Document 1 and pasted it on a display device to evaluate the performance of a 3D image. It has been found that is not sufficiently suppressed. More specifically, when a viewer tilts his / her face when viewing a 3D image display device with a retardation plate attached (hereinafter also referred to as “face tilt”), other colors are mixed with white. There was a problem that color (color tint) was likely to occur.
 本発明は、上記実情に鑑みて、円偏光板として表示装置に張り付けた際に、顔傾斜時の色味づきが十分に抑制される位相差板を提供することを目的とする。
 また、本発明は、該位相差板を有する円偏光板および3D画像表示装置を提供することも目的とする。
In view of the above circumstances, an object of the present invention is to provide a phase difference plate in which coloring when a face is inclined is sufficiently suppressed when it is attached to a display device as a circularly polarizing plate.
Another object of the present invention is to provide a circularly polarizing plate and a 3D image display device having the retardation plate.
 本発明者らは、従来技術の問題点について鋭意検討した結果、捩れ配向した液晶化合物を含むパターン光学異方性層を用いることにより、上記課題を解決できることを見出した。
 すなわち、以下の構成により上記目的を達成することができることを見出した。
As a result of intensive studies on the problems of the prior art, the present inventors have found that the above problem can be solved by using a patterned optically anisotropic layer containing a twisted liquid crystal compound.
That is, it has been found that the above object can be achieved by the following configuration.
(1) 面内遅相軸方向が互いに異なる第1位相差領域および第2位相差領域を含み、かつ、第1位相差領域および第2位相差領域が面内において交互に配置されているパターン光学異方性層を少なくとも有する位相差板であって、
 パターン光学異方性層が、第1パターン光学異方性層と第2パターン光学異方性層とを積層した層であり、
 第1パターン光学異方性層の第1位相差領域における第2パターン光学異方性層側とは反対側の表面での面内遅相軸と、第1パターン光学異方性層の第2位相差領域における第2パターン光学異方性層側とは反対側の表面での面内遅相軸とは直交し、
 第1パターン光学異方性層および第2パターン光学異方性層は、厚み方向を螺旋軸とする捩れ配向した液晶化合物を含み、
 第1パターン光学異方性層中の第1位相差領域および第2位相差領域における液晶化合物の捩れ方向と、第2パターン光学異方性層中の第1位相差領域および第2位相差領域における液晶化合物の捩れ方向が同じ方向であり、
 第1パターン光学異方性層中の液晶化合物の捩れ角が26.5±10.0°であり、
 第2パターン光学異方性層中の液晶化合物の捩れ角が78.6±10.0°であり、
 第1位相差領域および第2位相差領域において、第1パターン光学異方性層の第2パターン光学異方性層側の表面での面内遅相軸と、第2パターン光学異方性層の第1パターン光学異方性層側の表面での面内遅相軸とは平行であり、
 波長550nmで測定した第1パターン光学異方性層の屈折率異方性Δn1と第1パターン光学異方性層の厚みd1との積Δn1・d1の値と、波長550nmで測定した第2パターン光学異方性層の屈折率異方性Δn2と第2パターン光学異方性層の厚みd2との積Δn2・d2の値とが、それぞれ下記式(1)および式(2)を満足する、位相差板。
 式(1) 252nm≦Δn1・d1≦312nm
 式(2) 110nm≦Δn2・d2≦170nm
(1) A pattern including a first phase difference region and a second phase difference region whose in-plane slow axis directions are different from each other, and the first phase difference region and the second phase difference region are alternately arranged in the plane. A retardation plate having at least an optically anisotropic layer,
The pattern optical anisotropic layer is a layer in which a first pattern optical anisotropic layer and a second pattern optical anisotropic layer are laminated,
The in-plane slow axis on the surface opposite to the second pattern optical anisotropic layer side in the first retardation region of the first pattern optical anisotropic layer, and the second of the first pattern optical anisotropic layer The in-plane slow axis on the surface opposite to the second pattern optically anisotropic layer side in the retardation region is orthogonal to the surface,
The first pattern optical anisotropic layer and the second pattern optical anisotropic layer include a twist-aligned liquid crystal compound having a thickness direction as a helical axis,
The twist direction of the liquid crystal compound in the first retardation region and the second retardation region in the first pattern optical anisotropic layer, and the first retardation region and the second retardation region in the second pattern optical anisotropic layer The twist direction of the liquid crystal compound in the same direction,
The twist angle of the liquid crystal compound in the first pattern optically anisotropic layer is 26.5 ± 10.0 °,
The twist angle of the liquid crystal compound in the second patterned optically anisotropic layer is 78.6 ± 10.0 °;
In the first retardation region and the second retardation region, an in-plane slow axis on the surface of the first pattern optical anisotropic layer on the second pattern optical anisotropic layer side, and the second pattern optical anisotropic layer In parallel with the in-plane slow axis on the surface of the first pattern optically anisotropic layer side of
The value of the product Δn1 · d1 of the refractive index anisotropy Δn1 of the first pattern optical anisotropic layer measured at a wavelength of 550 nm and the thickness d1 of the first pattern optical anisotropic layer, and the second pattern measured at a wavelength of 550 nm The value of the product Δn2 · d2 of the refractive index anisotropy Δn2 of the optically anisotropic layer and the thickness d2 of the second pattern optically anisotropic layer satisfies the following expressions (1) and (2), respectively. Phase difference plate.
Formula (1) 252 nm ≦ Δn1 · d1 ≦ 312 nm
Formula (2) 110 nm ≦ Δn 2 · d 2 ≦ 170 nm
(2) 液晶化合物が、ディスコティック液晶化合物または棒状液晶化合物である、(1)に記載の位相差板。
(3) 第1位相差領域および第2位相差領域がストライプ状に交互に配置された、(1)または(2)に記載の位相差板。
(4) 第1パターン光学異方性層と第2パターン光学異方性層との間に実質的に配向膜がない、(1)~(3)のいずれか1つに記載の位相差板。
(5) 偏光膜と、(1)~(4)のいずれか1つに記載の位相差板とを少なくとも含む円偏光板であって、
 偏光膜と、第1パターン光学異方性層と、第2パターン光学異方性層とをこの順で有し、
 偏光膜の吸収軸と、第1パターン光学異方性層の第1位相差領域および第2位相差領域のうちのいずれか一方の領域における偏光膜側の表面での面内遅相軸とが平行または直交である、円偏光板。
(2) The retardation plate according to (1), wherein the liquid crystal compound is a discotic liquid crystal compound or a rod-like liquid crystal compound.
(3) The phase difference plate according to (1) or (2), wherein the first phase difference regions and the second phase difference regions are alternately arranged in a stripe shape.
(4) The retardation plate according to any one of (1) to (3), wherein there is substantially no alignment film between the first pattern optical anisotropic layer and the second pattern optical anisotropic layer. .
(5) A circularly polarizing plate comprising at least a polarizing film and the retardation plate according to any one of (1) to (4),
A polarizing film, a first patterned optically anisotropic layer, and a second patterned optically anisotropic layer in this order;
An absorption axis of the polarizing film and an in-plane slow axis on the surface on the polarizing film side in one of the first retardation region and the second retardation region of the first patterned optically anisotropic layer A circularly polarizing plate that is parallel or orthogonal.
(6) 面内遅相軸方向が互いに異なる第1位相差領域および第2位相差領域を含み、かつ、第1位相差領域および第2位相差領域が面内において交互に配置されているパターン光学異方性層を少なくとも有する位相差板であって、
 パターン光学異方性層が、第1パターン光学異方性層と第2パターン光学異方性層とを積層した層であり、
 第1パターン光学異方性層の第1位相差領域における第2パターン光学異方性層側とは反対側の表面での面内遅相軸と、第1パターン光学異方性層の第2位相差領域における第2パターン光学異方性層側とは反対側の表面での面内遅相軸とは直交し、
 第1パターン光学異方性層および第2パターン光学異方性層は、厚み方向を螺旋軸とする捩れ配向した液晶化合物を含み、
 第1パターン光学異方性層中の第1位相差領域および第2位相差領域における液晶化合物の捩れ方向と、第2パターン光学異方性層中の第1位相差領域および第2位相差領域における液晶化合物の捩れ方向が同じであり、
 第1パターン光学異方性層中の液晶化合物の捩れ角が59.7±10.0°であり、
 第2パターン光学異方性層中の液晶化合物の捩れ角が127.6±10.0°であり、
 第1位相差領域および第2位相差領域において、第1パターン光学異方性層の第2パターン光学異方性層側の表面での面内遅相軸と、第2パターン光学異方性層の第1パターン光学異方性層側の表面での面内遅相軸とは直交であり、
 波長550nmで測定した第1パターン光学異方性層の屈折率異方性Δn1と第1パターン光学異方性層の厚みd1との積Δn1・d1の値と、波長550nmで測定した第2パターン光学異方性層の屈折率異方性Δn2と第2パターン光学異方性層の厚みd2との積Δn2・d2の値とが、それぞれ下記式(3)および式(4)を満足する、位相差板。
 式(3) 111nm≦Δn1・d1≦171nm
 式(4) 252nm≦Δn2・d2≦312nm
(6) A pattern including a first phase difference region and a second phase difference region whose in-plane slow axis directions are different from each other, and the first phase difference region and the second phase difference region are alternately arranged in the plane. A retardation plate having at least an optically anisotropic layer,
The pattern optical anisotropic layer is a layer in which a first pattern optical anisotropic layer and a second pattern optical anisotropic layer are laminated,
The in-plane slow axis on the surface opposite to the second pattern optical anisotropic layer side in the first retardation region of the first pattern optical anisotropic layer, and the second of the first pattern optical anisotropic layer The in-plane slow axis on the surface opposite to the second pattern optically anisotropic layer side in the retardation region is orthogonal to the surface,
The first pattern optical anisotropic layer and the second pattern optical anisotropic layer include a twist-aligned liquid crystal compound having a thickness direction as a helical axis,
The twist direction of the liquid crystal compound in the first retardation region and the second retardation region in the first pattern optical anisotropic layer, and the first retardation region and the second retardation region in the second pattern optical anisotropic layer The twist direction of the liquid crystal compound is the same,
The twist angle of the liquid crystal compound in the first pattern optically anisotropic layer is 59.7 ± 10.0 °;
The twist angle of the liquid crystal compound in the second patterned optically anisotropic layer is 127.6 ± 10.0 °;
In the first retardation region and the second retardation region, an in-plane slow axis on the surface of the first pattern optical anisotropic layer on the second pattern optical anisotropic layer side, and the second pattern optical anisotropic layer Is perpendicular to the in-plane slow axis on the surface of the first pattern optically anisotropic layer side of
The value of the product Δn1 · d1 of the refractive index anisotropy Δn1 of the first pattern optical anisotropic layer measured at a wavelength of 550 nm and the thickness d1 of the first pattern optical anisotropic layer, and the second pattern measured at a wavelength of 550 nm The value of the product Δn2 · d2 of the refractive index anisotropy Δn2 of the optically anisotropic layer and the thickness d2 of the second patterned optically anisotropic layer satisfies the following expressions (3) and (4), respectively. Phase difference plate.
Formula (3) 111 nm ≦ Δn1 · d1 ≦ 171 nm
Formula (4) 252 nm ≦ Δn 2 · d 2 ≦ 312 nm
(7) 液晶化合物が、ディスコティック液晶化合物または棒状液晶化合物である、(6)に記載の位相差板。
(8) 第1位相差領域および第2位相差領域がストライプ状に交互に配置された、(6)または(7)に記載の位相差板。
(9) 第1パターン光学異方性層と第2パターン光学異方性層との間に実質的に配向膜がない、(6)~(8)のいずれか1つに記載の位相差板。
(10) 偏光膜と、(6)~(9)のいずれか1つに記載の位相差板とを少なくとも含む円偏光板であって、
 偏光膜と、第1パターン光学異方性層と、第2パターン光学異方性層とをこの順で有し、
 偏光膜の吸収軸と、第1パターン光学異方性層の第1位相差領域および第2位相差領域のうちのいずれか一方の領域における偏光膜側の表面での面内遅相軸とが平行または直交である、円偏光板。
(11) 画像信号に基づいて駆動される表示パネルと、
 表示パネルの視認側に配置される(1)~(4)、および、(6)~(9)のいずれか1つに記載の位相差板、または、(5)および(10)のいずれか1つに記載の円偏光板を少なくとも有する3D画像表示装置。
(7) The phase difference plate according to (6), wherein the liquid crystal compound is a discotic liquid crystal compound or a rod-like liquid crystal compound.
(8) The retardation plate according to (6) or (7), wherein the first retardation region and the second retardation region are alternately arranged in a stripe shape.
(9) The retardation plate according to any one of (6) to (8), wherein there is substantially no alignment film between the first pattern optical anisotropic layer and the second pattern optical anisotropic layer. .
(10) A circularly polarizing plate comprising at least a polarizing film and the phase difference plate according to any one of (6) to (9),
A polarizing film, a first patterned optically anisotropic layer, and a second patterned optically anisotropic layer in this order;
An absorption axis of the polarizing film and an in-plane slow axis on the surface on the polarizing film side in one of the first retardation region and the second retardation region of the first patterned optically anisotropic layer A circularly polarizing plate that is parallel or orthogonal.
(11) a display panel driven based on an image signal;
The retardation plate according to any one of (1) to (4) and (6) to (9) disposed on the viewing side of the display panel, or any of (5) and (10) A 3D image display device having at least the circularly polarizing plate according to one.
 本発明によれば、円偏光板として表示装置に張り付けた際に、顔傾斜時の色味づきが十分に抑制される位相差板を提供することができる。
 また、本発明によれば、該位相差板を有する円偏光板および3D画像表示装置を提供することもできる。
ADVANTAGE OF THE INVENTION According to this invention, when sticking to a display apparatus as a circularly-polarizing plate, the phase difference plate by which the coloring at the time of face inclination is fully suppressed can be provided.
Moreover, according to this invention, the circularly-polarizing plate and 3D image display apparatus which have this phase difference plate can also be provided.
本発明の位相差板の第1の実施態様の斜視断面図である。It is a perspective sectional view of the 1st embodiment of the phase contrast plate of the present invention. 本発明の位相差板の第1の実施態様の一つの態様における、第1パターン光学異方性層16aおよび第2パターン光学異方性層18aのそれぞれの面内遅相軸の関係を示す図であり、(A)は位相差板の一部拡大斜視断面図であり、(B)は(A)図の矢印の方向から観察した際の第1位相差領域における、第1パターン光学異方性層16aおよび第2パターン光学異方性層18aの面内遅相軸の角度の関係を示す概略図であり、(C)は(A)図の矢印の方向から観察した際の第2位相差領域における、第1パターン光学異方性層16aおよび第2パターン光学異方性層18aの面内遅相軸の角度の関係を示す概略図である。The figure which shows the relationship of each in-plane slow axis of the 1st pattern optical anisotropic layer 16a and the 2nd pattern optical anisotropic layer 18a in one aspect of the 1st embodiment of the phase difference plate of this invention. (A) is a partially enlarged perspective sectional view of the retardation plate, (B) is a first pattern optical anisotropic in the first retardation region when observed from the direction of the arrow in FIG. It is the schematic which shows the relationship of the angle of the in-plane slow axis of the crystalline layer 16a and the 2nd pattern optically anisotropic layer 18a, (C) is the 2nd position when it observes from the direction of the arrow of (A) figure. It is the schematic which shows the relationship of the angle of the in-plane slow axis of the 1st pattern optically anisotropic layer 16a and the 2nd pattern optically anisotropic layer 18a in a phase difference area | region. 本発明の位相差板の第2の実施態様の斜視断面図である。It is a perspective sectional view of the 2nd embodiment of the phase contrast plate of the present invention. 本発明の位相差板の第2の実施態様の一つの態様における、第1パターン光学異方性層16bおよび第2パターン光学異方性層18bのそれぞれの面内遅相軸の関係を示す図であり、(A)は位相差板の一部拡大斜視断面図であり、(B)は(A)図の矢印の方向から観察した際の第1位相差領域における、第1パターン光学異方性層16bおよび第2パターン光学異方性層18bの面内遅相軸の角度の関係を示す概略図であり、(C)は(A)図の矢印の方向から観察した際の第2位相差領域における、第1パターン光学異方性層16bおよび第2パターン光学異方性層18bの面内遅相軸の角度の関係を示す概略図である。The figure which shows the relationship of the in-plane slow axis of each of the 1st pattern optical anisotropic layer 16b and the 2nd pattern optical anisotropic layer 18b in one aspect of the 2nd embodiment of the phase difference plate of this invention. (A) is a partially enlarged perspective sectional view of the retardation plate, (B) is a first pattern optical anisotropic in the first retardation region when observed from the direction of the arrow in FIG. It is the schematic which shows the relationship of the angle of the in-plane slow axis of the crystalline layer 16b and the 2nd pattern optically anisotropic layer 18b, (C) is the 2nd position when it observes from the direction of the arrow of (A) figure. It is the schematic which shows the relationship of the angle of the in-plane slow axis of the 1st pattern optical anisotropic layer 16b and the 2nd pattern optical anisotropic layer 18b in a phase difference area | region. 本発明の円偏光板の第1の実施態様の概略断面図の例である。It is an example of the schematic sectional drawing of the 1st embodiment of the circularly-polarizing plate of this invention. 本発明の円偏光板の第1の実施態様の一つの態様における、偏光膜32の吸収軸と、第1パターン光学異方性層16aおよび第2パターン光学異方性層18aのそれぞれの面内遅相軸との要件(a)を示す図であり、(A)は円偏光板の一部拡大斜視断面図であり、(B)は(A)図の矢印の方向から観察した際の、第1位相差領域における、第1パターン光学異方性層16aの面内遅相軸と、第2パターン光学異方性層18aの面内遅相軸との角度の関係を示す概略図であり、(C)は(A)図の矢印の方向から観察した際の、第2位相差領域における、第1パターン光学異方性層16aの面内遅相軸と、第2パターン光学異方性層18aの面内遅相軸との角度の関係を示す概略図である。In one aspect of the first embodiment of the circularly polarizing plate of the present invention, the absorption axis of the polarizing film 32 and the respective in-planes of the first pattern optical anisotropic layer 16a and the second pattern optical anisotropic layer 18a It is a figure showing requirements (a) with a slow axis, (A) is a partially enlarged perspective sectional view of a circularly polarizing plate, (B) when observed from the direction of the arrow in (A) figure, It is the schematic which shows the relationship of the angle of the in-plane slow axis of the 1st pattern optical anisotropic layer 16a and the in-plane slow axis of the 2nd pattern optical anisotropic layer 18a in a 1st phase difference area | region. , (C) is the in-plane slow axis of the first pattern optical anisotropic layer 16a and the second pattern optical anisotropy in the second retardation region when observed from the direction of the arrow in FIG. It is the schematic which shows the relationship of the angle with the in-plane slow axis of the layer 18a. 本発明の円偏光板の第2の実施態様の概略断面図の例である。It is an example of the schematic sectional drawing of the 2nd embodiment of the circularly-polarizing plate of this invention. 本発明の円偏光板の第3の実施態様の概略断面図の例である。It is an example of the schematic sectional drawing of the 3rd embodiment of the circularly-polarizing plate of this invention. 本発明の円偏光板の第3の実施態様の一つの態様における、偏光膜32の吸収軸と、第1パターン光学異方性層16bおよび第2パターン光学異方性層18bのそれぞれの面内遅相軸との要件(b)を示す図であり、(A)は円偏光板の一部拡大斜視断面図であり、(B)は(A)図の矢印の方向から観察した際の、第1位相差領域における、第1パターン光学異方性層16bの面内遅相軸と、第2パターン光学異方性層18bの面内遅相軸との角度の関係を示す概略図であり、(C)は(A)図の矢印の方向から観察した際の、第2位相差領域における、第1パターン光学異方性層16bの面内遅相軸と、第2パターン光学異方性層18bの面内遅相軸との角度の関係を示す概略図である。In one aspect of the third embodiment of the circularly polarizing plate of the present invention, the absorption axis of the polarizing film 32 and the respective in-planes of the first pattern optical anisotropic layer 16b and the second pattern optical anisotropic layer 18b It is a figure showing requirements (b) with a slow axis, (A) is a partially enlarged perspective cross-sectional view of a circularly polarizing plate, (B) is when observed from the direction of the arrow in (A) Figure, It is the schematic which shows the relationship of the angle of the in-plane slow axis of the 1st pattern optical anisotropic layer 16b and the in-plane slow axis of the 2nd pattern optical anisotropic layer 18b in a 1st phase difference area | region. , (C) is the in-plane slow axis of the first pattern optical anisotropic layer 16b and the second pattern optical anisotropy in the second retardation region when observed from the direction of the arrow in FIG. It is the schematic which shows the relationship of the angle with the in-plane slow axis of the layer 18b. 本発明の円偏光板の第4の実施態様の概略断面図の例である。It is an example of the schematic sectional drawing of the 4th embodiment of the circularly-polarizing plate of this invention.
 以下、本発明について詳細に説明する。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。まず、本明細書で用いられる用語について説明する。 Hereinafter, the present invention will be described in detail. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value. First, terms used in this specification will be described.
 Re(λ)、Rth(λ)は、各々、波長λにおける面内のレタデーション、および、厚さ方向のレタデーションを表す。Re(λ)、Rth(λ)、Δndは、AXOSCAN(AXOMETRICS社製)で測定する。 Re (λ) and Rth (λ) represent in-plane retardation at wavelength λ and retardation in the thickness direction, respectively. Re (λ), Rth (λ), and Δnd are measured by AXOSCAN (manufactured by AXOMETRICS).
 なお、本明細書では、「可視光」とは、380nm~780nmのことをいう。また、本明細書では、測定波長について特に付記がない場合は、測定波長は550nmである。
 また、本明細書において、角度の関係(例えば「直交」、「平行」等)については、本発明が属する技術分野において許容される誤差の範囲を含むものとする。具体的には、厳密な角度±10°未満の範囲内であることを意味し、厳密な角度との誤差は、5°以下であることが好ましく、3°以下であることがより好ましい。
In the present specification, “visible light” means 380 nm to 780 nm. Moreover, in this specification, when there is no special mention about a measurement wavelength, a measurement wavelength is 550 nm.
Further, in this specification, the angle relationship (for example, “orthogonal”, “parallel”, etc.) includes a range of errors allowed in the technical field to which the present invention belongs. Specifically, it means that the angle is within a range of strict angle ± 10 °, and an error from the strict angle is preferably 5 ° or less, and more preferably 3 ° or less.
 以下において、本発明の位相差板の好適態様について詳述する。
 本発明の特徴点の一つとしては、パターン光学異方性層として、捩れ配向した液晶化合物が含有されるパターン光学異方性層を有する多層型の光学異方性層を使用している点が挙げられる。より具体的には、第1パターン光学異方性層のΔndおよび液晶化合物の捩れ角と、第2パターン光学異方性層のΔndおよび液晶化合物の捩れ角とを制御することにより、公知の位相差板よりも、より幅広い波長の直線偏光をより完全な円偏光に変換し得る広帯域のパターン位相差板が実現でき、結果として顔傾斜時の色味づきが抑制される。
 また、通常、液晶化合物を用いて2層の光学異方性を積層させる場合、配向膜を形成した後、配向膜上に1層目の光学異方性層を形成し、その後1層目の光学異方性層上に再度配向膜を形成し、その後配向膜上に2層目の光学異方性層を形成する。つまり、配向膜を2度作製する必要がある。
 一方、本発明の位相差板においては、一方の光学異方性層中の液晶化合物が捩れ配向しているため、配向膜を設ける工程を1回にすることが可能となる。より具体的には、配向膜を形成した後、その配向膜上に捩れ配向する液晶化合物を含む第1パターン光学異方性層を形成すると、第1パターン光学異方性層の露出表面における面内遅相軸が、配向膜がある側の表面における面内遅相軸よりも所定の角度回転した状態となっている。そのため、第1パターン光学異方性層表面にさらに液晶化合物を塗布すると、第1パターン光学異方性層の配向膜がある側の表面における面内遅相軸と所定の角度の関係にある露出表面の面内遅相軸に沿って液晶化合物が配向するため、別途配向膜を設ける手間が省ける。
Below, the suitable aspect of the phase difference plate of this invention is explained in full detail.
One of the features of the present invention is that a multilayer optically anisotropic layer having a patterned optically anisotropic layer containing a twisted liquid crystal compound is used as the patterned optically anisotropic layer. Is mentioned. More specifically, by controlling Δnd of the first pattern optical anisotropic layer and the twist angle of the liquid crystal compound, and Δnd of the second pattern optical anisotropic layer and the twist angle of the liquid crystal compound, a known level is obtained. Compared with the phase difference plate, a wideband pattern phase difference plate capable of converting linearly polarized light with a wider wavelength into more complete circularly polarized light can be realized, and as a result, coloring when the face is inclined is suppressed.
In general, when two layers of optical anisotropy are laminated using a liquid crystal compound, after forming an alignment film, a first optical anisotropy layer is formed on the alignment film, and then the first layer is formed. An alignment film is formed again on the optical anisotropic layer, and then a second optical anisotropic layer is formed on the alignment film. That is, the alignment film needs to be prepared twice.
On the other hand, in the retardation plate of the present invention, the liquid crystal compound in one optically anisotropic layer is twisted and oriented, so that the step of providing the orientation film can be performed once. More specifically, after forming the alignment film, forming a first pattern optical anisotropic layer containing a liquid crystal compound that twists and aligns on the alignment film, the surface on the exposed surface of the first pattern optical anisotropic layer The inner slow axis is rotated by a predetermined angle with respect to the in-plane slow axis on the surface on the side where the alignment film is present. Therefore, when a liquid crystal compound is further applied to the surface of the first pattern optical anisotropic layer, the exposure having a predetermined angle relationship with the in-plane slow axis on the surface on the side where the alignment film of the first pattern optical anisotropic layer is present Since the liquid crystal compound is aligned along the in-plane slow axis of the surface, it is possible to save the trouble of providing a separate alignment film.
<第1の実施態様>
 以下に、本発明の位相差板(3D画像表示装置用光学フィルム)の第1の実施態様について図面を参照して説明する。図1に、本発明の位相差板の第1の実施態様の概略断面図を示す。なお、本発明における図は模式図であり、各層の厚みの関係や位置関係などは必ずしも実際のものとは一致しない。以下の図も同様である。
 位相差板10aは、パターン光学異方性層14aを少なくとも有する。パターン光学異方性層14aは、第1位相差領域20aおよび第2位相差領域22aが、それぞれ順にストライプ状に交互に配置された構造を有する。なお、位相差板10aには、後述する透明支持体が含まれていてもよい。
 また、パターン光学異方性層14aは、第1パターン光学異方性層16aと第2パターン光学異方性層18aが積層した形成された層であり、第1パターン光学異方性層16aには、厚み方向を螺旋軸とする捩れ配向した液晶化合物が含まれる。
 なお、図1に示すように、第1位相差領域20aおよび第2位相差領域22aは、それぞれパターン光学異方性層14aの厚み方向全域にわたる領域を意図し、後述する明細書において、第1パターン光学異方性層16aの第1位相差領域とは図1中の領域24aを意味し、第2パターン光学異方性層18aの第1位相差領域とは図1中の領域26aを意味し、第1パターン光学異方性層16aの第2位相差領域とは図1中の領域28aを意味し、第2パターン光学異方性層18aの第2位相差領域とは図1中の領域30aを意味する。
 以下に、各層の構成について詳述する。
<First Embodiment>
Below, the 1st embodiment of the phase difference plate (3D image display apparatus optical film) of this invention is demonstrated with reference to drawings. FIG. 1 shows a schematic cross-sectional view of a first embodiment of a retardation plate of the present invention. In addition, the figure in this invention is a schematic diagram, and the relationship of the thickness of each layer, a positional relationship, etc. do not necessarily correspond with an actual thing. The same applies to the following figures.
The retardation film 10a has at least a patterned optical anisotropic layer 14a. The patterned optically anisotropic layer 14a has a structure in which the first retardation regions 20a and the second retardation regions 22a are alternately arranged in a stripe pattern in order. The retardation plate 10a may include a transparent support described later.
The patterned optical anisotropic layer 14a is a layer formed by laminating the first patterned optical anisotropic layer 16a and the second patterned optical anisotropic layer 18a, and is formed on the first patterned optical anisotropic layer 16a. Includes a twist-aligned liquid crystal compound having a thickness direction as a helical axis.
As shown in FIG. 1, the first retardation region 20a and the second retardation region 22a are intended to cover the entire area in the thickness direction of the patterned optical anisotropic layer 14a. The first retardation region of the patterned optically anisotropic layer 16a means the region 24a in FIG. 1, and the first retardation region of the second patterned optically anisotropic layer 18a means the region 26a in FIG. In addition, the second retardation region of the first pattern optical anisotropic layer 16a means the region 28a in FIG. 1, and the second retardation region of the second pattern optical anisotropic layer 18a in FIG. It means the region 30a.
Below, the structure of each layer is explained in full detail.
[パターン光学異方性層]
 パターン光学異方性層14aは、面内遅相軸方向が互いに異なる第1位相差領域20aおよび第2位相差領域22aを含み、かつ、第1位相差領域20aおよび第2位相差領域22aが面内において交互に配置されている。図1においては、第1位相差領域20aおよび第2位相差領域22aがストライプ状に配置された態様を示すが、この態様には限定されない。
 パターン光学異方性層14aは、第1パターン光学異方性層16aと第2パターン光学異方性層18aとを有する。
 以下、図1~2を参照しながら、第1パターン光学異方性層16aと第2パターン光学異方性層18aについて詳述する。なお、図2は、パターン光学異方性層14a中の第1位相差領域20aおよび第2位相差領域22aの一部拡大斜視断面図であり、第2パターン光学異方性層18aおよび第1パターン光学異方性層16a中の矢印はそれぞれの層中の面内遅相軸を表す。
[Pattern optical anisotropic layer]
The patterned optically anisotropic layer 14a includes a first retardation region 20a and a second retardation region 22a whose in-plane slow axis directions are different from each other, and the first retardation region 20a and the second retardation region 22a are They are arranged alternately in the plane. Although FIG. 1 shows a mode in which the first phase difference region 20a and the second phase difference region 22a are arranged in a stripe shape, the present invention is not limited to this mode.
The patterned optical anisotropic layer 14a includes a first patterned optical anisotropic layer 16a and a second patterned optical anisotropic layer 18a.
Hereinafter, the first pattern optical anisotropic layer 16a and the second pattern optical anisotropic layer 18a will be described in detail with reference to FIGS. FIG. 2 is a partially enlarged perspective sectional view of the first retardation region 20a and the second retardation region 22a in the patterned optical anisotropic layer 14a. Arrows in the patterned optically anisotropic layer 16a represent in-plane slow axes in the respective layers.
(第1パターン光学異方性層)
 第1パターン光学異方性層16aは、厚み方向を螺旋軸とする捩れ配向した液晶化合物を含む。第1パターン光学異方性層16aは、いわゆる螺旋構造を持ったキラルネマチック相、コレステリック相などを示すことが好ましい。液晶化合物については後段で詳述するが、第1パターン光学異方性層16aで使用される液晶化合物としては、ネマチック液晶相を示す液晶化合物が好ましく用いられる。なお、上記相を形成する際には、ネマチック液晶相を示す液晶化合物と後述するキラル剤とを混合したものが使用されることが好ましい。
(First pattern optical anisotropic layer)
The first pattern optically anisotropic layer 16a includes a twisted liquid crystal compound having a thickness direction as a helical axis. The first patterned optically anisotropic layer 16a preferably exhibits a chiral nematic phase having a so-called spiral structure, a cholesteric phase, or the like. The liquid crystal compound will be described in detail later. As the liquid crystal compound used in the first pattern optical anisotropic layer 16a, a liquid crystal compound exhibiting a nematic liquid crystal phase is preferably used. In addition, when forming the said phase, it is preferable to use what mixed the liquid crystal compound which shows a nematic liquid crystal phase, and the chiral agent mentioned later.
 第1パターン光学異方性層16aには、後述する第2パターン光学異方性層18aと同様に、第1位相差領域と第2位相差領域とがあり、それぞれの領域に含まれる液晶化合物の捩れ方向は同じ方向である。
 より具体的には、図2(B)に示すように、第1パターン光学異方性層16aの第1位相差領域(領域24a)において、第2パターン光学異方性層18a側とは反対側の表面161aでの面内遅相軸と、第2パターン光学異方性層18a側の表面162aでの面内遅相軸とは、後述する所定の捩れ角θ1Axをなす。第1パターン光学異方性層16aの第1位相差領域(領域24a)において面内遅相軸は所定角度回転し、図2(B)の矢印に示すように、液晶化合物の捩れ方向は時計回り(右捩れ)を示す。
 一方、第1パターン光学異方性層16aの第2位相差領域(領域28a)においても、図2(C)に示すように、第2パターン光学異方性層18a側とは反対側の表面161aでの面内遅相軸と、第2パターン光学異方性層18a側の表面162aでの面内遅相軸とは、後述する所定の捩れ角θ1Ayをなす。そして、図2(C)の矢印に示すように、液晶化合物の捩れ方向は時計回り(右捩れ)を示す。
 なお、捩れ方向は、図2(A)の白抜きの矢印から観察し、第1パターン光学異方性層16a中の手前側の表面(表面161a)での面内遅相軸を基準に右捩れか、左捩れを判断する。
The first pattern optical anisotropic layer 16a has a first retardation region and a second retardation region, as in a second pattern optical anisotropic layer 18a described later, and the liquid crystal compound contained in each region. The twist directions of the same are the same.
More specifically, as shown in FIG. 2B, the first phase difference region (region 24a) of the first pattern optical anisotropic layer 16a is opposite to the second pattern optical anisotropic layer 18a side. The in-plane slow axis on the surface 161a on the side and the in-plane slow axis on the surface 162a on the second pattern optical anisotropic layer 18a side form a predetermined twist angle θ1Ax described later. In the first retardation region (region 24a) of the first patterned optically anisotropic layer 16a, the in-plane slow axis rotates by a predetermined angle, and the twist direction of the liquid crystal compound is clockwise as shown by the arrow in FIG. Shows rotation (right twist).
On the other hand, also in the second retardation region (region 28a) of the first pattern optical anisotropic layer 16a, as shown in FIG. 2C, the surface opposite to the second pattern optical anisotropic layer 18a side. The in-plane slow axis at 161a and the in-plane slow axis at the surface 162a on the second pattern optical anisotropic layer 18a side form a predetermined twist angle θ1Ay described later. As shown by the arrow in FIG. 2C, the twist direction of the liquid crystal compound shows clockwise rotation (right twist).
Note that the twist direction is observed from the white arrow in FIG. 2A, and the right direction is based on the in-plane slow axis on the front surface (surface 161a) in the first pattern optical anisotropic layer 16a. Judge the twist or the left twist.
 第1パターン光学異方性層16aの第1位相差領域(領域24a)における第2パターン光学異方性層18a側とは反対側の表面(表面161a)での面内遅相軸と、第1パターン光学異方性層16aの第2位相差領域における第2パターン光学異方性層18a側とは反対側の表面(161a)での面内遅相軸とは直交する。直交の定義は、上述の通りである。 An in-plane slow axis on the surface (surface 161a) opposite to the second pattern optical anisotropic layer 18a side in the first retardation region (region 24a) of the first pattern optical anisotropic layer 16a; The in-plane slow axis on the surface (161a) opposite to the second pattern optical anisotropic layer 18a side in the second retardation region of the one pattern optical anisotropic layer 16a is orthogonal. The definition of orthogonal is as described above.
 液晶化合物の捩れ角(液晶化合物の配向方向の捩れ角)は26.5±10.0°であり、本発明の位相差板を円偏光板として表示装置に貼り合わせた際の色味づきがより少ない点(以後、単に「本発明の効果がより優れる点」とも称する)で、26.5±8.0°がより好ましく、26.5±6.0°がさらに好ましい。
 捩れ角が16.5°未満の場合および36.5°超の場合、本発明の位相差板を円偏光板として表示装置に貼り合わせた際の色味づきが大きい。
 なお、捩れ角の測定方法は、Axometrics社のAxoscan(ポラリメーター)装置を用い同社の解析ソフトウエアを用いて測定する。
 また、液晶化合物が捩れ配向するとは、第1パターン光学異方性層16aの厚み方向を軸として、第1パターン光学異方性層16aの一方の主表面から他方の主表面までの液晶化合物が捩れることを意図する。それに伴い、液晶性化合物の配向方向(面内遅相軸方向)が、第1パターン光学異方性層16aの厚さ方向の位置によって異なる。
The twist angle of the liquid crystal compound (the twist angle in the alignment direction of the liquid crystal compound) is 26.5 ± 10.0 °, and the tint when the retardation plate of the present invention is bonded to a display device as a circularly polarizing plate is displayed. In terms of fewer points (hereinafter, simply referred to as “the point where the effect of the present invention is more excellent”), 26.5 ± 8.0 ° is more preferable, and 26.5 ± 6.0 ° is more preferable.
When the twist angle is less than 16.5 ° and more than 36.5 °, the tint when the retardation plate of the present invention is bonded to a display device as a circularly polarizing plate is large.
In addition, the measuring method of a twist angle uses the Axoscan (polarimeter) apparatus of Axometrics, and measures it using the analysis software of the company.
In addition, the twisted orientation of the liquid crystal compound means that the liquid crystal compound from one main surface to the other main surface of the first pattern optical anisotropic layer 16a with the thickness direction of the first pattern optical anisotropic layer 16a as an axis. Intended to twist. Accordingly, the alignment direction (in-plane slow axis direction) of the liquid crystal compound varies depending on the position in the thickness direction of the first pattern optical anisotropic layer 16a.
 波長550nmで測定した第1パターン光学異方性層16aの屈折率異方性Δn1と第1パターン光学異方性層16aの厚みd1との積Δn1・d1の値は、下記式(1)を満たす。つまり、第1パターン光学異方性層16aの第1位相差領域(領域24a)および第2位相差領域(領域28a)における積Δn1・d1の値は、いずれも以下の式(1)を満たす。
 式(1) 252nm≦Δn1・d1≦312nm
 なかでも、本発明の効果がより優れる点で、式(1A)を満足することが好ましく、さらに式(1B)を満足することがより好ましい。
 式(1A) 262nm≦Δn1・d1≦302nm
 式(1B) 272nm≦Δn1・d1≦292nm
 Δn1・d1が252nm未満および312nm超の場合、本発明の位相差板を円偏光板として表示装置に貼り合わせた際の色味づきが大きい。
 なお、屈折率異方性Δnとは、光学異方性層の屈折率異方性を意味する。
 また、Δn1・d1の測定方法は、捩れ角の測定方法と同様にAxometrics社のAxoscan(ポラリメーター)装置を用い同社の解析ソフトウエアを用いて測定する。
The product Δn1 · d1 of the refractive index anisotropy Δn1 of the first pattern optical anisotropic layer 16a and the thickness d1 of the first pattern optical anisotropic layer 16a measured at a wavelength of 550 nm is expressed by the following formula (1). Fulfill. That is, the values of the products Δn1 · d1 in the first retardation region (region 24a) and the second retardation region (region 28a) of the first patterned optically anisotropic layer 16a both satisfy the following formula (1). .
Formula (1) 252 nm ≦ Δn1 · d1 ≦ 312 nm
Especially, it is preferable to satisfy | fill Formula (1A) by the point which the effect of this invention is more excellent, and it is more preferable to satisfy Formula (1B).
Formula (1A) 262 nm ≦ Δn1 · d1 ≦ 302 nm
Formula (1B) 272 nm ≦ Δn1 · d1 ≦ 292 nm
When Δn1 · d1 is less than 252 nm and more than 312 nm, the tint when the retardation plate of the present invention is bonded to a display device as a circularly polarizing plate is large.
The refractive index anisotropy Δn means the refractive index anisotropy of the optically anisotropic layer.
In addition, the measurement method of Δn1 · d1 is measured using the Axoscan (polarimeter) apparatus of Axometrics and the analysis software of the same company as the measurement method of the twist angle.
(第2パターン光学異方性層)
 第2パターン光学異方性層18aは、上記第1パターン光学異方性層16aと同様に、厚み方向を螺旋軸とする捩れ配向した液晶化合物を含む。液晶化合物に関する説明は、上述の通りである。
(Second pattern optical anisotropic layer)
Similar to the first pattern optical anisotropic layer 16a, the second pattern optical anisotropic layer 18a includes a twist-aligned liquid crystal compound having a thickness direction as a helical axis. The description regarding the liquid crystal compound is as described above.
 第1パターン光学異方性層16aの第2パターン光学異方性層18a側の表面162aでの面内遅相軸と、第2パターン光学異方性層18aの第1パターン光学異方性層16a側の表面181aでの面内遅相軸とは平行に配置される。なお、第1位相差領域および第2位相差領域それぞれにおいて、上記関係を満たす。
 より具体的には、第1パターン光学異方性層16aの第1位相差領域(領域24a)における表面162aでの面内遅相軸と、第2パターン光学異方性層18aの第1位相差領域(領域26a)における表面181aでの面内遅相軸とは平行に配置され、かつ、第1パターン光学異方性層16aの第2位相差領域(領域28a)における表面162aでの面内遅相軸と、第2パターン光学異方性層18aの第2位相差領域(領域30a)における表面181aでの面内遅相軸とは平行に配置される。
The in-plane slow axis at the surface 162a on the second pattern optical anisotropic layer 18a side of the first pattern optical anisotropic layer 16a, and the first pattern optical anisotropic layer of the second pattern optical anisotropic layer 18a The in-plane slow axis on the surface 181a on the 16a side is arranged in parallel. Note that the above relationship is satisfied in each of the first phase difference region and the second phase difference region.
More specifically, the in-plane slow axis at the surface 162a in the first retardation region (region 24a) of the first pattern optical anisotropic layer 16a and the first position of the second pattern optical anisotropic layer 18a. The surface at the surface 162a in the second phase difference region (region 28a) of the first pattern optical anisotropic layer 16a is arranged in parallel with the in-plane slow axis at the surface 181a in the phase difference region (region 26a). The inner slow axis and the in-plane slow axis at the surface 181a in the second retardation region (region 30a) of the second patterned optically anisotropic layer 18a are arranged in parallel.
 第2パターン光学異方性層18aには、上述した第1パターン光学異方性層16aと同様に、第1位相差領域と第2位相差領域とがあり、それぞれの領域に含まれる液晶化合物の捩れ方向は同じである。
 より具体的には、図2(B)に示すように、第2パターン光学異方性層18aの第1位相差領域(領域26a)において、第1パターン光学異方性層16a側の表面181aでの面内遅相軸と、第2パターン光学異方性層18a側とは反対側の表面182aでの面内遅相軸とは、後述する所定の捩れ角θ2Axをなす。つまり、第2パターン光学異方性層18aの第1位相差領域(領域26a)において面内遅相軸は所定角度回転し、図2(B)の矢印に示すように、液晶化合物の捩れ方向は時計回り(右捩れ)を示す。
 一方、第2パターン光学異方性層18aの第2位相差領域(領域30a)においても、図2(C)に示すように、第1パターン光学異方性層16a側の表面181aでの面内遅相軸と、第2パターン光学異方性層18a側とは反対側の表面182aでの面内遅相軸とは、後述する所定の捩れ角θ2Ayをなす。そして、図2(C)の矢印に示すように、液晶化合物の捩れ方向は時計回り(右捩れ)を示す。
 なお、捩れ方向は、図2(A)の白抜きの矢印から観察し、第2パターン光学異方性層18a中の手前側の表面(表面181a)での面内遅相軸を基準に右捩れか、左捩れを判断する。
Similarly to the first pattern optical anisotropic layer 16a described above, the second pattern optical anisotropic layer 18a has a first retardation region and a second retardation region, and a liquid crystal compound contained in each region. The twist direction of the same is the same.
More specifically, as shown in FIG. 2B, in the first retardation region (region 26a) of the second pattern optical anisotropic layer 18a, the surface 181a on the first pattern optical anisotropic layer 16a side. And the in-plane slow axis on the surface 182a opposite to the second pattern optical anisotropic layer 18a side form a predetermined twist angle θ2Ax described later. That is, the in-plane slow axis rotates by a predetermined angle in the first retardation region (region 26a) of the second patterned optically anisotropic layer 18a, and the twist direction of the liquid crystal compound as shown by the arrow in FIG. Indicates clockwise rotation (right twist).
On the other hand, also in the second retardation region (region 30a) of the second pattern optical anisotropic layer 18a, as shown in FIG. 2C, the surface at the surface 181a on the first pattern optical anisotropic layer 16a side. The inner slow axis and the in-plane slow axis on the surface 182a opposite to the second pattern optical anisotropic layer 18a side form a predetermined twist angle θ2Ay described later. As shown by the arrow in FIG. 2C, the twist direction of the liquid crystal compound shows clockwise rotation (right twist).
The twist direction is observed from the white arrow in FIG. 2 (A), and the right side with respect to the in-plane slow axis on the front surface (surface 181a) in the second pattern optical anisotropic layer 18a. Judge the twist or the left twist.
 液晶化合物の捩れ角(液晶化合物の配向方向の捩れ角)は78.6±10.0°であり、本発明の効果がより優れる点で、78.6±8.0°がより好ましく、78.6±6.0°がさらに好ましい。
 捩れ角が68.6°未満の場合および88.6°超の場合、本発明の位相差板を円偏光板として表示装置に貼り合わせた際の色味づきが大きい。
 なお、捩れ角の測定方法は、Axometrics社のAxoscan(ポラリメーター)装置を用い同社の解析ソフトウエアを用いて測定する。
The twist angle of the liquid crystal compound (the twist angle in the alignment direction of the liquid crystal compound) is 78.6 ± 10.0 °, and 78.6 ± 8.0 ° is more preferable in terms of more excellent effects of the present invention. More preferably, 6 ± 6.0 °.
When the twist angle is less than 68.6 ° and more than 88.6 °, the tint when the retardation plate of the present invention is bonded to a display device as a circularly polarizing plate is large.
In addition, the measuring method of a twist angle uses the Axoscan (polarimeter) apparatus of Axometrics, and measures it using the analysis software of the company.
 なお、第2パターン光学異方性層18a中の液晶化合物の捩れ方向は、上述した第1パターン光学異方性層16a中の液晶化合物の捩れ方向と同一である。例えば、第1パターン光学異方性層16a中の液晶化合物が捩れ方向が右捩れであれば、第2パターン光学異方性層18a中の液晶化合物の捩れ方向も右捩れとなる。 The twist direction of the liquid crystal compound in the second pattern optical anisotropic layer 18a is the same as the twist direction of the liquid crystal compound in the first pattern optical anisotropic layer 16a. For example, if the twist direction of the liquid crystal compound in the first pattern optical anisotropic layer 16a is right twist, the twist direction of the liquid crystal compound in the second pattern optical anisotropic layer 18a is also right twist.
 波長550nmで測定した第2パターン光学異方性層18aの屈折率異方性Δn2と第2パターン光学異方性層18aの厚みd2との積Δn2・d2の値は、下記式(2)を満たす。つまり、第2パターン光学異方性層18aの第1位相差領域(領域26a)および第2位相差領域(領域30a)における積Δn2・d2の値は、いずれも以下の式(2)を満たす。
 式(2) 110nm≦Δn2・d2≦170nm
 なかでも、本発明の効果がより優れる点で、式(2A)を満足することが好ましく、さらに式(2B)を満足することがより好ましい。
 式(2A) 120nm≦Δn2・d2≦160nm
 式(2B) 130nm≦Δn2・d2≦150nm
 Δn2・d2が110nm未満および170nm超の場合、本発明の位相差板を円偏光板として表示装置に貼り合わせた際の色味づきが大きい。
 また、Δn2・d2の測定方法は、捩れ角の測定方法と同様にAxometrics社のAxoscan(ポラリメーター)装置を用い同社の解析ソフトウエアを用いて測定する。
The product Δn2 · d2 of the refractive index anisotropy Δn2 of the second pattern optical anisotropic layer 18a measured at a wavelength of 550 nm and the thickness d2 of the second pattern optical anisotropic layer 18a is expressed by the following formula (2). Fulfill. That is, the values of the products Δn2 · d2 in the first retardation region (region 26a) and the second retardation region (region 30a) of the second patterned optically anisotropic layer 18a both satisfy the following formula (2). .
Formula (2) 110 nm ≦ Δn 2 · d 2 ≦ 170 nm
Especially, it is preferable to satisfy | fill Formula (2A) by the point which the effect of this invention is more excellent, and it is more preferable to satisfy Formula (2B).
Formula (2A) 120 nm ≦ Δn 2 · d 2 ≦ 160 nm
Formula (2B) 130 nm ≦ Δn 2 · d 2 ≦ 150 nm
When Δn2 · d2 is less than 110 nm and more than 170 nm, the tint when the retardation plate of the present invention is bonded to a display device as a circularly polarizing plate is large.
In addition, the measuring method of Δn2 · d2 is measured by using the Axoscan (polarimeter) device of Axometrics and the analysis software of the same company as the measuring method of the twist angle.
 上述した第1パターン光学異方性層16a中の第1位相差領域および第2位相差領域における液晶化合物の捩れ方向と、第2パターン光学異方性層18a中の第1位相差領域および第2位相差領域における液晶化合物の捩れ方向が同じである。 The twist direction of the liquid crystal compound in the first phase difference region and the second phase difference region in the first pattern optical anisotropic layer 16a described above, and the first phase difference region and the first phase difference in the second pattern optical anisotropic layer 18a. The twist direction of the liquid crystal compound in the two phase difference region is the same.
 なお、図2においては、第1パターン光学異方性層16aおよび第2パターン光学異方性層18a中の液晶化合物の捩れ方向が右捩れの場合について詳述したが、この態様に限定されず、第1パターン光学異方性層16aおよび第2パターン光学異方性層18a中の液晶化合物の捩れ方向が左捩れであってもよい。
 なお、図2において、右捩れとは、第1パターン光学異方性層16aから第2パターン光学異方性層18aの方向に向かって観察した際の右捩れ(時計回りの捩れ)を意図する。
In FIG. 2, the case where the twist direction of the liquid crystal compound in the first pattern optical anisotropic layer 16a and the second pattern optical anisotropic layer 18a is right twist is described in detail, but the present invention is not limited to this mode. The twist direction of the liquid crystal compound in the first pattern optical anisotropic layer 16a and the second pattern optical anisotropic layer 18a may be left twist.
In FIG. 2, the right twist means a right twist (clockwise twist) when observing from the first pattern optical anisotropic layer 16a toward the second pattern optical anisotropic layer 18a. .
 なお、第1パターン光学異方性層16aと第2パターン光学異方性層18aとの間には後述する配向膜が配置されていてもよいが、図1に示すように、第1パターン光学異方性層16aと第2パターン光学異方性層18aとが隣接し、第1パターン光学異方性層16aと第2パターン光学異方性層18aとの間に、実質的に配向膜を有さないことが好ましい。第1パターン光学異方性層16aと第2パターン光学異方性層18aとの間に実質的に配向膜がない場合、それぞれの光学異方性層に含まれる化合物間での共有結合を利用できるので、密着性により優れる。
 また、上述したように、第1パターン光学異方性層16aは捩れ配向した液晶化合物を含むことから、ラビング処理を実施せずに、所望の位相差板を得ることができる。より具体的には、第1パターン光学異方性層16aを作製した後、その上に液晶化合物を用いて第2パターン光学異方性層18aを形成する場合、第1パターン光学異方性層16aの表面162aと表面161aとでの面内遅相軸の方向が変わっており、ラビング処理をすることなく、表面162a上に液晶化合物を塗布すれば、表面162aの配向状態に沿って液晶化合物が配向し、所望の位相差板を得ることができる。
 なお、本明細書において「実質的に配向膜がない」とは、配向膜として機能させるためだけに形成された膜を含んでいないことを意味する。下方に位置する層の表面が、上方に位置する層の液晶性化合物が配向するのに寄与する場合であっても、下方に位置する層が配向膜としてのみ用いるために形成されていない限り、本発明に含まれる。
An alignment film described later may be disposed between the first pattern optical anisotropic layer 16a and the second pattern optical anisotropic layer 18a, but as shown in FIG. The anisotropic layer 16a and the second patterned optical anisotropic layer 18a are adjacent to each other, and an alignment film is substantially formed between the first patterned optical anisotropic layer 16a and the second patterned optical anisotropic layer 18a. It is preferable not to have it. When there is substantially no alignment film between the first pattern optical anisotropic layer 16a and the second pattern optical anisotropic layer 18a, a covalent bond between compounds contained in each optical anisotropic layer is used. Because it can, it is more excellent in adhesion.
Further, as described above, since the first pattern optical anisotropic layer 16a includes the twisted liquid crystal compound, a desired retardation plate can be obtained without performing the rubbing treatment. More specifically, after forming the first pattern optical anisotropic layer 16a, when forming the second pattern optical anisotropic layer 18a using a liquid crystal compound thereon, the first pattern optical anisotropic layer If the liquid crystal compound is applied on the surface 162a without rubbing, the liquid crystal compound is aligned along the alignment state of the surface 162a. Can be oriented to obtain a desired retardation plate.
In this specification, “substantially no alignment film” means that a film formed only for functioning as an alignment film is not included. Even when the surface of the lower layer contributes to the alignment of the liquid crystalline compound of the upper layer, unless the lower layer is formed only for use as an alignment film, It is included in the present invention.
 第1パターン光学異方性層16aまたは第2パターン光学異方性層18aの形成に用いられる液晶性化合物の種類については、特に制限されない。例えば、低分子液晶性化合物を液晶状態においてネマチック配向に形成後、光架橋や熱架橋によって固定化して得られる光学異方性層や、高分子液晶性化合物を液晶状態においてネマチック配向に形成後、冷却することによって当該配向を固定化して得られる光学異方性層を用いることもできる。 The type of liquid crystal compound used for forming the first pattern optical anisotropic layer 16a or the second pattern optical anisotropic layer 18a is not particularly limited. For example, after forming a low molecular weight liquid crystalline compound in a nematic orientation in a liquid crystal state, an optically anisotropic layer obtained by fixing by photocrosslinking or thermal crosslinking, or after forming a polymer liquid crystalline compound in a nematic orientation in a liquid crystal state, An optically anisotropic layer obtained by fixing the orientation by cooling can also be used.
 一般的に、液晶化合物はその形状から、棒状タイプ(棒状液晶化合物)と円盤状タイプ(ディスコティック液晶化合物)に分類できる。さらにそれぞれ低分子と高分子タイプがある。高分子とは一般に重合度が100以上のものを指す(高分子物理・相転移ダイナミクス,土井 正男 著,2頁,岩波書店,1992)。本発明では、いずれの液晶化合物を用いることもできるが、棒状液晶化合物またはディスコティック液晶化合物を用いるのが好ましい。2種以上の棒状液晶化合物、2種以上のディスコティック液晶化合物、または棒状液晶化合物とディスコティック液晶化合物との混合物を用いてもよい。
 なお、棒状液晶化合物としては、例えば、特表平11-513019号公報の請求項1や特開2005-289980号公報の段落[0026]~[0098]に記載のものを好ましく用いることができ、ディスコティック液晶化合物としては、例えば、特開2007-108732号公報の段落[0020]~[0067]や特開2010-244038号公報の段落[0013]~[0108]に記載のものを好ましく用いることができるが、これらに限定されない。
 第1パターン光学異方性層16aまたは第2パターン光学異方性層18aは、温度変化や湿度変化を小さくできることから、重合性基を有する棒状液晶化合物またはディスコティック液晶化合物を用いて形成することがより好ましい。液晶化合物は2種類以上の混合物でもよく、その場合少なくとも1つが2以上の重合性基を有していることが好ましい。
 つまり、第1パターン光学異方性層16aまたは第2パターン光学異方性層18aは、重合性基を有する棒状液晶化合物またはディスコティック液晶化合物が重合等によって固定されて形成された層であることが好ましく、この場合、層となった後はもはや液晶性を示す必要はない。
 ディスコティック液晶化合物および棒状液晶化合物に含まれる重合性基の種類は特に制限されず、付加重合反応が可能な官能基が好ましく、重合性エチレン性不飽和基または環重合性基が好ましい。より具体的には、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基などが好ましく挙げられ、(メタ)アクリロイル基がより好ましい。
In general, liquid crystal compounds can be classified into a rod-shaped type (bar-shaped liquid crystal compound) and a disk-shaped type (discotic liquid crystal compound) based on their shapes. In addition, there are low and high molecular types, respectively. Polymer generally refers to a polymer having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, 2 pages, Iwanami Shoten, 1992). In the present invention, any liquid crystal compound can be used, but a rod-like liquid crystal compound or a discotic liquid crystal compound is preferably used. Two or more kinds of rod-like liquid crystal compounds, two or more kinds of discotic liquid crystal compounds, or a mixture of a rod-like liquid crystal compound and a discotic liquid crystal compound may be used.
As the rod-like liquid crystal compound, for example, those described in claim 1 of JP-A No. 11-53019 and paragraphs [0026] to [0098] of JP-A-2005-289980 can be preferably used. As the discotic liquid crystal compound, for example, those described in paragraphs [0020] to [0067] of JP-A-2007-108732 and paragraphs [0013] to [0108] of JP-A-2010-244038 are preferably used. However, it is not limited to these.
The first pattern optical anisotropic layer 16a or the second pattern optical anisotropic layer 18a can be formed by using a rod-like liquid crystal compound or a discotic liquid crystal compound having a polymerizable group, since the temperature change and the humidity change can be reduced. Is more preferable. The liquid crystal compound may be a mixture of two or more types, and in that case, at least one preferably has two or more polymerizable groups.
That is, the first pattern optical anisotropic layer 16a or the second pattern optical anisotropic layer 18a is a layer formed by fixing a rod-like liquid crystal compound having a polymerizable group or a discotic liquid crystal compound by polymerization or the like. In this case, it is no longer necessary to exhibit liquid crystallinity after forming a layer.
The kind of the polymerizable group contained in the discotic liquid crystal compound and the rod-like liquid crystal compound is not particularly limited, and a functional group capable of addition polymerization reaction is preferable, and a polymerizable ethylenically unsaturated group or a ring polymerizable group is preferable. More specifically, a (meth) acryloyl group, a vinyl group, a styryl group, an allyl group, etc. are mentioned preferably, and a (meth) acryloyl group is more preferable.
 上述のパターン光学異方性層14aの形成方法としては、以下の好適な態様が例示されるが、これらに限定されることなく、各種公知の方法(例えば、液晶化合物を含む、第1パターン光学異方性層形成用組成物および第2パターン光学異方性層形成用組成物を用いる方法)を用いて形成できる。
 第1の好適態様は、液晶性化合物の配向を制御する複数の作用を利用し、その後、外部刺激(熱処理等)によりいずれかの作用を消失させて、所定の配向制御作用を支配的にする方法である。上記の方法としては、例えば、配向膜による配向制御能と、液晶性化合物中に添加される配向制御剤の配向制御能との複合作用により、液晶性化合物を所定の配向状態とし、それを固定して一方の位相差領域を形成した後、外部刺激(熱処理等)により、いずれかの作用(例えば配向制御剤による作用)を消失させて、他の配向制御作用(配向膜による作用)を支配的にし、それによって他の配向状態を実現し、それを固定して他方の位相差領域を形成する。この方法の詳細については、特開2012-008170号公報の段落[0017]~[0029]に記載があり、その内容は本明細書に参照として取り込まれる。
Examples of the method for forming the patterned optically anisotropic layer 14a include the following preferred embodiments, but are not limited thereto, and various known methods (for example, first pattern optics including a liquid crystal compound) And a method using a composition for forming an anisotropic layer and a composition for forming a second pattern optically anisotropic layer).
The first preferred embodiment utilizes a plurality of actions for controlling the alignment of the liquid crystal compound, and then eliminates any action by an external stimulus (heat treatment, etc.) to make the predetermined alignment control action dominant. Is the method. As the above method, for example, the liquid crystalline compound is brought into a predetermined alignment state by the combined action of the alignment control ability by the alignment film and the alignment control ability of the alignment controller added to the liquid crystalline compound, and then fixed. After forming one phase difference region, any action (for example, action by the alignment control agent) disappears by external stimulation (heat treatment, etc.), and the other orientation control action (action by the alignment film) dominates. Thus, another alignment state is realized and fixed to form the other retardation region. Details of this method are described in paragraphs [0017] to [0029] of Japanese Patent Application Laid-Open No. 2012-008170, the contents of which are incorporated herein by reference.
 第2の好適態様は、パターン配向膜を利用する態様である。この態様では、互いに異なる配向制御能を有するパターン配向膜を形成し、その上に、液晶性化合物を配置し、液晶性化合物を配向させる。液晶性化合物は、パターン配向膜のそれぞれの配向制御能によって、互いに異なる配向状態を達成する。それぞれの配向状態を固定することで、配向膜のパターンに応じて第1および第2の位相差領域のパターンが形成される。パターン配向膜は、印刷法、ラビング配向膜に対するマスクラビング、光配向膜に対するマスク露光等を利用して形成することができる。大掛かりな設備が不要である点や製造容易な点で、印刷法を利用する方法が好ましい。この方法の詳細については、特開2012-032661号公報の段落[0166]~[0181]に記載があり、その内容は本明細書に参照として取り込まれる。 The second preferred embodiment is an embodiment using a pattern alignment film. In this embodiment, pattern alignment films having different alignment control capabilities are formed, a liquid crystalline compound is disposed thereon, and the liquid crystalline compound is aligned. The liquid crystalline compounds achieve different alignment states depending on the alignment control ability of the pattern alignment film. By fixing each alignment state, the pattern of the 1st and 2nd phase difference area | region is formed according to the pattern of an alignment film. The pattern alignment film can be formed using a printing method, mask rubbing for the rubbing alignment film, mask exposure for the photo alignment film, or the like. A method using a printing method is preferable in that large-scale equipment is not required and manufacturing is easy. Details of this method are described in paragraphs [0166] to [0181] of JP2012-032661A, the contents of which are incorporated herein by reference.
 第3の好適態様としては、例えば、配向膜中に光酸発生剤を添加する態様である。この例では、配向膜中に光酸発生剤を添加し、パターン露光により、光酸発生剤が分解して酸性化合物が発生した領域と、発生していない領域とを形成する。光未照射部分では光酸発生剤はほぼ未分解のままであり、配向膜材料、液晶性化合物、および必要に応じて添加される配向制御剤の相互作用が配向状態を支配し、液晶性化合物を、その遅相軸がラビング方向と直交する方向に配向させる。配向膜へ光照射し、酸性化合物が発生すると、その相互作用はもはや支配的ではなくなり、ラビング配向膜のラビング方向が配向状態を支配し、液晶性化合物は、その遅相軸をラビング方向と平行にして平行配向する。配向膜に用いられる光酸発生剤としては、水溶性の化合物が好ましく用いられる。使用可能な光酸発生剤の例には、Prog. Polym. Sci., 23巻、1485頁(1998年)に記載の化合物が含まれる。光酸発生剤としては、ピリジニウム塩、ヨードニウム塩及びスルホニウム塩が特に好ましく用いられる。この方法の詳細については、特願2010-289360号明細書に記載があり、その内容は本明細書に参照として取り込まれる。 As a third preferred embodiment, for example, a photo acid generator is added to the alignment film. In this example, a photoacid generator is added to the alignment film, and pattern exposure exposes a region where the photoacid generator is decomposed to generate an acidic compound and a region where no acid compound is generated. The photoacid generator remains almost undecomposed in the non-irradiated portion, and the interaction between the alignment film material, the liquid crystal compound, and the alignment control agent added as necessary dominates the alignment state, and the liquid crystal compound Is oriented in a direction whose slow axis is perpendicular to the rubbing direction. When the alignment film is irradiated with light and an acidic compound is generated, the interaction is no longer dominant, the rubbing direction of the rubbing alignment film controls the alignment state, and the liquid crystalline compound has its slow axis parallel to the rubbing direction. To parallel orientation. As the photoacid generator used in the alignment film, a water-soluble compound is preferably used. Examples of photoacid generators that can be used include Prog. Polym. Sci. , Vol. 23, p. 1485 (1998). As the photoacid generator, pyridinium salts, iodonium salts and sulfonium salts are particularly preferably used. Details of this method are described in Japanese Patent Application No. 2010-289360, the contents of which are incorporated herein by reference.
[重合開始剤]
 配向(好ましくは垂直配向)させた液晶性化合物は、配向状態を維持して固定することが好ましい。固定化は、重合開始剤を用いて、液晶性化合物に導入した重合性基の重合反応により実施することが好ましい。重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応とが含まれる。光重合反応が好ましい。
 重合開始剤の使用量は、組成物第1パターン光学異方性層形成用組成物または第2パターン光学異方性層形成用組成物)の固形分の0.01~20質量%であることが好ましく、0.5~5質量%であることがさらに好ましい。
[Polymerization initiator]
The aligned (preferably vertically aligned) liquid crystalline compound is preferably fixed while maintaining the alignment state. The immobilization is preferably carried out by a polymerization reaction of a polymerizable group introduced into the liquid crystal compound using a polymerization initiator. The polymerization reaction includes a thermal polymerization reaction using a thermal polymerization initiator and a photopolymerization reaction using a photopolymerization initiator. A photopolymerization reaction is preferred.
The amount of the polymerization initiator used is 0.01 to 20% by mass of the solid content of the composition for forming the first pattern optical anisotropic layer or the composition for forming the second pattern optical anisotropic layer). It is more preferable that the content is 0.5 to 5% by mass.
[キラル剤]
 第1パターン光学異方性層16aおよび第2パターン光学異方性層18aを形成する際に、必要に応じて、上記液晶化合物とともに、所望によりキラル剤を使用していてもよい。キラル剤は、液晶化合物を捩れ配向させるために添加されるが、勿論、液晶性化合物が、分子内に不斉炭素を有する等、光学活性を示す化合物である場合は、キラル剤の添加は不要である。また、製造方法によっては、および捩れ角度によっては、キラル剤の添加は不要である。
 キラル剤としては、併用する液晶化合物を相溶するものであれば、特に構造についての制限はない。公知のキラル剤(例えば、日本学術振興会第142委員会編「液晶デバイスハンドブック」,第3章4-3項,TN、STN用カイラル剤,199頁,1989年に記載)のいずれも用いることができる。キラル剤は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物あるいは面性不斉化合物もキラル剤として用いることができる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファンおよびこれらの誘導体が挙げられる。また、キラル剤は、液晶性を有していてもよい。
[Chiral agent]
When forming the 1st pattern optical anisotropic layer 16a and the 2nd pattern optical anisotropic layer 18a, a chiral agent may be used if desired with the above-mentioned liquid crystal compound as needed. The chiral agent is added to twist and align the liquid crystal compound. Of course, if the liquid crystalline compound is an optically active compound such as having an asymmetric carbon in the molecule, the addition of the chiral agent is unnecessary. It is. Further, depending on the production method and the twist angle, it is not necessary to add a chiral agent.
The chiral agent is not particularly limited as long as it is compatible with the liquid crystal compound used in combination. Use any of known chiral agents (for example, “Liquid Crystal Device Handbook” edited by Japan Society for the Promotion of Science 142nd Committee, Chapter 3-4-3, TN, chiral agent for STN, page 199, 1989) Can do. A chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound containing no asymmetric carbon atom can also be used as the chiral agent. Examples of the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof. Moreover, the chiral agent may have liquid crystallinity.
[光学異方性層の他の添加剤]
 上記の液晶性化合物と共に、可塑剤、界面活性剤、重合性モノマー等を併用して、塗工膜の均一性、膜の強度、液晶性化合物の配向性等を向上させることができる。これらの素材は液晶性化合物と相溶性を有し、配向を阻害しないことが好ましい。
 また、液晶化合物を水平配向、垂直配向状態とするために、水平配向、垂直配向を促進する添加剤(配向制御剤)を使用してもよい。添加剤としては各種公知のものを使用できる。
[Other additives for optically anisotropic layer]
Along with the liquid crystal compound, a plasticizer, a surfactant, a polymerizable monomer, and the like can be used in combination to improve the uniformity of the coating film, the strength of the film, the orientation of the liquid crystal compound, and the like. These materials are preferably compatible with the liquid crystal compound and do not inhibit the alignment.
Moreover, in order to make a liquid crystal compound into a horizontal alignment and a vertical alignment state, you may use the additive (alignment control agent) which accelerates a horizontal alignment and a vertical alignment. Various known additives can be used as the additive.
 重合性モノマーとしては、ラジカル重合性またはカチオン重合性の化合物が挙げられる。好ましくは、多官能性ラジカル重合性モノマーであり、上記の重合性基含有の液晶性化合物と共重合性のものが好ましい。例えば、特開2002-296423号公報明細書中の段落番号[0018]~[0020]記載のものが挙げられる。上記化合物の添加量は、液晶性分子に対して一般に1~50質量%の範囲にあり、5~30質量%の範囲にあることが好ましい。 Examples of the polymerizable monomer include radically polymerizable or cationically polymerizable compounds. Preferably, it is a polyfunctional radically polymerizable monomer and is preferably copolymerizable with the polymerizable group-containing liquid crystalline compound. Examples thereof include those described in paragraph numbers [0018] to [0020] in JP-A No. 2002-296423. The amount of the compound added is generally in the range of 1 to 50% by mass and preferably in the range of 5 to 30% by mass with respect to the liquid crystal molecules.
 界面活性剤としては、従来公知の化合物が挙げられるが、特にフッ素系化合物が好ましい。具体的には、例えば特開2001-330725号公報明細書中の段落番号[0028]~[0056]記載の化合物、特願2003-295212号明細書中の段落番号[0069]~[0126]記載の化合物が挙げられる。 Examples of the surfactant include conventionally known compounds, and fluorine compounds are particularly preferable. Specifically, for example, compounds described in paragraphs [0028] to [0056] in JP-A-2001-330725, and paragraphs [0069] to [0126] in Japanese Patent Application No. 2003-295212 are described. The compound of this is mentioned.
 液晶性化合物とともに使用するポリマーは、塗布液を増粘できることが好ましい。ポリマーの例としては、セルロースエステルを挙げることができる。セルロースエステルの好ましい例としては、特開2000-155216号公報明細書中の段落番号[0178]記載のものが挙げられる。液晶性化合物の配向を阻害しないように、上記ポリマーの添加量は、液晶性分子に対して0.1~10質量%の範囲にあることが好ましく、0.1~8質量%の範囲にあることがより好ましい。
 液晶性化合物のディスコティックネマティック液晶相-固相転移温度は、70~300℃が好ましく、70~170℃がさらに好ましい。
The polymer used together with the liquid crystal compound is preferably capable of thickening the coating solution. A cellulose ester can be mentioned as an example of a polymer. Preferable examples of the cellulose ester include those described in paragraph [0178] of JP-A No. 2000-155216. The addition amount of the polymer is preferably in the range of 0.1 to 10% by mass, and in the range of 0.1 to 8% by mass with respect to the liquid crystal molecules so as not to inhibit the alignment of the liquid crystal compound. It is more preferable.
The discotic nematic liquid crystal phase-solid phase transition temperature of the liquid crystal compound is preferably 70 to 300 ° C, and more preferably 70 to 170 ° C.
[塗布溶剤]
 組成物(第1パターン光学異方性層形成用組成物または第2パターン光学異方性層形成用組成物)の調製に使用する溶媒としては、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド(例、N,N-ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸エチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン)、エーテル(例、テトラヒドロフラン、1,2-ジメトキシエタン)が含まれる。アルキルハライドおよびケトンが好ましい。二種類以上の有機溶媒を併用してもよい。
[Coating solvent]
As the solvent used for the preparation of the composition (the first pattern optical anisotropic layer forming composition or the second pattern optical anisotropic layer forming composition), an organic solvent is preferably used. Examples of organic solvents include amides (eg N, N-dimethylformamide), sulfoxides (eg dimethyl sulfoxide), heterocyclic compounds (eg pyridine), hydrocarbons (eg benzene, hexane), alkyl halides (eg , Chloroform, dichloromethane), esters (eg, methyl acetate, ethyl acetate, butyl acetate), ketones (eg, acetone, methyl ethyl ketone), ethers (eg, tetrahydrofuran, 1,2-dimethoxyethane). Alkyl halides and ketones are preferred. Two or more organic solvents may be used in combination.
[配向膜]
 本発明では、配向膜の表面に第1パターン光学異方性層形成用組成物または第2パターン光学異方性層形成用組成物を塗布して、液晶性化合物(例えば、ディスコティック液晶化合物)の分子を配向させてもよい。配向膜は液晶性化合物の配向方向を規定する機能を有するため、本発明の好ましい態様を実現する上で利用するのが好ましい。しかし、液晶性化合物を配向後にその配向状態を固定してしまえば、配向膜はその役割を果たしているために、本発明の構成要素としては必ずしも必須のものではない。
 配向膜は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、あるいはラングミュア・ブロジェット法(LB膜)による有機化合物(例、ω-トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で設けることができる。さらに、電場の付与、磁場の付与あるいは光照射(好ましくは偏光)により、配向機能が生じる配向膜も知られている。
 配向膜は、ポリマーのラビング処理により形成することが好ましい。
[Alignment film]
In the present invention, a liquid crystal compound (for example, a discotic liquid crystal compound) is formed by applying the first pattern optical anisotropic layer forming composition or the second pattern optical anisotropic layer forming composition onto the surface of the alignment film. The molecules may be oriented. Since the alignment film has a function of defining the alignment direction of the liquid crystalline compound, it is preferably used for realizing a preferred embodiment of the present invention. However, if the alignment state is fixed after aligning the liquid crystalline compound, the alignment film plays the role, and thus is not necessarily an essential component of the present invention.
The alignment film is an organic compound (eg, ω-tricosanoic acid) formed by rubbing treatment of an organic compound (preferably polymer), oblique deposition of an inorganic compound, formation of a layer having a microgroove, or Langmuir-Blodgett method (LB film). , Dioctadecylmethylammonium chloride, methyl stearylate). Furthermore, an alignment film in which an alignment function is generated by application of an electric field, application of a magnetic field, or light irradiation (preferably polarized light) is also known.
The alignment film is preferably formed by polymer rubbing treatment.
 ポリマーの例には、例えば、特開平8-338913号公報明細書中段落番号[0022]記載のメタクリレート系共重合体、スチレン系共重合体、ポリオレフィン、ポリビニルアルコールおよび変性ポリビニルアルコール、ポリ(N-メチロールアクリルアミド)、ポリエステル、ポリイミド、酢酸ビニル共重合体、カルボキシメチルセルロース、ポリカーボネート等が含まれる。シランカップリング剤をポリマーとして用いることができる。水溶性ポリマー(例、ポリ(N-メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコール、変性ポリビニルアルコール)が好ましく、ゼラチン、ポリビニルアルコールおよび変性ポリビニルアルコールがさらに好ましく、ポリビニルアルコールおよび変性ポリビニルアルコールが最も好ましい。 Examples of the polymer include, for example, methacrylate copolymers, styrene copolymers, polyolefins, polyvinyl alcohols and modified polyvinyl alcohols described in paragraph No. [0022] of JP-A-8-338913, poly (N— Methylolacrylamide), polyester, polyimide, vinyl acetate copolymer, carboxymethylcellulose, polycarbonate and the like. Silane coupling agents can be used as the polymer. Water-soluble polymers (eg, poly (N-methylolacrylamide), carboxymethylcellulose, gelatin, polyvinyl alcohol, modified polyvinyl alcohol) are preferred, gelatin, polyvinyl alcohol and modified polyvinyl alcohol are more preferred, and polyvinyl alcohol and modified polyvinyl alcohol are most preferred. .
 配向膜は、基本的に、配向膜形成材料である上記ポリマーおよび任意の添加剤(例えば、架橋剤)を含む溶液を透明支持体上に塗布した後、加熱乾燥(架橋させ)し、ラビング処理することにより形成することができる。
 ラビング処理は、LCDの液晶配向処理工程として広く採用されている処理方法を適用することができる。即ち、配向膜の表面を、紙やガーゼ、フェルト、ゴムあるいはナイロン、ポリエステル繊維などを用いて一定方向に擦ることにより、配向を得る方法を用いることができる。一般的には、長さおよび太さが均一な繊維を平均的に植毛した布などを用いて数回程度ラビングを行うことにより実施される。
The alignment film is basically formed by applying a solution containing the polymer as an alignment film forming material and an optional additive (for example, a crosslinking agent) on a transparent support, followed by drying by heating (crosslinking), and rubbing treatment. Can be formed.
For the rubbing treatment, a treatment method widely adopted as a liquid crystal alignment treatment process of the LCD can be applied. That is, a method of obtaining the orientation by rubbing the surface of the orientation film in a certain direction using paper, gauze, felt, rubber, nylon, polyester fiber or the like can be used. Generally, it is carried out by rubbing several times using a cloth or the like in which fibers having a uniform length and thickness are planted on average.
<第2の実施態様>
 以下に、本発明の位相差板の第2の実施態様について図面を参照して説明する。図3に、本発明の位相差板の第2の実施態様の概略断面図を示す。
 位相差板10bはパターン光学異方性層14bを有する。パターン光学異方性層14bは、第1位相差領域20bおよび第2位相差領域22bが、それぞれ順にストライプ状に交互に配置された構造を有する。なお、位相差板10bには、後述する透明支持体が含まれていてもよい。
 また、パターン光学異方性層14bは、第1パターン光学異方性層16bと第2パターン光学異方性層18bが積層した形成された層であり、第1パターン光学異方性層16bおよび第2パターン光学異方性層18bには、厚み方向を螺旋軸とする捩れ配向した液晶化合物が含まれる。
 位相差板10bは、上記位相差板10aと同様に2層のパターン光学異方性層より構成されるが、パターン光学異方性層のレタデーションや液晶化合物の捩れ角などの点で異なる。
 なお、図3に示すように、第1位相差領域20bおよび第2位相差領域22bは、それぞれパターン光学異方性層14bの厚み方向全域にわたる領域を意図し、後述する明細書において、第1パターン光学異方性層16bの第1位相差領域とは図1中の領域24bを意味し、第2パターン光学異方性層18bの第1位相差領域とは図1中の領域26bを意味し、第1パターン光学異方性層16bの第2位相差領域とは図1中の領域28bを意味し、第2パターン光学異方性層18bの第2位相差領域とは図1中の領域30bを意味する。
 以下に、パターン光学異方性層14bのパターン光学異方性層14aと異なる構成について主に詳述する。
<Second Embodiment>
Below, the 2nd embodiment of the phase difference plate of this invention is described with reference to drawings. FIG. 3 shows a schematic cross-sectional view of the second embodiment of the retardation plate of the present invention.
The retardation plate 10b has a patterned optical anisotropic layer 14b. The patterned optical anisotropic layer 14b has a structure in which the first retardation regions 20b and the second retardation regions 22b are alternately arranged in a stripe pattern in order. The retardation plate 10b may include a transparent support described later.
The patterned optical anisotropic layer 14b is a layer formed by laminating the first patterned optical anisotropic layer 16b and the second patterned optical anisotropic layer 18b, and the first patterned optical anisotropic layer 16b and The second pattern optical anisotropic layer 18b includes a twisted liquid crystal compound having a thickness direction as a helical axis.
The retardation plate 10b is composed of two patterned optically anisotropic layers as in the retardation plate 10a, but differs in respect of the retardation of the patterned optically anisotropic layer and the twist angle of the liquid crystal compound.
As shown in FIG. 3, each of the first retardation region 20b and the second retardation region 22b is a region extending over the entire thickness direction of the patterned optically anisotropic layer 14b. The first retardation region of the patterned optically anisotropic layer 16b means the region 24b in FIG. 1, and the first retardation region of the second patterned optically anisotropic layer 18b means the region 26b in FIG. The second retardation region of the first pattern optical anisotropic layer 16b means the region 28b in FIG. 1, and the second retardation region of the second pattern optical anisotropic layer 18b means the region in FIG. It means the region 30b.
Below, the structure different from the pattern optical anisotropic layer 14a of the pattern optical anisotropic layer 14b is mainly explained in full detail.
[パターン光学異方性層]
 パターン光学異方性層14bは、面内遅相軸方向が互いに異なる第1位相差領域20bおよび第2位相差領域22bを含み、かつ、第1位相差領域20bおよび第2位相差領域22bが面内において交互に配置されている。図3においては、第1位相差領域20bおよび第2位相差領域22bがストライプ状に配置された態様を示すが、この態様には限定されない。
 パターン光学異方性層14bは、第1パターン光学異方性層16bと第2パターン光学異方性層18bとを有する。
 以下、図3~4を参照しながら、第1パターン光学異方性層16bと第2パターン光学異方性層18bについて詳述する。なお、図4は、パターン光学異方性層14b中の第1位相差領域20bおよび第2位相差領域22bの一部拡大斜視断面図であり、第2パターン光学異方性層18bおよび第1パターン光学異方性層16b中の矢印はそれぞれの層中の面内遅相軸を表す。
[Pattern optical anisotropic layer]
The patterned optically anisotropic layer 14b includes a first retardation region 20b and a second retardation region 22b having different in-plane slow axis directions, and the first retardation region 20b and the second retardation region 22b They are arranged alternately in the plane. Although FIG. 3 shows a mode in which the first phase difference region 20b and the second phase difference region 22b are arranged in a stripe shape, the present invention is not limited to this mode.
The patterned optical anisotropic layer 14b includes a first patterned optical anisotropic layer 16b and a second patterned optical anisotropic layer 18b.
Hereinafter, the first pattern optical anisotropic layer 16b and the second pattern optical anisotropic layer 18b will be described in detail with reference to FIGS. FIG. 4 is a partially enlarged perspective cross-sectional view of the first retardation region 20b and the second retardation region 22b in the patterned optical anisotropic layer 14b, and shows the second patterned optical anisotropic layer 18b and the first optical retardation layer 18b. Arrows in the patterned optically anisotropic layer 16b represent in-plane slow axes in the respective layers.
(第1パターン光学異方性層16b)
 第1パターン光学異方性層16bは、図1に示す第1パターン光学異方性層16aと同様に、厚み方向を螺旋軸とする捩れ配向した液晶化合物を含む。液晶化合物の好適態様は、上述の通りである。
(First pattern optical anisotropic layer 16b)
The first patterned optically anisotropic layer 16b includes a twist-aligned liquid crystal compound having a thickness direction as a helical axis, like the first patterned optically anisotropic layer 16a shown in FIG. The preferred embodiment of the liquid crystal compound is as described above.
 第1パターン光学異方性層16bには、後述する第2パターン光学異方性層18bと同様に、第1位相差領域と第2位相差領域とがあり、それぞれの領域に含まれる液晶化合物の捩れ方向は同じ方向である。
 より具体的には、図4(B)に示すように、第1パターン光学異方性層16bの第1位相差領域(領域24b)において、第2パターン光学異方性層18b側とは反対側の表面161bでの面内遅相軸と、第2パターン光学異方性層18b側の表面162bでの面内遅相軸とは、後述する所定の捩れ角θ1Bxをなす。つまり、第1パターン光学異方性層16bの第1位相差領域(領域24b)において面内遅相軸は所定角度回転し、図4(B)の矢印に示すように、液晶化合物の捩れ方向は時計回り(右捩れ)を示す。
 一方、第1パターン光学異方性層16bの第2位相差領域(領域28b)においても、図2(C)に示すように、第2パターン光学異方性層18b側とは反対側の表面161bでの面内遅相軸と、第2パターン光学異方性層18b側の表面162bでの面内遅相軸とは、後述する所定の捩れ角θ1Byをなす。そして、図2(C)の矢印に示すように、液晶化合物の捩れ方向は時計回り(右捩れ)を示す。
 なお、捩れ方向は、図4(A)の白抜きの矢印から観察し、第1パターン光学異方性層16b中の手前側の表面(表面161b)での面内遅相軸を基準に右捩れか、左捩れを判断する。
The first pattern optical anisotropic layer 16b has a first retardation region and a second retardation region, as in the second pattern optical anisotropic layer 18b described later, and the liquid crystal compound contained in each region. The twist directions of the same are the same.
More specifically, as shown in FIG. 4B, the first phase difference region (region 24b) of the first pattern optical anisotropic layer 16b is opposite to the second pattern optical anisotropic layer 18b side. The in-plane slow axis on the surface 161b on the side and the in-plane slow axis on the surface 162b on the second pattern optical anisotropic layer 18b side form a predetermined twist angle θ1Bx described later. That is, the in-plane slow axis rotates by a predetermined angle in the first retardation region (region 24b) of the first patterned optically anisotropic layer 16b, and the twist direction of the liquid crystal compound as shown by the arrow in FIG. Indicates clockwise rotation (right twist).
On the other hand, also in the second retardation region (region 28b) of the first pattern optical anisotropic layer 16b, as shown in FIG. 2C, the surface opposite to the second pattern optical anisotropic layer 18b side. The in-plane slow axis at 161b and the in-plane slow axis at the surface 162b on the second pattern optical anisotropic layer 18b side form a predetermined twist angle θ1By to be described later. As shown by the arrow in FIG. 2C, the twist direction of the liquid crystal compound shows clockwise rotation (right twist).
Note that the twist direction is observed from the white arrow in FIG. 4A and is based on the in-plane slow axis on the near surface (surface 161b) in the first pattern optical anisotropic layer 16b. Judge the twist or the left twist.
 第1パターン光学異方性層16bの第1位相差領域(領域24b)における第2パターン光学異方性層18b側とは反対側の表面(表面161b)での面内遅相軸と、第1パターン光学異方性層16bの第2位相差領域における第2パターン光学異方性層18b側とは反対側の表面(161b)での面内遅相軸とは直交する。 An in-plane slow axis on the surface (surface 161b) opposite to the second pattern optical anisotropic layer 18b side in the first retardation region (region 24b) of the first pattern optical anisotropic layer 16b; The in-plane slow axis on the surface (161b) opposite to the second pattern optical anisotropic layer 18b side in the second retardation region of the one pattern optical anisotropic layer 16b is orthogonal.
 液晶化合物の捩れ角は59.7±10.0°であり、本発明の効果がより優れる点で、59.7±8.0°がより好ましく、59.7±6.0°がさらに好ましい。
 捩れ角が49.7°未満の場合および69.7°超の場合、本発明の位相差板を円偏光板として表示装置に貼り合わせた際の色味づきが大きい。
 なお、捩れ角の測定方法は、上述の通りである。
The twist angle of the liquid crystal compound is 59.7 ± 10.0 °, and 59.7 ± 8.0 ° is more preferable, and 59.7 ± 6.0 ° is more preferable in that the effect of the present invention is more excellent. .
When the twist angle is less than 49.7 ° and when it exceeds 69.7 °, the tint when the retardation plate of the present invention is bonded to a display device as a circularly polarizing plate is large.
The method for measuring the twist angle is as described above.
 波長550nmで測定した第1パターン光学異方性層16bの屈折率異方性Δn1と第1パターン光学異方性層16bの厚みd1との積Δn1・d1の値は、下記式(1)を満たす。つまり、第1パターン光学異方性層16bの第1位相差領域(領域24b)および第2位相差領域(領域28b)における積Δn1・d1の値は、いずれも以下の式(3)を満たす。
 式(3) 111nm≦Δn1・d1≦171nm
 なかでも、本発明の効果がより優れる点で、式(3A)を満足することが好ましく、さらに式(3B)を満足することがより好ましい。
 式(3A) 121nm≦Δn1・d1≦161nm
 式(3B) 131nm≦Δn1・d1≦151nm
 Δn1・d1が111nm未満および171nm超の場合、本発明の位相差板を円偏光板として表示装置に貼り合わせた際の色味づきが大きい。
 なお、Δn1・d1の測定方法は、Axometrics社のAxoscan(ポラリメーター)装置を用い同社の解析ソフトウエアを用いて測定する。
The product Δn1 · d1 of the refractive index anisotropy Δn1 of the first pattern optical anisotropic layer 16b and the thickness d1 of the first pattern optical anisotropic layer 16b measured at a wavelength of 550 nm is expressed by the following formula (1). Fulfill. That is, the values of the products Δn1 · d1 in the first retardation region (region 24b) and the second retardation region (region 28b) of the first patterned optically anisotropic layer 16b both satisfy the following formula (3). .
Formula (3) 111 nm ≦ Δn1 · d1 ≦ 171 nm
Especially, it is preferable to satisfy | fill Formula (3A) by the point which the effect of this invention is more excellent, and it is more preferable to satisfy Formula (3B) further.
Formula (3A) 121 nm ≦ Δn1 · d1 ≦ 161 nm
Formula (3B) 131 nm ≦ Δn1 · d1 ≦ 151 nm
When Δn1 · d1 is less than 111 nm and more than 171 nm, the tint when the retardation plate of the present invention is bonded to a display device as a circularly polarizing plate is large.
In addition, the measuring method of (DELTA) n1 * d1 uses the Axoscan (polarimeter) apparatus of Axometrics, and measures it using the analysis software of the company.
(第2パターン光学異方性層)
 第2パターン光学異方性層18bは、上記第1パターン光学異方性層16bと同様に、厚み方向を螺旋軸とする捩れ配向した液晶化合物を含む。液晶化合物に関する説明は、上述の通りである。
(Second pattern optical anisotropic layer)
Similar to the first pattern optical anisotropic layer 16b, the second pattern optical anisotropic layer 18b includes a twisted liquid crystal compound having a thickness direction as a helical axis. The description regarding the liquid crystal compound is as described above.
 第1パターン光学異方性層16bの第2パターン光学異方性層18b側の表面162bでの面内遅相軸と、第2パターン光学異方性層18bの第1パターン光学異方性層16b側の表面181bでの面内遅相軸とは直交に配置される。なお、第1位相差領域および第2位相差領域それぞれにおいて、上記関係を満たす。
 より具体的には、第1パターン光学異方性層16bの第1位相差領域(領域24b)における表面162bでの面内遅相軸と、第2パターン光学異方性層18bの第1位相差領域(領域26b)における表面181bでの面内遅相軸とは直交に配置され(つまり、図4中のθ2Bxが90°)、かつ、第1パターン光学異方性層16bの第2位相差領域(領域28b)における表面162bでの面内遅相軸と、第2パターン光学異方性層18bの第2位相差領域(領域30b)における表面181bでの面内遅相軸とは直交に配置される(つまり、図4中のθ2Byが90°)。
The in-plane slow axis at the surface 162b of the first pattern optical anisotropic layer 16b on the second pattern optical anisotropic layer 18b side, and the first pattern optical anisotropic layer of the second pattern optical anisotropic layer 18b It is orthogonal to the in-plane slow axis on the surface 181b on the 16b side. Note that the above relationship is satisfied in each of the first phase difference region and the second phase difference region.
More specifically, the in-plane slow axis at the surface 162b in the first retardation region (region 24b) of the first patterned optically anisotropic layer 16b and the first position of the second patterned optically anisotropic layer 18b. The phase difference region (region 26b) is disposed orthogonal to the in-plane slow axis on the surface 181b (that is, θ2Bx in FIG. 4 is 90 °), and the second position of the first pattern optical anisotropic layer 16b. The in-plane slow axis at the surface 162b in the phase difference region (region 28b) is orthogonal to the in-plane slow axis at the surface 181b in the second phase difference region (region 30b) of the second patterned optically anisotropic layer 18b. (That is, θ2By in FIG. 4 is 90 °).
 第2パターン光学異方性層18bには、上述した第1パターン光学異方性層16bと同様に、第1位相差領域と第2位相差領域とがあり、それぞれの領域に含まれる液晶化合物の捩れ方向は同じ方向である。
 より具体的には、図4(B)に示すように、第2パターン光学異方性層18bの第1位相差領域(領域26b)において、第1パターン光学異方性層16b側の表面181bでの面内遅相軸と、第2パターン光学異方性層18b側とは反対側の表面182bでの面内遅相軸とは、後述する所定の捩れ角θ3Bxをなす。つまり、第2パターン光学異方性層18bの第1位相差領域(領域26b)において面内遅相軸は所定角度回転し、図4(B)の矢印に示すように、液晶化合物の捩れ方向は時計回り(右捩れ)を示す。
 一方、第2パターン光学異方性層18bの第2位相差領域(領域30b)においても、図4(C)に示すように、第1パターン光学異方性層16b側の表面181bでの面内遅相軸と、第2パターン光学異方性層18b側とは反対側の表面182bでの面内遅相軸とは、後述する所定の捩れ角θ3Byをなす。そして、図4(C)の矢印に示すように、液晶化合物の捩れ方向は時計回り(右捩れ)を示す。
 なお、捩れ方向は、図4(A)の白抜きの矢印から観察し、第2パターン光学異方性層18b中の手前側の表面(表面181b)での面内遅相軸を基準に右捩れか、左捩れを判断する。
Similarly to the first pattern optical anisotropic layer 16b described above, the second pattern optical anisotropic layer 18b has a first retardation region and a second retardation region, and a liquid crystal compound contained in each region. The twist directions of the same are the same.
More specifically, as shown in FIG. 4B, in the first retardation region (region 26b) of the second pattern optical anisotropic layer 18b, the surface 181b on the first pattern optical anisotropic layer 16b side. And the in-plane slow axis on the surface 182b opposite to the second pattern optical anisotropic layer 18b side form a predetermined twist angle θ3Bx described later. That is, the in-plane slow axis rotates by a predetermined angle in the first retardation region (region 26b) of the second patterned optically anisotropic layer 18b, and the twist direction of the liquid crystal compound as shown by the arrow in FIG. Indicates clockwise rotation (right twist).
On the other hand, also in the second retardation region (region 30b) of the second pattern optical anisotropic layer 18b, as shown in FIG. 4C, the surface at the surface 181b on the first pattern optical anisotropic layer 16b side. The inner slow axis and the in-plane slow axis on the surface 182b opposite to the second pattern optical anisotropic layer 18b side form a predetermined twist angle θ3By. And as shown by the arrow of FIG.4 (C), the twist direction of a liquid crystal compound shows clockwise rotation (right twist).
Note that the twist direction is observed from the white arrow in FIG. 4A, and the right direction is based on the in-plane slow axis on the front surface (surface 181b) in the second patterned optically anisotropic layer 18b. Judge the twist or the left twist.
 液晶化合物の捩れ角は127.6±10.0°であり、本発明の効果がより優れる点で、127.6±8.0°がより好ましく、127.6±6.0°がさらに好ましい。
 捩れ角が117.6°未満の場合および137.6°超の場合、本発明の位相差板を円偏光板として表示装置に貼り合わせた際の色味づきが大きい。
 なお、捩れ角の測定方法は、上述の通りである。
The twist angle of the liquid crystal compound is 127.6 ± 10.0 °, and 127.6 ± 8.0 ° is more preferable, and 127.6 ± 6.0 ° is more preferable in that the effect of the present invention is more excellent. .
When the twist angle is less than 117.6 ° and more than 137.6 °, the tint when the retardation plate of the present invention is bonded to a display device as a circularly polarizing plate is large.
The method for measuring the twist angle is as described above.
 なお、第2パターン光学異方性層18b中の液晶化合物の捩れ方向は、上述した第1パターン光学異方性層16b中の液晶化合物の捩れ方向と同一である。例えば、第1パターン光学異方性層16b中の液晶化合物が捩れ方向が右捩れであれば、第2パターン光学異方性層18b中の液晶化合物の捩れ方向も右捩れとなる。 The twist direction of the liquid crystal compound in the second pattern optical anisotropic layer 18b is the same as the twist direction of the liquid crystal compound in the first pattern optical anisotropic layer 16b. For example, if the twist direction of the liquid crystal compound in the first pattern optical anisotropic layer 16b is right twist, the twist direction of the liquid crystal compound in the second pattern optical anisotropic layer 18b is also right twist.
 波長550nmで測定した第2パターン光学異方性層18bの屈折率異方性Δn2と第2パターン光学異方性層18bの厚みd2との積Δn2・d2の値は、下記式(4)を満たす。つまり、第2パターン光学異方性層18bの第1位相差領域(領域26b)および第2位相差領域(領域30b)における積Δn2・d2の値は、いずれも以下の式(4)を満たす。
 式(4) 252nm≦Δn2・d2≦312nm
 なかでも、本発明の効果がより優れる点で、式(4A)を満足することが好ましく、さらに式(4B)を満足することがより好ましい。
 式(4A) 262nm≦Δn2・d2≦302nm
 式(4B) 272nm≦Δn2・d2≦292nm
 Δn2・d2が252nm未満および312nm超の場合、本発明の位相差板を円偏光板として表示装置に貼り合わせた際の色味づきが大きい。
 なお、Δn2・d2の測定方法は、Axometrics社のAxoscan(ポラリメーター)装置を用い同社の解析ソフトウエアを用いて測定する。
The product Δn2 · d2 of the refractive index anisotropy Δn2 of the second pattern optical anisotropic layer 18b and the thickness d2 of the second pattern optical anisotropic layer 18b measured at a wavelength of 550 nm is expressed by the following formula (4). Fulfill. That is, the values of the products Δn2 · d2 in the first retardation region (region 26b) and the second retardation region (region 30b) of the second patterned optically anisotropic layer 18b both satisfy the following formula (4). .
Formula (4) 252 nm ≦ Δn 2 · d 2 ≦ 312 nm
Especially, it is preferable to satisfy | fill Formula (4A) by the point which the effect of this invention is more excellent, and it is more preferable to satisfy Formula (4B).
Formula (4A) 262 nm ≦ Δn 2 · d 2 ≦ 302 nm
Formula (4B) 272 nm ≦ Δn 2 · d 2 ≦ 292 nm
When Δn 2 · d 2 is less than 252 nm and more than 312 nm, the tint when the retardation plate of the present invention is bonded to a display device as a circularly polarizing plate is large.
In addition, the measuring method of (DELTA) n2 * d2 is measured using the analysis software of the company using the Axoscan (polarimeter) apparatus of Axometrics.
 なお、第1パターン光学異方性層16bと第2パターン光学異方性層18bとの間には上述した配向膜が配置されていてもよいが、上記位相差板10aの場合と同様に、図3に示すように、第1パターン光学異方性層16bと第2パターン光学異方性層18bとが隣接し、第1パターン光学異方性層16bと第2パターン光学異方性層18bとの間に、実質的に配向膜を有さないことが好ましい。 Note that the alignment film described above may be disposed between the first pattern optical anisotropic layer 16b and the second pattern optical anisotropic layer 18b, but as in the case of the retardation plate 10a, As shown in FIG. 3, the first pattern optical anisotropic layer 16b and the second pattern optical anisotropic layer 18b are adjacent to each other, and the first pattern optical anisotropic layer 16b and the second pattern optical anisotropic layer 18b are adjacent to each other. It is preferable that substantially no alignment film is present between the two.
 なお、第1パターン光学異方性層16bおよび第2パターン光学異方性層18bを構成する材料は、それぞれ上述した第1パターン光学異方性層16aおよび第2パターン光学異方性層18aを構成する材料が例示される。
 また、第1パターン光学異方性層16bおよび第2パターン光学異方性層18bの製造方法は特に制限されず、上述した第1パターン光学異方性層16aおよび第2パターン光学異方性層18aの製造方法が例示される。
The materials constituting the first pattern optical anisotropic layer 16b and the second pattern optical anisotropic layer 18b are the same as the first pattern optical anisotropic layer 16a and the second pattern optical anisotropic layer 18a described above. The material which comprises is illustrated.
The method for producing the first pattern optical anisotropic layer 16b and the second pattern optical anisotropic layer 18b is not particularly limited, and the first pattern optical anisotropic layer 16a and the second pattern optical anisotropic layer described above are used. The manufacturing method of 18a is illustrated.
 なお、図4においては、第1パターン光学異方性層16bおよび第2パターン光学異方性層18b中の液晶化合物の捩れ方向が右捩れの場合について詳述したが、この態様に限定されず、第1パターン光学異方性層16bおよび第2パターン光学異方性層18b中の液晶化合物の捩れ方向が左捩れであってもよい。 In FIG. 4, the case where the twist direction of the liquid crystal compound in the first pattern optical anisotropic layer 16b and the second pattern optical anisotropic layer 18b is right twist is described in detail. However, the present invention is not limited to this mode. The twist direction of the liquid crystal compound in the first pattern optical anisotropic layer 16b and the second pattern optical anisotropic layer 18b may be left twist.
<円偏光板(パターン円偏光板とも称する)>
 本発明の円偏光板は、上述した位相差板(第1実施態様および第2実施態様)と偏光膜とを少なくとも備える。また、必要に応じて、透明支持体を含んでいてもよい。
 上記構成を有する本発明の円偏光板は、3D画像表示装置の偏光板として用いるほか、各種の用途に用いることができる。例えば、2枚の光学フィルムを用いることにより調節光システムとして用いることができる。特に、窓用調整システムとして好ましく用いられる。
<Circularly polarizing plate (also called patterned circularly polarizing plate)>
The circularly polarizing plate of the present invention includes at least the above-mentioned retardation plate (first embodiment and second embodiment) and a polarizing film. Moreover, the transparent support body may be included as needed.
The circularly polarizing plate of the present invention having the above configuration can be used for various applications in addition to being used as a polarizing plate for 3D image display devices. For example, it can be used as an adjusting light system by using two optical films. In particular, it is preferably used as a window adjustment system.
 まず、円偏光板で使用される部材(偏光膜および透明支持体)について詳述し、その後円偏光板の具体的な態様について詳述する。 First, members (polarizing film and transparent support) used in the circularly polarizing plate will be described in detail, and then specific embodiments of the circularly polarizing plate will be described in detail.
[偏光膜]
 偏光膜(偏光子層)は、自然光を特定の直線偏光に変換する機能を有する部材であればよく、吸収型偏光子を利用することができる。
 偏光膜の種類は特に制限はなく、通常用いられている偏光膜を利用することができ、例えば、ヨウ素系偏光膜、二色性染料を利用した染料系偏光膜、およびポリエン系偏光膜のいずれも用いることができる。ヨウ素系偏光膜、および染料系偏光膜は、一般に、ポリビニルアルコールにヨウ素または二色性染料を吸着させ、延伸することで作製される。
 なお、偏光膜は、その両面に保護フィルムが貼合された偏光板として用いられることが一般的である。
 円偏光板の製造方法は特に制限されないが、例えば、上記位相差板と偏光膜とが、それぞれ長尺の状態で連続的に積層される工程を含むことが好ましい。長尺の偏光板は、用いられる画像表示装置の画面の大きさに合わせて裁断される。
[Polarizing film]
The polarizing film (polarizer layer) may be a member having a function of converting natural light into specific linearly polarized light, and an absorptive polarizer can be used.
The type of the polarizing film is not particularly limited, and a commonly used polarizing film can be used. For example, any of an iodine-based polarizing film, a dye-based polarizing film using a dichroic dye, and a polyene-based polarizing film Can also be used. The iodine-based polarizing film and the dye-based polarizing film are generally produced by adsorbing iodine or a dichroic dye to polyvinyl alcohol and stretching it.
In addition, it is common that a polarizing film is used as a polarizing plate by which the protective film was bonded on both surfaces.
Although the manufacturing method in particular of a circularly-polarizing plate is not restrict | limited, For example, it is preferable that the said retardation plate and polarizing film include the process of laminating | stacking continuously in a respectively elongate state. The long polarizing plate is cut according to the size of the screen of the image display device used.
[透明支持体]
 透明支持体は、上述したパターン光学異方性層を支持する基材である。パターン光学異方性層自体が十分な自立性を有している場合などは、透明支持体はなくてもよい。つまり、透明支持体は任意の構成部材である。
 透明支持体の550nmにおける厚み方向のレタデーション値(Rth(550))は特に制限されないが、本発明の効果がより優れる点で、-110~110nmが好ましく、-80~80nmがより好ましい。
 透明支持体の550nmにおける面内のレタデーション値(Re(550))は特に制限されないが、0~50nmであることが好ましく、0~30nmであることがより好ましく、0~10nmであることがさらに好ましい。上記の範囲であると、反射光の光漏れを視認されない程度まで低減できるため好ましい。 
[Transparent support]
A transparent support is a base material which supports the pattern optically anisotropic layer mentioned above. In the case where the patterned optically anisotropic layer itself has sufficient self-supporting property, the transparent support may not be provided. That is, the transparent support is an arbitrary constituent member.
The retardation value in the thickness direction (Rth (550)) at 550 nm of the transparent support is not particularly limited, but is preferably −110 to 110 nm, more preferably −80 to 80 nm, from the viewpoint of more excellent effects of the present invention.
The in-plane retardation value (Re (550)) at 550 nm of the transparent support is not particularly limited, but is preferably 0 to 50 nm, more preferably 0 to 30 nm, and further preferably 0 to 10 nm. preferable. The above range is preferable because light leakage of reflected light can be reduced to a level where it is not visually recognized.
 透明支持体を形成する材料としては、光学性能透明性、機械的強度、熱安定性、水分遮蔽性、等方性などに優れるポリマーが好ましい。透明とは、可視光の透過率が60%以上であることを示し、好ましくは80%以上であり、特に好ましくは90%以上である。
 透明支持体12として用いることのできるポリマーフィルムとしては、例えば、セルロースアシレートフィルム(例えば、セルローストリアセテートフィルム(屈折率1.48)、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム、セルロースアセテートプロピオネートフィルム)、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系樹脂フィルム、ポリエーテルスルホンフィルム、ポリメチルメタクリレート等のポリアクリル系樹脂フィルム、ポリウレタン系樹脂フィルム、ポリエステルフィルム、ポリカーボネートフィルム、ポリスルホンフィルム、ポリエーテルフィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、(メタ)アクリルニトリルフィルム、脂環式構造を有するポリマーのフィルム(ノルボルネン系樹脂(アートン:商品名、JSR社製、非晶質ポリオレフィン(ゼオネックス:商品名、日本ゼオン社製))などが挙げられる。
 なかでも、ポリマーフィルムの材料としては、トリアセチルセルロース、ポリエチレンテレフタレート、または脂環式構造を有するポリマーが好ましく、特にトリアセチルセルロースが好ましい。
As a material for forming the transparent support, a polymer excellent in optical performance transparency, mechanical strength, thermal stability, moisture shielding property, isotropy and the like is preferable. The term “transparent” means that the visible light transmittance is 60% or more, preferably 80% or more, and particularly preferably 90% or more.
Examples of the polymer film that can be used as the transparent support 12 include a cellulose acylate film (for example, a cellulose triacetate film (refractive index: 1.48), a cellulose diacetate film, a cellulose acetate butyrate film, and a cellulose acetate propionate. Film), polyolefins such as polyethylene and polypropylene, polyester resin films such as polyethylene terephthalate and polyethylene naphthalate, polyethersulfone films, polyacrylic resin films such as polymethyl methacrylate, polyurethane resin films, polyester films, polycarbonate films, Polysulfone film, polyether film, polymethylpentene film, polyether ketone film Rum, (meth) acrylonitrile film, polymer film having alicyclic structure (norbornene resin (Arton: trade name, manufactured by JSR Corporation, amorphous polyolefin (ZEONEX: trade name, manufactured by ZEON Corporation)), etc. Can be mentioned.
Among these, as a material for the polymer film, triacetyl cellulose, polyethylene terephthalate, or a polymer having an alicyclic structure is preferable, and triacetyl cellulose is particularly preferable.
 透明支持体の厚さは特に制限されないが、10μm~200μm程度のものを用いることが好ましく、10μm~100μmがより好ましく、20μm~90μmがさらに好ましい。また、透明支持体12は複数枚の積層からなっていてもよい。外光反射の抑制には薄い方が好ましいが、10μmより薄いと、フィルムの強度が弱くなり、好ましくない傾向がある。透明支持体12とその上に設けられる層との接着を改善するため、透明支持体12に表面処理(例、グロー放電処理、コロナ放電処理、紫外線(UV)処理、火炎処理)を実施してもよい。
 透明支持体には、種々の添加剤(例えば、光学的異方性調整剤、波長分散調整剤、微粒子、可塑剤、紫外線防止剤、劣化防止剤、剥離剤、など)を加えることができる。また、透明支持体がセルロースアシレートフィルムである場合、その添加する時期はドープ作製工程(セルロースアシレート溶液の作製工程)における何れでもよいが、ドープ作製工程の最後に添加剤を添加し調製する工程を行ってもよい。
The thickness of the transparent support is not particularly limited, but is preferably about 10 μm to 200 μm, more preferably 10 μm to 100 μm, and even more preferably 20 μm to 90 μm. Further, the transparent support 12 may be composed of a plurality of laminated layers. A thinner one is preferable for suppressing external light reflection, but if it is thinner than 10 μm, the strength of the film tends to be weak, which tends to be undesirable. In order to improve adhesion between the transparent support 12 and the layer provided thereon, the transparent support 12 is subjected to a surface treatment (eg, glow discharge treatment, corona discharge treatment, ultraviolet (UV) treatment, flame treatment). Also good.
Various additives (for example, an optical anisotropy adjusting agent, a wavelength dispersion adjusting agent, fine particles, a plasticizer, an ultraviolet ray preventing agent, a deterioration preventing agent, a release agent, etc.) can be added to the transparent support. Further, when the transparent support is a cellulose acylate film, the addition time may be any in the dope preparation step (preparation step of the cellulose acylate solution), but an additive is added and prepared at the end of the dope preparation step. You may perform a process.
 以下に、円偏光板の具体的態様について詳述する。 Hereinafter, specific embodiments of the circularly polarizing plate will be described in detail.
(第1の実施形態)
 円偏光板の第1の実施形態としては、図5に示すように、第2パターン光学異方性層18aと、第1パターン光学異方性層16aと、透明支持体12と、偏光膜32とをこの順で有する円偏光板100aが挙げられる。
 円偏光板100aにおいて、偏光膜32の吸収軸と、第1パターン光学異方性層16aおよび第2パターン光学異方性層18aの面内遅相軸との関係は、以下の(a)の要件を満たす。
要件(a):偏光膜32の吸収軸と、第1パターン光学異方性層16aの第1位相差領域および第2位相差領域のうちのいずれか一方の領域における偏光膜32側の表面での面内遅相軸とが平行または直交である。
(First embodiment)
As a first embodiment of the circularly polarizing plate, as shown in FIG. 5, the second pattern optical anisotropic layer 18a, the first pattern optical anisotropic layer 16a, the transparent support 12, and the polarizing film 32 are used. The circularly-polarizing plate 100a which has these in this order is mentioned.
In the circularly polarizing plate 100a, the relationship between the absorption axis of the polarizing film 32 and the in-plane slow axes of the first pattern optical anisotropic layer 16a and the second pattern optical anisotropic layer 18a is as shown in (a) below. Satisfy requirements.
Requirement (a): The absorption axis of the polarizing film 32 and the surface on the polarizing film 32 side in one of the first retardation region and the second retardation region of the first pattern optical anisotropic layer 16a The in-plane slow axis is parallel or orthogonal.
 上記要件(a)で表される実施態様における偏光膜32の吸収軸と、第1パターン光学異方性層16aの面内遅相軸と、第2パターン光学異方性層18aの面内遅相軸との関係に関して、図6を用いてより詳細に説明する。
 図6(A)においては、上記(a)の関係を満たす図5に示す円偏光板100aから透明支持体16を除いた構成の一部拡大斜視断面図を示す。図6(A)中の偏光膜32中の矢印は吸収軸を、第1パターン光学異方性層16aおよび第2パターン光学異方性層18a中の矢印はそれぞれの層中の面内遅相軸を表す。また、図6(B)においては、図6(A)の白抜きの矢印から観察した際の、第1位相差領域における、第1パターン光学異方性層16aの面内遅相軸と、第2パターン光学異方性層18aの面内遅相軸との角度の関係を示す。また、図6(C)においては、図6(A)の白抜きの矢印から観察した際の、第2位相差領域における、第1パターン光学異方性層16aの面内遅相軸と、第2パターン光学異方性層18aの面内遅相軸との角度の関係を示す。
 なお、図6(B)および(C)において回転角度は、図6(A)の白抜きの矢印から観察した際、偏光膜32の吸収軸を基準(0°)に反時計回り方向に正、時計回りに負の角度値をもって表す。また、捩れ方向は、図6(A)の白抜きの矢印から観察し、パターン光学異方性層中の手前側(偏光膜32側)の表面での面内遅相軸を基準に右捩れか、左捩れを判断する。
In the embodiment represented by the requirement (a), the absorption axis of the polarizing film 32, the in-plane slow axis of the first pattern optical anisotropic layer 16a, and the in-plane slow axis of the second pattern optical anisotropic layer 18a. The relationship with the phase axis will be described in more detail with reference to FIG.
6A shows a partially enlarged perspective cross-sectional view of a configuration in which the transparent support 16 is removed from the circularly polarizing plate 100a shown in FIG. 5 that satisfies the relationship (a). 6A, the arrow in the polarizing film 32 indicates the absorption axis, and the arrows in the first pattern optical anisotropic layer 16a and the second pattern optical anisotropic layer 18a indicate in-plane slow phases in the respective layers. Represents an axis. 6B, the in-plane slow axis of the first patterned optically anisotropic layer 16a in the first retardation region when observed from the white arrow in FIG. 6A, The relationship of an angle with the in-plane slow axis of the 2nd pattern optically anisotropic layer 18a is shown. In FIG. 6C, the in-plane slow axis of the first pattern optical anisotropic layer 16a in the second retardation region when observed from the white arrow in FIG. The relationship of an angle with the in-plane slow axis of the 2nd pattern optically anisotropic layer 18a is shown.
6 (B) and 6 (C), the rotation angle is positive in the counterclockwise direction with the absorption axis of the polarizing film 32 as the reference (0 °) when observed from the white arrow in FIG. 6 (A). Expressed with a negative angle value clockwise. Further, the twist direction is observed from the white arrow in FIG. 6A, and the right twist is based on the in-plane slow axis on the front surface (polarizing film 32 side) surface in the patterned optical anisotropic layer. Or determine the left twist.
 図6においては、偏光膜32の吸収軸と第1パターン光学異方性層16aの第1位相差領域(領域24a)における偏光膜32側の表面161aでの面内遅相軸とは、平行である。平行の定義は、上述の通りである。 In FIG. 6, the absorption axis of the polarizing film 32 and the in-plane slow axis on the surface 161a on the polarizing film 32 side in the first retardation region (region 24a) of the first pattern optical anisotropic layer 16a are parallel to each other. It is. The definition of parallel is as described above.
 第1パターン光学異方性層16aには、上述したように、厚み方向を螺旋軸とする捩れ配向した液晶化合物を含まれる。そのため、第1パターン光学異方性層16aの偏光膜32側の表面161aでの面内遅相軸と、第1パターン光学異方性層16aの第2パターン光学異方性層18a側の表面162aでの面内遅相軸とは、上述した捩れ角(なお、図6においては、26.5°)をなす。つまり、第1パターン光学異方性層16aの面内遅相軸は、-26.5°(時計回りに26.5°)回転する。
 従って、偏光膜32の吸収軸を基準とすると、第1位相差領域において第1パターン光学異方性層16aの表面162aでの面内遅相軸は-26.5°に位置し、第2位相差領域において第1パターン光学異方性層16aの表面162aでの面内遅相軸は-116.5°に位置する。
 なお、図6では、第1位相差領域および第2位相差領域における第1パターン光学異方性層16aの表面162aでの面内遅相軸が-26.5°および-116.5°の位置にある態様を示すが、この態様に限定されず、それぞれ-26.5±10°および-116.5±10°の範囲にあればよい。
As described above, the first pattern optical anisotropic layer 16a includes a twisted liquid crystal compound having the thickness direction as a helical axis. Therefore, the in-plane slow axis on the surface 161a on the polarizing film 32 side of the first pattern optical anisotropic layer 16a and the surface on the second pattern optical anisotropic layer 18a side of the first pattern optical anisotropic layer 16a. The in-plane slow axis at 162a forms the above-described twist angle (26.5 ° in FIG. 6). That is, the in-plane slow axis of the first pattern optically anisotropic layer 16a rotates by −26.5 ° (26.5 ° clockwise).
Therefore, with reference to the absorption axis of the polarizing film 32, the in-plane slow axis at the surface 162a of the first patterned optically anisotropic layer 16a is located at −26.5 ° in the first retardation region, In the retardation region, the in-plane slow axis at the surface 162a of the first pattern optical anisotropic layer 16a is located at -116.5 °.
In FIG. 6, the in-plane slow axes at the surface 162a of the first patterned optically anisotropic layer 16a in the first retardation region and the second retardation region are −26.5 ° and −116.5 °, respectively. Although an embodiment in a position is shown, the present invention is not limited to this embodiment, and may be in the range of −26.5 ± 10 ° and −116.5 ± 10 °, respectively.
 図6においては、第1パターン光学異方性層16aの第2パターン光学異方性層18a側の表面162aでの面内遅相軸と、第2パターン光学異方性層18aの第1パターン光学異方性層16a側の表面181aでの面内遅相軸とは、第1位相差領域および第2位相差領域のいずれにおいても平行にある。 In FIG. 6, the in-plane slow axis at the surface 162a on the second pattern optical anisotropic layer 18a side of the first pattern optical anisotropic layer 16a and the first pattern of the second pattern optical anisotropic layer 18a. The in-plane slow axis on the surface 181a on the optically anisotropic layer 16a side is parallel to both the first retardation region and the second retardation region.
 第2パターン光学異方性層18aには、上述したように、厚み方向を螺旋軸とする捩れ配向した液晶化合物を含まれる。そのため、第2パターン光学異方性層18aの偏光膜32側の表面181aでの面内遅相軸と、第2パターン光学異方性層18aの第1パターン光学異方性層16a側とは反対側の表面182aでの面内遅相軸とは、上述した捩れ角(なお、図6においては、78.6°)をなす。つまり、第2パターン光学異方性層18aの面内遅相軸は、-78.6°(時計回りに78.6°)回転する。
 従って、偏光膜32の吸収軸を基準とすると、第1位相差領域において第2パターン光学異方性層18aの表面182aでの面内遅相軸は-105.1°に位置し、第2位相差領域において第2パターン光学異方性層18aの表面182aでの面内遅相軸は-195.1°に位置する。
 なお、図6では、第1位相差領域および第2位相差領域における第2パターン光学異方性層18aの表面182aでの面内遅相軸が-105.1°および-195.1°の位置にある態様を示すが、この態様に限定されず、それぞれ-105.1±20°および-195.1±20°の範囲にあればよい。
As described above, the second pattern optical anisotropic layer 18a includes a twisted liquid crystal compound having a thickness direction as a helical axis. Therefore, the in-plane slow axis at the surface 181a on the polarizing film 32 side of the second pattern optical anisotropic layer 18a and the first pattern optical anisotropic layer 16a side of the second pattern optical anisotropic layer 18a are The in-plane slow axis on the opposite surface 182a forms the above-described twist angle (78.6 ° in FIG. 6). That is, the in-plane slow axis of the second patterned optically anisotropic layer 18a rotates by −78.6 ° (clockwise 78.6 °).
Therefore, with reference to the absorption axis of the polarizing film 32, the in-plane slow axis on the surface 182a of the second patterned optically anisotropic layer 18a is located at −105.1 ° in the first retardation region, In the retardation region, the in-plane slow axis at the surface 182a of the second patterned optically anisotropic layer 18a is located at -195.1 °.
In FIG. 6, the in-plane slow axes on the surface 182a of the second patterned optically anisotropic layer 18a in the first retardation region and the second retardation region are −105.1 ° and −195.1 °. Although an embodiment in a position is shown, the present invention is not limited to this embodiment, and may be in a range of −105.1 ± 20 ° and −195.1 ± 20 °, respectively.
 図6においては、偏光膜32の吸収軸と第1パターン光学異方性層16aの第1位相差領域(領域24a)における偏光膜32側の表面161aでの面内遅相軸とは、平行である態様について詳述したが、直交であってもよい。
 また、図6においては、第1パターン光学異方性層16aおよび第2パターン光学異方性層18a中の液晶化合物の捩れ方向が時計回り(右捩れ)の態様について詳述したが、反時計回りの態様であってもよい。より具体的には、偏光膜32の吸収軸を基準に、第1パターン光学異方性層16aの第1位相差領域における表面162aでの面内遅相軸が26.5±10°の位置にあり、かつ、第1パターン光学異方性層16aの第2位相差領域における表面162aでの面内遅相軸が116.5±10°の位置にあり、第2パターン光学異方性層18aの第1位相差領域における表面182aでの面内遅相軸が105.1±20°の位置にあり、かつ、第2パターン光学異方性層18aの第2位相差領域における表面182aでの面内遅相軸が195.1±20°の位置にあってもよい。
In FIG. 6, the absorption axis of the polarizing film 32 and the in-plane slow axis on the surface 161a on the polarizing film 32 side in the first retardation region (region 24a) of the first pattern optical anisotropic layer 16a are parallel to each other. Although the aspect which is is explained in full detail, it may be orthogonal.
In FIG. 6, the liquid crystal compound in the first pattern optical anisotropic layer 16a and the second pattern optical anisotropic layer 18a is described in detail as to the clockwise direction (right twist). It may be a surrounding aspect. More specifically, the in-plane slow axis at the surface 162a in the first retardation region of the first pattern optical anisotropic layer 16a is 26.5 ± 10 ° with reference to the absorption axis of the polarizing film 32. And the in-plane slow axis at the surface 162a in the second retardation region of the first pattern optical anisotropic layer 16a is at a position of 116.5 ± 10 °, and the second pattern optical anisotropic layer The in-plane slow axis at the surface 182a in the first retardation region 18a is at a position of 105.1 ± 20 °, and the surface 182a in the second retardation region of the second patterned optically anisotropic layer 18a The in-plane slow axis may be at a position of 195.1 ± 20 °.
 図5中の円偏光板100aにおいて、第1パターン光学異方性層16aがディスコティック液晶化合物を含有し、第2パターン光学異方性層18aもディスコティック液晶化合物を含有する場合、透明支持体のRth(550)は、円偏光板を表示装置に貼り合わせた際の正面方向と斜め方向との視認性の差がより少ない点で、-30nm~-10nmであることが好ましく、-25nm~-15nmであることがより好ましい。 In the circularly polarizing plate 100a in FIG. 5, when the first pattern optical anisotropic layer 16a contains a discotic liquid crystal compound and the second pattern optical anisotropic layer 18a also contains a discotic liquid crystal compound, a transparent support Rth (550) is preferably −30 nm to −10 nm, more preferably −25 nm to −10 nm in that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to a display device is smaller. More preferably, it is −15 nm.
 円偏光板100aにおいて、第1パターン光学異方性層16aが棒状液晶化合物を含有し、第2パターン光学異方性層18aがディスコティック液晶化合物を含有する場合、透明支持体のRth(550)は、円偏光板を表示装置に貼り合わせた際の正面方向と斜め方向との視認性の差がより少ない点で、-70nm~-50nmであることが好ましく、-75nm~-65nmであることがより好ましい。 In the circularly polarizing plate 100a, when the first pattern optical anisotropic layer 16a contains a rod-like liquid crystal compound and the second pattern optical anisotropic layer 18a contains a discotic liquid crystal compound, Rth (550) of the transparent support. Is preferably −70 nm to −50 nm, and preferably −75 nm to −65 nm in that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to the display device is smaller. Is more preferable.
 円偏光板100aにおいて、第1パターン光学異方性層16aがディスコティック液晶化合物を含有し、第2パターン光学異方性層18aが棒状液晶化合物を含有する場合、透明支持体のRth(550)は、円偏光板を表示装置に貼り合わせた際の正面方向と斜め方向との視認性の差がより少ない点で、50nm~70nmであることが好ましく、55nm~65nmであることがより好ましい。 In the circularly polarizing plate 100a, when the first pattern optical anisotropic layer 16a contains a discotic liquid crystal compound and the second pattern optical anisotropic layer 18a contains a rod-like liquid crystal compound, Rth (550) of the transparent support. Is preferably 50 nm to 70 nm, and more preferably 55 nm to 65 nm in that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to the display device is smaller.
 円偏光板100aにおいて、第1パターン光学異方性層16aが棒状液晶化合物を含有し、第2パターン光学異方性層18aも棒状液晶化合物を含有する場合、透明支持体のRth(550)は、円偏光板を表示装置に貼り合わせた際の正面方向と斜め方向との視認性の差がより少ない点で、30nm~50nmであることが好ましく、35nm~45nmであることがより好ましい。 In the circularly polarizing plate 100a, when the first pattern optical anisotropic layer 16a contains a rod-like liquid crystal compound and the second pattern optical anisotropic layer 18a also contains a rod-like liquid crystal compound, Rth (550) of the transparent support is From the viewpoint of less difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to a display device, the thickness is preferably 30 nm to 50 nm, and more preferably 35 nm to 45 nm.
(第2の実施形態)
 円偏光板の第2の実施形態としては、図7に示すように、透明支持体12と、第2パターン光学異方性層18aと、第1パターン光学異方性層16aと、偏光膜32とをこの順で有する円偏光板100bが挙げられる。
 図7に示す円偏光板100bと、図5に示す円偏光板100aとは、透明支持体12の位置が異なるのみで、他の構成は同一である。
 円偏光板100bにおいて、上記円偏光板100aと同様に、偏光膜32の吸収軸と、第1パターン光学異方性層16aの面内遅相軸との関係が、上記(a)の要件を満たす。
(Second Embodiment)
As a second embodiment of the circularly polarizing plate, as shown in FIG. 7, the transparent support 12, the second pattern optical anisotropic layer 18a, the first pattern optical anisotropic layer 16a, and the polarizing film 32 are used. The circularly-polarizing plate 100b which has these in this order is mentioned.
The circularly polarizing plate 100b shown in FIG. 7 and the circularly polarizing plate 100a shown in FIG. 5 are the same except for the position of the transparent support 12.
In the circularly polarizing plate 100b, like the circularly polarizing plate 100a, the relationship between the absorption axis of the polarizing film 32 and the in-plane slow axis of the first patterned optically anisotropic layer 16a satisfies the requirement (a). Fulfill.
 円偏光板100bにおいて、第1パターン光学異方性層16aがディスコティック液晶化合物を含有し、第2パターン光学異方性層18aもディスコティック液晶化合物を含有する場合、透明支持体のRth(550)は、円偏光板を表示装置に貼り合わせた際の正面方向と斜め方向との視認性の差がより少ない点で、70nm~90nmであることが好ましく、75nm~85nmであることがより好ましい。 In the circularly polarizing plate 100b, when the first pattern optical anisotropic layer 16a contains a discotic liquid crystal compound and the second pattern optical anisotropic layer 18a also contains a discotic liquid crystal compound, Rth (550) of the transparent support. ) Is preferably 70 nm to 90 nm, more preferably 75 nm to 85 nm, in that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to a display device is smaller. .
 円偏光板100bにおいて、第1パターン光学異方性層16aが棒状液晶化合物を含有し、第2パターン光学異方性層18aがディスコティック液晶化合物を含有する場合、透明支持体のRth(550)は、円偏光板を表示装置に貼り合わせた際の正面方向と斜め方向との視認性の差がより少ない点で、30nm~50nmであることが好ましく、35nm~45nmであることがより好ましい。 In the circularly polarizing plate 100b, when the first pattern optical anisotropic layer 16a contains a rod-like liquid crystal compound and the second pattern optical anisotropic layer 18a contains a discotic liquid crystal compound, Rth (550) of the transparent support. Is preferably 30 nm to 50 nm, more preferably 35 nm to 45 nm, in that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to the display device is smaller.
 円偏光板100bにおいて、第1パターン光学異方性層16aがディスコティック液晶化合物を含有し、第2パターン光学異方性層18aが棒状液晶化合物を含有する場合、透明支持体のRth(550)は、円偏光板を表示装置に貼り合わせた際の正面方向と斜め方向との視認性の差がより少ない点で、-70nm~-50nmであることが好ましく、-65nm~-55nmであることがより好ましい。 In the circularly polarizing plate 100b, when the first pattern optical anisotropic layer 16a contains a discotic liquid crystal compound and the second pattern optical anisotropic layer 18a contains a rod-like liquid crystal compound, Rth (550) of the transparent support. Is preferably −70 nm to −50 nm, and preferably −65 nm to −55 nm in that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to the display device is smaller. Is more preferable.
 円偏光板100bにおいて、第1パターン光学異方性層16aが棒状液晶化合物を含有し、第2パターン光学異方性層18aも棒状液晶化合物を含有する場合、透明支持体のRth(550)は、円偏光板を表示装置に貼り合わせた際の正面方向と斜め方向との視認性の差がより少ない点で、-70nm~-50nmであることが好ましく、-65nm~-55nmであることがより好ましい。 In the circularly polarizing plate 100b, when the first pattern optical anisotropic layer 16a contains a rod-like liquid crystal compound and the second pattern optical anisotropic layer 18a also contains a rod-like liquid crystal compound, Rth (550) of the transparent support is From the viewpoint that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to the display device is smaller, it is preferably −70 nm to −50 nm, and preferably −65 nm to −55 nm. More preferred.
(第3の実施形態)
 円偏光板の第3の実施形態としては、図8に示すように、第2パターン光学異方性層18bと、第1パターン光学異方性層16bと、透明支持体12と、偏光膜32とをこの順で有する円偏光板100cが挙げられる。
 円偏光板100cにおいて、偏光膜32の吸収軸と、第1パターン光学異方性層16bおよび第2パターン光学異方性層18bの面内遅相軸との関係は、以下の(b)の要件を満たす。
要件(b):偏光膜32の吸収軸と、第1パターン光学異方性層16bの第1位相差領域および第2位相差領域のうちのいずれか一方の領域における偏光膜32側の表面での面内遅相軸とが平行または直交である。
(Third embodiment)
As a third embodiment of the circularly polarizing plate, as shown in FIG. 8, the second pattern optical anisotropic layer 18b, the first pattern optical anisotropic layer 16b, the transparent support 12, and the polarizing film 32 are used. The circularly-polarizing plate 100c which has these in this order is mentioned.
In the circularly polarizing plate 100c, the relationship between the absorption axis of the polarizing film 32 and the in-plane slow axes of the first pattern optical anisotropic layer 16b and the second pattern optical anisotropic layer 18b is as shown in (b) below. Satisfy requirements.
Requirement (b): On the surface on the polarizing film 32 side in one of the first retardation region and the second retardation region of the first pattern optical anisotropic layer 16b and the absorption axis of the polarizing film 32 The in-plane slow axis is parallel or orthogonal.
 上記要件(b)で表される実施態様における偏光膜32の吸収軸と、第1パターン光学異方性層16bの面内遅相軸と、第2パターン光学異方性層18bの面内遅相軸との関係に関して、図9を用いてより詳細に説明する。
 図9(A)においては、(b)の要件を満たす図8に示す円偏光板100cから透明支持体12を除いた構成の一部拡大斜視断面図を示す。図9(A)中の偏光膜32中の矢印は吸収軸を、第1パターン光学異方性層16bおよび第2パターン光学異方性層18b中の矢印はそれぞれの層中の面内遅相軸を表す。また、図9(B)においては、図9(A)の白抜きの矢印から観察した際の、第1位相差領域における、第1パターン光学異方性層16bの面内遅相軸と、第2パターン光学異方性層18bの面内遅相軸との角度の関係を示す。また、図9(C)においては、図9(A)の白抜きの矢印から観察した際の、第2位相差領域における、第1パターン光学異方性層16bの面内遅相軸と、第2パターン光学異方性層18bの面内遅相軸との角度の関係を示す。
 なお、図9(B)および(C)において回転角度は、図9(A)の白抜きの矢印から観察した際、偏光膜32の吸収軸を基準(0°)に反時計回り方向に正、時計回りに負の角度値をもって表す。また、捩れ方向は、図9(A)の白抜きの矢印から観察し、パターン光学異方性層中の手前側(偏光膜32側)の表面での面内遅相軸を基準に右捩れか、左捩れを判断する。
In the embodiment represented by the above requirement (b), the absorption axis of the polarizing film 32, the in-plane slow axis of the first pattern optical anisotropic layer 16b, and the in-plane slow axis of the second pattern optical anisotropic layer 18b. The relationship with the phase axis will be described in more detail with reference to FIG.
9A shows a partially enlarged perspective cross-sectional view of a configuration in which the transparent support 12 is removed from the circularly polarizing plate 100c shown in FIG. In FIG. 9A, the arrow in the polarizing film 32 indicates the absorption axis, and the arrows in the first pattern optical anisotropic layer 16b and the second pattern optical anisotropic layer 18b indicate in-plane slow phases in the respective layers. Represents an axis. 9B, the in-plane slow axis of the first patterned optically anisotropic layer 16b in the first retardation region when observed from the white arrow in FIG. 9A, The relationship of an angle with the in-plane slow axis of the 2nd pattern optically anisotropic layer 18b is shown. 9C, the in-plane slow axis of the first pattern optical anisotropic layer 16b in the second retardation region when observed from the white arrow in FIG. 9A, The relationship of an angle with the in-plane slow axis of the 2nd pattern optically anisotropic layer 18b is shown.
9B and 9C, the rotation angle is positive in the counterclockwise direction with the absorption axis of the polarizing film 32 as the reference (0 °) when observed from the white arrow in FIG. 9A. Expressed with a negative angle value clockwise. Further, the twist direction is observed from the white arrow in FIG. 9A, and the right twist is based on the in-plane slow axis on the front side (polarizing film 32 side) surface in the patterned optical anisotropic layer. Or determine the left twist.
 図9においては、偏光膜32の吸収軸と第1パターン光学異方性層16bの第1位相差領域(領域24b)における偏光膜32側の表面161bでの面内遅相軸とは、平行である。平行の定義は、上述の通りである。 In FIG. 9, the absorption axis of the polarizing film 32 and the in-plane slow axis on the surface 161b on the polarizing film 32 side in the first retardation region (region 24b) of the first pattern optical anisotropic layer 16b are parallel to each other. It is. The definition of parallel is as described above.
 第1パターン光学異方性層16bには、上述したように、厚み方向を螺旋軸とする捩れ配向した液晶化合物を含まれる。そのため、第1パターン光学異方性層16bの偏光膜32側の表面161bでの面内遅相軸と、第1パターン光学異方性層16bの第2パターン光学異方性層18b側の表面162bでの面内遅相軸とは、上述した捩れ角(なお、図9においては、59.7°)をなす。つまり、第1パターン光学異方性層16aの面内遅相軸は、-59.7°(時計回りに59.7°)回転する。
 従って、偏光膜32の吸収軸を基準とすると、第1位相差領域において第1パターン光学異方性層16bの表面162bでの面内遅相軸は-59.7°に位置し、第2位相差領域において第1パターン光学異方性層16bの表面162bでの面内遅相軸は-149.7°に位置する。
 なお、図9では、第1位相差領域および第2位相差領域における第1パターン光学異方性層16bの表面162bでの面内遅相軸が-59.7°および-149.7°の位置にある態様を示すが、この態様に限定されず、それぞれ-59.7±10°および-149.7±10°の範囲にあればよい。
As described above, the first pattern optical anisotropic layer 16b includes a twist-aligned liquid crystal compound having the thickness direction as a helical axis. Therefore, the in-plane slow axis on the surface 161b on the polarizing film 32 side of the first pattern optical anisotropic layer 16b and the surface on the second pattern optical anisotropic layer 18b side of the first pattern optical anisotropic layer 16b. The in-plane slow axis at 162b forms the twist angle described above (59.7 ° in FIG. 9). That is, the in-plane slow axis of the first patterned optically anisotropic layer 16a rotates by −59.7 ° (clockwise 59.7 °).
Therefore, with reference to the absorption axis of the polarizing film 32, the in-plane slow axis at the surface 162b of the first patterned optically anisotropic layer 16b is located at −59.7 ° in the first retardation region, In the retardation region, the in-plane slow axis at the surface 162b of the first patterned optically anisotropic layer 16b is located at -149.7 °.
In FIG. 9, the in-plane slow axes on the surface 162b of the first pattern optical anisotropic layer 16b in the first retardation region and the second retardation region are −59.7 ° and −149.7 °, respectively. Although an embodiment in a position is shown, the present invention is not limited to this embodiment, and may be in the range of −59.7 ± 10 ° and −149.7 ± 10 °, respectively.
 図9においては、第1パターン光学異方性層16bの第2パターン光学異方性層18b側の表面162bでの面内遅相軸と、第2パターン光学異方性層18bの第1パターン光学異方性層16b側の表面181bでの面内遅相軸とは、第1位相差領域および第2位相差領域のいずれにおいても直交する。
 よって、図9では、第1位相差領域および第2位相差領域における第2パターン光学異方性層18bの表面181bでの面内遅相軸は、それぞれ-149.7°および-239.7°の位置にある。
In FIG. 9, the in-plane slow axis at the surface 162b on the second pattern optical anisotropic layer 18b side of the first pattern optical anisotropic layer 16b and the first pattern of the second pattern optical anisotropic layer 18b. The in-plane slow axis on the surface 181b on the optically anisotropic layer 16b side is orthogonal to both the first retardation region and the second retardation region.
Therefore, in FIG. 9, the in-plane slow axes at the surface 181b of the second patterned optically anisotropic layer 18b in the first retardation region and the second retardation region are −149.7 ° and −239.7, respectively. In the position of °.
 第2パターン光学異方性層18bには、上述したように、厚み方向を螺旋軸とする捩れ配向した液晶化合物を含まれる。そのため、第2パターン光学異方性層18bの偏光膜32側の表面181bでの面内遅相軸と、第2パターン光学異方性層18bの第1パターン光学異方性層16b側とは反対側の表面182bでの面内遅相軸とは、上述した捩れ角(なお、図9においては、127.6°)をなす。つまり、第2パターン光学異方性層18bの面内遅相軸は、-127.6°(時計回りに127.6°)回転する。
 従って、偏光膜32の吸収軸を基準とすると、第1位相差領域において第2パターン光学異方性層18bの表面182bでの面内遅相軸は-277.3°に位置し、第2位相差領域において第2パターン光学異方性層18bの表面182bでの面内遅相軸は-367.3°に位置する。
 なお、図6では、第1位相差領域および第2位相差領域における第2パターン光学異方性層18bの表面182bでの面内遅相軸が-277.3°および-367.3°の位置にある態様を示すが、この態様に限定されず、それぞれ-277.3±20°および-367.3±20°の範囲にあればよい。
As described above, the second pattern optical anisotropic layer 18b includes a twisted liquid crystal compound having a thickness direction as a helical axis. Therefore, the in-plane slow axis on the surface 181b of the second pattern optical anisotropic layer 18b on the polarizing film 32 side and the first pattern optical anisotropic layer 16b side of the second pattern optical anisotropic layer 18b are The in-plane slow axis on the opposite surface 182b forms the above-described twist angle (127.6 ° in FIG. 9). That is, the in-plane slow axis of the second patterned optically anisotropic layer 18b rotates by −127.6 ° (127.6 ° clockwise).
Therefore, with reference to the absorption axis of the polarizing film 32, the in-plane slow axis at the surface 182b of the second patterned optically anisotropic layer 18b is located at −277.3 ° in the first retardation region, In the retardation region, the in-plane slow axis at the surface 182b of the second patterned optically anisotropic layer 18b is located at −367.3 °.
In FIG. 6, the in-plane slow axes at the surface 182b of the second patterned optical anisotropic layer 18b in the first retardation region and the second retardation region are −277.3 ° and −367.3 °. Although an embodiment in a position is shown, the present invention is not limited to this embodiment, and may be in a range of −277.3 ± 20 ° and −367.3 ± 20 °, respectively.
 図9においては、偏光膜32の吸収軸と第1パターン光学異方性層16bの第1位相差領域(領域24b)における偏光膜32側の表面161bでの面内遅相軸とは、平行である態様について詳述したが、直交であってもよい。
 また、図9においては、第1パターン光学異方性層16bおよび第2パターン光学異方性層18b中の液晶化合物の捩れ方向が時計回り(右捩れ)の態様について詳述したが、反時計回りの態様であってもよい。より具体的には、偏光膜32の吸収軸を基準に、第1パターン光学異方性層16bの第1位相差領域における表面162bでの面内遅相軸が59.7±10°の位置にあり、かつ、第1パターン光学異方性層16aの第2位相差領域における表面162bでの面内遅相軸が149.7±10°の位置にあり、第2パターン光学異方性層18bの第1位相差領域における表面182bでの面内遅相軸が277.3±20°の位置にあり、かつ、第2パターン光学異方性層18bの第2位相差領域における表面182bでの面内遅相軸が367.3±20°の位置にあってもよい。
In FIG. 9, the absorption axis of the polarizing film 32 and the in-plane slow axis on the surface 161b on the polarizing film 32 side in the first retardation region (region 24b) of the first patterned optically anisotropic layer 16b are parallel to each other. Although the aspect which is is explained in full detail, it may be orthogonal.
In FIG. 9, the mode in which the twist direction of the liquid crystal compound in the first pattern optical anisotropic layer 16b and the second pattern optical anisotropic layer 18b is clockwise (right twist) is described in detail. It may be a surrounding aspect. More specifically, the in-plane slow axis at the surface 162b in the first retardation region of the first pattern optical anisotropic layer 16b is 59.7 ± 10 ° with respect to the absorption axis of the polarizing film 32. And the in-plane slow axis at the surface 162b in the second retardation region of the first pattern optical anisotropic layer 16a is at a position of 149.7 ± 10 °, and the second pattern optical anisotropic layer The in-plane slow axis on the surface 182b in the first retardation region 18b is at a position of 277.3 ± 20 °, and the surface 182b in the second retardation region of the second patterned optically anisotropic layer 18b The in-plane slow axis may be at a position of 367.3 ± 20 °.
 円偏光板100cにおいて、第1パターン光学異方性層16bがディスコティック液晶化合物を含有し、第2パターン光学異方性層18bもディスコティック液晶化合物を含有する場合、透明支持体のRth(550)は、円偏光板を表示装置に貼り合わせた際の正面方向と斜め方向との視認性の差がより少ない点で、50nm~70nmであることが好ましく、55nm~65nmであることがより好ましい。 In the circularly polarizing plate 100c, when the first pattern optical anisotropic layer 16b contains a discotic liquid crystal compound and the second pattern optical anisotropic layer 18b also contains a discotic liquid crystal compound, Rth (550) of the transparent support. ) Is preferably 50 nm to 70 nm, more preferably 55 nm to 65 nm in that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to a display device is smaller. .
 円偏光板100cにおいて、第1パターン光学異方性層16bがディスコティック液晶化合物を含有し、第2パターン光学異方性層18bが棒状液晶化合物を含有する場合、透明支持体のRth(550)は、円偏光板を表示装置に貼り合わせた際の正面方向と斜め方向との視認性の差がより少ない点で、-70nm~-50nmであることが好ましく、-65nm~-55nmであることがより好ましい。 In the circularly polarizing plate 100c, when the first pattern optical anisotropic layer 16b contains a discotic liquid crystal compound and the second pattern optical anisotropic layer 18b contains a rod-like liquid crystal compound, Rth (550) of the transparent support. Is preferably −70 nm to −50 nm, and preferably −65 nm to −55 nm in that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to the display device is smaller. Is more preferable.
 円偏光板100cにおいて、第1パターン光学異方性層16bが棒状液晶化合物を含有し、第2パターン光学異方性層18bがディスコティック液晶化合物を含有する場合、透明支持体のRth(550)は、円偏光板を表示装置に貼り合わせた際の正面方向と斜め方向との視認性の差がより少ない点で、50nm~70nmであることが好ましく、55nm~65nmであることがより好ましい。 In the circularly polarizing plate 100c, when the first pattern optical anisotropic layer 16b contains a rod-like liquid crystal compound and the second pattern optical anisotropic layer 18b contains a discotic liquid crystal compound, Rth (550) of the transparent support. Is preferably 50 nm to 70 nm, and more preferably 55 nm to 65 nm in that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to the display device is smaller.
 円偏光板100cにおいて、第1パターン光学異方性層16bが棒状液晶化合物を含有し、第2パターン光学異方性層18bも棒状液晶化合物を含有する場合、透明支持体のRth(550)は、円偏光板を表示装置に貼り合わせた際の正面方向と斜め方向との視認性の差がより少ない点で、-70nm~-50nmであることが好ましく、-65nm~-55nmであることがより好ましい。 In the circularly polarizing plate 100c, when the first pattern optical anisotropic layer 16b contains a rod-like liquid crystal compound and the second pattern optical anisotropic layer 18b also contains a rod-like liquid crystal compound, Rth (550) of the transparent support is From the viewpoint that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to the display device is smaller, it is preferably −70 nm to −50 nm, and preferably −65 nm to −55 nm. More preferred.
(第4の実施形態)
 円偏光板の第4の実施形態としては、図10に示すように、透明支持体12と、第2パターン光学異方性層18bと、第1パターン光学異方性層16bと、偏光膜32とをこの順で有する円偏光板100dが挙げられる。
 図10に示す円偏光板100dと、図8に示す円偏光板100cとは、透明支持体12の位置が異なるのみで、他の構成は同一である。
 円偏光板100dにおいて、上記円偏光板100cと同様に、偏光膜32の吸収軸と、第1パターン光学異方性層16bおよび第2パターン光学異方性層18bの面内遅相軸との関係が、上記(b)の要件を満たす。
(Fourth embodiment)
As a fourth embodiment of the circularly polarizing plate, as shown in FIG. 10, the transparent support 12, the second pattern optical anisotropic layer 18b, the first pattern optical anisotropic layer 16b, and the polarizing film 32 are used. The circularly-polarizing plate 100d which has these in this order is mentioned.
The circularly polarizing plate 100d shown in FIG. 10 and the circularly polarizing plate 100c shown in FIG. 8 are the same except for the position of the transparent support 12.
In the circularly polarizing plate 100d, similarly to the circularly polarizing plate 100c, the absorption axis of the polarizing film 32 and the in-plane slow axes of the first patterned optically anisotropic layer 16b and the second patterned optically anisotropic layer 18b. The relationship satisfies the requirement (b) above.
 円偏光板100dにおいて、第1パターン光学異方性層16bがディスコティック液晶化合物を含有し、第2パターン光学異方性層18bもディスコティック液晶化合物を含有する場合、透明支持体のRth(550)は、円偏光板を表示装置に貼り合わせた際の正面方向と斜め方向との視認性の差がより少ない点で、50nm~70nmであることが好ましく、55nm~65nmであることがより好ましい。 In the circularly polarizing plate 100d, when the first pattern optical anisotropic layer 16b contains a discotic liquid crystal compound and the second pattern optical anisotropic layer 18b also contains a discotic liquid crystal compound, Rth (550) of the transparent support. ) Is preferably 50 nm to 70 nm, more preferably 55 nm to 65 nm in that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to a display device is smaller. .
 円偏光板100dにおいて、第1パターン光学異方性層16bがディスコティック液晶化合物を含有し、第2パターン光学異方性層18bが棒状液晶化合物を含有する場合、透明支持体のRth(550)は、円偏光板を表示装置に貼り合わせた際の正面方向と斜め方向との視認性の差がより少ない点で、70nm~90nmであることが好ましく、75nm~85nmであることがより好ましい。 In the circularly polarizing plate 100d, when the first pattern optical anisotropic layer 16b contains a discotic liquid crystal compound and the second pattern optical anisotropic layer 18b contains a rod-like liquid crystal compound, Rth (550) of the transparent support. Is preferably 70 nm to 90 nm, more preferably 75 nm to 85 nm, in that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to a display device is smaller.
 円偏光板100dにおいて、第1パターン光学異方性層16bが棒状液晶化合物を含有し、第2パターン光学異方性層18bがディスコティック液晶化合物を含有する場合、透明支持体のRth(550)は、円偏光板を表示装置に貼り合わせた際の正面方向と斜め方向との視認性の差がより少ない点で、-110nm~-90nmであることが好ましく、-105nm~-95nmであることがより好ましい。 In the circularly polarizing plate 100d, when the first pattern optical anisotropic layer 16b contains a rod-like liquid crystal compound and the second pattern optical anisotropic layer 18b contains a discotic liquid crystal compound, Rth (550) of the transparent support. Is preferably −110 nm to −90 nm, and preferably −105 nm to −95 nm in that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to the display device is smaller. Is more preferable.
 円偏光板100dにおいて、第1パターン光学異方性層16bが棒状液晶化合物を含有し、第2パターン光学異方性層18bも棒状液晶化合物を含有する場合、透明支持体のRth(550)は、円偏光板を表示装置に貼り合わせた際の正面方向と斜め方向との視認性の差がより少ない点で、-90nm~-70nmであることが好ましく、-85nm~-75nmであることがより好ましい。 In the circularly polarizing plate 100d, when the first pattern optical anisotropic layer 16b contains a rod-like liquid crystal compound and the second pattern optical anisotropic layer 18b also contains a rod-like liquid crystal compound, Rth (550) of the transparent support is From the viewpoint that the difference in visibility between the front direction and the oblique direction when the circularly polarizing plate is bonded to the display device is smaller, it is preferably −90 nm to −70 nm, and preferably −85 nm to −75 nm. More preferred.
<3D画像表示装置、3D画像表示システム>
 上述した位相差板および円偏光板は、3D画像表示装置、3D画像表示システムに好適使用することができる。より具体的には、上述した位相差板または円偏光板を、画像信号に基づいて駆動される表示パネルの視認側に配置することにより、表示パネルからの光のうち、第1位相差領域を通過した光と、第2位相差領域を通過した光の偏光状態を変えることができ、3D立体映像表示を表示することができる映像表示パネルとなる。
<3D image display device, 3D image display system>
The retardation plate and the circularly polarizing plate described above can be suitably used for a 3D image display device and a 3D image display system. More specifically, by arranging the above-described retardation plate or circularly polarizing plate on the viewing side of the display panel driven based on the image signal, the first retardation region of the light from the display panel is The polarization state of the light that has passed through and the light that has passed through the second phase difference region can be changed, and the video display panel can display a 3D stereoscopic video display.
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 Hereinafter, the features of the present invention will be described more specifically with reference to examples and comparative examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
<透明支持体(以後、単に支持体とも称する)の準備)>
《Rthが-80nm~-30nmのセルロースアシレートフィルムの作製》
(セルロースアシレートの調製)
 全置換度2.97(内訳:アセチル置換度0.45、プロピオニル置換度2.52)のセルロースアシレートを調製した。触媒として硫酸(セルロース100質量部に対し7.8質量部)とカルボン酸無水物との混合物を-20℃に冷却してからパルプ由来のセルロースに添加し、40℃でアシル化を行った。この時、カルボン酸無水物の種類およびその量を調整することで、アシル基の種類およびその置換比を調整した。またアシル化後に40℃で熟成を行って全置換度を調整した。
<Preparation of transparent support (hereinafter also referred to simply as support)>
<< Preparation of cellulose acylate film with Rth of -80 nm to -30 nm >>
(Preparation of cellulose acylate)
A cellulose acylate having a total substitution degree of 2.97 (breakdown: acetyl substitution degree: 0.45, propionyl substitution degree: 2.52) was prepared. As a catalyst, a mixture of sulfuric acid (7.8 parts by mass with respect to 100 parts by mass of cellulose) and carboxylic acid anhydride was cooled to −20 ° C., added to cellulose derived from pulp, and acylated at 40 ° C. At this time, the kind of acyl group and its substitution ratio were adjusted by adjusting the kind and amount of carboxylic anhydride. After acylation, aging was performed at 40 ° C. to adjust the total substitution degree.
(セルロースアシレート溶液の調製)
1)セルロースアシレート
 調製したセルロースアシレートを120℃に加熱して乾燥し、含水率を0.5質量%以下とした後、30質量部を溶媒と混合させた。
2)溶媒
 ジクロロメタン/メタノール/ブタノール(81/15/4質量部)を溶媒として用いた。なお、これらの溶媒の含水率は、いずれも0.2質量%以下であった。
3)添加剤
 全ての溶液調製に際し、トリメチロールプロパントリアセテート0.9質量部を添加した。また、全ての溶液調製に際し、二酸化ケイ素微粒子(粒径20nm、モース硬度 約7)0.25質量部を添加した。
4)膨潤、溶解
 攪拌羽根を有し外周を冷却水が循環する400リットルのステンレス製溶解タンクに、上記溶媒、添加剤を投入して撹拌、分散させながら、上記セルロースアシレートを徐々に添加した。投入完了後、室温にて2時間撹拌し、3時間膨潤させた後に再度撹拌を実施し、セルロースアシレート溶液を得た。
 なお、攪拌には、15m/sec(剪断応力5×104kgf/m/sec2)の周速で攪拌するディゾルバータイプの偏芯攪拌軸および中心軸にアンカー翼を有して周速1m/sec(剪断応力1×104kgf/m/sec2)で攪拌する攪拌軸を用いた。膨潤は、高速攪拌軸を停止し、アンカー翼を有する攪拌軸の周速を0.5m/secとして実施した。
5)ろ過
 上記で得られたセルロースアシレート溶液を、絶対濾過精度0.01mmの濾紙(#63、東洋濾紙(株)製)で濾過し、さらに絶対濾過精度2.5μmの濾紙(FH025、ポール社製)にて濾過してセルロースアシレート溶液を得た。
(Preparation of cellulose acylate solution)
1) Cellulose acylate The prepared cellulose acylate was heated to 120 ° C. and dried to adjust the water content to 0.5% by mass or less, and then 30 parts by mass was mixed with a solvent.
2) Solvent Dichloromethane / methanol / butanol (81/15/4 parts by mass) was used as a solvent. The water content of these solvents was 0.2% by mass or less.
3) Additive In preparing all the solutions, 0.9 parts by mass of trimethylolpropane triacetate was added. In addition, 0.25 part by mass of silicon dioxide fine particles (particle diameter 20 nm, Mohs hardness about 7) was added in preparing all solutions.
4) Swelling and dissolution The cellulose acylate was gradually added to the 400 liter stainless steel dissolution tank having stirring blades and circulating cooling water around the outer periphery, while stirring and dispersing the solvent and additives. . After completion of the addition, the mixture was stirred at room temperature for 2 hours, swollen for 3 hours and then stirred again to obtain a cellulose acylate solution.
For stirring, a dissolver type eccentric stirring shaft that stirs at a peripheral speed of 15 m / sec (shear stress 5 × 10 4 kgf / m / sec 2 ) and an anchor blade on the central axis and a peripheral speed of 1 m / sec. A stirring shaft that stirs at a sec (shear stress of 1 × 10 4 kgf / m / sec 2 ) was used. Swelling was performed with the high speed stirring shaft stopped and the peripheral speed of the stirring shaft having the anchor blades set at 0.5 m / sec.
5) Filtration The cellulose acylate solution obtained above was filtered through a filter paper (# 63, manufactured by Toyo Filter Paper Co., Ltd.) with an absolute filtration accuracy of 0.01 mm, and further a filter paper (FH025, Poll) with an absolute filtration accuracy of 2.5 μm. To obtain a cellulose acylate solution.
(セルロースアシレートフィルムの作製)
 上記セルロースアシレート溶液を30℃に加温し、流延ギーサー(特開平11-314233号公報に記載)を通して15℃に設定したバンド長60mの鏡面ステンレス支持体上に流延した。流延スピードは15m/分、塗布幅は200cmとした。流延部全体の空間温度は、15℃に設定した。そして、流延部から50cm手前で、流延して回転してきたセルロースアシレートフィルムをバンドから剥ぎ取り、45℃の乾燥風を送風した。次に110℃で5分、さらに140℃で10分乾燥して、セルロースアシレートフィルムを得た。膜厚が30μm~100μmになるように調整し、Re(550)が5nm以下、Rth(550)が-80nm~-30nmの種々のセルロースアシレートフィルムを得た。
(Preparation of cellulose acylate film)
The cellulose acylate solution was heated to 30 ° C., and cast on a mirror surface stainless steel support having a band length of 60 m set at 15 ° C. through a casting Giesser (described in JP-A-11-314233). The casting speed was 15 m / min and the coating width was 200 cm. The space temperature of the entire casting part was set to 15 ° C. Then, the cellulose acylate film that had been cast and rotated 50 cm before the cast part was peeled off from the band, and 45 ° C. dry air was blown. Next, it was dried at 110 ° C. for 5 minutes and further at 140 ° C. for 10 minutes to obtain a cellulose acylate film. The film thickness was adjusted to 30 μm to 100 μm, and various cellulose acylate films having Re (550) of 5 nm or less and Rth (550) of −80 nm to −30 nm were obtained.
《Rthが-30nm~5nmのセルロースアシレートフィルムの作製》
(セルロースアシレート溶液の調製)
 下記の組成物をミキシングタンクに投入し、攪拌して各成分を溶解し、セルロースアシレート溶液を調製した。
セルロースアシレート溶液 組成
 酢化度2.86のセルロースアシレート  100.0質量部
 メチレンクロライド(第1溶媒)     402.0質量部
 メタノール(第2溶媒)          60.0質量部
<< Production of cellulose acylate film with Rth of -30 nm to 5 nm >>
(Preparation of cellulose acylate solution)
The following composition was put into a mixing tank and stirred to dissolve each component to prepare a cellulose acylate solution.
Cellulose acylate solution Composition Cellulose acylate having an acetylation degree of 2.86 100.0 parts by mass Methylene chloride (first solvent) 402.0 parts by mass Methanol (second solvent) 60.0 parts by mass
(添加剤溶液の調製)
 下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアシレート溶液を調製した。光学異方性を低下させる化合物(光学異方性低下剤)および波長分散調整剤については下記に示すものを用いた。
(Preparation of additive solution)
The following composition was put into a mixing tank and stirred while heating to dissolve each component to prepare a cellulose acylate solution. The following compounds (optical anisotropy reducing agents) and wavelength dispersion adjusting agents for reducing optical anisotropy were used.
添加剤溶液組成
 化合物A-19(レタデーション低減剤)  49.3質量部
 UV-102(波長分散調整剤)       7.6質量部
 メチレンクロライド(第1溶媒)      58.4質量部
 メタノール(第2溶媒)           8.7質量部
 セルロースアシレート溶液         12.8質量部
Composition of additive solution Compound A-19 (retardation reducing agent) 49.3 parts by mass UV-102 (wavelength dispersion adjusting agent) 7.6 parts by mass Methylene chloride (first solvent) 58.4 parts by mass Methanol (second solvent) 8.7 parts by mass Cellulose acylate solution 12.8 parts by mass
(セルロースアシレートフィルムの作製)
 上記セルロースアシレート溶液94.6質量部、添加剤溶液4.1質量部を、それぞれを濾過後に混合し、バンド流延機を用いて流延した。なお、添加化合物(化合物A-19およびUV-102)の総量は、セルロースアシレートの量に対して、13.6質量%であった。
 残留溶剤量30%でフィルムをバンドから剥離し、140℃で40分間乾燥させ、セルロースアシレートフィルムを得た。膜厚が30μm~100μmになるように調整し、Re(550)が5nm以下、Rth(550)が-30nm~5nmの種々のセルロースアシレートフィルムを得た。
(Preparation of cellulose acylate film)
94.6 parts by mass of the cellulose acylate solution and 4.1 parts by mass of the additive solution were mixed after filtration, and cast using a band casting machine. The total amount of the additive compounds (Compound A-19 and UV-102) was 13.6% by mass relative to the amount of cellulose acylate.
The film was peeled from the band with a residual solvent amount of 30% and dried at 140 ° C. for 40 minutes to obtain a cellulose acylate film. The film thickness was adjusted to 30 μm to 100 μm, and various cellulose acylate films having Re (550) of 5 nm or less and Rth (550) of −30 nm to 5 nm were obtained.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
《Rthが5nm~45nmのセルロースアシレートフィルムの作製》
(セルロースアシレート溶液の調製)
 下記の組成物をミキシングタンクに投入し、攪拌して各成分を溶解し、セルロースアシレート溶液を調製した。
セルロースアシレート溶液組成
  酢化度2.86のセルロースアシレート   100.0質量部
  トリフェニルホスフェート(可塑剤)      7.8質量部
  ビフェニルジフェニルホスフェート(可塑剤)  3.9質量部
  メチレンクロライド              435質量部
  メタノール                   65質量部
<< Production of cellulose acylate film having Rth of 5 nm to 45 nm >>
(Preparation of cellulose acylate solution)
The following composition was put into a mixing tank and stirred to dissolve each component to prepare a cellulose acylate solution.
Cellulose acylate solution composition Cellulose acylate having an acetylation degree of 2.86 100.0 parts by mass Triphenyl phosphate (plasticizer) 7.8 parts by mass Biphenyl diphenyl phosphate (plasticizer) 3.9 parts by mass Methylene chloride 435 parts by mass Methanol 65 parts by mass
(セルロースアシレートフィルムの作製)
 上記方法で作製したセルロースアシレート溶液をステンレスバンド支持体上に均一に流延した。ステンレスバンド支持体上で、残留溶媒量30質量%になるまで溶媒を蒸発させ、ステンレスバンド上から剥離した。剥離の際に張力をかけて縦(MD)延伸倍率が1.02倍となるように延伸し、ついで、乾燥ゾーンで搬送しながら140℃40分間乾燥させ、セルロースアシレートフィルムを得た。膜厚が30μm~100μmになるように調整し、Re(550)が5nm以下、Rth(550)が5nm~45nmの種々のセルロースアシレートフィルムを得た。
(Preparation of cellulose acylate film)
The cellulose acylate solution produced by the above method was uniformly cast on a stainless steel band support. On the stainless steel band support, the solvent was evaporated until the residual solvent amount was 30% by mass, and then peeled off from the stainless steel band. When peeling, the film was stretched so that the longitudinal (MD) stretch ratio was 1.02, and then dried at 140 ° C. for 40 minutes while being transported in a drying zone to obtain a cellulose acylate film. The film thickness was adjusted to 30 μm to 100 μm, and various cellulose acylate films having Re (550) of 5 nm or less and Rth (550) of 5 nm to 45 nm were obtained.
《Rthが45nm~100nmのセルロースアシレートフィルムの作製》
(セルロースアシレート溶液の調製)
 下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアシレート溶液を調製した。
(セルロースアシレート溶液組成)
 酢化度60.7~61.1%のセルロースアシレート  100質量部
 トリフェニルホスフェート(可塑剤)         7.8質量部
 ビフェニルジフェニルホスフェート(可塑剤)     3.9質量部
 メチレンクロライド(第1溶媒)           336質量部
 メタノール(第2溶媒)                29質量部
 1-ブタノール(第3溶媒)              11質量部
<< Production of cellulose acylate film having Rth of 45 nm to 100 nm >>
(Preparation of cellulose acylate solution)
The following composition was put into a mixing tank and stirred while heating to dissolve each component to prepare a cellulose acylate solution.
(Cellulose acylate solution composition)
Cellulose acylate having an acetylation degree of 60.7 to 61.1% 100 parts by weight Triphenyl phosphate (plasticizer) 7.8 parts by weight Biphenyl diphenyl phosphate (plasticizer) 3.9 parts by weight Methylene chloride (first solvent) 336 Part by mass Methanol (second solvent) 29 parts by mass 1-butanol (third solvent) 11 parts by mass
 別のミキシングタンクに、下記のレタデーション上昇剤(A)16質量部、メチレンクロライド92質量部およびメタノール8質量部を投入し、加熱しながら攪拌して、レタデーション上昇剤溶液を調製した。セルロースアシレート溶液474質量部にレタデーション上昇剤溶液25質量部を混合し、充分に攪拌してドープを調製した。レタデーション上昇剤の添加量は、セルロースアシレート100質量部に対して、6.0質量部であった。 In another mixing tank, 16 parts by mass of the following retardation increasing agent (A), 92 parts by mass of methylene chloride and 8 parts by mass of methanol were added and stirred while heating to prepare a retardation increasing agent solution. A dope was prepared by mixing 474 parts by mass of the cellulose acylate solution with 25 parts by mass of the retardation increasing agent solution and thoroughly stirring. The addition amount of the retardation increasing agent was 6.0 parts by mass with respect to 100 parts by mass of cellulose acylate.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 得られたドープを、バンド延伸機を用いて流延した。バンド上での膜面温度が40℃となってから、70℃の温風で1分乾燥し、バンドからフィルムを140℃の乾燥風で10分乾燥し、セルロースアシレートフィルムを得た。膜厚が30μm~100μmになるように調整し、Re(550)が5nm以下、Rth(550)が45nm~100nmの種々のセルロースアシレートフィルムを得た。 The obtained dope was cast using a band stretching machine. After the film surface temperature on the band reached 40 ° C., the film was dried with warm air at 70 ° C. for 1 minute, and the film from the band was dried with 140 ° C. drying air for 10 minutes to obtain a cellulose acylate film. The film thickness was adjusted to 30 μm to 100 μm, and various cellulose acylate films having Re (550) of 5 nm or less and Rth (550) of 45 nm to 100 nm were obtained.
《Rthが-100nmのセルロースアシレートフィルムの作製》
 特開2006-265309号の実施例15において延伸を行わなかった以外は、同様の手順に従って、セルロースアシレートフィルムを製造した。Re、Rthを測定したところ、Re(550)=0nm、Rth(550)=-100nmであった。
<< Preparation of cellulose acylate film with Rth of -100 nm >>
A cellulose acylate film was produced according to the same procedure except that no stretching was performed in Example 15 of JP-A-2006-265309. When Re and Rth were measured, Re (550) = 0 nm and Rth (550) = − 100 nm.
 以下に、使用される透明支持体の種類を示す。 The following shows the types of transparent supports used.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<実施例1>
(アルカリ鹸化処理)
 支持体4を温度60℃の誘電式加熱ロールを通過させ、フィルム表面温度を40℃に昇温した後に、フィルムのバンド面に下記に示す組成のアルカリ溶液を、バーコーターを用いて塗布量14ml/m2で塗布し、110℃に加熱した(株)ノリタケカンパニーリミテド製のスチーム式遠赤外ヒーターの下に、10秒間搬送した。続いて、同じくバーコーターを用いて、純水を3ml/m2塗布した。次いで、ファウンテンコーターによる水洗とエアナイフによる水切りを3回繰り返した後に、70℃の乾燥ゾーンに10秒間搬送して乾燥し、アルカリ鹸化処理したセルロースアシレートフィルムを作製した。
<Example 1>
(Alkaline saponification treatment)
After passing the support 4 through a dielectric heating roll having a temperature of 60 ° C. and raising the film surface temperature to 40 ° C., an alkaline solution having the composition shown below is applied to the band surface of the film using a bar coater. It was transported for 10 seconds under a steam far infrared heater manufactured by Noritake Co., Ltd., which was applied at / m 2 and heated to 110 ° C. Subsequently, 3 ml / m 2 of pure water was applied using the same bar coater. Next, washing with a fountain coater and draining with an air knife were repeated three times, and then the sheet was transported to a drying zone at 70 ° C. for 10 seconds and dried to prepare an alkali saponified cellulose acylate film.
(アルカリ溶液組成)
──────────────────────────────
アルカリ溶液組成(質量部)
──────────────────────────────
 水酸化カリウム               4.7質量部
 水                    15.8質量部
 イソプロパノール             63.7質量部
 界面活性剤
 SF-1:C1429O(CH2CH2O)20H    1.0質量部
 プロピレングリコール           14.8質量部
──────────────────────────────
(Alkaline solution composition)
──────────────────────────────
Alkaline solution composition (parts by mass)
──────────────────────────────
Potassium hydroxide 4.7 parts by weight Water 15.8 parts by weight Isopropanol 63.7 parts by weight Surfactant SF-1: C 14 H 29 O (CH 2 CH 2 O) 20 H 1.0 part by weight Propylene glycol 14. 8 parts by mass ──────────────────────────────
(配向膜1の形成)
 上記のように鹸化処理した長尺状のセルロースアシレートフィルムに、下記の組成の配向膜塗布液1を調整して、孔径0.2μmのポリプロピレン製フィルタでろ過後に、#8のワイヤーバーで連続的に塗布した。100℃の温風で2分間乾燥し、厚み0.6μmの配向膜1を得た。
 次に、564μmのピッチで5mm×282μm角の開口部と非開口部が周期的に形成された格子マスクをその開口部と非開口部の繰り返し方向がフィルム長手方向と垂直になるように配向膜1上に配置して、これを通して、室温空気下にて、UV-C領域における照度2.5mW/cm2の空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて紫外線を配向膜に照射し、UV照射部、未照射部を周期的に形成した。その後に、連続的にラビング処理を施した。このとき、長尺状のフィルムの長手方向と搬送方向は平行であり、フィルム長手方向に対するラビング方向が0°になるように調節した。
 なお、ラビング方向の角度は、後述する光学異方性層が積層される面側から支持体を観察して、支持体の長手方向を基準の0°とし、反時計回り方向に正、時計回りに負の角度値をもって表してある。
(Formation of alignment film 1)
To the long cellulose acylate film saponified as described above, the alignment film coating solution 1 having the following composition was prepared, filtered with a polypropylene filter having a pore size of 0.2 μm, and then continuously with a # 8 wire bar. Was applied. The film was dried with warm air of 100 ° C. for 2 minutes to obtain an alignment film 1 having a thickness of 0.6 μm.
Next, a lattice mask in which openings and non-openings of 5 mm × 282 μm square are periodically formed with a pitch of 564 μm is used so that the repeating direction of the openings and non-openings is perpendicular to the film longitudinal direction. 1 is radiated onto the alignment film using an air-cooled metal halide lamp (made by Eye Graphics Co., Ltd.) having an illuminance of 2.5 mW / cm 2 in the UV-C region under room temperature air. Then, the UV irradiation part and the non-irradiation part were formed periodically. Thereafter, a rubbing treatment was continuously performed. At this time, the longitudinal direction of the long film and the transport direction were parallel, and the rubbing direction with respect to the film longitudinal direction was adjusted to 0 °.
The angle in the rubbing direction is determined by observing the support from the side on which the optically anisotropic layer, which will be described later, is laminated. The longitudinal direction of the support is 0 ° as a reference, and the counterclockwise direction is positive or clockwise. Is represented with a negative angle value.
配向膜塗布液1の組成
――――――――――――――――――――――――――――――
下記の変性ポリビニルアルコール          4質量部
下記の光酸発生剤               0.1質量部
水                       70質量部
メタノール                   30質量部
――――――――――――――――――――――――――――――
Composition of alignment film coating solution 1 ――――――――――――――――――――――――――――――
4 parts by weight of the following modified polyvinyl alcohol The following photoacid generator 0.1 part by weight 70 parts by weight of methanol 30 parts by weight of methanol ――――――――――――――――――――――― ―――――――
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(パターン光学異方性層A(以後、単に「光学異方性層A」とも称する)の形成)
 次に、表2に示すディスコティック液晶化合物を含む塗布液(DLC(1))を上記作製した配向膜1上に#3のワイヤーバーで塗布した。フィルムの搬送速度(V)は5m/minとした。塗布液の溶媒の乾燥およびディスコティック液晶化合物の配向熟成のために、110℃の温風で2分間加熱した。続いて、窒素環境下にて、80℃にてUV照射(500mJ/cm2)を行い、液晶化合物の配向を固定化した。配向膜1の格子マスク露光部分(第1位相差領域)は、ラビング方向に対し遅相軸方向が平行にディスコティック液晶が垂直配向しており、未露光部分(第2位相差領域)はラビング方向に対し遅相軸方向が直交に垂直配向していた。光学異方性層Aの厚さは、露光部未露光部とも1.25μmであった。また、550nmにおけるΔndは、いずれの領域とも282nmであった。
(Formation of patterned optically anisotropic layer A (hereinafter also simply referred to as “optically anisotropic layer A”))
Next, a coating liquid (DLC (1)) containing a discotic liquid crystal compound shown in Table 2 was applied onto the alignment film 1 produced above with a # 3 wire bar. The conveyance speed (V) of the film was 5 m / min. In order to dry the solvent of the coating solution and to mature the alignment of the discotic liquid crystal compound, the coating liquid was heated with hot air at 110 ° C. for 2 minutes. Subsequently, UV irradiation (500 mJ / cm 2 ) was performed at 80 ° C. in a nitrogen environment to fix the alignment of the liquid crystal compound. In the lattice mask exposure portion (first retardation region) of the alignment film 1, the discotic liquid crystal is vertically aligned with the slow axis direction parallel to the rubbing direction, and the unexposed portion (second retardation region) is rubbed. The slow axis direction was perpendicular to the direction perpendicular to the direction. The thickness of the optically anisotropic layer A was 1.25 μm in both the exposed area and the unexposed area. In addition, Δnd at 550 nm was 282 nm in any region.
(パターン光学異方性層B(以後、単に「光学異方性層B」とも称する)の形成)
 上記で作製した光学異方性層Aにラビング処理を施すことなく、表2に示すディスコティック液晶化合物を含む塗布液(DLC(4))を、上記作製した光学異方性層A上に#3のワイヤーバーで塗布した。フィルムの搬送速度(V)は5m/minとした。塗布液の溶媒の乾燥およびディスコティック液晶化合物の配向熟成のために、110℃の温風で2分間加熱した。続いて、窒素環境下にて、80℃にてUV照射(500mJ/cm2)を行い、液晶化合物の配向を固定化した。光学異方性層Bの厚さは、第1位相差領域、第2位相差領域とも1.19μmであった。また、550nmにおけるΔndは140nmであった。
 なお、光学異方性層Bの光学異方性層A側表面の面内遅相軸は、第1位相差領域および第2位相差領域の両方において、それぞれの光学異方性層Aの光学異方性層B側表面での面内遅相軸と平行であった。また、光学異方性層A中のディスコティック液晶化合物の捩れ角は第1位相差領域および第2の位相差領域ともに26.5°であり、光学異方性層B中のディスコティック液晶化合物の捩れ角は第1位相差領域および第2の位相差領域ともに78.6°であった。なお、ディスコティック液晶化合物は右回りに捩れ構造を形成する。
 また、ここでディスコティック液晶化合物の捩れ構造は、光学異方性層が積層される面側から支持体を観察して、光学異方性層Bの光学異方性層A側とは反対側の表面の面内遅相軸を基準に、面内遅相軸が右回りか左回りかを判断する。
(Formation of patterned optically anisotropic layer B (hereinafter also simply referred to as “optically anisotropic layer B”))
Without subjecting the optically anisotropic layer A prepared above to a rubbing treatment, a coating liquid (DLC (4)) containing a discotic liquid crystal compound shown in Table 2 was applied onto the optically anisotropic layer A prepared above # 3 was applied with a wire bar. The conveyance speed (V) of the film was 5 m / min. In order to dry the solvent of the coating solution and to mature the alignment of the discotic liquid crystal compound, the coating liquid was heated with hot air at 110 ° C. for 2 minutes. Subsequently, UV irradiation (500 mJ / cm 2 ) was performed at 80 ° C. in a nitrogen environment to fix the alignment of the liquid crystal compound. The thickness of the optically anisotropic layer B was 1.19 μm in both the first retardation region and the second retardation region. Further, Δnd at 550 nm was 140 nm.
The in-plane slow axis of the surface of the optically anisotropic layer B on the optically anisotropic layer A side is the optical axis of each optically anisotropic layer A in both the first retardation region and the second retardation region. It was parallel to the in-plane slow axis on the surface of the anisotropic layer B side. The twist angle of the discotic liquid crystal compound in the optically anisotropic layer A is 26.5 ° in both the first retardation region and the second retardation region, and the discotic liquid crystal compound in the optically anisotropic layer B The twist angle was 78.6 ° in both the first phase difference region and the second phase difference region. The discotic liquid crystal compound forms a twisted structure clockwise.
Further, here, the twisted structure of the discotic liquid crystal compound is obtained by observing the support from the surface side on which the optically anisotropic layer is laminated, and on the side opposite to the optically anisotropic layer A side of the optically anisotropic layer B. Whether the in-plane slow axis is clockwise or counterclockwise is determined based on the in-plane slow axis of the surface.
(偏光膜の作製)
 厚さ80μmのポリビニルアルコール(PVA)フィルムを、ヨウ素濃度0.05質量%のヨウ素水溶液中に30℃で60秒浸漬して染色し、次いでホウ酸濃度4質量%濃度のホウ酸水溶液中に60秒浸漬している間に元の長さの5倍に縦延伸した後、50℃で4分間乾燥させて、厚さ20μmの偏光膜を得た。
(Preparation of polarizing film)
A polyvinyl alcohol (PVA) film having a thickness of 80 μm is dyed by immersing it in an aqueous iodine solution having an iodine concentration of 0.05% by mass at 30 ° C. for 60 seconds, and then in an aqueous boric acid solution having a boric acid concentration of 4% by mass. The film was vertically stretched to 5 times the original length while being immersed for 2 seconds, and then dried at 50 ° C. for 4 minutes to obtain a polarizing film having a thickness of 20 μm.
(偏光膜保護フィルムの作製)
 市販のセルロースアシレート系フィルム「TD80UL」(富士フイルム社製)を準備し、1.5モル/リットルで55℃の水酸化ナトリウム水溶液中に浸漬した後、水で十分に水酸化ナトリウムを洗い流した。その後、0.005モル/リットルで35℃の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。最後に試料を120℃で十分に乾燥させた。
(Preparation of polarizing film protective film)
A commercially available cellulose acylate film “TD80UL” (manufactured by FUJIFILM Corporation) was prepared, immersed in an aqueous sodium hydroxide solution at 55 ° C. at 1.5 mol / liter, and then thoroughly washed with water. . Then, after being immersed in a diluted sulfuric acid aqueous solution at 35 ° C. at 0.005 mol / liter for 1 minute, it was immersed in water to sufficiently wash away the diluted sulfuric acid aqueous solution. Finally, the sample was thoroughly dried at 120 ° C.
(パターン円偏光板の作製)
 上記で作製された支持体と光学異方性層Aと光学異方性層Bとを備える位相差板の支持体の露出表面上に、前述の偏光膜および前述の偏光膜保護フィルムをポリビニルアルコール系接着剤を用いて連続的に貼り合せ、長尺状のパターン円偏光板(P-1)を作製した。つまり、パターン円偏光板(P-1)は、偏光膜保護フィルム、偏光膜、透明支持体、光学異方性層A(上記第2パターン光学異方性層に該当)、光学異方性層B(上記第1パターン光学異方性層に該当)をこの順で有し、偏光膜、透明支持体、光学異方性層A、および光学異方性層Bの順番は上述した図5の態様に該当する。
 なお、偏光膜の吸収軸は、円偏光板の長手方向と一致しており、偏光膜の吸収軸を基準とすると、第1位相差領域における光学異方性層Aの光学異方性層B側表面での面内遅相軸は-26.5°の位置にあり、光学異方性層Bの光学異方性層Aとは反対側の表面の面内遅相軸は-105.1°の位置にある。また、第2位相差領域における光学異方性層Aの光学異方性層B側表面での面内遅相軸は-116.5°の位置にあり、光学異方性層Bの光学異方性層Aとは反対側の表面の面内遅相軸は-195.1°の位置にある。
 なお、上記面内遅相軸の回転角度は、偏光膜側から位相差板(光学異方性層A、光学異方性層B)を観察して、偏光膜の吸収軸を基準とし、反時計回り方向に正、時計回りに負の角度値をもって表す。
(Preparation of patterned circularly polarizing plate)
On the exposed surface of the support of the retardation plate comprising the support prepared above, the optically anisotropic layer A, and the optically anisotropic layer B, the above polarizing film and the above polarizing film protective film are coated with polyvinyl alcohol. A long patterned circularly polarizing plate (P-1) was produced by continuous bonding using a system adhesive. That is, the patterned circularly polarizing plate (P-1) includes a polarizing film protective film, a polarizing film, a transparent support, an optically anisotropic layer A (corresponding to the second patterned optically anisotropic layer), an optically anisotropic layer. B (corresponding to the first pattern optically anisotropic layer) in this order, and the order of the polarizing film, the transparent support, the optically anisotropic layer A, and the optically anisotropic layer B is as shown in FIG. It corresponds to an aspect.
The absorption axis of the polarizing film coincides with the longitudinal direction of the circularly polarizing plate, and the optical anisotropic layer B of the optical anisotropic layer A in the first retardation region is based on the absorption axis of the polarizing film. The in-plane slow axis on the side surface is at a position of −26.5 °, and the in-plane slow axis of the surface of the optically anisotropic layer B opposite to the optically anisotropic layer A is −105.1. In the position of °. Further, the in-plane slow axis of the optically anisotropic layer A on the surface of the optically anisotropic layer B in the second retardation region is at a position of −116.5 °, and the optically anisotropic layer B has an optically different axis. The in-plane slow axis of the surface opposite to the isotropic layer A is at a position of -195.1 °.
The rotation angle of the in-plane slow axis is determined by observing the retardation plate (the optically anisotropic layer A and the optically anisotropic layer B) from the polarizing film side and taking the absorption axis of the polarizing film as a reference. Expressed with a positive angle in the clockwise direction and a negative angle value in the clockwise direction.
<実施例2>
(配向下地層の形成)
 鹸化処理した長尺状の支持体3に、下記の組成の配向下地塗布液を調整して、孔径0.2μmのポリプロピレン製フィルタでろ過後に、#8のワイヤーバーで連続的に塗布した。100℃の温風で2分間乾燥し、厚み0.6μmの膜を得た。
<Example 2>
(Formation of orientation underlayer)
An alignment base coating solution having the following composition was prepared on a saponified long support 3, filtered with a polypropylene filter having a pore size of 0.2 μm, and then continuously applied with a # 8 wire bar. The film was dried for 2 minutes with warm air at 100 ° C. to obtain a film having a thickness of 0.6 μm.
配向下地塗布液の組成
――――――――――――――――――――――――――――――
下記の変性ポリビニルアルコール          4質量部
水                       70質量部
メタノール                   30質量部
――――――――――――――――――――――――――――――
Composition of alignment primer coating solution ――――――――――――――――――――――――――――――
The following modified polyvinyl alcohol 4 parts by weight water 70 parts by weight Methanol 30 parts by weight ――――――――――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(配向膜2の形成)
 さらに、下記の組成の配向膜塗布液を調整して、#8のワイヤーバーで連続的に塗布した。100℃の温風で2分間乾燥し、厚み0.15μmの配向膜2を得た。
 次に、564μmのピッチで5mm×282μmの開口部と非開口部が周期的に形成された格子マスクを、その開口部と非開口部の繰り返し方向がフィルム長手方向と垂直になるように配向層2上にフィルム長手方向に1mの間隔を置いて2枚を配置した。このとき片方のマスクの配置をもう一方に対して282μmフィルム長手方向に対して垂直方向にずらし、一枚目のマスクの露光領域が二枚目のマスクの遮光領域に、一枚目のマスクの遮光領域が二枚目のマスクの露光領域になるようにした。さらにそれぞれの格子マスクとUVランプの間に偏光板を配置して、室温空気下にて、UV-C領域における照度2.5mW/cm2の空冷メタルハライドランプを用いて偏光紫外線を配向膜2に照射した。このとき一枚目のマスクではフィルム長手方向に対する偏光板の偏光透過軸方向が0°に、二枚目のマスクではフィルム長手方向に対する偏光板の偏光透過軸方向が90°になるように偏光板の偏光透過方位を調節した。このような配置のマスク下にてフィルムを長手方向に1m/分の速度で連続的に搬送し、フィルムに連続的に紫外線照射を行った。
 なお、偏光透過軸方向の角度は、後述する光学異方性層が積層される面側から支持体を観察して、支持体の長手方向を基準の0°とし、反時計回り方向に正、時計回りに負の角度値をもって表してある。
(Formation of alignment film 2)
Further, an alignment film coating solution having the following composition was prepared and continuously coated with a # 8 wire bar. The alignment film 2 having a thickness of 0.15 μm was obtained by drying with warm air of 100 ° C. for 2 minutes.
Next, a lattice mask in which openings and non-openings of 5 mm × 282 μm are periodically formed at a pitch of 564 μm is used, and an alignment layer is formed so that the repeating direction of the openings and non-openings is perpendicular to the film longitudinal direction. Two pieces were placed on 2 at an interval of 1 m in the longitudinal direction of the film. At this time, the arrangement of one mask is shifted in the direction perpendicular to the longitudinal direction of the 282 μm film with respect to the other, and the exposure area of the first mask is changed to the light-shielding area of the second mask. The light shielding area is set to be the exposure area of the second mask. Further, a polarizing plate is arranged between each lattice mask and the UV lamp, and polarized ultraviolet rays are applied to the alignment film 2 using an air-cooled metal halide lamp having an illuminance of 2.5 mW / cm 2 in the UV-C region under air at room temperature. Irradiated. At this time, in the first mask, the polarizing transmission axis direction of the polarizing plate with respect to the longitudinal direction of the film is 0 °, and in the second mask, the polarizing transmission axis direction of the polarizing plate with respect to the longitudinal direction of the film is 90 °. The polarization transmission direction of was adjusted. Under such a mask, the film was continuously conveyed in the longitudinal direction at a speed of 1 m / min, and the film was continuously irradiated with ultraviolet rays.
The angle in the direction of the polarization transmission axis is determined by observing the support from the side on which the optically anisotropic layer to be described later is laminated, the longitudinal direction of the support is 0 ° as a reference, and is positive in the counterclockwise direction. It is represented with a negative angle value in the clockwise direction.
光配向膜塗布液の組成
――――――――――――――――――――――――――――――
下記の化合物                   1質量部
テトラヒドロフラン              100質量部
――――――――――――――――――――――――――――――
Composition of coating solution for photo-alignment film ――――――――――――――――――――――――――――――
The following compounds 1 part by mass Tetrahydrofuran 100 parts by mass ――――――――――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(光学異方性層Aの形成)
 次に、表2に示す棒状液晶化合物を含む塗布液(RLC(1))を上記作製した配向膜2上に#3のワイヤーバーで塗布した。フィルムの搬送速度(V)は5m/minとした。塗布液の溶媒の乾燥および棒状液晶化合物の配向熟成のために、100℃の温風で2分間加熱した。続いて、通常の大気環境下にて、80℃にてUV照射(500mJ/cm2)を行い、液晶化合物の配向を固定化した。配向膜の偏光照射方向が0°の露光部分(第1位相差領域)では偏光照射方向に対し遅相軸方向が平行に棒状液晶化合物が水平配向しており、偏光照射方向が90°の露光部分(第2位相差領域)では偏光照射方向に対し遅相軸方向が平行に棒状液晶化合物が水平配向していた。
(Formation of optically anisotropic layer A)
Next, the coating liquid (RLC (1)) containing the rod-shaped liquid crystal compound shown in Table 2 was applied onto the alignment film 2 produced above with a # 3 wire bar. The conveyance speed (V) of the film was 5 m / min. In order to dry the solvent of the coating solution and to mature the alignment of the rod-like liquid crystal compound, it was heated with hot air at 100 ° C. for 2 minutes. Subsequently, UV irradiation (500 mJ / cm 2 ) was performed at 80 ° C. in a normal atmospheric environment to fix the alignment of the liquid crystal compound. In the exposure portion (first retardation region) where the polarized light irradiation direction of the alignment film is 0 °, the rod-like liquid crystal compound is horizontally aligned with the slow axis direction parallel to the polarized light irradiation direction, and the polarized light irradiation direction is 90 °. In the portion (second retardation region), the rod-like liquid crystal compound was horizontally aligned with the slow axis direction parallel to the polarization irradiation direction.
 続いて、光学異方性層Bの製造の際は、実施例1と同様の手順に従ってパターン円偏光板(P-2)を製造した。
 なお、パターン円偏光板(P-2)での偏光膜の吸収軸と、光学異方性層Aおよび光学異方性層Bの面内遅相軸とのなす角度の関係は、パターン円偏光板(P-1)と同様であった。
Subsequently, when manufacturing the optically anisotropic layer B, a patterned circularly polarizing plate (P-2) was manufactured according to the same procedure as in Example 1.
The relationship between the angle between the absorption axis of the polarizing film in the patterned circularly polarizing plate (P-2) and the in-plane slow axes of the optically anisotropic layer A and the optically anisotropic layer B is as follows. It was the same as the plate (P-1).
<実施例3>
 支持体4の代わりに支持体6を使用し、光学異方性層Bの製造の際にDLC(4)の代わりにRLC(2)を使用した以外は、実施例1と同様の手順に従ってパターン円偏光板(P-3)を製造した。
 なお、パターン円偏光板(P-3)での偏光膜の吸収軸と、光学異方性層Aおよび光学異方性層Bの面内遅相軸とのなす角度の関係は、パターン円偏光板(P-1)と同様であった。
<Example 3>
According to the same procedure as in Example 1, except that the support 6 was used instead of the support 4 and RLC (2) was used instead of DLC (4) in the production of the optically anisotropic layer B. A circularly polarizing plate (P-3) was produced.
The relationship between the angle between the absorption axis of the polarizing film in the patterned circularly polarizing plate (P-3) and the in-plane slow axes of the optically anisotropic layer A and the optically anisotropic layer B is as follows. It was the same as the plate (P-1).
<実施例4>
 支持体3の代わりに支持体5を使用し、光学異方性層Bの製造の際にDLC(4)の代わりにRLC(2)を使用した以外は、実施例2と同様の手順に従ってパターン円偏光板(P-4)を製造した。
 なお、パターン円偏光板(P-4)での偏光膜の吸収軸と、光学異方性層Aおよび光学異方性層Bの面内遅相軸とのなす角度の関係は、パターン円偏光板(P-1)と同様であった。
<Example 4>
According to the same procedure as in Example 2, except that the support 5 was used instead of the support 3 and RLC (2) was used instead of DLC (4) in the production of the optically anisotropic layer B A circularly polarizing plate (P-4) was produced.
The relationship between the angle between the absorption axis of the polarizing film in the patterned circularly polarizing plate (P-4) and the in-plane slow axes of the optically anisotropic layer A and the optically anisotropic layer B is as follows. It was the same as the plate (P-1).
<実施例5>
 光学異方性層Aの形成の際のフィルム長手方向に対するラビング方向を0°から-105.1°に変更し、支持体4の代わりに支持体6を使用し、光学異方性層Aの製造の際にDLC(1)の代わりにDLC(3)を使用し、光学異方性層Bの製造の際にDLC(4)の代わりにDLC(2)を使用した以外は、実施例1の(アルカリ鹸化処理)、(配向膜の形成)、(光学異方性層Aの形成)、および(光学異方性層Bの形成)を実施し、位相差板を製造した。
 次に、得られた位相差板の光学異方性層Bの露出表面上に、前述の偏光膜および前述の偏光膜保護フィルムをポリビニルアルコール系接着剤を用いて連続的に貼り合せ、長尺状のパターン円偏光板(P-5)を作製した。つまり、パターン円偏光板(P-5)は、偏光膜保護フィルム、偏光膜、光学異方性層B(上記第2パターン光学異方性層に該当)、光学異方性層A(上記第1パターン光学異方性層に該当)、透明支持体をこの順で有し、偏光膜、光学異方性層B、光学異方性層A、および透明支持体の順番は上述した図7の態様に該当する。
 なお、偏光膜の吸収軸は、パターン円偏光板の長手方向と一致しており、偏光膜の吸収軸を基準とすると、光学異方性層Bの第1位相差領域および第2位相差領域における面内遅相軸はそれぞれ-26.5°および-116.5°に位置し、光学異方性層Aの第1位相差領域および第2位相差領域における光学異方性層Bとは反対側の表面の面内遅相軸はそれぞれ-105.1°および-195.1°に位置する。
 なお、上記面内遅相軸の回転角度は、偏光膜側から位相差板を観察して、偏光膜の吸収軸を基準とし、反時計回り方向に正、時計回りに負の角度値をもって表してある。
<Example 5>
In the formation of the optically anisotropic layer A, the rubbing direction with respect to the longitudinal direction of the film was changed from 0 ° to −105.1 °, the support 6 was used instead of the support 4, and the optically anisotropic layer A Example 1 except that DLC (3) was used instead of DLC (1) during the production, and DLC (2) was used instead of DLC (4) during the production of the optically anisotropic layer B. (Alkali saponification treatment), (formation of alignment film), (formation of optically anisotropic layer A), and (formation of optically anisotropic layer B) were carried out to produce a retardation plate.
Next, on the exposed surface of the optically anisotropic layer B of the obtained retardation plate, the above polarizing film and the above polarizing film protective film are continuously bonded using a polyvinyl alcohol-based adhesive. A patterned circularly polarizing plate (P-5) was produced. That is, the patterned circularly polarizing plate (P-5) includes a polarizing film protective film, a polarizing film, an optically anisotropic layer B (corresponding to the second patterned optically anisotropic layer), and an optically anisotropic layer A (the above-described first film). This corresponds to one pattern optically anisotropic layer), and has a transparent support in this order. The order of the polarizing film, the optically anisotropic layer B, the optically anisotropic layer A, and the transparent support is shown in FIG. It corresponds to an aspect.
Note that the absorption axis of the polarizing film coincides with the longitudinal direction of the patterned circularly polarizing plate, and the first retardation region and the second retardation region of the optically anisotropic layer B are based on the absorption axis of the polarizing film. In-plane slow axes are located at −26.5 ° and −116.5 °, respectively, and what is the optically anisotropic layer B in the first retardation region and the second retardation region of the optically anisotropic layer A? The in-plane slow axes of the opposite surface are located at -105.1 ° and -195.1 °, respectively.
The rotation angle of the in-plane slow axis is expressed as a positive angle in the counterclockwise direction and a negative angle value in the clockwise direction with reference to the absorption axis of the polarizing film by observing the retardation film from the polarizing film side. It is.
<実施例6>
 支持体6の代わりに支持体5を使用し、光学異方性層Bの製造の際にDLC(2)の代わりにRLC(1)を使用した以外は、実施例5と同様の手順に従ってパターン円偏光板(P-6)を製造した。
 なお、パターン円偏光板(P-6)での偏光膜の吸収軸と、光学異方性層Aおよび光学異方性層Bの面内遅相軸とのなす角度の関係は、パターン円偏光板(P-5)と同様であった。
<Example 6>
According to the same procedure as in Example 5, except that the support 5 was used instead of the support 6 and RLC (1) was used instead of DLC (2) in the production of the optically anisotropic layer B A circularly polarizing plate (P-6) was produced.
The relationship between the angle between the absorption axis of the polarizing film in the patterned circularly polarizing plate (P-6) and the in-plane slow axes of the optically anisotropic layer A and the optically anisotropic layer B is as follows. It was the same as the plate (P-5).
<実施例7>
 光学異方性層A形成の際の、フィルム長手方向に対する一枚目のマスクの偏光板の偏光透過軸方向を0°から-105.1°に変更し、フィルム長手方向に対する二枚目のマスクの偏光板の偏光透過軸方向を90°から-195.1°に変更し、光学異方性層Aの製造の際にRLC(1)の代わりにRLC(2)を使用し、光学異方性層Bの製造の際にDLC(4)の代わりにDLC(2)を使用した以外は、実施例2と同様の手順に従って位相差板を製作した。
 次に、得られた位相差板の光学異方性層Bの露出表面上に、前述の偏光膜および前述の偏光膜保護フィルムをポリビニルアルコール系接着剤を用いて連続的に貼り合せ、長尺状のパターン円偏光板(P-7)を作製した。つまり、パターン円偏光板(P-7)は、偏光膜保護フィルム、偏光膜、光学異方性層B(上記第2パターン光学異方性層に該当)、光学異方性層A(上記第1パターン光学異方性層に該当)、透明支持体をこの順で有し、偏光膜、光学異方性層B、光学異方性層A、および透明支持体の順番は上述した図7の態様に該当する。
 なお、パターン円偏光板(P-7)での偏光膜の吸収軸と、光学異方性層Aおよび光学異方性層Bの面内遅相軸とのなす角度の関係は、パターン円偏光板(P-5)と同様であった。
<Example 7>
When forming the optically anisotropic layer A, the polarizing transmission axis direction of the polarizing plate of the first mask with respect to the longitudinal direction of the film is changed from 0 ° to −105.1 °, and the second mask with respect to the longitudinal direction of the film The polarizing transmission axis direction of the polarizing plate was changed from 90 ° to -195.1 °, and RLC (2) was used instead of RLC (1) in the production of the optically anisotropic layer A. A retardation plate was produced according to the same procedure as in Example 2 except that DLC (2) was used instead of DLC (4) in the production of the conductive layer B.
Next, on the exposed surface of the optically anisotropic layer B of the obtained retardation plate, the above-mentioned polarizing film and the above-mentioned polarizing film protective film are continuously bonded using a polyvinyl alcohol-based adhesive. A patterned circularly polarizing plate (P-7) was produced. That is, the patterned circularly polarizing plate (P-7) includes the polarizing film protective film, the polarizing film, the optically anisotropic layer B (corresponding to the second patterned optically anisotropic layer), and the optically anisotropic layer A (the first film). This corresponds to one pattern optically anisotropic layer), and has a transparent support in this order. The order of the polarizing film, the optically anisotropic layer B, the optically anisotropic layer A, and the transparent support is shown in FIG. It corresponds to an aspect.
The relationship between the angle between the absorption axis of the polarizing film in the patterned circularly polarizing plate (P-7) and the in-plane slow axes of the optically anisotropic layer A and the optically anisotropic layer B is as follows. Same as plate (P-5).
<実施例8>
 光学異方性層Bの製造の際にDLC(2)の代わりにRLC(1)を使用した以外は、実施例7と同様の手順に従ってパターン円偏光板(P-8)を製造した。
 なお、パターン円偏光板(P-8)での偏光膜の吸収軸と、光学異方性層Aおよび光学異方性層Bの面内遅相軸とのなす角度の関係は、パターン円偏光板(P-5)と同様であった。
<Example 8>
A patterned circularly polarizing plate (P-8) was produced according to the same procedure as in Example 7, except that RLC (1) was used instead of DLC (2) in the production of the optically anisotropic layer B.
The relationship between the angle between the absorption axis of the polarizing film in the patterned circularly polarizing plate (P-8) and the in-plane slow axes of the optically anisotropic layer A and the optically anisotropic layer B is as follows. It was the same as the plate (P-5).
<実施例9>
 支持体4の代わりに支持体6を使用し、光学異方性層Aの製造の際にDLC(1)の代わりにDLC(5)を使用し、光学異方性層Bの製造の際にDLC(4)の代わりにDLC(6)を使用し、(光学異方性層Aの形成)と(光学異方性層Bの形成)との間に上記配向膜1形成工程を設けて、形成した配向膜に対して、光学異方性層A形成の前の配向膜1のマスク露光によって照射された配向膜領域とマスク開口部が一致するように紫外線をマスク露光し、フィルム長手方向を基準として149.7°方向にラビングし、配向膜上に光学異方性層Bを形成した以外は、実施例1と同様の手順に従って、パターン円偏光板(P-9)を製造した。つまり、パターン円偏光板(P-9)は、偏光膜保護フィルム、偏光膜、透明支持体、光学異方性層A(上記第1パターン光学異方性層に該当)、光学異方性層B(上記第2パターン光学異方性層に該当)をこの順で有し、偏光膜、透明支持体、光学異方性層A、および光学異方性層Bの順番は上述した図8の態様に該当する。
 なお、偏光膜の吸収軸は、パターン円偏光板の長手方向と一致しており、偏光膜の吸収軸を基準とすると、光学異方性層Aの第1位相差領域および第2位相差領域における光学異方性層B側の表面の面内遅相軸はそれぞれ-59.7°および-149.7°に位置し、光学異方性層Bの第1位相差領域および第2位相差領域における光学異方性層A側の表面の面内遅相軸はそれぞれ-149.7°および-239.7°に位置し、光学異方性層Bの第1位相差領域および第2位相差領域における光学異方性層A側とは反対側の表面の面内遅相軸はそれぞれ-277.3°および-367.3°に位置する。
 なお、上記面内遅相軸の回転角度は、偏光膜側から位相差板を観察して、偏光膜の吸収軸を基準とし、反時計回り方向に正、時計回りに負の角度値をもって表してある。
<Example 9>
The support 6 is used in place of the support 4, the DLC (5) is used in place of the DLC (1) in the production of the optically anisotropic layer A, and the optically anisotropic layer B is produced in the production. DLC (6) is used instead of DLC (4), and the alignment film 1 forming step is provided between (formation of optically anisotropic layer A) and (formation of optically anisotropic layer B), The formed alignment film is exposed to UV light so that the alignment film region irradiated with the mask exposure of the alignment film 1 before the optical anisotropic layer A is formed and the mask opening coincide with each other, and the film longitudinal direction is set. A patterned circularly polarizing plate (P-9) was produced in the same manner as in Example 1 except that rubbing was performed in the 149.7 ° direction as a reference and the optically anisotropic layer B was formed on the alignment film. That is, the patterned circularly polarizing plate (P-9) includes a polarizing film protective film, a polarizing film, a transparent support, an optically anisotropic layer A (corresponding to the first patterned optically anisotropic layer), an optically anisotropic layer. B (corresponding to the second pattern optically anisotropic layer) in this order, and the order of the polarizing film, the transparent support, the optically anisotropic layer A, and the optically anisotropic layer B is as shown in FIG. It corresponds to an aspect.
The absorption axis of the polarizing film coincides with the longitudinal direction of the patterned circularly polarizing plate, and the first retardation region and the second retardation region of the optical anisotropic layer A are based on the absorption axis of the polarizing film. The in-plane slow axis of the surface on the optically anisotropic layer B side is located at −59.7 ° and −149.7 °, respectively, and the first retardation region and the second retardation of the optically anisotropic layer B The in-plane slow axis of the surface on the optically anisotropic layer A side in the region is located at −149.7 ° and −239.7 °, respectively, and the first retardation region and the second position of the optically anisotropic layer B In-plane slow axes of the surface opposite to the optically anisotropic layer A side in the phase difference region are located at −277.3 ° and −367.3 °, respectively.
The rotation angle of the in-plane slow axis is expressed as a positive angle in the counterclockwise direction and a negative angle value in the clockwise direction with reference to the absorption axis of the polarizing film by observing the retardation film from the polarizing film side. It is.
<実施例10>
 光学異方性層Aの製造の際にRLC(1)の代わりにRLC(3)を使用し、光学異方性層Bの製造の際にDLC(4)の代わりにDLC(6)を使用し、(光学異方性層Aの形成)と(光学異方性層Bの形成)との間に上記配向膜1形成工程を設けて、形成した配向膜に対して、光学異方性層A形成の前の配向膜2の一枚目のマスクの露光領域によって照射された配向膜領域とマスク開口部が一致するように紫外線をマスク露光し、フィルム長手方向を基準として149.7°方向にラビングし、配向膜上に光学異方性層Bを形成した以外は、実施例2と同様の手順に従ってパターン円偏光板(P-10)を製造した。
 なお、パターン円偏光板(P-10)での偏光膜の吸収軸と、光学異方性層Aおよび光学異方性層Bの面内遅相軸とのなす角度の関係は、パターン円偏光板(P-9)と同様であった。
<Example 10>
RLC (3) is used instead of RLC (1) when manufacturing optically anisotropic layer A, and DLC (6) is used instead of DLC (4) when manufacturing optically anisotropic layer B The alignment film 1 forming step is provided between (formation of the optically anisotropic layer A) and (formation of the optically anisotropic layer B). UV exposure is performed so that the alignment film region irradiated with the exposure region of the first mask of the alignment film 2 before the formation of A and the mask opening coincide with each other, and the direction of 149.7 ° with respect to the longitudinal direction of the film. A patterned circularly polarizing plate (P-10) was produced according to the same procedure as in Example 2 except that the optically anisotropic layer B was formed on the alignment film.
The relationship between the angle between the absorption axis of the polarizing film in the patterned circularly polarizing plate (P-10) and the in-plane slow axes of the optically anisotropic layer A and the optically anisotropic layer B is as follows. It was the same as the plate (P-9).
<実施例11>
 光学異方性層Bの製造の際にDLC(6)の代わりにRLC(4)を使用し、(光学異方性層Aの形成)と(光学異方性層Bの形成)との間に上記配向膜2形成工程を設けて、フィルム長手方向に対する一枚目のマスクの偏光板の偏光透過軸方向を149.7°にし、フィルム長手方向に対する二枚目のマスクの偏光板の偏光透過軸方向を239.7°にした以外は、実施例9と同様の手順に従ってパターン円偏光板(P-11)を製造した。
 なお、パターン円偏光板(P-11)での偏光膜の吸収軸と、光学異方性層Aおよび光学異方性層Bの面内遅相軸とのなす角度の関係は、パターン円偏光板(P-9)と同様であった。
<Example 11>
RLC (4) is used instead of DLC (6) in the production of optically anisotropic layer B, and between (formation of optically anisotropic layer A) and (formation of optically anisotropic layer B) The alignment film 2 forming step is provided so that the polarization transmission axis direction of the polarizing plate of the first mask with respect to the longitudinal direction of the film is 149.7 °, and the polarized light transmission of the polarizing plate of the second mask with respect to the longitudinal direction of the film is performed. A patterned circularly polarizing plate (P-11) was produced according to the same procedure as in Example 9 except that the axial direction was 239.7 °.
The relationship between the angle between the absorption axis of the polarizing film in the patterned circularly polarizing plate (P-11) and the in-plane slow axes of the optically anisotropic layer A and the optically anisotropic layer B is as follows. It was the same as the plate (P-9).
<実施例12>
 光学異方性層Bの製造の際にDLC(6)の代わりにRLC(4)を使用し、(光学異方性層Aの形成)と(光学異方性層Bの形成)との間に上記配向膜2形成工程を設けて、フィルム長手方向に対する一枚目のマスクの偏光板の偏光透過軸方向を149.7°にし、フィルム長手方向に対する二枚目のマスクの偏光板の偏光透過軸方向を239.7°にした以外は、実施例10と同様の手順に従ってパターン円偏光板(P-12)を製造した。
 なお、パターン円偏光板(P-12)での偏光膜の吸収軸と、光学異方性層Aおよび光学異方性層Bの面内遅相軸とのなす角度の関係は、パターン円偏光板(P-9)と同様であった。
<Example 12>
RLC (4) is used instead of DLC (6) in the production of optically anisotropic layer B, and between (formation of optically anisotropic layer A) and (formation of optically anisotropic layer B) The alignment film 2 forming step is provided so that the polarization transmission axis direction of the polarizing plate of the first mask with respect to the longitudinal direction of the film is 149.7 °, and the polarized light transmission of the polarizing plate of the second mask with respect to the longitudinal direction of the film is performed. A patterned circularly polarizing plate (P-12) was produced according to the same procedure as in Example 10 except that the axial direction was 239.7 °.
The angle relationship between the absorption axis of the polarizing film in the patterned circularly polarizing plate (P-12) and the in-plane slow axes of the optically anisotropic layer A and the optically anisotropic layer B is as follows. It was the same as the plate (P-9).
<実施例13>
 (光学異方性層Aの形成)の際のフィルム長手方向に対するラビング方向を-105.1°から-277.3°に変更し、光学異方性層Aの製造の際にDLC(3)の代わりにDLC(6)を使用し、光学異方性層Bの製造の際にDLC(2)の代わりにDLC(5)を使用し、(光学異方性層Aの形成)と(光学異方性層Bの形成)との間に上記配向膜1形成工程を設けて、形成した配向膜に対して、光学異方性層A形成の前の配向膜1のマスク露光によって照射された配向膜領域とマスク開口部が一致するように紫外線をマスク露光し、フィルム長手方向を基準として-59.7°方向にラビングし、配向膜上に光学異方性層Bを形成した以外は、実施例5の(アルカリ鹸化処理)、(配向膜の形成)、(光学異方性層Aの形成)、および(光学異方性層Bの形成)を実施し、位相差板を製造した。
 次に、得られた位相差板の光学異方性層Bの露出表面上に、前述の偏光膜および前述の偏光膜保護フィルムをポリビニルアルコール系接着剤を用いて連続的に貼り合せ、長尺状のパターン円偏光板(P-13)を作製した。つまり、パターン円偏光板(P-13)は、偏光膜保護フィルム、偏光膜、光学異方性層B(上記第1パターン光学異方性層に該当)、光学異方性層A(上記第2パターン光学異方性層に該当)、透明支持体をこの順で有し、偏光膜、光学異方性層B、光学異方性層A、および透明支持体の順番は上述した図10の態様に該当する。
 なお、偏光膜の吸収軸は、パターン円偏光板の長手方向と一致しており、偏光膜の吸収軸を基準とすると、光学異方性層Bの第1位相差領域および第2位相差領域における光学異方性層A側の表面の面内遅相軸はそれぞれ-59.7°および-149.7°に位置し、光学異方性層Aの第1位相差領域および第2位相差領域における光学異方性層B側の表面の面内遅相軸はそれぞれ-149.7°および-239.7°に位置し、光学異方性層Aの第1位相差領域および第2位相差領域における光学異方性層B側とは反対側の表面の面内遅相軸はそれぞれ-277.3°および-367.3°に位置する。
 なお、上記面内遅相軸の回転角度は、偏光膜側から位相差板を観察して、偏光膜の吸収軸を基準とし、反時計回り方向に正、時計回りに負の角度値をもって表してある。
<Example 13>
The rubbing direction with respect to the longitudinal direction of the film during (formation of optically anisotropic layer A) was changed from −105.1 ° to −277.3 °, and DLC (3) DLC (6) is used instead of DLC, DLC (5) is used instead of DLC (2) in the production of the optically anisotropic layer B, (formation of optically anisotropic layer A) and (optical The alignment film 1 formation step is provided between the formation of the anisotropic layer B and the formed alignment film is irradiated by mask exposure of the alignment film 1 before the optical anisotropic layer A is formed. Except that the alignment film region and the mask opening were exposed to UV light so that the mask opening was aligned, rubbed in the direction of −59.7 ° with respect to the film longitudinal direction, and the optically anisotropic layer B was formed on the alignment film. Example 5 (alkali saponification treatment), (formation of alignment film), (formation of optically anisotropic layer A), and Conduct formation of the optically anisotropic layer B), it was produced a retardation plate.
Next, on the exposed surface of the optically anisotropic layer B of the obtained retardation plate, the above-mentioned polarizing film and the above-mentioned polarizing film protective film are continuously bonded using a polyvinyl alcohol-based adhesive. Shaped circularly polarizing plate (P-13) was produced. That is, the patterned circularly polarizing plate (P-13) includes a polarizing film protective film, a polarizing film, an optically anisotropic layer B (corresponding to the first patterned optically anisotropic layer), and an optically anisotropic layer A (the first film Corresponding to a two-pattern optically anisotropic layer), having a transparent support in this order, and the order of the polarizing film, the optically anisotropic layer B, the optically anisotropic layer A, and the transparent support is the above-mentioned FIG. It corresponds to an aspect.
Note that the absorption axis of the polarizing film coincides with the longitudinal direction of the patterned circularly polarizing plate, and the first retardation region and the second retardation region of the optically anisotropic layer B are based on the absorption axis of the polarizing film. In-plane slow axes of the surface on the optically anisotropic layer A side are located at −59.7 ° and −149.7 °, respectively, and the first retardation region and the second retardation of the optically anisotropic layer A In-plane slow axes of the surface on the optically anisotropic layer B side in the region are located at −149.7 ° and −239.7 °, respectively, and the first retardation region and the second position of the optically anisotropic layer A In-plane slow axes of the surface opposite to the optically anisotropic layer B side in the phase difference region are located at −277.3 ° and −367.3 °, respectively.
The rotation angle of the in-plane slow axis is expressed as a positive angle in the counterclockwise direction and a negative angle value in the clockwise direction with reference to the absorption axis of the polarizing film by observing the retardation film from the polarizing film side. It is.
<実施例14>
 支持体6の代わりに支持体7を使用し、光学異方性層Bの製造の際にDLC(5)の代わりにRLC(3)を使用し、(光学異方性層Aの形成)と(光学異方性層Bの形成)との間に上記配向膜2形成工程を設けて、フィルム長手方向に対する一枚目のマスクの偏光板の偏光透過軸方向を-59.7°にし、フィルム長手方向に対する二枚目のマスクの偏光板の偏光透過軸方向を-149.7°にした以外は実施例13と同様の手順に従ってパターン円偏光板(P-14)を製造した。
 なお、パターン円偏光板(P-14)での偏光膜の吸収軸と、光学異方性層Aおよび光学異方性層Bの面内遅相軸とのなす角度の関係は、パターン円偏光板(P-13)と同様であった。
<Example 14>
Using the support 7 instead of the support 6 and using RLC (3) instead of DLC (5) in the production of the optically anisotropic layer B (formation of the optically anisotropic layer A) and (The formation of the optically anisotropic layer B) is provided with the alignment film 2 forming step so that the polarization transmission axis direction of the polarizing plate of the first mask with respect to the film longitudinal direction is -59.7 °. A patterned circularly polarizing plate (P-14) was produced according to the same procedure as in Example 13 except that the polarization transmission axis direction of the polarizing plate of the second mask with respect to the longitudinal direction was set to -149.7 °.
The angle relationship between the absorption axis of the polarizing film in the patterned circularly polarizing plate (P-14) and the in-plane slow axes of the optically anisotropic layer A and the optically anisotropic layer B is as follows. Same as plate (P-13).
<実施例15>
 支持体3の代わりに支持体1を使用し、光学異方性層Aの製造の際にRLC(3)の代わりにRLC(4)を使用し、光学異方性層Bの製造の際にDLC(6)の代わりにDLC(5)を使用し、(光学異方性層Aの形成)の際のフィルム長手方向に対する一枚目のマスクの偏光板の偏光透過軸方向を0°から-277.3°°に変更し、フィルム長手方向に対する二枚目のマスクの偏光板の偏光透過軸方向を90°から-367.3°°に変更し、(光学異方性層Aの形成)と(光学異方性層Bの形成)との間に上記配向膜1形成工程を設けて、形成した配向膜に対して、光学異方性層A形成の前の配向膜2の一枚目のマスクの露光領域によって照射された配向膜領域とマスク開口部が一致するように紫外線をマスク露光し、フィルム長手方向を基準として-59.7°方向にラビングし、配向膜上に光学異方性層Bを形成した以外は、実施例10と同様の手順に従ってパターン円偏光板(P-15)を製造した。
 なお、パターン円偏光板(P-15)での偏光膜の吸収軸と、光学異方性層Aおよび光学異方性層Bの面内遅相軸とのなす角度の関係は、パターン円偏光板(P-13)と同様であった。
<Example 15>
When the support 1 is used instead of the support 3, RLC (4) is used instead of RLC (3) when the optically anisotropic layer A is manufactured, and when the optically anisotropic layer B is manufactured Using DLC (5) instead of DLC (6), the polarizing transmission axis direction of the polarizing plate of the first mask with respect to the film longitudinal direction during (formation of optically anisotropic layer A) is from 0 °- The polarization transmission axis direction of the polarizing plate of the second mask with respect to the film longitudinal direction was changed from 90 ° to −367.3 °° (formation of optically anisotropic layer A) The first alignment film 2 before the optical anisotropic layer A is formed with respect to the formed alignment film by providing the above-mentioned alignment film 1 formation step between (the formation of the optical anisotropic layer B) The mask is exposed to ultraviolet rays so that the alignment film area irradiated by the mask exposure area and the mask opening coincide with each other, and the film longitudinal direction Rubbed -59.7 ° direction with reference, except that the formation of the optically anisotropic layer B on the alignment film, to produce a pattern circularly polarizing plate (P-15) according to the procedure as in Example 10.
The relationship between the angle between the absorption axis of the polarizing film in the patterned circularly polarizing plate (P-15) and the in-plane slow axes of the optically anisotropic layer A and the optically anisotropic layer B is as follows. Same as plate (P-13).
<実施例16>
 支持体1の代わりに支持体2を使用し、光学異方性層Bの製造の際にDLC(5)の代わりにRLC(3)を使用し、(光学異方性層Aの形成)と(光学異方性層Bの形成)との間に上記配向膜2形成工程を設けて、フィルム長手方向に対する一枚目のマスクの偏光板の偏光透過軸方向を-59.7°にし、フィルム長手方向に対する二枚目のマスクの偏光板の偏光透過軸方向を-149.7°にした以外は、実施例15と同様の手順に従ってパターン円偏光板(P-16)を製造した。
 なお、パターン円偏光板(P-16)での偏光膜の吸収軸と、光学異方性層Aおよび光学異方性層Bの面内遅相軸とのなす角度の関係は、パターン円偏光板(P-13)と同様であった。
<Example 16>
Using support 2 instead of support 1, using RLC (3) instead of DLC (5) in the production of optically anisotropic layer B, (formation of optically anisotropic layer A) and (The formation of the optically anisotropic layer B) is provided with the alignment film 2 forming step so that the polarization transmission axis direction of the polarizing plate of the first mask with respect to the film longitudinal direction is -59.7 °. A patterned circularly polarizing plate (P-16) was produced in the same manner as in Example 15 except that the polarization transmission axis direction of the polarizing plate of the second mask with respect to the longitudinal direction was set to -149.7 °.
The relationship between the angle between the absorption axis of the polarizing film in the patterned circularly polarizing plate (P-16) and the in-plane slow axes of the optically anisotropic layer A and the optically anisotropic layer B is as follows. It was the same as the plate (P-13).
 以下の表2に、上記実施例1~16で使用したDLC(1)~(6)、および、RLC(1)~(4)の組成を示す。
 なお、DLC(1)~(6)、または、RLC(1)~(4)のいずれかを用いて光学異方性層を作製する場合、配向温度、配向時間、重合温度など各種条件は、表2の条件に従った。
 なお、上述した実施例1~8における偏光膜の吸収軸と第1パターン光学異方性層および第2パターン光学異方性層のそれぞれの面内遅相軸との関係は、上述した図6の態様に該当する。
 また、上述した実施例9~16における偏光膜の吸収軸と第1パターン光学異方性層および第2パターン光学異方性層のそれぞれの面内遅相軸との関係は、上述した図9の態様に該当する。
Table 2 below shows the compositions of DLC (1) to (6) and RLC (1) to (4) used in Examples 1 to 16 above.
When producing an optically anisotropic layer using any of DLC (1) to (6) or RLC (1) to (4), various conditions such as the alignment temperature, the alignment time, and the polymerization temperature are as follows: The conditions in Table 2 were followed.
The relationship between the absorption axis of the polarizing film and the in-plane slow axes of the first pattern optical anisotropic layer and the second pattern optical anisotropic layer in Examples 1 to 8 described above is shown in FIG. It corresponds to the aspect of.
The relationship between the absorption axis of the polarizing film and the in-plane slow axes of the first pattern optical anisotropic layer and the second pattern optical anisotropic layer in Examples 9 to 16 described above is shown in FIG. It corresponds to the aspect of.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 また、上記実施例の結果を以下にまとめて示す。
 なお、実施例1~16における光学異方性層Aおよび光学異方性層BのΔnd、および、偏光膜の吸収軸との角度はAxometrics社のAxoscanを用いて測定を行った。
 また、表3~6中のラビング方向は、光学異方性層が積層される面側から支持体を観察して、支持体の長手方向を基準の0°とし、反時計回り方向に正、時計回りに負の角度値をもって表してある。
 一方、偏光膜の吸収軸に対する、光学異方性層Aおよび光学異方性層Bの面内遅相軸の回転角度は、偏光膜側から位相差板を観察して、反時計回り方向に正、時計回りに負の角度値をもって表してある。
Moreover, the result of the said Example is collectively shown below.
Note that Δnd of the optically anisotropic layer A and optically anisotropic layer B in Examples 1 to 16 and the angle with the absorption axis of the polarizing film were measured using Axoscan manufactured by Axometrics.
Further, the rubbing directions in Tables 3 to 6 are observed in the support from the surface side on which the optically anisotropic layer is laminated, the longitudinal direction of the support is 0 ° as a reference, and the counterclockwise direction is positive. It is represented with a negative angle value in the clockwise direction.
On the other hand, the rotation angle of the in-plane slow axis of the optically anisotropic layer A and the optically anisotropic layer B with respect to the absorption axis of the polarizing film is counterclockwise by observing the retardation plate from the polarizing film side. It is represented with positive and clockwise negative angle values.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
<比較例1>
 市販のセルロースアシレート系フィルム「TD80UL」(富士フイルム社製)を支持体として実施例2と同様にして、配向下地層、および配向膜2を形成した。
 一枚目のマスクではフィルム長手方向に対する偏光板の偏光透過軸方向が45°に、二枚目のマスクではフィルム長手方向に対する偏光板の偏光透過軸方向が-45°になるように、塗布液(RLC(1))を#2.5のワイヤーバーで塗布し、95℃にてUV照射を行った以外は、実施例2と同様にして、パターン化した位相差層を形成した。それぞれの露光部分は、偏光照射方向に対し遅相軸方向が平行に棒状液晶化合物が水平配向しており、各々の位相差は137nmであった。
 上記で作製されたパターンλ/4板位相差板上に、前述の偏光膜および前述の偏光膜保護フィルムを位相差板の面内遅相軸と偏光膜の吸収軸の交差角度が45度になるようにポリビニルアルコール系接着剤を用いて貼り合せ、パターン円偏光板(P-17)(比較例1)を作製した。
 つまり、パターン円偏光板は、偏光膜保護フィルム、偏光膜、パターンλ/4板をこの順で有する。
<Comparative Example 1>
An alignment underlayer and an alignment film 2 were formed in the same manner as in Example 2 using a commercially available cellulose acylate film “TD80UL” (manufactured by FUJIFILM Corporation) as a support.
In the first mask, the polarizing transmission axis direction of the polarizing plate with respect to the longitudinal direction of the film is 45 °, and in the second mask, the polarizing transmission axis direction of the polarizing plate with respect to the longitudinal direction of the film is −45 °. (RLC (1)) was coated with a # 2.5 wire bar, and a patterned retardation layer was formed in the same manner as in Example 2 except that UV irradiation was performed at 95 ° C. In each exposed portion, the rod-like liquid crystal compound was horizontally aligned with the slow axis direction parallel to the polarized light irradiation direction, and each phase difference was 137 nm.
On the pattern λ / 4 plate retardation plate produced above, the above-mentioned polarizing film and the above-mentioned polarizing film protective film are crossed at an angle of 45 degrees between the in-plane slow axis of the retardation film and the absorption axis of the polarizing film. In this way, a patterned circularly polarizing plate (P-17) (Comparative Example 1) was prepared by using a polyvinyl alcohol-based adhesive.
That is, the patterned circularly polarizing plate has a polarizing film protective film, a polarizing film, and a pattern λ / 4 plate in this order.
<3D装置への実装および表示性能の評価>
(表示装置への実装)
 パターンドリターダー方式の3Dモニター W220S(Hyundai製)に使用されているパターン位相差板とフロント偏光板をはがし、パターン円偏光板(P-1)~(P-17)のそれぞれを貼合して、3D表示装置を作製した。各円偏光板を、その直線偏光膜を液晶セル側にして、及びその表面層を視認側の外側にして貼合した。
(眼鏡の製作)
 配向膜1に紫外線露光を行わなかった以外は、実施例3と同様の手順に従って円偏光板(G-1)を製造した。さらにラビング方向を0°から90°に変えた以外は同様な手順に従って、円偏光板(G-2)を製造した。これらの円偏光板を偏光層側が眼球側になるように、メガネ枠の左右にそれぞれ装着し3D用眼鏡を製作した。
<Evaluation of 3D device mounting and display performance>
(Mounting on display devices)
Remove the pattern retardation plate and front polarizing plate used in the 3D monitor W220S (made by Hyundai) of the pattern retarder method, and paste each of the pattern circular polarizing plates (P-1) to (P-17). A 3D display device was produced. Each circularly polarizing plate was bonded with the linearly polarizing film on the liquid crystal cell side and the surface layer on the outside on the viewing side.
(Production of glasses)
A circularly polarizing plate (G-1) was produced according to the same procedure as in Example 3 except that the alignment film 1 was not exposed to ultraviolet light. Further, a circularly polarizing plate (G-2) was produced according to the same procedure except that the rubbing direction was changed from 0 ° to 90 °. These circularly polarizing plates were mounted on the left and right sides of the spectacle frame so that the polarizing layer side was on the eyeball side to produce 3D spectacles.
 続いて、作製した各3D表示装置を3D表示にし、片目を白表示に、もう片目を黒表示とした状態で、白表示側の眼鏡を通した位置に測定器(BM-5A トプコン製)をおいて眼鏡回転時の白色味を測定した。パターニング位相差フィルムのパターニング周期が上下方向の場合、上下方向の3D表示におけるクロストーク性能は原理的に悪くなるため、横方向の視野角性能高めることが重要となる。よって、方位角0度・極角45度における白表示における色味v’の最小値と最大値の差をもとに、以下の基準で評価した。
A:白表示のv’変化が0.015未満(極わずかな色味づきが視認される程度で許容できる。)
B:白表示のv’変化が0.015以上0.025未満(色味づきが視認される。)
C:白表示のv’変化が0.025以上(色味づきが激しく、許容できない。)
Subsequently, each manufactured 3D display device is set to 3D display, with one eye displayed in white and the other eye displayed in black, and a measuring instrument (manufactured by BM-5A Topcon) is placed through the white display side glasses. The whiteness of the glasses during rotation was measured. When the patterning period of the patterning retardation film is in the vertical direction, the crosstalk performance in 3D display in the vertical direction is deteriorated in principle, so it is important to improve the viewing angle performance in the horizontal direction. Therefore, based on the difference between the minimum value and the maximum value of the color v ′ in the white display at the azimuth angle of 0 degrees and the polar angle of 45 degrees, the evaluation was made according to the following criteria.
A: v ′ change of white display is less than 0.015 (acceptable to such an extent that a very slight tint is visually recognized)
B: v ′ change of white display is 0.015 or more and less than 0.025 (color tinting is visually recognized).
C: v ′ change of white display is 0.025 or more (a color tint is intense and unacceptable)
 評価結果としては、パターン円偏光板(P-1)~(P-16)では、いずれもAであったが、比較例のパターン円偏光板(P-17)ではCであった。 As an evaluation result, the pattern circularly polarizing plates (P-1) to (P-16) were all A, but the pattern circularly polarizing plate (P-17) of the comparative example was C.
 10a,10b  位相差板
 12  透明支持体
 14a,14b  パターン光学異方性層
 16a,16b  第1パターン光学異方性層
 18a,18b  第2パターン光学異方性層
 20a,20b  第1位相差領域
 22a,22b  第2位相差領域
 24a,24b,26a,26b,28a,28b,30a,30b  領域
 32  偏光膜
 100a,100b,100c,100d 円偏光板
10a, 10b Retardation plate 12 Transparent support 14a, 14b Pattern optical anisotropic layer 16a, 16b First pattern optical anisotropic layer 18a, 18b Second pattern optical anisotropic layer 20a, 20b First phase difference region 22a 22b Second retardation region 24a, 24b, 26a, 26b, 28a, 28b, 30a, 30b Region 32 Polarizing film 100a, 100b, 100c, 100d Circularly polarizing plate

Claims (11)

  1.  面内遅相軸方向が互いに異なる第1位相差領域および第2位相差領域を含み、かつ、前記第1位相差領域および前記第2位相差領域が面内において交互に配置されているパターン光学異方性層を少なくとも有する位相差板であって、
     前記パターン光学異方性層が、第1パターン光学異方性層と第2パターン光学異方性層とを積層した層であり、
     前記第1パターン光学異方性層の前記第1位相差領域における前記第2パターン光学異方性層側とは反対側の表面での面内遅相軸と、前記第1パターン光学異方性層の前記第2位相差領域における前記第2パターン光学異方性層側とは反対側の表面での面内遅相軸とは直交し、
     前記第1パターン光学異方性層および前記第2パターン光学異方性層は、厚み方向を螺旋軸とする捩れ配向した液晶化合物を含み、
     前記第1パターン光学異方性層中の前記第1位相差領域および前記第2位相差領域における前記液晶化合物の捩れ方向と、前記第2パターン光学異方性層中の前記第1位相差領域および前記第2位相差領域における前記液晶化合物の捩れ方向が同じ方向であり、
     前記第1パターン光学異方性層中の前記液晶化合物の捩れ角が26.5±10.0°であり、
     前記第2パターン光学異方性層中の前記液晶化合物の捩れ角が78.6±10.0°であり、
     前記第1位相差領域および前記第2位相差領域において、前記第1パターン光学異方性層の前記第2パターン光学異方性層側の表面での面内遅相軸と、前記第2パターン光学異方性層の前記第1パターン光学異方性層側の表面での面内遅相軸とは平行であり、
     波長550nmで測定した前記第1パターン光学異方性層の屈折率異方性Δn1と前記第1パターン光学異方性層の厚みd1との積Δn1・d1の値と、波長550nmで測定した前記第2パターン光学異方性層の屈折率異方性Δn2と前記第2パターン光学異方性層の厚みd2との積Δn2・d2の値とが、それぞれ下記式(1)および式(2)を満足する、位相差板。
     式(1) 252nm≦Δn1・d1≦312nm
     式(2) 110nm≦Δn2・d2≦170nm
    Pattern optics that includes a first phase difference region and a second phase difference region whose in-plane slow axis directions are different from each other, and in which the first phase difference region and the second phase difference region are alternately arranged in the plane A retardation plate having at least an anisotropic layer,
    The patterned optical anisotropic layer is a layer in which a first patterned optical anisotropic layer and a second patterned optical anisotropic layer are laminated,
    An in-plane slow axis on the surface opposite to the second pattern optical anisotropic layer side in the first retardation region of the first pattern optical anisotropic layer, and the first pattern optical anisotropy An in-plane slow axis on the surface opposite to the second pattern optically anisotropic layer side in the second retardation region of the layer,
    The first pattern optical anisotropic layer and the second pattern optical anisotropic layer include a twist-aligned liquid crystal compound having a thickness direction as a helical axis,
    The twist direction of the liquid crystal compound in the first retardation region and the second retardation region in the first pattern optical anisotropic layer, and the first retardation region in the second pattern optical anisotropic layer And the twist direction of the liquid crystal compound in the second retardation region is the same direction,
    The twist angle of the liquid crystal compound in the first pattern optically anisotropic layer is 26.5 ± 10.0 °;
    The twist angle of the liquid crystal compound in the second patterned optically anisotropic layer is 78.6 ± 10.0 °;
    In the first retardation region and the second retardation region, an in-plane slow axis on the surface of the first pattern optical anisotropic layer on the second pattern optical anisotropic layer side, and the second pattern An in-plane slow axis on the surface of the optically anisotropic layer on the first pattern optically anisotropic layer side is parallel to the surface,
    The product Δn1 · d1 of the refractive index anisotropy Δn1 of the first pattern optical anisotropic layer measured at a wavelength of 550 nm and the thickness d1 of the first pattern optical anisotropic layer, and the value measured at a wavelength of 550 nm The values of the products Δn2 · d2 of the refractive index anisotropy Δn2 of the second patterned optically anisotropic layer and the thickness d2 of the second patterned optically anisotropic layer are the following formulas (1) and (2), respectively. Satisfying the retardation plate.
    Formula (1) 252 nm ≦ Δn1 · d1 ≦ 312 nm
    Formula (2) 110 nm ≦ Δn 2 · d 2 ≦ 170 nm
  2.  前記液晶化合物が、ディスコティック液晶化合物または棒状液晶化合物である、請求項1に記載の位相差板。 The phase difference plate according to claim 1, wherein the liquid crystal compound is a discotic liquid crystal compound or a rod-like liquid crystal compound.
  3.  前記第1位相差領域および前記第2位相差領域がストライプ状に交互に配置された、請求項1または2に記載の位相差板。 The phase difference plate according to claim 1 or 2, wherein the first phase difference regions and the second phase difference regions are alternately arranged in a stripe shape.
  4.  前記第1パターン光学異方性層と前記第2パターン光学異方性層との間に実質的に配向膜がない、請求項1~3のいずれか1項に記載の位相差板。 4. The retardation plate according to claim 1, wherein there is substantially no alignment film between the first pattern optical anisotropic layer and the second pattern optical anisotropic layer.
  5.  偏光膜と、請求項1~4のいずれか1項に記載の位相差板とを少なくとも含む円偏光板であって、
     前記偏光膜と、前記第1パターン光学異方性層と、前記第2パターン光学異方性層とをこの順で有し、
     前記偏光膜の吸収軸と、前記第1パターン光学異方性層の前記第1位相差領域および前記第2位相差領域のうちのいずれか一方の領域における前記偏光膜側の表面での面内遅相軸とが平行または直交である、円偏光板。
    A circularly polarizing plate comprising at least a polarizing film and the retardation plate according to any one of claims 1 to 4,
    The polarizing film, the first pattern optical anisotropic layer, and the second pattern optical anisotropic layer in this order,
    In-plane at the surface on the polarizing film side in one of the first retardation region and the second retardation region of the first patterned optically anisotropic layer and the absorption axis of the polarizing film A circularly polarizing plate whose slow axis is parallel or perpendicular.
  6.  面内遅相軸方向が互いに異なる第1位相差領域および第2位相差領域を含み、かつ、前記第1位相差領域および第2位相差領域が面内において交互に配置されているパターン光学異方性層を少なくとも有する位相差板であって、
     前記パターン光学異方性層が、第1パターン光学異方性層と第2パターン光学異方性層とを積層した層であり、
     前記第1パターン光学異方性層の前記第1位相差領域における前記第2パターン光学異方性層側とは反対側の表面での面内遅相軸と、前記第1パターン光学異方性層の前記第2位相差領域における前記第2パターン光学異方性層側とは反対側の表面での面内遅相軸とは直交し、
     前記第1パターン光学異方性層および前記第2パターン光学異方性層は、厚み方向を螺旋軸とする捩れ配向した液晶化合物を含み、
     前記第1パターン光学異方性層中の前記第1位相差領域および前記第2位相差領域における前記液晶化合物の捩れ方向と、前記第2パターン光学異方性層中の前記第1位相差領域および前記第2位相差領域における前記液晶化合物の捩れ方向が同じであり、
     前記第1パターン光学異方性層中の前記液晶化合物の捩れ角が59.7±10.0°であり、
     前記第2パターン光学異方性層中の前記液晶化合物の捩れ角が127.6±10.0°であり、
     前記第1位相差領域および前記第2位相差領域において、前記第1パターン光学異方性層の前記第2パターン光学異方性層側の表面での面内遅相軸と、前記第2パターン光学異方性層の前記第1パターン光学異方性層側の表面での面内遅相軸とは直交であり、
     波長550nmで測定した前記第1パターン光学異方性層の屈折率異方性Δn1と前記第1パターン光学異方性層の厚みd1との積Δn1・d1の値と、波長550nmで測定した前記第2パターン光学異方性層の屈折率異方性Δn2と前記第2パターン光学異方性層の厚みd2との積Δn2・d2の値とが、それぞれ下記式(3)および式(4)を満足する、位相差板。
     式(3) 111nm≦Δn1・d1≦171nm
     式(4) 252nm≦Δn2・d2≦312nm
    A pattern optical pattern including a first phase difference region and a second phase difference region having mutually different in-plane slow axis directions, and wherein the first phase difference region and the second phase difference region are alternately arranged in the plane. A retardation plate having at least an isotropic layer,
    The patterned optical anisotropic layer is a layer in which a first patterned optical anisotropic layer and a second patterned optical anisotropic layer are laminated,
    An in-plane slow axis on the surface opposite to the second pattern optical anisotropic layer side in the first retardation region of the first pattern optical anisotropic layer, and the first pattern optical anisotropy An in-plane slow axis on the surface opposite to the second pattern optically anisotropic layer side in the second retardation region of the layer,
    The first pattern optical anisotropic layer and the second pattern optical anisotropic layer include a twist-aligned liquid crystal compound having a thickness direction as a helical axis,
    The twist direction of the liquid crystal compound in the first retardation region and the second retardation region in the first pattern optical anisotropic layer, and the first retardation region in the second pattern optical anisotropic layer And the twist direction of the liquid crystal compound in the second retardation region is the same,
    The twist angle of the liquid crystal compound in the first pattern optically anisotropic layer is 59.7 ± 10.0 °;
    The twist angle of the liquid crystal compound in the second patterned optically anisotropic layer is 127.6 ± 10.0 °;
    In the first retardation region and the second retardation region, an in-plane slow axis on the surface of the first pattern optical anisotropic layer on the second pattern optical anisotropic layer side, and the second pattern An in-plane slow axis on the surface of the optically anisotropic layer on the first pattern optically anisotropic layer side is orthogonal,
    The value of the product Δn1 · d1 of the refractive index anisotropy Δn1 of the first patterned optically anisotropic layer measured at a wavelength of 550 nm and the thickness d1 of the first patterned optically anisotropic layer, and the measured at a wavelength of 550 nm The values of the products Δn2 · d2 of the refractive index anisotropy Δn2 of the second pattern optically anisotropic layer and the thickness d2 of the second pattern optically anisotropic layer are the following formulas (3) and (4), respectively. Satisfying the retardation plate.
    Formula (3) 111 nm ≦ Δn1 · d1 ≦ 171 nm
    Formula (4) 252 nm ≦ Δn 2 · d 2 ≦ 312 nm
  7.  前記液晶化合物が、ディスコティック液晶化合物または棒状液晶化合物である、請求項6に記載の位相差板。 The retardation plate according to claim 6, wherein the liquid crystal compound is a discotic liquid crystal compound or a rod-like liquid crystal compound.
  8.  前記第1位相差領域および前記第2位相差領域がストライプ状に交互に配置された、請求項6または7に記載の位相差板。 The phase difference plate according to claim 6 or 7, wherein the first phase difference regions and the second phase difference regions are alternately arranged in a stripe shape.
  9.  前記第1パターン光学異方性層と前記第2パターン光学異方性層との間に実質的に配向膜がない、請求項6~8のいずれか1項に記載の位相差板。 9. The retardation plate according to claim 6, wherein there is substantially no alignment film between the first pattern optical anisotropic layer and the second pattern optical anisotropic layer.
  10.  偏光膜と、請求項6~9のいずれか1項に記載の位相差板とを少なくとも含む円偏光板であって、
     前記偏光膜と、前記第1パターン光学異方性層と、前記第2パターン光学異方性層とをこの順で有し、
     前記偏光膜の吸収軸と、前記第1パターン光学異方性層の前記第1位相差領域および前記第2位相差領域のうちのいずれか一方の領域における前記偏光膜側の表面での面内遅相軸とが平行または直交である、円偏光板。
    A circularly polarizing plate comprising at least a polarizing film and the retardation plate according to any one of claims 6 to 9,
    The polarizing film, the first pattern optical anisotropic layer, and the second pattern optical anisotropic layer in this order,
    In-plane at the surface on the polarizing film side in one of the first retardation region and the second retardation region of the first patterned optically anisotropic layer and the absorption axis of the polarizing film A circularly polarizing plate whose slow axis is parallel or perpendicular.
  11.  画像信号に基づいて駆動される表示パネルと、
     前記表示パネルの視認側に配置される請求項1~4、および、6~9のいずれか1項に記載の位相差板、または、請求項5および10のいずれか1項に記載の円偏光板を少なくとも有する3D画像表示装置。
    A display panel driven based on an image signal;
    The phase difference plate according to any one of claims 1 to 4 and 6 to 9, or the circularly polarized light according to any one of claims 5 and 10, which is disposed on the viewing side of the display panel. A 3D image display device having at least a plate.
PCT/JP2014/058077 2013-03-25 2014-03-24 Retarder, circular polarizer, and 3d-image display device WO2014157081A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-062353 2013-03-25
JP2013062353 2013-03-25

Publications (1)

Publication Number Publication Date
WO2014157081A1 true WO2014157081A1 (en) 2014-10-02

Family

ID=51624054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058077 WO2014157081A1 (en) 2013-03-25 2014-03-24 Retarder, circular polarizer, and 3d-image display device

Country Status (1)

Country Link
WO (1) WO2014157081A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110297286A (en) * 2019-06-26 2019-10-01 昆山工研院新型平板显示技术中心有限公司 A kind of preparation method of polaroid, display panel and display panel

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08292432A (en) * 1995-04-20 1996-11-05 Nippon Oil Co Ltd Production of optical film
JPH09138308A (en) * 1995-10-13 1997-05-27 Sharp Corp Patterned and polarized light rotating optical element and production of patterned and polarized light rotating optical element and 3d display
JPH1090675A (en) * 1996-07-04 1998-04-10 Sharp Corp Optical rotatory element, its production and image display device using that
JPH11352454A (en) * 1998-06-11 1999-12-24 Asahi Glass Co Ltd Array sheet, its production, three-dimensional display device and three-dimensional image display system
US20020159004A1 (en) * 2001-04-27 2002-10-31 Jin-Hee Jung Autostereoscopic display apparatus and method of manufacturing the same
JP2007504484A (en) * 2003-08-26 2007-03-01 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Polymer film with twist pattern
JP2009265130A (en) * 2008-04-22 2009-11-12 Fujifilm Corp Optical anisotropic film
JP2010503878A (en) * 2006-09-13 2010-02-04 ロリク アーゲー Volume light aligned retarder
JP2011169948A (en) * 2010-02-16 2011-09-01 Fujifilm Corp Patterning retardation film and method for producing the same, polarized glasses, and video display system and method for producing the same
WO2012011435A1 (en) * 2010-07-20 2012-01-26 日本ゼオン株式会社 Phase difference film layered body used in stereoscopic image device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08292432A (en) * 1995-04-20 1996-11-05 Nippon Oil Co Ltd Production of optical film
JPH09138308A (en) * 1995-10-13 1997-05-27 Sharp Corp Patterned and polarized light rotating optical element and production of patterned and polarized light rotating optical element and 3d display
JPH1090675A (en) * 1996-07-04 1998-04-10 Sharp Corp Optical rotatory element, its production and image display device using that
JPH11352454A (en) * 1998-06-11 1999-12-24 Asahi Glass Co Ltd Array sheet, its production, three-dimensional display device and three-dimensional image display system
US20020159004A1 (en) * 2001-04-27 2002-10-31 Jin-Hee Jung Autostereoscopic display apparatus and method of manufacturing the same
JP2007504484A (en) * 2003-08-26 2007-03-01 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Polymer film with twist pattern
JP2010503878A (en) * 2006-09-13 2010-02-04 ロリク アーゲー Volume light aligned retarder
JP2009265130A (en) * 2008-04-22 2009-11-12 Fujifilm Corp Optical anisotropic film
JP2011169948A (en) * 2010-02-16 2011-09-01 Fujifilm Corp Patterning retardation film and method for producing the same, polarized glasses, and video display system and method for producing the same
WO2012011435A1 (en) * 2010-07-20 2012-01-26 日本ゼオン株式会社 Phase difference film layered body used in stereoscopic image device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110297286A (en) * 2019-06-26 2019-10-01 昆山工研院新型平板显示技术中心有限公司 A kind of preparation method of polaroid, display panel and display panel
CN110297286B (en) * 2019-06-26 2021-09-07 昆山工研院新型平板显示技术中心有限公司 Polaroid, display panel and preparation method of display panel

Similar Documents

Publication Publication Date Title
JP4802409B2 (en) Optical compensation film, polarizing plate and liquid crystal display device using the same
JP6055917B2 (en) Optical film, polarizing plate, image display device, and method of manufacturing optical film
KR100807140B1 (en) Sheet polarizer on which light-scattering polarizing element and light-absorption polarizing element are provided in multiyear
JP5518628B2 (en) Manufacturing method of long optical film and manufacturing method of long circularly polarizing plate
JP5783846B2 (en) 3D image display optical film, 3D image display device, and 3D image display system
JP2015043073A (en) Retardation film, polarizing plate, and liquid crystal display device
TWI814798B (en) Electroluminescent display device
JP2015025830A (en) Liquid crystal display device
WO2014157079A1 (en) Circularly polarizing plate, retardation plate for circularly polarizing plate, and organic el display device
JP2012237928A (en) Optical film, polarizing plate, image display device and three-dimensional image display system
WO2013172364A1 (en) Liquid-crystal display device
JP2009229813A (en) Optical film, polarizing plate and liquid crystal display device
JP2009229814A (en) Optical film, polarizing plate and liquid crystal display device
JP2002207125A (en) Optical compensation sheet and liquid crystal display device
JP7217359B2 (en) Optical film, circularly polarizing plate, organic electroluminescence display
JP5094500B2 (en) Liquid crystal display
JP2008102227A (en) Liquid crystal panel and liquid crystal display device
JP2003232922A (en) Polarizing plate and liquid crystal display
WO2014157081A1 (en) Retarder, circular polarizer, and 3d-image display device
WO2014157102A1 (en) Retarder, circular polarizer, and 3d-image display device
JP5659190B2 (en) Liquid crystal display device and optical film
JP2009230050A (en) Liquid crystal panel and liquid crystal display
WO2019088269A1 (en) Liquid crystal display device
JP2003260715A (en) Method for manufacturing cellulose acylate film
WO2013061965A1 (en) Liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14774688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP