WO2014148658A1 - Method for regenerating amine absorbent using proton donor mixture - Google Patents

Method for regenerating amine absorbent using proton donor mixture Download PDF

Info

Publication number
WO2014148658A1
WO2014148658A1 PCT/KR2013/002328 KR2013002328W WO2014148658A1 WO 2014148658 A1 WO2014148658 A1 WO 2014148658A1 KR 2013002328 W KR2013002328 W KR 2013002328W WO 2014148658 A1 WO2014148658 A1 WO 2014148658A1
Authority
WO
WIPO (PCT)
Prior art keywords
amine
absorbent
methyl
proton donor
regeneration
Prior art date
Application number
PCT/KR2013/002328
Other languages
French (fr)
Korean (ko)
Inventor
백일현
박기태
유정균
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2014148658A1 publication Critical patent/WO2014148658A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20405Monoamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/2041Diamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20415Tri- or polyamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20421Primary amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20426Secondary amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20431Tertiary amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20436Cyclic amines
    • B01D2252/20442Cyclic amines containing a piperidine-ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20436Cyclic amines
    • B01D2252/20447Cyclic amines containing a piperazine-ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20436Cyclic amines
    • B01D2252/20473Cyclic amines containing an imidazole-ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • B01D2252/20484Alkanolamines with one hydroxyl group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • B01D2252/20489Alkanolamines with two or more hydroxyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/205Other organic compounds not covered by B01D2252/00 - B01D2252/20494
    • B01D2252/2056Sulfur compounds, e.g. Sulfolane, thiols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/50Combinations of absorbents
    • B01D2252/504Mixtures of two or more absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present application relates to the addition of a proton mixture to lower the renewable energy after the absorption of the amine, a carbon dioxide absorbent, and a carbon dioxide absorption and regeneration method using the same.
  • Carbon dioxide separation and recovery techniques are known as chemical absorption method, physical absorption method or separation membrane separation method, widely applied in natural gas, petroleum, various chemical industries for the purpose of CO 2 separation, and chemical absorption method is mainly used.
  • Sorbents have been developed to reduce carbamate binding ability by attaching methyl or ethyl groups around nitrogen atoms to remove carbon dioxide by carbamate binding, which is typical of AMP (2—amino-2-methyI). -l-propanol).
  • AMP amino-2-methyI
  • -l-propanol a compound having a large amount of C0 2 absorption per mole of absorbent and a unit volume per unit volume, and high absorption rate and low renewable energy.
  • the present invention has been made to solve the above-mentioned problems, to provide an amine compound that can remove the carbon dioxide by using a low energy from the carbamate and bicarbonate, a material produced by reacting the amine with carbon dioxide .
  • the carbamate transfers the protons from the two components to the anion component of the carbamate to utilize the principle of separating the amine and carbon dioxide, and bicarbonate also separates carbon dioxide on the same principle.
  • the separation efficiency can be improved by adopting an absorbent containing a promoter that gives a proton, thereby completing the present invention.
  • the present invention comprises the steps of preparing a proton donor mixture using an amine (proton donor precursor); Mixing an amine with the proton donor mixture to prepare an absorbent; Injecting the absorbent into a carbon dioxide treatment apparatus including an absorption tower and a regeneration tower, and moving the countercurrent from the upper end of the absorption tower to the lower end to absorb carbon dioxide moving from the lower end of the absorption tower to the upper end; And regenerating the absorbent having undergone the step of absorbing the carbon oxide in a regeneration tower.
  • amine proton donor precursor
  • the amine may be a chain amine, benzene amine, poly amine, and piperidine derivative amine (piper idine derivatives)
  • the chain amine is 3-isobutoxypropylamine (3-
  • Hydroxyethyl aminopropyl amine provides a method for regenerating an amine absorbent using at least one selected from the group consisting of protons.
  • the hexagonal amine is aminopropyl aniline
  • a method for regenerating an amine absorbent using a proton-jujube mixture which is at least one selected from the group consisting of Benzylpiperidine), Methoxyphenethylamine, and Ethylcyclohexylamine.
  • the present invention also, the multi-stage amine, polyethyleneimine (PEI, Polyethyleneimine), iminobispropylamine (bis bis-propylamine), methyliminobispropylamine
  • the piperidine derivative amine n-amino piperidine (n-amino piperidine), n-piperidine ethanol (n—piperidine ethanol), n-methyl-2-piperidine Ethanol (n_methyl ⁇ 2 ⁇ piperidine ethanol), 4 ⁇ piper idine ethanol, ⁇ -dimethy-4-piperidone (n-dimethy ⁇ 4-piper idone), piperazine (Piperazine) , 2-Methylpiperazine (2-Methylpiperazine), 2,5-dimethylpiperazine (2,5-[) ⁇ 161; 1 ⁇ 1] ⁇ 3 1), 2-Methylpiperazine (2-Methylpiperazine) , ⁇ Benzyl-4-piperidinola86112 1-4-1) 1 61 (10101), N-methyl -4-piperidone (N-Me thy 1-4 ⁇ pi per i done), N-al
  • the present application also includes precursors of the proton-priming complexes, including alkyl sulfonate, alkyl sulfite, imidazol, and pyridin, wherein the alkylsulfonate Alkyl sulfonate is methanesulfonate, ethanesulfonate, propanesulfonate, butansulfonate, pentanesulfonate
  • alkyl sulfite alkyl sulfite
  • propanesulfite group consisting of propansul f ite, butansulfite, pentansulfite, nucleic acid sulfite, sulfonate, heptanesulfite, and octansulfite
  • imidazole imidazole
  • imidazole imidazole
  • imidazo 1 is 1-methyl-3-3-methylimidazole (1 ⁇ me t hy 1-3-me thyl imidazol), 1-ethyl-3-methyl imidazole (1 -ethy i-3-methy 1 imidazol), 1-propyl-3-methylimidazole (1-propy 1-3- methyl imidazol), 1-butyl- 3-methylimidazole (1-buty
  • the present invention also provides a mixture of protons, including: immersing the amine in a reactor mounted in an ice bath; Excess mixing of the precursor of the proton donor mixture to the sensed amine; And it provides a method for regenerating the amine absorbent using a proton giver mixture, which is prepared through the step of removing the solid material in the reaction water after the mixing step.
  • the present application also provides a method for regenerating an amine absorbent using a proton donor mixture, wherein the absorbent mixes 1 to 50 wt% of the proton donor mixture with respect to 100%.
  • the present application also provides a method for regenerating an amine absorbent using a proton donor mixture, wherein the absorption degree of the absorption tower is 30 to 60 ° C.
  • the present invention also provides a method for regenerating an amine absorbent using a proton castor mixture, wherein the temperature of the regeneration tower is 90 to 110 ° C.
  • Figure 1 shows a mixture of a monoethanolamine absorbent and a monoethanol to give a proton 3:
  • Figure 2 shows a mixture of a monoethane amine absorbent and a monoethane amine proton 3:
  • Monoethanolamine classified as primary alkanol amine, reacts with carbon dioxide in aqueous solution to form carbamate (MEA + C00 _ ).
  • the carbamate formed at this time is a very unstable compound and reacts with the surrounding water to quickly convert to carbamate ions (MEAC00—).
  • the total absorption reaction of the monoethanol amine solution and carbon dioxide is as follows.
  • the carbamate is a very stable material that is high in order to remove C0 2 again. It requires energy. However, removing the protons of the carbamate makes it easier to remove C0 2 , thereby reducing the amount of energy required.
  • the proton donor mixture is selected as the proton donor of the carbamate, and monoethane is added to the amine solution.
  • the amine is at least one selected from the group consisting of chain amines, hexagonal amines, benzene amines, poly amines, and piperidine derivatives amines. to be.
  • chain amine 3-isobutoxypropylamine (3-Isobutoxypropylamine), dimethylaminoethylamine (Dimethylaminoethylamine), 2-amino-2-methylpropanol (AMP, 2-Amino-2-methyl-propanol) , Hexamethylenediamine (HMDA), Propyl amine, Dipropylamine ⁇ Butylamine, Isobutylamine, Hexylamine, 2-ethylnuclear amine (2-
  • Ethylhexylamine Monoethanolamine (MEA), Ethanolamine (DEA, Diethanolamine), Triethanamine (TEA, Tr iethanolamine), Methyldiethanolamine (MDEA, Methyldiethanolamine), Diglycolamine (DGA, Diglycolamine), allylamine
  • Hydroxyethylaminopropylamine is one or more selected from the group consisting of, Hexagonal amine (benzene amine), aminopropylaniline (Aminopropylani 1 ine), benzylamine, dimethylbenzylamine, Dibenzylethanolamine (Dibenzylethanolamine) , Tribenzylamine, Dibenzylamine
  • the amines are polyethyleneimine (PEI, Polyethyleneimine), Imino-bi s-propylamine, methyliminobis propylamine (Methylimin bis— propylamine), lauryliminobispropylamine
  • the precursor of the proton giver mixture comprises alkyl sulfonate, alkyl sulfite, imidazol, and pyridin.
  • the alkyl sulfonate is methanesulfonate (11 1 ⁇ 311 ⁇ 1 £ 011 6), ethanesulfonate, propanesulfonate, butansulfonate, butanesulfonate, pentanesulfonate Nate
  • the alkyl sulfite is methanesulfite (methansulfite, ethanesulfite) propanesulfite (propansulfite) ), Butansulfite, pentansulfite, nucleic acid sulfite, sulfonate, heptanesulfite, and octansulfite
  • the imidazole is 1-methyl-3_methylimidazole (l-methyl-3-methy 1 imidazo 1), 1-ethyl-3-methyl imidazole (1 ⁇ et hy 1 -3-met hyl imidazol), 1-propyl-3-methylimidazole (l-pr opy 1-3-methyl imidazol), 1-butyl-3-methylimidazo
  • the amine and the proton donor precursor are reacted in a molar ratio of 1: 1 to prepare a proton donor mixture.
  • 1 liter of monoethanolamine as an amine is placed in a reaction vessel mounted in an ice bath, and then cooled, and then 1.2 liters of methanesulfonic acid as a proton donor is slowly introduced into the sensed monoethanolamine. Stir while injecting. At this time, methanesulfonic acid is slightly mixed in excess of monoethanolamine for complete reaction.
  • the reaction is carried out in the ice bath because of the heat generated during the reaction.
  • a liquid proton mixture is separated using a filter.
  • the proton donor mixture thus prepared becomes a proton donor.
  • the proton donor mixture is mixed with an amine to prepare an absorbent.
  • the absorbent is mixed with 1 to 50% of the proton donor mixture in comparison to an amine 100 ⁇ 3 ⁇ 4 ''.
  • amines react with carbon oxides to form carbamate forms ([R ⁇ NH 3 ] + [R-NH-C00] _ ) and bicarbonate forms ([R-N3 ⁇ 4] + [HC0 3 : T)
  • the reproducibility may be increased by providing 1 to 50% of the proton donor mixture to the amine, that is, by injecting an excess of protons (H + ) per 1 mol of carbamate and bicarbamate. This is because the proton compound exhibits an insignificant effect when mixed in a large amount of 50wt% or more because it serves as a promoter.
  • the circulation of the absorbent is started by operating the transfer pump connected to the regeneration tower.
  • carbon dioxide is injected.
  • Carbon dioxide maintained at a constant pressure is preheated by a heater and gas is injected into the lower part of the absorption tower by a gas flow control device.
  • the experiment was carried out by varying the flow rate of gas and liquid by fixing the carbon dioxide flowing into the system at a constant flow rate and adjusting the absorbent flow rate of the transfer pump.
  • Carbon dioxide is moved from the lower end of the absorption tower to the upper end, and at the same time, the absorbent absorbs the carbon dioxide by moving countercurrently from the upper end of the absorption tower to the lower end.
  • the gas from which carbon dioxide has been removed is discharged out of the system through the valve at the top of the absorption tower, and the absorber absorbing carbon dioxide is transferred to the regeneration tower.
  • a solution containing 30% by weight of monoethanolamine and 10% of proton conjugates was used as an absorbent in order to capture carbon dioxide by using a proton donor and simultaneously reduce renewable energy. Protons give a mixture of 33% of the mixture, amine monoethane for comparison
  • a 30 wt% single solution was also used.
  • a continuous experiment was performed at a constant temperature of absorption and regeneration. While the experiments were performed continuously, the absorption tower was kept at 60 ° C and operated while changing the regeneration temperature.
  • Figure 1 shows the difference in the amount of regeneration of the injection C0 2 according to the change in the temperature of the heat boiler of the hourly regeneration tower of carbon dioxide regeneration efficiency while increasing the regeneration temperature from 80 ° C to 1KTC.
  • C0 2 removal amount shows the amount to be removed is separated into the upper end portion of the regeneration column
  • C0 2 desorption degree of 13.8 vol% C0 2 sorbent is injected at the regeneration column.
  • This phenomenon is understood as the process by which the amine absorbent exchanges protons during the absorption and regeneration process, as shown in the equation below.
  • the amine reacts with carbon dioxide to produce carbamate ([R-NH 3 ] [R-NH-C00r), and in the regeneration process for regenerating the separated carbon dioxide, [R- Protons (hydrogen) of NH 3 ] are given to [R—NH-C00] —) to separate them into amines and carbon dioxide. Therefore, the use of absorbents incorporating such proton-promoting promoters helps to regenerate. On the basis of this principle, the proton donor mixture exhibits higher regeneration efficiency than monoethanolamine even at low temperature because the proton donor mixture gives a proton during regeneration. This seems to be due to the mechanism that separates the protons of the carbamate formed by the C0 2 uptake of the proton donor chain proton donor conjugate, which affects the actual regeneration performance.
  • FIG. 2 shows the carbon dioxide concentration discharged after absorption in the absorption tower according to the regeneration temperature in the regeneration tower.
  • the figure shows the CO2 concentration in the off-gas from the absorption tower as the regeneration rate in the regeneration tower rises from 90 ° C to 1 KTC during successive absorption and regeneration processes.
  • the CO2 concentration of the simulated gas injected is 13.8 vol%, so as the regeneration time passes, the carbon dioxide concentration in the exhaust gas decreases.
  • the regeneration temperature 110 ° C was confirmed that C0 2 is played 100% in both the absorbing solution in a time faster than the refresh rate and C0 2 is rapidly increased.
  • the monoethanolamine absorbent which contains 10% of the proton compound at 90 ° C, is more than carbon dioxide.
  • monoethane and amine show no carbon dioxide regeneration at all. Regeneration rate decreases as the regeneration silver is raised, but the absorbent mixed with the proton mixture shows high regeneration characteristics.
  • the proton donor chain proton giver improves the regenerative capacity by giving protons when regenerating carbon dioxide and receiving them when absorbed.
  • Such absorbents can reduce capture costs by lowering renewable energy when capturing carbon dioxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

The present invention relates to a method for absorbing and regenerating carbon dioxide by adding and using a proton donor mixture for lowering regeneration energy after an amine absorbent, which is a carbon dioxide absorbent, is absorbed. The method comprises the steps of: preparing a proton donor mixture using an amine and a proton donor precursor; mixing the proton donor mixture with an amine to prepare an absorbent; injecting the absorbent into a carbon dioxide treatment apparatus including an absorption column and a regeneration column, and counter-currently moving the absorbent from the top portion to the bottom portion of the absorption column to absorb carbon dioxide moving from the bottom portion to the top portion of the absorption column; and moving the absorbent passing through the step of absorbing the carbon dioxide to the regeneration column and then regenerating the absorbent. The absorbent in which the proton donor mixture is mixed with the amine exhibits high regeneration efficiency even at a low temperature since the proton donor mixture gives protons to the absorbent when the absorbent is regenerated, and thus can be repeatedly used due to high thermal stability thereof and can have a long use lifespan.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
양성자 주게 흔합물을 이용한 아민 흡수제의 재생방법  Regeneration Method of Amine Absorbers Using Proton Organizer Mixtures
【기술분야】  Technical Field
본원은 이산화탄소 흡수제인 아민의 흡수 후 재생에너지를 낮추기 위한 양성 자 주게 흔합물을 첨가 및 이를 이용한 이산화탄소 흡수 및 재생방법에 관한 것이 다.  The present application relates to the addition of a proton mixture to lower the renewable energy after the absorption of the amine, a carbon dioxide absorbent, and a carbon dioxide absorption and regeneration method using the same.
【배경기술】  Background Art
배기가스로부터 co2를 분리하는 기술은 학술적, 산업적 측면에서 뿐 아니라 환경적으로 유익한 지속 가능 발전을 위해 중요성이 날로 증가하고 있다. 석탄, 석 유, 천연가스 등이 주된 연료로 사용되는 상황에서 C02의 생성은 피할 수 없다. 따 라서 경제적인 C02 분리 및 회수 기술의 개발은 co2 저감을 위한 핵심 단계라 할 수 있다. The technology of separating CO 2 from exhaust gases is of increasing importance not only for academic and industrial reasons, but also for environmentally beneficial sustainable development. In the situation where coal, petroleum and natural gas are used as the main fuels, the production of C0 2 is inevitable. Therefore, the development of cost-effective CO 2 separation and recovery technology is a key step in reducing CO 2 .
이산화탄소 분리 및 회수기술로는 화학적 흡수법, 물리적 흡수법 또는 분리 막 분리법 둥이 알려져 있으며, co2 분리를 목적으로 천연가스나 석유, 각종 화학 산업에 널리 적용되고 있으며, 화학적 흡수법이 주로사용된다. Carbon dioxide separation and recovery techniques are known as chemical absorption method, physical absorption method or separation membrane separation method, widely applied in natural gas, petroleum, various chemical industries for the purpose of CO 2 separation, and chemical absorption method is mainly used.
화학적 흡수의 경우는 일반적으로 잔존 산성 물질들을 제거하는데 사용된다. 일차, 이차, 삼차, 장애 아민 (hindered amine), 가공된 아민 등의 액상 용액 등이 널리 사용되고 있다. 장애 아민류는 종종 (:02와 S를 포함하는 가스에서 선택적 In the case of chemical absorption, it is generally used to remove residual acidic substances. Liquid solutions such as primary, secondary, tertiary, hindered amines, and processed amines are widely used. Hindered amines are often selective in gases containing : 0 2 and S
H2S 제거를 위해 사용되기도 한다. It is also used to remove H 2 S.
현재 C02 흡수를 위한 가장 대표적인 방법은 알카놀아민류 특히 모노에탄올 아민 (monoethanolamine, MEA), 디에탄올아민 (diethanolamine, DEA) 및 메틸디에탄 올아민 (methyldiethanolamine, MDEA) 등의 흔합 액상용액을 이용하는 화학적 흡수 방법이다. MEA 기반 기술을 통해 90% 이상의 C02 회수가 가능하며 , 99% 이상의 고농 도 C02 가스 생산이 가능하다. 하지만 아민 기반 기술의 이러한 높은 C02 분리 효율에도 불구하고, 이 기술 에는 장치의 부식 등의 문제로 인한 용액 내 아민 농도의 제약, 회수 가스로부터의 수분 제거, 휘발성으로 인한 흡수제 손실, 배가스 내 황 함유 물질이나 높은 열로 재생할 때 발생할 수 있는 흡수제 열화, 그리고 산소와 결합에 의한 흡수제 산화 둥의 문제점을 가지고 있다. 특히 높은 열을 이용한 재생으로 인해 흡수능은 좋으 나 많은 에너지를 필요로 하는 단점이 부각되곤 한다. Currently, the most representative method for absorbing C0 2 is chemicals using mixed liquid solutions such as alkanolamines, in particular monoethanolamine (MEA), diethanolamine (DEA), and methyldiethanolamine (MDEA). It is an absorption method. MEA-based technology enables recovery of more than 90% CO 2 and production of high concentrations of CO 2 gas above 99%. However, despite these high C0 2 separation efficiencies of amine-based technologies, these techniques include constraints on the concentration of amines in solution due to problems such as device corrosion, removal of moisture from recovered gases, loss of absorbents due to volatility, and sulfur content in flue gases. Absorbent deterioration that can occur when regenerating with material or high heat, and absorbent oxidized donor due to bonding with oxygen. Particularly good absorption due to high heat regeneration. I have a disadvantage that requires a lot of energy.
<7> 높은 재생열을 낮추기 위해, 알카놀아민 중에 이산화탄소와 직접 카바메이트 <7> Direct carbamate with carbon dioxide in alkanolamines to reduce high regeneration heat
(carbamate) 결합을 하여 이산화탄소를 제거하는 질소원자 주변에 메틸기나 에틸기 를 붙여두어 입체장애를 유발하는 방법을 통해 카바메이트 결합력을 낮추려는 흡수 제가 개발되었으며, 대표적인 것으로 AMP(2— amino-2-methyI-l-propanol)가 있다. <8> 고급 입체장애 아민 기술로 일본공개특허 평 08-103630은 흡수제 단위 몰당, 단위체적당 C02 흡수량이 크고 흡수속도가 높으며 재생 에너지가 적은 흡수제인 수 용액과 입체저항 피페라진 유도체 흔합 사용 시스템에 대한 기술을 개시하고 있다. 그러나 이 경우에도 일정 농도 이상으로 입체저항 피페라진 유도체의 용해를 위해 서는 알코올을 흔합해야 하며 , 입체장애 아민이 이산화탄소와 반웅하여 형성되는 종의 한 형태로 재생에서 우위성을 가지는 바이카보네이트 (bicarbonate) 형성 반웅 이 카바메이트 형성 반응보다 우세하지 않다는 ^제점이 있다. Sorbents have been developed to reduce carbamate binding ability by attaching methyl or ethyl groups around nitrogen atoms to remove carbon dioxide by carbamate binding, which is typical of AMP (2—amino-2-methyI). -l-propanol). <8> Japanese Patent Application Publication No. 08-103630 discloses an advanced steric hindrance amine technology for a combination of water solution and steric resistance piperazine derivatives, which are absorbents having a large amount of C0 2 absorption per mole of absorbent and a unit volume per unit volume, and high absorption rate and low renewable energy. Discloses a technique. However, even in this case, alcohol must be mixed for dissolution of the stereoresist piperazine derivative above a certain concentration, and bicarbonate is formed in the form of a species in which the hindered amine reacts with carbon dioxide. The disadvantage is that reaction is not superior to carbamate-forming reactions.
【발명의 상세한 설명】  [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
<9> 본원은 상술한 문제점을 해결하기 위해 안출된 것으로, 아민이 이산화탄소와 반웅하여 생성된 물질인 카바메이트와 바이카보네이트에서 낮은 에너지를 사용하여 이산화탄소를 떼어낼 수 있는 아민계 화합물을 제공하고자 한다.  The present invention has been made to solve the above-mentioned problems, to provide an amine compound that can remove the carbon dioxide by using a low energy from the carbamate and bicarbonate, a material produced by reacting the amine with carbon dioxide .
【기술적 해결방법】  Technical Solution
<10> 상기 과제를 해결하기 위하여, 카바메이트의 양이은 성분에서 양성자를 카바 메이트의 음이온 성분에 전달하여 아민과 이산화탄소를 분리하는 원리를 활용하며, 또한 바이카보네이트도 같은 원리로 이산화탄소를 분리한다. 이때 양성자를 주는 조촉매 (promoter)를 배합한 흡수제를 채택함으로써 분리 효율을 높일 수 있음을 발 견하여 본 발명올 완성하기에 이르렀다.  In order to solve the above problem, the carbamate transfers the protons from the two components to the anion component of the carbamate to utilize the principle of separating the amine and carbon dioxide, and bicarbonate also separates carbon dioxide on the same principle. At this time, it was found that the separation efficiency can be improved by adopting an absorbent containing a promoter that gives a proton, thereby completing the present invention.
<π> 본원은 아민 (amine)과 양성자 주게 전구체 (proton donor precursor)를 이용 하여 양성자 주게 흔합물올 준비하는 단계; 아민과 상기 양성자 주게 흔합물을 혼 합하여 흡수제를 제조하는 단계; 상기 흡수제를 흡수탑과 재생탑을 포함하는 이산 화탄소 처리 장치에 주입하고, 상기 흡수탑의 상단부에서 하단부로 향류 이동시켜 흡수탑의 하단부에서 상단부로 이동하는 이산화탄소를 흡수하는 단계; 및 상기 이 산화탄소를 흡수하는 단계를 거친 흡수제를 재생탑으로 이동하여 재생하는 단계를 포함하는, 양성자 주게 흔합물을 이용한 아민 흡수제의 재생방법을 제공한다.  <π> The present invention comprises the steps of preparing a proton donor mixture using an amine (proton donor precursor); Mixing an amine with the proton donor mixture to prepare an absorbent; Injecting the absorbent into a carbon dioxide treatment apparatus including an absorption tower and a regeneration tower, and moving the countercurrent from the upper end of the absorption tower to the lower end to absorb carbon dioxide moving from the lower end of the absorption tower to the upper end; And regenerating the absorbent having undergone the step of absorbing the carbon oxide in a regeneration tower.
<12> 본원은 또한, 상기 아민은 사슬형 아민 (chain amine), 육각형 아민 (benzene amine) , 다단 아민 (poly amine) , 및 피페리딘 유도체 아민 (piper idine derivatives amine)으로 이루어진 군 중에서 선택된 하나 이상인, 양성자 주게 흔합물을 이용한 아민 흡수제의 재생방법을 제공한다. In addition, the present invention, the amine may be a chain amine, benzene amine, poly amine, and piperidine derivative amine (piper idine derivatives) Provided is a regeneration method of an amine absorbent using at least one selected from the group consisting of amines, a proton castor mixture.
<13> 본원은 또한, 상기 사슬형 아민은, 3-이소부록시프로필아민 (3- <13> The present invention also, the chain amine is 3-isobutoxypropylamine (3-
I sobut oxypr opy 1 am i ne ) , 디메틸아미노에틸아민 (Dimethylaminoethylamine), 2一아미 노 -2-메틸프로판올 (AMP, 2— Amino-2-methylᅳ propanol), 핵사메틸렌디아민 (HMDA, He ame t hy 1 ened i am i ne ) , 프로필아민 (Propylamine), 디프로필아민 (Dipropyl amine) , 부틸아민 (Butylamine), 이소부틸아민 (Isobutylamine), 핵실아민 (Hexylamine), 2-에 틸핵실아민 (2-Ethylhexyl amine), 모노에탄올아민 (MEA, Monoethanolamine) , 디에탄 올아민 (DEA, Diethanolamine), 트리에탄올아민 (TEA, Tr iethanolamine) , 메틸디에탄 올아민 (MDEA, Methyldiethanolaraine), 디글리콜아민 (DGA, Diglycolamine), 알릴아 민 (Allylamine), 메틸디알릴아민 (Methyldial lylamine), 펜틸아민 (Pentylamine), 이 소아밀아민 (Isoamylamin), N-메틸에틸아민 (N— Methylethylamine), 2-옥실아민 (2- Octylamine), 4-아미노부탄올 (4-Aminobutanol), 3-메록시프로필아민 (3-I sobut oxypr opy 1 am i ne), dimethylaminoethylamine, -2-amino-2-methylpropanol (AMP, 2—Amino-2-methyl ᅳ propanol), nucleomethylenediamine (HMDA, He ame t hy 1 ened i am i ne), Propylamine, Dipropyl amine, Butylamine, Isobutylamine, Hexylamine, 2-Ethyl nucleosilamine (2 -Ethylhexyl amine), Monoethanolamine (MEA), Ethanolamine (DEA, Diethanolamine), Triethanolamine (TEA, Triethanolamine), Methyldiethanolamine (MDEA, Methyldiethanolaraine), Diglycolamine (DGA, Diglycolamine, Allylamine, Methyldial lylamine, Pentylamine, Isoamylamin, N-Methylethylamine, 2-oxylamine (2 Octylamine), 4-aminobutanol, 3-methoxypropylamine (3-
Methoxypropyl amine), 및 2-하이드톡실에틸아미노프로필아민 (2-Methoxypropyl amine), and 2-hydroxyxylethylaminopropylamine (2-
Hydroxyethyl aminopropyl amine)으로 이루어진 군에서 선택된 하나 이상인, 양성자 주게 흔합물을 이용한 아민 흡수제의 재생방법을 제공한다. Hydroxyethyl aminopropyl amine) provides a method for regenerating an amine absorbent using at least one selected from the group consisting of protons.
<14> 본원은 또한, 상기 육각형 아민은, 아미노프로필아닐린  <14> The present application, the hexagonal amine is aminopropyl aniline
(Aminopropylaniline), 벤질아민 (Benzyl amine)ᅳ 디메틸벤질아민 (Aminopropylaniline), Benzyl amine ᅳ Dimethylbenzylamine
(Dimethylbenzylamine), 디벤질에탄올아민 (Dibenzylethanolamine), 트리벤질아민 (Tri benzyl amine), 디벤질아민 (Dibenzylamine), N-메틸벤질아민 (N-(Dimethylbenzylamine), Dibenzylethanolamine, Tri benzyl amine, Dibenzylamine, N-methylbenzylamine (N-
Methyl benzyl amine), 펜에틸아민 (Phenethylamine), 4-벤질피페리딘 (4-Methyl benzyl amine), Phenethylamine, 4-benzylpiperidine (4-
Benzylpiperidine), 메톡시펜에틸아민 (Methoxyphenethylamine), 및 에틸사이클로핵 실아민 (Ethylcyclohexylamine)으로 이루어진 군에서 선택된 하나 이상인, 양성자 주게 흔합물을 이용한 아민 흡수제의 재생방법을 제공한다. Provided is a method for regenerating an amine absorbent using a proton-jujube mixture, which is at least one selected from the group consisting of Benzylpiperidine), Methoxyphenethylamine, and Ethylcyclohexylamine.
<15> 본원은 또한, 상기 다단 아민은, 폴리에틸렌이민 (PEI, Polyethyleneimine), 이미노비스프로필아민 ( Imin으 bis-propylamine) , 메틸이미노비스프로필아민 <15> The present invention also, the multi-stage amine, polyethyleneimine (PEI, Polyethyleneimine), iminobispropylamine (bis bis-propylamine), methyliminobispropylamine
(Methyl imino_bis一 propyl amine), 라우릴이미노비스프로필아민 (Laurylimino一 bis— propylamine) , 펜타메틸디에틸렌트리아민 (Pentamethyl di ethyl enetri amine) , 아미 노프로필 -1,3-프로필렌디아민 (Aminopropyl-l,3-propylenediamine), 및 아미노프로 필 -1,4-부틸렌디아민 (Aminopropyl-l,4-butylenediamine)으로 이루어진 군에서 선택 된 하나 이상인, 양성자 주게 흔합물을 이용한 아민 흡수제의 재생방법을 제공한 다. <16> (Methyl imino_bis 一 propyl amine), Laurilimino bis— propylamine, Pentamethyl diethyl enetri amine, Aminopropyl-1,3-propylenediamine (Aminopropyl-l , 3-propylenediamine), and aminopropyl-1,4-butylenediamine (Aminopropyl-l, 4-butylenediamine), which provides a method for regenerating an amine absorbent using a proton-primer mixture, which is at least one selected from the group consisting of All. <16>
<17> 본원은 또한, 상기 피페리딘 유도체 아민은, n-아미노피페리딘 (n-amino piperidine), n-피페리딘 에탄올 (n—piperidine ethanol), n-메칠 -2-피페리딘 에탄 올 (n_methyl一 2一 piperidine ethanol), 4一피페리딘 에탄올 (4一 piper idine ethanol) , η-디메칠 -4-피페리돈 (n-dimethy卜 4-piper idone), 피페라진 (Piperazine), 2-메틸피 페라진 (2-Methylpiperazine), 2,5-디메틸피페라진(2,5-[)^161;1^1]^ 3 1 ), 2-메 틸피페라진 (2-Methylpiperazine), ^벤질-4-피페리디놀아86112 1-4-1)1 61 (10101), N-메틸 -4-피페리돈 (N-Me thy 1-4ᅳ pi per i done), N-알킬 -3-피페라진 (N-Alkyl-3- piperizine) , Ν一에틸피페라진 (Ν— Ethylpiperazine), 피페콜리닉산 (Pipecol inic acid), 메틸이소니펙티코테이트 (Methylisonipecotate), Nᅳ알킬 -3-피페콜린 (N- Alkyl-3-pipecoline), N-알킬피페라진 (N-Alkylpiper izine) , 2-아미노메틸피페리딘 (2-Aminomethylpiperidine) , ^벤질-4-피페리돈으86112 1-4-]^ 6^(101 ), 및 디피 페리디노메탄 (Dipiperidinomethan)으로 이루어진 군에서 선택된 하나 이상인, 양성 자 주게 흔합물을 이용한 아민 흡수제의 재생방법을 제공한다. In addition, the present invention, the piperidine derivative amine, n-amino piperidine (n-amino piperidine), n-piperidine ethanol (n—piperidine ethanol), n-methyl-2-piperidine Ethanol (n_methyl 一 2 一 piperidine ethanol), 4 一 piper idine ethanol, η-dimethy-4-piperidone (n-dimethy 卜 4-piper idone), piperazine (Piperazine) , 2-Methylpiperazine (2-Methylpiperazine), 2,5-dimethylpiperazine (2,5-[) ^ 161; 1 ^ 1] ^ 3 1), 2-Methylpiperazine (2-Methylpiperazine) , ^ Benzyl-4-piperidinola86112 1-4-1) 1 61 (10101), N-methyl -4-piperidone (N-Me thy 1-4 ᅳ pi per i done), N-alkyl-3 -Piperazine (N-Alkyl-3- piperizine), Ν 一 ethylpiperazine (Ν— Ethylpiperazine), pipecolic acid (Pipecol inic acid), methylisonipecotate, N ᅳ alkyl-3-pipepe Choline (N- Alkyl-3-pipecoline), N-Alkylpiper izine, 2-Aminomethylpiperidine, ^ Provides a method for regenerating amine sorbents using protons and mixtures of at least one selected from the group consisting of vagin-4-piperidone 86112 1-4-] ^ 6 ^ (101), and dipiperidinomethan. do.
<18> 본원은 또한, 상기 양성자 주게 흔합물의 전구체는, 알킬설포네이트 (alkyl sulfonate), 알킬설파이트 (alkyl sulfite), 이미다졸 (imidazol), 및 피리딘 (pyridin)을 포함하고, 상기 알킬설포네이트 (alkyl sulfonate)는 메탄설포네이트 (methansulfonate), 에탄설포네이트 (ethanesulfonate), 프로판설포네이트 (propanesulfonate), 부탄설포네이트 (butansulfonate), 펜탄설포네이트 The present application also includes precursors of the proton-priming complexes, including alkyl sulfonate, alkyl sulfite, imidazol, and pyridin, wherein the alkylsulfonate Alkyl sulfonate is methanesulfonate, ethanesulfonate, propanesulfonate, butansulfonate, pentanesulfonate
(pentansulfonate), 핵산설포네이트 (hexansulfonate) , 헵탄설포네이트pentansulfonate, hexansulfonate, heptanesulfonate
(heptansulfonate), 및 옥탄설포네이트 (octansulfonate)로 이루어진 군으로부터 선 택된 하나이고, 상기 알킬설파이트 (alkyl sulfite)는 메탄설파이트 (methansul fite), 에탄설파이트 (ethanesul f ite), 프로판설파이트 (propansul f ite), 부탄설파이트 (butansulfite), 펜탄설파이트 (pentansulf ite), 핵산설파이트 (hexansulfite), 설포네이트 (sulfonate), 헵탄설파이트 (heptansulfite), 및 옥탄설 파이트 (octansulfite)로 이루어진 군으로부터 선택된 하나이며, 상기 이미다졸 ( i m i dazo 1 )은 1—메틸 -3—메틸이미다졸 ( 1ᅳ me t hy 1 -3-me thyl imidazol) , 1-에틸 -3-메틸 이미다졸 ( 1-ethy i-3-methy 1 imidazol ), 1-프로필 -3-메틸이미다졸 ( 1-propy 1-3- methyl imidazol ), 1-부틸— 3-메틸이미다졸 ( 1-butyl— 3-methyl imidazol ), 1-핵실 -3-메 틸이미다졸 ( 1-hexyl -3-methyl imidazol ), 1-메틸 -2, 3-디메틸이미다졸 ( 1-methy 1-2, 3- dimethl imidazol), 1—에틸ᅳ2,3ᅳ디메틸이미다졸 (l-ethyl-2,3-dimethnmidazol), 1- 프로필 -2,3-디메틸이미다졸 (1-propy卜 2,3-dimethl imidazol), 및 1-부틸— 2,3—디메틸 이미다졸 (l-butyl-2,3ᅳ dimethlimidazol)로 이루어진 군으로부터 선택된 하나이고, 상기 피리딘 (pyridin)은 n-에틸— 3ᅳ메틸-피리딘 (n— ethy卜 3-methy卜 pyridin), n-부틸 — 3-메틸-피리딘 (n-butyl-3-methyl-pyridin), n—부틸 -3—메틸—피리딘 (n-butyl_3- methyl-pyridin) n-(3_하이드로프로필) -피리딘 (n-(3-hydropropyl)-pyridin) n-핵 실 -4-디메틸아미노 -피리딘 ( n-hexy 1-4-diraethylami no-pyr idin), 및 n-에틸 -3-하이드 록시메틸-피리딘 (n-ethyl-3-hydroxymethyl-pyridin) 중에서 선택된 하나인, 양성자 주게 흔합물을 이용한 아민 흡수제의 재생방법을 제공한다. (heptansulfonate), and octansulfonate (octansulfonate) is one selected from the group consisting of, alkyl sulfite (alkyl sulfite) (methansul fite, ethanesul fite, propanesulfite ( group consisting of propansul f ite, butansulfite, pentansulfite, nucleic acid sulfite, sulfonate, heptanesulfite, and octansulfite And imidazole (imi dazo 1) is 1-methyl-3-3-methylimidazole (1 ᅳ me t hy 1-3-me thyl imidazol), 1-ethyl-3-methyl imidazole (1 -ethy i-3-methy 1 imidazol), 1-propyl-3-methylimidazole (1-propy 1-3- methyl imidazol), 1-butyl- 3-methylimidazole (1-butyl— 3- methyl imidazol), 1-nuxyl-3-methylimidazole (1-hexyl-3-methyl imidazol), 1-methyl-2, 3-dimethylimidazole (1-methy 1-2, 3- dimethl imidazol), 1-ethyl-2,3-dimethylimidazole (l-ethyl-2,3-dimethnmidazol), 1-propyl-2,3-dimethylimidazole (1-propy® 2,3-dimethl imidazol), and 1-butyl-2,3-dimethyl Imidazole (l-butyl-2,3 'dimethlimidazol) is selected from the group consisting of, pyridin (pyridin) is n-ethyl- 3' methyl-pyridine (n- ethy '3-methy' pyridin), n- Butyl — 3-methyl-pyridine (n-butyl-3-methyl-pyridin), n—butyl-3–methyl-pyridine (n-butyl_3-methyl-pyridin) n- (3_hydropropyl) -pyridine (n- (3-hydropropyl) -pyridin) n-nuclear sil-4-dimethylamino-pyridine (n-hexy 1-4-diraethylami no-pyr idin), and n-ethyl-3-hydroxymethyl-pyridine (n-ethyl -3-hydroxymethyl-pyridin) provides a method for regenerating amine absorbents using a proton donor mixture.
<19>  <19>
<20> 본원은 또한, 상기 양성자 주게 흔합물은, 상기 아민 (amine)을 얼음조 (ice bath)내에 장착된 반응기에 넣어 넁각하는 단계; 상기 넁각된 아민에 상기 양성자 주게 흔합물의 전구체를 과량 흔합하는 단계; 및 상기 흔합하는 단계를 거친 반웅 물에서 고상 물질을 제거하는 단계를 거쳐 제조되는, 양성자 주게 흔합물을 이용한 아민 흡수제의 재생방법을 제공한다.  The present invention also provides a mixture of protons, including: immersing the amine in a reactor mounted in an ice bath; Excess mixing of the precursor of the proton donor mixture to the sensed amine; And it provides a method for regenerating the amine absorbent using a proton giver mixture, which is prepared through the step of removing the solid material in the reaction water after the mixing step.
<21>  <21>
<22> 본원은 또한, 상기 흡수제는, 아민 100\^%에 대비하여 상기 양성자 주게 흔 합물 1 내지 50wt%를 흔합하는, 양성자 주게 흔합물을 이용한 아민 흡수제의 재생 방법을 제공한다.  The present application also provides a method for regenerating an amine absorbent using a proton donor mixture, wherein the absorbent mixes 1 to 50 wt% of the proton donor mixture with respect to 100%.
<23>  <23>
<24> 본원은 또한, 상기 흡수탑의 은도는 30 내지 60°C인, 양성자 주게 흔합물을 이용한 아민 흡수제의 재생방법을 제공한다. The present application also provides a method for regenerating an amine absorbent using a proton donor mixture, wherein the absorption degree of the absorption tower is 30 to 60 ° C.
<25>  <25>
<26> 본원은 또한 상기 재생탑의 온도는 90 내지 110°C인,양성자 주게 흔합물을 이용한 아민 흡수제의 재생방법을 제공한다.  The present invention also provides a method for regenerating an amine absorbent using a proton castor mixture, wherein the temperature of the regeneration tower is 90 to 110 ° C.
【유리한 효과】  Advantageous Effects
<27> 본원의 아민에 양성자 주게 흔합물을 흔합한 흡수제는 재생시 양성자 주게 흔합물이 양성자를 주기 때문에 낮은 온도에서도 높은 재생효율을 나타내므로, 열 적 안정성이 높아 반복적 사용이 가능하며 오랜 사용수명을 가지는 효과가 있다. 【도면의 간단한 설명】  <27> Absorbents that contain a proton donor mixture in the amine of the present invention show high regeneration efficiency even at low temperature because the proton donor mixture gives a proton during regeneration, and thus can be used repeatedly due to high thermal stability and a long service life. It is effective to have. [Brief Description of Drawings]
<28> 도 1은 모노에탄올아민 흡수제와 모노에탄을아민에 양성자 주게 흔합물을 3:  Figure 1 shows a mixture of a monoethanolamine absorbent and a monoethanol to give a proton 3:
1로 혼합한 흡수제의 온도에 따른 이산화탄소 재생율을 비교한 그래프이다.  It is a graph comparing the carbon dioxide regeneration rate according to the temperature of the absorbent mixed with 1.
<29> 도 2는 모노에탄을아민 흡수제와 모노에탄을아민에 양성자 주게 흔합물을 3:  Figure 2 shows a mixture of a monoethane amine absorbent and a monoethane amine proton 3:
1로 흔합한 흡수제의 재생온도에 따른 이산화탄소 농도를 그래프이다. <30> 도 3은 모노에탄올아민 흡수제와 모노에탄올아민에 양성자 주게 흔합물을 3: It is a graph of the carbon dioxide concentration according to the regeneration temperature of the absorbent mixed with 1. 3 shows a mixture of protons giving a monoethanolamine absorbent and a monoethanolamine 3:
1로 흔합한 흡수제의 온도에 따른 이산화탄소 재생율을 비교한 그래프이다.  It is a graph comparing the carbon dioxide regeneration rate according to the temperature of the absorbent mixed in 1.
【발명의 실시를 위한 형태】  [Form for implementation of invention]
<31> 이하 본 발명이 속하는 기술 분야에서 통상의 지식올 가진 자가 용이하게 실 시할 수 있을 정도로 바람직한 실시예를 도면을 참조하여 상세하게 설명하면 다음 과 같다.  Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily practice the present invention.
<32> 1차 알카놀 아민으로 분류되는 모노에탄올아민은 수용액 상에서 이산화탄소 와 반웅하여 카바메이트 (MEA+C00_)를 형성한다. 이때 형성된 카바메이트는 매우 불 안정한 화합물로 주변의 물과 반웅하여 카바메이트 이온 (MEAC00— )으로 빠르게 전환 된다. 모노에탄올 아민 용액과 이산화탄소의 전체 흡수 반응은 다음과 같다. Monoethanolamine, classified as primary alkanol amine, reacts with carbon dioxide in aqueous solution to form carbamate (MEA + C00 _ ). The carbamate formed at this time is a very unstable compound and reacts with the surrounding water to quickly convert to carbamate ions (MEAC00—). The total absorption reaction of the monoethanol amine solution and carbon dioxide is as follows.
<33>  <33>
<34> <34>
<35> 물의 해리반웅 :  <35> Dissociation of Water:
<36> 2H20 ^ H30+ + OH" (1) <36> 2H 2 0 ^ H 3 0+ + OH " (1)
<37> 증탄산염의 가수분해 반웅: Hydrolysis Reaction of Thicarbonate:
<38> HC03 + H20 C032 + ¾0+ (2) <38> HC0 3 + H 2 0 C0 32 + ¾0 + (2)
<39> <39>
<40> 알카놀아민의 탈양자화 반웅:  <40> Deprotonation reaction of alkanolamines:
<4i> MEAH+ + H20 ^ MEA + 0+ (3) <4i> MEAH + + H 2 0 ^ MEA + 0 + (3)
<42> 중탄산염 형성반웅 : <42> Formation of Bicarbonate:
<43> C02 + OH" HC03 " (4) <43> C0 2 + OH " HC0 3 " (4)
<44> HC03 "→ C02 + OH" (5) <44> HC0 3 " → C0 2 + OH " (5)
<45> 카바메이트 이온 형성반응 : <45> Carbamate Ion Formation Reaction:
<46> MEA + C02 + H20→ MEAC00— + ¾0+ (6) <46> MEA + C0 2 + H 2 0 → MEAC00— + ¾0 + (6)
<47> MEAC0으 + H30+→ MEA + C02 + H20 (7) <47> MEAC0 + H30 + → MEA + C0 2 + H 2 0 (7)
<48> <48>
<49> 상기 카바메이트는 매우 안정한 물질로 C02를 다시 떼어내기 위해서는 높은 에너지를 필요로 한다. 다만, 카바메이트의 양성자를 떼어내면 C02도 떼어내기가 용 이해져 이에 따른 필요 에너지량도 감소하게 된다. 본원의 일 구현예에서는 카바메 이트의 양성자 공여체로 양성자 주게 흔합물을 선택해 모노에탄을아민 용액에 첨가 한다. The carbamate is a very stable material that is high in order to remove C0 2 again. It requires energy. However, removing the protons of the carbamate makes it easier to remove C0 2 , thereby reducing the amount of energy required. In one embodiment of the present application, the proton donor mixture is selected as the proton donor of the carbamate, and monoethane is added to the amine solution.
상기 양성자 주게 흔합물을 제조하기 위해 아민과 양성자 주게 전구체를 이 용한다. 본 발명의 일 구현예에서 상기 아민은 사슬형 아민 (chain amine), 육각형 아민 (benzene amine), 다단 아민 (poly amine), 및 피페리딘 유도체 아민 (piperidine derivatives amine)으로 이루어진 군 중에서 선택된 하나 이상이다. 또한 상기 사슬형 아민은, 3-이소부특시프로필아민 (3-Isobutoxypropylamine), 디메 틸아미노에틸아민 (Dimethylaminoethylamine), 2-아미노 -2-메틸프로판올 (AMP, 2- Amino-2-methyl-propanol ) , 핵사메틸렌디아민 (HMDA, Hexamethylenedi amine) , 프로 필아민 (Propyl amine), 디프로필아민 (Dipropylamine)ᅳ 부틸아민 (Butylamine), 이소 부틸아민 (Isobutylamine), 핵실아민 (Hexylamine), 2-에틸핵실아민 (2- An amine and a proton donor precursor are used to prepare the proton donor mixture. In one embodiment of the present invention, the amine is at least one selected from the group consisting of chain amines, hexagonal amines, benzene amines, poly amines, and piperidine derivatives amines. to be. In addition, the chain amine, 3-isobutoxypropylamine (3-Isobutoxypropylamine), dimethylaminoethylamine (Dimethylaminoethylamine), 2-amino-2-methylpropanol (AMP, 2-Amino-2-methyl-propanol) , Hexamethylenediamine (HMDA), Propyl amine, Dipropylamine ᅳ Butylamine, Isobutylamine, Hexylamine, 2-ethylnuclear amine (2-
Ethylhexylamine), 모노에탄윷아민 (MEA, Monoethanol mine) , 디에탄올아민 (DEA, Diethanolamine), 트리에탄을아민 (TEA, Tr iethanolamine) , 메틸디에탄올아민 (MDEA, Methyldiethanolamine), 디글리콜아민 (DGA, Diglycolamine) , 알릴아민Ethylhexylamine, Monoethanolamine (MEA), Ethanolamine (DEA, Diethanolamine), Triethanamine (TEA, Tr iethanolamine), Methyldiethanolamine (MDEA, Methyldiethanolamine), Diglycolamine (DGA, Diglycolamine), allylamine
(Allylamine), 메틸디알릴아민 (Methyldiallylamine), 펜틸아민 (Pentylamine), 이소 아밀아민 (Isoamylamin), N-메틸에틸아민 (Nᅳ Methylethylamine), 2-옥실아민 (2- Octylamine), 4—아미노부탄올 (4-Aminobutanol ), 3-메록시프로필아민 (3-(Allylamine), Methyldiallylamine, Pentylamine, Isoamylamin, N ᅳ Methylethylamine, 2-Octylamine, 4-Aminobutanol (4-Aminobutanol), 3-methoxypropylamine (3-
Methoxypropylamine), 및 2-하이드록실에틸아미노프로필아민 (2-Methoxypropylamine), and 2-hydroxylethylaminopropylamine (2-
Hydroxyethylaminopropylamine)으로 이루어진 군에서 선택된 하나 이상이고, 상기 육각형 아민 (benzene amine)은, 아미노프로필아닐린 (Aminopropylani 1 ine), 벤질아 민 (Bebzylamine), 디메틸벤질아민 (Dimethylbenzylamine), 디벤질에탄올아민 (Dibenzylethanolamine), 트리벤질아민 (Tribenzylamine), 디벤질아민Hydroxyethylaminopropylamine) is one or more selected from the group consisting of, Hexagonal amine (benzene amine), aminopropylaniline (Aminopropylani 1 ine), benzylamine, dimethylbenzylamine, Dibenzylethanolamine (Dibenzylethanolamine) , Tribenzylamine, Dibenzylamine
(Di benzyl amine), N-메틸벤질아민 (N-Methylbenzylamine), 펜에틸아민Di benzyl amine, N-Methylbenzylamine, phenethylamine
(Phenethyl amine), 4-벤질피페리딘 (4-Benzylpiperidine), 메특시펜에틸아민 (Methoxyphenethylamine) , 및 에틸사이클로핵실아민 (Ethyl eye lohexyl amine)으로 이 루어진 군에서 선택된 하나 이상이며, 상기 다단 아민은, 폴리에틸렌이민 (PEI, Polyethyleneimine), 이미노비스프로필아민 ( Imino-bi s-propylamine), 메틸이미노비 스프로필아민 (Methylimin으 bis— propylamine), 라우릴이미노비스프로필아민(Phenethyl amine), 4-benzylpiperidine, 4-benzylpiperidine, Methoxyphenethylamine, and one or more selected from the group consisting of Ethyl eye lohexyl amine, The amines are polyethyleneimine (PEI, Polyethyleneimine), Imino-bi s-propylamine, methyliminobis propylamine (Methylimin bis— propylamine), lauryliminobispropylamine
(Lauryl imino-bis-propyl amine), 펜타메틸디에틸렌트리아민 (Pentamethyl diethylenetriamine), 아미노프로필— 1,3-프로필렌디아민 (Aminopn>pyl-l,3- propylenedi amine), 및 아미노프로필 -1,4-부틸렌디아민 (Aminopropyl-1,4- butylenediamine)으로 이루어진 군에서 선택된 하나 이상이고, 상기 피페리딘 유도 체 아민은, 아미노피페리딘 (n-amino piperidine), n-피페리딘 에탄올 (n-piper idine ethanol), n-메칠 -2-피페리딘 에탄을 (n-methyl-2-piper idine ethanol), 4-피페리딘 에탄을 ( 4- iperidine ethano 1 ), n—디메칠— 4一피페리돈 (n一 d imethyl一 4一 p i eri done ) , 피페라진 (Piperazine), 2-메틸피페라진 (2-Methylpiperazine) , 2,5—디메틸피페라진 (2,5-Dimethylpiperazine), 2-메틸피페라진 (2-Methylpiperazine) , N-벤질 -4-피페리 디놀 ( -Benzy 1-4-piper idinol ) , N-메틸 -4-피페리돈 ( N-Me t hy 1 -4-p iperi done ), N_알 킬 -3-피페라진 (N-Alkyl-3-piperizine), N-에틸피페라진 (N— Ethylpiperazine), 피페 콜리닉산 (Pipecolinic acid), 메틸이소니펙티코테이트 (Methylisonipecotate), N- 알킬— 3-피페콜린 (N-Alkyl-3-pipecoline;), N-알킬피페라진 (N-Alkylpiperizine) , 2- 아미노메틸피페리딘 ( 2-Am i nome thylpiper idine) , N_벤질 -4-피페리돈 ( N-Benzy 1 -4- piper idone), 및 디피페리디노메탄 (Dipiperidinomethan)으로 이루어진 군에서 선택 된 하나 이상이다. (Lauryl imino-bis-propyl amine), Pentamethyl diethylenetriamine, aminopropyl— 1,3-propylenediamine (Aminopn> pyl-l, 3- propylenedi amine), and at least one selected from the group consisting of aminopropyl-1,4-butylenediamine (Aminopropyl-1,4-butylenediamine), and the piperidine derivative amine is aminopiperidine (n-amino piperidine), n-piper idine ethanol, n-methyl-2-piperidine ethane (n-methyl-2-piper idine ethanol), 4-piperidine ethane (4- iperidine ethano 1) , n—dimethyl- 4pipiridone (piperazine), piperazine, 2-methylpiperazine, 2,5-dimethylpipe Razine (2,5-Dimethylpiperazine), 2-Methylpiperazine, N-benzyl-4-piperidinol (-Benzy 1-4-piper idinol), N-methyl-4-piperidone (N -Me t hy 1 -4-p iperi done), N_Alkyl-3-piperizine, N-ethylpiperazine (N— Ethylpiperazine), Pipecolinic acid , Methylisonipecotate, N- Alkyl— 3-pipe Choline (N-Alkyl-3-pipecoline;), N-Alkylpiperizine, 2-Aminomethylpiperidine (2-Am i nome thylpiper idine), N_benzyl-4-piperidone (N -Benzy 1-4-piper idone), and dipiperidinomethan is at least one selected from the group consisting of.
<51> 본 발명의 일 구현예에서, 상기 양성자 주게 흔합물의 전구체는, 알킬설포네 이트 (alkyl sulfonate), 알킬설파이트 (alkyl sulfite), 이미다졸 (imidazol) , 및 피 리딘 (pyridin)을 포함하고, 상기 알킬설포네이트 (alkyl sulfonate)는 메탄설포네이 트(11 1±311^1£011 6), 에탄설포네이트 (ethanesulfonate), 프로판설포네이트 (propanesulfonate), 부탄설포네이트 (butansulfonate), 펜탄설포네이트 In one embodiment of the present invention, the precursor of the proton giver mixture comprises alkyl sulfonate, alkyl sulfite, imidazol, and pyridin. The alkyl sulfonate is methanesulfonate (11 1 ± 311 ^ 1 £ 011 6), ethanesulfonate, propanesulfonate, butansulfonate, butanesulfonate, pentanesulfonate Nate
(pentansulfonate), 핵산설포네이트 (hexansulfonate), 헵탄설포네이트pentansulfonate, hexansulfonate, heptanesulfonate
(heptansulfonate), 및 옥탄설포네이트 (octansulfonate)로 이루어진 군으로부터 선 택된 하나이고, 상기 알킬설파이트 (alkyl sulfite)는 메탄설파이트 (methansulfite), 에탄설파이트 (ethanesulf ite)ᅳ 프로판설파이트 (propansulf ite) , 부탄설파이트 (butansulfite), 펜탄설파이트 (pentansulf ite), 핵산설파이트 (hexansulfite), 설포네이트 (sulfonate), 헵탄설파이트 (heptansulf ite), 및 옥탄설 파이트 (octansulfite)로 이루어진 군으로부터 선택된 하나이며, 상기 이미다졸 ( imi dazo 1 )은 1-메틸 -3_메틸이미다졸 ( l-methyl-3-methy 1 imidazo 1), 1-에틸 -3-메틸 이미다졸 ( 1ᅳ e t hy 1 -3-met hyl imidazol), 1-프로필 -3—메틸이미다졸 ( l-pr opy 1 -3- methyl imidazol), 1-부틸-3-메틸이미다졸(1-!3^ 1-3-11 1;1 111111(1&201), 1-핵실 -3—메 틸이미다졸 ( 1-hexy 1-3-methyl imidazol), 1-메틸 -2, 3-디메틸이미다졸 ( l-methyl-2, 3ᅳ dimethl imidazol), 1-에틸-2,3-디메틸이미다졸(1-61:1 1-2,3ᅳ( 111^111 ^(13201), 1ᅳ 프로필 -2, 3-디메틸이미다졸 ( 1-propy 1-2, 3-dimethl imidazol ), 및 1-부틸 -2, 3-디메틸 이미다졸 (l-butyl-2,3-dimethlimidazol)로 이루어진 군으로부터 선택된 하나이고, 상기 피리딘 (pyridin)은 n—에틸 -3-메틸ᅳ피리딘 (n-ethyl-3-methyl-pyr idin), n-부틸 -3-메틸-피리딘 ( n-but y 1 -3— me t hy 1 -pyr idin), n—부틸 -3-메틸-피리딘 ( n-buty 1 -3_ methyl-pyridin), n-(3-하이드로프로필) -피리딘 (n-(3-hydropropyl)-pyridin), n-핵 실 -4-디메틸아미노-피리딘 (n— hexyl-4— dimethylamir -pyridin), 및 n-에틸 -3-하이드 록시메틸-피리딘 (n-ethyl-3-hydroxymethy卜 pyridin) 중에서 선택된 하나이다. (heptansulfonate), and one selected from the group consisting of octansulfonate (octansulfonate), the alkyl sulfite (alkyl sulfite) is methanesulfite (methansulfite, ethanesulfite) propanesulfite (propansulfite) ), Butansulfite, pentansulfite, nucleic acid sulfite, sulfonate, heptanesulfite, and octansulfite One, the imidazole (imi dazo 1) is 1-methyl-3_methylimidazole (l-methyl-3-methy 1 imidazo 1), 1-ethyl-3-methyl imidazole (1 ᅳ et hy 1 -3-met hyl imidazol), 1-propyl-3-methylimidazole (l-pr opy 1-3-methyl imidazol), 1-butyl-3-methylimidazole (1-! 3 ^ 1-3 -11 1; 1 111111 (1 & 201), 1-nucleus-3-methylimidazole (1-hexy 1-3-methyl imidazol), 1-methyl-2, 3-dimethylimidazole (l-methyl- 2 , 3 ᅳ dimethl i midazol), 1-ethyl-2,3-dimethylimidazole (1-61: 1 1-2,3 ᅳ (111 ^ 111 ^ (13201), 1 ᅳ propyl-2, 3-dimethylimidazole (1 -propy 1-2, 3-dimethl imidazol), and 1-butyl-2, 3-dimethyl Imidazole (l-butyl-2,3-dimethlimidazol) and one selected from the group consisting of the pyridine (pyridin) is n-ethyl-3-methylpypyridine (n-ethyl-3-methyl-pyr idin), n -Butyl-3-methyl-pyridine (n-but y 1 -3— me t hy 1 -pyr idin), n-butyl-3-methyl-pyridine (n-buty 1 -3_methyl-pyridin), n- ( 3-hydropropyl) -pyridine (n- (3-hydropropyl) -pyridin), n-nuclear sil-4-dimethylamino-pyridine (n—hexyl-4—dimethylamir -pyridin), and n-ethyl-3-hydro Oxymethyl-pyridine (n-ethyl-3-hydroxymethy 卜 pyridin).
<52> 양성자 주게 흔합물을 제조하기 위해 아민과 양성자 주게 전구체를 몰비 1:1 로 반웅시킨다. 본원의 일 구현예에서, 아민으로 모노에탄올아민 1리터를 얼음조 (ice bath) 내에 장착된 반웅기에 넣고 넁각시킨 뒤, 양성자 주게 전구체로 메탄설 폰산 1.2리터를 넁각된 모노에탄올아민 내부로 서서히 주입하면서 저어준다. 이때, 완전반웅을 위해서 메탄설폰산을 모노에탄올아민보다 약간 과량 흔합한다. 얼음조 에서 반웅을 수행하는 것은 반웅 중 열이 발생하기 때문이다. 합성과정에서 생성된 고체상 물질을 제거하기 위해 필터를 이용하여 액상의 양성자 주게 흔합물을 분리 한다. 이렇게 제조된 양성자 주게 흔합물은 양성자 공여체가 된다.  The amine and the proton donor precursor are reacted in a molar ratio of 1: 1 to prepare a proton donor mixture. In one embodiment of the present application, 1 liter of monoethanolamine as an amine is placed in a reaction vessel mounted in an ice bath, and then cooled, and then 1.2 liters of methanesulfonic acid as a proton donor is slowly introduced into the sensed monoethanolamine. Stir while injecting. At this time, methanesulfonic acid is slightly mixed in excess of monoethanolamine for complete reaction. The reaction is carried out in the ice bath because of the heat generated during the reaction. In order to remove the solid material produced during the synthesis process, a liquid proton mixture is separated using a filter. The proton donor mixture thus prepared becomes a proton donor.
<53> 상기 양성자 주게 흔합물과 아민을 혼합하여 흡수제를 제조하며, 본 발명의 일 구현예에서 상기 흡수제는, 아민 100^¾»에 대비하여 상기 양성자 주게 흔합물 1 내지 50 %를 흔합한다. 일반적으로 아민이 어산화탄소와 반응하여 카바메이트 형 태 ([Rᅳ NH3]+[R-NH-C00]_)와 바이카보네이트 형태 ([R-N¾]+[HC03:T)가 형성되고 있으 며, 아민에 흡수된 이산화탄소의 탈리 과정에서 [R-NH3]+의 양성자 (수소)를 [R-NH- The proton donor mixture is mixed with an amine to prepare an absorbent. In one embodiment of the present invention, the absorbent is mixed with 1 to 50% of the proton donor mixture in comparison to an amine 100 ^ ¾ ''. Generally, amines react with carbon oxides to form carbamate forms ([R ᅳ NH 3 ] + [R-NH-C00] _ ) and bicarbonate forms ([R-N¾] + [HC0 3 : T) In the desorption process of carbon dioxide absorbed by amines, the proton (hydrogen) of [R-NH 3 ] +
COO]—)에 주어 아민과 이산화탄소로 분리된다. 탈리 과정에서 양성자와 카바메이트 는 1:1이며, 또한 양성자와 바이카바메이트도 1:1로 양성자를 제공하고 있다. 본 발명에서는 양성자 주게 혼합물을 아민에 1 내지 50 %를 제공함으로써, 즉 카바메 이트와 바이카바메이트의 lmol 당 양성자 (H+)를 1 내지 1.2 정도로 잉여로 주입함으 로써 재생성을 증가시킬 수 있다. 이는 양성자 주게 흔합물이 조촉매 역할을 하기 때문에 50wt% 이상의 다량으로 흔합 할 경우에는 효과가 미미한 것으로 나타내기 때문이다. COO] —) to separate amines and carbon dioxide. Proton and carbamate are 1: 1 in the desorption process, and proton and bicarbamate are 1: 1. In the present invention, the reproducibility may be increased by providing 1 to 50% of the proton donor mixture to the amine, that is, by injecting an excess of protons (H + ) per 1 mol of carbamate and bicarbamate. This is because the proton compound exhibits an insignificant effect when mixed in a large amount of 50wt% or more because it serves as a promoter.
<54>  <54>
<55> 실시예: 이산화탄소 흡수재생  Example 55 Absorption and Regeneration of Carbon Dioxide
<56> 이산화탄소 흡수재생 평가를 위하여 모노에탄을아민을 이용한 이산화탄소 분 리 예비실험을 수행하였다. 실험에 앞서 증류수를 주입한 후 가열 순환시키면서 공 정 내부의 잔류물을 제거하고 공정내부의 온도를 일정하게 유지시켰다. 세척에 사 용된 증류수는 제거하고 제조된 용액을 가열한 상태로 넣어주었다. 용액을 다시 빼 내고 재생탑 중단의 투입구를 통해 적정 농도로 제조된 흡수제 용액을 주입하였다. 이러한 과정은 재생탑과 연결된 밸브를 통해 진행되며 주입이 완료된 흡수제는 가 열기를 이용하여 온도를 올린 후 흡수제가 설정 온도로 을라가면 흡수탑과 연결된 이송 펌프를 작동시켜 일정한 유량으로 흡수제를 흡수탑 상단부로 이동시켜 흡수탑 내부로 흐르게 하였다. 흡수탑의 하부 드럼과 재생탑의 하부 드럼에 저장되는 흡수 제의 수위가 일정하게 유지되면 재생탑과 연결된 이송 펌프를 작동시킴으로써 흡수 제의 순환이 시작된다. 흡수제의 순환이 원활히 이루어지면 이산화탄소를 주입하게 되는데, 일정한 압력으로 유지한 이산화탄소는 히터에 의해 예열된 후 기체유량 제 어장치에 의해 기체를 흡수탑 하단부로 주입된다. 시스템 내로 유입되는 이산화탄 소는 일정 유량으로 고정시키고 이송 펌프의 흡수제 유량을 조절함으로써 기체와 액체의 유량을 다양하게 변화시키면서 실험을 수행하였다. 이산화탄소는 흡수탑의 하단부에서 상단부로 이동되며 이와 동시에 흡수제는 흡수탑의 상단부에서 하단부 로 향류 이동함으로써 이산화탄소를 흡수한다. 이산화탄소가 제거된 가스는 흡수탑 최상단부의 컨트를 밸브를 거쳐 시스템 외부로 배출되고, 이산화탄소를 흡수한 흡 수제는 재생탑으로 이동된다. In order to evaluate carbon dioxide absorption and regeneration, a preliminary experiment of carbon dioxide separation using monoethane amine was performed. Before the experiment, distilled water is injected and heated The internal residue was removed and the temperature inside the process was kept constant. Distilled water used for washing was removed and the prepared solution was placed in a heated state. The solution was withdrawn again and the absorbent solution prepared at the proper concentration was injected through the inlet of the regeneration tower stop. This process is carried out through a valve connected to the regeneration tower. After the injection is completed, the absorbent is heated up by using a heater, and when the absorbent reaches the set temperature, the absorber is operated at a constant flow rate by operating the transfer pump connected to the absorption tower. Was moved into the absorption tower. When the level of the absorbent stored in the lower drum of the absorption tower and the lower drum of the regeneration tower is kept constant, the circulation of the absorbent is started by operating the transfer pump connected to the regeneration tower. When the absorbent is circulated smoothly, carbon dioxide is injected. Carbon dioxide maintained at a constant pressure is preheated by a heater and gas is injected into the lower part of the absorption tower by a gas flow control device. The experiment was carried out by varying the flow rate of gas and liquid by fixing the carbon dioxide flowing into the system at a constant flow rate and adjusting the absorbent flow rate of the transfer pump. Carbon dioxide is moved from the lower end of the absorption tower to the upper end, and at the same time, the absorbent absorbs the carbon dioxide by moving countercurrently from the upper end of the absorption tower to the lower end. The gas from which carbon dioxide has been removed is discharged out of the system through the valve at the top of the absorption tower, and the absorber absorbing carbon dioxide is transferred to the regeneration tower.
<57> 상기와 같은 이산화탄소 포집 실험 결과를 토대로 양성자 전달형 흡수제에 대한 이산화탄소 포집 실험을 수행하였다. 본 실험에서는 <표 1>에서와 같이 연속 흡수 -재생 포집 장치에 대한 실험 조건을 나타내고 있다. Based on the carbon dioxide capture experiment results as described above, a carbon dioxide capture experiment for a proton delivery absorbent was performed. In this experiment, the experimental conditions for the continuous absorption-regeneration capture device are shown in Table 1.
<58> 【표 1】  <58> [Table 1]
<59> 실험실 규모 C02 흡수평형 연속 실험 조건 <59> Laboratory Scale C0 2 Absorption Equilibrium Continuous Experimental Conditions
Figure imgf000012_0001
Figure imgf000012_0001
본원의 일 구현예에서는 양성자 공여체를 이용한 이산화탄소 포집과 동시에 재생에너지를 낮추기 위하여 흡수액으로 모노에탄올아민 30wt%에 양성자 주게 흔합 물 10 %를 흔합한 용액을 이용하였으며, 다시 계산하면 모노에탄올아민 100 %에 양성자 주게 흔합물을 33 %를 흔합한 용액으로, 비교를 위해서 모노에탄을아민 In the exemplary embodiment of the present application, a solution containing 30% by weight of monoethanolamine and 10% of proton conjugates was used as an absorbent in order to capture carbon dioxide by using a proton donor and simultaneously reduce renewable energy. Protons give a mixture of 33% of the mixture, amine monoethane for comparison
30wt% 단독 용액도사용하였다. 본 실시예에서는 재생특성을 알아보기 위하여 상기 에서 수행한 이산화탄소 흡수 및 재생 연속 실험을 수행 한 후에 흡수 및 재생의 일정한 온도에서 연속적인 실험을 수행하였다. 연속적인 실험올 수행하면서 흡수탑 의 은도를 60°C로 일정하게 유지하고 재생 온도를 변화시키면서 운전올 하였다. 도 1은 재생온도를 80°C에서 1KTC로 증가시키면서 이산화탄소 재생효율인 시간별 재생탑의 열보일러 온도 변화에 따른 주입 C02의 재생량 차이를 나타내고 있 다. C02 제거량은 주입되는 13.8 vol% C02 중 재생탑에서의 흡수제의 C02 탈착 정도 에 따른 재생탑 상단부로 분리되어 제거되는 양을 나타낸 것이다. 재생 온도 80°C 구간에서는 두 실험 군 모두 C02의 재생이 전혀 이루어지지 않았으나 90°C, 100 °C , i05°c에서는 단계적으로 co2의 재생이 증가하였고 iio°c 이후에는 급격히 증가하여 두 흡수제 모두 100% C02 재생에 도달하였다. 90 °C 내지 105°C 구간에서는 10wt¾> 양 성자 주게 흔합물올 첨가한 흡수액의 co2 제거량이 전반에 걸쳐 더 높게 나타났다. 특히 90°C에서는 재생성이 높은 경향을 나타내고 있는데 이와 같은 현상은 양성자 주게 흔합물이 재생에 많은 역할을 하고 있음을 알 수 있다. A 30 wt% single solution was also used. In this embodiment, after the carbon dioxide absorption and regeneration continuous experiment performed in order to determine the regeneration characteristics, a continuous experiment was performed at a constant temperature of absorption and regeneration. While the experiments were performed continuously, the absorption tower was kept at 60 ° C and operated while changing the regeneration temperature. Figure 1 shows the difference in the amount of regeneration of the injection C0 2 according to the change in the temperature of the heat boiler of the hourly regeneration tower of carbon dioxide regeneration efficiency while increasing the regeneration temperature from 80 ° C to 1KTC. C0 2 removal amount shows the amount to be removed is separated into the upper end portion of the regeneration column C0 2 desorption degree of 13.8 vol% C0 2 sorbent is injected at the regeneration column. Regeneration of C0 2 was not achieved at both regeneration temperatures of 80 ° C, but the regeneration of co 2 increased gradually at 90 ° C, 100 ° C and i05 ° c. Both absorbents reached 100% CO 2 regeneration. In the 90 ° C to 105 ° C section, the CO 2 removal of the absorbent added with 10 wt¾> protons was higher throughout. In particular, at 90 ° C, the reproducibility tends to be high, and this phenomenon shows that the proton conjugates play a large role in regeneration.
이와 같은 현상은 아래 수식에서 보는 바와 같이, 아민 흡수제가 흡수 및 재생 과 정에서 양성자를 주고받는 과정으로 이해된다. This phenomenon is understood as the process by which the amine absorbent exchanges protons during the absorption and regeneration process, as shown in the equation below.
Figure imgf000013_0001
즉, 아민이 이산화탄소와 반웅하여 카바메이트 ([R-NH3] [R-NH-C00r)가 생성 되고 있으며, 이와 같이 분리된 이산화탄소를 재생하기 위한 재생과정에서는 [R- NH3] 의 양성자 (수소)를 [R— NH-C00]—)에 주어 아민과 이산화탄소로 분리된다. 따라 서 이와 같이 양성자를 주는 조촉매 (promoter )를 배합한 흡수제를 사용한다면 재생 하는데 도움이 된다. 이와 같은 원리에 입각하여 양성자 주게인 양성자 주게 흔합 물은 재생시 양성자를 주기 때문에 낮은 온도에서도 모노에탄올아민보다 높은 재생 효율을 나타내고 있다. 이는 양성자 공여 체인 양성자 주게 흔합제의 C02 흡수에 따 라 형성되는 카바메 이트의 양성자를 분리 하는 메커 니즘이 실제 재생 성능에 영 향을 끼 치 기 때문으로 보인다.
Figure imgf000013_0001
That is, the amine reacts with carbon dioxide to produce carbamate ([R-NH 3 ] [R-NH-C00r), and in the regeneration process for regenerating the separated carbon dioxide, [R- Protons (hydrogen) of NH 3 ] are given to [R—NH-C00] —) to separate them into amines and carbon dioxide. Therefore, the use of absorbents incorporating such proton-promoting promoters helps to regenerate. On the basis of this principle, the proton donor mixture exhibits higher regeneration efficiency than monoethanolamine even at low temperature because the proton donor mixture gives a proton during regeneration. This seems to be due to the mechanism that separates the protons of the carbamate formed by the C0 2 uptake of the proton donor chain proton donor conjugate, which affects the actual regeneration performance.
<65> 도 2는 재생탑에서 재생 온도에 따른 흡수탑에서의 흡수 후 배출되는 이산화 탄소 농도를 나타내고 있다. 그림은 연속적으로 흡수 및 재생 과정에 재생탑에서 재생은도를 90°C에서 1KTC까지 상승시 키 면서 흡수탑에서 배출가스 중 이산화탄소 농도를 나타낸 것 이다. 이 때 주입 된 모사가스의 이산화탄소 농도는 13.8vol%이므로 그림에서 보는 바와 같이 재생시간이 경과할수록 배출가스 중 이산화탄소 농도가 떨어지고 있다 . 재생온도 110°C에서는 두 흡수액 모두 C02 재생율이 급격히 상승하 여 빠른 시 간 내에 C02가 100% 재생되는 것을 확인하였다. 모노에탄을아민 30wt% 흡 수액의 경우 90°C 구간에서는 C02의 재생이 전혀 이루어지지 않는 반면 10wt¾> 양성 자 주게 흔합물을 첨가한 흡수액은 같은 온도 구간에서 높은 재생성을 보이고 있 다. 또한 100 °C에서도 많은 차이를 보이고 있다. 2 shows the carbon dioxide concentration discharged after absorption in the absorption tower according to the regeneration temperature in the regeneration tower. The figure shows the CO2 concentration in the off-gas from the absorption tower as the regeneration rate in the regeneration tower rises from 90 ° C to 1 KTC during successive absorption and regeneration processes. At this time, the CO2 concentration of the simulated gas injected is 13.8 vol%, so as the regeneration time passes, the carbon dioxide concentration in the exhaust gas decreases. In the regeneration temperature 110 ° C was confirmed that C0 2 is played 100% in both the absorbing solution in a time faster than the refresh rate and C0 2 is rapidly increased. For the mono-ethanamine 30wt% fluid absorption in 90 ° C intervals, while the reproduction of the C0 2 that is not at all made 10wt¾> absorbing solution by the addition of common compounds can give a positive character is in the same temperature range showing high reproducibility. It also shows a lot of difference at 100 ° C.
<66> 도 3은 이 현상을 보다 자세하게 보기 위해 온도에 따른 이산화탄소 재생율 을 비교한 그림 이다. 90°C에서 모노에탄올아민보다 양성자 주게 흔합물 10 %를 흔 합한 모노에탄올아민 흡수액은 이상의 이산화탄소 재생능력을 보이고 있다. 또 한 같은 은도에서 모노에탄을아민은 전혀 이산화탄소가 재생되지 않고 있음을 보이 고 있다. 재생 은도를 올림에 따라 재생율이 줄어들고 있으나 양성자 주게 흔합물 을 흔합한 흡수액은 높은 재생특성을 보이고 있다. 3 is a view comparing carbon dioxide recovery with temperature in order to look at this phenomenon in more detail. The monoethanolamine absorbent, which contains 10% of the proton compound at 90 ° C, is more than carbon dioxide. In the same way, monoethane and amine show no carbon dioxide regeneration at all. Regeneration rate decreases as the regeneration silver is raised, but the absorbent mixed with the proton mixture shows high regeneration characteristics.
<67> 따라서 양성자 공여 체인 양성자 주게 흔합제는 이산화탄소 재생시 양성자를 주고, 흡수시 받음으로써 재생능력을 향상시 키고 있음을 알 수 있다 . 이 와 같은 흡수제는 이산화탄소 포집시 재생에너지를 낮추어 포집 비용을 저감할 수 있다 .  Therefore, it can be seen that the proton donor chain proton giver improves the regenerative capacity by giving protons when regenerating carbon dioxide and receiving them when absorbed. Such absorbents can reduce capture costs by lowering renewable energy when capturing carbon dioxide.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
아민 (amine)과 양성자 주게 전구체 (proton donor precursor)를 이용하여 양 성자 주게 흔합물을 준비하는 단계 ;  Preparing a proton giver mixture using an amine and a proton donor precursor;
아민과 상기 양성자 주게 흔합물을 흔합하여 흡수제를 제조하는 단계;  Mixing an amine with the proton donor mixture to prepare an absorbent;
상기 흡수제를 흡수탑과 재생탑을 포함하는 이산화탄소 처리 장치에 주입하 고, 상기 흡수탑의 상단부에서 하단부로 향류 이동시켜 흡수탑의 하단부에서 상단 부로 이동하는 이산화탄소를 흡수하는 단계 ; 및  Injecting the absorbent into a carbon dioxide treatment apparatus including an absorption tower and a regeneration tower, and moving the counter current from the upper end to the lower end of the absorption tower to absorb carbon dioxide moving from the lower end of the absorption tower to the upper end; And
상기 이산화탄소를 흡수하는 단계를 거친 흡수제를 재생탑으로 이동하여 재 생하는 단계를 포함하는,  And moving the absorbent having undergone the step of absorbing carbon dioxide to a regeneration tower, and regenerating it.
양성자 주게 흔합물을 이용한 아민 흡수제의 재생방법.  Regeneration method of amine absorbent using proton donor mixture.
【청구항 2】  [Claim 2]
저 1 1 항에 있어서,  According to that clause 1
상기 아민은 사슬형 아민 (chain amine), 육각형 아민 (benzene amine), 다단 아민 (poly amine) , 및 피페리딘 유도체 아민 (piperidine derivatives amine)으로 이루어진 군 중에서 선택된 하나 이상인,  The amine is at least one selected from the group consisting of chain amines, benzene amines, poly amines, and piperidine derivatives amines,
양성자 주게 흔합물을 이용한 아민 흡수제의 재생방법.  Regeneration method of amine absorbent using proton donor mixture.
【청구항 3】  [Claim 3]
제 2항에 있어서,  The method of claim 2,
상기 사슬형 아민은, 3-이소부록시프로필아민 (3-Isobutoxypropylamine), 디 메틸아미노에틸아민 (Dimethylaminoethylamine), 2-아미노—2-메틸프로판올 (AMP, 2- Amino-2-methyl-propanol) , 핵사메틸렌디아민 (HMDA, Hexamethylenedi amine) , 프로 필아민 (Propylamine), 디프로필아민 (Dipropylamine), 부틸아민 (Butylamine), 이소 부틸아민 (Isobutylamine), 핵실아민 (Hexylamine), 2-에틸핵실아민 (2- The chain amine is 3-isobutoxypropylamine (3-Isobutoxypropylamine), dimethylaminoethylamine (Dimethylaminoethylamine), 2-amino- 2-methylpropanol (AMP, 2-Amino-2-methyl-propanol), nucleus yarn Methylenediamine (HMDA, Hexamethylenedi amine), Propylamine, Dipropylamine, Butylamine, Isobutylamine, Hexylamine, 2-ethylnuclear amine (2-
Ethylhexyl amine), 모노에탄을아민 (MEA, Monoethanol mine) , 디에탄올아민 (DEA, Diethanolamine), 트리에탄을아민 (TEA, Tr iethanolamine) , 메틸디에탄올아민 (MDEA, Methyldiethanolamine), 디글리콜아민 (DGA, Diglycolamine) , 알릴아민Ethylhexyl amine), Monoethanolamine (MEA, Monoethanol mine), Ethanolamine (DEA, Diethanolamine), Triethaneamine (TEA, Triethanolamine), Methyldiethanolamine (MDEA, Methyldiethanolamine), Diglycolamine (DGA , Diglycolamine), Allylamine
(Allylamine), 메틸디알릴아민 (Methyldial lylamine), 펜틸아민 (Pentylamine), 이소 아밀아민 (Isoamylamin), N-메틸에틸아민 (N— Methylethylamine), 2-옥실아민 (2- Octylamine), 4-아미노부탄올 (4-Aminobutanol), 3-메특시프로필아민 (3-(Allylamine), Methyldial lylamine, Pentylamine, Isoamylamin, N-Methylethylamine, 2-Octylamine, 4-Amino Butanol (4-Aminobutanol), 3-Methoxypropylamine (3-
Methoxypropylamine), 및 2—하이드록실에틸아미노프로필아민 (2-Methoxypropylamine), and 2—hydroxylethylaminopropylamine (2-
Hydroxyethylaminopropylamine)으로 이루어진 군에서 선택된 하나 이상인, 양성자 주게 흔합물을 이용한 아민 흡수제의 재생방법. At least one selected from the group consisting of Hydroxyethylaminopropylamine, Regeneration method of amine absorbent using proton donor mixture.
【청구항 4】  [Claim 4]
제 2 항에 있어서,  The method of claim 2,
상기 육각형 아민 (benzene amine)은, 아미노프로필아닐린 (Aminopropylaniline), 벤질아민 (Benzylamine), 디메틸벤질아민 The hexagonal amines include aminopropylaniline, benzylamine and dimethylbenzylamine.
(Dimethyl benzyl amine), 디벤질에탄올아민 (Dibenzylethanolamine;), 트리벤질아민 (Tribenzylamine), 디벤질아민 (Dibenzylamine), N-메틸벤질아민 (N-(Dimethyl benzyl amine), di-benzyl ethanolamine (Dibenzylethanolamine;), tree benzylamine (Tribenzylamine), dibenzylamine (Dibenzylamine), N- methyl-benzyl amine (N-
Methyl benzyl amine), 펜에틸아민 (Phenethylamine), 4-벤질피페리딘 (4-Methyl benzyl amine), Phenethylamine, 4-benzylpiperidine (4-
Benzylpiper idine), 메톡시펜에틸아민 (Methoxyphenethylamine), 및 에틸사이클로핵 실아민 (Ethylcyclohexylamine)으로 이루어진 군에서 선택된 하나 이상인, At least one selected from the group consisting of Benzylpiper idine, Methoxyphenethylamine, and Ethylcyclohexylamine
양성자 주게 흔합물을 이용한 아민 흡수제의 재생방법.  Regeneration method of amine absorbent using proton donor mixture.
【청구항 5]  [Claim 5]
제 2 항에 있어서,  The method of claim 2,
상기 다단 아민은, 플리에틸렌이민 (PEI, Polyethyleneimine), 이미노-비스- 프로필아민 ( Imino-bi s-propyl amine), 메틸이미노ᅳ비스-프로필아민 (Methyl imino- b is一 propyl amine) , 라우릴이미노一비스 -프로필아민 (Lauryl i mi no一 bis一 propyl amine) , 펜타메틸디에틸렌트리아민 (Pentamethyl diethylenetriamine) , 아미노프로필 -1,3-프 로필렌디아민 (Aminopropyl-l,3-propylenediamine), 및 아미노프로필 -1,4-부틸렌디 아민 (Aminopropyl-l,4-butylenediamine)으로 이루어진 군에서 선택된 하나 이상인, 양성자주게 흔합물을 이용한아민 흡수제의 재생방법 .  The multi-stage amine is, polyethylenimine (PEI, Polyethyleneimine), Imino-bi s-propyl amine (Methyl imino- b is one propyl amine), Lauryl imino no bis-propyl amine, pentamethyl diethylenetriamine, aminopropyl-1,3-propylenediamine (Aminopropyl-l, 3- propylenediamine) and regeneration method of an amine absorbent using protons, which is at least one selected from the group consisting of aminopropyl-1,4-butylenediamine.
【청구항 6】  [Claim 6]
제 2 항에 있어서,  The method of claim 2,
상기 피페리딘 유도체 아민은, nᅳ아미노피페리딘 (n-amino piperidine), n-피 페리딘 에탄올 (n-piper idine ethanol), n-메칠 -2-피페리딘 에탄올 (n-methyl-2- piperidine ethanol) , 4-피페리딘 에탄을 (4-piper idine ethanol), n-디메칠 -4-피페 리돈 (n-dimethyl-4-piperidone), 피페라진 (Piperazine;), 2-메틸피페라진 (2- Methylpiperazine), 2,5-디메틸피페라진(2,5-1)^^1:1 1^ ^3 1 ), 2-메틸피페라진 (2-Methylpiperazine), N-벤질 -4-피페리디놀 (N— Benzyl-4-piper idinol ), Nᅳ메틸 -4- 피페리돈 ( N-Me t hy 1 -4-p iperi done ), N-알킬 -3-피페라진 ( N-A 1 ky 1 -3-p iperizine), N— 에틸피페라진 (N-Ethylpiperazine), 피페콜리닉산 (Pipecolinic acid), 메틸이소니 펙티코테이트 (Methyl isonipecotate), N-알킬 -3-피페콜린 (N-Alkyl-3-pipecoline), N-알킬피페라진 (N-Alkylpiperizine), 2-아미노메틸피페리딘 (2- Aminomethylpiperidine), 벤질-4ᅳ피페리돈(^86112 1-4-1^ 1(101 ), 및 디피페리 디노메탄 (Dipiperidinomethan)으로 이루어진 군에서 선택된 하나 이상인, The piperidine derivative amine is n-amino piperidine, n-piper idine ethanol, n-methyl-2-piperidine ethanol (n-methyl- 2-piperidine ethanol), 4-piperidine ethane (4-piper idine ethanol), n-dimethyl-4-piperidone (n-dimethyl-4-piperidone), piperazine (Piperazine;), 2-methyl Piperazine (2-Methylpiperazine), 2,5-dimethylpiperazine (2,5-1) ^^ 1: 1 1 ^ ^ 3 1), 2-Methylpiperazine, N-benzyl-4 -Piperidinol (N— Benzyl-4-piper idinol), N ᅳ methyl-4-piperidone (N-Me t hy 1-4-p iperi done), N-alkyl-3-piperazin (NA 1 ky 1 -3-p iperizine, N—N-Ethylpiperazine, Pipecolinic acid, Methyl isonipecotate, N-alkyl-3-pipecoline (N-Alkyl -3-pipecoline), N-Alkylpiperizine, 2-aminomethylpiperidine (2- At least one selected from the group consisting of aminomethylpiperidine, benzyl-4 ᅳ piperidone (^ 86112 1-4-1 ^ 1 (101), and Dipiperidinomethan,
양성자 주게 흔합물을 이용한 아민 흡수제의 재생방법.  Regeneration method of amine absorbent using proton donor mixture.
【청구항 71  [Claim 71
제 1 항에 있어서,  The method of claim 1,
상기 양성자 주게 흔합물의 전구체는 알킬설포네이트 (alkyl sulfonate), 알 킬설파이트 (alkyl sulfite), 이미다졸 (imidazol), 및 피리딘 (pyridin)을 포함하고, 상기 알킬설포네이트 (alkyl sulfonate)는 메탄설포네이트 (methansulfonate) , 에탄 설포네이트 (ethanesulfonate), 프로판설포네이트(1 31 ^1£01 ^^, 부탄설포네이 트 (butansulfonate), 펜탄설포네이트 (pentansulfonate), 핵산설포네이트 The precursors of the proton conjugates include alkyl sulfonate, alkyl sulfite, imidazol, and pyridin, the alkyl sulfonate being methanesulfonate methansulfonate, ethanesulfonate, propanesulfonate (1 31 ^ 1 £ 01 ^^, butansulfonate, pentansulfonate, nucleic acidsulfonate
(hexansulfonate), 헵탄설포네이트 (heptansulfonate), 및 옥탄설포네이트 (octansulfonate)로 이루어진 군으로부터 선택된 하나이고, 상기 알킬설파이트 (alkyl sulfite)는 메탄설파이트 (methansulf ite) , 에탄설파이트 (ethanesulfite), 프로판설파이트 (propansulfite), 부탄설파이트 (butansulf ite), 펜탄설파이트 (pent ansulf ite), 핵산설파이트 (hexansulf ite), 설포네이트 (sulfonate), 헵탄설파 이트 (heptansulfite), 및 옥탄설파이트 (octansulf ite)로 이루어진 군으로부터 선택 된 하나이며, 상기 이미다졸 (imidazol)은 1-메틸 -3-메틸이미다졸 (l-methyl-3- methyl imidazol), 1-에틸ᅳ 3-메틸이미다졸 (1-ethylᅳ 3-methyl imidazol), 1-프로필 -3- 메틸이미다졸 (1-propyl -3-methyl imidazol), 1-부틸—3—메틸이미다졸 ( 1-buty卜 3- methyl imidazol), 1-핵실 -3-메틸이미다졸 (l-hexyl-3-methylimidazol), 1—메틸 -2,3- 디메틸이미다졸 ( 1-methy 1-2, 3-dimethl imidazol ), 1-에틸 -2, 3-디메틸이미다졸 ( 1- ethyl-2, 3-dimethl imidazo 1 ) , 1-프로필 -2, 3ᅳ디메틸이미다졸 ( 1-propy 1-2, 3- dimethl imidazol), 및 1-부틸 -2,3-디메틸이미다졸 (l-butyl-2,3— dimethlimidazol)로 이루어진 군으로부터 선택된 하나이고, 상기 피리딘 (pyridin)은 nᅳ에틸 -3ᅳ메틸-피 리딘 (n-ethyl-3-methyl-pyridin), n-부틸 -3-메틸-피리딘 (n-butyl-S-methyl- pyridin), n-부틸 -3-메틸-피리딘 (n-butyl-3-methyl-pyridin), n-(3-하이드로프로 필)ᅳ피리딘 (n-(3-hydropropyl )-pyridin), n-핵실 -4-디메틸아미노-피리딘 (n-hexy卜 4-dimethylamino-pyridin), 및 11-에틸-3-하이드록시메틸-피리딘(11-61:1 1-3ᅳ hydroxymethyl-pyridin) 중에서 선택된 하나인, hexansulfonate, heptanesulfonate, and octansulfonate, wherein the alkyl sulfite is methanesulfite, ethanesulfite, Propansulfite, butansulfite, pent ansulfite, hexansulfite, sulfonate, heptanesulfite, and octanesulphite octansulf ite), and the imidazol is 1-methyl-3-methyl imidazol or 1-ethyl ᅳ 3-methylimidazole. (1-ethyl ᅳ 3-methyl imidazol), 1-propyl-3-methylimidazole (1-propyl-3-methyl imidazol), 1-butyl- 3-methylimidazole (1-buty 卜 3-methyl imidazol), 1-nuxyl-3-methylimidazole (l-hexyl-3-methylimidazol), 1-methyl-2,3-dimethylimida (1-methy 1-2, 3-dimethl imidazol), 1-ethyl-2, 3-dimethylimidazole (1-ethyl-2, 3-dimethl imidazo 1), 1-propyl-2, 3 ᅳ dimethyl Midazole (1-propy 1-2, 3-dimethl imidazol), and 1-butyl-2,3-dimethylimidazole (l-butyl-2,3—dimethlimidazol), the pyridine (pyridin) is n-ethyl-3-methyl-pyridin, n-butyl-3-methyl-pyridin, n-butyl-S-methyl-pyridin 3-methyl-pyridine, n- (3-hydropropyl) pypyridine, n- (3-hydropropyl) -pyridin, n-nuclear 4-dimethylamino- Pyridine (n-hexy 卜 4-dimethylamino-pyridin), and 11-ethyl-3-hydroxymethyl-pyridine (11-61: 1 1-3 ᅳ hydroxymethyl-pyridin),
양성자 주게 흔합물을 이용한 아민 흡수제의 재생방법  Regeneration Method of Amine Absorbers Using Proton Organizer Mixtures
【청구항 8】  [Claim 8]
제 1항에 있어서, 상기 양성자 주게 흔합물은, The method of claim 1, The proton give compound is,
상기 아민 (amine)올 얼음조 (ice bath)내에 장착된 반웅기에 넣어 냉각하는 단계;  Cooling the amine by putting it in a reaction vessel mounted in an ice bath;
상기 냉각된 아민에 상기 양성자 주게 흔합물의 전구체를 과량 흔합하는 단 계; 및  Excessively mixing a precursor of the proton-juvenant mixture to the cooled amine; And
상기 흔합하는 단계를 거친 반웅물에서 고상 물질을 제거하는 단계를 거쳐 제조되는,  It is prepared through the step of removing the solid material from the semi-aungung passed through the mixing step,
양성자 주게 흔합물을 이용한 아민 흡수제의 재생방법 .  Regeneration Method of Amine Absorbers Using Proton Organizer Mixtures.
【청구항 9]  [Claim 9]
제 1항에 있어서,  The method of claim 1,
상기 흡수제는, 아민 100wt? l 대비하여 상기 양성자 주게 흔합물 1 내지 50 %를 흔합하는,  The absorbent is amine 100wt? to mix 1 to 50% of the proton donor complex in contrast to
양성자 주게 흔합물을 이용한 아민 흡수제의 재생방법.  Regeneration method of amine absorbent using proton donor mixture.
【청구항 10]  [Claim 10]
제 1항에 있어서,  The method of claim 1,
상기 흡수탑의 온도는 30내지 60°C인 The temperature of the absorption tower is 30 to 60 ° C
양성자 주게 흔합물을 이용한 아민 흡수제의 재생방법.  Regeneration method of amine absorbent using proton donor mixture.
【청구항 11】  [Claim 11]
제 1 항에 있어서,  The method of claim 1,
상기 재생탑의 은도는 90내지 110 °C인, Silver of the regeneration tower is 90 to 110 ° C,
양성자 주게 흔합물을 이용한 아민 흡수제의 재생방법.  Regeneration method of amine absorbent using proton donor mixture.
PCT/KR2013/002328 2013-03-20 2013-03-21 Method for regenerating amine absorbent using proton donor mixture WO2014148658A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0029713 2013-03-20
KR20130029713A KR101485953B1 (en) 2013-03-20 2013-03-20 Method for Regeneration of Amine Absorbent Using Proton Donor Mixture

Publications (1)

Publication Number Publication Date
WO2014148658A1 true WO2014148658A1 (en) 2014-09-25

Family

ID=51580321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002328 WO2014148658A1 (en) 2013-03-20 2013-03-21 Method for regenerating amine absorbent using proton donor mixture

Country Status (2)

Country Link
KR (1) KR101485953B1 (en)
WO (1) WO2014148658A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112546840A (en) * 2020-11-18 2021-03-26 清华大学 Oxidation inhibitor, carbon dioxide absorbent and carbon dioxide absorption method thereof
CN114713007A (en) * 2022-02-21 2022-07-08 中国天辰工程有限公司 Removing CO in flue gas2Composite decarbonizing solution, apparatus and method
CN116236882A (en) * 2023-02-09 2023-06-09 宁波大学 CO (carbon monoxide) 2 Composite amine absorbent and application thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7097901B2 (en) * 2017-02-10 2022-07-08 ビーエーエスエフ ソシエタス・ヨーロピア How to remove acid gas from fluid flow
KR102104293B1 (en) 2018-10-02 2020-04-24 한국에너지기술연구원 Method for regeneration of Acidic gas absorbents using Mixed catalyst of Silver Oxide and Silver Carbonate
CN114984727B (en) * 2022-07-28 2022-10-28 北京百利时能源技术股份有限公司 Low-temperature cryogenic CO 2 Trapping device and trapping method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090041491A (en) * 2007-10-24 2009-04-29 한국에너지기술연구원 Carbon dioxide absorbent solution for gas-liquid contactor
JP2011517615A (en) * 2008-03-13 2011-06-16 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for removing carbon dioxide from gas
JP2012045518A (en) * 2010-08-30 2012-03-08 Babcock Hitachi Kk Method and apparatus for treating exhaust gas containing carbon dioxide
JP2012143760A (en) * 2006-05-18 2012-08-02 Basf Se Carbon dioxide absorbent whose energy requirement for regeneration is reduced and method for removing carbon dioxide from gaseous flow
JP2012166139A (en) * 2011-02-14 2012-09-06 Babcock Hitachi Kk Method for controlling co2 chemical absorption system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143760A (en) * 2006-05-18 2012-08-02 Basf Se Carbon dioxide absorbent whose energy requirement for regeneration is reduced and method for removing carbon dioxide from gaseous flow
KR20090041491A (en) * 2007-10-24 2009-04-29 한국에너지기술연구원 Carbon dioxide absorbent solution for gas-liquid contactor
JP2011517615A (en) * 2008-03-13 2011-06-16 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for removing carbon dioxide from gas
JP2012045518A (en) * 2010-08-30 2012-03-08 Babcock Hitachi Kk Method and apparatus for treating exhaust gas containing carbon dioxide
JP2012166139A (en) * 2011-02-14 2012-09-06 Babcock Hitachi Kk Method for controlling co2 chemical absorption system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112546840A (en) * 2020-11-18 2021-03-26 清华大学 Oxidation inhibitor, carbon dioxide absorbent and carbon dioxide absorption method thereof
CN114713007A (en) * 2022-02-21 2022-07-08 中国天辰工程有限公司 Removing CO in flue gas2Composite decarbonizing solution, apparatus and method
CN114713007B (en) * 2022-02-21 2023-11-24 中国天辰工程有限公司 CO in flue gas is removed 2 Is a composite decarbonization solution, apparatus and method
CN116236882A (en) * 2023-02-09 2023-06-09 宁波大学 CO (carbon monoxide) 2 Composite amine absorbent and application thereof

Also Published As

Publication number Publication date
KR20140115089A (en) 2014-09-30
KR101485953B1 (en) 2015-02-11

Similar Documents

Publication Publication Date Title
JP5878539B2 (en) Method of scrubbing CO2 with alkanolamine
WO2014148658A1 (en) Method for regenerating amine absorbent using proton donor mixture
CA2880062C (en) Acid gas absorbent, acid gas removal method, and acid gas removal device
JP4913390B2 (en) Gas deoxidation method with partially regenerated absorbent solution
JP4865530B2 (en) Mixed absorbent for carbon dioxide separation
US7585479B2 (en) Method of deacidizing a gas by partly neutralized multiamines
US8523978B2 (en) Method of deacidizing a gas by means of an absorbent solution with fractionated regeneration through heating
US20070286783A1 (en) Method of deacidizing a gaseous effluent with extraction of the products to be regenerated
JP6300802B2 (en) Method for separating acid gases from fluid streams containing water
CN105517690B (en) Optimization for the regenerated stripper feed configuration of richness/lean solvent
JPWO2006107026A1 (en) Absorption liquid, CO2 and / or H2S removal method and apparatus
WO2011121633A1 (en) Acidic gas absorbent, acidic gas removal device, and acidic gas removal method
JP3197183B2 (en) Method for removing carbon dioxide in flue gas
KR101035148B1 (en) Absorbents for separation of acidic gas
JP2012530597A (en) Removal of acid gas using absorbent containing stripping aid
CA2762180A1 (en) Acid gas absorbent, acid gas removal method, and acid gas removal device
CA2718386A1 (en) Process for removal of carbon dioxide from a gas
CN102596362A (en) Carbon dioxide and hydrogen sulfide absorbents and process for their use
CA2765286A1 (en) Process for the removal of carbon dioxide and/or hydrogen sulphide from a gas
US20140056791A1 (en) Method and system for co2 capture from a stream and solvents used therein
JP2016533886A (en) Gas sweetening solvent containing quaternary ammonium salt
KR20180023373A (en) System for collecting acid gas including acidic catalyst and method for collecting the same
KR20150021698A (en) Compound including oxalate, carbon dioxide absorbent comprising the same, preparing method of the carbon dioxide absorbent and removing method of carbon dioxide
JP5039276B2 (en) Absorbing liquid, apparatus and method for removing CO2 or H2S in gas using absorbing liquid
US9468883B2 (en) Solvent and method for removal of an acid gas from a fluid stream

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13878943

Country of ref document: EP

Kind code of ref document: A1