WO2014155051A1 - Method and apparatus for detecting a multi-stage event - Google Patents

Method and apparatus for detecting a multi-stage event Download PDF

Info

Publication number
WO2014155051A1
WO2014155051A1 PCT/GB2014/000129 GB2014000129W WO2014155051A1 WO 2014155051 A1 WO2014155051 A1 WO 2014155051A1 GB 2014000129 W GB2014000129 W GB 2014000129W WO 2014155051 A1 WO2014155051 A1 WO 2014155051A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
event
sub
operable
detection
Prior art date
Application number
PCT/GB2014/000129
Other languages
French (fr)
Inventor
Ian Herwono
Zhan Cui
Original Assignee
British Telecommunications Public Limited Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by British Telecommunications Public Limited Company filed Critical British Telecommunications Public Limited Company
Priority to US14/781,163 priority Critical patent/US9836600B2/en
Priority to EP14715386.0A priority patent/EP2979424B1/en
Priority to CN201480030438.2A priority patent/CN105264861B/en
Publication of WO2014155051A1 publication Critical patent/WO2014155051A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/554Detecting local intrusion or implementing counter-measures involving event detection and direct action
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1408Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
    • H04L63/1416Event detection, e.g. attack signature detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1441Countermeasures against malicious traffic
    • H04L63/1458Denial of Service
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/03Indexing scheme relating to G06F21/50, monitoring users, programs or devices to maintain the integrity of platforms
    • G06F2221/034Test or assess a computer or a system

Definitions

  • the present invention relates to a method and apparatus for determining system behaviour from observed data, in particular for detecting a multi-stage event.
  • the invention relates to a method and apparatus for detecting behaviour such as a malicious cyber-attack on a computer network or sub-network of computer devices connected to the Internet, based on observations of the behaviour of the devices of the network or sub-network or of traffic flowing over the network or sub-network, or of behaviour of third party devices, such as third party social media web-sites, etc.
  • Cyber-attacks (used here as a general term to cover such activities as denial of service (DOS), including Distributed Denial of Service (DDOS), attacks and attempts to infect target computer devices with malicious software - e.g. as part of a DOS attack or simply in order to steal information - e.g. credit card details of customers - etc.) increase in sophistication, they are becoming both more difficult to detect using a single detector and at the same time they are tending to appear more and more like multi-stage attacks, passing though several distinct stages which can be identified (as distinct stages) by skilled human security experts.
  • DOS denial of service
  • DDOS Distributed Denial of Service
  • monitors for detecting known signatures of malicious traffic and/or activities at various different detectors associated with various different typical stages of a multi-stage cyber-attack
  • Such sophisticated multi-stage attacks can often only successfully be detected by linking various different activities (generally detected by different detectors) together and examining them together as aspects of a single multistage attack.
  • DDOS attacks often start with some bad Public relations (PR) of a particular target organisation observed on news or social media websites, or with some new vulnerability of a target organisation being made public. Then potential attackers may start to talk about the target and to exchange ideas for an attack and recruit or combine forces with other attackers.
  • PR Public Relation
  • detection of worms carrying specific DOS payloads may be observed.
  • scanning activities may be observed on target networks associated with the target organisation, and/or specific HTTP request volumes may increase and compromised/infected machines loaded with DOS malware may be detected.
  • attacks are launched from multiple machines both within and without the target organisations networks are launched at specific coordinated times in order to bring vital services associated with the target organisation down.
  • Multi-stage Intrusion Detection System Using Hidden Markov Model (HMM) Algorithm by Do-hyeon Lee, Doo-young Kim, Jae-il Jung (2008 International Conference on Information Science and Security) proposes a multi-stage Intrusion Detection System (IDS) architecture using an HMM Algorithm and presents a method for determining an intrusion/attack by estimation of the features appearing at each stage of an intrusion.
  • the intrusion techniques used at each stage e.g. to do network probing
  • Characteristic intrusion signals i.e. rule sets
  • Each attack stage has a detection agent which performs an independent detection function. It analyses the data collected from a network line to recognise signals that are known to be intrusions (using the rule sets). The signal sequences detected by the detection agents are then synthesised and the HMM algorithm is used to determine whether the synthesised detected sequences corresponds to an intrusion sequence.
  • the method and system described in this paper aim to produce a better IDS which can correlate "local" alerts (i.e. intrusion signals) at different points in time in order to identify the eventual intrusion/attack objective.
  • Each detection agent appears to be independent of each other detection agent; hence it doesn't have any information from the previous stage regarding certain attack target. Rather, correlation (e.g. if the same destination IP address is used) is performed only when the agents' detection signals are being synthesised. The system doesn't consider, for example, external factors such as discussions in social media, or a new vulnerability being announced.
  • An analysis Approach for Multi-stage Network Attacks describes a method of analysing a system which is vulnerable to attack using a Multi-stage Finite State Machine Model. Using such a model, network administrators can identify optimum ways of improving the security of the system to prevent the occurrence of successful attacks. There is no teaching of detecting currently occurring multi-stage attacks, and so it does not describe a multi-stage event detector.
  • a multi-stage event detector for monitoring a system to detect the occurrence of multi-stage events in the monitored system, the multi-stage event detector including: one or more event detecting detector units for detecting observable events occurring on the monitored system; one or more parameter generating detector units for generating ars-- alues which vary over time dependent on the behaviour of the monitored s ⁇ ..
  • each parameter generating detector unit may be co-incident with an event detecting detector unit); a hidden state determiner for determining a likely sequence of states of interest of the system based on the outputs of the one or more event detecting detector units; and a transition determiner for determining a likely transition occurrence based on a comparison of a set of values of a parameter or set of parameters generated by one or more of the one or more parameter generating detector units with a plurality of pre-specified functions or sets of values of a corresponding parameter or set of parameters associated with different transition occurrences.
  • the hidden state determiner includes a model of the system specifying a plurality of distinct hidden states (or states of interest) which the system can occupy (i.e. be in), a plurality of visible states, which can be determined (directly or indirectly) by the event detecting detector units, and a set of probabilities including at least a plurality of transition probabilities expressing the probability of the system transitioning from one hidden state to another and a plurality of production probabilities expressing the probability of a particular visible state being determined (or detected) by the event detecting detector units.
  • the model is, in fact, a Hidden Markov Model (HMM) and most preferably a first order HMM.
  • the values for the various probability values contained within the model are generated using an automated training procedure such as a maximum likelihood procedure such as is referred to in the Ourston paper referenced above, while the specification of the hidden and visible states is specified by a human expert using an interface to the multi-stage event detector.
  • an automated training procedure such as a maximum likelihood procedure such as is referred to in the Ourston paper referenced above
  • the specification of the hidden and visible states is specified by a human expert using an interface to the multi-stage event detector.
  • the determination(s) made by the transition determiner can be used in a number of different ways in order to improve the operation of the hidden state determiner (relative to the expected performance of the hidden state determiner if it were acting in isolation from the transition determiner). For example, the determination(s) could be used as a verification/refutation step after the hidden state determiner has made a determination of a particular estimated sequence of hidden states (or perhaps just a verification or refutation of an estimation by the hidden state determiner of the current likely (hidden) state of the system - i.e.
  • the hidden state determiner uses, for example, an HMM, determines that it is most likely that the system has transitioned from Stage 1 to Stage 2, if the transition determiner additionally identifies a likely transition to have occurred to Stage 2 (e.g. if it identifies a pattern emerging from the outputs of the parameter generating detector units which gives a reasonably high probability of matching to a Stage 1 to Stage 2 transition) - this matching of the evaluations of the transition determiner and the hidden state determiner would cause the decision made by the HMM (of the hidden state determiner) to have been verified, otherwise we conclude that no such transition has in fact yet occurred, despite the assessment made by the HMM.
  • the HMM of the hidden state determiner
  • the determinations made by the transition determiner could be used as a means of helping the multi-stage event detector to predict a possible future hidden state or to distinguish between different multi-stage events based only on a partial sequence of the hidden states (especially where different events share initial state sequences and are only distinguished in terms of hidden state sequences by later parts of the sequence (e.g.
  • the system includes a first pre-specified function associated with a first transition from Stage_1 to Stage_2 in accordance with the first multi-stage event and a second pre- specified function associated with a second transition also from Stage_1 to Stage_2 but in a different manner to that of the first pre-specified function and being instead associated with the second multi-stage event rather than the first multi-stage event.
  • the transition determiner determines that it has found evidence of a transition matching the second pre-specified function much more closely than the first pre-specified function
  • the multi-stage event detector could determine that it is most likely that it is witnessing a second multi-stage event rather than a first multi-stage event.
  • the transition determiner determines at least a confidence value specifying a degree of confidence with which it has determined the occurrence of a transition matching a pre-specified transition function. It may use a technique such as linear regression in order to generate a score of how well fitting a set of generated values of a parameter generated by one or more of the parameter generating detector units is to one or more of a plurality of pre-specified functions associated with one or more pre-specified types of transition.
  • the output of the transition determiner is a set of confidence values indicating a degree of matching of a set of parameter values to a pre-specified transition type
  • confidence values may be combined with transition probabilities forming part of the model used by the hidden state determiner, for example by multiplying them together (possibly after applying a weighting to one or other or both of the confidence value and the transition probability) and then normalising (e.g.
  • the transition determiner if the transition determiner generates a confidence value of 0.8 of having seen a transition matching the second pre-specified function and a confidence value of 0.1 of having seen a transition matching the first pre-specified function, and if the hidden state determiner is using an HMM which includes a transition probability of transitioning form a Stage_2 state to a Stage_3 state of 0.5 and a transition probability of transitioning from a Stage_2 state to a Stage_4 state of 0.3 the multi-stage event detector could combine these to decide that it is most likely to be viewing a second type of multi-stage event (with sequence Stage_1 , Stage_2, Stage_4) rather than a first type of multi-stage event because 0.8*0.3 > 0.1*0.5 since 0.24>0.05).
  • the determinations made by the transition determiner could be used to modify certain parameters used in a model used by the hidden state determiner. For example, a determination by the transition determiner that it has matched a series of parameter values generated by a parameter generating detector unit to one of a plurality of pre-specified functions (e.g. by assigning to the match a confidence value exceeding some threshold value) could result in an HMM model used by the hidden state determiner having certain of its probability values modified and then running (or re-running) the HMM model against the outputs of the event detecting detector units using the modified probabilities.
  • a determination by the transition determiner that it has observed a second transition type could result in the transition probabilities of transitioning from a Stage_1 state to a Stage_2 state and/or from a Stage_2 state to a Stage_4 state to increase (in the latter case preferably at the expense of the Stage_2 state to Stage_3 state transition probability) and/or other probabilities could be modified such as the probability of a particular visible state or states being produced by either or both of a Stage_2 state and/or a Stage_4 state, etc.
  • a pure hidden model approach could be adopted in which transitions are modelled as separate states in their own right, and the output of the transition determiner is used as a visible state determiner which is combined with the outputs of the event detecting detector units to generate overall visible states which are then used by the hidden state determiner to generate an estimated sequence of hidden states which include stages of a multi-stage event and transitions between stages of a multi-stage event.
  • the operations of the parameter generating detector units and the transition determiner can be considered as pre-processing steps carried out before the final operation of the hidden state determiner.
  • the transition determiner is used in this way (corresponding to this fourth example) from embodiments using the transition determiner in a manner more like that of the first three examples above
  • the former such embodiments may be termed pure hidden state model embodiments whilst the latter may be referred to as mixed model embodiments (since a hidden state model such as an HMM is used in combination with a transition determining model rather than just using the transition determiner as a pre-processing part of the hidden state model).
  • the Multi-stage event detector is used to detect multi-stage computer network attacks.
  • Embodiments of the present invention as discussed above are particularly suited to detecting multi-stage computer network attacks (e.g. cyber attacks) because they can cope well with very drawn out attacks with long and varying transitions between stages. Moreover they can use a relatively simple and therefore robust and still accurate hidden state model with relatively few hidden states by aligning the hidden states with the stages of a multi-stage event. This makes the operation and outputs of the detector easier for a human user to understand which is an important factor in machine learning systems generally and is especially helpful in certain embodiments because of the use which they make of a human expert user to input conditions to be associated with certain multi-stage events (e.g. certain types of cyber attack).
  • multi-stage computer network attacks e.g. cyber attacks
  • the transition determiner can be used to help divide a period of time into stages of a multi-stage event and transitions between stages.
  • the multi-stage event detector outputs a representation of a period of time as constituting a series of stages of a multi-stage event and transitions between stages and associates each of these with a period of time for subsequent analysis by a user of the detector.
  • a multi-stage event detector comprising a process generator operable to generate main and sub- processes, each main and sub-process being operable to generate and initiate one or more detection agents each of which is operable to be triggered by detecting the occurrence of a trigger event or series of events and to report back to its generating process or sub-process upon being so triggered, and wherein each process or sub- process is operable to respond to receipt of a report from a triggered detection agent by either reporting the detection of a multi-stage event or part thereof to either a parent process or sub-process or to an overall controller, or to generate and initiate a detection agent or a sub-process.
  • the multi-stage event detector further comprises a store of conditions and a user interface by which a security expert user can input values to the store which are used to generate trigger event conditions used by the detection agents.
  • the detector permits a security expert user to manually define a multi-stage event scenario by describing its multiple stages and setting some measures/thresholds associated with each stage and each transition between stages.
  • the multi-stage event detector is operable to notify a user if it determines that a multi-stage event is occurring before the entirety of the event has occurred or has been detected.
  • the detector includes a pattern database storing many different patterns each associated with a different type of multi-stage event.
  • Each pattern preferably comprises a unique sequence of stages (although more than one pattern may correspond to a single type of multi-stage event - e.g. a type of event categorised as a Distributed Denial of Service type of attack could be associated with more than one pattern).
  • the process generator generates a main process for each pattern stored in the pattern database.
  • the event detector is operable to distinguish between different multi-stage events of the same type occurring during overlapping periods of time but being distinguishable from one another by means of a distinguishing characteristic. In an embodiment, this is achieved in the following manner.
  • a detection agent instantiated by a main process is triggered as part of the trigger it identifies a distinguishing characteristic of the event; the trigger then causes the main process to instantiate a sub-process which generates a detection agent looking for a trigger indicating that the second stage of the pattern of the main process has been triggered, wherein the trigger condition includes an aspect which depends upon the distinguishing characteristic identified by the detection agent instantiated by the main process.
  • each of the detection agents of the second aspect constitutes an event detecting detector, unit of the first aspect.
  • the trigger condition sought for by each detection agent generated by a sub- process is specified in dependence upon an output from a hidden state determiner such as a hidden state determiner forming part of the first aspect of the present invention.
  • a main process could be instantiated looking for a pattern corresponding to a stage sequence comprising Stage_1 , Stage_2, Stage_4.
  • An initial Stage_1 detection agent could be generated by the main process with a generic trigger condition set indicating that a multi-stage event has been commenced with a Stage_1 occurrence.
  • this detection agent may report back to the main process a trigger message indicating at least a distinguishing characteristic (e.g. a target identity) and a visible state identifier which the main process can correlate with a visible state forming part of a hidden state model used by the main process.
  • the main process then generates a sub-process which generates at least a Stage_2 detection agent.
  • the trigger condition of the Stage_2 detection agent may include a need for the same distinguishing characteristic to be involved. It may also depend upon an assessment by a hidden state determiner as to the visible states which would cause the hidden state determiner to determine that the system had transitioned to a Stage_2 state. This would then result in a trigger which would inevitably result in the detector as a whole determining that the event being tracked had entered the Stage_2 state as desired.
  • more than one detection agent may be instantiated even though they are associated with a single trigger condition. For example if a trigger condition depends upon observing one condition on one physical system and another condition on a different system, one agent may be instantiated to monitor the one system and another to monitor the other system.
  • Further aspects of the invention relate to methods corresponding to the first and second aspects of the present invention and to processor instructions for causing a computer to operate as a multi-stage event detector according to one of the first or second aspects of the present invention or for causing a computer or other processor controlled device or set of devices to carry out a method according to an aspect of the present invention. Further aspects relate to carriers, preferably non-transitory carriers, such as magnetic or optical storage disks or solid state memory devices, carrying such processor instructions.
  • Figure 1 is a schematic illustration of a computer network incorporating a multi-stage event detector according to an embodiment of the present invention
  • FIG. 2 is a schematic illustration of the monitoring engine of the multi-stage event detector of Figure 1 shown in greater detail;
  • Figure 3 is a schematic illustration of the monitoring engine of the multi-stage event detector of Figure 1 according to a second embodiment
  • Figure 4 is a schematic illustration of a main process generated by the monitoring agent of Figure 3
  • Figure 5 is a schematic illustration of the main process of Figure 4 and a sub-process generated by the main process as a result of receiving a trigger response from a detection agent associated with a stage 1 trigger condition
  • Figure 6 is a schematic illustration of the main process of Figure 4 and a second sub- process generated by the main process as a result of receiving a trigger response from a detection agent associated with a stage 2 trigger condition
  • Figure 7 is a schematic illustration of the monitoring engine of the multi-stage event detector of Figure 1 according to a third embodiment.
  • Figure 1 illustrates a computer network system including a multi-event detector according to several embodiments, where the embodiments differ only in terms of the structure and function of the monitor engine 100.
  • First, second and third embodiments are discussed in greater detail below with reference to Figure 2 (first embodiment), Figures 3, 4, 5 and 6 (second embodiment) and Figure 7 (third embodiment).
  • the system comprises a user 1 , a series of data feeds 2, 4, 6 which are connected to the network being monitored or to alternative sources of information, and the multi-stage event monitor 10 (discussed in greater detail below).
  • Data feed 2 could correspond to an engine for extracting information from the Internet, especially social network sites such as Twitter and Facebook, etc. as well as news sites and blogs, etc.
  • Data feed 4 could correspond to a network based intrusion detection device monitoring one or more computer networks associated with one or more organisations which are being monitored by the monitor 10
  • data feed 6 could correspond to an engine collecting data from host-based intrusion detection systems each of which is associated with an individual device belonging to a monitored organisation, etc.
  • the monitor 10 comprises a Graphical User Interface component 20 for permitting a user to enter information into he monitor and for extracting information about detected events, etc. from the monitor. It also includes a Key Performance Indicator (KPI), Data mining and statistical library unit 30 which is used to assist a user in specifying certain observable events which may be used to help generate trigger conditions or visible or observable events which are ultimately used by the monitor engine 00 discussed in greater detail below.
  • KPI Key Performance Indicator
  • Data mining and statistical library unit 30 which is used to assist a user in specifying certain observable events which may be used to help generate trigger conditions or visible or observable events which are ultimately used by the monitor engine 00 discussed in greater detail below.
  • the monitor 10 additionally includes an attack patterns unit 40. This stores patterns of various pre-specified multi-stage events (such as certain cyber-attacks), especially in terms of typical sequences followed by such attacks (e.g. Stage_1 , Stage_2, Stage_4).
  • the monitor additionally includes an alertjng engine which can cause alerts to be sent to interested users in a number of different ways (e.g. email, text message, flasing indicator on the GUI 20, etc.).
  • the monitor 10 additionally includes a data source manager 60 and a number of data source connectors and extractors 72, 74, 76.
  • the data source manager manages the data source connectors and extractors 72,74,76 which interface to the data feeds 2, 4, 6.
  • the monitor additionally includes a monitor engine 100 discussed in greater detail below.
  • the KPIs, Data Mining and Statistical Library unit 30 stores PIs which are measures or observable events from data sources and they are used in helping to try to ascertain whether a multi-stage event is occurring and if so what stage it has reached.
  • the user 1 creates various conditions (e.g. trigger conditions, transition functions, etc.) which depend upon certain KPI's which the data source connectors and extractors are able to extract from the data feeds, possibly after some pre-processing by one or more elements of the monitor 10 (including possibly the unit 30 itself).
  • the unit 30 provides a list of existing KPIs such as packets/second, kbits/second, hits/hr. hits/data, events/min, etc.
  • the user can also specify conditions based on these KPIs, for example upper and lower thresholds, gradients of parameter change during a specified duration, whether a gradient is increasing or decreasing, etc.
  • the user can also specify where the information for a KPI should come from (e.g. from which data feed) for a particular condition and can form complex conditions based on logical combinations of multiple parameters, functions of parameters, sub-conditions, etc. All these are stored in the unit 30.
  • the attack patterns unit permits a user to specify certain multi-stage events which he she would like the monitor 10 to be able to track and detect, etc.
  • Each pattern includes the various stages which the multi-stage event is expected to proceed through.
  • Once the patterns are created they are stored in attack pattern database. There are versioning management. These patterns will be encoded in HMM for the monitoring engine to execute against data feeds.
  • the attack patterns unit 40 also includes models (possibly using linear regression models or techniques applied to historical data) whose key properties can be specified by the user 1 in addition to specifying the sequence of stages through which a multi-stage event passes.
  • a user could specify that a certain parameter might be expected to be increasing at a certain approximate rate between certain specified stages based on certain measures (e.g. the KPIs discussed above). These could be learned from historical data using any of many well-known techniques and tools (e.g. based on linear regression techniques) available or directly created by users.
  • HMMs hidden state models
  • Embodiments of the present invention provide a tool which allows human experts to create stage patterns and for each stage to specify what sources could be used for measuring events expected to occur when the event has reached a particular stage.
  • the user can additionally specify functions of how certain parameters may be expected to vary between stages (e.g. the user can specify the shape of certain curves associated with a variable whose value typically changes between stages). These functions can model subtle changes between stages. These can then in turn be used to cope with numerous fuzzy measures of activities. Details of these functions (e.g. the direction of change of curves expressing parameter changes during transitions between stages) can better model more complexity in real situations in a manner which is easier for human experts to specify and so can better leverage a human user's expertise.
  • these functions can be learned through automated or semi-automated machine learning techniques such as linear regression techniques based on data points between stages which the user 1 can specify (or retrieve from historical situations).
  • This use of functions specifying how certain observable parameters may change during transitions between stages can also help to minimise the number of false positives generated by the monitor which is a constant problem with monitors of multi-stage and other kinds of complex events.
  • the data source connectors and extractors 72, 74, 76 handle data source related issues including connection and extraction of key fields. All these metadata are stored in the Data Source Manager 60.
  • the data source manager maintains several tables. At least one of these tables includes data source id, data source name, and key field and method of data extraction for each data feed 2, 4, 6, etc.
  • the data source connectors and extractors 72, 74, 76 extract information and send it to the monitor engine 100 which performs its monitoring in the manner described in greater detail below and generates notifications which are passed to the alerting engine 50 if it detects anything which it considers could be suspicious and therefore warranting generating a notification to the user 1.
  • the monitor engine 100 of the first embodiment is illustrated in Figure 2 in greater detail. This monitor engine primarily addresses issues of how to provide a relatively simple hidden state model which is used in conjunction with a transition determiner in order to provide accurate multi- event detection.
  • the monitor engine 200 of the second embodiment (illustrated in Figure 3) primarily addresses the issue of how to handle various different multi-stage events occurring in an overlapping manner by generating multiple separate processes to track individual events (or possible suspected events, etc.).
  • the monitor engine 300 of the third embodiment illustrated in Figure 7 combines the features of both the first and second embodiments to address all of these issues at the same time.
  • the monitor engine 100 includes a memory 101 , a processor unit 102 and an interface 104 permitting it to communicate with the other elements of the monitor 10.
  • Stored within the memory are various sets of code which, when executed by the processor 102 cause associated functional modules to operate, with functions as described below with respect to each respective set of code.
  • both the code set and the associated functional module may be referred to interchangeably and using the same reference numerals below.
  • the sets of code which are pertinent to the operation of the monitor engine in performing the functions relevant to the present invention are a controller code set 1 10 which is responsible for causing the monitor engine 100 to carry out overall control of the other functional modules of the monitor engine, a hidden state determiner code set 120 whose associated functional module manipulates a hidden state model in order to determine likely hidden state sequences for a corresponding sequence of visible state values, a transition determiner code set 130 whose associated functional module performs functions associated with comparing observed sequences of parameter values with pre-specified transition functions to look for likely matches, event detecting detector unit code sets 142, 144 whose corresponding functional modules co-operate with and process incoming data from the data source connectors and extractors 72, 74, 76 to generate visible events and or visible state values (under the control of the controller module 110) for use by the hidden state determiner 120, and parameter generator code sets 152, 154 whose functional modules also co-operate with and process incoming data from the data source connectors and extractors 72, 74, 76
  • the monitor engine 100 is responsible for receiving data from the data feeds 2, 4, 6 and identifying the (inferred) occurrence of stages of a (single) multi-stage event.
  • it achieves this by using a standard HMM as a hidden state model to determine an estimated sequence of stages through which a multi-stage event has progressed whilst using information from the transition determiner to assist in making a final determination as to what event (if any) is occurring and the likely consequences (if any) of such an event continuing to occur, and any steps that can be taken to mitigate against adverse effects of the event.
  • the hidden state determiner 120 identifies a partial estimated sequence of stages through which the event is deemed to have passed thus far, and then (i.e. once a particular stage is deemed to have been reached) the monitor engine 100 selects all patterns which contain that partial estimated stage sequence (or possibly in alternative embodiments, all patterns which contain the current estimated stage) and then monitors the progress often certain pre-specified parameters whose values have been indicated as being relevant to a transition function pre-specified by a human user 1 and stored in the attack patterns unit 40 as discussed above. It's worth noting that this is somewhat different from existing uses of HMMs for multistage attack detectors in which, for a given observable sequence 01 , 02, ...
  • the monitor 10 receives continuous observations (streaming data feed), and calculates measures (or threshold values or parameter values, etc.), and then continues to compute these measures from streaming incoming data, and can determine changing states. It selects patterns (and thus suspected events - e.g. attack types) based on these states (which may be partial sequences only) as well as on transition information.
  • stage sequences and transitions in order to be able to raise alerts at times (or stages) where it is deemed appropriate to raise alerts even before it is possible to ascertain exactly what event is occurring (which may only be possible after the event has completed which may be too late to mitigate successfully against the worst effects of the event).
  • the monitor 10 When the monitor 10 starts to monitor for new events, it initially simply awaits some relevant results form the event detecting detector units. In the present embodiment, these look for events which the user 1 has specified are indications of an event of interest occurring. When, under the control of the controller 110, an event is observed which the controller determines gives rise to a change in the visible state of the system, the controller determines that an event may be occurring and records that the possible event is in an associated stage (e.g. Stage_1 ). The hidden state determiner can also be invoked at this point to determine a likely current hidden state (which corresponds to a stage of an event e.g.
  • Stage_1 - where a single stage may be associated with a number of different events including some harmless ones and some harmful ones), by processing the sequence of visible states according to the underlying hidden state model (which is a first order HMM in the present embodiment).
  • the transition determiner may also be invoked at this stage to see if it can verify the possible occurrence of a transition from an initial no event occurring stage to the inferred current stage of the event.
  • the output from the transition determiner can be used to refute the conclusion that an event is occurring or can indicate that a different stage has been reached or it can support the conclusion reached by the hidden state determiner.
  • the controller combines the evidence from the two determiners 120 and 130 and then decides if a notification should be sent to the alerting engine (this would be the case if all possible events associated with the determined stage are harmful and (possibly) require mitigating action to be taken ideally).
  • additional evidence arrives form the data feeds as processed by the detector units 142, 144 and parameter generators 152, 154 these processes are repeated with the hidden state determiner being used to determine a new likely sequence of hidden states corresponding to a possible sequence of stages of the event, corroborated by the transition determiner.
  • the transition determiner can be used to try to eliminate some of the possible types of event. If after such elimination only harmful possible events remain, the controller causes an appropriate notification to be sent to the alarm generating unit to cause an alert to be generated to a user identifying the suspected detected event occurring.
  • the monitor engine 200 comprises in its modified memory 201 a controller code set 210 and a process generator code set 260.
  • the problem which this embodiment particularly addresses is how to manage the communications between the monitor 10 and the external systems (the data feeds 2, 4, 6) in order to retrieve the required "live” information about specific multi-stage events that have been identified by a "trigger” or triggers for different stages of a multi- stage event, such as an attack scenario, multiple patterns for which have been stored in the attack patterns unit 40 in such a way that different attacks can be separated out and monitored separately amongst overlapping events occurring and interfering with each other.
  • Stage 1 of a potential DDoS (Distributed Denial of Service) attack might be that specific keywords are being used by Twitter posters quite frequently (say 10 times within an hour). This information needs to be retrieved and examined from an appropriate tool, e.g. the data feed 2, which is monitoring the Twitter posts continuously.
  • a particular "DDoS attack” pattern its Stage 1 is the detection of keywords in Twitter; its Stage 2 is the detection of very high inbound packet traffic (for specific IP address); and its Stage 3 is detection of TCP-state exhaustion traffic at a firewall.
  • the first path of the pattern could be that based on the discussion in Twitter, a "Company A” is likely being targeted for an attack (Stage 1 ).
  • the second path of the (same) pattern could be that another "Company B" is experiencing TCP-state exhaustion traffic at its firewall (Stage 3).
  • the different paths are caused by different attack victims (e.g. different networks) being identified when the pattern engine was evaluating the live feed from the external systems.
  • the solution to the above difficulty provided by the monitor engine 200 is to apply a software agents approach in order to handle the communications between the monitor 10 and external systems 2, 4, 6.
  • software agents i.e. processes
  • each pattern (instance) has a single running main process (e.g. Main Process 1 272 and Main Process 2 274) instantiated for it which is target agnostic (see Figures 3 and 4).
  • main process e.g. Main Process 1 272 and Main Process 2 274
  • each stage instance of the pattern will have created and parameterised a software agent 291 , 292, 296, 297, 298 (see Figure 4) depending on what information the stage needs to allow it move on to the next stage (a trigger condition specified by a human user and stored in the attack patterns unit 40).
  • a stage e.g. Stage 3 can also have more than one software agent (software agent 3A 296, and software agent 3B 297), since it's expecting trigger information coming from two different systems (e.g. from data feed 2 and data feed 4).
  • each stage is subscribing for a trigger signal coming from its software agent.
  • the initial trigger conditions which are target agnostic are, in this embodiment, specified precisely by a human user (e.g. if more than a specified number of target terms connected with a monitored target organisation are detected within a specified duration).
  • Each software agent will have the capability to connect to the corresponding external system, query the data and examine it based on the trigger condition (e.g. thresholds) given by the stage instance. If the condition is satisfied the software agent will send a trigger signal to the stage/pattern instance. Otherwise it might sleep for certain time (e.g. ⁇ T> ms) and query and examine data again at a later time.
  • any stage in the pattern can send/activate its software agent from the beginning, i.e. multiple active agents for a single pattern at one time.
  • Stage 1 instance Once the Stage 1 instance receives a trigger from its software agent, it creates a new sub- process of the pattern, which then contains the subsequent stages instances subscribing to their corresponding software agents ( Figure 4). This sub-process will form one "path" of the pattern to pursue further and will remain active until either it's , reached the final stage or destroyed manually by human analysts or automatically after specific timeout. Timing information e.g. about the elapsed time between two trigger signals will be recorded by the pattern engine for enriching its predictive analytics capability. Each time after a sub- process is created, the main process of the pattern will remain active and keep expecting trigger signals from the software agents that might lead to creation of different paths of the pattern.
  • the sub-process generates a trigger condition for any agents (e.g. software aget-2 293 generated by sub-process 282 illustrated in Figure 5 - and corresponding to detection agent 1_1 " 2 293 created by sub-process 1_1 282 of Figure 3) which it instantiates which, although it is based on the generic target agnostic condition pre-specified by the user 1 , is modified to be specific to a particular target organisation (note however that this is merely one example way of distinguishing one event from another and there could be other distinguishing characteristics used in different embodiments), such that it will not be triggered by a similar condition being satisfied in respect of a different distinguished multi-stage event.
  • agents e.g. software aget-2 293 generated by sub-process 282 illustrated in Figure 5 - and corresponding to detection agent 1_1 " 2 293 created by sub-process 1_1 282 of Figure 3
  • the sub-process generates a trigger condition for any agents (e.g. software aget-2 293 generated by sub-process 282 illustrated in
  • FIG. 6 shows the scenario where Stage 1 of the pattern has never received a trigger signal from its agent, but Stage 2 receives the signal from its agent and therefore creates a new sub- process with the remaining subsequent stages (specific to the target detected by the stage 2 agent of the main process).
  • the above described second embodiment does not use require the use of hidden state determiners or transition determiners and a simple implementation could rely solely on simple trigger conditions specified by user 1.
  • the third embodiment combines the strengths of both of the first and second embodiments and is illustrated in Figure 7.
  • the similarly named components operate in the sam way as their respective counterparts do in the first and second embodiments and so will not be discussed again in detail.
  • the trigger conditions associated with each software agent can be generated based on the outputs of the Hidden State and transition determiners in order to generate sophisticated trigger conditions which are developed dynamically using the power of the hidden state model and the transition model.
  • the trigger condition sought for by each detection agent generated by a sub-process may be specified in dependence upon an output from the hidden state determiner.
  • a main process could be instantiated looking for a pattern corresponding to a stage sequence comprising Stage_1 , Stage_2, Stage_4.
  • An initial Stage_1 detection agent could be generated by the main process with a generic trigger condition set indicating that a multi-stage event has been commenced with a Stage_1 occurrence.
  • this detection agent being triggered by observing the trigger condition, it may report back to the main process a trigger message indicating at least a distinguishing characteristic (e.g.
  • the main process may then generate a sub- process which generates at least a Stage_2 detection agent.
  • the trigger condition of the Stage_2 detection agent may include a need for the same distinguishing characteristic to be involved. It may also depend upon an assessment by the hidden state determiner as to the visible states which would cause the hidden state determiner to determine that the system had transitioned to a Stage_2 state. This would then result in a trigger which results in the detector as a whole determining that the event being tracked has entered the Stage_2 stage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

A multi-stage event detector for monitoring a system, the multi-stage event detector including: a process generator operable to generate main and sub-processes, each main and sub-process being operable to generate and initiate a detection agent each of which is operable to be triggered by detecting the occurrence of a trigger event and to report back to its generating process or sub-process upon being so triggered. Each process or sub-process is operable to respond to receipt of a report from a triggered detection agent by reporting the detection of a multi-stage event to an overall controller.

Description

Method and Apparatus for detecting a multi-stage event
Field of the Invention
The present invention relates to a method and apparatus for determining system behaviour from observed data, in particular for detecting a multi-stage event. Most particularly, the invention relates to a method and apparatus for detecting behaviour such as a malicious cyber-attack on a computer network or sub-network of computer devices connected to the Internet, based on observations of the behaviour of the devices of the network or sub-network or of traffic flowing over the network or sub-network, or of behaviour of third party devices, such as third party social media web-sites, etc.
Background to the Invention
As so-called "cyber-attacks" (used here as a general term to cover such activities as denial of service (DOS), including Distributed Denial of Service (DDOS), attacks and attempts to infect target computer devices with malicious software - e.g. as part of a DOS attack or simply in order to steal information - e.g. credit card details of customers - etc.) increase in sophistication, they are becoming both more difficult to detect using a single detector and at the same time they are tending to appear more and more like multi-stage attacks, passing though several distinct stages which can be identified (as distinct stages) by skilled human security experts.
Thus, although there are known monitors for detecting known signatures of malicious traffic and/or activities at various different detectors associated with various different typical stages of a multi-stage cyber-attack, it is often difficult to detect a sophisticated multi-stage attack from the use of a single monitor alone (or even multiple different monitors acting in isolation). Instead, such sophisticated multi-stage attacks can often only successfully be detected by linking various different activities (generally detected by different detectors) together and examining them together as aspects of a single multistage attack.
For example, DDOS attacks often start with some bad Public relations (PR) of a particular target organisation observed on news or social media websites, or with some new vulnerability of a target organisation being made public. Then potential attackers may start to talk about the target and to exchange ideas for an attack and recruit or combine forces with other attackers. At some time after that, detection of worms carrying specific DOS payloads may be observed. Then scanning activities may be observed on target networks associated with the target organisation, and/or specific HTTP request volumes may increase and compromised/infected machines loaded with DOS malware may be detected. Finally, attacks are launched from multiple machines both within and without the target organisations networks are launched at specific coordinated times in order to bring vital services associated with the target organisation down.
As mentioned, such multi-stage attacks can often defeat individual point checks and can only be detected by linking and examining together the various different stages of the attack. For example, login failures are quite common and unlikely to result in a major security incident. However, login failures, followed by a successful login, and obtaining admin rights (by a malicious unauthorised user), and then installing (malicious) software and then observing abnormal traffic flowing over the network is very likely in total to be indicative of a successful attack.
Various approaches for either automatically or semi-automatically identifying attacks by looking for these distinct multiple stages of attack have been proposed and a selection of such proposals is set out below: "Multi-stage Intrusion Detection System Using Hidden Markov Model (HMM) Algorithm" by Do-hyeon Lee, Doo-young Kim, Jae-il Jung (2008 International Conference on Information Science and Security) proposes a multi-stage Intrusion Detection System (IDS) architecture using an HMM Algorithm and presents a method for determining an intrusion/attack by estimation of the features appearing at each stage of an intrusion. The intrusion techniques used at each stage (e.g. to do network probing) are detected using "characteristic intrusion signals" (i.e. rule sets). Each attack stage has a detection agent which performs an independent detection function. It analyses the data collected from a network line to recognise signals that are known to be intrusions (using the rule sets). The signal sequences detected by the detection agents are then synthesised and the HMM algorithm is used to determine whether the synthesised detected sequences corresponds to an intrusion sequence. The method and system described in this paper aim to produce a better IDS which can correlate "local" alerts (i.e. intrusion signals) at different points in time in order to identify the eventual intrusion/attack objective. Each detection agent (for each stage) appears to be independent of each other detection agent; hence it doesn't have any information from the previous stage regarding certain attack target. Rather, correlation (e.g. if the same destination IP address is used) is performed only when the agents' detection signals are being synthesised. The system doesn't consider, for example, external factors such as discussions in social media, or a new vulnerability being announced.
"Applications of Hidden Markov Models to Detecting Multi-stage Network Attacks" by Ourston et al. (Proceedings of the 36th Hawaii International Conference on System Sciences - 2003) describes an approach for detecting multi-stage attacks using Hidden Markov Models (HMMs) and compares the usefulness of the HMM approach to other machine learning techniques. The paper rather glosses over the exact manner in which visible state values are determined, presumably because whatever method is used to achieve this is the same for the different machine learning techniques being compared such that the comparison should still be valid whatever method is chosen. However, they do suggest using multiple detectors and pre-processing the outputs of the detectors, and they suggest using human experts to perform some mapping between alert types (e.g. a port probe) and intrusion category (e.g. initial recon). This mapping though appears to be between an observable value and a hidden state and so does not make clear the nature of the observable values presented to the HMM model. In any event, the main conclusion of the paper is that HMM's are well suited to the task of detecting multi-stage network attacks.
"Automatic attack scenario discovering based on a new alert correlation method" by AN Ebrahimi et al (Systems Conference (SYSCON), 201 1 IEEE International, IEEE, 4 April 201 1 , pages 52-58) teaches a method of identifying a multi-stage attack. The method includes collecting multiple Intrusion Detection System (IDS) alerts and grouping them into a single group based on source port and within that overall group, sub-grouping the alerts, based on target IP address, into different sub-groups, and then attempting to allocate the alerts within each sub-group to further sub-groups which correspond to different stages of a multi-stage attack.
"Addressing Low Base Rates in Intrusion Detection via Uncertainty-Bounding Multi-Step Analysis" by Robert Cole and Peng Liu (Computer Security Applications Conference 2008 (ACSAC 2008) Annual, IEEE, Piscataway, NJ, USA, 8 December 2008 pages 269-278) describes a system in which a user is given control to specify a trade-off between confidence that an attack is occurring (confidence) and how quickly an attack is detected (agility). The authors recognise that in general there will always be a trade-off between these two characteristics within a multi-stage attack detection system and that by giving control over where the balance should lie to a user they can tailor the system to their own needs (e.g. if a user has large human resources for analysing possible attacks and a strong desire to catch attacks as.quickly as possible they would tend to choose for a more agile system, whereas user's that can only afford relatively small amount of resource for investigating possible attacks would tend to prefer to receive fewer false positives and thus would tend to opt for a slower but more reliable system (with few false positives). In terms of a system for actually detecting multi-stage events, this paper described only a very simple system in which it was assumed that each detection by a sensor could be unambiguously associated with a particular stage of a particular multi-stage attack with a simple probability of being right or wrong. This is sufficient for the purposes of demonstrating their trade-off issues but, as was acknowledged by the authors, would not be useful for creating a practical multi-stage attack detection system which would thus need to borrow heavily from known prior art systems for correlating sensor outputs with multi-stage attacks.
"An analysis Approach for Multi-stage Network Attacks" describes a method of analysing a system which is vulnerable to attack using a Multi-stage Finite State Machine Model. Using such a model, network administrators can identify optimum ways of improving the security of the system to prevent the occurrence of successful attacks. There is no teaching of detecting currently occurring multi-stage attacks, and so it does not describe a multi-stage event detector. A difficulty faced by all systems attempting to detect multi-stage events occurring in relatively complex systems where more than one multi-stage event may be occurring within overlapping periods of time, is how to efficiently keep track of an individual multistage event occurring and not getting obfuscated by the detection of overlapping multistage events, and additionally how to deal efficiently with the possibility that in its early stages a multi-stage event may be indistinguishable (or difficult to distinguish) from other events with similar or identical starting behaviours, especially if different attacks are occurring from the same attacker/source of attack. Summary of Invention
According to a first aspect of the present invention, there is provided a multi-stage event detector for monitoring a system to detect the occurrence of multi-stage events in the monitored system, the multi-stage event detector including: one or more event detecting detector units for detecting observable events occurring on the monitored system; one or more parameter generating detector units for generating ars-- alues which vary over time dependent on the behaviour of the monitored s ^.. , ^ ...erein each parameter generating detector unit may be co-incident with an event detecting detector unit); a hidden state determiner for determining a likely sequence of states of interest of the system based on the outputs of the one or more event detecting detector units; and a transition determiner for determining a likely transition occurrence based on a comparison of a set of values of a parameter or set of parameters generated by one or more of the one or more parameter generating detector units with a plurality of pre-specified functions or sets of values of a corresponding parameter or set of parameters associated with different transition occurrences.
Preferably, the hidden state determiner includes a model of the system specifying a plurality of distinct hidden states (or states of interest) which the system can occupy (i.e. be in), a plurality of visible states, which can be determined (directly or indirectly) by the event detecting detector units, and a set of probabilities including at least a plurality of transition probabilities expressing the probability of the system transitioning from one hidden state to another and a plurality of production probabilities expressing the probability of a particular visible state being determined (or detected) by the event detecting detector units. Preferably the model is, in fact, a Hidden Markov Model (HMM) and most preferably a first order HMM. Preferably, the values for the various probability values contained within the model are generated using an automated training procedure such as a maximum likelihood procedure such as is referred to in the Ourston paper referenced above, while the specification of the hidden and visible states is specified by a human expert using an interface to the multi-stage event detector.
The determination(s) made by the transition determiner can be used in a number of different ways in order to improve the operation of the hidden state determiner (relative to the expected performance of the hidden state determiner if it were acting in isolation from the transition determiner). For example, the determination(s) could be used as a verification/refutation step after the hidden state determiner has made a determination of a particular estimated sequence of hidden states (or perhaps just a verification or refutation of an estimation by the hidden state determiner of the current likely (hidden) state of the system - i.e. if the hidden state determiner, using, for example, an HMM, determines that it is most likely that the system has transitioned from Stage 1 to Stage 2, if the transition determiner additionally identifies a likely transition to have occurred to Stage 2 (e.g. if it identifies a pattern emerging from the outputs of the parameter generating detector units which gives a reasonably high probability of matching to a Stage 1 to Stage 2 transition) - this matching of the evaluations of the transition determiner and the hidden state determiner would cause the decision made by the HMM (of the hidden state determiner) to have been verified, otherwise we conclude that no such transition has in fact yet occurred, despite the assessment made by the HMM. In a second example, the determinations made by the transition determiner could be used as a means of helping the multi-stage event detector to predict a possible future hidden state or to distinguish between different multi-stage events based only on a partial sequence of the hidden states (especially where different events share initial state sequences and are only distinguished in terms of hidden state sequences by later parts of the sequence (e.g. if a first multi-stage event follows the sequence Stage_1 , Stage_2, Stage_3 and a second multi-stage event follows the sequence Stage_1 , Stage_2, Stage_4 then whilst the multi-stage event detector has not yet seen evidence that the system has moved into either Stage_3 or Stage_4 of the multi-stage event it is difficult to decide if it is witnessing a first or a second multi-stage event). For example, it may be that the system includes a first pre-specified function associated with a first transition from Stage_1 to Stage_2 in accordance with the first multi-stage event and a second pre- specified function associated with a second transition also from Stage_1 to Stage_2 but in a different manner to that of the first pre-specified function and being instead associated with the second multi-stage event rather than the first multi-stage event. In such a case, if the transition determiner determines that it has found evidence of a transition matching the second pre-specified function much more closely than the first pre-specified function, the multi-stage event detector could determine that it is most likely that it is witnessing a second multi-stage event rather than a first multi-stage event. Preferably the transition determiner determines at least a confidence value specifying a degree of confidence with which it has determined the occurrence of a transition matching a pre-specified transition function. It may use a technique such as linear regression in order to generate a score of how well fitting a set of generated values of a parameter generated by one or more of the parameter generating detector units is to one or more of a plurality of pre-specified functions associated with one or more pre-specified types of transition. Where the output of the transition determiner is a set of confidence values indicating a degree of matching of a set of parameter values to a pre-specified transition type, in some embodiments, such confidence values may be combined with transition probabilities forming part of the model used by the hidden state determiner, for example by multiplying them together (possibly after applying a weighting to one or other or both of the confidence value and the transition probability) and then normalising (e.g. continuing with the example given above, if the transition determiner generates a confidence value of 0.8 of having seen a transition matching the second pre-specified function and a confidence value of 0.1 of having seen a transition matching the first pre-specified function, and if the hidden state determiner is using an HMM which includes a transition probability of transitioning form a Stage_2 state to a Stage_3 state of 0.5 and a transition probability of transitioning from a Stage_2 state to a Stage_4 state of 0.3 the multi-stage event detector could combine these to decide that it is most likely to be viewing a second type of multi-stage event (with sequence Stage_1 , Stage_2, Stage_4) rather than a first type of multi-stage event because 0.8*0.3 > 0.1*0.5 since 0.24>0.05).
In a third example, the determinations made by the transition determiner could be used to modify certain parameters used in a model used by the hidden state determiner. For example, a determination by the transition determiner that it has matched a series of parameter values generated by a parameter generating detector unit to one of a plurality of pre-specified functions (e.g. by assigning to the match a confidence value exceeding some threshold value) could result in an HMM model used by the hidden state determiner having certain of its probability values modified and then running (or re-running) the HMM model against the outputs of the event detecting detector units using the modified probabilities. For example a determination by the transition determiner that it has observed a second transition type (as per example above corresponding to a transition from Stage_1 to Stage_2 as part of a multi-stage event involving the sequence Stage_1 , Stage_2, Stage_4) could result in the transition probabilities of transitioning from a Stage_1 state to a Stage_2 state and/or from a Stage_2 state to a Stage_4 state to increase (in the latter case preferably at the expense of the Stage_2 state to Stage_3 state transition probability) and/or other probabilities could be modified such as the probability of a particular visible state or states being produced by either or both of a Stage_2 state and/or a Stage_4 state, etc.
In a fourth example of how the determinations made by the transition determiner could be used to influence the behaviour of the multi-stage event detector, a pure hidden model approach could be adopted in which transitions are modelled as separate states in their own right, and the output of the transition determiner is used as a visible state determiner which is combined with the outputs of the event detecting detector units to generate overall visible states which are then used by the hidden state determiner to generate an estimated sequence of hidden states which include stages of a multi-stage event and transitions between stages of a multi-stage event. In such a case, the operations of the parameter generating detector units and the transition determiner can be considered as pre-processing steps carried out before the final operation of the hidden state determiner. In order to distinguish embodiments in which the transition determiner is used in this way (corresponding to this fourth example) from embodiments using the transition determiner in a manner more like that of the first three examples above, the former such embodiments may be termed pure hidden state model embodiments whilst the latter may be referred to as mixed model embodiments (since a hidden state model such as an HMM is used in combination with a transition determining model rather than just using the transition determiner as a pre-processing part of the hidden state model).
Preferably, the Multi-stage event detector is used to detect multi-stage computer network attacks. Embodiments of the present invention as discussed above are particularly suited to detecting multi-stage computer network attacks (e.g. cyber attacks) because they can cope well with very drawn out attacks with long and varying transitions between stages. Moreover they can use a relatively simple and therefore robust and still accurate hidden state model with relatively few hidden states by aligning the hidden states with the stages of a multi-stage event. This makes the operation and outputs of the detector easier for a human user to understand which is an important factor in machine learning systems generally and is especially helpful in certain embodiments because of the use which they make of a human expert user to input conditions to be associated with certain multi-stage events (e.g. certain types of cyber attack).
In some embodiments, the transition determiner can be used to help divide a period of time into stages of a multi-stage event and transitions between stages. In embodiments therefore the multi-stage event detector outputs a representation of a period of time as constituting a series of stages of a multi-stage event and transitions between stages and associates each of these with a period of time for subsequent analysis by a user of the detector.
According to a second aspect of the present invention, there is provided a multi-stage event detector comprising a process generator operable to generate main and sub- processes, each main and sub-process being operable to generate and initiate one or more detection agents each of which is operable to be triggered by detecting the occurrence of a trigger event or series of events and to report back to its generating process or sub-process upon being so triggered, and wherein each process or sub- process is operable to respond to receipt of a report from a triggered detection agent by either reporting the detection of a multi-stage event or part thereof to either a parent process or sub-process or to an overall controller, or to generate and initiate a detection agent or a sub-process.
Preferably, the multi-stage event detector further comprises a store of conditions and a user interface by which a security expert user can input values to the store which are used to generate trigger event conditions used by the detection agents. Preferably, the detector permits a security expert user to manually define a multi-stage event scenario by describing its multiple stages and setting some measures/thresholds associated with each stage and each transition between stages.
Preferably the multi-stage event detector is operable to notify a user if it determines that a multi-stage event is occurring before the entirety of the event has occurred or has been detected.
Preferably the detector includes a pattern database storing many different patterns each associated with a different type of multi-stage event. Each pattern preferably comprises a unique sequence of stages (although more than one pattern may correspond to a single type of multi-stage event - e.g. a type of event categorised as a Distributed Denial of Service type of attack could be associated with more than one pattern).
Preferably the process generator generates a main process for each pattern stored in the pattern database. Preferably, the event detector is operable to distinguish between different multi-stage events of the same type occurring during overlapping periods of time but being distinguishable from one another by means of a distinguishing characteristic. In an embodiment, this is achieved in the following manner. When a detection agent instantiated by a main process is triggered as part of the trigger it identifies a distinguishing characteristic of the event; the trigger then causes the main process to instantiate a sub-process which generates a detection agent looking for a trigger indicating that the second stage of the pattern of the main process has been triggered, wherein the trigger condition includes an aspect which depends upon the distinguishing characteristic identified by the detection agent instantiated by the main process.
In some embodiments, each of the detection agents of the second aspect constitutes an event detecting detector, unit of the first aspect. Furthermore, in some embodiments (some of which may coincide with some of the embodiments mentioned in the preceding sentence) the trigger condition sought for by each detection agent generated by a sub- process is specified in dependence upon an output from a hidden state determiner such as a hidden state determiner forming part of the first aspect of the present invention. For example, a main process could be instantiated looking for a pattern corresponding to a stage sequence comprising Stage_1 , Stage_2, Stage_4. An initial Stage_1 detection agent could be generated by the main process with a generic trigger condition set indicating that a multi-stage event has been commenced with a Stage_1 occurrence. Upon this detection agent being triggered by observing the trigger condition, it may report back to the main process a trigger message indicating at least a distinguishing characteristic (e.g. a target identity) and a visible state identifier which the main process can correlate with a visible state forming part of a hidden state model used by the main process. The main process then generates a sub-process which generates at least a Stage_2 detection agent. The trigger condition of the Stage_2 detection agent may include a need for the same distinguishing characteristic to be involved. It may also depend upon an assessment by a hidden state determiner as to the visible states which would cause the hidden state determiner to determine that the system had transitioned to a Stage_2 state. This would then result in a trigger which would inevitably result in the detector as a whole determining that the event being tracked had entered the Stage_2 state as desired.
In some embodiments, more than one detection agent may be instantiated even though they are associated with a single trigger condition. For example if a trigger condition depends upon observing one condition on one physical system and another condition on a different system, one agent may be instantiated to monitor the one system and another to monitor the other system. Further aspects of the invention relate to methods corresponding to the first and second aspects of the present invention and to processor instructions for causing a computer to operate as a multi-stage event detector according to one of the first or second aspects of the present invention or for causing a computer or other processor controlled device or set of devices to carry out a method according to an aspect of the present invention. Further aspects relate to carriers, preferably non-transitory carriers, such as magnetic or optical storage disks or solid state memory devices, carrying such processor instructions.
Brief Description of the Figures
In order that the present invention may be better understood, embodiments thereof will now be described, by way of example only, with reference to the accompanying drawings in which:
Figure 1 is a schematic illustration of a computer network incorporating a multi-stage event detector according to an embodiment of the present invention;
Figure 2 is a schematic illustration of the monitoring engine of the multi-stage event detector of Figure 1 shown in greater detail;
Figure 3 is a schematic illustration of the monitoring engine of the multi-stage event detector of Figure 1 according to a second embodiment;
Figure 4 is a schematic illustration of a main process generated by the monitoring agent of Figure 3; Figure 5 is a schematic illustration of the main process of Figure 4 and a sub-process generated by the main process as a result of receiving a trigger response from a detection agent associated with a stage 1 trigger condition; Figure 6 is a schematic illustration of the main process of Figure 4 and a second sub- process generated by the main process as a result of receiving a trigger response from a detection agent associated with a stage 2 trigger condition; and Figure 7 is a schematic illustration of the monitoring engine of the multi-stage event detector of Figure 1 according to a third embodiment.
Detailed Description of Embodiments
Figure 1 illustrates a computer network system including a multi-event detector according to several embodiments, where the embodiments differ only in terms of the structure and function of the monitor engine 100. First, second and third embodiments are discussed in greater detail below with reference to Figure 2 (first embodiment), Figures 3, 4, 5 and 6 (second embodiment) and Figure 7 (third embodiment). As shown in Figure 1 , the system comprises a user 1 , a series of data feeds 2, 4, 6 which are connected to the network being monitored or to alternative sources of information, and the multi-stage event monitor 10 (discussed in greater detail below).
The nature of the data feeds 2, 4, 6 is not especially pertinent to the present invention and so they will not be discussed herein in any great detail. But, for example, Data feed 2 could correspond to an engine for extracting information from the Internet, especially social network sites such as Twitter and Facebook, etc. as well as news sites and blogs, etc. Data feed 4 could correspond to a network based intrusion detection device monitoring one or more computer networks associated with one or more organisations which are being monitored by the monitor 10, and data feed 6 could correspond to an engine collecting data from host-based intrusion detection systems each of which is associated with an individual device belonging to a monitored organisation, etc.
The monitor 10 comprises a Graphical User Interface component 20 for permitting a user to enter information into he monitor and for extracting information about detected events, etc. from the monitor. It also includes a Key Performance Indicator (KPI), Data mining and statistical library unit 30 which is used to assist a user in specifying certain observable events which may be used to help generate trigger conditions or visible or observable events which are ultimately used by the monitor engine 00 discussed in greater detail below. The monitor 10 additionally includes an attack patterns unit 40. This stores patterns of various pre-specified multi-stage events (such as certain cyber-attacks), especially in terms of typical sequences followed by such attacks (e.g. Stage_1 , Stage_2, Stage_4). The monitor additionally includes an alertjng engine which can cause alerts to be sent to interested users in a number of different ways (e.g. email, text message, flasing indicator on the GUI 20, etc.). The monitor 10 additionally includes a data source manager 60 and a number of data source connectors and extractors 72, 74, 76. The data source manager manages the data source connectors and extractors 72,74,76 which interface to the data feeds 2, 4, 6. Finally, the monitor additionally includes a monitor engine 100 discussed in greater detail below.
The KPIs, Data Mining and Statistical Library unit 30 stores PIs which are measures or observable events from data sources and they are used in helping to try to ascertain whether a multi-stage event is occurring and if so what stage it has reached. In the present embodiment the user 1 creates various conditions (e.g. trigger conditions, transition functions, etc.) which depend upon certain KPI's which the data source connectors and extractors are able to extract from the data feeds, possibly after some pre-processing by one or more elements of the monitor 10 (including possibly the unit 30 itself). To support condition and transition function creation by the user 1 , the unit 30 provides a list of existing KPIs such as packets/second, kbits/second, hits/hr. hits/data, events/min, etc. and how these can be modified (e.g. packets/second to or from a particular network address or range of addresses, etc). The user can also specify conditions based on these KPIs, for example upper and lower thresholds, gradients of parameter change during a specified duration, whether a gradient is increasing or decreasing, etc. The user can also specify where the information for a KPI should come from (e.g. from which data feed) for a particular condition and can form complex conditions based on logical combinations of multiple parameters, functions of parameters, sub-conditions, etc. All these are stored in the unit 30. Furthermore, while creating these measures, there are tools available to explore data sources to analyse historical data (e.g. generated during previous identified multi-stage events, etc. if such data concerning previous identified multistage events is available) through data mining and statistical tools also contained in the KPIs, Data Mining and Statistical Library unit 30.
The attack patterns unit permits a user to specify certain multi-stage events which he she would like the monitor 10 to be able to track and detect, etc. Each pattern includes the various stages which the multi-stage event is expected to proceed through. Once the patterns are created, they are stored in attack pattern database. There are versioning management. These patterns will be encoded in HMM for the monitoring engine to execute against data feeds. In addition to the stages created for each pattern, the attack patterns unit 40 also includes models (possibly using linear regression models or techniques applied to historical data) whose key properties can be specified by the user 1 in addition to specifying the sequence of stages through which a multi-stage event passes. For example a user could specify that a certain parameter might be expected to be increasing at a certain approximate rate between certain specified stages based on certain measures (e.g. the KPIs discussed above). These could be learned from historical data using any of many well-known techniques and tools (e.g. based on linear regression techniques) available or directly created by users.
Combining hidden state models (e.g. HMMs) focussing mostly on sequences of stages passed through in a multi-stage event and modelling of changes between such stages enables embodiments of the present invention to take advantage of temporal aspects of multi-stage events. This addresses three key issues associated with existing HMM applications to multi-stage event detection, especially detection of multi-stage network attacks. As mentioned above, there are some known applications of HMM's to multi-stage event detection techniques - most of them monitoring stages and signals for each stages. There are also works on using HMM to model stage transitions. However, all these have difficulties in monitoring the continuous progress of suspicious activities. Embodiments of the present invention provide a tool which allows human experts to create stage patterns and for each stage to specify what sources could be used for measuring events expected to occur when the event has reached a particular stage. Once these stages are created, the user can additionally specify functions of how certain parameters may be expected to vary between stages (e.g. the user can specify the shape of certain curves associated with a variable whose value typically changes between stages). These functions can model subtle changes between stages. These can then in turn be used to cope with numerous fuzzy measures of activities. Details of these functions (e.g. the direction of change of curves expressing parameter changes during transitions between stages) can better model more complexity in real situations in a manner which is easier for human experts to specify and so can better leverage a human user's expertise. To assist the human expert, these functions can be learned through automated or semi-automated machine learning techniques such as linear regression techniques based on data points between stages which the user 1 can specify (or retrieve from historical situations). This use of functions specifying how certain observable parameters may change during transitions between stages can also help to minimise the number of false positives generated by the monitor which is a constant problem with monitors of multi-stage and other kinds of complex events.
The data source connectors and extractors 72, 74, 76 handle data source related issues including connection and extraction of key fields. All these metadata are stored in the Data Source Manager 60. The data source manager maintains several tables. At least one of these tables includes data source id, data source name, and key field and method of data extraction for each data feed 2, 4, 6, etc. During general operation of the monitor 10, the data source connectors and extractors 72, 74, 76 extract information and send it to the monitor engine 100 which performs its monitoring in the manner described in greater detail below and generates notifications which are passed to the alerting engine 50 if it detects anything which it considers could be suspicious and therefore warranting generating a notification to the user 1.
As mentioned above, the monitor engine varies in different embodiments. The monitor engine 100 of the first embodiment is illustrated in Figure 2 in greater detail. This monitor engine primarily addresses issues of how to provide a relatively simple hidden state model which is used in conjunction with a transition determiner in order to provide accurate multi- event detection. The monitor engine 200 of the second embodiment (illustrated in Figure 3) primarily addresses the issue of how to handle various different multi-stage events occurring in an overlapping manner by generating multiple separate processes to track individual events (or possible suspected events, etc.). Finally, the monitor engine 300 of the third embodiment illustrated in Figure 7 combines the features of both the first and second embodiments to address all of these issues at the same time.
As shown in Figure 2, the monitor engine 100 includes a memory 101 , a processor unit 102 and an interface 104 permitting it to communicate with the other elements of the monitor 10. Stored within the memory are various sets of code which, when executed by the processor 102 cause associated functional modules to operate, with functions as described below with respect to each respective set of code. For the sake of convenience of explanation, both the code set and the associated functional module may be referred to interchangeably and using the same reference numerals below. The sets of code which are pertinent to the operation of the monitor engine in performing the functions relevant to the present invention are a controller code set 1 10 which is responsible for causing the monitor engine 100 to carry out overall control of the other functional modules of the monitor engine, a hidden state determiner code set 120 whose associated functional module manipulates a hidden state model in order to determine likely hidden state sequences for a corresponding sequence of visible state values, a transition determiner code set 130 whose associated functional module performs functions associated with comparing observed sequences of parameter values with pre-specified transition functions to look for likely matches, event detecting detector unit code sets 142, 144 whose corresponding functional modules co-operate with and process incoming data from the data source connectors and extractors 72, 74, 76 to generate visible events and or visible state values (under the control of the controller module 110) for use by the hidden state determiner 120, and parameter generator code sets 152, 154 whose functional modules also co-operate with and process incoming data from the data source connectors and extractors 72, 74, 76 to generate parameter values (under the control of the controller module 110) for use by the transition determiner 130.
As a whole, the monitor engine 100 is responsible for receiving data from the data feeds 2, 4, 6 and identifying the (inferred) occurrence of stages of a (single) multi-stage event. In overview, it achieves this by using a standard HMM as a hidden state model to determine an estimated sequence of stages through which a multi-stage event has progressed whilst using information from the transition determiner to assist in making a final determination as to what event (if any) is occurring and the likely consequences (if any) of such an event continuing to occur, and any steps that can be taken to mitigate against adverse effects of the event. Part way through a multi-stage event, the hidden state determiner 120 identifies a partial estimated sequence of stages through which the event is deemed to have passed thus far, and then (i.e. once a particular stage is deemed to have been reached) the monitor engine 100 selects all patterns which contain that partial estimated stage sequence (or possibly in alternative embodiments, all patterns which contain the current estimated stage) and then monitors the progress often certain pre-specified parameters whose values have been indicated as being relevant to a transition function pre-specified by a human user 1 and stored in the attack patterns unit 40 as discussed above. It's worth noting that this is somewhat different from existing uses of HMMs for multistage attack detectors in which, for a given observable sequence 01 , 02, ... Ot, it computes the probability of this sequence for each defined HMM and the highest probability of an HMM is claimed to be the intrusion. Without the complete sequence of observations associated with a complete multi-stage event such detectors are not good at detecting which multi- event attack is occurring. The present embodiment does not use the hidden state determiner in this way. Rather the monitor 10 receives continuous observations (streaming data feed), and calculates measures (or threshold values or parameter values, etc.), and then continues to compute these measures from streaming incoming data, and can determine changing states. It selects patterns (and thus suspected events - e.g. attack types) based on these states (which may be partial sequences only) as well as on transition information. It also continues this monitoring and assessing of stage sequences and transitions in order to be able to raise alerts at times (or stages) where it is deemed appropriate to raise alerts even before it is possible to ascertain exactly what event is occurring (which may only be possible after the event has completed which may be too late to mitigate successfully against the worst effects of the event).
When the monitor 10 starts to monitor for new events, it initially simply awaits some relevant results form the event detecting detector units. In the present embodiment, these look for events which the user 1 has specified are indications of an event of interest occurring. When, under the control of the controller 110, an event is observed which the controller determines gives rise to a change in the visible state of the system, the controller determines that an event may be occurring and records that the possible event is in an associated stage (e.g. Stage_1 ). The hidden state determiner can also be invoked at this point to determine a likely current hidden state (which corresponds to a stage of an event e.g. Stage_1 - where a single stage may be associated with a number of different events including some harmless ones and some harmful ones), by processing the sequence of visible states according to the underlying hidden state model (which is a first order HMM in the present embodiment). The transition determiner may also be invoked at this stage to see if it can verify the possible occurrence of a transition from an initial no event occurring stage to the inferred current stage of the event. The output from the transition determiner can be used to refute the conclusion that an event is occurring or can indicate that a different stage has been reached or it can support the conclusion reached by the hidden state determiner. The controller combines the evidence from the two determiners 120 and 130 and then decides if a notification should be sent to the alerting engine (this would be the case if all possible events associated with the determined stage are harmful and (possibly) require mitigating action to be taken ideally). As additional evidence arrives form the data feeds as processed by the detector units 142, 144 and parameter generators 152, 154 these processes are repeated with the hidden state determiner being used to determine a new likely sequence of hidden states corresponding to a possible sequence of stages of the event, corroborated by the transition determiner. When a partial sequence of inferred stages of an event are consistent with multiple different types of event (especially if only certain of these are deemed to be strongly harmful) the transition determiner can be used to try to eliminate some of the possible types of event. If after such elimination only harmful possible events remain, the controller causes an appropriate notification to be sent to the alarm generating unit to cause an alert to be generated to a user identifying the suspected detected event occurring. Turning now to Figures 3 - 6, in a second embodiment, in place of the monitor engine 100 of the first embodiment, an alternative monitor engine 200 according to a second embodiment of the present invention is used in the monitor 10. As shown in Figure 3, the monitor engine 200 comprises in its modified memory 201 a controller code set 210 and a process generator code set 260. Each of these gives rise to a corresponding functional module 210, 260 whose functionality is discussed below. Also shown in Figure 3 in the memory 201 are various processes and detection agents, these are running threads of execution which are generated either by the process generator or by one of the processes. The operation of such software techniques is well understood in the field of multi-threaded computing and will not be described in any detail here.
As mentioned above, the problem which this embodiment particularly addresses is how to manage the communications between the monitor 10 and the external systems (the data feeds 2, 4, 6) in order to retrieve the required "live" information about specific multi-stage events that have been identified by a "trigger" or triggers for different stages of a multi- stage event, such as an attack scenario, multiple patterns for which have been stored in the attack patterns unit 40 in such a way that different attacks can be separated out and monitored separately amongst overlapping events occurring and interfering with each other. For example, Stage 1 of a potential DDoS (Distributed Denial of Service) attack might be that specific keywords are being used by Twitter posters quite frequently (say 10 times within an hour). This information needs to be retrieved and examined from an appropriate tool, e.g. the data feed 2, which is monitoring the Twitter posts continuously.
Since it's expected that there will be a lot of patterns contained in the database, where each pattern may have different measures and triggers for its stages, a systematic approach is needed to gather live feeds from the corresponding external systems and to pursue the subsequent stages of the patterns. Note that a single pattern may also have multiple states or "paths" simultaneously, whereas each path may be in different stages. Furthermore, while there is a sequence of stages, it is also expected that some stages might be skipped.
Consider as an example a particular "DDoS attack" pattern: its Stage 1 is the detection of keywords in Twitter; its Stage 2 is the detection of very high inbound packet traffic (for specific IP address); and its Stage 3 is detection of TCP-state exhaustion traffic at a firewall. The first path of the pattern could be that based on the discussion in Twitter, a "Company A" is likely being targeted for an attack (Stage 1 ). The second path of the (same) pattern could be that another "Company B" is experiencing TCP-state exhaustion traffic at its firewall (Stage 3). Hence the different paths are caused by different attack victims (e.g. different networks) being identified when the pattern engine was evaluating the live feed from the external systems.
The solution to the above difficulty provided by the monitor engine 200 is to apply a software agents approach in order to handle the communications between the monitor 10 and external systems 2, 4, 6. There are different types of software agents (i.e. processes) that can be parameterised individually before they are activated/sent to retrieve the required information from different external systems.
At the beginning each pattern (instance) has a single running main process (e.g. Main Process 1 272 and Main Process 2 274) instantiated for it which is target agnostic (see Figures 3 and 4). Within this process 272, each stage instance of the pattern will have created and parameterised a software agent 291 , 292, 296, 297, 298 (see Figure 4) depending on what information the stage needs to allow it move on to the next stage (a trigger condition specified by a human user and stored in the attack patterns unit 40). As shown in Figure 4, a stage (e.g. Stage 3) can also have more than one software agent (software agent 3A 296, and software agent 3B 297), since it's expecting trigger information coming from two different systems (e.g. from data feed 2 and data feed 4).
In the present embodiment, each stage is subscribing for a trigger signal coming from its software agent. The initial trigger conditions which are target agnostic are, in this embodiment, specified precisely by a human user (e.g. if more than a specified number of target terms connected with a monitored target organisation are detected within a specified duration). Each software agent will have the capability to connect to the corresponding external system, query the data and examine it based on the trigger condition (e.g. thresholds) given by the stage instance. If the condition is satisfied the software agent will send a trigger signal to the stage/pattern instance. Otherwise it might sleep for certain time (e.g. <T> ms) and query and examine data again at a later time. Depending on whether a stage instance is completely relying on information (e.g. victim target) from the previous stage or not, any stage in the pattern can send/activate its software agent from the beginning, i.e. multiple active agents for a single pattern at one time.
Once the Stage 1 instance receives a trigger from its software agent, it creates a new sub- process of the pattern, which then contains the subsequent stages instances subscribing to their corresponding software agents (Figure 4). This sub-process will form one "path" of the pattern to pursue further and will remain active until either it's, reached the final stage or destroyed manually by human analysts or automatically after specific timeout. Timing information e.g. about the elapsed time between two trigger signals will be recorded by the pattern engine for enriching its predictive analytics capability. Each time after a sub- process is created, the main process of the pattern will remain active and keep expecting trigger signals from the software agents that might lead to creation of different paths of the pattern. A key point to note here is that the sub-process generates a trigger condition for any agents (e.g. software aget-2 293 generated by sub-process 282 illustrated in Figure 5 - and corresponding to detection agent 1_1"2 293 created by sub-process 1_1 282 of Figure 3) which it instantiates which, although it is based on the generic target agnostic condition pre-specified by the user 1 , is modified to be specific to a particular target organisation (note however that this is merely one example way of distinguishing one event from another and there could be other distinguishing characteristics used in different embodiments), such that it will not be triggered by a similar condition being satisfied in respect of a different distinguished multi-stage event. As mentioned before, it's possible that one or more stages will be skipped if the required trigger signal for the subsequent stage is received from a software agent. Figure 6 shows the scenario where Stage 1 of the pattern has never received a trigger signal from its agent, but Stage 2 receives the signal from its agent and therefore creates a new sub- process with the remaining subsequent stages (specific to the target detected by the stage 2 agent of the main process).
The above described second embodiment does not use require the use of hidden state determiners or transition determiners and a simple implementation could rely solely on simple trigger conditions specified by user 1. However, the third embodiment combines the strengths of both of the first and second embodiments and is illustrated in Figure 7. In general, the similarly named components operate in the sam way as their respective counterparts do in the first and second embodiments and so will not be discussed again in detail. For present purposes it is sufficient to note that with such an embodiment, the trigger conditions associated with each software agent can be generated based on the outputs of the Hidden State and transition determiners in order to generate sophisticated trigger conditions which are developed dynamically using the power of the hidden state model and the transition model.
For example, as mentioned above on page 9, the trigger condition sought for by each detection agent generated by a sub-process may be specified in dependence upon an output from the hidden state determiner. For example, a main process could be instantiated looking for a pattern corresponding to a stage sequence comprising Stage_1 , Stage_2, Stage_4. An initial Stage_1 detection agent could be generated by the main process with a generic trigger condition set indicating that a multi-stage event has been commenced with a Stage_1 occurrence. Upon this detection agent being triggered by observing the trigger condition, it may report back to the main process a trigger message indicating at least a distinguishing characteristic (e.g. a target identity) and a visible state identifier which the main process can correlate with a visible state forming part of a hidden state model used by the main process. The main process may then generate a sub- process which generates at least a Stage_2 detection agent. The trigger condition of the Stage_2 detection agent may include a need for the same distinguishing characteristic to be involved. It may also depend upon an assessment by the hidden state determiner as to the visible states which would cause the hidden state determiner to determine that the system had transitioned to a Stage_2 state. This would then result in a trigger which results in the detector as a whole determining that the event being tracked has entered the Stage_2 stage.

Claims

1. A multi-stage event detector comprising a process generator operable to generate main and sub-processes, each main and sub-process being operable to generate and initiate one or more detection agents each of which is operable to be triggered by detecting the occurrence of a trigger event or series of events and to report back to its generating process or sub-process upon being so triggered, and wherein each process or sub-process is operable to respond to receipt of a report from a triggered detection agent by either reporting the detection of a multi-stage event or part thereof to either a parent process or sub-process or to an overall controller, or to generate and initiate a detection agent or a sub-process.
2. A multi-stage event detector according to claim 1 further comprising a store of conditions and a user interface by which a security expert user can input values to the store which are used to trigger event conditions used by the detection agents.
3. A multi-stage event detector according to either preceding claim wherein it is operable to notify a user if it determines that a multi-stage event is occurring before the entirety of the event has occurred or has been detected.
4. A multi-stage event detector according to any preceding claim wherein when a detection agent instantiated by a main process is triggered, as part of the trigger it identifies a distinguishing characteristic of the event and the trigger then causes the main process to instantiate a sub-process which generates a detection agent looking for a trigger indicating that the second stage of the pattern of the main process has been triggered, wherein the trigger condition includes an aspect which depends upon the distinguishing characteristic identified by the detection agent instantiated by the main process, whereby the event detector is operable to distinguish between different multistage events of the same type occurring during overlapping periods of time but being distinguishable from one another by means of a distinguishing characteristic.
5. A method of detecting the occurrence of a multi-stage event within a system being monitored, comprising:
generating main and sub-processes, each main and sub-process being operable to generate and initiate one or more detection agents each of which is operable to be triggered by detecting the occurrence of a trigger event or series of events and to report back to its generating process or sub-process upon being so triggered, and wherein each process or sub-process is operable to respond to receipt of a report from a triggered detection agent by either reporting the detection of a multi-stage event or part thereof to either a parent process or sub-process or to an overall controller, or to generate and initiate a detection agent or a sub-process; and
detecting the occurrence of a multi-stage event in dependence upon the triggering of one or more detection agents.
PCT/GB2014/000129 2013-03-29 2014-03-31 Method and apparatus for detecting a multi-stage event WO2014155051A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/781,163 US9836600B2 (en) 2013-03-29 2014-03-31 Method and apparatus for detecting a multi-stage event
EP14715386.0A EP2979424B1 (en) 2013-03-29 2014-03-31 Method and apparatus for detecting a multi-stage event
CN201480030438.2A CN105264861B (en) 2013-03-29 2014-03-31 Method and apparatus for detecting multistage event

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13250051.3A EP2785008A1 (en) 2013-03-29 2013-03-29 Method and apparatus for detecting a multi-stage event
EP13250051.3 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014155051A1 true WO2014155051A1 (en) 2014-10-02

Family

ID=48092871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2014/000129 WO2014155051A1 (en) 2013-03-29 2014-03-31 Method and apparatus for detecting a multi-stage event

Country Status (4)

Country Link
US (1) US9836600B2 (en)
EP (2) EP2785008A1 (en)
CN (1) CN105264861B (en)
WO (1) WO2014155051A1 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2785009A1 (en) 2013-03-29 2014-10-01 British Telecommunications public limited company Method and apparatus for detecting a multi-stage event
WO2016014021A1 (en) * 2014-07-21 2016-01-28 Hewlett-Packard Development Company, L.P. Security indicator linkage determination
US9710648B2 (en) 2014-08-11 2017-07-18 Sentinel Labs Israel Ltd. Method of malware detection and system thereof
US10102374B1 (en) 2014-08-11 2018-10-16 Sentinel Labs Israel Ltd. Method of remediating a program and system thereof by undoing operations
US11507663B2 (en) 2014-08-11 2022-11-22 Sentinel Labs Israel Ltd. Method of remediating operations performed by a program and system thereof
US10484405B2 (en) * 2015-01-23 2019-11-19 Cisco Technology, Inc. Packet capture for anomalous traffic flows
US10015189B2 (en) * 2016-02-09 2018-07-03 International Business Machine Corporation Detecting and predicting cyber-attack phases in adjacent data processing environment regions
US11108816B2 (en) * 2016-03-17 2021-08-31 Johann Schlamp Constructible automata for internet routes
US10178109B1 (en) * 2016-03-31 2019-01-08 Symantec Corporation Discovery of groupings of security alert types and corresponding complex multipart attacks, from analysis of massive security telemetry
US11616812B2 (en) 2016-12-19 2023-03-28 Attivo Networks Inc. Deceiving attackers accessing active directory data
US11695800B2 (en) 2016-12-19 2023-07-04 SentinelOne, Inc. Deceiving attackers accessing network data
US9978067B1 (en) 2017-07-17 2018-05-22 Sift Science, Inc. System and methods for dynamic digital threat mitigation
JP2020530922A (en) * 2017-08-08 2020-10-29 センチネル ラボ, インコーポレイテッドSentinel Labs, Inc. How to dynamically model and group edge networking endpoints, systems, and devices
US10628591B2 (en) * 2017-11-20 2020-04-21 Forcepoint Llc Method for fast and efficient discovery of data assets
US11470115B2 (en) 2018-02-09 2022-10-11 Attivo Networks, Inc. Implementing decoys in a network environment
US11025638B2 (en) 2018-07-19 2021-06-01 Forcepoint, LLC System and method providing security friction for atypical resource access requests
US10735258B2 (en) * 2018-07-24 2020-08-04 Avaya Inc. System for self-allocating resources
US11134087B2 (en) 2018-08-31 2021-09-28 Forcepoint, LLC System identifying ingress of protected data to mitigate security breaches
US11171980B2 (en) 2018-11-02 2021-11-09 Forcepoint Llc Contagion risk detection, analysis and protection
US11245723B2 (en) 2018-11-02 2022-02-08 Forcepoint, LLC Detection of potentially deceptive URI (uniform resource identifier) of a homograph attack
US11295026B2 (en) 2018-11-20 2022-04-05 Forcepoint, LLC Scan, detect, and alert when a user takes a photo of a computer monitor with a mobile phone
US11297099B2 (en) 2018-11-29 2022-04-05 Forcepoint, LLC Redisplay computing with integrated data filtering
US11050767B2 (en) 2018-12-17 2021-06-29 Forcepoint, LLC System for identifying and handling electronic communications from a potentially untrustworthy sending entity
US11379426B2 (en) 2019-02-05 2022-07-05 Forcepoint, LLC Media transfer protocol file copy detection
US11562093B2 (en) 2019-03-06 2023-01-24 Forcepoint Llc System for generating an electronic security policy for a file format type
EP3973427A4 (en) 2019-05-20 2023-06-21 Sentinel Labs Israel Ltd. Systems and methods for executable code detection, automatic feature extraction and position independent code detection
CN110516439B (en) * 2019-07-25 2021-05-25 北京奇艺世纪科技有限公司 Detection method, device, server and computer readable medium
FR3104761A1 (en) * 2019-12-12 2021-06-18 Orange Method for monitoring data passing through user equipment
CN113556310B (en) * 2020-04-24 2022-09-23 华为技术有限公司 Remote control detection method and network equipment
US11579857B2 (en) 2020-12-16 2023-02-14 Sentinel Labs Israel Ltd. Systems, methods and devices for device fingerprinting and automatic deployment of software in a computing network using a peer-to-peer approach
US11792213B2 (en) 2021-05-18 2023-10-17 Bank Of America Corporation Temporal-based anomaly detection for network security
US11799879B2 (en) 2021-05-18 2023-10-24 Bank Of America Corporation Real-time anomaly detection for network security
US11588835B2 (en) 2021-05-18 2023-02-21 Bank Of America Corporation Dynamic network security monitoring system
US11899782B1 (en) 2021-07-13 2024-02-13 SentinelOne, Inc. Preserving DLL hooks
US12010152B2 (en) 2021-12-08 2024-06-11 Bank Of America Corporation Information security systems and methods for cyber threat event prediction and mitigation
GB2616464B (en) 2022-03-10 2024-08-28 British Telecomm Security method for identifying kill chains

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5465321A (en) 1993-04-07 1995-11-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Hidden markov models for fault detection in dynamic systems
US7917393B2 (en) * 2000-09-01 2011-03-29 Sri International, Inc. Probabilistic alert correlation
US7058821B1 (en) * 2001-01-17 2006-06-06 Ipolicy Networks, Inc. System and method for detection of intrusion attacks on packets transmitted on a network
US7076803B2 (en) * 2002-01-28 2006-07-11 International Business Machines Corporation Integrated intrusion detection services
US8046835B2 (en) 2002-10-23 2011-10-25 Frederick S. M. Herz Distributed computer network security activity model SDI-SCAM
US7603711B2 (en) * 2002-10-31 2009-10-13 Secnap Networks Security, LLC Intrusion detection system
US20040123141A1 (en) * 2002-12-18 2004-06-24 Satyendra Yadav Multi-tier intrusion detection system
WO2004107706A1 (en) * 2003-05-30 2004-12-09 International Business Machines Corporation Detecting network attacks
US7509677B2 (en) 2004-05-04 2009-03-24 Arcsight, Inc. Pattern discovery in a network security system
US8108929B2 (en) * 2004-10-19 2012-01-31 Reflex Systems, LLC Method and system for detecting intrusive anomalous use of a software system using multiple detection algorithms
US7936682B2 (en) * 2004-11-09 2011-05-03 Cisco Technology, Inc. Detecting malicious attacks using network behavior and header analysis
EP1817888B1 (en) 2004-11-29 2018-03-07 Telecom Italia S.p.A. Method and system for managing denial of service situations
US7941856B2 (en) * 2004-12-06 2011-05-10 Wisconsin Alumni Research Foundation Systems and methods for testing and evaluating an intrusion detection system
US7757283B2 (en) 2005-07-08 2010-07-13 Alcatel Lucent System and method for detecting abnormal traffic based on early notification
US20070150427A1 (en) 2005-12-22 2007-06-28 Honeywell International Inc. Recognition plan/goal abandonment
US20070226164A1 (en) 2006-03-21 2007-09-27 Honeywell International Inc. Type variables and/or temporal constraints in plan recognition
US7930256B2 (en) 2006-05-23 2011-04-19 Charles River Analytics, Inc. Security system for and method of detecting and responding to cyber attacks on large network systems
US8205244B2 (en) 2007-02-27 2012-06-19 Airdefense, Inc. Systems and methods for generating, managing, and displaying alarms for wireless network monitoring
EP2009865A1 (en) 2007-06-25 2008-12-31 Alcatel Lucent Method of providing an access control system
US8595834B2 (en) * 2008-02-04 2013-11-26 Samsung Electronics Co., Ltd Detecting unauthorized use of computing devices based on behavioral patterns
CN101242278A (en) * 2008-02-18 2008-08-13 华中科技大学 Online recognition method for network multi-step attack intension
GB0822619D0 (en) 2008-12-11 2009-01-21 Scansafe Ltd Malware detection
FI20096394A0 (en) 2009-12-23 2009-12-23 Valtion Teknillinen DETECTING DETECTION IN COMMUNICATIONS NETWORKS
US8424072B2 (en) 2010-03-09 2013-04-16 Microsoft Corporation Behavior-based security system
US20120329426A1 (en) 2011-06-27 2012-12-27 Kario Daniel System and method for monitoring the security of cellular device communication
CN102387163A (en) * 2011-12-16 2012-03-21 穆成坡 Network server defense method based on risk balance
CN104303152B (en) * 2012-03-22 2017-06-13 洛斯阿拉莫斯国家安全股份有限公司 Detect abnormal to recognize the methods, devices and systems that collaboration group is attacked in Intranet
US8677485B2 (en) * 2012-07-13 2014-03-18 Hewlett-Packard Development Company, L.P. Detecting network anomaly
EP2785009A1 (en) 2013-03-29 2014-10-01 British Telecommunications public limited company Method and apparatus for detecting a multi-stage event

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ALI EBRAHIMI ET AL.: "Systems Conference (SYSCON), 2011 IEEE International", 4 April 2011, IEEE, article "Automatic attack scenario discovering based on a new alert correlation method", pages: 52 - 58
ALI EBRAHIMI ET AL: "Automatic attack scenario discovering based on a new alert correlation method", SYSTEMS CONFERENCE (SYSCON), 2011 IEEE INTERNATIONAL, IEEE, 4 April 2011 (2011-04-04), pages 52 - 58, XP031949813, ISBN: 978-1-4244-9494-1, DOI: 10.1109/SYSCON.2011.5929072 *
DO-HYEON LEE; DOO-YOUNG KIM; JAE-IL JUNG: "Multi-stage Intrusion Detection System Using Hidden Markov Model (HMM) Algorithm", INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND SECURITY, 2008
OURSTON ET AL.: "Applications of Hidden Markov Models to Detecting Multi-stage Network Attacks", PROCEEDINGS OF THE 36TH HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, 2003
ROBERT COLE; PENG LIU: "Computer Security Applications Conference 2008", 8 December 2008, ACSAC, article "Addressing Low Base Rates in Intrusion Detection via Uncertainty-Bounding Multi-Step Analysis", pages: 269 - 278
ROBERT J COLE ET AL: "Addressing Low Base Rates in Intrusion Detection via Uncertainty-Bounding Multi-Step Analysis", COMPUTER SECURITY APPLICATIONS CONFERENCE, 2008. ACSAC 2008. ANNUAL, IEEE, PISCATAWAY, NJ, USA, 8 December 2008 (2008-12-08), pages 269 - 278, XP031376782, ISBN: 978-0-7695-3447-3 *
YING-MEI WANG ET AL: "An analysis approach for multi-stage network attacks", MACHINE LEARNING AND CYBERNETICS, 2005. PROCEEDINGS OF 2005 INTERNATIO NAL CONFERENCE ON GUANGZHOU, CHINA 18-21 AUG. 2005, PISCATAWAY, NJ, USA,IEEE, PISCATAWAY, NJ, USA, 18 August 2005 (2005-08-18), pages 3949, XP031438669, ISBN: 978-0-7803-9091-1 *

Also Published As

Publication number Publication date
CN105264861B (en) 2019-02-12
EP2979424B1 (en) 2020-02-26
CN105264861A (en) 2016-01-20
EP2979424A1 (en) 2016-02-03
EP2785008A1 (en) 2014-10-01
US9836600B2 (en) 2017-12-05
US20160055334A1 (en) 2016-02-25

Similar Documents

Publication Publication Date Title
EP2979424B1 (en) Method and apparatus for detecting a multi-stage event
US9870470B2 (en) Method and apparatus for detecting a multi-stage event
US10601848B1 (en) Cyber-security system and method for weak indicator detection and correlation to generate strong indicators
US11038906B1 (en) Network threat validation and monitoring
CN108471429B (en) Network attack warning method and system
Singh et al. Collaborative ids framework for cloud
US20160019388A1 (en) Event correlation based on confidence factor
CN105812200B (en) Anomaly detection method and device
EP2854362B1 (en) Software network behavior analysis and identification system
Mangrulkar et al. Network attacks and their detection mechanisms: A review
CN113055407A (en) Asset risk information determination method, device, equipment and storage medium
Lee et al. AI-based network security enhancement for 5G industrial Internet of things environments
Ebrahimi et al. Automatic attack scenario discovering based on a new alert correlation method
US11637862B1 (en) System and method for surfacing cyber-security threats with a self-learning recommendation engine
Agrawal et al. A SURVEY ON ATTACKS AND APPROACHES OF INTRUSION DETECTION SYSTEMS.
El‐Hajj et al. Updating snort with a customized controller to thwart port scanning
Wang et al. Botnet detection architecture based on heterogeneous multi-sensor information fusion
KR20130033161A (en) Intrusion detection system for cloud computing service
CN115967633A (en) &lt;xnotran&gt;&lt;/xnotran&gt;
Kadam et al. An enhanced approach for intrusion detection in virtual network of cloud computing
Liu et al. Anomaly diagnosis based on regression and classification analysis of statistical traffic features
Woodiss-Field et al. Towards evaluating the effectiveness of botnet detection techniques
Hailong et al. Heterogeneous multi-sensor information fusion model for botnet detection
CN117749493A (en) Network traffic prediction method, device, equipment and medium based on DDoS
Puccetti et al. ROSpace: Intrusion Detection Dataset for a ROS2-Based Cyber-Physical System

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480030438.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14715386

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14781163

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014715386

Country of ref document: EP